]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
Merge remote-tracking branch 'regulator/topic/max8997' into regulator-next
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION                                 \
69         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
70         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
71         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
72         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
78
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT              (5*HZ)
81
82 static char version[] =
83         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88                    "BCM57710/57711/57711E/"
89                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90                    "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97
98 int num_queues;
99 module_param(num_queues, int, 0);
100 MODULE_PARM_DESC(num_queues,
101                  " Set number of queues (default is as a number of CPUs)");
102
103 static int disable_tpa;
104 module_param(disable_tpa, int, 0);
105 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
106
107 #define INT_MODE_INTx                   1
108 #define INT_MODE_MSI                    2
109 int int_mode;
110 module_param(int_mode, int, 0);
111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
112                                 "(1 INT#x; 2 MSI)");
113
114 static int dropless_fc;
115 module_param(dropless_fc, int, 0);
116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
117
118 static int mrrs = -1;
119 module_param(mrrs, int, 0);
120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
121
122 static int debug;
123 module_param(debug, int, 0);
124 MODULE_PARM_DESC(debug, " Default debug msglevel");
125
126
127
128 struct workqueue_struct *bnx2x_wq;
129
130 struct bnx2x_mac_vals {
131         u32 xmac_addr;
132         u32 xmac_val;
133         u32 emac_addr;
134         u32 emac_val;
135         u32 umac_addr;
136         u32 umac_val;
137         u32 bmac_addr;
138         u32 bmac_val[2];
139 };
140
141 enum bnx2x_board_type {
142         BCM57710 = 0,
143         BCM57711,
144         BCM57711E,
145         BCM57712,
146         BCM57712_MF,
147         BCM57800,
148         BCM57800_MF,
149         BCM57810,
150         BCM57810_MF,
151         BCM57840_O,
152         BCM57840_4_10,
153         BCM57840_2_20,
154         BCM57840_MFO,
155         BCM57840_MF,
156         BCM57811,
157         BCM57811_MF
158 };
159
160 /* indexed by board_type, above */
161 static struct {
162         char *name;
163 } board_info[] = {
164         { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
165         { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
166         { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
167         { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
168         { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
169         { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170         { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171         { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
172         { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
173         { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
174         { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
175         { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
176         { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
177         { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
178         { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet"},
179         { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function"},
180 };
181
182 #ifndef PCI_DEVICE_ID_NX2_57710
183 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
184 #endif
185 #ifndef PCI_DEVICE_ID_NX2_57711
186 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
187 #endif
188 #ifndef PCI_DEVICE_ID_NX2_57711E
189 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57712
192 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57712_MF
195 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57800
198 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57800_MF
201 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57810
204 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57810_MF
207 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57840_O
210 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
213 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
216 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
219 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57840_MF
222 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57811
225 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57811_MF
228 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
229 #endif
230 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
231         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
232         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
233         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
234         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
235         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
236         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
237         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
238         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
239         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
240         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
241         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
242         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
243         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
244         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
245         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
246         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
247         { 0 }
248 };
249
250 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
251
252 /* Global resources for unloading a previously loaded device */
253 #define BNX2X_PREV_WAIT_NEEDED 1
254 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
255 static LIST_HEAD(bnx2x_prev_list);
256 /****************************************************************************
257 * General service functions
258 ****************************************************************************/
259
260 static void __storm_memset_dma_mapping(struct bnx2x *bp,
261                                        u32 addr, dma_addr_t mapping)
262 {
263         REG_WR(bp,  addr, U64_LO(mapping));
264         REG_WR(bp,  addr + 4, U64_HI(mapping));
265 }
266
267 static void storm_memset_spq_addr(struct bnx2x *bp,
268                                   dma_addr_t mapping, u16 abs_fid)
269 {
270         u32 addr = XSEM_REG_FAST_MEMORY +
271                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
272
273         __storm_memset_dma_mapping(bp, addr, mapping);
274 }
275
276 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
277                                   u16 pf_id)
278 {
279         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
280                 pf_id);
281         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
282                 pf_id);
283         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
284                 pf_id);
285         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
286                 pf_id);
287 }
288
289 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
290                                  u8 enable)
291 {
292         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
293                 enable);
294         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
295                 enable);
296         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
297                 enable);
298         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
299                 enable);
300 }
301
302 static void storm_memset_eq_data(struct bnx2x *bp,
303                                  struct event_ring_data *eq_data,
304                                 u16 pfid)
305 {
306         size_t size = sizeof(struct event_ring_data);
307
308         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
309
310         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
311 }
312
313 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
314                                  u16 pfid)
315 {
316         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
317         REG_WR16(bp, addr, eq_prod);
318 }
319
320 /* used only at init
321  * locking is done by mcp
322  */
323 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
324 {
325         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
326         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
327         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
328                                PCICFG_VENDOR_ID_OFFSET);
329 }
330
331 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
332 {
333         u32 val;
334
335         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
336         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
337         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
338                                PCICFG_VENDOR_ID_OFFSET);
339
340         return val;
341 }
342
343 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
344 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
345 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
346 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
347 #define DMAE_DP_DST_NONE        "dst_addr [none]"
348
349
350 /* copy command into DMAE command memory and set DMAE command go */
351 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
352 {
353         u32 cmd_offset;
354         int i;
355
356         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
357         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
358                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
359         }
360         REG_WR(bp, dmae_reg_go_c[idx], 1);
361 }
362
363 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
364 {
365         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
366                            DMAE_CMD_C_ENABLE);
367 }
368
369 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
370 {
371         return opcode & ~DMAE_CMD_SRC_RESET;
372 }
373
374 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
375                              bool with_comp, u8 comp_type)
376 {
377         u32 opcode = 0;
378
379         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
380                    (dst_type << DMAE_COMMAND_DST_SHIFT));
381
382         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
383
384         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
385         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
386                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
387         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
388
389 #ifdef __BIG_ENDIAN
390         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
391 #else
392         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
393 #endif
394         if (with_comp)
395                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
396         return opcode;
397 }
398
399 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
400                                       struct dmae_command *dmae,
401                                       u8 src_type, u8 dst_type)
402 {
403         memset(dmae, 0, sizeof(struct dmae_command));
404
405         /* set the opcode */
406         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
407                                          true, DMAE_COMP_PCI);
408
409         /* fill in the completion parameters */
410         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
411         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
412         dmae->comp_val = DMAE_COMP_VAL;
413 }
414
415 /* issue a dmae command over the init-channel and wailt for completion */
416 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
417                                       struct dmae_command *dmae)
418 {
419         u32 *wb_comp = bnx2x_sp(bp, wb_comp);
420         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
421         int rc = 0;
422
423         /*
424          * Lock the dmae channel. Disable BHs to prevent a dead-lock
425          * as long as this code is called both from syscall context and
426          * from ndo_set_rx_mode() flow that may be called from BH.
427          */
428         spin_lock_bh(&bp->dmae_lock);
429
430         /* reset completion */
431         *wb_comp = 0;
432
433         /* post the command on the channel used for initializations */
434         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
435
436         /* wait for completion */
437         udelay(5);
438         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
439
440                 if (!cnt ||
441                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
442                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
443                         BNX2X_ERR("DMAE timeout!\n");
444                         rc = DMAE_TIMEOUT;
445                         goto unlock;
446                 }
447                 cnt--;
448                 udelay(50);
449         }
450         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
451                 BNX2X_ERR("DMAE PCI error!\n");
452                 rc = DMAE_PCI_ERROR;
453         }
454
455 unlock:
456         spin_unlock_bh(&bp->dmae_lock);
457         return rc;
458 }
459
460 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
461                       u32 len32)
462 {
463         struct dmae_command dmae;
464
465         if (!bp->dmae_ready) {
466                 u32 *data = bnx2x_sp(bp, wb_data[0]);
467
468                 if (CHIP_IS_E1(bp))
469                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
470                 else
471                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
472                 return;
473         }
474
475         /* set opcode and fixed command fields */
476         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
477
478         /* fill in addresses and len */
479         dmae.src_addr_lo = U64_LO(dma_addr);
480         dmae.src_addr_hi = U64_HI(dma_addr);
481         dmae.dst_addr_lo = dst_addr >> 2;
482         dmae.dst_addr_hi = 0;
483         dmae.len = len32;
484
485         /* issue the command and wait for completion */
486         bnx2x_issue_dmae_with_comp(bp, &dmae);
487 }
488
489 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
490 {
491         struct dmae_command dmae;
492
493         if (!bp->dmae_ready) {
494                 u32 *data = bnx2x_sp(bp, wb_data[0]);
495                 int i;
496
497                 if (CHIP_IS_E1(bp))
498                         for (i = 0; i < len32; i++)
499                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
500                 else
501                         for (i = 0; i < len32; i++)
502                                 data[i] = REG_RD(bp, src_addr + i*4);
503
504                 return;
505         }
506
507         /* set opcode and fixed command fields */
508         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
509
510         /* fill in addresses and len */
511         dmae.src_addr_lo = src_addr >> 2;
512         dmae.src_addr_hi = 0;
513         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
514         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
515         dmae.len = len32;
516
517         /* issue the command and wait for completion */
518         bnx2x_issue_dmae_with_comp(bp, &dmae);
519 }
520
521 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
522                                       u32 addr, u32 len)
523 {
524         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
525         int offset = 0;
526
527         while (len > dmae_wr_max) {
528                 bnx2x_write_dmae(bp, phys_addr + offset,
529                                  addr + offset, dmae_wr_max);
530                 offset += dmae_wr_max * 4;
531                 len -= dmae_wr_max;
532         }
533
534         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
535 }
536
537 static int bnx2x_mc_assert(struct bnx2x *bp)
538 {
539         char last_idx;
540         int i, rc = 0;
541         u32 row0, row1, row2, row3;
542
543         /* XSTORM */
544         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
545                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
546         if (last_idx)
547                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
548
549         /* print the asserts */
550         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
551
552                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
553                               XSTORM_ASSERT_LIST_OFFSET(i));
554                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
555                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
556                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
557                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
558                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
559                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
560
561                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
562                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
563                                   i, row3, row2, row1, row0);
564                         rc++;
565                 } else {
566                         break;
567                 }
568         }
569
570         /* TSTORM */
571         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
572                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
573         if (last_idx)
574                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
575
576         /* print the asserts */
577         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
578
579                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
580                               TSTORM_ASSERT_LIST_OFFSET(i));
581                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
582                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
583                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
584                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
585                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
586                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
587
588                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
589                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
590                                   i, row3, row2, row1, row0);
591                         rc++;
592                 } else {
593                         break;
594                 }
595         }
596
597         /* CSTORM */
598         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
599                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
600         if (last_idx)
601                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
602
603         /* print the asserts */
604         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
605
606                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
607                               CSTORM_ASSERT_LIST_OFFSET(i));
608                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
609                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
610                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
611                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
612                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
613                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
614
615                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
616                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
617                                   i, row3, row2, row1, row0);
618                         rc++;
619                 } else {
620                         break;
621                 }
622         }
623
624         /* USTORM */
625         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
626                            USTORM_ASSERT_LIST_INDEX_OFFSET);
627         if (last_idx)
628                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
629
630         /* print the asserts */
631         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
632
633                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
634                               USTORM_ASSERT_LIST_OFFSET(i));
635                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
636                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
637                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
638                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
639                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
640                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
641
642                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
643                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
644                                   i, row3, row2, row1, row0);
645                         rc++;
646                 } else {
647                         break;
648                 }
649         }
650
651         return rc;
652 }
653
654 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
655 {
656         u32 addr, val;
657         u32 mark, offset;
658         __be32 data[9];
659         int word;
660         u32 trace_shmem_base;
661         if (BP_NOMCP(bp)) {
662                 BNX2X_ERR("NO MCP - can not dump\n");
663                 return;
664         }
665         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
666                 (bp->common.bc_ver & 0xff0000) >> 16,
667                 (bp->common.bc_ver & 0xff00) >> 8,
668                 (bp->common.bc_ver & 0xff));
669
670         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
671         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
672                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
673
674         if (BP_PATH(bp) == 0)
675                 trace_shmem_base = bp->common.shmem_base;
676         else
677                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
678         addr = trace_shmem_base - 0x800;
679
680         /* validate TRCB signature */
681         mark = REG_RD(bp, addr);
682         if (mark != MFW_TRACE_SIGNATURE) {
683                 BNX2X_ERR("Trace buffer signature is missing.");
684                 return ;
685         }
686
687         /* read cyclic buffer pointer */
688         addr += 4;
689         mark = REG_RD(bp, addr);
690         mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
691                         + ((mark + 0x3) & ~0x3) - 0x08000000;
692         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
693
694         printk("%s", lvl);
695         for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
696                 for (word = 0; word < 8; word++)
697                         data[word] = htonl(REG_RD(bp, offset + 4*word));
698                 data[8] = 0x0;
699                 pr_cont("%s", (char *)data);
700         }
701         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
702                 for (word = 0; word < 8; word++)
703                         data[word] = htonl(REG_RD(bp, offset + 4*word));
704                 data[8] = 0x0;
705                 pr_cont("%s", (char *)data);
706         }
707         printk("%s" "end of fw dump\n", lvl);
708 }
709
710 static void bnx2x_fw_dump(struct bnx2x *bp)
711 {
712         bnx2x_fw_dump_lvl(bp, KERN_ERR);
713 }
714
715 void bnx2x_panic_dump(struct bnx2x *bp)
716 {
717         int i;
718         u16 j;
719         struct hc_sp_status_block_data sp_sb_data;
720         int func = BP_FUNC(bp);
721 #ifdef BNX2X_STOP_ON_ERROR
722         u16 start = 0, end = 0;
723         u8 cos;
724 #endif
725
726         bp->stats_state = STATS_STATE_DISABLED;
727         bp->eth_stats.unrecoverable_error++;
728         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
729
730         BNX2X_ERR("begin crash dump -----------------\n");
731
732         /* Indices */
733         /* Common */
734         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
735                   bp->def_idx, bp->def_att_idx, bp->attn_state,
736                   bp->spq_prod_idx, bp->stats_counter);
737         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
738                   bp->def_status_blk->atten_status_block.attn_bits,
739                   bp->def_status_blk->atten_status_block.attn_bits_ack,
740                   bp->def_status_blk->atten_status_block.status_block_id,
741                   bp->def_status_blk->atten_status_block.attn_bits_index);
742         BNX2X_ERR("     def (");
743         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
744                 pr_cont("0x%x%s",
745                         bp->def_status_blk->sp_sb.index_values[i],
746                         (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
747
748         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
749                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
750                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
751                         i*sizeof(u32));
752
753         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
754                sp_sb_data.igu_sb_id,
755                sp_sb_data.igu_seg_id,
756                sp_sb_data.p_func.pf_id,
757                sp_sb_data.p_func.vnic_id,
758                sp_sb_data.p_func.vf_id,
759                sp_sb_data.p_func.vf_valid,
760                sp_sb_data.state);
761
762
763         for_each_eth_queue(bp, i) {
764                 struct bnx2x_fastpath *fp = &bp->fp[i];
765                 int loop;
766                 struct hc_status_block_data_e2 sb_data_e2;
767                 struct hc_status_block_data_e1x sb_data_e1x;
768                 struct hc_status_block_sm  *hc_sm_p =
769                         CHIP_IS_E1x(bp) ?
770                         sb_data_e1x.common.state_machine :
771                         sb_data_e2.common.state_machine;
772                 struct hc_index_data *hc_index_p =
773                         CHIP_IS_E1x(bp) ?
774                         sb_data_e1x.index_data :
775                         sb_data_e2.index_data;
776                 u8 data_size, cos;
777                 u32 *sb_data_p;
778                 struct bnx2x_fp_txdata txdata;
779
780                 /* Rx */
781                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
782                           i, fp->rx_bd_prod, fp->rx_bd_cons,
783                           fp->rx_comp_prod,
784                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
785                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
786                           fp->rx_sge_prod, fp->last_max_sge,
787                           le16_to_cpu(fp->fp_hc_idx));
788
789                 /* Tx */
790                 for_each_cos_in_tx_queue(fp, cos)
791                 {
792                         txdata = *fp->txdata_ptr[cos];
793                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
794                                   i, txdata.tx_pkt_prod,
795                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
796                                   txdata.tx_bd_cons,
797                                   le16_to_cpu(*txdata.tx_cons_sb));
798                 }
799
800                 loop = CHIP_IS_E1x(bp) ?
801                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
802
803                 /* host sb data */
804
805                 if (IS_FCOE_FP(fp))
806                         continue;
807
808                 BNX2X_ERR("     run indexes (");
809                 for (j = 0; j < HC_SB_MAX_SM; j++)
810                         pr_cont("0x%x%s",
811                                fp->sb_running_index[j],
812                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
813
814                 BNX2X_ERR("     indexes (");
815                 for (j = 0; j < loop; j++)
816                         pr_cont("0x%x%s",
817                                fp->sb_index_values[j],
818                                (j == loop - 1) ? ")" : " ");
819                 /* fw sb data */
820                 data_size = CHIP_IS_E1x(bp) ?
821                         sizeof(struct hc_status_block_data_e1x) :
822                         sizeof(struct hc_status_block_data_e2);
823                 data_size /= sizeof(u32);
824                 sb_data_p = CHIP_IS_E1x(bp) ?
825                         (u32 *)&sb_data_e1x :
826                         (u32 *)&sb_data_e2;
827                 /* copy sb data in here */
828                 for (j = 0; j < data_size; j++)
829                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
830                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
831                                 j * sizeof(u32));
832
833                 if (!CHIP_IS_E1x(bp)) {
834                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
835                                 sb_data_e2.common.p_func.pf_id,
836                                 sb_data_e2.common.p_func.vf_id,
837                                 sb_data_e2.common.p_func.vf_valid,
838                                 sb_data_e2.common.p_func.vnic_id,
839                                 sb_data_e2.common.same_igu_sb_1b,
840                                 sb_data_e2.common.state);
841                 } else {
842                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
843                                 sb_data_e1x.common.p_func.pf_id,
844                                 sb_data_e1x.common.p_func.vf_id,
845                                 sb_data_e1x.common.p_func.vf_valid,
846                                 sb_data_e1x.common.p_func.vnic_id,
847                                 sb_data_e1x.common.same_igu_sb_1b,
848                                 sb_data_e1x.common.state);
849                 }
850
851                 /* SB_SMs data */
852                 for (j = 0; j < HC_SB_MAX_SM; j++) {
853                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
854                                 j, hc_sm_p[j].__flags,
855                                 hc_sm_p[j].igu_sb_id,
856                                 hc_sm_p[j].igu_seg_id,
857                                 hc_sm_p[j].time_to_expire,
858                                 hc_sm_p[j].timer_value);
859                 }
860
861                 /* Indecies data */
862                 for (j = 0; j < loop; j++) {
863                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
864                                hc_index_p[j].flags,
865                                hc_index_p[j].timeout);
866                 }
867         }
868
869 #ifdef BNX2X_STOP_ON_ERROR
870         /* Rings */
871         /* Rx */
872         for_each_valid_rx_queue(bp, i) {
873                 struct bnx2x_fastpath *fp = &bp->fp[i];
874
875                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
876                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
877                 for (j = start; j != end; j = RX_BD(j + 1)) {
878                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
879                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
880
881                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
882                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
883                 }
884
885                 start = RX_SGE(fp->rx_sge_prod);
886                 end = RX_SGE(fp->last_max_sge);
887                 for (j = start; j != end; j = RX_SGE(j + 1)) {
888                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
889                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
890
891                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
892                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
893                 }
894
895                 start = RCQ_BD(fp->rx_comp_cons - 10);
896                 end = RCQ_BD(fp->rx_comp_cons + 503);
897                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
898                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
899
900                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
901                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
902                 }
903         }
904
905         /* Tx */
906         for_each_valid_tx_queue(bp, i) {
907                 struct bnx2x_fastpath *fp = &bp->fp[i];
908                 for_each_cos_in_tx_queue(fp, cos) {
909                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
910
911                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
912                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
913                         for (j = start; j != end; j = TX_BD(j + 1)) {
914                                 struct sw_tx_bd *sw_bd =
915                                         &txdata->tx_buf_ring[j];
916
917                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
918                                           i, cos, j, sw_bd->skb,
919                                           sw_bd->first_bd);
920                         }
921
922                         start = TX_BD(txdata->tx_bd_cons - 10);
923                         end = TX_BD(txdata->tx_bd_cons + 254);
924                         for (j = start; j != end; j = TX_BD(j + 1)) {
925                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
926
927                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
928                                           i, cos, j, tx_bd[0], tx_bd[1],
929                                           tx_bd[2], tx_bd[3]);
930                         }
931                 }
932         }
933 #endif
934         bnx2x_fw_dump(bp);
935         bnx2x_mc_assert(bp);
936         BNX2X_ERR("end crash dump -----------------\n");
937 }
938
939 /*
940  * FLR Support for E2
941  *
942  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
943  * initialization.
944  */
945 #define FLR_WAIT_USEC           10000   /* 10 miliseconds */
946 #define FLR_WAIT_INTERVAL       50      /* usec */
947 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
948
949 struct pbf_pN_buf_regs {
950         int pN;
951         u32 init_crd;
952         u32 crd;
953         u32 crd_freed;
954 };
955
956 struct pbf_pN_cmd_regs {
957         int pN;
958         u32 lines_occup;
959         u32 lines_freed;
960 };
961
962 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
963                                      struct pbf_pN_buf_regs *regs,
964                                      u32 poll_count)
965 {
966         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
967         u32 cur_cnt = poll_count;
968
969         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
970         crd = crd_start = REG_RD(bp, regs->crd);
971         init_crd = REG_RD(bp, regs->init_crd);
972
973         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
974         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
975         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
976
977         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
978                (init_crd - crd_start))) {
979                 if (cur_cnt--) {
980                         udelay(FLR_WAIT_INTERVAL);
981                         crd = REG_RD(bp, regs->crd);
982                         crd_freed = REG_RD(bp, regs->crd_freed);
983                 } else {
984                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
985                            regs->pN);
986                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
987                            regs->pN, crd);
988                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
989                            regs->pN, crd_freed);
990                         break;
991                 }
992         }
993         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
994            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
995 }
996
997 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
998                                      struct pbf_pN_cmd_regs *regs,
999                                      u32 poll_count)
1000 {
1001         u32 occup, to_free, freed, freed_start;
1002         u32 cur_cnt = poll_count;
1003
1004         occup = to_free = REG_RD(bp, regs->lines_occup);
1005         freed = freed_start = REG_RD(bp, regs->lines_freed);
1006
1007         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1008         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1009
1010         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1011                 if (cur_cnt--) {
1012                         udelay(FLR_WAIT_INTERVAL);
1013                         occup = REG_RD(bp, regs->lines_occup);
1014                         freed = REG_RD(bp, regs->lines_freed);
1015                 } else {
1016                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1017                            regs->pN);
1018                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1019                            regs->pN, occup);
1020                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1021                            regs->pN, freed);
1022                         break;
1023                 }
1024         }
1025         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1026            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1027 }
1028
1029 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1030                                     u32 expected, u32 poll_count)
1031 {
1032         u32 cur_cnt = poll_count;
1033         u32 val;
1034
1035         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1036                 udelay(FLR_WAIT_INTERVAL);
1037
1038         return val;
1039 }
1040
1041 static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1042                                            char *msg, u32 poll_cnt)
1043 {
1044         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1045         if (val != 0) {
1046                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1047                 return 1;
1048         }
1049         return 0;
1050 }
1051
1052 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1053 {
1054         /* adjust polling timeout */
1055         if (CHIP_REV_IS_EMUL(bp))
1056                 return FLR_POLL_CNT * 2000;
1057
1058         if (CHIP_REV_IS_FPGA(bp))
1059                 return FLR_POLL_CNT * 120;
1060
1061         return FLR_POLL_CNT;
1062 }
1063
1064 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1065 {
1066         struct pbf_pN_cmd_regs cmd_regs[] = {
1067                 {0, (CHIP_IS_E3B0(bp)) ?
1068                         PBF_REG_TQ_OCCUPANCY_Q0 :
1069                         PBF_REG_P0_TQ_OCCUPANCY,
1070                     (CHIP_IS_E3B0(bp)) ?
1071                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1072                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1073                 {1, (CHIP_IS_E3B0(bp)) ?
1074                         PBF_REG_TQ_OCCUPANCY_Q1 :
1075                         PBF_REG_P1_TQ_OCCUPANCY,
1076                     (CHIP_IS_E3B0(bp)) ?
1077                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1078                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1079                 {4, (CHIP_IS_E3B0(bp)) ?
1080                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1081                         PBF_REG_P4_TQ_OCCUPANCY,
1082                     (CHIP_IS_E3B0(bp)) ?
1083                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1084                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1085         };
1086
1087         struct pbf_pN_buf_regs buf_regs[] = {
1088                 {0, (CHIP_IS_E3B0(bp)) ?
1089                         PBF_REG_INIT_CRD_Q0 :
1090                         PBF_REG_P0_INIT_CRD ,
1091                     (CHIP_IS_E3B0(bp)) ?
1092                         PBF_REG_CREDIT_Q0 :
1093                         PBF_REG_P0_CREDIT,
1094                     (CHIP_IS_E3B0(bp)) ?
1095                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1096                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1097                 {1, (CHIP_IS_E3B0(bp)) ?
1098                         PBF_REG_INIT_CRD_Q1 :
1099                         PBF_REG_P1_INIT_CRD,
1100                     (CHIP_IS_E3B0(bp)) ?
1101                         PBF_REG_CREDIT_Q1 :
1102                         PBF_REG_P1_CREDIT,
1103                     (CHIP_IS_E3B0(bp)) ?
1104                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1105                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1106                 {4, (CHIP_IS_E3B0(bp)) ?
1107                         PBF_REG_INIT_CRD_LB_Q :
1108                         PBF_REG_P4_INIT_CRD,
1109                     (CHIP_IS_E3B0(bp)) ?
1110                         PBF_REG_CREDIT_LB_Q :
1111                         PBF_REG_P4_CREDIT,
1112                     (CHIP_IS_E3B0(bp)) ?
1113                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1114                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1115         };
1116
1117         int i;
1118
1119         /* Verify the command queues are flushed P0, P1, P4 */
1120         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1121                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1122
1123
1124         /* Verify the transmission buffers are flushed P0, P1, P4 */
1125         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1126                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1127 }
1128
1129 #define OP_GEN_PARAM(param) \
1130         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1131
1132 #define OP_GEN_TYPE(type) \
1133         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1134
1135 #define OP_GEN_AGG_VECT(index) \
1136         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1137
1138
1139 static int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1140                                          u32 poll_cnt)
1141 {
1142         struct sdm_op_gen op_gen = {0};
1143
1144         u32 comp_addr = BAR_CSTRORM_INTMEM +
1145                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1146         int ret = 0;
1147
1148         if (REG_RD(bp, comp_addr)) {
1149                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1150                 return 1;
1151         }
1152
1153         op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1154         op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1155         op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1156         op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1157
1158         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1159         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1160
1161         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1162                 BNX2X_ERR("FW final cleanup did not succeed\n");
1163                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1164                    (REG_RD(bp, comp_addr)));
1165                 ret = 1;
1166         }
1167         /* Zero completion for nxt FLR */
1168         REG_WR(bp, comp_addr, 0);
1169
1170         return ret;
1171 }
1172
1173 static u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1174 {
1175         u16 status;
1176
1177         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1178         return status & PCI_EXP_DEVSTA_TRPND;
1179 }
1180
1181 /* PF FLR specific routines
1182 */
1183 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1184 {
1185
1186         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1187         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1188                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1189                         "CFC PF usage counter timed out",
1190                         poll_cnt))
1191                 return 1;
1192
1193
1194         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1195         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1196                         DORQ_REG_PF_USAGE_CNT,
1197                         "DQ PF usage counter timed out",
1198                         poll_cnt))
1199                 return 1;
1200
1201         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1202         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1203                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1204                         "QM PF usage counter timed out",
1205                         poll_cnt))
1206                 return 1;
1207
1208         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1209         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1210                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1211                         "Timers VNIC usage counter timed out",
1212                         poll_cnt))
1213                 return 1;
1214         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1215                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1216                         "Timers NUM_SCANS usage counter timed out",
1217                         poll_cnt))
1218                 return 1;
1219
1220         /* Wait DMAE PF usage counter to zero */
1221         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1222                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1223                         "DMAE dommand register timed out",
1224                         poll_cnt))
1225                 return 1;
1226
1227         return 0;
1228 }
1229
1230 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1231 {
1232         u32 val;
1233
1234         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1235         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1236
1237         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1238         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1239
1240         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1241         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1242
1243         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1244         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1245
1246         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1247         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1248
1249         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1250         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1251
1252         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1253         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1254
1255         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1256         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1257            val);
1258 }
1259
1260 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1261 {
1262         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1263
1264         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1265
1266         /* Re-enable PF target read access */
1267         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1268
1269         /* Poll HW usage counters */
1270         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1271         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1272                 return -EBUSY;
1273
1274         /* Zero the igu 'trailing edge' and 'leading edge' */
1275
1276         /* Send the FW cleanup command */
1277         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1278                 return -EBUSY;
1279
1280         /* ATC cleanup */
1281
1282         /* Verify TX hw is flushed */
1283         bnx2x_tx_hw_flushed(bp, poll_cnt);
1284
1285         /* Wait 100ms (not adjusted according to platform) */
1286         msleep(100);
1287
1288         /* Verify no pending pci transactions */
1289         if (bnx2x_is_pcie_pending(bp->pdev))
1290                 BNX2X_ERR("PCIE Transactions still pending\n");
1291
1292         /* Debug */
1293         bnx2x_hw_enable_status(bp);
1294
1295         /*
1296          * Master enable - Due to WB DMAE writes performed before this
1297          * register is re-initialized as part of the regular function init
1298          */
1299         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1300
1301         return 0;
1302 }
1303
1304 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1305 {
1306         int port = BP_PORT(bp);
1307         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1308         u32 val = REG_RD(bp, addr);
1309         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1310         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1311         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1312
1313         if (msix) {
1314                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1315                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1316                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1317                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1318                 if (single_msix)
1319                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1320         } else if (msi) {
1321                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1322                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1323                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1324                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1325         } else {
1326                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1327                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1328                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1329                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1330
1331                 if (!CHIP_IS_E1(bp)) {
1332                         DP(NETIF_MSG_IFUP,
1333                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1334
1335                         REG_WR(bp, addr, val);
1336
1337                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1338                 }
1339         }
1340
1341         if (CHIP_IS_E1(bp))
1342                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1343
1344         DP(NETIF_MSG_IFUP,
1345            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1346            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1347
1348         REG_WR(bp, addr, val);
1349         /*
1350          * Ensure that HC_CONFIG is written before leading/trailing edge config
1351          */
1352         mmiowb();
1353         barrier();
1354
1355         if (!CHIP_IS_E1(bp)) {
1356                 /* init leading/trailing edge */
1357                 if (IS_MF(bp)) {
1358                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1359                         if (bp->port.pmf)
1360                                 /* enable nig and gpio3 attention */
1361                                 val |= 0x1100;
1362                 } else
1363                         val = 0xffff;
1364
1365                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1366                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1367         }
1368
1369         /* Make sure that interrupts are indeed enabled from here on */
1370         mmiowb();
1371 }
1372
1373 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1374 {
1375         u32 val;
1376         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1377         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1378         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1379
1380         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1381
1382         if (msix) {
1383                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1384                          IGU_PF_CONF_SINGLE_ISR_EN);
1385                 val |= (IGU_PF_CONF_FUNC_EN |
1386                         IGU_PF_CONF_MSI_MSIX_EN |
1387                         IGU_PF_CONF_ATTN_BIT_EN);
1388
1389                 if (single_msix)
1390                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1391         } else if (msi) {
1392                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1393                 val |= (IGU_PF_CONF_FUNC_EN |
1394                         IGU_PF_CONF_MSI_MSIX_EN |
1395                         IGU_PF_CONF_ATTN_BIT_EN |
1396                         IGU_PF_CONF_SINGLE_ISR_EN);
1397         } else {
1398                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1399                 val |= (IGU_PF_CONF_FUNC_EN |
1400                         IGU_PF_CONF_INT_LINE_EN |
1401                         IGU_PF_CONF_ATTN_BIT_EN |
1402                         IGU_PF_CONF_SINGLE_ISR_EN);
1403         }
1404
1405         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1406            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1407
1408         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1409
1410         if (val & IGU_PF_CONF_INT_LINE_EN)
1411                 pci_intx(bp->pdev, true);
1412
1413         barrier();
1414
1415         /* init leading/trailing edge */
1416         if (IS_MF(bp)) {
1417                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1418                 if (bp->port.pmf)
1419                         /* enable nig and gpio3 attention */
1420                         val |= 0x1100;
1421         } else
1422                 val = 0xffff;
1423
1424         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1425         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1426
1427         /* Make sure that interrupts are indeed enabled from here on */
1428         mmiowb();
1429 }
1430
1431 void bnx2x_int_enable(struct bnx2x *bp)
1432 {
1433         if (bp->common.int_block == INT_BLOCK_HC)
1434                 bnx2x_hc_int_enable(bp);
1435         else
1436                 bnx2x_igu_int_enable(bp);
1437 }
1438
1439 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1440 {
1441         int port = BP_PORT(bp);
1442         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1443         u32 val = REG_RD(bp, addr);
1444
1445         /*
1446          * in E1 we must use only PCI configuration space to disable
1447          * MSI/MSIX capablility
1448          * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1449          */
1450         if (CHIP_IS_E1(bp)) {
1451                 /*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1452                  *  Use mask register to prevent from HC sending interrupts
1453                  *  after we exit the function
1454                  */
1455                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1456
1457                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1458                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
1459                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1460         } else
1461                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1462                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1463                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
1464                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1465
1466         DP(NETIF_MSG_IFDOWN,
1467            "write %x to HC %d (addr 0x%x)\n",
1468            val, port, addr);
1469
1470         /* flush all outstanding writes */
1471         mmiowb();
1472
1473         REG_WR(bp, addr, val);
1474         if (REG_RD(bp, addr) != val)
1475                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1476 }
1477
1478 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1479 {
1480         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1481
1482         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1483                  IGU_PF_CONF_INT_LINE_EN |
1484                  IGU_PF_CONF_ATTN_BIT_EN);
1485
1486         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1487
1488         /* flush all outstanding writes */
1489         mmiowb();
1490
1491         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1492         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1493                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1494 }
1495
1496 static void bnx2x_int_disable(struct bnx2x *bp)
1497 {
1498         if (bp->common.int_block == INT_BLOCK_HC)
1499                 bnx2x_hc_int_disable(bp);
1500         else
1501                 bnx2x_igu_int_disable(bp);
1502 }
1503
1504 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1505 {
1506         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1507         int i, offset;
1508
1509         if (disable_hw)
1510                 /* prevent the HW from sending interrupts */
1511                 bnx2x_int_disable(bp);
1512
1513         /* make sure all ISRs are done */
1514         if (msix) {
1515                 synchronize_irq(bp->msix_table[0].vector);
1516                 offset = 1;
1517                 if (CNIC_SUPPORT(bp))
1518                         offset++;
1519                 for_each_eth_queue(bp, i)
1520                         synchronize_irq(bp->msix_table[offset++].vector);
1521         } else
1522                 synchronize_irq(bp->pdev->irq);
1523
1524         /* make sure sp_task is not running */
1525         cancel_delayed_work(&bp->sp_task);
1526         cancel_delayed_work(&bp->period_task);
1527         flush_workqueue(bnx2x_wq);
1528 }
1529
1530 /* fast path */
1531
1532 /*
1533  * General service functions
1534  */
1535
1536 /* Return true if succeeded to acquire the lock */
1537 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1538 {
1539         u32 lock_status;
1540         u32 resource_bit = (1 << resource);
1541         int func = BP_FUNC(bp);
1542         u32 hw_lock_control_reg;
1543
1544         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1545            "Trying to take a lock on resource %d\n", resource);
1546
1547         /* Validating that the resource is within range */
1548         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1549                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1550                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1551                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1552                 return false;
1553         }
1554
1555         if (func <= 5)
1556                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1557         else
1558                 hw_lock_control_reg =
1559                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1560
1561         /* Try to acquire the lock */
1562         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1563         lock_status = REG_RD(bp, hw_lock_control_reg);
1564         if (lock_status & resource_bit)
1565                 return true;
1566
1567         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1568            "Failed to get a lock on resource %d\n", resource);
1569         return false;
1570 }
1571
1572 /**
1573  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1574  *
1575  * @bp: driver handle
1576  *
1577  * Returns the recovery leader resource id according to the engine this function
1578  * belongs to. Currently only only 2 engines is supported.
1579  */
1580 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1581 {
1582         if (BP_PATH(bp))
1583                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1584         else
1585                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1586 }
1587
1588 /**
1589  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1590  *
1591  * @bp: driver handle
1592  *
1593  * Tries to aquire a leader lock for current engine.
1594  */
1595 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1596 {
1597         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1598 }
1599
1600 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1601
1602
1603 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1604 {
1605         struct bnx2x *bp = fp->bp;
1606         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1607         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1608         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1609         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1610
1611         DP(BNX2X_MSG_SP,
1612            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1613            fp->index, cid, command, bp->state,
1614            rr_cqe->ramrod_cqe.ramrod_type);
1615
1616         switch (command) {
1617         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1618                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1619                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1620                 break;
1621
1622         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1623                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1624                 drv_cmd = BNX2X_Q_CMD_SETUP;
1625                 break;
1626
1627         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1628                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1629                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1630                 break;
1631
1632         case (RAMROD_CMD_ID_ETH_HALT):
1633                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1634                 drv_cmd = BNX2X_Q_CMD_HALT;
1635                 break;
1636
1637         case (RAMROD_CMD_ID_ETH_TERMINATE):
1638                 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1639                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1640                 break;
1641
1642         case (RAMROD_CMD_ID_ETH_EMPTY):
1643                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1644                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1645                 break;
1646
1647         default:
1648                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1649                           command, fp->index);
1650                 return;
1651         }
1652
1653         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1654             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1655                 /* q_obj->complete_cmd() failure means that this was
1656                  * an unexpected completion.
1657                  *
1658                  * In this case we don't want to increase the bp->spq_left
1659                  * because apparently we haven't sent this command the first
1660                  * place.
1661                  */
1662 #ifdef BNX2X_STOP_ON_ERROR
1663                 bnx2x_panic();
1664 #else
1665                 return;
1666 #endif
1667
1668         smp_mb__before_atomic_inc();
1669         atomic_inc(&bp->cq_spq_left);
1670         /* push the change in bp->spq_left and towards the memory */
1671         smp_mb__after_atomic_inc();
1672
1673         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1674
1675         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1676             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1677                 /* if Q update ramrod is completed for last Q in AFEX vif set
1678                  * flow, then ACK MCP at the end
1679                  *
1680                  * mark pending ACK to MCP bit.
1681                  * prevent case that both bits are cleared.
1682                  * At the end of load/unload driver checks that
1683                  * sp_state is cleaerd, and this order prevents
1684                  * races
1685                  */
1686                 smp_mb__before_clear_bit();
1687                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1688                 wmb();
1689                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1690                 smp_mb__after_clear_bit();
1691
1692                 /* schedule workqueue to send ack to MCP */
1693                 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1694         }
1695
1696         return;
1697 }
1698
1699 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1700                         u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1701 {
1702         u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1703
1704         bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1705                                  start);
1706 }
1707
1708 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1709 {
1710         struct bnx2x *bp = netdev_priv(dev_instance);
1711         u16 status = bnx2x_ack_int(bp);
1712         u16 mask;
1713         int i;
1714         u8 cos;
1715
1716         /* Return here if interrupt is shared and it's not for us */
1717         if (unlikely(status == 0)) {
1718                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1719                 return IRQ_NONE;
1720         }
1721         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1722
1723 #ifdef BNX2X_STOP_ON_ERROR
1724         if (unlikely(bp->panic))
1725                 return IRQ_HANDLED;
1726 #endif
1727
1728         for_each_eth_queue(bp, i) {
1729                 struct bnx2x_fastpath *fp = &bp->fp[i];
1730
1731                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1732                 if (status & mask) {
1733                         /* Handle Rx or Tx according to SB id */
1734                         prefetch(fp->rx_cons_sb);
1735                         for_each_cos_in_tx_queue(fp, cos)
1736                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1737                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1738                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1739                         status &= ~mask;
1740                 }
1741         }
1742
1743         if (CNIC_SUPPORT(bp)) {
1744                 mask = 0x2;
1745                 if (status & (mask | 0x1)) {
1746                         struct cnic_ops *c_ops = NULL;
1747
1748                         if (likely(bp->state == BNX2X_STATE_OPEN)) {
1749                                 rcu_read_lock();
1750                                 c_ops = rcu_dereference(bp->cnic_ops);
1751                                 if (c_ops)
1752                                         c_ops->cnic_handler(bp->cnic_data,
1753                                                             NULL);
1754                                 rcu_read_unlock();
1755                         }
1756
1757                         status &= ~mask;
1758                 }
1759         }
1760
1761         if (unlikely(status & 0x1)) {
1762                 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1763
1764                 status &= ~0x1;
1765                 if (!status)
1766                         return IRQ_HANDLED;
1767         }
1768
1769         if (unlikely(status))
1770                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1771                    status);
1772
1773         return IRQ_HANDLED;
1774 }
1775
1776 /* Link */
1777
1778 /*
1779  * General service functions
1780  */
1781
1782 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1783 {
1784         u32 lock_status;
1785         u32 resource_bit = (1 << resource);
1786         int func = BP_FUNC(bp);
1787         u32 hw_lock_control_reg;
1788         int cnt;
1789
1790         /* Validating that the resource is within range */
1791         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1792                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1793                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1794                 return -EINVAL;
1795         }
1796
1797         if (func <= 5) {
1798                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1799         } else {
1800                 hw_lock_control_reg =
1801                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1802         }
1803
1804         /* Validating that the resource is not already taken */
1805         lock_status = REG_RD(bp, hw_lock_control_reg);
1806         if (lock_status & resource_bit) {
1807                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1808                    lock_status, resource_bit);
1809                 return -EEXIST;
1810         }
1811
1812         /* Try for 5 second every 5ms */
1813         for (cnt = 0; cnt < 1000; cnt++) {
1814                 /* Try to acquire the lock */
1815                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1816                 lock_status = REG_RD(bp, hw_lock_control_reg);
1817                 if (lock_status & resource_bit)
1818                         return 0;
1819
1820                 msleep(5);
1821         }
1822         BNX2X_ERR("Timeout\n");
1823         return -EAGAIN;
1824 }
1825
1826 int bnx2x_release_leader_lock(struct bnx2x *bp)
1827 {
1828         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1829 }
1830
1831 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1832 {
1833         u32 lock_status;
1834         u32 resource_bit = (1 << resource);
1835         int func = BP_FUNC(bp);
1836         u32 hw_lock_control_reg;
1837
1838         /* Validating that the resource is within range */
1839         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1840                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1841                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1842                 return -EINVAL;
1843         }
1844
1845         if (func <= 5) {
1846                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1847         } else {
1848                 hw_lock_control_reg =
1849                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1850         }
1851
1852         /* Validating that the resource is currently taken */
1853         lock_status = REG_RD(bp, hw_lock_control_reg);
1854         if (!(lock_status & resource_bit)) {
1855                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1856                    lock_status, resource_bit);
1857                 return -EFAULT;
1858         }
1859
1860         REG_WR(bp, hw_lock_control_reg, resource_bit);
1861         return 0;
1862 }
1863
1864
1865 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1866 {
1867         /* The GPIO should be swapped if swap register is set and active */
1868         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1869                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1870         int gpio_shift = gpio_num +
1871                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1872         u32 gpio_mask = (1 << gpio_shift);
1873         u32 gpio_reg;
1874         int value;
1875
1876         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1877                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1878                 return -EINVAL;
1879         }
1880
1881         /* read GPIO value */
1882         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1883
1884         /* get the requested pin value */
1885         if ((gpio_reg & gpio_mask) == gpio_mask)
1886                 value = 1;
1887         else
1888                 value = 0;
1889
1890         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1891
1892         return value;
1893 }
1894
1895 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1896 {
1897         /* The GPIO should be swapped if swap register is set and active */
1898         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1899                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1900         int gpio_shift = gpio_num +
1901                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1902         u32 gpio_mask = (1 << gpio_shift);
1903         u32 gpio_reg;
1904
1905         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1906                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1907                 return -EINVAL;
1908         }
1909
1910         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1911         /* read GPIO and mask except the float bits */
1912         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1913
1914         switch (mode) {
1915         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1916                 DP(NETIF_MSG_LINK,
1917                    "Set GPIO %d (shift %d) -> output low\n",
1918                    gpio_num, gpio_shift);
1919                 /* clear FLOAT and set CLR */
1920                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1921                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1922                 break;
1923
1924         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1925                 DP(NETIF_MSG_LINK,
1926                    "Set GPIO %d (shift %d) -> output high\n",
1927                    gpio_num, gpio_shift);
1928                 /* clear FLOAT and set SET */
1929                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1930                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1931                 break;
1932
1933         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1934                 DP(NETIF_MSG_LINK,
1935                    "Set GPIO %d (shift %d) -> input\n",
1936                    gpio_num, gpio_shift);
1937                 /* set FLOAT */
1938                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1939                 break;
1940
1941         default:
1942                 break;
1943         }
1944
1945         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1946         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1947
1948         return 0;
1949 }
1950
1951 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1952 {
1953         u32 gpio_reg = 0;
1954         int rc = 0;
1955
1956         /* Any port swapping should be handled by caller. */
1957
1958         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1959         /* read GPIO and mask except the float bits */
1960         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1961         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1962         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1963         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1964
1965         switch (mode) {
1966         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1967                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1968                 /* set CLR */
1969                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1970                 break;
1971
1972         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1973                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1974                 /* set SET */
1975                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1976                 break;
1977
1978         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1979                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
1980                 /* set FLOAT */
1981                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1982                 break;
1983
1984         default:
1985                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
1986                 rc = -EINVAL;
1987                 break;
1988         }
1989
1990         if (rc == 0)
1991                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1992
1993         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1994
1995         return rc;
1996 }
1997
1998 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1999 {
2000         /* The GPIO should be swapped if swap register is set and active */
2001         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2002                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2003         int gpio_shift = gpio_num +
2004                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2005         u32 gpio_mask = (1 << gpio_shift);
2006         u32 gpio_reg;
2007
2008         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2009                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2010                 return -EINVAL;
2011         }
2012
2013         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2014         /* read GPIO int */
2015         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2016
2017         switch (mode) {
2018         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2019                 DP(NETIF_MSG_LINK,
2020                    "Clear GPIO INT %d (shift %d) -> output low\n",
2021                    gpio_num, gpio_shift);
2022                 /* clear SET and set CLR */
2023                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2024                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2025                 break;
2026
2027         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2028                 DP(NETIF_MSG_LINK,
2029                    "Set GPIO INT %d (shift %d) -> output high\n",
2030                    gpio_num, gpio_shift);
2031                 /* clear CLR and set SET */
2032                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2033                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2034                 break;
2035
2036         default:
2037                 break;
2038         }
2039
2040         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2041         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2042
2043         return 0;
2044 }
2045
2046 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2047 {
2048         u32 spio_reg;
2049
2050         /* Only 2 SPIOs are configurable */
2051         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2052                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2053                 return -EINVAL;
2054         }
2055
2056         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2057         /* read SPIO and mask except the float bits */
2058         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2059
2060         switch (mode) {
2061         case MISC_SPIO_OUTPUT_LOW:
2062                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2063                 /* clear FLOAT and set CLR */
2064                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2065                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2066                 break;
2067
2068         case MISC_SPIO_OUTPUT_HIGH:
2069                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2070                 /* clear FLOAT and set SET */
2071                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2072                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2073                 break;
2074
2075         case MISC_SPIO_INPUT_HI_Z:
2076                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2077                 /* set FLOAT */
2078                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2079                 break;
2080
2081         default:
2082                 break;
2083         }
2084
2085         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2086         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2087
2088         return 0;
2089 }
2090
2091 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2092 {
2093         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2094         switch (bp->link_vars.ieee_fc &
2095                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2096         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2097                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2098                                                    ADVERTISED_Pause);
2099                 break;
2100
2101         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2102                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2103                                                   ADVERTISED_Pause);
2104                 break;
2105
2106         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2107                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2108                 break;
2109
2110         default:
2111                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2112                                                    ADVERTISED_Pause);
2113                 break;
2114         }
2115 }
2116
2117 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2118 {
2119         /* Initialize link parameters structure variables
2120          * It is recommended to turn off RX FC for jumbo frames
2121          *  for better performance
2122          */
2123         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2124                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2125         else
2126                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2127 }
2128
2129 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2130 {
2131         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2132         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2133
2134         if (!BP_NOMCP(bp)) {
2135                 bnx2x_set_requested_fc(bp);
2136                 bnx2x_acquire_phy_lock(bp);
2137
2138                 if (load_mode == LOAD_DIAG) {
2139                         struct link_params *lp = &bp->link_params;
2140                         lp->loopback_mode = LOOPBACK_XGXS;
2141                         /* do PHY loopback at 10G speed, if possible */
2142                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2143                                 if (lp->speed_cap_mask[cfx_idx] &
2144                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2145                                         lp->req_line_speed[cfx_idx] =
2146                                         SPEED_10000;
2147                                 else
2148                                         lp->req_line_speed[cfx_idx] =
2149                                         SPEED_1000;
2150                         }
2151                 }
2152
2153                 if (load_mode == LOAD_LOOPBACK_EXT) {
2154                         struct link_params *lp = &bp->link_params;
2155                         lp->loopback_mode = LOOPBACK_EXT;
2156                 }
2157
2158                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2159
2160                 bnx2x_release_phy_lock(bp);
2161
2162                 bnx2x_calc_fc_adv(bp);
2163
2164                 if (bp->link_vars.link_up) {
2165                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2166                         bnx2x_link_report(bp);
2167                 }
2168                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2169                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2170                 return rc;
2171         }
2172         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2173         return -EINVAL;
2174 }
2175
2176 void bnx2x_link_set(struct bnx2x *bp)
2177 {
2178         if (!BP_NOMCP(bp)) {
2179                 bnx2x_acquire_phy_lock(bp);
2180                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2181                 bnx2x_release_phy_lock(bp);
2182
2183                 bnx2x_calc_fc_adv(bp);
2184         } else
2185                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2186 }
2187
2188 static void bnx2x__link_reset(struct bnx2x *bp)
2189 {
2190         if (!BP_NOMCP(bp)) {
2191                 bnx2x_acquire_phy_lock(bp);
2192                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2193                 bnx2x_release_phy_lock(bp);
2194         } else
2195                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2196 }
2197
2198 void bnx2x_force_link_reset(struct bnx2x *bp)
2199 {
2200         bnx2x_acquire_phy_lock(bp);
2201         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2202         bnx2x_release_phy_lock(bp);
2203 }
2204
2205 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2206 {
2207         u8 rc = 0;
2208
2209         if (!BP_NOMCP(bp)) {
2210                 bnx2x_acquire_phy_lock(bp);
2211                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2212                                      is_serdes);
2213                 bnx2x_release_phy_lock(bp);
2214         } else
2215                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2216
2217         return rc;
2218 }
2219
2220
2221 /* Calculates the sum of vn_min_rates.
2222    It's needed for further normalizing of the min_rates.
2223    Returns:
2224      sum of vn_min_rates.
2225        or
2226      0 - if all the min_rates are 0.
2227      In the later case fainess algorithm should be deactivated.
2228      If not all min_rates are zero then those that are zeroes will be set to 1.
2229  */
2230 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2231                                       struct cmng_init_input *input)
2232 {
2233         int all_zero = 1;
2234         int vn;
2235
2236         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2237                 u32 vn_cfg = bp->mf_config[vn];
2238                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2239                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2240
2241                 /* Skip hidden vns */
2242                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2243                         vn_min_rate = 0;
2244                 /* If min rate is zero - set it to 1 */
2245                 else if (!vn_min_rate)
2246                         vn_min_rate = DEF_MIN_RATE;
2247                 else
2248                         all_zero = 0;
2249
2250                 input->vnic_min_rate[vn] = vn_min_rate;
2251         }
2252
2253         /* if ETS or all min rates are zeros - disable fairness */
2254         if (BNX2X_IS_ETS_ENABLED(bp)) {
2255                 input->flags.cmng_enables &=
2256                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2257                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2258         } else if (all_zero) {
2259                 input->flags.cmng_enables &=
2260                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2261                 DP(NETIF_MSG_IFUP,
2262                    "All MIN values are zeroes fairness will be disabled\n");
2263         } else
2264                 input->flags.cmng_enables |=
2265                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2266 }
2267
2268 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2269                                     struct cmng_init_input *input)
2270 {
2271         u16 vn_max_rate;
2272         u32 vn_cfg = bp->mf_config[vn];
2273
2274         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2275                 vn_max_rate = 0;
2276         else {
2277                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2278
2279                 if (IS_MF_SI(bp)) {
2280                         /* maxCfg in percents of linkspeed */
2281                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2282                 } else /* SD modes */
2283                         /* maxCfg is absolute in 100Mb units */
2284                         vn_max_rate = maxCfg * 100;
2285         }
2286
2287         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2288
2289         input->vnic_max_rate[vn] = vn_max_rate;
2290 }
2291
2292
2293 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2294 {
2295         if (CHIP_REV_IS_SLOW(bp))
2296                 return CMNG_FNS_NONE;
2297         if (IS_MF(bp))
2298                 return CMNG_FNS_MINMAX;
2299
2300         return CMNG_FNS_NONE;
2301 }
2302
2303 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2304 {
2305         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2306
2307         if (BP_NOMCP(bp))
2308                 return; /* what should be the default bvalue in this case */
2309
2310         /* For 2 port configuration the absolute function number formula
2311          * is:
2312          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2313          *
2314          *      and there are 4 functions per port
2315          *
2316          * For 4 port configuration it is
2317          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2318          *
2319          *      and there are 2 functions per port
2320          */
2321         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2322                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2323
2324                 if (func >= E1H_FUNC_MAX)
2325                         break;
2326
2327                 bp->mf_config[vn] =
2328                         MF_CFG_RD(bp, func_mf_config[func].config);
2329         }
2330         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2331                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2332                 bp->flags |= MF_FUNC_DIS;
2333         } else {
2334                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2335                 bp->flags &= ~MF_FUNC_DIS;
2336         }
2337 }
2338
2339 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2340 {
2341         struct cmng_init_input input;
2342         memset(&input, 0, sizeof(struct cmng_init_input));
2343
2344         input.port_rate = bp->link_vars.line_speed;
2345
2346         if (cmng_type == CMNG_FNS_MINMAX) {
2347                 int vn;
2348
2349                 /* read mf conf from shmem */
2350                 if (read_cfg)
2351                         bnx2x_read_mf_cfg(bp);
2352
2353                 /* vn_weight_sum and enable fairness if not 0 */
2354                 bnx2x_calc_vn_min(bp, &input);
2355
2356                 /* calculate and set min-max rate for each vn */
2357                 if (bp->port.pmf)
2358                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2359                                 bnx2x_calc_vn_max(bp, vn, &input);
2360
2361                 /* always enable rate shaping and fairness */
2362                 input.flags.cmng_enables |=
2363                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2364
2365                 bnx2x_init_cmng(&input, &bp->cmng);
2366                 return;
2367         }
2368
2369         /* rate shaping and fairness are disabled */
2370         DP(NETIF_MSG_IFUP,
2371            "rate shaping and fairness are disabled\n");
2372 }
2373
2374 static void storm_memset_cmng(struct bnx2x *bp,
2375                               struct cmng_init *cmng,
2376                               u8 port)
2377 {
2378         int vn;
2379         size_t size = sizeof(struct cmng_struct_per_port);
2380
2381         u32 addr = BAR_XSTRORM_INTMEM +
2382                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2383
2384         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2385
2386         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2387                 int func = func_by_vn(bp, vn);
2388
2389                 addr = BAR_XSTRORM_INTMEM +
2390                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2391                 size = sizeof(struct rate_shaping_vars_per_vn);
2392                 __storm_memset_struct(bp, addr, size,
2393                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2394
2395                 addr = BAR_XSTRORM_INTMEM +
2396                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2397                 size = sizeof(struct fairness_vars_per_vn);
2398                 __storm_memset_struct(bp, addr, size,
2399                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2400         }
2401 }
2402
2403 /* This function is called upon link interrupt */
2404 static void bnx2x_link_attn(struct bnx2x *bp)
2405 {
2406         /* Make sure that we are synced with the current statistics */
2407         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2408
2409         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2410
2411         if (bp->link_vars.link_up) {
2412
2413                 /* dropless flow control */
2414                 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2415                         int port = BP_PORT(bp);
2416                         u32 pause_enabled = 0;
2417
2418                         if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2419                                 pause_enabled = 1;
2420
2421                         REG_WR(bp, BAR_USTRORM_INTMEM +
2422                                USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2423                                pause_enabled);
2424                 }
2425
2426                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2427                         struct host_port_stats *pstats;
2428
2429                         pstats = bnx2x_sp(bp, port_stats);
2430                         /* reset old mac stats */
2431                         memset(&(pstats->mac_stx[0]), 0,
2432                                sizeof(struct mac_stx));
2433                 }
2434                 if (bp->state == BNX2X_STATE_OPEN)
2435                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2436         }
2437
2438         if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2439                 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2440
2441                 if (cmng_fns != CMNG_FNS_NONE) {
2442                         bnx2x_cmng_fns_init(bp, false, cmng_fns);
2443                         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2444                 } else
2445                         /* rate shaping and fairness are disabled */
2446                         DP(NETIF_MSG_IFUP,
2447                            "single function mode without fairness\n");
2448         }
2449
2450         __bnx2x_link_report(bp);
2451
2452         if (IS_MF(bp))
2453                 bnx2x_link_sync_notify(bp);
2454 }
2455
2456 void bnx2x__link_status_update(struct bnx2x *bp)
2457 {
2458         if (bp->state != BNX2X_STATE_OPEN)
2459                 return;
2460
2461         /* read updated dcb configuration */
2462         bnx2x_dcbx_pmf_update(bp);
2463
2464         bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2465
2466         if (bp->link_vars.link_up)
2467                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2468         else
2469                 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2470
2471         /* indicate link status */
2472         bnx2x_link_report(bp);
2473 }
2474
2475 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2476                                   u16 vlan_val, u8 allowed_prio)
2477 {
2478         struct bnx2x_func_state_params func_params = {0};
2479         struct bnx2x_func_afex_update_params *f_update_params =
2480                 &func_params.params.afex_update;
2481
2482         func_params.f_obj = &bp->func_obj;
2483         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2484
2485         /* no need to wait for RAMROD completion, so don't
2486          * set RAMROD_COMP_WAIT flag
2487          */
2488
2489         f_update_params->vif_id = vifid;
2490         f_update_params->afex_default_vlan = vlan_val;
2491         f_update_params->allowed_priorities = allowed_prio;
2492
2493         /* if ramrod can not be sent, response to MCP immediately */
2494         if (bnx2x_func_state_change(bp, &func_params) < 0)
2495                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2496
2497         return 0;
2498 }
2499
2500 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2501                                           u16 vif_index, u8 func_bit_map)
2502 {
2503         struct bnx2x_func_state_params func_params = {0};
2504         struct bnx2x_func_afex_viflists_params *update_params =
2505                 &func_params.params.afex_viflists;
2506         int rc;
2507         u32 drv_msg_code;
2508
2509         /* validate only LIST_SET and LIST_GET are received from switch */
2510         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2511                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2512                           cmd_type);
2513
2514         func_params.f_obj = &bp->func_obj;
2515         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2516
2517         /* set parameters according to cmd_type */
2518         update_params->afex_vif_list_command = cmd_type;
2519         update_params->vif_list_index = cpu_to_le16(vif_index);
2520         update_params->func_bit_map =
2521                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2522         update_params->func_to_clear = 0;
2523         drv_msg_code =
2524                 (cmd_type == VIF_LIST_RULE_GET) ?
2525                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2526                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2527
2528         /* if ramrod can not be sent, respond to MCP immediately for
2529          * SET and GET requests (other are not triggered from MCP)
2530          */
2531         rc = bnx2x_func_state_change(bp, &func_params);
2532         if (rc < 0)
2533                 bnx2x_fw_command(bp, drv_msg_code, 0);
2534
2535         return 0;
2536 }
2537
2538 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2539 {
2540         struct afex_stats afex_stats;
2541         u32 func = BP_ABS_FUNC(bp);
2542         u32 mf_config;
2543         u16 vlan_val;
2544         u32 vlan_prio;
2545         u16 vif_id;
2546         u8 allowed_prio;
2547         u8 vlan_mode;
2548         u32 addr_to_write, vifid, addrs, stats_type, i;
2549
2550         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2551                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2552                 DP(BNX2X_MSG_MCP,
2553                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2554                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2555         }
2556
2557         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2558                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2559                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2560                 DP(BNX2X_MSG_MCP,
2561                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2562                    vifid, addrs);
2563                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2564                                                addrs);
2565         }
2566
2567         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2568                 addr_to_write = SHMEM2_RD(bp,
2569                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2570                 stats_type = SHMEM2_RD(bp,
2571                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2572
2573                 DP(BNX2X_MSG_MCP,
2574                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2575                    addr_to_write);
2576
2577                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2578
2579                 /* write response to scratchpad, for MCP */
2580                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2581                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2582                                *(((u32 *)(&afex_stats))+i));
2583
2584                 /* send ack message to MCP */
2585                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2586         }
2587
2588         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2589                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2590                 bp->mf_config[BP_VN(bp)] = mf_config;
2591                 DP(BNX2X_MSG_MCP,
2592                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2593                    mf_config);
2594
2595                 /* if VIF_SET is "enabled" */
2596                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2597                         /* set rate limit directly to internal RAM */
2598                         struct cmng_init_input cmng_input;
2599                         struct rate_shaping_vars_per_vn m_rs_vn;
2600                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2601                         u32 addr = BAR_XSTRORM_INTMEM +
2602                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2603
2604                         bp->mf_config[BP_VN(bp)] = mf_config;
2605
2606                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2607                         m_rs_vn.vn_counter.rate =
2608                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2609                         m_rs_vn.vn_counter.quota =
2610                                 (m_rs_vn.vn_counter.rate *
2611                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2612
2613                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2614
2615                         /* read relevant values from mf_cfg struct in shmem */
2616                         vif_id =
2617                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2618                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2619                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2620                         vlan_val =
2621                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2622                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2623                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2624                         vlan_prio = (mf_config &
2625                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2626                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2627                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2628                         vlan_mode =
2629                                 (MF_CFG_RD(bp,
2630                                            func_mf_config[func].afex_config) &
2631                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2632                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2633                         allowed_prio =
2634                                 (MF_CFG_RD(bp,
2635                                            func_mf_config[func].afex_config) &
2636                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2637                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2638
2639                         /* send ramrod to FW, return in case of failure */
2640                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2641                                                    allowed_prio))
2642                                 return;
2643
2644                         bp->afex_def_vlan_tag = vlan_val;
2645                         bp->afex_vlan_mode = vlan_mode;
2646                 } else {
2647                         /* notify link down because BP->flags is disabled */
2648                         bnx2x_link_report(bp);
2649
2650                         /* send INVALID VIF ramrod to FW */
2651                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2652
2653                         /* Reset the default afex VLAN */
2654                         bp->afex_def_vlan_tag = -1;
2655                 }
2656         }
2657 }
2658
2659 static void bnx2x_pmf_update(struct bnx2x *bp)
2660 {
2661         int port = BP_PORT(bp);
2662         u32 val;
2663
2664         bp->port.pmf = 1;
2665         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2666
2667         /*
2668          * We need the mb() to ensure the ordering between the writing to
2669          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2670          */
2671         smp_mb();
2672
2673         /* queue a periodic task */
2674         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2675
2676         bnx2x_dcbx_pmf_update(bp);
2677
2678         /* enable nig attention */
2679         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2680         if (bp->common.int_block == INT_BLOCK_HC) {
2681                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2682                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2683         } else if (!CHIP_IS_E1x(bp)) {
2684                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2685                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2686         }
2687
2688         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2689 }
2690
2691 /* end of Link */
2692
2693 /* slow path */
2694
2695 /*
2696  * General service functions
2697  */
2698
2699 /* send the MCP a request, block until there is a reply */
2700 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2701 {
2702         int mb_idx = BP_FW_MB_IDX(bp);
2703         u32 seq;
2704         u32 rc = 0;
2705         u32 cnt = 1;
2706         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2707
2708         mutex_lock(&bp->fw_mb_mutex);
2709         seq = ++bp->fw_seq;
2710         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2711         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2712
2713         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2714                         (command | seq), param);
2715
2716         do {
2717                 /* let the FW do it's magic ... */
2718                 msleep(delay);
2719
2720                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2721
2722                 /* Give the FW up to 5 second (500*10ms) */
2723         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2724
2725         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2726            cnt*delay, rc, seq);
2727
2728         /* is this a reply to our command? */
2729         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2730                 rc &= FW_MSG_CODE_MASK;
2731         else {
2732                 /* FW BUG! */
2733                 BNX2X_ERR("FW failed to respond!\n");
2734                 bnx2x_fw_dump(bp);
2735                 rc = 0;
2736         }
2737         mutex_unlock(&bp->fw_mb_mutex);
2738
2739         return rc;
2740 }
2741
2742
2743 static void storm_memset_func_cfg(struct bnx2x *bp,
2744                                  struct tstorm_eth_function_common_config *tcfg,
2745                                  u16 abs_fid)
2746 {
2747         size_t size = sizeof(struct tstorm_eth_function_common_config);
2748
2749         u32 addr = BAR_TSTRORM_INTMEM +
2750                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2751
2752         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2753 }
2754
2755 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2756 {
2757         if (CHIP_IS_E1x(bp)) {
2758                 struct tstorm_eth_function_common_config tcfg = {0};
2759
2760                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2761         }
2762
2763         /* Enable the function in the FW */
2764         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2765         storm_memset_func_en(bp, p->func_id, 1);
2766
2767         /* spq */
2768         if (p->func_flgs & FUNC_FLG_SPQ) {
2769                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2770                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2771                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2772         }
2773 }
2774
2775 /**
2776  * bnx2x_get_tx_only_flags - Return common flags
2777  *
2778  * @bp          device handle
2779  * @fp          queue handle
2780  * @zero_stats  TRUE if statistics zeroing is needed
2781  *
2782  * Return the flags that are common for the Tx-only and not normal connections.
2783  */
2784 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2785                                             struct bnx2x_fastpath *fp,
2786                                             bool zero_stats)
2787 {
2788         unsigned long flags = 0;
2789
2790         /* PF driver will always initialize the Queue to an ACTIVE state */
2791         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2792
2793         /* tx only connections collect statistics (on the same index as the
2794          *  parent connection). The statistics are zeroed when the parent
2795          *  connection is initialized.
2796          */
2797
2798         __set_bit(BNX2X_Q_FLG_STATS, &flags);
2799         if (zero_stats)
2800                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2801
2802
2803         return flags;
2804 }
2805
2806 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2807                                        struct bnx2x_fastpath *fp,
2808                                        bool leading)
2809 {
2810         unsigned long flags = 0;
2811
2812         /* calculate other queue flags */
2813         if (IS_MF_SD(bp))
2814                 __set_bit(BNX2X_Q_FLG_OV, &flags);
2815
2816         if (IS_FCOE_FP(fp)) {
2817                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2818                 /* For FCoE - force usage of default priority (for afex) */
2819                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2820         }
2821
2822         if (!fp->disable_tpa) {
2823                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2824                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2825                 if (fp->mode == TPA_MODE_GRO)
2826                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2827         }
2828
2829         if (leading) {
2830                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2831                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2832         }
2833
2834         /* Always set HW VLAN stripping */
2835         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2836
2837         /* configure silent vlan removal */
2838         if (IS_MF_AFEX(bp))
2839                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
2840
2841
2842         return flags | bnx2x_get_common_flags(bp, fp, true);
2843 }
2844
2845 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2846         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2847         u8 cos)
2848 {
2849         gen_init->stat_id = bnx2x_stats_id(fp);
2850         gen_init->spcl_id = fp->cl_id;
2851
2852         /* Always use mini-jumbo MTU for FCoE L2 ring */
2853         if (IS_FCOE_FP(fp))
2854                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2855         else
2856                 gen_init->mtu = bp->dev->mtu;
2857
2858         gen_init->cos = cos;
2859 }
2860
2861 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2862         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2863         struct bnx2x_rxq_setup_params *rxq_init)
2864 {
2865         u8 max_sge = 0;
2866         u16 sge_sz = 0;
2867         u16 tpa_agg_size = 0;
2868
2869         if (!fp->disable_tpa) {
2870                 pause->sge_th_lo = SGE_TH_LO(bp);
2871                 pause->sge_th_hi = SGE_TH_HI(bp);
2872
2873                 /* validate SGE ring has enough to cross high threshold */
2874                 WARN_ON(bp->dropless_fc &&
2875                                 pause->sge_th_hi + FW_PREFETCH_CNT >
2876                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2877
2878                 tpa_agg_size = min_t(u32,
2879                         (min_t(u32, 8, MAX_SKB_FRAGS) *
2880                         SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2881                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2882                         SGE_PAGE_SHIFT;
2883                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2884                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2885                 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2886                                     0xffff);
2887         }
2888
2889         /* pause - not for e1 */
2890         if (!CHIP_IS_E1(bp)) {
2891                 pause->bd_th_lo = BD_TH_LO(bp);
2892                 pause->bd_th_hi = BD_TH_HI(bp);
2893
2894                 pause->rcq_th_lo = RCQ_TH_LO(bp);
2895                 pause->rcq_th_hi = RCQ_TH_HI(bp);
2896                 /*
2897                  * validate that rings have enough entries to cross
2898                  * high thresholds
2899                  */
2900                 WARN_ON(bp->dropless_fc &&
2901                                 pause->bd_th_hi + FW_PREFETCH_CNT >
2902                                 bp->rx_ring_size);
2903                 WARN_ON(bp->dropless_fc &&
2904                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
2905                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2906
2907                 pause->pri_map = 1;
2908         }
2909
2910         /* rxq setup */
2911         rxq_init->dscr_map = fp->rx_desc_mapping;
2912         rxq_init->sge_map = fp->rx_sge_mapping;
2913         rxq_init->rcq_map = fp->rx_comp_mapping;
2914         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2915
2916         /* This should be a maximum number of data bytes that may be
2917          * placed on the BD (not including paddings).
2918          */
2919         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2920                 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
2921
2922         rxq_init->cl_qzone_id = fp->cl_qzone_id;
2923         rxq_init->tpa_agg_sz = tpa_agg_size;
2924         rxq_init->sge_buf_sz = sge_sz;
2925         rxq_init->max_sges_pkt = max_sge;
2926         rxq_init->rss_engine_id = BP_FUNC(bp);
2927         rxq_init->mcast_engine_id = BP_FUNC(bp);
2928
2929         /* Maximum number or simultaneous TPA aggregation for this Queue.
2930          *
2931          * For PF Clients it should be the maximum avaliable number.
2932          * VF driver(s) may want to define it to a smaller value.
2933          */
2934         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2935
2936         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2937         rxq_init->fw_sb_id = fp->fw_sb_id;
2938
2939         if (IS_FCOE_FP(fp))
2940                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2941         else
2942                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2943         /* configure silent vlan removal
2944          * if multi function mode is afex, then mask default vlan
2945          */
2946         if (IS_MF_AFEX(bp)) {
2947                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
2948                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
2949         }
2950 }
2951
2952 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2953         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2954         u8 cos)
2955 {
2956         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
2957         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2958         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2959         txq_init->fw_sb_id = fp->fw_sb_id;
2960
2961         /*
2962          * set the tss leading client id for TX classfication ==
2963          * leading RSS client id
2964          */
2965         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2966
2967         if (IS_FCOE_FP(fp)) {
2968                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2969                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2970         }
2971 }
2972
2973 static void bnx2x_pf_init(struct bnx2x *bp)
2974 {
2975         struct bnx2x_func_init_params func_init = {0};
2976         struct event_ring_data eq_data = { {0} };
2977         u16 flags;
2978
2979         if (!CHIP_IS_E1x(bp)) {
2980                 /* reset IGU PF statistics: MSIX + ATTN */
2981                 /* PF */
2982                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2983                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2984                            (CHIP_MODE_IS_4_PORT(bp) ?
2985                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2986                 /* ATTN */
2987                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2988                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2989                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2990                            (CHIP_MODE_IS_4_PORT(bp) ?
2991                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2992         }
2993
2994         /* function setup flags */
2995         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2996
2997         /* This flag is relevant for E1x only.
2998          * E2 doesn't have a TPA configuration in a function level.
2999          */
3000         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3001
3002         func_init.func_flgs = flags;
3003         func_init.pf_id = BP_FUNC(bp);
3004         func_init.func_id = BP_FUNC(bp);
3005         func_init.spq_map = bp->spq_mapping;
3006         func_init.spq_prod = bp->spq_prod_idx;
3007
3008         bnx2x_func_init(bp, &func_init);
3009
3010         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3011
3012         /*
3013          * Congestion management values depend on the link rate
3014          * There is no active link so initial link rate is set to 10 Gbps.
3015          * When the link comes up The congestion management values are
3016          * re-calculated according to the actual link rate.
3017          */
3018         bp->link_vars.line_speed = SPEED_10000;
3019         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3020
3021         /* Only the PMF sets the HW */
3022         if (bp->port.pmf)
3023                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3024
3025         /* init Event Queue */
3026         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3027         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3028         eq_data.producer = bp->eq_prod;
3029         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3030         eq_data.sb_id = DEF_SB_ID;
3031         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3032 }
3033
3034
3035 static void bnx2x_e1h_disable(struct bnx2x *bp)
3036 {
3037         int port = BP_PORT(bp);
3038
3039         bnx2x_tx_disable(bp);
3040
3041         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3042 }
3043
3044 static void bnx2x_e1h_enable(struct bnx2x *bp)
3045 {
3046         int port = BP_PORT(bp);
3047
3048         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3049
3050         /* Tx queue should be only reenabled */
3051         netif_tx_wake_all_queues(bp->dev);
3052
3053         /*
3054          * Should not call netif_carrier_on since it will be called if the link
3055          * is up when checking for link state
3056          */
3057 }
3058
3059 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3060
3061 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3062 {
3063         struct eth_stats_info *ether_stat =
3064                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3065
3066         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3067                 ETH_STAT_INFO_VERSION_LEN);
3068
3069         bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3070                                         DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3071                                         ether_stat->mac_local);
3072
3073         ether_stat->mtu_size = bp->dev->mtu;
3074
3075         if (bp->dev->features & NETIF_F_RXCSUM)
3076                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3077         if (bp->dev->features & NETIF_F_TSO)
3078                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3079         ether_stat->feature_flags |= bp->common.boot_mode;
3080
3081         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3082
3083         ether_stat->txq_size = bp->tx_ring_size;
3084         ether_stat->rxq_size = bp->rx_ring_size;
3085 }
3086
3087 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3088 {
3089         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3090         struct fcoe_stats_info *fcoe_stat =
3091                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3092
3093         if (!CNIC_LOADED(bp))
3094                 return;
3095
3096         memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT,
3097                bp->fip_mac, ETH_ALEN);
3098
3099         fcoe_stat->qos_priority =
3100                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3101
3102         /* insert FCoE stats from ramrod response */
3103         if (!NO_FCOE(bp)) {
3104                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3105                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3106                         tstorm_queue_statistics;
3107
3108                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3109                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3110                         xstorm_queue_statistics;
3111
3112                 struct fcoe_statistics_params *fw_fcoe_stat =
3113                         &bp->fw_stats_data->fcoe;
3114
3115                 ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
3116                        fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3117
3118                 ADD_64(fcoe_stat->rx_bytes_hi,
3119                        fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3120                        fcoe_stat->rx_bytes_lo,
3121                        fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3122
3123                 ADD_64(fcoe_stat->rx_bytes_hi,
3124                        fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3125                        fcoe_stat->rx_bytes_lo,
3126                        fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3127
3128                 ADD_64(fcoe_stat->rx_bytes_hi,
3129                        fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3130                        fcoe_stat->rx_bytes_lo,
3131                        fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3132
3133                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3134                        fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3135
3136                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3137                        fcoe_q_tstorm_stats->rcv_ucast_pkts);
3138
3139                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3140                        fcoe_q_tstorm_stats->rcv_bcast_pkts);
3141
3142                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3143                        fcoe_q_tstorm_stats->rcv_mcast_pkts);
3144
3145                 ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3146                        fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3147
3148                 ADD_64(fcoe_stat->tx_bytes_hi,
3149                        fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3150                        fcoe_stat->tx_bytes_lo,
3151                        fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3152
3153                 ADD_64(fcoe_stat->tx_bytes_hi,
3154                        fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3155                        fcoe_stat->tx_bytes_lo,
3156                        fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3157
3158                 ADD_64(fcoe_stat->tx_bytes_hi,
3159                        fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3160                        fcoe_stat->tx_bytes_lo,
3161                        fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3162
3163                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3164                        fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3165
3166                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3167                        fcoe_q_xstorm_stats->ucast_pkts_sent);
3168
3169                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3170                        fcoe_q_xstorm_stats->bcast_pkts_sent);
3171
3172                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3173                        fcoe_q_xstorm_stats->mcast_pkts_sent);
3174         }
3175
3176         /* ask L5 driver to add data to the struct */
3177         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3178 }
3179
3180 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3181 {
3182         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3183         struct iscsi_stats_info *iscsi_stat =
3184                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3185
3186         if (!CNIC_LOADED(bp))
3187                 return;
3188
3189         memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT,
3190                bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3191
3192         iscsi_stat->qos_priority =
3193                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3194
3195         /* ask L5 driver to add data to the struct */
3196         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3197 }
3198
3199 /* called due to MCP event (on pmf):
3200  *      reread new bandwidth configuration
3201  *      configure FW
3202  *      notify others function about the change
3203  */
3204 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3205 {
3206         if (bp->link_vars.link_up) {
3207                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3208                 bnx2x_link_sync_notify(bp);
3209         }
3210         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3211 }
3212
3213 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3214 {
3215         bnx2x_config_mf_bw(bp);
3216         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3217 }
3218
3219 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3220 {
3221         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3222         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3223 }
3224
3225 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3226 {
3227         enum drv_info_opcode op_code;
3228         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3229
3230         /* if drv_info version supported by MFW doesn't match - send NACK */
3231         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3232                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3233                 return;
3234         }
3235
3236         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3237                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3238
3239         memset(&bp->slowpath->drv_info_to_mcp, 0,
3240                sizeof(union drv_info_to_mcp));
3241
3242         switch (op_code) {
3243         case ETH_STATS_OPCODE:
3244                 bnx2x_drv_info_ether_stat(bp);
3245                 break;
3246         case FCOE_STATS_OPCODE:
3247                 bnx2x_drv_info_fcoe_stat(bp);
3248                 break;
3249         case ISCSI_STATS_OPCODE:
3250                 bnx2x_drv_info_iscsi_stat(bp);
3251                 break;
3252         default:
3253                 /* if op code isn't supported - send NACK */
3254                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3255                 return;
3256         }
3257
3258         /* if we got drv_info attn from MFW then these fields are defined in
3259          * shmem2 for sure
3260          */
3261         SHMEM2_WR(bp, drv_info_host_addr_lo,
3262                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3263         SHMEM2_WR(bp, drv_info_host_addr_hi,
3264                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3265
3266         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3267 }
3268
3269 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3270 {
3271         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3272
3273         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3274
3275                 /*
3276                  * This is the only place besides the function initialization
3277                  * where the bp->flags can change so it is done without any
3278                  * locks
3279                  */
3280                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3281                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3282                         bp->flags |= MF_FUNC_DIS;
3283
3284                         bnx2x_e1h_disable(bp);
3285                 } else {
3286                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3287                         bp->flags &= ~MF_FUNC_DIS;
3288
3289                         bnx2x_e1h_enable(bp);
3290                 }
3291                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3292         }
3293         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3294                 bnx2x_config_mf_bw(bp);
3295                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3296         }
3297
3298         /* Report results to MCP */
3299         if (dcc_event)
3300                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3301         else
3302                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3303 }
3304
3305 /* must be called under the spq lock */
3306 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3307 {
3308         struct eth_spe *next_spe = bp->spq_prod_bd;
3309
3310         if (bp->spq_prod_bd == bp->spq_last_bd) {
3311                 bp->spq_prod_bd = bp->spq;
3312                 bp->spq_prod_idx = 0;
3313                 DP(BNX2X_MSG_SP, "end of spq\n");
3314         } else {
3315                 bp->spq_prod_bd++;
3316                 bp->spq_prod_idx++;
3317         }
3318         return next_spe;
3319 }
3320
3321 /* must be called under the spq lock */
3322 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3323 {
3324         int func = BP_FUNC(bp);
3325
3326         /*
3327          * Make sure that BD data is updated before writing the producer:
3328          * BD data is written to the memory, the producer is read from the
3329          * memory, thus we need a full memory barrier to ensure the ordering.
3330          */
3331         mb();
3332
3333         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3334                  bp->spq_prod_idx);
3335         mmiowb();
3336 }
3337
3338 /**
3339  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3340  *
3341  * @cmd:        command to check
3342  * @cmd_type:   command type
3343  */
3344 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3345 {
3346         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3347             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3348             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3349             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3350             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3351             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3352             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3353                 return true;
3354         else
3355                 return false;
3356
3357 }
3358
3359
3360 /**
3361  * bnx2x_sp_post - place a single command on an SP ring
3362  *
3363  * @bp:         driver handle
3364  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3365  * @cid:        SW CID the command is related to
3366  * @data_hi:    command private data address (high 32 bits)
3367  * @data_lo:    command private data address (low 32 bits)
3368  * @cmd_type:   command type (e.g. NONE, ETH)
3369  *
3370  * SP data is handled as if it's always an address pair, thus data fields are
3371  * not swapped to little endian in upper functions. Instead this function swaps
3372  * data as if it's two u32 fields.
3373  */
3374 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3375                   u32 data_hi, u32 data_lo, int cmd_type)
3376 {
3377         struct eth_spe *spe;
3378         u16 type;
3379         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3380
3381 #ifdef BNX2X_STOP_ON_ERROR
3382         if (unlikely(bp->panic)) {
3383                 BNX2X_ERR("Can't post SP when there is panic\n");
3384                 return -EIO;
3385         }
3386 #endif
3387
3388         spin_lock_bh(&bp->spq_lock);
3389
3390         if (common) {
3391                 if (!atomic_read(&bp->eq_spq_left)) {
3392                         BNX2X_ERR("BUG! EQ ring full!\n");
3393                         spin_unlock_bh(&bp->spq_lock);
3394                         bnx2x_panic();
3395                         return -EBUSY;
3396                 }
3397         } else if (!atomic_read(&bp->cq_spq_left)) {
3398                         BNX2X_ERR("BUG! SPQ ring full!\n");
3399                         spin_unlock_bh(&bp->spq_lock);
3400                         bnx2x_panic();
3401                         return -EBUSY;
3402         }
3403
3404         spe = bnx2x_sp_get_next(bp);
3405
3406         /* CID needs port number to be encoded int it */
3407         spe->hdr.conn_and_cmd_data =
3408                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3409                                     HW_CID(bp, cid));
3410
3411         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3412
3413         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3414                  SPE_HDR_FUNCTION_ID);
3415
3416         spe->hdr.type = cpu_to_le16(type);
3417
3418         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3419         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3420
3421         /*
3422          * It's ok if the actual decrement is issued towards the memory
3423          * somewhere between the spin_lock and spin_unlock. Thus no
3424          * more explict memory barrier is needed.
3425          */
3426         if (common)
3427                 atomic_dec(&bp->eq_spq_left);
3428         else
3429                 atomic_dec(&bp->cq_spq_left);
3430
3431
3432         DP(BNX2X_MSG_SP,
3433            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3434            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3435            (u32)(U64_LO(bp->spq_mapping) +
3436            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3437            HW_CID(bp, cid), data_hi, data_lo, type,
3438            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3439
3440         bnx2x_sp_prod_update(bp);
3441         spin_unlock_bh(&bp->spq_lock);
3442         return 0;
3443 }
3444
3445 /* acquire split MCP access lock register */
3446 static int bnx2x_acquire_alr(struct bnx2x *bp)
3447 {
3448         u32 j, val;
3449         int rc = 0;
3450
3451         might_sleep();
3452         for (j = 0; j < 1000; j++) {
3453                 val = (1UL << 31);
3454                 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3455                 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3456                 if (val & (1L << 31))
3457                         break;
3458
3459                 msleep(5);
3460         }
3461         if (!(val & (1L << 31))) {
3462                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3463                 rc = -EBUSY;
3464         }
3465
3466         return rc;
3467 }
3468
3469 /* release split MCP access lock register */
3470 static void bnx2x_release_alr(struct bnx2x *bp)
3471 {
3472         REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3473 }
3474
3475 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3476 #define BNX2X_DEF_SB_IDX        0x0002
3477
3478 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3479 {
3480         struct host_sp_status_block *def_sb = bp->def_status_blk;
3481         u16 rc = 0;
3482
3483         barrier(); /* status block is written to by the chip */
3484         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3485                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3486                 rc |= BNX2X_DEF_SB_ATT_IDX;
3487         }
3488
3489         if (bp->def_idx != def_sb->sp_sb.running_index) {
3490                 bp->def_idx = def_sb->sp_sb.running_index;
3491                 rc |= BNX2X_DEF_SB_IDX;
3492         }
3493
3494         /* Do not reorder: indecies reading should complete before handling */
3495         barrier();
3496         return rc;
3497 }
3498
3499 /*
3500  * slow path service functions
3501  */
3502
3503 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3504 {
3505         int port = BP_PORT(bp);
3506         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3507                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3508         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3509                                        NIG_REG_MASK_INTERRUPT_PORT0;
3510         u32 aeu_mask;
3511         u32 nig_mask = 0;
3512         u32 reg_addr;
3513
3514         if (bp->attn_state & asserted)
3515                 BNX2X_ERR("IGU ERROR\n");
3516
3517         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3518         aeu_mask = REG_RD(bp, aeu_addr);
3519
3520         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3521            aeu_mask, asserted);
3522         aeu_mask &= ~(asserted & 0x3ff);
3523         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3524
3525         REG_WR(bp, aeu_addr, aeu_mask);
3526         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3527
3528         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3529         bp->attn_state |= asserted;
3530         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3531
3532         if (asserted & ATTN_HARD_WIRED_MASK) {
3533                 if (asserted & ATTN_NIG_FOR_FUNC) {
3534
3535                         bnx2x_acquire_phy_lock(bp);
3536
3537                         /* save nig interrupt mask */
3538                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3539
3540                         /* If nig_mask is not set, no need to call the update
3541                          * function.
3542                          */
3543                         if (nig_mask) {
3544                                 REG_WR(bp, nig_int_mask_addr, 0);
3545
3546                                 bnx2x_link_attn(bp);
3547                         }
3548
3549                         /* handle unicore attn? */
3550                 }
3551                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3552                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3553
3554                 if (asserted & GPIO_2_FUNC)
3555                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3556
3557                 if (asserted & GPIO_3_FUNC)
3558                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3559
3560                 if (asserted & GPIO_4_FUNC)
3561                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3562
3563                 if (port == 0) {
3564                         if (asserted & ATTN_GENERAL_ATTN_1) {
3565                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3566                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3567                         }
3568                         if (asserted & ATTN_GENERAL_ATTN_2) {
3569                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3570                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3571                         }
3572                         if (asserted & ATTN_GENERAL_ATTN_3) {
3573                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3574                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3575                         }
3576                 } else {
3577                         if (asserted & ATTN_GENERAL_ATTN_4) {
3578                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3579                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3580                         }
3581                         if (asserted & ATTN_GENERAL_ATTN_5) {
3582                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3583                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3584                         }
3585                         if (asserted & ATTN_GENERAL_ATTN_6) {
3586                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3587                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3588                         }
3589                 }
3590
3591         } /* if hardwired */
3592
3593         if (bp->common.int_block == INT_BLOCK_HC)
3594                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3595                             COMMAND_REG_ATTN_BITS_SET);
3596         else
3597                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3598
3599         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3600            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3601         REG_WR(bp, reg_addr, asserted);
3602
3603         /* now set back the mask */
3604         if (asserted & ATTN_NIG_FOR_FUNC) {
3605                 /* Verify that IGU ack through BAR was written before restoring
3606                  * NIG mask. This loop should exit after 2-3 iterations max.
3607                  */
3608                 if (bp->common.int_block != INT_BLOCK_HC) {
3609                         u32 cnt = 0, igu_acked;
3610                         do {
3611                                 igu_acked = REG_RD(bp,
3612                                                    IGU_REG_ATTENTION_ACK_BITS);
3613                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3614                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3615                         if (!igu_acked)
3616                                 DP(NETIF_MSG_HW,
3617                                    "Failed to verify IGU ack on time\n");
3618                         barrier();
3619                 }
3620                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3621                 bnx2x_release_phy_lock(bp);
3622         }
3623 }
3624
3625 static void bnx2x_fan_failure(struct bnx2x *bp)
3626 {
3627         int port = BP_PORT(bp);
3628         u32 ext_phy_config;
3629         /* mark the failure */
3630         ext_phy_config =
3631                 SHMEM_RD(bp,
3632                          dev_info.port_hw_config[port].external_phy_config);
3633
3634         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3635         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3636         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3637                  ext_phy_config);
3638
3639         /* log the failure */
3640         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3641                             "Please contact OEM Support for assistance\n");
3642
3643         /*
3644          * Scheudle device reset (unload)
3645          * This is due to some boards consuming sufficient power when driver is
3646          * up to overheat if fan fails.
3647          */
3648         smp_mb__before_clear_bit();
3649         set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3650         smp_mb__after_clear_bit();
3651         schedule_delayed_work(&bp->sp_rtnl_task, 0);
3652
3653 }
3654
3655 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3656 {
3657         int port = BP_PORT(bp);
3658         int reg_offset;
3659         u32 val;
3660
3661         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3662                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3663
3664         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3665
3666                 val = REG_RD(bp, reg_offset);
3667                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3668                 REG_WR(bp, reg_offset, val);
3669
3670                 BNX2X_ERR("SPIO5 hw attention\n");
3671
3672                 /* Fan failure attention */
3673                 bnx2x_hw_reset_phy(&bp->link_params);
3674                 bnx2x_fan_failure(bp);
3675         }
3676
3677         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3678                 bnx2x_acquire_phy_lock(bp);
3679                 bnx2x_handle_module_detect_int(&bp->link_params);
3680                 bnx2x_release_phy_lock(bp);
3681         }
3682
3683         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3684
3685                 val = REG_RD(bp, reg_offset);
3686                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3687                 REG_WR(bp, reg_offset, val);
3688
3689                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3690                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3691                 bnx2x_panic();
3692         }
3693 }
3694
3695 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3696 {
3697         u32 val;
3698
3699         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3700
3701                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3702                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3703                 /* DORQ discard attention */
3704                 if (val & 0x2)
3705                         BNX2X_ERR("FATAL error from DORQ\n");
3706         }
3707
3708         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3709
3710                 int port = BP_PORT(bp);
3711                 int reg_offset;
3712
3713                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3714                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3715
3716                 val = REG_RD(bp, reg_offset);
3717                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3718                 REG_WR(bp, reg_offset, val);
3719
3720                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3721                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3722                 bnx2x_panic();
3723         }
3724 }
3725
3726 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3727 {
3728         u32 val;
3729
3730         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3731
3732                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3733                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3734                 /* CFC error attention */
3735                 if (val & 0x2)
3736                         BNX2X_ERR("FATAL error from CFC\n");
3737         }
3738
3739         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3740                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3741                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3742                 /* RQ_USDMDP_FIFO_OVERFLOW */
3743                 if (val & 0x18000)
3744                         BNX2X_ERR("FATAL error from PXP\n");
3745
3746                 if (!CHIP_IS_E1x(bp)) {
3747                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3748                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3749                 }
3750         }
3751
3752         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3753
3754                 int port = BP_PORT(bp);
3755                 int reg_offset;
3756
3757                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3758                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3759
3760                 val = REG_RD(bp, reg_offset);
3761                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3762                 REG_WR(bp, reg_offset, val);
3763
3764                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3765                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3766                 bnx2x_panic();
3767         }
3768 }
3769
3770 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3771 {
3772         u32 val;
3773
3774         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3775
3776                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3777                         int func = BP_FUNC(bp);
3778
3779                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3780                         bnx2x_read_mf_cfg(bp);
3781                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3782                                         func_mf_config[BP_ABS_FUNC(bp)].config);
3783                         val = SHMEM_RD(bp,
3784                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
3785                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3786                                 bnx2x_dcc_event(bp,
3787                                             (val & DRV_STATUS_DCC_EVENT_MASK));
3788
3789                         if (val & DRV_STATUS_SET_MF_BW)
3790                                 bnx2x_set_mf_bw(bp);
3791
3792                         if (val & DRV_STATUS_DRV_INFO_REQ)
3793                                 bnx2x_handle_drv_info_req(bp);
3794                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3795                                 bnx2x_pmf_update(bp);
3796
3797                         if (bp->port.pmf &&
3798                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3799                                 bp->dcbx_enabled > 0)
3800                                 /* start dcbx state machine */
3801                                 bnx2x_dcbx_set_params(bp,
3802                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
3803                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
3804                                 bnx2x_handle_afex_cmd(bp,
3805                                         val & DRV_STATUS_AFEX_EVENT_MASK);
3806                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3807                                 bnx2x_handle_eee_event(bp);
3808                         if (bp->link_vars.periodic_flags &
3809                             PERIODIC_FLAGS_LINK_EVENT) {
3810                                 /*  sync with link */
3811                                 bnx2x_acquire_phy_lock(bp);
3812                                 bp->link_vars.periodic_flags &=
3813                                         ~PERIODIC_FLAGS_LINK_EVENT;
3814                                 bnx2x_release_phy_lock(bp);
3815                                 if (IS_MF(bp))
3816                                         bnx2x_link_sync_notify(bp);
3817                                 bnx2x_link_report(bp);
3818                         }
3819                         /* Always call it here: bnx2x_link_report() will
3820                          * prevent the link indication duplication.
3821                          */
3822                         bnx2x__link_status_update(bp);
3823                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3824
3825                         BNX2X_ERR("MC assert!\n");
3826                         bnx2x_mc_assert(bp);
3827                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3828                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3829                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3830                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3831                         bnx2x_panic();
3832
3833                 } else if (attn & BNX2X_MCP_ASSERT) {
3834
3835                         BNX2X_ERR("MCP assert!\n");
3836                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3837                         bnx2x_fw_dump(bp);
3838
3839                 } else
3840                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3841         }
3842
3843         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3844                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3845                 if (attn & BNX2X_GRC_TIMEOUT) {
3846                         val = CHIP_IS_E1(bp) ? 0 :
3847                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3848                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
3849                 }
3850                 if (attn & BNX2X_GRC_RSV) {
3851                         val = CHIP_IS_E1(bp) ? 0 :
3852                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3853                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
3854                 }
3855                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3856         }
3857 }
3858
3859 /*
3860  * Bits map:
3861  * 0-7   - Engine0 load counter.
3862  * 8-15  - Engine1 load counter.
3863  * 16    - Engine0 RESET_IN_PROGRESS bit.
3864  * 17    - Engine1 RESET_IN_PROGRESS bit.
3865  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3866  *         on the engine
3867  * 19    - Engine1 ONE_IS_LOADED.
3868  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3869  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3870  *         just the one belonging to its engine).
3871  *
3872  */
3873 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
3874
3875 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
3876 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
3877 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
3878 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
3879 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
3880 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
3881 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
3882
3883 /*
3884  * Set the GLOBAL_RESET bit.
3885  *
3886  * Should be run under rtnl lock
3887  */
3888 void bnx2x_set_reset_global(struct bnx2x *bp)
3889 {
3890         u32 val;
3891         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3892         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3893         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3894         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3895 }
3896
3897 /*
3898  * Clear the GLOBAL_RESET bit.
3899  *
3900  * Should be run under rtnl lock
3901  */
3902 static void bnx2x_clear_reset_global(struct bnx2x *bp)
3903 {
3904         u32 val;
3905         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3906         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3907         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3908         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3909 }
3910
3911 /*
3912  * Checks the GLOBAL_RESET bit.
3913  *
3914  * should be run under rtnl lock
3915  */
3916 static bool bnx2x_reset_is_global(struct bnx2x *bp)
3917 {
3918         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3919
3920         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3921         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3922 }
3923
3924 /*
3925  * Clear RESET_IN_PROGRESS bit for the current engine.
3926  *
3927  * Should be run under rtnl lock
3928  */
3929 static void bnx2x_set_reset_done(struct bnx2x *bp)
3930 {
3931         u32 val;
3932         u32 bit = BP_PATH(bp) ?
3933                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3934         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3935         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3936
3937         /* Clear the bit */
3938         val &= ~bit;
3939         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3940
3941         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3942 }
3943
3944 /*
3945  * Set RESET_IN_PROGRESS for the current engine.
3946  *
3947  * should be run under rtnl lock
3948  */
3949 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3950 {
3951         u32 val;
3952         u32 bit = BP_PATH(bp) ?
3953                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3954         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3955         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3956
3957         /* Set the bit */
3958         val |= bit;
3959         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3960         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3961 }
3962
3963 /*
3964  * Checks the RESET_IN_PROGRESS bit for the given engine.
3965  * should be run under rtnl lock
3966  */
3967 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3968 {
3969         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3970         u32 bit = engine ?
3971                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3972
3973         /* return false if bit is set */
3974         return (val & bit) ? false : true;
3975 }
3976
3977 /*
3978  * set pf load for the current pf.
3979  *
3980  * should be run under rtnl lock
3981  */
3982 void bnx2x_set_pf_load(struct bnx2x *bp)
3983 {
3984         u32 val1, val;
3985         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3986                              BNX2X_PATH0_LOAD_CNT_MASK;
3987         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3988                              BNX2X_PATH0_LOAD_CNT_SHIFT;
3989
3990         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3991         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3992
3993         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3994
3995         /* get the current counter value */
3996         val1 = (val & mask) >> shift;
3997
3998         /* set bit of that PF */
3999         val1 |= (1 << bp->pf_num);
4000
4001         /* clear the old value */
4002         val &= ~mask;
4003
4004         /* set the new one */
4005         val |= ((val1 << shift) & mask);
4006
4007         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4008         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4009 }
4010
4011 /**
4012  * bnx2x_clear_pf_load - clear pf load mark
4013  *
4014  * @bp:         driver handle
4015  *
4016  * Should be run under rtnl lock.
4017  * Decrements the load counter for the current engine. Returns
4018  * whether other functions are still loaded
4019  */
4020 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4021 {
4022         u32 val1, val;
4023         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4024                              BNX2X_PATH0_LOAD_CNT_MASK;
4025         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4026                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4027
4028         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4029         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4030         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4031
4032         /* get the current counter value */
4033         val1 = (val & mask) >> shift;
4034
4035         /* clear bit of that PF */
4036         val1 &= ~(1 << bp->pf_num);
4037
4038         /* clear the old value */
4039         val &= ~mask;
4040
4041         /* set the new one */
4042         val |= ((val1 << shift) & mask);
4043
4044         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4045         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4046         return val1 != 0;
4047 }
4048
4049 /*
4050  * Read the load status for the current engine.
4051  *
4052  * should be run under rtnl lock
4053  */
4054 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4055 {
4056         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4057                              BNX2X_PATH0_LOAD_CNT_MASK);
4058         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4059                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4060         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4061
4062         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4063
4064         val = (val & mask) >> shift;
4065
4066         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4067            engine, val);
4068
4069         return val != 0;
4070 }
4071
4072 static void _print_next_block(int idx, const char *blk)
4073 {
4074         pr_cont("%s%s", idx ? ", " : "", blk);
4075 }
4076
4077 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4078                                            bool print)
4079 {
4080         int i = 0;
4081         u32 cur_bit = 0;
4082         for (i = 0; sig; i++) {
4083                 cur_bit = ((u32)0x1 << i);
4084                 if (sig & cur_bit) {
4085                         switch (cur_bit) {
4086                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4087                                 if (print)
4088                                         _print_next_block(par_num++, "BRB");
4089                                 break;
4090                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4091                                 if (print)
4092                                         _print_next_block(par_num++, "PARSER");
4093                                 break;
4094                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4095                                 if (print)
4096                                         _print_next_block(par_num++, "TSDM");
4097                                 break;
4098                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4099                                 if (print)
4100                                         _print_next_block(par_num++,
4101                                                           "SEARCHER");
4102                                 break;
4103                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4104                                 if (print)
4105                                         _print_next_block(par_num++, "TCM");
4106                                 break;
4107                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4108                                 if (print)
4109                                         _print_next_block(par_num++, "TSEMI");
4110                                 break;
4111                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4112                                 if (print)
4113                                         _print_next_block(par_num++, "XPB");
4114                                 break;
4115                         }
4116
4117                         /* Clear the bit */
4118                         sig &= ~cur_bit;
4119                 }
4120         }
4121
4122         return par_num;
4123 }
4124
4125 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4126                                            bool *global, bool print)
4127 {
4128         int i = 0;
4129         u32 cur_bit = 0;
4130         for (i = 0; sig; i++) {
4131                 cur_bit = ((u32)0x1 << i);
4132                 if (sig & cur_bit) {
4133                         switch (cur_bit) {
4134                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4135                                 if (print)
4136                                         _print_next_block(par_num++, "PBF");
4137                                 break;
4138                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4139                                 if (print)
4140                                         _print_next_block(par_num++, "QM");
4141                                 break;
4142                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4143                                 if (print)
4144                                         _print_next_block(par_num++, "TM");
4145                                 break;
4146                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4147                                 if (print)
4148                                         _print_next_block(par_num++, "XSDM");
4149                                 break;
4150                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4151                                 if (print)
4152                                         _print_next_block(par_num++, "XCM");
4153                                 break;
4154                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4155                                 if (print)
4156                                         _print_next_block(par_num++, "XSEMI");
4157                                 break;
4158                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4159                                 if (print)
4160                                         _print_next_block(par_num++,
4161                                                           "DOORBELLQ");
4162                                 break;
4163                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4164                                 if (print)
4165                                         _print_next_block(par_num++, "NIG");
4166                                 break;
4167                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4168                                 if (print)
4169                                         _print_next_block(par_num++,
4170                                                           "VAUX PCI CORE");
4171                                 *global = true;
4172                                 break;
4173                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4174                                 if (print)
4175                                         _print_next_block(par_num++, "DEBUG");
4176                                 break;
4177                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4178                                 if (print)
4179                                         _print_next_block(par_num++, "USDM");
4180                                 break;
4181                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4182                                 if (print)
4183                                         _print_next_block(par_num++, "UCM");
4184                                 break;
4185                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4186                                 if (print)
4187                                         _print_next_block(par_num++, "USEMI");
4188                                 break;
4189                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4190                                 if (print)
4191                                         _print_next_block(par_num++, "UPB");
4192                                 break;
4193                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4194                                 if (print)
4195                                         _print_next_block(par_num++, "CSDM");
4196                                 break;
4197                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4198                                 if (print)
4199                                         _print_next_block(par_num++, "CCM");
4200                                 break;
4201                         }
4202
4203                         /* Clear the bit */
4204                         sig &= ~cur_bit;
4205                 }
4206         }
4207
4208         return par_num;
4209 }
4210
4211 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4212                                            bool print)
4213 {
4214         int i = 0;
4215         u32 cur_bit = 0;
4216         for (i = 0; sig; i++) {
4217                 cur_bit = ((u32)0x1 << i);
4218                 if (sig & cur_bit) {
4219                         switch (cur_bit) {
4220                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4221                                 if (print)
4222                                         _print_next_block(par_num++, "CSEMI");
4223                                 break;
4224                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4225                                 if (print)
4226                                         _print_next_block(par_num++, "PXP");
4227                                 break;
4228                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4229                                 if (print)
4230                                         _print_next_block(par_num++,
4231                                         "PXPPCICLOCKCLIENT");
4232                                 break;
4233                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4234                                 if (print)
4235                                         _print_next_block(par_num++, "CFC");
4236                                 break;
4237                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4238                                 if (print)
4239                                         _print_next_block(par_num++, "CDU");
4240                                 break;
4241                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4242                                 if (print)
4243                                         _print_next_block(par_num++, "DMAE");
4244                                 break;
4245                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4246                                 if (print)
4247                                         _print_next_block(par_num++, "IGU");
4248                                 break;
4249                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4250                                 if (print)
4251                                         _print_next_block(par_num++, "MISC");
4252                                 break;
4253                         }
4254
4255                         /* Clear the bit */
4256                         sig &= ~cur_bit;
4257                 }
4258         }
4259
4260         return par_num;
4261 }
4262
4263 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4264                                            bool *global, bool print)
4265 {
4266         int i = 0;
4267         u32 cur_bit = 0;
4268         for (i = 0; sig; i++) {
4269                 cur_bit = ((u32)0x1 << i);
4270                 if (sig & cur_bit) {
4271                         switch (cur_bit) {
4272                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4273                                 if (print)
4274                                         _print_next_block(par_num++, "MCP ROM");
4275                                 *global = true;
4276                                 break;
4277                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4278                                 if (print)
4279                                         _print_next_block(par_num++,
4280                                                           "MCP UMP RX");
4281                                 *global = true;
4282                                 break;
4283                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4284                                 if (print)
4285                                         _print_next_block(par_num++,
4286                                                           "MCP UMP TX");
4287                                 *global = true;
4288                                 break;
4289                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4290                                 if (print)
4291                                         _print_next_block(par_num++,
4292                                                           "MCP SCPAD");
4293                                 *global = true;
4294                                 break;
4295                         }
4296
4297                         /* Clear the bit */
4298                         sig &= ~cur_bit;
4299                 }
4300         }
4301
4302         return par_num;
4303 }
4304
4305 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4306                                            bool print)
4307 {
4308         int i = 0;
4309         u32 cur_bit = 0;
4310         for (i = 0; sig; i++) {
4311                 cur_bit = ((u32)0x1 << i);
4312                 if (sig & cur_bit) {
4313                         switch (cur_bit) {
4314                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4315                                 if (print)
4316                                         _print_next_block(par_num++, "PGLUE_B");
4317                                 break;
4318                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4319                                 if (print)
4320                                         _print_next_block(par_num++, "ATC");
4321                                 break;
4322                         }
4323
4324                         /* Clear the bit */
4325                         sig &= ~cur_bit;
4326                 }
4327         }
4328
4329         return par_num;
4330 }
4331
4332 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4333                               u32 *sig)
4334 {
4335         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4336             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4337             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4338             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4339             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4340                 int par_num = 0;
4341                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4342                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4343                           sig[0] & HW_PRTY_ASSERT_SET_0,
4344                           sig[1] & HW_PRTY_ASSERT_SET_1,
4345                           sig[2] & HW_PRTY_ASSERT_SET_2,
4346                           sig[3] & HW_PRTY_ASSERT_SET_3,
4347                           sig[4] & HW_PRTY_ASSERT_SET_4);
4348                 if (print)
4349                         netdev_err(bp->dev,
4350                                    "Parity errors detected in blocks: ");
4351                 par_num = bnx2x_check_blocks_with_parity0(
4352                         sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4353                 par_num = bnx2x_check_blocks_with_parity1(
4354                         sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4355                 par_num = bnx2x_check_blocks_with_parity2(
4356                         sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4357                 par_num = bnx2x_check_blocks_with_parity3(
4358                         sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4359                 par_num = bnx2x_check_blocks_with_parity4(
4360                         sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4361
4362                 if (print)
4363                         pr_cont("\n");
4364
4365                 return true;
4366         } else
4367                 return false;
4368 }
4369
4370 /**
4371  * bnx2x_chk_parity_attn - checks for parity attentions.
4372  *
4373  * @bp:         driver handle
4374  * @global:     true if there was a global attention
4375  * @print:      show parity attention in syslog
4376  */
4377 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4378 {
4379         struct attn_route attn = { {0} };
4380         int port = BP_PORT(bp);
4381
4382         attn.sig[0] = REG_RD(bp,
4383                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4384                              port*4);
4385         attn.sig[1] = REG_RD(bp,
4386                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4387                              port*4);
4388         attn.sig[2] = REG_RD(bp,
4389                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4390                              port*4);
4391         attn.sig[3] = REG_RD(bp,
4392                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4393                              port*4);
4394
4395         if (!CHIP_IS_E1x(bp))
4396                 attn.sig[4] = REG_RD(bp,
4397                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4398                                      port*4);
4399
4400         return bnx2x_parity_attn(bp, global, print, attn.sig);
4401 }
4402
4403
4404 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4405 {
4406         u32 val;
4407         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4408
4409                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4410                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4411                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4412                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4413                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4414                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4415                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4416                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4417                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4418                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4419                 if (val &
4420                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4421                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4422                 if (val &
4423                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4424                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4425                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4426                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4427                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4428                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4429                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4430                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4431         }
4432         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4433                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4434                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4435                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4436                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4437                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4438                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4439                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4440                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4441                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4442                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4443                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4444                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4445                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4446                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4447         }
4448
4449         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4450                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4451                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4452                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4453                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4454         }
4455
4456 }
4457
4458 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4459 {
4460         struct attn_route attn, *group_mask;
4461         int port = BP_PORT(bp);
4462         int index;
4463         u32 reg_addr;
4464         u32 val;
4465         u32 aeu_mask;
4466         bool global = false;
4467
4468         /* need to take HW lock because MCP or other port might also
4469            try to handle this event */
4470         bnx2x_acquire_alr(bp);
4471
4472         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4473 #ifndef BNX2X_STOP_ON_ERROR
4474                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4475                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4476                 /* Disable HW interrupts */
4477                 bnx2x_int_disable(bp);
4478                 /* In case of parity errors don't handle attentions so that
4479                  * other function would "see" parity errors.
4480                  */
4481 #else
4482                 bnx2x_panic();
4483 #endif
4484                 bnx2x_release_alr(bp);
4485                 return;
4486         }
4487
4488         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4489         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4490         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4491         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4492         if (!CHIP_IS_E1x(bp))
4493                 attn.sig[4] =
4494                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4495         else
4496                 attn.sig[4] = 0;
4497
4498         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4499            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4500
4501         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4502                 if (deasserted & (1 << index)) {
4503                         group_mask = &bp->attn_group[index];
4504
4505                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4506                            index,
4507                            group_mask->sig[0], group_mask->sig[1],
4508                            group_mask->sig[2], group_mask->sig[3],
4509                            group_mask->sig[4]);
4510
4511                         bnx2x_attn_int_deasserted4(bp,
4512                                         attn.sig[4] & group_mask->sig[4]);
4513                         bnx2x_attn_int_deasserted3(bp,
4514                                         attn.sig[3] & group_mask->sig[3]);
4515                         bnx2x_attn_int_deasserted1(bp,
4516                                         attn.sig[1] & group_mask->sig[1]);
4517                         bnx2x_attn_int_deasserted2(bp,
4518                                         attn.sig[2] & group_mask->sig[2]);
4519                         bnx2x_attn_int_deasserted0(bp,
4520                                         attn.sig[0] & group_mask->sig[0]);
4521                 }
4522         }
4523
4524         bnx2x_release_alr(bp);
4525
4526         if (bp->common.int_block == INT_BLOCK_HC)
4527                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4528                             COMMAND_REG_ATTN_BITS_CLR);
4529         else
4530                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4531
4532         val = ~deasserted;
4533         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4534            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4535         REG_WR(bp, reg_addr, val);
4536
4537         if (~bp->attn_state & deasserted)
4538                 BNX2X_ERR("IGU ERROR\n");
4539
4540         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4541                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
4542
4543         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4544         aeu_mask = REG_RD(bp, reg_addr);
4545
4546         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4547            aeu_mask, deasserted);
4548         aeu_mask |= (deasserted & 0x3ff);
4549         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4550
4551         REG_WR(bp, reg_addr, aeu_mask);
4552         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4553
4554         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4555         bp->attn_state &= ~deasserted;
4556         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4557 }
4558
4559 static void bnx2x_attn_int(struct bnx2x *bp)
4560 {
4561         /* read local copy of bits */
4562         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4563                                                                 attn_bits);
4564         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4565                                                                 attn_bits_ack);
4566         u32 attn_state = bp->attn_state;
4567
4568         /* look for changed bits */
4569         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4570         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4571
4572         DP(NETIF_MSG_HW,
4573            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4574            attn_bits, attn_ack, asserted, deasserted);
4575
4576         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4577                 BNX2X_ERR("BAD attention state\n");
4578
4579         /* handle bits that were raised */
4580         if (asserted)
4581                 bnx2x_attn_int_asserted(bp, asserted);
4582
4583         if (deasserted)
4584                 bnx2x_attn_int_deasserted(bp, deasserted);
4585 }
4586
4587 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4588                       u16 index, u8 op, u8 update)
4589 {
4590         u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4591
4592         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4593                              igu_addr);
4594 }
4595
4596 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4597 {
4598         /* No memory barriers */
4599         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4600         mmiowb(); /* keep prod updates ordered */
4601 }
4602
4603 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4604                                       union event_ring_elem *elem)
4605 {
4606         u8 err = elem->message.error;
4607
4608         if (!bp->cnic_eth_dev.starting_cid  ||
4609             (cid < bp->cnic_eth_dev.starting_cid &&
4610             cid != bp->cnic_eth_dev.iscsi_l2_cid))
4611                 return 1;
4612
4613         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4614
4615         if (unlikely(err)) {
4616
4617                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4618                           cid);
4619                 bnx2x_panic_dump(bp);
4620         }
4621         bnx2x_cnic_cfc_comp(bp, cid, err);
4622         return 0;
4623 }
4624
4625 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4626 {
4627         struct bnx2x_mcast_ramrod_params rparam;
4628         int rc;
4629
4630         memset(&rparam, 0, sizeof(rparam));
4631
4632         rparam.mcast_obj = &bp->mcast_obj;
4633
4634         netif_addr_lock_bh(bp->dev);
4635
4636         /* Clear pending state for the last command */
4637         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4638
4639         /* If there are pending mcast commands - send them */
4640         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4641                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4642                 if (rc < 0)
4643                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4644                                   rc);
4645         }
4646
4647         netif_addr_unlock_bh(bp->dev);
4648 }
4649
4650 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4651                                             union event_ring_elem *elem)
4652 {
4653         unsigned long ramrod_flags = 0;
4654         int rc = 0;
4655         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4656         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4657
4658         /* Always push next commands out, don't wait here */
4659         __set_bit(RAMROD_CONT, &ramrod_flags);
4660
4661         switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4662         case BNX2X_FILTER_MAC_PENDING:
4663                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4664                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4665                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4666                 else
4667                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4668
4669                 break;
4670         case BNX2X_FILTER_MCAST_PENDING:
4671                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4672                 /* This is only relevant for 57710 where multicast MACs are
4673                  * configured as unicast MACs using the same ramrod.
4674                  */
4675                 bnx2x_handle_mcast_eqe(bp);
4676                 return;
4677         default:
4678                 BNX2X_ERR("Unsupported classification command: %d\n",
4679                           elem->message.data.eth_event.echo);
4680                 return;
4681         }
4682
4683         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4684
4685         if (rc < 0)
4686                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4687         else if (rc > 0)
4688                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4689
4690 }
4691
4692 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4693
4694 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4695 {
4696         netif_addr_lock_bh(bp->dev);
4697
4698         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4699
4700         /* Send rx_mode command again if was requested */
4701         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4702                 bnx2x_set_storm_rx_mode(bp);
4703         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4704                                     &bp->sp_state))
4705                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4706         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4707                                     &bp->sp_state))
4708                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4709
4710         netif_addr_unlock_bh(bp->dev);
4711 }
4712
4713 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4714                                               union event_ring_elem *elem)
4715 {
4716         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4717                 DP(BNX2X_MSG_SP,
4718                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4719                    elem->message.data.vif_list_event.func_bit_map);
4720                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4721                         elem->message.data.vif_list_event.func_bit_map);
4722         } else if (elem->message.data.vif_list_event.echo ==
4723                    VIF_LIST_RULE_SET) {
4724                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4725                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4726         }
4727 }
4728
4729 /* called with rtnl_lock */
4730 static void bnx2x_after_function_update(struct bnx2x *bp)
4731 {
4732         int q, rc;
4733         struct bnx2x_fastpath *fp;
4734         struct bnx2x_queue_state_params queue_params = {NULL};
4735         struct bnx2x_queue_update_params *q_update_params =
4736                 &queue_params.params.update;
4737
4738         /* Send Q update command with afex vlan removal values  for all Qs */
4739         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4740
4741         /* set silent vlan removal values according to vlan mode */
4742         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4743                   &q_update_params->update_flags);
4744         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4745                   &q_update_params->update_flags);
4746         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4747
4748         /* in access mode mark mask and value are 0 to strip all vlans */
4749         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4750                 q_update_params->silent_removal_value = 0;
4751                 q_update_params->silent_removal_mask = 0;
4752         } else {
4753                 q_update_params->silent_removal_value =
4754                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
4755                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
4756         }
4757
4758         for_each_eth_queue(bp, q) {
4759                 /* Set the appropriate Queue object */
4760                 fp = &bp->fp[q];
4761                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4762
4763                 /* send the ramrod */
4764                 rc = bnx2x_queue_state_change(bp, &queue_params);
4765                 if (rc < 0)
4766                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4767                                   q);
4768         }
4769
4770         if (!NO_FCOE(bp)) {
4771                 fp = &bp->fp[FCOE_IDX(bp)];
4772                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4773
4774                 /* clear pending completion bit */
4775                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4776
4777                 /* mark latest Q bit */
4778                 smp_mb__before_clear_bit();
4779                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4780                 smp_mb__after_clear_bit();
4781
4782                 /* send Q update ramrod for FCoE Q */
4783                 rc = bnx2x_queue_state_change(bp, &queue_params);
4784                 if (rc < 0)
4785                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4786                                   q);
4787         } else {
4788                 /* If no FCoE ring - ACK MCP now */
4789                 bnx2x_link_report(bp);
4790                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4791         }
4792 }
4793
4794 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4795         struct bnx2x *bp, u32 cid)
4796 {
4797         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4798
4799         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
4800                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
4801         else
4802                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
4803 }
4804
4805 static void bnx2x_eq_int(struct bnx2x *bp)
4806 {
4807         u16 hw_cons, sw_cons, sw_prod;
4808         union event_ring_elem *elem;
4809         u8 echo;
4810         u32 cid;
4811         u8 opcode;
4812         int spqe_cnt = 0;
4813         struct bnx2x_queue_sp_obj *q_obj;
4814         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4815         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4816
4817         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4818
4819         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4820          * when we get the the next-page we nned to adjust so the loop
4821          * condition below will be met. The next element is the size of a
4822          * regular element and hence incrementing by 1
4823          */
4824         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4825                 hw_cons++;
4826
4827         /* This function may never run in parallel with itself for a
4828          * specific bp, thus there is no need in "paired" read memory
4829          * barrier here.
4830          */
4831         sw_cons = bp->eq_cons;
4832         sw_prod = bp->eq_prod;
4833
4834         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4835                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4836
4837         for (; sw_cons != hw_cons;
4838               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4839
4840
4841                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4842
4843                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4844                 opcode = elem->message.opcode;
4845
4846
4847                 /* handle eq element */
4848                 switch (opcode) {
4849                 case EVENT_RING_OPCODE_STAT_QUERY:
4850                         DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4851                            "got statistics comp event %d\n",
4852                            bp->stats_comp++);
4853                         /* nothing to do with stats comp */
4854                         goto next_spqe;
4855
4856                 case EVENT_RING_OPCODE_CFC_DEL:
4857                         /* handle according to cid range */
4858                         /*
4859                          * we may want to verify here that the bp state is
4860                          * HALTING
4861                          */
4862                         DP(BNX2X_MSG_SP,
4863                            "got delete ramrod for MULTI[%d]\n", cid);
4864
4865                         if (CNIC_LOADED(bp) &&
4866                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4867                                 goto next_spqe;
4868
4869                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
4870
4871                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4872                                 break;
4873
4874
4875
4876                         goto next_spqe;
4877
4878                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4879                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4880                         if (f_obj->complete_cmd(bp, f_obj,
4881                                                 BNX2X_F_CMD_TX_STOP))
4882                                 break;
4883                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4884                         goto next_spqe;
4885
4886                 case EVENT_RING_OPCODE_START_TRAFFIC:
4887                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4888                         if (f_obj->complete_cmd(bp, f_obj,
4889                                                 BNX2X_F_CMD_TX_START))
4890                                 break;
4891                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4892                         goto next_spqe;
4893
4894                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4895                         echo = elem->message.data.function_update_event.echo;
4896                         if (echo == SWITCH_UPDATE) {
4897                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4898                                    "got FUNC_SWITCH_UPDATE ramrod\n");
4899                                 if (f_obj->complete_cmd(
4900                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
4901                                         break;
4902
4903                         } else {
4904                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
4905                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
4906                                 f_obj->complete_cmd(bp, f_obj,
4907                                                     BNX2X_F_CMD_AFEX_UPDATE);
4908
4909                                 /* We will perform the Queues update from
4910                                  * sp_rtnl task as all Queue SP operations
4911                                  * should run under rtnl_lock.
4912                                  */
4913                                 smp_mb__before_clear_bit();
4914                                 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
4915                                         &bp->sp_rtnl_state);
4916                                 smp_mb__after_clear_bit();
4917
4918                                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4919                         }
4920
4921                         goto next_spqe;
4922
4923                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
4924                         f_obj->complete_cmd(bp, f_obj,
4925                                             BNX2X_F_CMD_AFEX_VIFLISTS);
4926                         bnx2x_after_afex_vif_lists(bp, elem);
4927                         goto next_spqe;
4928                 case EVENT_RING_OPCODE_FUNCTION_START:
4929                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4930                            "got FUNC_START ramrod\n");
4931                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4932                                 break;
4933
4934                         goto next_spqe;
4935
4936                 case EVENT_RING_OPCODE_FUNCTION_STOP:
4937                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4938                            "got FUNC_STOP ramrod\n");
4939                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4940                                 break;
4941
4942                         goto next_spqe;
4943                 }
4944
4945                 switch (opcode | bp->state) {
4946                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4947                       BNX2X_STATE_OPEN):
4948                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4949                       BNX2X_STATE_OPENING_WAIT4_PORT):
4950                         cid = elem->message.data.eth_event.echo &
4951                                 BNX2X_SWCID_MASK;
4952                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4953                            cid);
4954                         rss_raw->clear_pending(rss_raw);
4955                         break;
4956
4957                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4958                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4959                 case (EVENT_RING_OPCODE_SET_MAC |
4960                       BNX2X_STATE_CLOSING_WAIT4_HALT):
4961                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4962                       BNX2X_STATE_OPEN):
4963                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4964                       BNX2X_STATE_DIAG):
4965                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4966                       BNX2X_STATE_CLOSING_WAIT4_HALT):
4967                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4968                         bnx2x_handle_classification_eqe(bp, elem);
4969                         break;
4970
4971                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4972                       BNX2X_STATE_OPEN):
4973                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4974                       BNX2X_STATE_DIAG):
4975                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4976                       BNX2X_STATE_CLOSING_WAIT4_HALT):
4977                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4978                         bnx2x_handle_mcast_eqe(bp);
4979                         break;
4980
4981                 case (EVENT_RING_OPCODE_FILTERS_RULES |
4982                       BNX2X_STATE_OPEN):
4983                 case (EVENT_RING_OPCODE_FILTERS_RULES |
4984                       BNX2X_STATE_DIAG):
4985                 case (EVENT_RING_OPCODE_FILTERS_RULES |
4986                       BNX2X_STATE_CLOSING_WAIT4_HALT):
4987                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4988                         bnx2x_handle_rx_mode_eqe(bp);
4989                         break;
4990                 default:
4991                         /* unknown event log error and continue */
4992                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4993                                   elem->message.opcode, bp->state);
4994                 }
4995 next_spqe:
4996                 spqe_cnt++;
4997         } /* for */
4998
4999         smp_mb__before_atomic_inc();
5000         atomic_add(spqe_cnt, &bp->eq_spq_left);
5001
5002         bp->eq_cons = sw_cons;
5003         bp->eq_prod = sw_prod;
5004         /* Make sure that above mem writes were issued towards the memory */
5005         smp_wmb();
5006
5007         /* update producer */
5008         bnx2x_update_eq_prod(bp, bp->eq_prod);
5009 }
5010
5011 static void bnx2x_sp_task(struct work_struct *work)
5012 {
5013         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5014         u16 status;
5015
5016         status = bnx2x_update_dsb_idx(bp);
5017 /*      if (status == 0)                                     */
5018 /*              BNX2X_ERR("spurious slowpath interrupt!\n"); */
5019
5020         DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
5021
5022         /* HW attentions */
5023         if (status & BNX2X_DEF_SB_ATT_IDX) {
5024                 bnx2x_attn_int(bp);
5025                 status &= ~BNX2X_DEF_SB_ATT_IDX;
5026         }
5027
5028         /* SP events: STAT_QUERY and others */
5029         if (status & BNX2X_DEF_SB_IDX) {
5030                 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5031
5032                 if (FCOE_INIT(bp) &&
5033                     (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5034                         /*
5035                          * Prevent local bottom-halves from running as
5036                          * we are going to change the local NAPI list.
5037                          */
5038                         local_bh_disable();
5039                         napi_schedule(&bnx2x_fcoe(bp, napi));
5040                         local_bh_enable();
5041                 }
5042
5043                 /* Handle EQ completions */
5044                 bnx2x_eq_int(bp);
5045
5046                 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5047                         le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5048
5049                 status &= ~BNX2X_DEF_SB_IDX;
5050         }
5051
5052         if (unlikely(status))
5053                 DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
5054                    status);
5055
5056         bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5057              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5058
5059         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5060         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5061                                &bp->sp_state)) {
5062                 bnx2x_link_report(bp);
5063                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5064         }
5065 }
5066
5067 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5068 {
5069         struct net_device *dev = dev_instance;
5070         struct bnx2x *bp = netdev_priv(dev);
5071
5072         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5073                      IGU_INT_DISABLE, 0);
5074
5075 #ifdef BNX2X_STOP_ON_ERROR
5076         if (unlikely(bp->panic))
5077                 return IRQ_HANDLED;
5078 #endif
5079
5080         if (CNIC_LOADED(bp)) {
5081                 struct cnic_ops *c_ops;
5082
5083                 rcu_read_lock();
5084                 c_ops = rcu_dereference(bp->cnic_ops);
5085                 if (c_ops)
5086                         c_ops->cnic_handler(bp->cnic_data, NULL);
5087                 rcu_read_unlock();
5088         }
5089
5090         queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
5091
5092         return IRQ_HANDLED;
5093 }
5094
5095 /* end of slow path */
5096
5097
5098 void bnx2x_drv_pulse(struct bnx2x *bp)
5099 {
5100         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5101                  bp->fw_drv_pulse_wr_seq);
5102 }
5103
5104
5105 static void bnx2x_timer(unsigned long data)
5106 {
5107         struct bnx2x *bp = (struct bnx2x *) data;
5108
5109         if (!netif_running(bp->dev))
5110                 return;
5111
5112         if (!BP_NOMCP(bp)) {
5113                 int mb_idx = BP_FW_MB_IDX(bp);
5114                 u32 drv_pulse;
5115                 u32 mcp_pulse;
5116
5117                 ++bp->fw_drv_pulse_wr_seq;
5118                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5119                 /* TBD - add SYSTEM_TIME */
5120                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5121                 bnx2x_drv_pulse(bp);
5122
5123                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5124                              MCP_PULSE_SEQ_MASK);
5125                 /* The delta between driver pulse and mcp response
5126                  * should be 1 (before mcp response) or 0 (after mcp response)
5127                  */
5128                 if ((drv_pulse != mcp_pulse) &&
5129                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5130                         /* someone lost a heartbeat... */
5131                         BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5132                                   drv_pulse, mcp_pulse);
5133                 }
5134         }
5135
5136         if (bp->state == BNX2X_STATE_OPEN)
5137                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5138
5139         mod_timer(&bp->timer, jiffies + bp->current_interval);
5140 }
5141
5142 /* end of Statistics */
5143
5144 /* nic init */
5145
5146 /*
5147  * nic init service functions
5148  */
5149
5150 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5151 {
5152         u32 i;
5153         if (!(len%4) && !(addr%4))
5154                 for (i = 0; i < len; i += 4)
5155                         REG_WR(bp, addr + i, fill);
5156         else
5157                 for (i = 0; i < len; i++)
5158                         REG_WR8(bp, addr + i, fill);
5159
5160 }
5161
5162 /* helper: writes FP SP data to FW - data_size in dwords */
5163 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5164                                 int fw_sb_id,
5165                                 u32 *sb_data_p,
5166                                 u32 data_size)
5167 {
5168         int index;
5169         for (index = 0; index < data_size; index++)
5170                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5171                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5172                         sizeof(u32)*index,
5173                         *(sb_data_p + index));
5174 }
5175
5176 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5177 {
5178         u32 *sb_data_p;
5179         u32 data_size = 0;
5180         struct hc_status_block_data_e2 sb_data_e2;
5181         struct hc_status_block_data_e1x sb_data_e1x;
5182
5183         /* disable the function first */
5184         if (!CHIP_IS_E1x(bp)) {
5185                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5186                 sb_data_e2.common.state = SB_DISABLED;
5187                 sb_data_e2.common.p_func.vf_valid = false;
5188                 sb_data_p = (u32 *)&sb_data_e2;
5189                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5190         } else {
5191                 memset(&sb_data_e1x, 0,
5192                        sizeof(struct hc_status_block_data_e1x));
5193                 sb_data_e1x.common.state = SB_DISABLED;
5194                 sb_data_e1x.common.p_func.vf_valid = false;
5195                 sb_data_p = (u32 *)&sb_data_e1x;
5196                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5197         }
5198         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5199
5200         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5201                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5202                         CSTORM_STATUS_BLOCK_SIZE);
5203         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5204                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5205                         CSTORM_SYNC_BLOCK_SIZE);
5206 }
5207
5208 /* helper:  writes SP SB data to FW */
5209 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5210                 struct hc_sp_status_block_data *sp_sb_data)
5211 {
5212         int func = BP_FUNC(bp);
5213         int i;
5214         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5215                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5216                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5217                         i*sizeof(u32),
5218                         *((u32 *)sp_sb_data + i));
5219 }
5220
5221 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5222 {
5223         int func = BP_FUNC(bp);
5224         struct hc_sp_status_block_data sp_sb_data;
5225         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5226
5227         sp_sb_data.state = SB_DISABLED;
5228         sp_sb_data.p_func.vf_valid = false;
5229
5230         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5231
5232         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5233                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5234                         CSTORM_SP_STATUS_BLOCK_SIZE);
5235         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5236                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5237                         CSTORM_SP_SYNC_BLOCK_SIZE);
5238
5239 }
5240
5241
5242 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5243                                            int igu_sb_id, int igu_seg_id)
5244 {
5245         hc_sm->igu_sb_id = igu_sb_id;
5246         hc_sm->igu_seg_id = igu_seg_id;
5247         hc_sm->timer_value = 0xFF;
5248         hc_sm->time_to_expire = 0xFFFFFFFF;
5249 }
5250
5251
5252 /* allocates state machine ids. */
5253 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5254 {
5255         /* zero out state machine indices */
5256         /* rx indices */
5257         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5258
5259         /* tx indices */
5260         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5261         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5262         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5263         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5264
5265         /* map indices */
5266         /* rx indices */
5267         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5268                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5269
5270         /* tx indices */
5271         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5272                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5273         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5274                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5275         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5276                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5277         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5278                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5279 }
5280
5281 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5282                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5283 {
5284         int igu_seg_id;
5285
5286         struct hc_status_block_data_e2 sb_data_e2;
5287         struct hc_status_block_data_e1x sb_data_e1x;
5288         struct hc_status_block_sm  *hc_sm_p;
5289         int data_size;
5290         u32 *sb_data_p;
5291
5292         if (CHIP_INT_MODE_IS_BC(bp))
5293                 igu_seg_id = HC_SEG_ACCESS_NORM;
5294         else
5295                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5296
5297         bnx2x_zero_fp_sb(bp, fw_sb_id);
5298
5299         if (!CHIP_IS_E1x(bp)) {
5300                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5301                 sb_data_e2.common.state = SB_ENABLED;
5302                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5303                 sb_data_e2.common.p_func.vf_id = vfid;
5304                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5305                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5306                 sb_data_e2.common.same_igu_sb_1b = true;
5307                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5308                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5309                 hc_sm_p = sb_data_e2.common.state_machine;
5310                 sb_data_p = (u32 *)&sb_data_e2;
5311                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5312                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5313         } else {
5314                 memset(&sb_data_e1x, 0,
5315                        sizeof(struct hc_status_block_data_e1x));
5316                 sb_data_e1x.common.state = SB_ENABLED;
5317                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5318                 sb_data_e1x.common.p_func.vf_id = 0xff;
5319                 sb_data_e1x.common.p_func.vf_valid = false;
5320                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5321                 sb_data_e1x.common.same_igu_sb_1b = true;
5322                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5323                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5324                 hc_sm_p = sb_data_e1x.common.state_machine;
5325                 sb_data_p = (u32 *)&sb_data_e1x;
5326                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5327                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5328         }
5329
5330         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5331                                        igu_sb_id, igu_seg_id);
5332         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5333                                        igu_sb_id, igu_seg_id);
5334
5335         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5336
5337         /* write indecies to HW */
5338         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5339 }
5340
5341 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5342                                      u16 tx_usec, u16 rx_usec)
5343 {
5344         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5345                                     false, rx_usec);
5346         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5347                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5348                                        tx_usec);
5349         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5350                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5351                                        tx_usec);
5352         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5353                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5354                                        tx_usec);
5355 }
5356
5357 static void bnx2x_init_def_sb(struct bnx2x *bp)
5358 {
5359         struct host_sp_status_block *def_sb = bp->def_status_blk;
5360         dma_addr_t mapping = bp->def_status_blk_mapping;
5361         int igu_sp_sb_index;
5362         int igu_seg_id;
5363         int port = BP_PORT(bp);
5364         int func = BP_FUNC(bp);
5365         int reg_offset, reg_offset_en5;
5366         u64 section;
5367         int index;
5368         struct hc_sp_status_block_data sp_sb_data;
5369         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5370
5371         if (CHIP_INT_MODE_IS_BC(bp)) {
5372                 igu_sp_sb_index = DEF_SB_IGU_ID;
5373                 igu_seg_id = HC_SEG_ACCESS_DEF;
5374         } else {
5375                 igu_sp_sb_index = bp->igu_dsb_id;
5376                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5377         }
5378
5379         /* ATTN */
5380         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5381                                             atten_status_block);
5382         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5383
5384         bp->attn_state = 0;
5385
5386         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5387                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5388         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5389                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5390         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5391                 int sindex;
5392                 /* take care of sig[0]..sig[4] */
5393                 for (sindex = 0; sindex < 4; sindex++)
5394                         bp->attn_group[index].sig[sindex] =
5395                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5396
5397                 if (!CHIP_IS_E1x(bp))
5398                         /*
5399                          * enable5 is separate from the rest of the registers,
5400                          * and therefore the address skip is 4
5401                          * and not 16 between the different groups
5402                          */
5403                         bp->attn_group[index].sig[4] = REG_RD(bp,
5404                                         reg_offset_en5 + 0x4*index);
5405                 else
5406                         bp->attn_group[index].sig[4] = 0;
5407         }
5408
5409         if (bp->common.int_block == INT_BLOCK_HC) {
5410                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5411                                      HC_REG_ATTN_MSG0_ADDR_L);
5412
5413                 REG_WR(bp, reg_offset, U64_LO(section));
5414                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5415         } else if (!CHIP_IS_E1x(bp)) {
5416                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5417                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5418         }
5419
5420         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5421                                             sp_sb);
5422
5423         bnx2x_zero_sp_sb(bp);
5424
5425         sp_sb_data.state                = SB_ENABLED;
5426         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5427         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5428         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5429         sp_sb_data.igu_seg_id           = igu_seg_id;
5430         sp_sb_data.p_func.pf_id         = func;
5431         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5432         sp_sb_data.p_func.vf_id         = 0xff;
5433
5434         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5435
5436         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5437 }
5438
5439 void bnx2x_update_coalesce(struct bnx2x *bp)
5440 {
5441         int i;
5442
5443         for_each_eth_queue(bp, i)
5444                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5445                                          bp->tx_ticks, bp->rx_ticks);
5446 }
5447
5448 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5449 {
5450         spin_lock_init(&bp->spq_lock);
5451         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5452
5453         bp->spq_prod_idx = 0;
5454         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5455         bp->spq_prod_bd = bp->spq;
5456         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5457 }
5458
5459 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5460 {
5461         int i;
5462         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5463                 union event_ring_elem *elem =
5464                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5465
5466                 elem->next_page.addr.hi =
5467                         cpu_to_le32(U64_HI(bp->eq_mapping +
5468                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5469                 elem->next_page.addr.lo =
5470                         cpu_to_le32(U64_LO(bp->eq_mapping +
5471                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5472         }
5473         bp->eq_cons = 0;
5474         bp->eq_prod = NUM_EQ_DESC;
5475         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5476         /* we want a warning message before it gets rought... */
5477         atomic_set(&bp->eq_spq_left,
5478                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5479 }
5480
5481
5482 /* called with netif_addr_lock_bh() */
5483 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5484                          unsigned long rx_mode_flags,
5485                          unsigned long rx_accept_flags,
5486                          unsigned long tx_accept_flags,
5487                          unsigned long ramrod_flags)
5488 {
5489         struct bnx2x_rx_mode_ramrod_params ramrod_param;
5490         int rc;
5491
5492         memset(&ramrod_param, 0, sizeof(ramrod_param));
5493
5494         /* Prepare ramrod parameters */
5495         ramrod_param.cid = 0;
5496         ramrod_param.cl_id = cl_id;
5497         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5498         ramrod_param.func_id = BP_FUNC(bp);
5499
5500         ramrod_param.pstate = &bp->sp_state;
5501         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5502
5503         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5504         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5505
5506         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5507
5508         ramrod_param.ramrod_flags = ramrod_flags;
5509         ramrod_param.rx_mode_flags = rx_mode_flags;
5510
5511         ramrod_param.rx_accept_flags = rx_accept_flags;
5512         ramrod_param.tx_accept_flags = tx_accept_flags;
5513
5514         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5515         if (rc < 0) {
5516                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5517                 return;
5518         }
5519 }
5520
5521 /* called with netif_addr_lock_bh() */
5522 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5523 {
5524         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5525         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5526
5527         if (!NO_FCOE(bp))
5528
5529                 /* Configure rx_mode of FCoE Queue */
5530                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5531
5532         switch (bp->rx_mode) {
5533         case BNX2X_RX_MODE_NONE:
5534                 /*
5535                  * 'drop all' supersedes any accept flags that may have been
5536                  * passed to the function.
5537                  */
5538                 break;
5539         case BNX2X_RX_MODE_NORMAL:
5540                 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5541                 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5542                 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5543
5544                 /* internal switching mode */
5545                 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5546                 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5547                 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5548
5549                 break;
5550         case BNX2X_RX_MODE_ALLMULTI:
5551                 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5552                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5553                 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5554
5555                 /* internal switching mode */
5556                 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5557                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5558                 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5559
5560                 break;
5561         case BNX2X_RX_MODE_PROMISC:
5562                 /* According to deffinition of SI mode, iface in promisc mode
5563                  * should receive matched and unmatched (in resolution of port)
5564                  * unicast packets.
5565                  */
5566                 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5567                 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5568                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5569                 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5570
5571                 /* internal switching mode */
5572                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5573                 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5574
5575                 if (IS_MF_SI(bp))
5576                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5577                 else
5578                         __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5579
5580                 break;
5581         default:
5582                 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5583                 return;
5584         }
5585
5586         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5587                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5588                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5589         }
5590
5591         __set_bit(RAMROD_RX, &ramrod_flags);
5592         __set_bit(RAMROD_TX, &ramrod_flags);
5593
5594         bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5595                             tx_accept_flags, ramrod_flags);
5596 }
5597
5598 static void bnx2x_init_internal_common(struct bnx2x *bp)
5599 {
5600         int i;
5601
5602         if (IS_MF_SI(bp))
5603                 /*
5604                  * In switch independent mode, the TSTORM needs to accept
5605                  * packets that failed classification, since approximate match
5606                  * mac addresses aren't written to NIG LLH
5607                  */
5608                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5609                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5610         else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5611                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5612                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5613
5614         /* Zero this manually as its initialization is
5615            currently missing in the initTool */
5616         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5617                 REG_WR(bp, BAR_USTRORM_INTMEM +
5618                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
5619         if (!CHIP_IS_E1x(bp)) {
5620                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5621                         CHIP_INT_MODE_IS_BC(bp) ?
5622                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5623         }
5624 }
5625
5626 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5627 {
5628         switch (load_code) {
5629         case FW_MSG_CODE_DRV_LOAD_COMMON:
5630         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5631                 bnx2x_init_internal_common(bp);
5632                 /* no break */
5633
5634         case FW_MSG_CODE_DRV_LOAD_PORT:
5635                 /* nothing to do */
5636                 /* no break */
5637
5638         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5639                 /* internal memory per function is
5640                    initialized inside bnx2x_pf_init */
5641                 break;
5642
5643         default:
5644                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5645                 break;
5646         }
5647 }
5648
5649 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5650 {
5651         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5652 }
5653
5654 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5655 {
5656         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5657 }
5658
5659 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5660 {
5661         if (CHIP_IS_E1x(fp->bp))
5662                 return BP_L_ID(fp->bp) + fp->index;
5663         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
5664                 return bnx2x_fp_igu_sb_id(fp);
5665 }
5666
5667 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5668 {
5669         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5670         u8 cos;
5671         unsigned long q_type = 0;
5672         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5673         fp->rx_queue = fp_idx;
5674         fp->cid = fp_idx;
5675         fp->cl_id = bnx2x_fp_cl_id(fp);
5676         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5677         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5678         /* qZone id equals to FW (per path) client id */
5679         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5680
5681         /* init shortcut */
5682         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5683
5684         /* Setup SB indicies */
5685         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5686
5687         /* Configure Queue State object */
5688         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5689         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5690
5691         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5692
5693         /* init tx data */
5694         for_each_cos_in_tx_queue(fp, cos) {
5695                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5696                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5697                                   FP_COS_TO_TXQ(fp, cos, bp),
5698                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
5699                 cids[cos] = fp->txdata_ptr[cos]->cid;
5700         }
5701
5702         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
5703                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5704                              bnx2x_sp_mapping(bp, q_rdata), q_type);
5705
5706         /**
5707          * Configure classification DBs: Always enable Tx switching
5708          */
5709         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5710
5711         DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5712                    fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5713                    fp->igu_sb_id);
5714         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5715                       fp->fw_sb_id, fp->igu_sb_id);
5716
5717         bnx2x_update_fpsb_idx(fp);
5718 }
5719
5720 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5721 {
5722         int i;
5723
5724         for (i = 1; i <= NUM_TX_RINGS; i++) {
5725                 struct eth_tx_next_bd *tx_next_bd =
5726                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5727
5728                 tx_next_bd->addr_hi =
5729                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5730                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5731                 tx_next_bd->addr_lo =
5732                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5733                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5734         }
5735
5736         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5737         txdata->tx_db.data.zero_fill1 = 0;
5738         txdata->tx_db.data.prod = 0;
5739
5740         txdata->tx_pkt_prod = 0;
5741         txdata->tx_pkt_cons = 0;
5742         txdata->tx_bd_prod = 0;
5743         txdata->tx_bd_cons = 0;
5744         txdata->tx_pkt = 0;
5745 }
5746
5747 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
5748 {
5749         int i;
5750
5751         for_each_tx_queue_cnic(bp, i)
5752                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
5753 }
5754 static void bnx2x_init_tx_rings(struct bnx2x *bp)
5755 {
5756         int i;
5757         u8 cos;
5758
5759         for_each_eth_queue(bp, i)
5760                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
5761                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
5762 }
5763
5764 void bnx2x_nic_init_cnic(struct bnx2x *bp)
5765 {
5766         if (!NO_FCOE(bp))
5767                 bnx2x_init_fcoe_fp(bp);
5768
5769         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5770                       BNX2X_VF_ID_INVALID, false,
5771                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5772
5773         /* ensure status block indices were read */
5774         rmb();
5775         bnx2x_init_rx_rings_cnic(bp);
5776         bnx2x_init_tx_rings_cnic(bp);
5777
5778         /* flush all */
5779         mb();
5780         mmiowb();
5781 }
5782
5783 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5784 {
5785         int i;
5786
5787         for_each_eth_queue(bp, i)
5788                 bnx2x_init_eth_fp(bp, i);
5789         /* Initialize MOD_ABS interrupts */
5790         bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5791                                bp->common.shmem_base, bp->common.shmem2_base,
5792                                BP_PORT(bp));
5793         /* ensure status block indices were read */
5794         rmb();
5795
5796         bnx2x_init_def_sb(bp);
5797         bnx2x_update_dsb_idx(bp);
5798         bnx2x_init_rx_rings(bp);
5799         bnx2x_init_tx_rings(bp);
5800         bnx2x_init_sp_ring(bp);
5801         bnx2x_init_eq_ring(bp);
5802         bnx2x_init_internal(bp, load_code);
5803         bnx2x_pf_init(bp);
5804         bnx2x_stats_init(bp);
5805
5806         /* flush all before enabling interrupts */
5807         mb();
5808         mmiowb();
5809
5810         bnx2x_int_enable(bp);
5811
5812         /* Check for SPIO5 */
5813         bnx2x_attn_int_deasserted0(bp,
5814                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5815                                    AEU_INPUTS_ATTN_BITS_SPIO5);
5816 }
5817
5818 /* end of nic init */
5819
5820 /*
5821  * gzip service functions
5822  */
5823
5824 static int bnx2x_gunzip_init(struct bnx2x *bp)
5825 {
5826         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5827                                             &bp->gunzip_mapping, GFP_KERNEL);
5828         if (bp->gunzip_buf  == NULL)
5829                 goto gunzip_nomem1;
5830
5831         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5832         if (bp->strm  == NULL)
5833                 goto gunzip_nomem2;
5834
5835         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5836         if (bp->strm->workspace == NULL)
5837                 goto gunzip_nomem3;
5838
5839         return 0;
5840
5841 gunzip_nomem3:
5842         kfree(bp->strm);
5843         bp->strm = NULL;
5844
5845 gunzip_nomem2:
5846         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5847                           bp->gunzip_mapping);
5848         bp->gunzip_buf = NULL;
5849
5850 gunzip_nomem1:
5851         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5852         return -ENOMEM;
5853 }
5854
5855 static void bnx2x_gunzip_end(struct bnx2x *bp)
5856 {
5857         if (bp->strm) {
5858                 vfree(bp->strm->workspace);
5859                 kfree(bp->strm);
5860                 bp->strm = NULL;
5861         }
5862
5863         if (bp->gunzip_buf) {
5864                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5865                                   bp->gunzip_mapping);
5866                 bp->gunzip_buf = NULL;
5867         }
5868 }
5869
5870 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5871 {
5872         int n, rc;
5873
5874         /* check gzip header */
5875         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5876                 BNX2X_ERR("Bad gzip header\n");
5877                 return -EINVAL;
5878         }
5879
5880         n = 10;
5881
5882 #define FNAME                           0x8
5883
5884         if (zbuf[3] & FNAME)
5885                 while ((zbuf[n++] != 0) && (n < len));
5886
5887         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5888         bp->strm->avail_in = len - n;
5889         bp->strm->next_out = bp->gunzip_buf;
5890         bp->strm->avail_out = FW_BUF_SIZE;
5891
5892         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5893         if (rc != Z_OK)
5894                 return rc;
5895
5896         rc = zlib_inflate(bp->strm, Z_FINISH);
5897         if ((rc != Z_OK) && (rc != Z_STREAM_END))
5898                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5899                            bp->strm->msg);
5900
5901         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5902         if (bp->gunzip_outlen & 0x3)
5903                 netdev_err(bp->dev,
5904                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5905                                 bp->gunzip_outlen);
5906         bp->gunzip_outlen >>= 2;
5907
5908         zlib_inflateEnd(bp->strm);
5909
5910         if (rc == Z_STREAM_END)
5911                 return 0;
5912
5913         return rc;
5914 }
5915
5916 /* nic load/unload */
5917
5918 /*
5919  * General service functions
5920  */
5921
5922 /* send a NIG loopback debug packet */
5923 static void bnx2x_lb_pckt(struct bnx2x *bp)
5924 {
5925         u32 wb_write[3];
5926
5927         /* Ethernet source and destination addresses */
5928         wb_write[0] = 0x55555555;
5929         wb_write[1] = 0x55555555;
5930         wb_write[2] = 0x20;             /* SOP */
5931         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5932
5933         /* NON-IP protocol */
5934         wb_write[0] = 0x09000000;
5935         wb_write[1] = 0x55555555;
5936         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
5937         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5938 }
5939
5940 /* some of the internal memories
5941  * are not directly readable from the driver
5942  * to test them we send debug packets
5943  */
5944 static int bnx2x_int_mem_test(struct bnx2x *bp)
5945 {
5946         int factor;
5947         int count, i;
5948         u32 val = 0;
5949
5950         if (CHIP_REV_IS_FPGA(bp))
5951                 factor = 120;
5952         else if (CHIP_REV_IS_EMUL(bp))
5953                 factor = 200;
5954         else
5955                 factor = 1;
5956
5957         /* Disable inputs of parser neighbor blocks */
5958         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5959         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5960         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5961         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5962
5963         /*  Write 0 to parser credits for CFC search request */
5964         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5965
5966         /* send Ethernet packet */
5967         bnx2x_lb_pckt(bp);
5968
5969         /* TODO do i reset NIG statistic? */
5970         /* Wait until NIG register shows 1 packet of size 0x10 */
5971         count = 1000 * factor;
5972         while (count) {
5973
5974                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5975                 val = *bnx2x_sp(bp, wb_data[0]);
5976                 if (val == 0x10)
5977                         break;
5978
5979                 msleep(10);
5980                 count--;
5981         }
5982         if (val != 0x10) {
5983                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5984                 return -1;
5985         }
5986
5987         /* Wait until PRS register shows 1 packet */
5988         count = 1000 * factor;
5989         while (count) {
5990                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5991                 if (val == 1)
5992                         break;
5993
5994                 msleep(10);
5995                 count--;
5996         }
5997         if (val != 0x1) {
5998                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5999                 return -2;
6000         }
6001
6002         /* Reset and init BRB, PRS */
6003         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6004         msleep(50);
6005         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6006         msleep(50);
6007         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6008         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6009
6010         DP(NETIF_MSG_HW, "part2\n");
6011
6012         /* Disable inputs of parser neighbor blocks */
6013         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6014         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6015         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6016         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6017
6018         /* Write 0 to parser credits for CFC search request */
6019         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6020
6021         /* send 10 Ethernet packets */
6022         for (i = 0; i < 10; i++)
6023                 bnx2x_lb_pckt(bp);
6024
6025         /* Wait until NIG register shows 10 + 1
6026            packets of size 11*0x10 = 0xb0 */
6027         count = 1000 * factor;
6028         while (count) {
6029
6030                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6031                 val = *bnx2x_sp(bp, wb_data[0]);
6032                 if (val == 0xb0)
6033                         break;
6034
6035                 msleep(10);
6036                 count--;
6037         }
6038         if (val != 0xb0) {
6039                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6040                 return -3;
6041         }
6042
6043         /* Wait until PRS register shows 2 packets */
6044         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6045         if (val != 2)
6046                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6047
6048         /* Write 1 to parser credits for CFC search request */
6049         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6050
6051         /* Wait until PRS register shows 3 packets */
6052         msleep(10 * factor);
6053         /* Wait until NIG register shows 1 packet of size 0x10 */
6054         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6055         if (val != 3)
6056                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6057
6058         /* clear NIG EOP FIFO */
6059         for (i = 0; i < 11; i++)
6060                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6061         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6062         if (val != 1) {
6063                 BNX2X_ERR("clear of NIG failed\n");
6064                 return -4;
6065         }
6066
6067         /* Reset and init BRB, PRS, NIG */
6068         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6069         msleep(50);
6070         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6071         msleep(50);
6072         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6073         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6074         if (!CNIC_SUPPORT(bp))
6075                 /* set NIC mode */
6076                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6077
6078         /* Enable inputs of parser neighbor blocks */
6079         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6080         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6081         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6082         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6083
6084         DP(NETIF_MSG_HW, "done\n");
6085
6086         return 0; /* OK */
6087 }
6088
6089 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6090 {
6091         u32 val;
6092
6093         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6094         if (!CHIP_IS_E1x(bp))
6095                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6096         else
6097                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6098         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6099         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6100         /*
6101          * mask read length error interrupts in brb for parser
6102          * (parsing unit and 'checksum and crc' unit)
6103          * these errors are legal (PU reads fixed length and CAC can cause
6104          * read length error on truncated packets)
6105          */
6106         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6107         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6108         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6109         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6110         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6111         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6112 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6113 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6114         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6115         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6116         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6117 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6118 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6119         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6120         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6121         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6122         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6123 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6124 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6125
6126         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6127                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6128                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6129         if (!CHIP_IS_E1x(bp))
6130                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6131                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6132         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6133
6134         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6135         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6136         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6137 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6138
6139         if (!CHIP_IS_E1x(bp))
6140                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6141                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6142
6143         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6144         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6145 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6146         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6147 }
6148
6149 static void bnx2x_reset_common(struct bnx2x *bp)
6150 {
6151         u32 val = 0x1400;
6152
6153         /* reset_common */
6154         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6155                0xd3ffff7f);
6156
6157         if (CHIP_IS_E3(bp)) {
6158                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6159                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6160         }
6161
6162         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6163 }
6164
6165 static void bnx2x_setup_dmae(struct bnx2x *bp)
6166 {
6167         bp->dmae_ready = 0;
6168         spin_lock_init(&bp->dmae_lock);
6169 }
6170
6171 static void bnx2x_init_pxp(struct bnx2x *bp)
6172 {
6173         u16 devctl;
6174         int r_order, w_order;
6175
6176         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6177         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6178         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6179         if (bp->mrrs == -1)
6180                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6181         else {
6182                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6183                 r_order = bp->mrrs;
6184         }
6185
6186         bnx2x_init_pxp_arb(bp, r_order, w_order);
6187 }
6188
6189 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6190 {
6191         int is_required;
6192         u32 val;
6193         int port;
6194
6195         if (BP_NOMCP(bp))
6196                 return;
6197
6198         is_required = 0;
6199         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6200               SHARED_HW_CFG_FAN_FAILURE_MASK;
6201
6202         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6203                 is_required = 1;
6204
6205         /*
6206          * The fan failure mechanism is usually related to the PHY type since
6207          * the power consumption of the board is affected by the PHY. Currently,
6208          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6209          */
6210         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6211                 for (port = PORT_0; port < PORT_MAX; port++) {
6212                         is_required |=
6213                                 bnx2x_fan_failure_det_req(
6214                                         bp,
6215                                         bp->common.shmem_base,
6216                                         bp->common.shmem2_base,
6217                                         port);
6218                 }
6219
6220         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6221
6222         if (is_required == 0)
6223                 return;
6224
6225         /* Fan failure is indicated by SPIO 5 */
6226         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6227
6228         /* set to active low mode */
6229         val = REG_RD(bp, MISC_REG_SPIO_INT);
6230         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6231         REG_WR(bp, MISC_REG_SPIO_INT, val);
6232
6233         /* enable interrupt to signal the IGU */
6234         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6235         val |= MISC_SPIO_SPIO5;
6236         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6237 }
6238
6239 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
6240 {
6241         u32 offset = 0;
6242
6243         if (CHIP_IS_E1(bp))
6244                 return;
6245         if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
6246                 return;
6247
6248         switch (BP_ABS_FUNC(bp)) {
6249         case 0:
6250                 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
6251                 break;
6252         case 1:
6253                 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
6254                 break;
6255         case 2:
6256                 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
6257                 break;
6258         case 3:
6259                 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
6260                 break;
6261         case 4:
6262                 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
6263                 break;
6264         case 5:
6265                 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
6266                 break;
6267         case 6:
6268                 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
6269                 break;
6270         case 7:
6271                 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
6272                 break;
6273         default:
6274                 return;
6275         }
6276
6277         REG_WR(bp, offset, pretend_func_num);
6278         REG_RD(bp, offset);
6279         DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
6280 }
6281
6282 void bnx2x_pf_disable(struct bnx2x *bp)
6283 {
6284         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6285         val &= ~IGU_PF_CONF_FUNC_EN;
6286
6287         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6288         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6289         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6290 }
6291
6292 static void bnx2x__common_init_phy(struct bnx2x *bp)
6293 {
6294         u32 shmem_base[2], shmem2_base[2];
6295         /* Avoid common init in case MFW supports LFA */
6296         if (SHMEM2_RD(bp, size) >
6297             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6298                 return;
6299         shmem_base[0] =  bp->common.shmem_base;
6300         shmem2_base[0] = bp->common.shmem2_base;
6301         if (!CHIP_IS_E1x(bp)) {
6302                 shmem_base[1] =
6303                         SHMEM2_RD(bp, other_shmem_base_addr);
6304                 shmem2_base[1] =
6305                         SHMEM2_RD(bp, other_shmem2_base_addr);
6306         }
6307         bnx2x_acquire_phy_lock(bp);
6308         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6309                               bp->common.chip_id);
6310         bnx2x_release_phy_lock(bp);
6311 }
6312
6313 /**
6314  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6315  *
6316  * @bp:         driver handle
6317  */
6318 static int bnx2x_init_hw_common(struct bnx2x *bp)
6319 {
6320         u32 val;
6321
6322         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6323
6324         /*
6325          * take the UNDI lock to protect undi_unload flow from accessing
6326          * registers while we're resetting the chip
6327          */
6328         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6329
6330         bnx2x_reset_common(bp);
6331         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6332
6333         val = 0xfffc;
6334         if (CHIP_IS_E3(bp)) {
6335                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6336                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6337         }
6338         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6339
6340         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6341
6342         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6343
6344         if (!CHIP_IS_E1x(bp)) {
6345                 u8 abs_func_id;
6346
6347                 /**
6348                  * 4-port mode or 2-port mode we need to turn of master-enable
6349                  * for everyone, after that, turn it back on for self.
6350                  * so, we disregard multi-function or not, and always disable
6351                  * for all functions on the given path, this means 0,2,4,6 for
6352                  * path 0 and 1,3,5,7 for path 1
6353                  */
6354                 for (abs_func_id = BP_PATH(bp);
6355                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6356                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6357                                 REG_WR(bp,
6358                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6359                                     1);
6360                                 continue;
6361                         }
6362
6363                         bnx2x_pretend_func(bp, abs_func_id);
6364                         /* clear pf enable */
6365                         bnx2x_pf_disable(bp);
6366                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6367                 }
6368         }
6369
6370         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6371         if (CHIP_IS_E1(bp)) {
6372                 /* enable HW interrupt from PXP on USDM overflow
6373                    bit 16 on INT_MASK_0 */
6374                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6375         }
6376
6377         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6378         bnx2x_init_pxp(bp);
6379
6380 #ifdef __BIG_ENDIAN
6381         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6382         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6383         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6384         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6385         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6386         /* make sure this value is 0 */
6387         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6388
6389 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6390         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6391         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6392         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6393         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6394 #endif
6395
6396         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6397
6398         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6399                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6400
6401         /* let the HW do it's magic ... */
6402         msleep(100);
6403         /* finish PXP init */
6404         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6405         if (val != 1) {
6406                 BNX2X_ERR("PXP2 CFG failed\n");
6407                 return -EBUSY;
6408         }
6409         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6410         if (val != 1) {
6411                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6412                 return -EBUSY;
6413         }
6414
6415         /* Timers bug workaround E2 only. We need to set the entire ILT to
6416          * have entries with value "0" and valid bit on.
6417          * This needs to be done by the first PF that is loaded in a path
6418          * (i.e. common phase)
6419          */
6420         if (!CHIP_IS_E1x(bp)) {
6421 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6422  * (i.e. vnic3) to start even if it is marked as "scan-off".
6423  * This occurs when a different function (func2,3) is being marked
6424  * as "scan-off". Real-life scenario for example: if a driver is being
6425  * load-unloaded while func6,7 are down. This will cause the timer to access
6426  * the ilt, translate to a logical address and send a request to read/write.
6427  * Since the ilt for the function that is down is not valid, this will cause
6428  * a translation error which is unrecoverable.
6429  * The Workaround is intended to make sure that when this happens nothing fatal
6430  * will occur. The workaround:
6431  *      1.  First PF driver which loads on a path will:
6432  *              a.  After taking the chip out of reset, by using pretend,
6433  *                  it will write "0" to the following registers of
6434  *                  the other vnics.
6435  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6436  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6437  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6438  *                  And for itself it will write '1' to
6439  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6440  *                  dmae-operations (writing to pram for example.)
6441  *                  note: can be done for only function 6,7 but cleaner this
6442  *                        way.
6443  *              b.  Write zero+valid to the entire ILT.
6444  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6445  *                  VNIC3 (of that port). The range allocated will be the
6446  *                  entire ILT. This is needed to prevent  ILT range error.
6447  *      2.  Any PF driver load flow:
6448  *              a.  ILT update with the physical addresses of the allocated
6449  *                  logical pages.
6450  *              b.  Wait 20msec. - note that this timeout is needed to make
6451  *                  sure there are no requests in one of the PXP internal
6452  *                  queues with "old" ILT addresses.
6453  *              c.  PF enable in the PGLC.
6454  *              d.  Clear the was_error of the PF in the PGLC. (could have
6455  *                  occured while driver was down)
6456  *              e.  PF enable in the CFC (WEAK + STRONG)
6457  *              f.  Timers scan enable
6458  *      3.  PF driver unload flow:
6459  *              a.  Clear the Timers scan_en.
6460  *              b.  Polling for scan_on=0 for that PF.
6461  *              c.  Clear the PF enable bit in the PXP.
6462  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6463  *              e.  Write zero+valid to all ILT entries (The valid bit must
6464  *                  stay set)
6465  *              f.  If this is VNIC 3 of a port then also init
6466  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6467  *                  to the last enrty in the ILT.
6468  *
6469  *      Notes:
6470  *      Currently the PF error in the PGLC is non recoverable.
6471  *      In the future the there will be a recovery routine for this error.
6472  *      Currently attention is masked.
6473  *      Having an MCP lock on the load/unload process does not guarantee that
6474  *      there is no Timer disable during Func6/7 enable. This is because the
6475  *      Timers scan is currently being cleared by the MCP on FLR.
6476  *      Step 2.d can be done only for PF6/7 and the driver can also check if
6477  *      there is error before clearing it. But the flow above is simpler and
6478  *      more general.
6479  *      All ILT entries are written by zero+valid and not just PF6/7
6480  *      ILT entries since in the future the ILT entries allocation for
6481  *      PF-s might be dynamic.
6482  */
6483                 struct ilt_client_info ilt_cli;
6484                 struct bnx2x_ilt ilt;
6485                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6486                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6487
6488                 /* initialize dummy TM client */
6489                 ilt_cli.start = 0;
6490                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6491                 ilt_cli.client_num = ILT_CLIENT_TM;
6492
6493                 /* Step 1: set zeroes to all ilt page entries with valid bit on
6494                  * Step 2: set the timers first/last ilt entry to point
6495                  * to the entire range to prevent ILT range error for 3rd/4th
6496                  * vnic (this code assumes existance of the vnic)
6497                  *
6498                  * both steps performed by call to bnx2x_ilt_client_init_op()
6499                  * with dummy TM client
6500                  *
6501                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6502                  * and his brother are split registers
6503                  */
6504                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6505                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6506                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6507
6508                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6509                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6510                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6511         }
6512
6513
6514         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6515         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6516
6517         if (!CHIP_IS_E1x(bp)) {
6518                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6519                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6520                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6521
6522                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6523
6524                 /* let the HW do it's magic ... */
6525                 do {
6526                         msleep(200);
6527                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6528                 } while (factor-- && (val != 1));
6529
6530                 if (val != 1) {
6531                         BNX2X_ERR("ATC_INIT failed\n");
6532                         return -EBUSY;
6533                 }
6534         }
6535
6536         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6537
6538         /* clean the DMAE memory */
6539         bp->dmae_ready = 1;
6540         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6541
6542         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6543
6544         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6545
6546         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6547
6548         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6549
6550         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6551         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6552         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6553         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6554
6555         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6556
6557
6558         /* QM queues pointers table */
6559         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6560
6561         /* soft reset pulse */
6562         REG_WR(bp, QM_REG_SOFT_RESET, 1);
6563         REG_WR(bp, QM_REG_SOFT_RESET, 0);
6564
6565         if (CNIC_SUPPORT(bp))
6566                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6567
6568         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6569         REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6570         if (!CHIP_REV_IS_SLOW(bp))
6571                 /* enable hw interrupt from doorbell Q */
6572                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6573
6574         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6575
6576         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6577         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6578
6579         if (!CHIP_IS_E1(bp))
6580                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6581
6582         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6583                 if (IS_MF_AFEX(bp)) {
6584                         /* configure that VNTag and VLAN headers must be
6585                          * received in afex mode
6586                          */
6587                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6588                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6589                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6590                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6591                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6592                 } else {
6593                         /* Bit-map indicating which L2 hdrs may appear
6594                          * after the basic Ethernet header
6595                          */
6596                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6597                                bp->path_has_ovlan ? 7 : 6);
6598                 }
6599         }
6600
6601         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6602         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6603         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6604         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6605
6606         if (!CHIP_IS_E1x(bp)) {
6607                 /* reset VFC memories */
6608                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6609                            VFC_MEMORIES_RST_REG_CAM_RST |
6610                            VFC_MEMORIES_RST_REG_RAM_RST);
6611                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6612                            VFC_MEMORIES_RST_REG_CAM_RST |
6613                            VFC_MEMORIES_RST_REG_RAM_RST);
6614
6615                 msleep(20);
6616         }
6617
6618         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6619         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6620         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6621         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6622
6623         /* sync semi rtc */
6624         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6625                0x80000000);
6626         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6627                0x80000000);
6628
6629         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6630         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6631         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6632
6633         if (!CHIP_IS_E1x(bp)) {
6634                 if (IS_MF_AFEX(bp)) {
6635                         /* configure that VNTag and VLAN headers must be
6636                          * sent in afex mode
6637                          */
6638                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6639                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6640                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6641                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6642                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6643                 } else {
6644                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6645                                bp->path_has_ovlan ? 7 : 6);
6646                 }
6647         }
6648
6649         REG_WR(bp, SRC_REG_SOFT_RST, 1);
6650
6651         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6652
6653         if (CNIC_SUPPORT(bp)) {
6654                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6655                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6656                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6657                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6658                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6659                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6660                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6661                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6662                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6663                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6664         }
6665         REG_WR(bp, SRC_REG_SOFT_RST, 0);
6666
6667         if (sizeof(union cdu_context) != 1024)
6668                 /* we currently assume that a context is 1024 bytes */
6669                 dev_alert(&bp->pdev->dev,
6670                           "please adjust the size of cdu_context(%ld)\n",
6671                           (long)sizeof(union cdu_context));
6672
6673         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6674         val = (4 << 24) + (0 << 12) + 1024;
6675         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6676
6677         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6678         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6679         /* enable context validation interrupt from CFC */
6680         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6681
6682         /* set the thresholds to prevent CFC/CDU race */
6683         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6684
6685         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6686
6687         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6688                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6689
6690         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6691         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6692
6693         /* Reset PCIE errors for debug */
6694         REG_WR(bp, 0x2814, 0xffffffff);
6695         REG_WR(bp, 0x3820, 0xffffffff);
6696
6697         if (!CHIP_IS_E1x(bp)) {
6698                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6699                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6700                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6701                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6702                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6703                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6704                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6705                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6706                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6707                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6708                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6709         }
6710
6711         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6712         if (!CHIP_IS_E1(bp)) {
6713                 /* in E3 this done in per-port section */
6714                 if (!CHIP_IS_E3(bp))
6715                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6716         }
6717         if (CHIP_IS_E1H(bp))
6718                 /* not applicable for E2 (and above ...) */
6719                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6720
6721         if (CHIP_REV_IS_SLOW(bp))
6722                 msleep(200);
6723
6724         /* finish CFC init */
6725         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6726         if (val != 1) {
6727                 BNX2X_ERR("CFC LL_INIT failed\n");
6728                 return -EBUSY;
6729         }
6730         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6731         if (val != 1) {
6732                 BNX2X_ERR("CFC AC_INIT failed\n");
6733                 return -EBUSY;
6734         }
6735         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6736         if (val != 1) {
6737                 BNX2X_ERR("CFC CAM_INIT failed\n");
6738                 return -EBUSY;
6739         }
6740         REG_WR(bp, CFC_REG_DEBUG0, 0);
6741
6742         if (CHIP_IS_E1(bp)) {
6743                 /* read NIG statistic
6744                    to see if this is our first up since powerup */
6745                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6746                 val = *bnx2x_sp(bp, wb_data[0]);
6747
6748                 /* do internal memory self test */
6749                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6750                         BNX2X_ERR("internal mem self test failed\n");
6751                         return -EBUSY;
6752                 }
6753         }
6754
6755         bnx2x_setup_fan_failure_detection(bp);
6756
6757         /* clear PXP2 attentions */
6758         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6759
6760         bnx2x_enable_blocks_attention(bp);
6761         bnx2x_enable_blocks_parity(bp);
6762
6763         if (!BP_NOMCP(bp)) {
6764                 if (CHIP_IS_E1x(bp))
6765                         bnx2x__common_init_phy(bp);
6766         } else
6767                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6768
6769         return 0;
6770 }
6771
6772 /**
6773  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6774  *
6775  * @bp:         driver handle
6776  */
6777 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6778 {
6779         int rc = bnx2x_init_hw_common(bp);
6780
6781         if (rc)
6782                 return rc;
6783
6784         /* In E2 2-PORT mode, same ext phy is used for the two paths */
6785         if (!BP_NOMCP(bp))
6786                 bnx2x__common_init_phy(bp);
6787
6788         return 0;
6789 }
6790
6791 static int bnx2x_init_hw_port(struct bnx2x *bp)
6792 {
6793         int port = BP_PORT(bp);
6794         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6795         u32 low, high;
6796         u32 val;
6797
6798
6799         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6800
6801         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6802
6803         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6804         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6805         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6806
6807         /* Timers bug workaround: disables the pf_master bit in pglue at
6808          * common phase, we need to enable it here before any dmae access are
6809          * attempted. Therefore we manually added the enable-master to the
6810          * port phase (it also happens in the function phase)
6811          */
6812         if (!CHIP_IS_E1x(bp))
6813                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6814
6815         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6816         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6817         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6818         bnx2x_init_block(bp, BLOCK_QM, init_phase);
6819
6820         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6821         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6822         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6823         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6824
6825         /* QM cid (connection) count */
6826         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6827
6828         if (CNIC_SUPPORT(bp)) {
6829                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6830                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6831                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6832         }
6833
6834         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6835
6836         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6837
6838         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6839
6840                 if (IS_MF(bp))
6841                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6842                 else if (bp->dev->mtu > 4096) {
6843                         if (bp->flags & ONE_PORT_FLAG)
6844                                 low = 160;
6845                         else {
6846                                 val = bp->dev->mtu;
6847                                 /* (24*1024 + val*4)/256 */
6848                                 low = 96 + (val/64) +
6849                                                 ((val % 64) ? 1 : 0);
6850                         }
6851                 } else
6852                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6853                 high = low + 56;        /* 14*1024/256 */
6854                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6855                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6856         }
6857
6858         if (CHIP_MODE_IS_4_PORT(bp))
6859                 REG_WR(bp, (BP_PORT(bp) ?
6860                             BRB1_REG_MAC_GUARANTIED_1 :
6861                             BRB1_REG_MAC_GUARANTIED_0), 40);
6862
6863
6864         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6865         if (CHIP_IS_E3B0(bp)) {
6866                 if (IS_MF_AFEX(bp)) {
6867                         /* configure headers for AFEX mode */
6868                         REG_WR(bp, BP_PORT(bp) ?
6869                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6870                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
6871                         REG_WR(bp, BP_PORT(bp) ?
6872                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
6873                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
6874                         REG_WR(bp, BP_PORT(bp) ?
6875                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
6876                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
6877                 } else {
6878                         /* Ovlan exists only if we are in multi-function +
6879                          * switch-dependent mode, in switch-independent there
6880                          * is no ovlan headers
6881                          */
6882                         REG_WR(bp, BP_PORT(bp) ?
6883                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6884                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6885                                (bp->path_has_ovlan ? 7 : 6));
6886                 }
6887         }
6888
6889         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6890         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6891         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6892         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6893
6894         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6895         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6896         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6897         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6898
6899         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6900         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6901
6902         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6903
6904         if (CHIP_IS_E1x(bp)) {
6905                 /* configure PBF to work without PAUSE mtu 9000 */
6906                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6907
6908                 /* update threshold */
6909                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6910                 /* update init credit */
6911                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6912
6913                 /* probe changes */
6914                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6915                 udelay(50);
6916                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6917         }
6918
6919         if (CNIC_SUPPORT(bp))
6920                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6921
6922         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6923         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6924
6925         if (CHIP_IS_E1(bp)) {
6926                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6927                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6928         }
6929         bnx2x_init_block(bp, BLOCK_HC, init_phase);
6930
6931         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6932
6933         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6934         /* init aeu_mask_attn_func_0/1:
6935          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6936          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6937          *             bits 4-7 are used for "per vn group attention" */
6938         val = IS_MF(bp) ? 0xF7 : 0x7;
6939         /* Enable DCBX attention for all but E1 */
6940         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6941         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6942
6943         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6944
6945         if (!CHIP_IS_E1x(bp)) {
6946                 /* Bit-map indicating which L2 hdrs may appear after the
6947                  * basic Ethernet header
6948                  */
6949                 if (IS_MF_AFEX(bp))
6950                         REG_WR(bp, BP_PORT(bp) ?
6951                                NIG_REG_P1_HDRS_AFTER_BASIC :
6952                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
6953                 else
6954                         REG_WR(bp, BP_PORT(bp) ?
6955                                NIG_REG_P1_HDRS_AFTER_BASIC :
6956                                NIG_REG_P0_HDRS_AFTER_BASIC,
6957                                IS_MF_SD(bp) ? 7 : 6);
6958
6959                 if (CHIP_IS_E3(bp))
6960                         REG_WR(bp, BP_PORT(bp) ?
6961                                    NIG_REG_LLH1_MF_MODE :
6962                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
6963         }
6964         if (!CHIP_IS_E3(bp))
6965                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6966
6967         if (!CHIP_IS_E1(bp)) {
6968                 /* 0x2 disable mf_ov, 0x1 enable */
6969                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6970                        (IS_MF_SD(bp) ? 0x1 : 0x2));
6971
6972                 if (!CHIP_IS_E1x(bp)) {
6973                         val = 0;
6974                         switch (bp->mf_mode) {
6975                         case MULTI_FUNCTION_SD:
6976                                 val = 1;
6977                                 break;
6978                         case MULTI_FUNCTION_SI:
6979                         case MULTI_FUNCTION_AFEX:
6980                                 val = 2;
6981                                 break;
6982                         }
6983
6984                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6985                                                   NIG_REG_LLH0_CLS_TYPE), val);
6986                 }
6987                 {
6988                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6989                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6990                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6991                 }
6992         }
6993
6994
6995         /* If SPIO5 is set to generate interrupts, enable it for this port */
6996         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6997         if (val & MISC_SPIO_SPIO5) {
6998                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6999                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7000                 val = REG_RD(bp, reg_addr);
7001                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7002                 REG_WR(bp, reg_addr, val);
7003         }
7004
7005         return 0;
7006 }
7007
7008 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7009 {
7010         int reg;
7011         u32 wb_write[2];
7012
7013         if (CHIP_IS_E1(bp))
7014                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7015         else
7016                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7017
7018         wb_write[0] = ONCHIP_ADDR1(addr);
7019         wb_write[1] = ONCHIP_ADDR2(addr);
7020         REG_WR_DMAE(bp, reg, wb_write, 2);
7021 }
7022
7023 static void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
7024                                    u8 idu_sb_id, bool is_Pf)
7025 {
7026         u32 data, ctl, cnt = 100;
7027         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7028         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7029         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7030         u32 sb_bit =  1 << (idu_sb_id%32);
7031         u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7032         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7033
7034         /* Not supported in BC mode */
7035         if (CHIP_INT_MODE_IS_BC(bp))
7036                 return;
7037
7038         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7039                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7040                 IGU_REGULAR_CLEANUP_SET                         |
7041                 IGU_REGULAR_BCLEANUP;
7042
7043         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7044               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7045               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7046
7047         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7048                          data, igu_addr_data);
7049         REG_WR(bp, igu_addr_data, data);
7050         mmiowb();
7051         barrier();
7052         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7053                           ctl, igu_addr_ctl);
7054         REG_WR(bp, igu_addr_ctl, ctl);
7055         mmiowb();
7056         barrier();
7057
7058         /* wait for clean up to finish */
7059         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7060                 msleep(20);
7061
7062
7063         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7064                 DP(NETIF_MSG_HW,
7065                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7066                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7067         }
7068 }
7069
7070 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7071 {
7072         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7073 }
7074
7075 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7076 {
7077         u32 i, base = FUNC_ILT_BASE(func);
7078         for (i = base; i < base + ILT_PER_FUNC; i++)
7079                 bnx2x_ilt_wr(bp, i, 0);
7080 }
7081
7082
7083 static void bnx2x_init_searcher(struct bnx2x *bp)
7084 {
7085         int port = BP_PORT(bp);
7086         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7087         /* T1 hash bits value determines the T1 number of entries */
7088         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7089 }
7090
7091 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7092 {
7093         int rc;
7094         struct bnx2x_func_state_params func_params = {NULL};
7095         struct bnx2x_func_switch_update_params *switch_update_params =
7096                 &func_params.params.switch_update;
7097
7098         /* Prepare parameters for function state transitions */
7099         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7100         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7101
7102         func_params.f_obj = &bp->func_obj;
7103         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7104
7105         /* Function parameters */
7106         switch_update_params->suspend = suspend;
7107
7108         rc = bnx2x_func_state_change(bp, &func_params);
7109
7110         return rc;
7111 }
7112
7113 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7114 {
7115         int rc, i, port = BP_PORT(bp);
7116         int vlan_en = 0, mac_en[NUM_MACS];
7117
7118
7119         /* Close input from network */
7120         if (bp->mf_mode == SINGLE_FUNCTION) {
7121                 bnx2x_set_rx_filter(&bp->link_params, 0);
7122         } else {
7123                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7124                                    NIG_REG_LLH0_FUNC_EN);
7125                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7126                           NIG_REG_LLH0_FUNC_EN, 0);
7127                 for (i = 0; i < NUM_MACS; i++) {
7128                         mac_en[i] = REG_RD(bp, port ?
7129                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7130                                               4 * i) :
7131                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7132                                               4 * i));
7133                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7134                                               4 * i) :
7135                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7136                 }
7137         }
7138
7139         /* Close BMC to host */
7140         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7141                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7142
7143         /* Suspend Tx switching to the PF. Completion of this ramrod
7144          * further guarantees that all the packets of that PF / child
7145          * VFs in BRB were processed by the Parser, so it is safe to
7146          * change the NIC_MODE register.
7147          */
7148         rc = bnx2x_func_switch_update(bp, 1);
7149         if (rc) {
7150                 BNX2X_ERR("Can't suspend tx-switching!\n");
7151                 return rc;
7152         }
7153
7154         /* Change NIC_MODE register */
7155         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7156
7157         /* Open input from network */
7158         if (bp->mf_mode == SINGLE_FUNCTION) {
7159                 bnx2x_set_rx_filter(&bp->link_params, 1);
7160         } else {
7161                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7162                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7163                 for (i = 0; i < NUM_MACS; i++) {
7164                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7165                                               4 * i) :
7166                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7167                                   mac_en[i]);
7168                 }
7169         }
7170
7171         /* Enable BMC to host */
7172         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7173                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7174
7175         /* Resume Tx switching to the PF */
7176         rc = bnx2x_func_switch_update(bp, 0);
7177         if (rc) {
7178                 BNX2X_ERR("Can't resume tx-switching!\n");
7179                 return rc;
7180         }
7181
7182         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7183         return 0;
7184 }
7185
7186 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7187 {
7188         int rc;
7189
7190         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7191
7192         if (CONFIGURE_NIC_MODE(bp)) {
7193                 /* Configrue searcher as part of function hw init */
7194                 bnx2x_init_searcher(bp);
7195
7196                 /* Reset NIC mode */
7197                 rc = bnx2x_reset_nic_mode(bp);
7198                 if (rc)
7199                         BNX2X_ERR("Can't change NIC mode!\n");
7200                 return rc;
7201         }
7202
7203         return 0;
7204 }
7205
7206 static int bnx2x_init_hw_func(struct bnx2x *bp)
7207 {
7208         int port = BP_PORT(bp);
7209         int func = BP_FUNC(bp);
7210         int init_phase = PHASE_PF0 + func;
7211         struct bnx2x_ilt *ilt = BP_ILT(bp);
7212         u16 cdu_ilt_start;
7213         u32 addr, val;
7214         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7215         int i, main_mem_width, rc;
7216
7217         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7218
7219         /* FLR cleanup - hmmm */
7220         if (!CHIP_IS_E1x(bp)) {
7221                 rc = bnx2x_pf_flr_clnup(bp);
7222                 if (rc)
7223                         return rc;
7224         }
7225
7226         /* set MSI reconfigure capability */
7227         if (bp->common.int_block == INT_BLOCK_HC) {
7228                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7229                 val = REG_RD(bp, addr);
7230                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7231                 REG_WR(bp, addr, val);
7232         }
7233
7234         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7235         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7236
7237         ilt = BP_ILT(bp);
7238         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7239
7240         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7241                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7242                 ilt->lines[cdu_ilt_start + i].page_mapping =
7243                         bp->context[i].cxt_mapping;
7244                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7245         }
7246         bnx2x_ilt_init_op(bp, INITOP_SET);
7247
7248         if (!CONFIGURE_NIC_MODE(bp)) {
7249                 bnx2x_init_searcher(bp);
7250                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7251                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7252         } else {
7253                 /* Set NIC mode */
7254                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7255                 DP(NETIF_MSG_IFUP, "NIC MODE configrued\n");
7256
7257         }
7258
7259         if (!CHIP_IS_E1x(bp)) {
7260                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7261
7262                 /* Turn on a single ISR mode in IGU if driver is going to use
7263                  * INT#x or MSI
7264                  */
7265                 if (!(bp->flags & USING_MSIX_FLAG))
7266                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7267                 /*
7268                  * Timers workaround bug: function init part.
7269                  * Need to wait 20msec after initializing ILT,
7270                  * needed to make sure there are no requests in
7271                  * one of the PXP internal queues with "old" ILT addresses
7272                  */
7273                 msleep(20);
7274                 /*
7275                  * Master enable - Due to WB DMAE writes performed before this
7276                  * register is re-initialized as part of the regular function
7277                  * init
7278                  */
7279                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7280                 /* Enable the function in IGU */
7281                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7282         }
7283
7284         bp->dmae_ready = 1;
7285
7286         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7287
7288         if (!CHIP_IS_E1x(bp))
7289                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7290
7291         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7292         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7293         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7294         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7295         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7296         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7297         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7298         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7299         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7300         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7301         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7302         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7303         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7304
7305         if (!CHIP_IS_E1x(bp))
7306                 REG_WR(bp, QM_REG_PF_EN, 1);
7307
7308         if (!CHIP_IS_E1x(bp)) {
7309                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7310                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7311                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7312                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7313         }
7314         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7315
7316         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7317         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7318         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7319         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7320         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7321         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7322         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7323         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7324         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7325         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7326         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7327         if (!CHIP_IS_E1x(bp))
7328                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7329
7330         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7331
7332         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7333
7334         if (!CHIP_IS_E1x(bp))
7335                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7336
7337         if (IS_MF(bp)) {
7338                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7339                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7340         }
7341
7342         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7343
7344         /* HC init per function */
7345         if (bp->common.int_block == INT_BLOCK_HC) {
7346                 if (CHIP_IS_E1H(bp)) {
7347                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7348
7349                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7350                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7351                 }
7352                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7353
7354         } else {
7355                 int num_segs, sb_idx, prod_offset;
7356
7357                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7358
7359                 if (!CHIP_IS_E1x(bp)) {
7360                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7361                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7362                 }
7363
7364                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7365
7366                 if (!CHIP_IS_E1x(bp)) {
7367                         int dsb_idx = 0;
7368                         /**
7369                          * Producer memory:
7370                          * E2 mode: address 0-135 match to the mapping memory;
7371                          * 136 - PF0 default prod; 137 - PF1 default prod;
7372                          * 138 - PF2 default prod; 139 - PF3 default prod;
7373                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7374                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7375                          * 144-147 reserved.
7376                          *
7377                          * E1.5 mode - In backward compatible mode;
7378                          * for non default SB; each even line in the memory
7379                          * holds the U producer and each odd line hold
7380                          * the C producer. The first 128 producers are for
7381                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7382                          * producers are for the DSB for each PF.
7383                          * Each PF has five segments: (the order inside each
7384                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7385                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7386                          * 144-147 attn prods;
7387                          */
7388                         /* non-default-status-blocks */
7389                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7390                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7391                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7392                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7393                                         num_segs;
7394
7395                                 for (i = 0; i < num_segs; i++) {
7396                                         addr = IGU_REG_PROD_CONS_MEMORY +
7397                                                         (prod_offset + i) * 4;
7398                                         REG_WR(bp, addr, 0);
7399                                 }
7400                                 /* send consumer update with value 0 */
7401                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7402                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7403                                 bnx2x_igu_clear_sb(bp,
7404                                                    bp->igu_base_sb + sb_idx);
7405                         }
7406
7407                         /* default-status-blocks */
7408                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7409                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7410
7411                         if (CHIP_MODE_IS_4_PORT(bp))
7412                                 dsb_idx = BP_FUNC(bp);
7413                         else
7414                                 dsb_idx = BP_VN(bp);
7415
7416                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7417                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7418                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7419
7420                         /*
7421                          * igu prods come in chunks of E1HVN_MAX (4) -
7422                          * does not matters what is the current chip mode
7423                          */
7424                         for (i = 0; i < (num_segs * E1HVN_MAX);
7425                              i += E1HVN_MAX) {
7426                                 addr = IGU_REG_PROD_CONS_MEMORY +
7427                                                         (prod_offset + i)*4;
7428                                 REG_WR(bp, addr, 0);
7429                         }
7430                         /* send consumer update with 0 */
7431                         if (CHIP_INT_MODE_IS_BC(bp)) {
7432                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7433                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7434                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7435                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7436                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7437                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7438                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7439                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7440                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7441                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7442                         } else {
7443                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7444                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7445                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7446                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7447                         }
7448                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7449
7450                         /* !!! these should become driver const once
7451                            rf-tool supports split-68 const */
7452                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7453                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7454                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7455                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7456                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7457                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7458                 }
7459         }
7460
7461         /* Reset PCIE errors for debug */
7462         REG_WR(bp, 0x2114, 0xffffffff);
7463         REG_WR(bp, 0x2120, 0xffffffff);
7464
7465         if (CHIP_IS_E1x(bp)) {
7466                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7467                 main_mem_base = HC_REG_MAIN_MEMORY +
7468                                 BP_PORT(bp) * (main_mem_size * 4);
7469                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7470                 main_mem_width = 8;
7471
7472                 val = REG_RD(bp, main_mem_prty_clr);
7473                 if (val)
7474                         DP(NETIF_MSG_HW,
7475                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7476                            val);
7477
7478                 /* Clear "false" parity errors in MSI-X table */
7479                 for (i = main_mem_base;
7480                      i < main_mem_base + main_mem_size * 4;
7481                      i += main_mem_width) {
7482                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
7483                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7484                                          i, main_mem_width / 4);
7485                 }
7486                 /* Clear HC parity attention */
7487                 REG_RD(bp, main_mem_prty_clr);
7488         }
7489
7490 #ifdef BNX2X_STOP_ON_ERROR
7491         /* Enable STORMs SP logging */
7492         REG_WR8(bp, BAR_USTRORM_INTMEM +
7493                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7494         REG_WR8(bp, BAR_TSTRORM_INTMEM +
7495                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7496         REG_WR8(bp, BAR_CSTRORM_INTMEM +
7497                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7498         REG_WR8(bp, BAR_XSTRORM_INTMEM +
7499                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7500 #endif
7501
7502         bnx2x_phy_probe(&bp->link_params);
7503
7504         return 0;
7505 }
7506
7507
7508 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7509 {
7510         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7511
7512         if (!CHIP_IS_E1x(bp))
7513                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7514                                sizeof(struct host_hc_status_block_e2));
7515         else
7516                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7517                                sizeof(struct host_hc_status_block_e1x));
7518
7519         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7520 }
7521
7522 void bnx2x_free_mem(struct bnx2x *bp)
7523 {
7524         int i;
7525
7526         /* fastpath */
7527         bnx2x_free_fp_mem(bp);
7528         /* end of fastpath */
7529
7530         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7531                        sizeof(struct host_sp_status_block));
7532
7533         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7534                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7535
7536         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7537                        sizeof(struct bnx2x_slowpath));
7538
7539         for (i = 0; i < L2_ILT_LINES(bp); i++)
7540                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7541                                bp->context[i].size);
7542         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7543
7544         BNX2X_FREE(bp->ilt->lines);
7545
7546         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7547
7548         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7549                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
7550 }
7551
7552 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7553 {
7554         int num_groups;
7555         int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7556
7557         /* number of queues for statistics is number of eth queues + FCoE */
7558         u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7559
7560         /* Total number of FW statistics requests =
7561          * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7562          * num of queues
7563          */
7564         bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7565
7566
7567         /* Request is built from stats_query_header and an array of
7568          * stats_query_cmd_group each of which contains
7569          * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7570          * configured in the stats_query_header.
7571          */
7572         num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7573                      (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7574
7575         bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7576                         num_groups * sizeof(struct stats_query_cmd_group);
7577
7578         /* Data for statistics requests + stats_conter
7579          *
7580          * stats_counter holds per-STORM counters that are incremented
7581          * when STORM has finished with the current request.
7582          *
7583          * memory for FCoE offloaded statistics are counted anyway,
7584          * even if they will not be sent.
7585          */
7586         bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7587                 sizeof(struct per_pf_stats) +
7588                 sizeof(struct fcoe_statistics_params) +
7589                 sizeof(struct per_queue_stats) * num_queue_stats +
7590                 sizeof(struct stats_counter);
7591
7592         BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7593                         bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7594
7595         /* Set shortcuts */
7596         bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7597         bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7598
7599         bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7600                 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7601
7602         bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7603                                    bp->fw_stats_req_sz;
7604         return 0;
7605
7606 alloc_mem_err:
7607         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7608                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7609         BNX2X_ERR("Can't allocate memory\n");
7610         return -ENOMEM;
7611 }
7612
7613 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7614 {
7615         if (!CHIP_IS_E1x(bp))
7616                 /* size = the status block + ramrod buffers */
7617                 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7618                                 sizeof(struct host_hc_status_block_e2));
7619         else
7620                 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7621                                 &bp->cnic_sb_mapping,
7622                                 sizeof(struct
7623                                        host_hc_status_block_e1x));
7624
7625         if (CONFIGURE_NIC_MODE(bp))
7626                 /* allocate searcher T2 table, as it wan't allocated before */
7627                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7628
7629         /* write address to which L5 should insert its values */
7630         bp->cnic_eth_dev.addr_drv_info_to_mcp =
7631                 &bp->slowpath->drv_info_to_mcp;
7632
7633         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7634                 goto alloc_mem_err;
7635
7636         return 0;
7637
7638 alloc_mem_err:
7639         bnx2x_free_mem_cnic(bp);
7640         BNX2X_ERR("Can't allocate memory\n");
7641         return -ENOMEM;
7642 }
7643
7644 int bnx2x_alloc_mem(struct bnx2x *bp)
7645 {
7646         int i, allocated, context_size;
7647
7648         if (!CONFIGURE_NIC_MODE(bp))
7649                 /* allocate searcher T2 table */
7650                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7651
7652         BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7653                         sizeof(struct host_sp_status_block));
7654
7655         BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7656                         sizeof(struct bnx2x_slowpath));
7657
7658         /* Allocated memory for FW statistics  */
7659         if (bnx2x_alloc_fw_stats_mem(bp))
7660                 goto alloc_mem_err;
7661
7662         /* Allocate memory for CDU context:
7663          * This memory is allocated separately and not in the generic ILT
7664          * functions because CDU differs in few aspects:
7665          * 1. There are multiple entities allocating memory for context -
7666          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7667          * its own ILT lines.
7668          * 2. Since CDU page-size is not a single 4KB page (which is the case
7669          * for the other ILT clients), to be efficient we want to support
7670          * allocation of sub-page-size in the last entry.
7671          * 3. Context pointers are used by the driver to pass to FW / update
7672          * the context (for the other ILT clients the pointers are used just to
7673          * free the memory during unload).
7674          */
7675         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7676
7677         for (i = 0, allocated = 0; allocated < context_size; i++) {
7678                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7679                                           (context_size - allocated));
7680                 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7681                                 &bp->context[i].cxt_mapping,
7682                                 bp->context[i].size);
7683                 allocated += bp->context[i].size;
7684         }
7685         BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7686
7687         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7688                 goto alloc_mem_err;
7689
7690         /* Slow path ring */
7691         BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7692
7693         /* EQ */
7694         BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7695                         BCM_PAGE_SIZE * NUM_EQ_PAGES);
7696
7697
7698         /* fastpath */
7699         /* need to be done at the end, since it's self adjusting to amount
7700          * of memory available for RSS queues
7701          */
7702         if (bnx2x_alloc_fp_mem(bp))
7703                 goto alloc_mem_err;
7704         return 0;
7705
7706 alloc_mem_err:
7707         bnx2x_free_mem(bp);
7708         BNX2X_ERR("Can't allocate memory\n");
7709         return -ENOMEM;
7710 }
7711
7712 /*
7713  * Init service functions
7714  */
7715
7716 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7717                       struct bnx2x_vlan_mac_obj *obj, bool set,
7718                       int mac_type, unsigned long *ramrod_flags)
7719 {
7720         int rc;
7721         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7722
7723         memset(&ramrod_param, 0, sizeof(ramrod_param));
7724
7725         /* Fill general parameters */
7726         ramrod_param.vlan_mac_obj = obj;
7727         ramrod_param.ramrod_flags = *ramrod_flags;
7728
7729         /* Fill a user request section if needed */
7730         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7731                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7732
7733                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7734
7735                 /* Set the command: ADD or DEL */
7736                 if (set)
7737                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7738                 else
7739                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7740         }
7741
7742         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7743
7744         if (rc == -EEXIST) {
7745                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7746                 /* do not treat adding same MAC as error */
7747                 rc = 0;
7748         } else if (rc < 0)
7749                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7750
7751         return rc;
7752 }
7753
7754 int bnx2x_del_all_macs(struct bnx2x *bp,
7755                        struct bnx2x_vlan_mac_obj *mac_obj,
7756                        int mac_type, bool wait_for_comp)
7757 {
7758         int rc;
7759         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7760
7761         /* Wait for completion of requested */
7762         if (wait_for_comp)
7763                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7764
7765         /* Set the mac type of addresses we want to clear */
7766         __set_bit(mac_type, &vlan_mac_flags);
7767
7768         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7769         if (rc < 0)
7770                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7771
7772         return rc;
7773 }
7774
7775 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7776 {
7777         unsigned long ramrod_flags = 0;
7778
7779         if (is_zero_ether_addr(bp->dev->dev_addr) &&
7780             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7781                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7782                    "Ignoring Zero MAC for STORAGE SD mode\n");
7783                 return 0;
7784         }
7785
7786         DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7787
7788         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7789         /* Eth MAC is set on RSS leading client (fp[0]) */
7790         return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj,
7791                                  set, BNX2X_ETH_MAC, &ramrod_flags);
7792 }
7793
7794 int bnx2x_setup_leading(struct bnx2x *bp)
7795 {
7796         return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7797 }
7798
7799 /**
7800  * bnx2x_set_int_mode - configure interrupt mode
7801  *
7802  * @bp:         driver handle
7803  *
7804  * In case of MSI-X it will also try to enable MSI-X.
7805  */
7806 void bnx2x_set_int_mode(struct bnx2x *bp)
7807 {
7808         switch (int_mode) {
7809         case INT_MODE_MSI:
7810                 bnx2x_enable_msi(bp);
7811                 /* falling through... */
7812         case INT_MODE_INTx:
7813                 bp->num_ethernet_queues = 1;
7814                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
7815                 BNX2X_DEV_INFO("set number of queues to 1\n");
7816                 break;
7817         default:
7818                 /* if we can't use MSI-X we only need one fp,
7819                  * so try to enable MSI-X with the requested number of fp's
7820                  * and fallback to MSI or legacy INTx with one fp
7821                  */
7822                 if (bnx2x_enable_msix(bp) ||
7823                     bp->flags & USING_SINGLE_MSIX_FLAG) {
7824                         /* failed to enable multiple MSI-X */
7825                         BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7826                                        bp->num_queues,
7827                                        1 + bp->num_cnic_queues);
7828
7829                         bp->num_queues = 1 + bp->num_cnic_queues;
7830
7831                         /* Try to enable MSI */
7832                         if (!(bp->flags & USING_SINGLE_MSIX_FLAG) &&
7833                             !(bp->flags & DISABLE_MSI_FLAG))
7834                                 bnx2x_enable_msi(bp);
7835                 }
7836                 break;
7837         }
7838 }
7839
7840 /* must be called prioir to any HW initializations */
7841 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7842 {
7843         return L2_ILT_LINES(bp);
7844 }
7845
7846 void bnx2x_ilt_set_info(struct bnx2x *bp)
7847 {
7848         struct ilt_client_info *ilt_client;
7849         struct bnx2x_ilt *ilt = BP_ILT(bp);
7850         u16 line = 0;
7851
7852         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7853         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7854
7855         /* CDU */
7856         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7857         ilt_client->client_num = ILT_CLIENT_CDU;
7858         ilt_client->page_size = CDU_ILT_PAGE_SZ;
7859         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7860         ilt_client->start = line;
7861         line += bnx2x_cid_ilt_lines(bp);
7862
7863         if (CNIC_SUPPORT(bp))
7864                 line += CNIC_ILT_LINES;
7865         ilt_client->end = line - 1;
7866
7867         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7868            ilt_client->start,
7869            ilt_client->end,
7870            ilt_client->page_size,
7871            ilt_client->flags,
7872            ilog2(ilt_client->page_size >> 12));
7873
7874         /* QM */
7875         if (QM_INIT(bp->qm_cid_count)) {
7876                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7877                 ilt_client->client_num = ILT_CLIENT_QM;
7878                 ilt_client->page_size = QM_ILT_PAGE_SZ;
7879                 ilt_client->flags = 0;
7880                 ilt_client->start = line;
7881
7882                 /* 4 bytes for each cid */
7883                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7884                                                          QM_ILT_PAGE_SZ);
7885
7886                 ilt_client->end = line - 1;
7887
7888                 DP(NETIF_MSG_IFUP,
7889                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7890                    ilt_client->start,
7891                    ilt_client->end,
7892                    ilt_client->page_size,
7893                    ilt_client->flags,
7894                    ilog2(ilt_client->page_size >> 12));
7895
7896         }
7897
7898         if (CNIC_SUPPORT(bp)) {
7899                 /* SRC */
7900                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7901                 ilt_client->client_num = ILT_CLIENT_SRC;
7902                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7903                 ilt_client->flags = 0;
7904                 ilt_client->start = line;
7905                 line += SRC_ILT_LINES;
7906                 ilt_client->end = line - 1;
7907
7908                 DP(NETIF_MSG_IFUP,
7909                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7910                    ilt_client->start,
7911                    ilt_client->end,
7912                    ilt_client->page_size,
7913                    ilt_client->flags,
7914                    ilog2(ilt_client->page_size >> 12));
7915
7916                 /* TM */
7917                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7918                 ilt_client->client_num = ILT_CLIENT_TM;
7919                 ilt_client->page_size = TM_ILT_PAGE_SZ;
7920                 ilt_client->flags = 0;
7921                 ilt_client->start = line;
7922                 line += TM_ILT_LINES;
7923                 ilt_client->end = line - 1;
7924
7925                 DP(NETIF_MSG_IFUP,
7926                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7927                    ilt_client->start,
7928                    ilt_client->end,
7929                    ilt_client->page_size,
7930                    ilt_client->flags,
7931                    ilog2(ilt_client->page_size >> 12));
7932         }
7933
7934         BUG_ON(line > ILT_MAX_LINES);
7935 }
7936
7937 /**
7938  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7939  *
7940  * @bp:                 driver handle
7941  * @fp:                 pointer to fastpath
7942  * @init_params:        pointer to parameters structure
7943  *
7944  * parameters configured:
7945  *      - HC configuration
7946  *      - Queue's CDU context
7947  */
7948 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7949         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7950 {
7951
7952         u8 cos;
7953         int cxt_index, cxt_offset;
7954
7955         /* FCoE Queue uses Default SB, thus has no HC capabilities */
7956         if (!IS_FCOE_FP(fp)) {
7957                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7958                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7959
7960                 /* If HC is supporterd, enable host coalescing in the transition
7961                  * to INIT state.
7962                  */
7963                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7964                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7965
7966                 /* HC rate */
7967                 init_params->rx.hc_rate = bp->rx_ticks ?
7968                         (1000000 / bp->rx_ticks) : 0;
7969                 init_params->tx.hc_rate = bp->tx_ticks ?
7970                         (1000000 / bp->tx_ticks) : 0;
7971
7972                 /* FW SB ID */
7973                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7974                         fp->fw_sb_id;
7975
7976                 /*
7977                  * CQ index among the SB indices: FCoE clients uses the default
7978                  * SB, therefore it's different.
7979                  */
7980                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7981                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7982         }
7983
7984         /* set maximum number of COSs supported by this queue */
7985         init_params->max_cos = fp->max_cos;
7986
7987         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7988             fp->index, init_params->max_cos);
7989
7990         /* set the context pointers queue object */
7991         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
7992                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
7993                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
7994                                 ILT_PAGE_CIDS);
7995                 init_params->cxts[cos] =
7996                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
7997         }
7998 }
7999
8000 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8001                         struct bnx2x_queue_state_params *q_params,
8002                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8003                         int tx_index, bool leading)
8004 {
8005         memset(tx_only_params, 0, sizeof(*tx_only_params));
8006
8007         /* Set the command */
8008         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8009
8010         /* Set tx-only QUEUE flags: don't zero statistics */
8011         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8012
8013         /* choose the index of the cid to send the slow path on */
8014         tx_only_params->cid_index = tx_index;
8015
8016         /* Set general TX_ONLY_SETUP parameters */
8017         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8018
8019         /* Set Tx TX_ONLY_SETUP parameters */
8020         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8021
8022         DP(NETIF_MSG_IFUP,
8023            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8024            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8025            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8026            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8027
8028         /* send the ramrod */
8029         return bnx2x_queue_state_change(bp, q_params);
8030 }
8031
8032
8033 /**
8034  * bnx2x_setup_queue - setup queue
8035  *
8036  * @bp:         driver handle
8037  * @fp:         pointer to fastpath
8038  * @leading:    is leading
8039  *
8040  * This function performs 2 steps in a Queue state machine
8041  *      actually: 1) RESET->INIT 2) INIT->SETUP
8042  */
8043
8044 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8045                        bool leading)
8046 {
8047         struct bnx2x_queue_state_params q_params = {NULL};
8048         struct bnx2x_queue_setup_params *setup_params =
8049                                                 &q_params.params.setup;
8050         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8051                                                 &q_params.params.tx_only;
8052         int rc;
8053         u8 tx_index;
8054
8055         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8056
8057         /* reset IGU state skip FCoE L2 queue */
8058         if (!IS_FCOE_FP(fp))
8059                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8060                              IGU_INT_ENABLE, 0);
8061
8062         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8063         /* We want to wait for completion in this context */
8064         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8065
8066         /* Prepare the INIT parameters */
8067         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8068
8069         /* Set the command */
8070         q_params.cmd = BNX2X_Q_CMD_INIT;
8071
8072         /* Change the state to INIT */
8073         rc = bnx2x_queue_state_change(bp, &q_params);
8074         if (rc) {
8075                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8076                 return rc;
8077         }
8078
8079         DP(NETIF_MSG_IFUP, "init complete\n");
8080
8081
8082         /* Now move the Queue to the SETUP state... */
8083         memset(setup_params, 0, sizeof(*setup_params));
8084
8085         /* Set QUEUE flags */
8086         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8087
8088         /* Set general SETUP parameters */
8089         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8090                                 FIRST_TX_COS_INDEX);
8091
8092         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8093                             &setup_params->rxq_params);
8094
8095         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8096                            FIRST_TX_COS_INDEX);
8097
8098         /* Set the command */
8099         q_params.cmd = BNX2X_Q_CMD_SETUP;
8100
8101         if (IS_FCOE_FP(fp))
8102                 bp->fcoe_init = true;
8103
8104         /* Change the state to SETUP */
8105         rc = bnx2x_queue_state_change(bp, &q_params);
8106         if (rc) {
8107                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8108                 return rc;
8109         }
8110
8111         /* loop through the relevant tx-only indices */
8112         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8113               tx_index < fp->max_cos;
8114               tx_index++) {
8115
8116                 /* prepare and send tx-only ramrod*/
8117                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8118                                           tx_only_params, tx_index, leading);
8119                 if (rc) {
8120                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8121                                   fp->index, tx_index);
8122                         return rc;
8123                 }
8124         }
8125
8126         return rc;
8127 }
8128
8129 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8130 {
8131         struct bnx2x_fastpath *fp = &bp->fp[index];
8132         struct bnx2x_fp_txdata *txdata;
8133         struct bnx2x_queue_state_params q_params = {NULL};
8134         int rc, tx_index;
8135
8136         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8137
8138         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8139         /* We want to wait for completion in this context */
8140         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8141
8142
8143         /* close tx-only connections */
8144         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8145              tx_index < fp->max_cos;
8146              tx_index++){
8147
8148                 /* ascertain this is a normal queue*/
8149                 txdata = fp->txdata_ptr[tx_index];
8150
8151                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8152                                                         txdata->txq_index);
8153
8154                 /* send halt terminate on tx-only connection */
8155                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8156                 memset(&q_params.params.terminate, 0,
8157                        sizeof(q_params.params.terminate));
8158                 q_params.params.terminate.cid_index = tx_index;
8159
8160                 rc = bnx2x_queue_state_change(bp, &q_params);
8161                 if (rc)
8162                         return rc;
8163
8164                 /* send halt terminate on tx-only connection */
8165                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8166                 memset(&q_params.params.cfc_del, 0,
8167                        sizeof(q_params.params.cfc_del));
8168                 q_params.params.cfc_del.cid_index = tx_index;
8169                 rc = bnx2x_queue_state_change(bp, &q_params);
8170                 if (rc)
8171                         return rc;
8172         }
8173         /* Stop the primary connection: */
8174         /* ...halt the connection */
8175         q_params.cmd = BNX2X_Q_CMD_HALT;
8176         rc = bnx2x_queue_state_change(bp, &q_params);
8177         if (rc)
8178                 return rc;
8179
8180         /* ...terminate the connection */
8181         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8182         memset(&q_params.params.terminate, 0,
8183                sizeof(q_params.params.terminate));
8184         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8185         rc = bnx2x_queue_state_change(bp, &q_params);
8186         if (rc)
8187                 return rc;
8188         /* ...delete cfc entry */
8189         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8190         memset(&q_params.params.cfc_del, 0,
8191                sizeof(q_params.params.cfc_del));
8192         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8193         return bnx2x_queue_state_change(bp, &q_params);
8194 }
8195
8196
8197 static void bnx2x_reset_func(struct bnx2x *bp)
8198 {
8199         int port = BP_PORT(bp);
8200         int func = BP_FUNC(bp);
8201         int i;
8202
8203         /* Disable the function in the FW */
8204         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8205         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8206         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8207         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8208
8209         /* FP SBs */
8210         for_each_eth_queue(bp, i) {
8211                 struct bnx2x_fastpath *fp = &bp->fp[i];
8212                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8213                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8214                            SB_DISABLED);
8215         }
8216
8217         if (CNIC_LOADED(bp))
8218                 /* CNIC SB */
8219                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8220                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8221                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8222
8223         /* SP SB */
8224         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8225                    CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8226                    SB_DISABLED);
8227
8228         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8229                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8230                        0);
8231
8232         /* Configure IGU */
8233         if (bp->common.int_block == INT_BLOCK_HC) {
8234                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8235                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8236         } else {
8237                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8238                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8239         }
8240
8241         if (CNIC_LOADED(bp)) {
8242                 /* Disable Timer scan */
8243                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8244                 /*
8245                  * Wait for at least 10ms and up to 2 second for the timers
8246                  * scan to complete
8247                  */
8248                 for (i = 0; i < 200; i++) {
8249                         msleep(10);
8250                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8251                                 break;
8252                 }
8253         }
8254         /* Clear ILT */
8255         bnx2x_clear_func_ilt(bp, func);
8256
8257         /* Timers workaround bug for E2: if this is vnic-3,
8258          * we need to set the entire ilt range for this timers.
8259          */
8260         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8261                 struct ilt_client_info ilt_cli;
8262                 /* use dummy TM client */
8263                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8264                 ilt_cli.start = 0;
8265                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8266                 ilt_cli.client_num = ILT_CLIENT_TM;
8267
8268                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8269         }
8270
8271         /* this assumes that reset_port() called before reset_func()*/
8272         if (!CHIP_IS_E1x(bp))
8273                 bnx2x_pf_disable(bp);
8274
8275         bp->dmae_ready = 0;
8276 }
8277
8278 static void bnx2x_reset_port(struct bnx2x *bp)
8279 {
8280         int port = BP_PORT(bp);
8281         u32 val;
8282
8283         /* Reset physical Link */
8284         bnx2x__link_reset(bp);
8285
8286         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8287
8288         /* Do not rcv packets to BRB */
8289         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8290         /* Do not direct rcv packets that are not for MCP to the BRB */
8291         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8292                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8293
8294         /* Configure AEU */
8295         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8296
8297         msleep(100);
8298         /* Check for BRB port occupancy */
8299         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8300         if (val)
8301                 DP(NETIF_MSG_IFDOWN,
8302                    "BRB1 is not empty  %d blocks are occupied\n", val);
8303
8304         /* TODO: Close Doorbell port? */
8305 }
8306
8307 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8308 {
8309         struct bnx2x_func_state_params func_params = {NULL};
8310
8311         /* Prepare parameters for function state transitions */
8312         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8313
8314         func_params.f_obj = &bp->func_obj;
8315         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8316
8317         func_params.params.hw_init.load_phase = load_code;
8318
8319         return bnx2x_func_state_change(bp, &func_params);
8320 }
8321
8322 static int bnx2x_func_stop(struct bnx2x *bp)
8323 {
8324         struct bnx2x_func_state_params func_params = {NULL};
8325         int rc;
8326
8327         /* Prepare parameters for function state transitions */
8328         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8329         func_params.f_obj = &bp->func_obj;
8330         func_params.cmd = BNX2X_F_CMD_STOP;
8331
8332         /*
8333          * Try to stop the function the 'good way'. If fails (in case
8334          * of a parity error during bnx2x_chip_cleanup()) and we are
8335          * not in a debug mode, perform a state transaction in order to
8336          * enable further HW_RESET transaction.
8337          */
8338         rc = bnx2x_func_state_change(bp, &func_params);
8339         if (rc) {
8340 #ifdef BNX2X_STOP_ON_ERROR
8341                 return rc;
8342 #else
8343                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8344                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8345                 return bnx2x_func_state_change(bp, &func_params);
8346 #endif
8347         }
8348
8349         return 0;
8350 }
8351
8352 /**
8353  * bnx2x_send_unload_req - request unload mode from the MCP.
8354  *
8355  * @bp:                 driver handle
8356  * @unload_mode:        requested function's unload mode
8357  *
8358  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8359  */
8360 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8361 {
8362         u32 reset_code = 0;
8363         int port = BP_PORT(bp);
8364
8365         /* Select the UNLOAD request mode */
8366         if (unload_mode == UNLOAD_NORMAL)
8367                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8368
8369         else if (bp->flags & NO_WOL_FLAG)
8370                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8371
8372         else if (bp->wol) {
8373                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8374                 u8 *mac_addr = bp->dev->dev_addr;
8375                 u32 val;
8376                 u16 pmc;
8377
8378                 /* The mac address is written to entries 1-4 to
8379                  * preserve entry 0 which is used by the PMF
8380                  */
8381                 u8 entry = (BP_VN(bp) + 1)*8;
8382
8383                 val = (mac_addr[0] << 8) | mac_addr[1];
8384                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8385
8386                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8387                       (mac_addr[4] << 8) | mac_addr[5];
8388                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8389
8390                 /* Enable the PME and clear the status */
8391                 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8392                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8393                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8394
8395                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8396
8397         } else
8398                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8399
8400         /* Send the request to the MCP */
8401         if (!BP_NOMCP(bp))
8402                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8403         else {
8404                 int path = BP_PATH(bp);
8405
8406                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8407                    path, load_count[path][0], load_count[path][1],
8408                    load_count[path][2]);
8409                 load_count[path][0]--;
8410                 load_count[path][1 + port]--;
8411                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8412                    path, load_count[path][0], load_count[path][1],
8413                    load_count[path][2]);
8414                 if (load_count[path][0] == 0)
8415                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8416                 else if (load_count[path][1 + port] == 0)
8417                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8418                 else
8419                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8420         }
8421
8422         return reset_code;
8423 }
8424
8425 /**
8426  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8427  *
8428  * @bp:         driver handle
8429  * @keep_link:          true iff link should be kept up
8430  */
8431 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8432 {
8433         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8434
8435         /* Report UNLOAD_DONE to MCP */
8436         if (!BP_NOMCP(bp))
8437                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8438 }
8439
8440 static int bnx2x_func_wait_started(struct bnx2x *bp)
8441 {
8442         int tout = 50;
8443         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8444
8445         if (!bp->port.pmf)
8446                 return 0;
8447
8448         /*
8449          * (assumption: No Attention from MCP at this stage)
8450          * PMF probably in the middle of TXdisable/enable transaction
8451          * 1. Sync IRS for default SB
8452          * 2. Sync SP queue - this guarantes us that attention handling started
8453          * 3. Wait, that TXdisable/enable transaction completes
8454          *
8455          * 1+2 guranty that if DCBx attention was scheduled it already changed
8456          * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8457          * received complettion for the transaction the state is TX_STOPPED.
8458          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8459          * transaction.
8460          */
8461
8462         /* make sure default SB ISR is done */
8463         if (msix)
8464                 synchronize_irq(bp->msix_table[0].vector);
8465         else
8466                 synchronize_irq(bp->pdev->irq);
8467
8468         flush_workqueue(bnx2x_wq);
8469
8470         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8471                                 BNX2X_F_STATE_STARTED && tout--)
8472                 msleep(20);
8473
8474         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8475                                                 BNX2X_F_STATE_STARTED) {
8476 #ifdef BNX2X_STOP_ON_ERROR
8477                 BNX2X_ERR("Wrong function state\n");
8478                 return -EBUSY;
8479 #else
8480                 /*
8481                  * Failed to complete the transaction in a "good way"
8482                  * Force both transactions with CLR bit
8483                  */
8484                 struct bnx2x_func_state_params func_params = {NULL};
8485
8486                 DP(NETIF_MSG_IFDOWN,
8487                    "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8488
8489                 func_params.f_obj = &bp->func_obj;
8490                 __set_bit(RAMROD_DRV_CLR_ONLY,
8491                                         &func_params.ramrod_flags);
8492
8493                 /* STARTED-->TX_ST0PPED */
8494                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8495                 bnx2x_func_state_change(bp, &func_params);
8496
8497                 /* TX_ST0PPED-->STARTED */
8498                 func_params.cmd = BNX2X_F_CMD_TX_START;
8499                 return bnx2x_func_state_change(bp, &func_params);
8500 #endif
8501         }
8502
8503         return 0;
8504 }
8505
8506 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8507 {
8508         int port = BP_PORT(bp);
8509         int i, rc = 0;
8510         u8 cos;
8511         struct bnx2x_mcast_ramrod_params rparam = {NULL};
8512         u32 reset_code;
8513
8514         /* Wait until tx fastpath tasks complete */
8515         for_each_tx_queue(bp, i) {
8516                 struct bnx2x_fastpath *fp = &bp->fp[i];
8517
8518                 for_each_cos_in_tx_queue(fp, cos)
8519                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8520 #ifdef BNX2X_STOP_ON_ERROR
8521                 if (rc)
8522                         return;
8523 #endif
8524         }
8525
8526         /* Give HW time to discard old tx messages */
8527         usleep_range(1000, 1000);
8528
8529         /* Clean all ETH MACs */
8530         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8531                                 false);
8532         if (rc < 0)
8533                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8534
8535         /* Clean up UC list  */
8536         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8537                                 true);
8538         if (rc < 0)
8539                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8540                           rc);
8541
8542         /* Disable LLH */
8543         if (!CHIP_IS_E1(bp))
8544                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8545
8546         /* Set "drop all" (stop Rx).
8547          * We need to take a netif_addr_lock() here in order to prevent
8548          * a race between the completion code and this code.
8549          */
8550         netif_addr_lock_bh(bp->dev);
8551         /* Schedule the rx_mode command */
8552         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8553                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8554         else
8555                 bnx2x_set_storm_rx_mode(bp);
8556
8557         /* Cleanup multicast configuration */
8558         rparam.mcast_obj = &bp->mcast_obj;
8559         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8560         if (rc < 0)
8561                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8562
8563         netif_addr_unlock_bh(bp->dev);
8564
8565
8566
8567         /*
8568          * Send the UNLOAD_REQUEST to the MCP. This will return if
8569          * this function should perform FUNC, PORT or COMMON HW
8570          * reset.
8571          */
8572         reset_code = bnx2x_send_unload_req(bp, unload_mode);
8573
8574         /*
8575          * (assumption: No Attention from MCP at this stage)
8576          * PMF probably in the middle of TXdisable/enable transaction
8577          */
8578         rc = bnx2x_func_wait_started(bp);
8579         if (rc) {
8580                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8581 #ifdef BNX2X_STOP_ON_ERROR
8582                 return;
8583 #endif
8584         }
8585
8586         /* Close multi and leading connections
8587          * Completions for ramrods are collected in a synchronous way
8588          */
8589         for_each_eth_queue(bp, i)
8590                 if (bnx2x_stop_queue(bp, i))
8591 #ifdef BNX2X_STOP_ON_ERROR
8592                         return;
8593 #else
8594                         goto unload_error;
8595 #endif
8596
8597         if (CNIC_LOADED(bp)) {
8598                 for_each_cnic_queue(bp, i)
8599                         if (bnx2x_stop_queue(bp, i))
8600 #ifdef BNX2X_STOP_ON_ERROR
8601                                 return;
8602 #else
8603                                 goto unload_error;
8604 #endif
8605         }
8606
8607         /* If SP settings didn't get completed so far - something
8608          * very wrong has happen.
8609          */
8610         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8611                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8612
8613 #ifndef BNX2X_STOP_ON_ERROR
8614 unload_error:
8615 #endif
8616         rc = bnx2x_func_stop(bp);
8617         if (rc) {
8618                 BNX2X_ERR("Function stop failed!\n");
8619 #ifdef BNX2X_STOP_ON_ERROR
8620                 return;
8621 #endif
8622         }
8623
8624         /* Disable HW interrupts, NAPI */
8625         bnx2x_netif_stop(bp, 1);
8626         /* Delete all NAPI objects */
8627         bnx2x_del_all_napi(bp);
8628         if (CNIC_LOADED(bp))
8629                 bnx2x_del_all_napi_cnic(bp);
8630
8631         /* Release IRQs */
8632         bnx2x_free_irq(bp);
8633
8634         /* Reset the chip */
8635         rc = bnx2x_reset_hw(bp, reset_code);
8636         if (rc)
8637                 BNX2X_ERR("HW_RESET failed\n");
8638
8639
8640         /* Report UNLOAD_DONE to MCP */
8641         bnx2x_send_unload_done(bp, keep_link);
8642 }
8643
8644 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8645 {
8646         u32 val;
8647
8648         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8649
8650         if (CHIP_IS_E1(bp)) {
8651                 int port = BP_PORT(bp);
8652                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8653                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
8654
8655                 val = REG_RD(bp, addr);
8656                 val &= ~(0x300);
8657                 REG_WR(bp, addr, val);
8658         } else {
8659                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8660                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8661                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8662                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8663         }
8664 }
8665
8666 /* Close gates #2, #3 and #4: */
8667 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8668 {
8669         u32 val;
8670
8671         /* Gates #2 and #4a are closed/opened for "not E1" only */
8672         if (!CHIP_IS_E1(bp)) {
8673                 /* #4 */
8674                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8675                 /* #2 */
8676                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8677         }
8678
8679         /* #3 */
8680         if (CHIP_IS_E1x(bp)) {
8681                 /* Prevent interrupts from HC on both ports */
8682                 val = REG_RD(bp, HC_REG_CONFIG_1);
8683                 REG_WR(bp, HC_REG_CONFIG_1,
8684                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8685                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8686
8687                 val = REG_RD(bp, HC_REG_CONFIG_0);
8688                 REG_WR(bp, HC_REG_CONFIG_0,
8689                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8690                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8691         } else {
8692                 /* Prevent incomming interrupts in IGU */
8693                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8694
8695                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8696                        (!close) ?
8697                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8698                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8699         }
8700
8701         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8702                 close ? "closing" : "opening");
8703         mmiowb();
8704 }
8705
8706 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8707
8708 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8709 {
8710         /* Do some magic... */
8711         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8712         *magic_val = val & SHARED_MF_CLP_MAGIC;
8713         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8714 }
8715
8716 /**
8717  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8718  *
8719  * @bp:         driver handle
8720  * @magic_val:  old value of the `magic' bit.
8721  */
8722 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8723 {
8724         /* Restore the `magic' bit value... */
8725         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8726         MF_CFG_WR(bp, shared_mf_config.clp_mb,
8727                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8728 }
8729
8730 /**
8731  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8732  *
8733  * @bp:         driver handle
8734  * @magic_val:  old value of 'magic' bit.
8735  *
8736  * Takes care of CLP configurations.
8737  */
8738 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8739 {
8740         u32 shmem;
8741         u32 validity_offset;
8742
8743         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8744
8745         /* Set `magic' bit in order to save MF config */
8746         if (!CHIP_IS_E1(bp))
8747                 bnx2x_clp_reset_prep(bp, magic_val);
8748
8749         /* Get shmem offset */
8750         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8751         validity_offset =
8752                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
8753
8754         /* Clear validity map flags */
8755         if (shmem > 0)
8756                 REG_WR(bp, shmem + validity_offset, 0);
8757 }
8758
8759 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8760 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8761
8762 /**
8763  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8764  *
8765  * @bp: driver handle
8766  */
8767 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8768 {
8769         /* special handling for emulation and FPGA,
8770            wait 10 times longer */
8771         if (CHIP_REV_IS_SLOW(bp))
8772                 msleep(MCP_ONE_TIMEOUT*10);
8773         else
8774                 msleep(MCP_ONE_TIMEOUT);
8775 }
8776
8777 /*
8778  * initializes bp->common.shmem_base and waits for validity signature to appear
8779  */
8780 static int bnx2x_init_shmem(struct bnx2x *bp)
8781 {
8782         int cnt = 0;
8783         u32 val = 0;
8784
8785         do {
8786                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8787                 if (bp->common.shmem_base) {
8788                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8789                         if (val & SHR_MEM_VALIDITY_MB)
8790                                 return 0;
8791                 }
8792
8793                 bnx2x_mcp_wait_one(bp);
8794
8795         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8796
8797         BNX2X_ERR("BAD MCP validity signature\n");
8798
8799         return -ENODEV;
8800 }
8801
8802 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8803 {
8804         int rc = bnx2x_init_shmem(bp);
8805
8806         /* Restore the `magic' bit value */
8807         if (!CHIP_IS_E1(bp))
8808                 bnx2x_clp_reset_done(bp, magic_val);
8809
8810         return rc;
8811 }
8812
8813 static void bnx2x_pxp_prep(struct bnx2x *bp)
8814 {
8815         if (!CHIP_IS_E1(bp)) {
8816                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8817                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8818                 mmiowb();
8819         }
8820 }
8821
8822 /*
8823  * Reset the whole chip except for:
8824  *      - PCIE core
8825  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8826  *              one reset bit)
8827  *      - IGU
8828  *      - MISC (including AEU)
8829  *      - GRC
8830  *      - RBCN, RBCP
8831  */
8832 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8833 {
8834         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8835         u32 global_bits2, stay_reset2;
8836
8837         /*
8838          * Bits that have to be set in reset_mask2 if we want to reset 'global'
8839          * (per chip) blocks.
8840          */
8841         global_bits2 =
8842                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8843                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8844
8845         /* Don't reset the following blocks.
8846          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
8847          *            reset, as in 4 port device they might still be owned
8848          *            by the MCP (there is only one leader per path).
8849          */
8850         not_reset_mask1 =
8851                 MISC_REGISTERS_RESET_REG_1_RST_HC |
8852                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8853                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8854
8855         not_reset_mask2 =
8856                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8857                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8858                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8859                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8860                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8861                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8862                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8863                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8864                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8865                 MISC_REGISTERS_RESET_REG_2_PGLC |
8866                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8867                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8868                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8869                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8870                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8871                 MISC_REGISTERS_RESET_REG_2_UMAC1;
8872
8873         /*
8874          * Keep the following blocks in reset:
8875          *  - all xxMACs are handled by the bnx2x_link code.
8876          */
8877         stay_reset2 =
8878                 MISC_REGISTERS_RESET_REG_2_XMAC |
8879                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8880
8881         /* Full reset masks according to the chip */
8882         reset_mask1 = 0xffffffff;
8883
8884         if (CHIP_IS_E1(bp))
8885                 reset_mask2 = 0xffff;
8886         else if (CHIP_IS_E1H(bp))
8887                 reset_mask2 = 0x1ffff;
8888         else if (CHIP_IS_E2(bp))
8889                 reset_mask2 = 0xfffff;
8890         else /* CHIP_IS_E3 */
8891                 reset_mask2 = 0x3ffffff;
8892
8893         /* Don't reset global blocks unless we need to */
8894         if (!global)
8895                 reset_mask2 &= ~global_bits2;
8896
8897         /*
8898          * In case of attention in the QM, we need to reset PXP
8899          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8900          * because otherwise QM reset would release 'close the gates' shortly
8901          * before resetting the PXP, then the PSWRQ would send a write
8902          * request to PGLUE. Then when PXP is reset, PGLUE would try to
8903          * read the payload data from PSWWR, but PSWWR would not
8904          * respond. The write queue in PGLUE would stuck, dmae commands
8905          * would not return. Therefore it's important to reset the second
8906          * reset register (containing the
8907          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8908          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8909          * bit).
8910          */
8911         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8912                reset_mask2 & (~not_reset_mask2));
8913
8914         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8915                reset_mask1 & (~not_reset_mask1));
8916
8917         barrier();
8918         mmiowb();
8919
8920         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8921                reset_mask2 & (~stay_reset2));
8922
8923         barrier();
8924         mmiowb();
8925
8926         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8927         mmiowb();
8928 }
8929
8930 /**
8931  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8932  * It should get cleared in no more than 1s.
8933  *
8934  * @bp: driver handle
8935  *
8936  * It should get cleared in no more than 1s. Returns 0 if
8937  * pending writes bit gets cleared.
8938  */
8939 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8940 {
8941         u32 cnt = 1000;
8942         u32 pend_bits = 0;
8943
8944         do {
8945                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8946
8947                 if (pend_bits == 0)
8948                         break;
8949
8950                 usleep_range(1000, 1000);
8951         } while (cnt-- > 0);
8952
8953         if (cnt <= 0) {
8954                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8955                           pend_bits);
8956                 return -EBUSY;
8957         }
8958
8959         return 0;
8960 }
8961
8962 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8963 {
8964         int cnt = 1000;
8965         u32 val = 0;
8966         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8967                 u32 tags_63_32 = 0;
8968
8969
8970         /* Empty the Tetris buffer, wait for 1s */
8971         do {
8972                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8973                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8974                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8975                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8976                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8977                 if (CHIP_IS_E3(bp))
8978                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
8979
8980                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8981                     ((port_is_idle_0 & 0x1) == 0x1) &&
8982                     ((port_is_idle_1 & 0x1) == 0x1) &&
8983                     (pgl_exp_rom2 == 0xffffffff) &&
8984                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
8985                         break;
8986                 usleep_range(1000, 1000);
8987         } while (cnt-- > 0);
8988
8989         if (cnt <= 0) {
8990                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8991                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8992                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8993                           pgl_exp_rom2);
8994                 return -EAGAIN;
8995         }
8996
8997         barrier();
8998
8999         /* Close gates #2, #3 and #4 */
9000         bnx2x_set_234_gates(bp, true);
9001
9002         /* Poll for IGU VQs for 57712 and newer chips */
9003         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9004                 return -EAGAIN;
9005
9006
9007         /* TBD: Indicate that "process kill" is in progress to MCP */
9008
9009         /* Clear "unprepared" bit */
9010         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9011         barrier();
9012
9013         /* Make sure all is written to the chip before the reset */
9014         mmiowb();
9015
9016         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9017          * PSWHST, GRC and PSWRD Tetris buffer.
9018          */
9019         usleep_range(1000, 1000);
9020
9021         /* Prepare to chip reset: */
9022         /* MCP */
9023         if (global)
9024                 bnx2x_reset_mcp_prep(bp, &val);
9025
9026         /* PXP */
9027         bnx2x_pxp_prep(bp);
9028         barrier();
9029
9030         /* reset the chip */
9031         bnx2x_process_kill_chip_reset(bp, global);
9032         barrier();
9033
9034         /* Recover after reset: */
9035         /* MCP */
9036         if (global && bnx2x_reset_mcp_comp(bp, val))
9037                 return -EAGAIN;
9038
9039         /* TBD: Add resetting the NO_MCP mode DB here */
9040
9041         /* Open the gates #2, #3 and #4 */
9042         bnx2x_set_234_gates(bp, false);
9043
9044         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9045          * reset state, re-enable attentions. */
9046
9047         return 0;
9048 }
9049
9050 static int bnx2x_leader_reset(struct bnx2x *bp)
9051 {
9052         int rc = 0;
9053         bool global = bnx2x_reset_is_global(bp);
9054         u32 load_code;
9055
9056         /* if not going to reset MCP - load "fake" driver to reset HW while
9057          * driver is owner of the HW
9058          */
9059         if (!global && !BP_NOMCP(bp)) {
9060                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9061                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9062                 if (!load_code) {
9063                         BNX2X_ERR("MCP response failure, aborting\n");
9064                         rc = -EAGAIN;
9065                         goto exit_leader_reset;
9066                 }
9067                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9068                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9069                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9070                         rc = -EAGAIN;
9071                         goto exit_leader_reset2;
9072                 }
9073                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9074                 if (!load_code) {
9075                         BNX2X_ERR("MCP response failure, aborting\n");
9076                         rc = -EAGAIN;
9077                         goto exit_leader_reset2;
9078                 }
9079         }
9080
9081         /* Try to recover after the failure */
9082         if (bnx2x_process_kill(bp, global)) {
9083                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9084                           BP_PATH(bp));
9085                 rc = -EAGAIN;
9086                 goto exit_leader_reset2;
9087         }
9088
9089         /*
9090          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9091          * state.
9092          */
9093         bnx2x_set_reset_done(bp);
9094         if (global)
9095                 bnx2x_clear_reset_global(bp);
9096
9097 exit_leader_reset2:
9098         /* unload "fake driver" if it was loaded */
9099         if (!global && !BP_NOMCP(bp)) {
9100                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9101                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9102         }
9103 exit_leader_reset:
9104         bp->is_leader = 0;
9105         bnx2x_release_leader_lock(bp);
9106         smp_mb();
9107         return rc;
9108 }
9109
9110 static void bnx2x_recovery_failed(struct bnx2x *bp)
9111 {
9112         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9113
9114         /* Disconnect this device */
9115         netif_device_detach(bp->dev);
9116
9117         /*
9118          * Block ifup for all function on this engine until "process kill"
9119          * or power cycle.
9120          */
9121         bnx2x_set_reset_in_progress(bp);
9122
9123         /* Shut down the power */
9124         bnx2x_set_power_state(bp, PCI_D3hot);
9125
9126         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9127
9128         smp_mb();
9129 }
9130
9131 /*
9132  * Assumption: runs under rtnl lock. This together with the fact
9133  * that it's called only from bnx2x_sp_rtnl() ensure that it
9134  * will never be called when netif_running(bp->dev) is false.
9135  */
9136 static void bnx2x_parity_recover(struct bnx2x *bp)
9137 {
9138         bool global = false;
9139         u32 error_recovered, error_unrecovered;
9140         bool is_parity;
9141
9142         DP(NETIF_MSG_HW, "Handling parity\n");
9143         while (1) {
9144                 switch (bp->recovery_state) {
9145                 case BNX2X_RECOVERY_INIT:
9146                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9147                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9148                         WARN_ON(!is_parity);
9149
9150                         /* Try to get a LEADER_LOCK HW lock */
9151                         if (bnx2x_trylock_leader_lock(bp)) {
9152                                 bnx2x_set_reset_in_progress(bp);
9153                                 /*
9154                                  * Check if there is a global attention and if
9155                                  * there was a global attention, set the global
9156                                  * reset bit.
9157                                  */
9158
9159                                 if (global)
9160                                         bnx2x_set_reset_global(bp);
9161
9162                                 bp->is_leader = 1;
9163                         }
9164
9165                         /* Stop the driver */
9166                         /* If interface has been removed - break */
9167                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9168                                 return;
9169
9170                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9171
9172                         /* Ensure "is_leader", MCP command sequence and
9173                          * "recovery_state" update values are seen on other
9174                          * CPUs.
9175                          */
9176                         smp_mb();
9177                         break;
9178
9179                 case BNX2X_RECOVERY_WAIT:
9180                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9181                         if (bp->is_leader) {
9182                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9183                                 bool other_load_status =
9184                                         bnx2x_get_load_status(bp, other_engine);
9185                                 bool load_status =
9186                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9187                                 global = bnx2x_reset_is_global(bp);
9188
9189                                 /*
9190                                  * In case of a parity in a global block, let
9191                                  * the first leader that performs a
9192                                  * leader_reset() reset the global blocks in
9193                                  * order to clear global attentions. Otherwise
9194                                  * the the gates will remain closed for that
9195                                  * engine.
9196                                  */
9197                                 if (load_status ||
9198                                     (global && other_load_status)) {
9199                                         /* Wait until all other functions get
9200                                          * down.
9201                                          */
9202                                         schedule_delayed_work(&bp->sp_rtnl_task,
9203                                                                 HZ/10);
9204                                         return;
9205                                 } else {
9206                                         /* If all other functions got down -
9207                                          * try to bring the chip back to
9208                                          * normal. In any case it's an exit
9209                                          * point for a leader.
9210                                          */
9211                                         if (bnx2x_leader_reset(bp)) {
9212                                                 bnx2x_recovery_failed(bp);
9213                                                 return;
9214                                         }
9215
9216                                         /* If we are here, means that the
9217                                          * leader has succeeded and doesn't
9218                                          * want to be a leader any more. Try
9219                                          * to continue as a none-leader.
9220                                          */
9221                                         break;
9222                                 }
9223                         } else { /* non-leader */
9224                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9225                                         /* Try to get a LEADER_LOCK HW lock as
9226                                          * long as a former leader may have
9227                                          * been unloaded by the user or
9228                                          * released a leadership by another
9229                                          * reason.
9230                                          */
9231                                         if (bnx2x_trylock_leader_lock(bp)) {
9232                                                 /* I'm a leader now! Restart a
9233                                                  * switch case.
9234                                                  */
9235                                                 bp->is_leader = 1;
9236                                                 break;
9237                                         }
9238
9239                                         schedule_delayed_work(&bp->sp_rtnl_task,
9240                                                                 HZ/10);
9241                                         return;
9242
9243                                 } else {
9244                                         /*
9245                                          * If there was a global attention, wait
9246                                          * for it to be cleared.
9247                                          */
9248                                         if (bnx2x_reset_is_global(bp)) {
9249                                                 schedule_delayed_work(
9250                                                         &bp->sp_rtnl_task,
9251                                                         HZ/10);
9252                                                 return;
9253                                         }
9254
9255                                         error_recovered =
9256                                           bp->eth_stats.recoverable_error;
9257                                         error_unrecovered =
9258                                           bp->eth_stats.unrecoverable_error;
9259                                         bp->recovery_state =
9260                                                 BNX2X_RECOVERY_NIC_LOADING;
9261                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9262                                                 error_unrecovered++;
9263                                                 netdev_err(bp->dev,
9264                                                            "Recovery failed. Power cycle needed\n");
9265                                                 /* Disconnect this device */
9266                                                 netif_device_detach(bp->dev);
9267                                                 /* Shut down the power */
9268                                                 bnx2x_set_power_state(
9269                                                         bp, PCI_D3hot);
9270                                                 smp_mb();
9271                                         } else {
9272                                                 bp->recovery_state =
9273                                                         BNX2X_RECOVERY_DONE;
9274                                                 error_recovered++;
9275                                                 smp_mb();
9276                                         }
9277                                         bp->eth_stats.recoverable_error =
9278                                                 error_recovered;
9279                                         bp->eth_stats.unrecoverable_error =
9280                                                 error_unrecovered;
9281
9282                                         return;
9283                                 }
9284                         }
9285                 default:
9286                         return;
9287                 }
9288         }
9289 }
9290
9291 static int bnx2x_close(struct net_device *dev);
9292
9293 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9294  * scheduled on a general queue in order to prevent a dead lock.
9295  */
9296 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9297 {
9298         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9299
9300         rtnl_lock();
9301
9302         if (!netif_running(bp->dev))
9303                 goto sp_rtnl_exit;
9304
9305         /* if stop on error is defined no recovery flows should be executed */
9306 #ifdef BNX2X_STOP_ON_ERROR
9307         BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9308                   "you will need to reboot when done\n");
9309         goto sp_rtnl_not_reset;
9310 #endif
9311
9312         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9313                 /*
9314                  * Clear all pending SP commands as we are going to reset the
9315                  * function anyway.
9316                  */
9317                 bp->sp_rtnl_state = 0;
9318                 smp_mb();
9319
9320                 bnx2x_parity_recover(bp);
9321
9322                 goto sp_rtnl_exit;
9323         }
9324
9325         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9326                 /*
9327                  * Clear all pending SP commands as we are going to reset the
9328                  * function anyway.
9329                  */
9330                 bp->sp_rtnl_state = 0;
9331                 smp_mb();
9332
9333                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9334                 bnx2x_nic_load(bp, LOAD_NORMAL);
9335
9336                 goto sp_rtnl_exit;
9337         }
9338 #ifdef BNX2X_STOP_ON_ERROR
9339 sp_rtnl_not_reset:
9340 #endif
9341         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9342                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9343         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9344                 bnx2x_after_function_update(bp);
9345         /*
9346          * in case of fan failure we need to reset id if the "stop on error"
9347          * debug flag is set, since we trying to prevent permanent overheating
9348          * damage
9349          */
9350         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9351                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9352                 netif_device_detach(bp->dev);
9353                 bnx2x_close(bp->dev);
9354         }
9355
9356 sp_rtnl_exit:
9357         rtnl_unlock();
9358 }
9359
9360 /* end of nic load/unload */
9361
9362 static void bnx2x_period_task(struct work_struct *work)
9363 {
9364         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9365
9366         if (!netif_running(bp->dev))
9367                 goto period_task_exit;
9368
9369         if (CHIP_REV_IS_SLOW(bp)) {
9370                 BNX2X_ERR("period task called on emulation, ignoring\n");
9371                 goto period_task_exit;
9372         }
9373
9374         bnx2x_acquire_phy_lock(bp);
9375         /*
9376          * The barrier is needed to ensure the ordering between the writing to
9377          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9378          * the reading here.
9379          */
9380         smp_mb();
9381         if (bp->port.pmf) {
9382                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9383
9384                 /* Re-queue task in 1 sec */
9385                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9386         }
9387
9388         bnx2x_release_phy_lock(bp);
9389 period_task_exit:
9390         return;
9391 }
9392
9393 /*
9394  * Init service functions
9395  */
9396
9397 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9398 {
9399         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9400         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9401         return base + (BP_ABS_FUNC(bp)) * stride;
9402 }
9403
9404 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
9405 {
9406         u32 reg = bnx2x_get_pretend_reg(bp);
9407
9408         /* Flush all outstanding writes */
9409         mmiowb();
9410
9411         /* Pretend to be function 0 */
9412         REG_WR(bp, reg, 0);
9413         REG_RD(bp, reg);        /* Flush the GRC transaction (in the chip) */
9414
9415         /* From now we are in the "like-E1" mode */
9416         bnx2x_int_disable(bp);
9417
9418         /* Flush all outstanding writes */
9419         mmiowb();
9420
9421         /* Restore the original function */
9422         REG_WR(bp, reg, BP_ABS_FUNC(bp));
9423         REG_RD(bp, reg);
9424 }
9425
9426 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
9427 {
9428         if (CHIP_IS_E1(bp))
9429                 bnx2x_int_disable(bp);
9430         else
9431                 bnx2x_undi_int_disable_e1h(bp);
9432 }
9433
9434 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9435                                         struct bnx2x_mac_vals *vals)
9436 {
9437         u32 val, base_addr, offset, mask, reset_reg;
9438         bool mac_stopped = false;
9439         u8 port = BP_PORT(bp);
9440
9441         /* reset addresses as they also mark which values were changed */
9442         vals->bmac_addr = 0;
9443         vals->umac_addr = 0;
9444         vals->xmac_addr = 0;
9445         vals->emac_addr = 0;
9446
9447         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9448
9449         if (!CHIP_IS_E3(bp)) {
9450                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9451                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9452                 if ((mask & reset_reg) && val) {
9453                         u32 wb_data[2];
9454                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9455                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9456                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9457                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9458                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9459
9460                         /*
9461                          * use rd/wr since we cannot use dmae. This is safe
9462                          * since MCP won't access the bus due to the request
9463                          * to unload, and no function on the path can be
9464                          * loaded at this time.
9465                          */
9466                         wb_data[0] = REG_RD(bp, base_addr + offset);
9467                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9468                         vals->bmac_addr = base_addr + offset;
9469                         vals->bmac_val[0] = wb_data[0];
9470                         vals->bmac_val[1] = wb_data[1];
9471                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9472                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
9473                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9474
9475                 }
9476                 BNX2X_DEV_INFO("Disable emac Rx\n");
9477                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9478                 vals->emac_val = REG_RD(bp, vals->emac_addr);
9479                 REG_WR(bp, vals->emac_addr, 0);
9480                 mac_stopped = true;
9481         } else {
9482                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9483                         BNX2X_DEV_INFO("Disable xmac Rx\n");
9484                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9485                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9486                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9487                                val & ~(1 << 1));
9488                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9489                                val | (1 << 1));
9490                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9491                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9492                         REG_WR(bp, vals->xmac_addr, 0);
9493                         mac_stopped = true;
9494                 }
9495                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9496                 if (mask & reset_reg) {
9497                         BNX2X_DEV_INFO("Disable umac Rx\n");
9498                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9499                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9500                         vals->umac_val = REG_RD(bp, vals->umac_addr);
9501                         REG_WR(bp, vals->umac_addr, 0);
9502                         mac_stopped = true;
9503                 }
9504         }
9505
9506         if (mac_stopped)
9507                 msleep(20);
9508
9509 }
9510
9511 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9512 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9513 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9514 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9515
9516 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9517 {
9518         u16 rcq, bd;
9519         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9520
9521         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9522         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9523
9524         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9525         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9526
9527         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9528                        port, bd, rcq);
9529 }
9530
9531 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9532 {
9533         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9534                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9535         if (!rc) {
9536                 BNX2X_ERR("MCP response failure, aborting\n");
9537                 return -EBUSY;
9538         }
9539
9540         return 0;
9541 }
9542
9543 static struct bnx2x_prev_path_list *
9544                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9545 {
9546         struct bnx2x_prev_path_list *tmp_list;
9547
9548         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9549                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9550                     bp->pdev->bus->number == tmp_list->bus &&
9551                     BP_PATH(bp) == tmp_list->path)
9552                         return tmp_list;
9553
9554         return NULL;
9555 }
9556
9557 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9558 {
9559         struct bnx2x_prev_path_list *tmp_list;
9560         int rc = false;
9561
9562         if (down_trylock(&bnx2x_prev_sem))
9563                 return false;
9564
9565         list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
9566                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9567                     bp->pdev->bus->number == tmp_list->bus &&
9568                     BP_PATH(bp) == tmp_list->path) {
9569                         rc = true;
9570                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9571                                        BP_PATH(bp));
9572                         break;
9573                 }
9574         }
9575
9576         up(&bnx2x_prev_sem);
9577
9578         return rc;
9579 }
9580
9581 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9582 {
9583         struct bnx2x_prev_path_list *tmp_list;
9584         int rc;
9585
9586         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9587         if (!tmp_list) {
9588                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9589                 return -ENOMEM;
9590         }
9591
9592         tmp_list->bus = bp->pdev->bus->number;
9593         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9594         tmp_list->path = BP_PATH(bp);
9595         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9596
9597         rc = down_interruptible(&bnx2x_prev_sem);
9598         if (rc) {
9599                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9600                 kfree(tmp_list);
9601         } else {
9602                 BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
9603                                 BP_PATH(bp));
9604                 list_add(&tmp_list->list, &bnx2x_prev_list);
9605                 up(&bnx2x_prev_sem);
9606         }
9607
9608         return rc;
9609 }
9610
9611 static int bnx2x_do_flr(struct bnx2x *bp)
9612 {
9613         int i;
9614         u16 status;
9615         struct pci_dev *dev = bp->pdev;
9616
9617
9618         if (CHIP_IS_E1x(bp)) {
9619                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9620                 return -EINVAL;
9621         }
9622
9623         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9624         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9625                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9626                           bp->common.bc_ver);
9627                 return -EINVAL;
9628         }
9629
9630         /* Wait for Transaction Pending bit clean */
9631         for (i = 0; i < 4; i++) {
9632                 if (i)
9633                         msleep((1 << (i - 1)) * 100);
9634
9635                 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9636                 if (!(status & PCI_EXP_DEVSTA_TRPND))
9637                         goto clear;
9638         }
9639
9640         dev_err(&dev->dev,
9641                 "transaction is not cleared; proceeding with reset anyway\n");
9642
9643 clear:
9644
9645         BNX2X_DEV_INFO("Initiating FLR\n");
9646         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9647
9648         return 0;
9649 }
9650
9651 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9652 {
9653         int rc;
9654
9655         BNX2X_DEV_INFO("Uncommon unload Flow\n");
9656
9657         /* Test if previous unload process was already finished for this path */
9658         if (bnx2x_prev_is_path_marked(bp))
9659                 return bnx2x_prev_mcp_done(bp);
9660
9661         /* If function has FLR capabilities, and existing FW version matches
9662          * the one required, then FLR will be sufficient to clean any residue
9663          * left by previous driver
9664          */
9665         rc = bnx2x_test_firmware_version(bp, false);
9666
9667         if (!rc) {
9668                 /* fw version is good */
9669                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9670                 rc = bnx2x_do_flr(bp);
9671         }
9672
9673         if (!rc) {
9674                 /* FLR was performed */
9675                 BNX2X_DEV_INFO("FLR successful\n");
9676                 return 0;
9677         }
9678
9679         BNX2X_DEV_INFO("Could not FLR\n");
9680
9681         /* Close the MCP request, return failure*/
9682         rc = bnx2x_prev_mcp_done(bp);
9683         if (!rc)
9684                 rc = BNX2X_PREV_WAIT_NEEDED;
9685
9686         return rc;
9687 }
9688
9689 static int bnx2x_prev_unload_common(struct bnx2x *bp)
9690 {
9691         u32 reset_reg, tmp_reg = 0, rc;
9692         bool prev_undi = false;
9693         struct bnx2x_mac_vals mac_vals;
9694
9695         /* It is possible a previous function received 'common' answer,
9696          * but hasn't loaded yet, therefore creating a scenario of
9697          * multiple functions receiving 'common' on the same path.
9698          */
9699         BNX2X_DEV_INFO("Common unload Flow\n");
9700
9701         memset(&mac_vals, 0, sizeof(mac_vals));
9702
9703         if (bnx2x_prev_is_path_marked(bp))
9704                 return bnx2x_prev_mcp_done(bp);
9705
9706         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9707
9708         /* Reset should be performed after BRB is emptied */
9709         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9710                 u32 timer_count = 1000;
9711
9712                 /* Close the MAC Rx to prevent BRB from filling up */
9713                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
9714
9715                 /* close LLH filters towards the BRB */
9716                 bnx2x_set_rx_filter(&bp->link_params, 0);
9717
9718                 /* Check if the UNDI driver was previously loaded
9719                  * UNDI driver initializes CID offset for normal bell to 0x7
9720                  */
9721                 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9722                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9723                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9724                         if (tmp_reg == 0x7) {
9725                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
9726                                 prev_undi = true;
9727                                 /* clear the UNDI indication */
9728                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9729                         }
9730                 }
9731                 /* wait until BRB is empty */
9732                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9733                 while (timer_count) {
9734                         u32 prev_brb = tmp_reg;
9735
9736                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9737                         if (!tmp_reg)
9738                                 break;
9739
9740                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9741
9742                         /* reset timer as long as BRB actually gets emptied */
9743                         if (prev_brb > tmp_reg)
9744                                 timer_count = 1000;
9745                         else
9746                                 timer_count--;
9747
9748                         /* If UNDI resides in memory, manually increment it */
9749                         if (prev_undi)
9750                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9751
9752                         udelay(10);
9753                 }
9754
9755                 if (!timer_count)
9756                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9757
9758         }
9759
9760         /* No packets are in the pipeline, path is ready for reset */
9761         bnx2x_reset_common(bp);
9762
9763         if (mac_vals.xmac_addr)
9764                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
9765         if (mac_vals.umac_addr)
9766                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
9767         if (mac_vals.emac_addr)
9768                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
9769         if (mac_vals.bmac_addr) {
9770                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9771                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9772         }
9773
9774         rc = bnx2x_prev_mark_path(bp, prev_undi);
9775         if (rc) {
9776                 bnx2x_prev_mcp_done(bp);
9777                 return rc;
9778         }
9779
9780         return bnx2x_prev_mcp_done(bp);
9781 }
9782
9783 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9784  * and boot began, or when kdump kernel was loaded. Either case would invalidate
9785  * the addresses of the transaction, resulting in was-error bit set in the pci
9786  * causing all hw-to-host pcie transactions to timeout. If this happened we want
9787  * to clear the interrupt which detected this from the pglueb and the was done
9788  * bit
9789  */
9790 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9791 {
9792         if (!CHIP_IS_E1x(bp)) {
9793                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9794                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9795                         BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9796                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9797                                1 << BP_FUNC(bp));
9798                 }
9799         }
9800 }
9801
9802 static int bnx2x_prev_unload(struct bnx2x *bp)
9803 {
9804         int time_counter = 10;
9805         u32 rc, fw, hw_lock_reg, hw_lock_val;
9806         struct bnx2x_prev_path_list *prev_list;
9807         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9808
9809         /* clear hw from errors which may have resulted from an interrupted
9810          * dmae transaction.
9811          */
9812         bnx2x_prev_interrupted_dmae(bp);
9813
9814         /* Release previously held locks */
9815         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9816                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9817                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9818
9819         hw_lock_val = (REG_RD(bp, hw_lock_reg));
9820         if (hw_lock_val) {
9821                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9822                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9823                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9824                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9825                 }
9826
9827                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
9828                 REG_WR(bp, hw_lock_reg, 0xffffffff);
9829         } else
9830                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9831
9832         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9833                 BNX2X_DEV_INFO("Release previously held alr\n");
9834                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9835         }
9836
9837
9838         do {
9839                 /* Lock MCP using an unload request */
9840                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9841                 if (!fw) {
9842                         BNX2X_ERR("MCP response failure, aborting\n");
9843                         rc = -EBUSY;
9844                         break;
9845                 }
9846
9847                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9848                         rc = bnx2x_prev_unload_common(bp);
9849                         break;
9850                 }
9851
9852                 /* non-common reply from MCP night require looping */
9853                 rc = bnx2x_prev_unload_uncommon(bp);
9854                 if (rc != BNX2X_PREV_WAIT_NEEDED)
9855                         break;
9856
9857                 msleep(20);
9858         } while (--time_counter);
9859
9860         if (!time_counter || rc) {
9861                 BNX2X_ERR("Failed unloading previous driver, aborting\n");
9862                 rc = -EBUSY;
9863         }
9864
9865         /* Mark function if its port was used to boot from SAN */
9866         prev_list = bnx2x_prev_path_get_entry(bp);
9867         if (prev_list && (prev_list->undi & (1 << BP_PORT(bp))))
9868                 bp->link_params.feature_config_flags |=
9869                         FEATURE_CONFIG_BOOT_FROM_SAN;
9870
9871         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9872
9873         return rc;
9874 }
9875
9876 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
9877 {
9878         u32 val, val2, val3, val4, id, boot_mode;
9879         u16 pmc;
9880
9881         /* Get the chip revision id and number. */
9882         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9883         val = REG_RD(bp, MISC_REG_CHIP_NUM);
9884         id = ((val & 0xffff) << 16);
9885         val = REG_RD(bp, MISC_REG_CHIP_REV);
9886         id |= ((val & 0xf) << 12);
9887         val = REG_RD(bp, MISC_REG_CHIP_METAL);
9888         id |= ((val & 0xff) << 4);
9889         val = REG_RD(bp, MISC_REG_BOND_ID);
9890         id |= (val & 0xf);
9891         bp->common.chip_id = id;
9892
9893         /* force 57811 according to MISC register */
9894         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
9895                 if (CHIP_IS_57810(bp))
9896                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
9897                                 (bp->common.chip_id & 0x0000FFFF);
9898                 else if (CHIP_IS_57810_MF(bp))
9899                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
9900                                 (bp->common.chip_id & 0x0000FFFF);
9901                 bp->common.chip_id |= 0x1;
9902         }
9903
9904         /* Set doorbell size */
9905         bp->db_size = (1 << BNX2X_DB_SHIFT);
9906
9907         if (!CHIP_IS_E1x(bp)) {
9908                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9909                 if ((val & 1) == 0)
9910                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9911                 else
9912                         val = (val >> 1) & 1;
9913                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9914                                                        "2_PORT_MODE");
9915                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9916                                                  CHIP_2_PORT_MODE;
9917
9918                 if (CHIP_MODE_IS_4_PORT(bp))
9919                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
9920                 else
9921                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
9922         } else {
9923                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9924                 bp->pfid = bp->pf_num;                  /* 0..7 */
9925         }
9926
9927         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9928
9929         bp->link_params.chip_id = bp->common.chip_id;
9930         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9931
9932         val = (REG_RD(bp, 0x2874) & 0x55);
9933         if ((bp->common.chip_id & 0x1) ||
9934             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9935                 bp->flags |= ONE_PORT_FLAG;
9936                 BNX2X_DEV_INFO("single port device\n");
9937         }
9938
9939         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9940         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9941                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
9942         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9943                        bp->common.flash_size, bp->common.flash_size);
9944
9945         bnx2x_init_shmem(bp);
9946
9947
9948
9949         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9950                                         MISC_REG_GENERIC_CR_1 :
9951                                         MISC_REG_GENERIC_CR_0));
9952
9953         bp->link_params.shmem_base = bp->common.shmem_base;
9954         bp->link_params.shmem2_base = bp->common.shmem2_base;
9955         if (SHMEM2_RD(bp, size) >
9956             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
9957                 bp->link_params.lfa_base =
9958                 REG_RD(bp, bp->common.shmem2_base +
9959                        (u32)offsetof(struct shmem2_region,
9960                                      lfa_host_addr[BP_PORT(bp)]));
9961         else
9962                 bp->link_params.lfa_base = 0;
9963         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
9964                        bp->common.shmem_base, bp->common.shmem2_base);
9965
9966         if (!bp->common.shmem_base) {
9967                 BNX2X_DEV_INFO("MCP not active\n");
9968                 bp->flags |= NO_MCP_FLAG;
9969                 return;
9970         }
9971
9972         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9973         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9974
9975         bp->link_params.hw_led_mode = ((bp->common.hw_config &
9976                                         SHARED_HW_CFG_LED_MODE_MASK) >>
9977                                        SHARED_HW_CFG_LED_MODE_SHIFT);
9978
9979         bp->link_params.feature_config_flags = 0;
9980         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9981         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9982                 bp->link_params.feature_config_flags |=
9983                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9984         else
9985                 bp->link_params.feature_config_flags &=
9986                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9987
9988         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9989         bp->common.bc_ver = val;
9990         BNX2X_DEV_INFO("bc_ver %X\n", val);
9991         if (val < BNX2X_BC_VER) {
9992                 /* for now only warn
9993                  * later we might need to enforce this */
9994                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9995                           BNX2X_BC_VER, val);
9996         }
9997         bp->link_params.feature_config_flags |=
9998                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9999                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10000
10001         bp->link_params.feature_config_flags |=
10002                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10003                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10004         bp->link_params.feature_config_flags |=
10005                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10006                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10007         bp->link_params.feature_config_flags |=
10008                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10009                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10010
10011         bp->link_params.feature_config_flags |=
10012                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10013                 FEATURE_CONFIG_MT_SUPPORT : 0;
10014
10015         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10016                         BC_SUPPORTS_PFC_STATS : 0;
10017
10018         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10019                         BC_SUPPORTS_FCOE_FEATURES : 0;
10020
10021         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10022                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10023         boot_mode = SHMEM_RD(bp,
10024                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10025                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10026         switch (boot_mode) {
10027         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10028                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10029                 break;
10030         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10031                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10032                 break;
10033         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10034                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10035                 break;
10036         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10037                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10038                 break;
10039         }
10040
10041         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10042         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10043
10044         BNX2X_DEV_INFO("%sWoL capable\n",
10045                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10046
10047         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10048         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10049         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10050         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10051
10052         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10053                  val, val2, val3, val4);
10054 }
10055
10056 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10057 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10058
10059 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10060 {
10061         int pfid = BP_FUNC(bp);
10062         int igu_sb_id;
10063         u32 val;
10064         u8 fid, igu_sb_cnt = 0;
10065
10066         bp->igu_base_sb = 0xff;
10067         if (CHIP_INT_MODE_IS_BC(bp)) {
10068                 int vn = BP_VN(bp);
10069                 igu_sb_cnt = bp->igu_sb_cnt;
10070                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10071                         FP_SB_MAX_E1x;
10072
10073                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10074                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10075
10076                 return 0;
10077         }
10078
10079         /* IGU in normal mode - read CAM */
10080         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10081              igu_sb_id++) {
10082                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10083                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10084                         continue;
10085                 fid = IGU_FID(val);
10086                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10087                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10088                                 continue;
10089                         if (IGU_VEC(val) == 0)
10090                                 /* default status block */
10091                                 bp->igu_dsb_id = igu_sb_id;
10092                         else {
10093                                 if (bp->igu_base_sb == 0xff)
10094                                         bp->igu_base_sb = igu_sb_id;
10095                                 igu_sb_cnt++;
10096                         }
10097                 }
10098         }
10099
10100 #ifdef CONFIG_PCI_MSI
10101         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10102          * optional that number of CAM entries will not be equal to the value
10103          * advertised in PCI.
10104          * Driver should use the minimal value of both as the actual status
10105          * block count
10106          */
10107         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10108 #endif
10109
10110         if (igu_sb_cnt == 0) {
10111                 BNX2X_ERR("CAM configuration error\n");
10112                 return -EINVAL;
10113         }
10114
10115         return 0;
10116 }
10117
10118 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10119 {
10120         int cfg_size = 0, idx, port = BP_PORT(bp);
10121
10122         /* Aggregation of supported attributes of all external phys */
10123         bp->port.supported[0] = 0;
10124         bp->port.supported[1] = 0;
10125         switch (bp->link_params.num_phys) {
10126         case 1:
10127                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10128                 cfg_size = 1;
10129                 break;
10130         case 2:
10131                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10132                 cfg_size = 1;
10133                 break;
10134         case 3:
10135                 if (bp->link_params.multi_phy_config &
10136                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10137                         bp->port.supported[1] =
10138                                 bp->link_params.phy[EXT_PHY1].supported;
10139                         bp->port.supported[0] =
10140                                 bp->link_params.phy[EXT_PHY2].supported;
10141                 } else {
10142                         bp->port.supported[0] =
10143                                 bp->link_params.phy[EXT_PHY1].supported;
10144                         bp->port.supported[1] =
10145                                 bp->link_params.phy[EXT_PHY2].supported;
10146                 }
10147                 cfg_size = 2;
10148                 break;
10149         }
10150
10151         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10152                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10153                            SHMEM_RD(bp,
10154                            dev_info.port_hw_config[port].external_phy_config),
10155                            SHMEM_RD(bp,
10156                            dev_info.port_hw_config[port].external_phy_config2));
10157                         return;
10158         }
10159
10160         if (CHIP_IS_E3(bp))
10161                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10162         else {
10163                 switch (switch_cfg) {
10164                 case SWITCH_CFG_1G:
10165                         bp->port.phy_addr = REG_RD(
10166                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10167                         break;
10168                 case SWITCH_CFG_10G:
10169                         bp->port.phy_addr = REG_RD(
10170                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10171                         break;
10172                 default:
10173                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10174                                   bp->port.link_config[0]);
10175                         return;
10176                 }
10177         }
10178         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10179         /* mask what we support according to speed_cap_mask per configuration */
10180         for (idx = 0; idx < cfg_size; idx++) {
10181                 if (!(bp->link_params.speed_cap_mask[idx] &
10182                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10183                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10184
10185                 if (!(bp->link_params.speed_cap_mask[idx] &
10186                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10187                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10188
10189                 if (!(bp->link_params.speed_cap_mask[idx] &
10190                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10191                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10192
10193                 if (!(bp->link_params.speed_cap_mask[idx] &
10194                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10195                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10196
10197                 if (!(bp->link_params.speed_cap_mask[idx] &
10198                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10199                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10200                                                      SUPPORTED_1000baseT_Full);
10201
10202                 if (!(bp->link_params.speed_cap_mask[idx] &
10203                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10204                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10205
10206                 if (!(bp->link_params.speed_cap_mask[idx] &
10207                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10208                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10209
10210         }
10211
10212         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10213                        bp->port.supported[1]);
10214 }
10215
10216 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10217 {
10218         u32 link_config, idx, cfg_size = 0;
10219         bp->port.advertising[0] = 0;
10220         bp->port.advertising[1] = 0;
10221         switch (bp->link_params.num_phys) {
10222         case 1:
10223         case 2:
10224                 cfg_size = 1;
10225                 break;
10226         case 3:
10227                 cfg_size = 2;
10228                 break;
10229         }
10230         for (idx = 0; idx < cfg_size; idx++) {
10231                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10232                 link_config = bp->port.link_config[idx];
10233                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10234                 case PORT_FEATURE_LINK_SPEED_AUTO:
10235                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10236                                 bp->link_params.req_line_speed[idx] =
10237                                         SPEED_AUTO_NEG;
10238                                 bp->port.advertising[idx] |=
10239                                         bp->port.supported[idx];
10240                                 if (bp->link_params.phy[EXT_PHY1].type ==
10241                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10242                                         bp->port.advertising[idx] |=
10243                                         (SUPPORTED_100baseT_Half |
10244                                          SUPPORTED_100baseT_Full);
10245                         } else {
10246                                 /* force 10G, no AN */
10247                                 bp->link_params.req_line_speed[idx] =
10248                                         SPEED_10000;
10249                                 bp->port.advertising[idx] |=
10250                                         (ADVERTISED_10000baseT_Full |
10251                                          ADVERTISED_FIBRE);
10252                                 continue;
10253                         }
10254                         break;
10255
10256                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10257                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10258                                 bp->link_params.req_line_speed[idx] =
10259                                         SPEED_10;
10260                                 bp->port.advertising[idx] |=
10261                                         (ADVERTISED_10baseT_Full |
10262                                          ADVERTISED_TP);
10263                         } else {
10264                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10265                                             link_config,
10266                                     bp->link_params.speed_cap_mask[idx]);
10267                                 return;
10268                         }
10269                         break;
10270
10271                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10272                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10273                                 bp->link_params.req_line_speed[idx] =
10274                                         SPEED_10;
10275                                 bp->link_params.req_duplex[idx] =
10276                                         DUPLEX_HALF;
10277                                 bp->port.advertising[idx] |=
10278                                         (ADVERTISED_10baseT_Half |
10279                                          ADVERTISED_TP);
10280                         } else {
10281                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10282                                             link_config,
10283                                           bp->link_params.speed_cap_mask[idx]);
10284                                 return;
10285                         }
10286                         break;
10287
10288                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10289                         if (bp->port.supported[idx] &
10290                             SUPPORTED_100baseT_Full) {
10291                                 bp->link_params.req_line_speed[idx] =
10292                                         SPEED_100;
10293                                 bp->port.advertising[idx] |=
10294                                         (ADVERTISED_100baseT_Full |
10295                                          ADVERTISED_TP);
10296                         } else {
10297                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10298                                             link_config,
10299                                           bp->link_params.speed_cap_mask[idx]);
10300                                 return;
10301                         }
10302                         break;
10303
10304                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10305                         if (bp->port.supported[idx] &
10306                             SUPPORTED_100baseT_Half) {
10307                                 bp->link_params.req_line_speed[idx] =
10308                                                                 SPEED_100;
10309                                 bp->link_params.req_duplex[idx] =
10310                                                                 DUPLEX_HALF;
10311                                 bp->port.advertising[idx] |=
10312                                         (ADVERTISED_100baseT_Half |
10313                                          ADVERTISED_TP);
10314                         } else {
10315                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10316                                     link_config,
10317                                     bp->link_params.speed_cap_mask[idx]);
10318                                 return;
10319                         }
10320                         break;
10321
10322                 case PORT_FEATURE_LINK_SPEED_1G:
10323                         if (bp->port.supported[idx] &
10324                             SUPPORTED_1000baseT_Full) {
10325                                 bp->link_params.req_line_speed[idx] =
10326                                         SPEED_1000;
10327                                 bp->port.advertising[idx] |=
10328                                         (ADVERTISED_1000baseT_Full |
10329                                          ADVERTISED_TP);
10330                         } else {
10331                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10332                                     link_config,
10333                                     bp->link_params.speed_cap_mask[idx]);
10334                                 return;
10335                         }
10336                         break;
10337
10338                 case PORT_FEATURE_LINK_SPEED_2_5G:
10339                         if (bp->port.supported[idx] &
10340                             SUPPORTED_2500baseX_Full) {
10341                                 bp->link_params.req_line_speed[idx] =
10342                                         SPEED_2500;
10343                                 bp->port.advertising[idx] |=
10344                                         (ADVERTISED_2500baseX_Full |
10345                                                 ADVERTISED_TP);
10346                         } else {
10347                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10348                                     link_config,
10349                                     bp->link_params.speed_cap_mask[idx]);
10350                                 return;
10351                         }
10352                         break;
10353
10354                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10355                         if (bp->port.supported[idx] &
10356                             SUPPORTED_10000baseT_Full) {
10357                                 bp->link_params.req_line_speed[idx] =
10358                                         SPEED_10000;
10359                                 bp->port.advertising[idx] |=
10360                                         (ADVERTISED_10000baseT_Full |
10361                                                 ADVERTISED_FIBRE);
10362                         } else {
10363                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10364                                     link_config,
10365                                     bp->link_params.speed_cap_mask[idx]);
10366                                 return;
10367                         }
10368                         break;
10369                 case PORT_FEATURE_LINK_SPEED_20G:
10370                         bp->link_params.req_line_speed[idx] = SPEED_20000;
10371
10372                         break;
10373                 default:
10374                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10375                                   link_config);
10376                                 bp->link_params.req_line_speed[idx] =
10377                                                         SPEED_AUTO_NEG;
10378                                 bp->port.advertising[idx] =
10379                                                 bp->port.supported[idx];
10380                         break;
10381                 }
10382
10383                 bp->link_params.req_flow_ctrl[idx] = (link_config &
10384                                          PORT_FEATURE_FLOW_CONTROL_MASK);
10385                 if (bp->link_params.req_flow_ctrl[idx] ==
10386                     BNX2X_FLOW_CTRL_AUTO) {
10387                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10388                                 bp->link_params.req_flow_ctrl[idx] =
10389                                                         BNX2X_FLOW_CTRL_NONE;
10390                         else
10391                                 bnx2x_set_requested_fc(bp);
10392                 }
10393
10394                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10395                                bp->link_params.req_line_speed[idx],
10396                                bp->link_params.req_duplex[idx],
10397                                bp->link_params.req_flow_ctrl[idx],
10398                                bp->port.advertising[idx]);
10399         }
10400 }
10401
10402 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10403 {
10404         mac_hi = cpu_to_be16(mac_hi);
10405         mac_lo = cpu_to_be32(mac_lo);
10406         memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
10407         memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
10408 }
10409
10410 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10411 {
10412         int port = BP_PORT(bp);
10413         u32 config;
10414         u32 ext_phy_type, ext_phy_config, eee_mode;
10415
10416         bp->link_params.bp = bp;
10417         bp->link_params.port = port;
10418
10419         bp->link_params.lane_config =
10420                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10421
10422         bp->link_params.speed_cap_mask[0] =
10423                 SHMEM_RD(bp,
10424                          dev_info.port_hw_config[port].speed_capability_mask);
10425         bp->link_params.speed_cap_mask[1] =
10426                 SHMEM_RD(bp,
10427                          dev_info.port_hw_config[port].speed_capability_mask2);
10428         bp->port.link_config[0] =
10429                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10430
10431         bp->port.link_config[1] =
10432                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10433
10434         bp->link_params.multi_phy_config =
10435                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10436         /* If the device is capable of WoL, set the default state according
10437          * to the HW
10438          */
10439         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10440         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10441                    (config & PORT_FEATURE_WOL_ENABLED));
10442
10443         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10444                        bp->link_params.lane_config,
10445                        bp->link_params.speed_cap_mask[0],
10446                        bp->port.link_config[0]);
10447
10448         bp->link_params.switch_cfg = (bp->port.link_config[0] &
10449                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
10450         bnx2x_phy_probe(&bp->link_params);
10451         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10452
10453         bnx2x_link_settings_requested(bp);
10454
10455         /*
10456          * If connected directly, work with the internal PHY, otherwise, work
10457          * with the external PHY
10458          */
10459         ext_phy_config =
10460                 SHMEM_RD(bp,
10461                          dev_info.port_hw_config[port].external_phy_config);
10462         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10463         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10464                 bp->mdio.prtad = bp->port.phy_addr;
10465
10466         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10467                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10468                 bp->mdio.prtad =
10469                         XGXS_EXT_PHY_ADDR(ext_phy_config);
10470
10471         /* Configure link feature according to nvram value */
10472         eee_mode = (((SHMEM_RD(bp, dev_info.
10473                       port_feature_config[port].eee_power_mode)) &
10474                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10475                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10476         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10477                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10478                                            EEE_MODE_ENABLE_LPI |
10479                                            EEE_MODE_OUTPUT_TIME;
10480         } else {
10481                 bp->link_params.eee_mode = 0;
10482         }
10483 }
10484
10485 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10486 {
10487         u32 no_flags = NO_ISCSI_FLAG;
10488         int port = BP_PORT(bp);
10489         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10490                                 drv_lic_key[port].max_iscsi_conn);
10491
10492         if (!CNIC_SUPPORT(bp)) {
10493                 bp->flags |= no_flags;
10494                 return;
10495         }
10496
10497         /* Get the number of maximum allowed iSCSI connections */
10498         bp->cnic_eth_dev.max_iscsi_conn =
10499                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10500                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10501
10502         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10503                        bp->cnic_eth_dev.max_iscsi_conn);
10504
10505         /*
10506          * If maximum allowed number of connections is zero -
10507          * disable the feature.
10508          */
10509         if (!bp->cnic_eth_dev.max_iscsi_conn)
10510                 bp->flags |= no_flags;
10511
10512 }
10513
10514 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10515 {
10516         /* Port info */
10517         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10518                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10519         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10520                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10521
10522         /* Node info */
10523         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10524                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10525         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10526                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10527 }
10528 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10529 {
10530         int port = BP_PORT(bp);
10531         int func = BP_ABS_FUNC(bp);
10532         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10533                                 drv_lic_key[port].max_fcoe_conn);
10534
10535         if (!CNIC_SUPPORT(bp)) {
10536                 bp->flags |= NO_FCOE_FLAG;
10537                 return;
10538         }
10539
10540         /* Get the number of maximum allowed FCoE connections */
10541         bp->cnic_eth_dev.max_fcoe_conn =
10542                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10543                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10544
10545         /* Read the WWN: */
10546         if (!IS_MF(bp)) {
10547                 /* Port info */
10548                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10549                         SHMEM_RD(bp,
10550                                 dev_info.port_hw_config[port].
10551                                  fcoe_wwn_port_name_upper);
10552                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10553                         SHMEM_RD(bp,
10554                                 dev_info.port_hw_config[port].
10555                                  fcoe_wwn_port_name_lower);
10556
10557                 /* Node info */
10558                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10559                         SHMEM_RD(bp,
10560                                 dev_info.port_hw_config[port].
10561                                  fcoe_wwn_node_name_upper);
10562                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10563                         SHMEM_RD(bp,
10564                                 dev_info.port_hw_config[port].
10565                                  fcoe_wwn_node_name_lower);
10566         } else if (!IS_MF_SD(bp)) {
10567                 /*
10568                  * Read the WWN info only if the FCoE feature is enabled for
10569                  * this function.
10570                  */
10571                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10572                         bnx2x_get_ext_wwn_info(bp, func);
10573
10574         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10575                 bnx2x_get_ext_wwn_info(bp, func);
10576         }
10577
10578         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10579
10580         /*
10581          * If maximum allowed number of connections is zero -
10582          * disable the feature.
10583          */
10584         if (!bp->cnic_eth_dev.max_fcoe_conn)
10585                 bp->flags |= NO_FCOE_FLAG;
10586 }
10587
10588 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10589 {
10590         /*
10591          * iSCSI may be dynamically disabled but reading
10592          * info here we will decrease memory usage by driver
10593          * if the feature is disabled for good
10594          */
10595         bnx2x_get_iscsi_info(bp);
10596         bnx2x_get_fcoe_info(bp);
10597 }
10598
10599 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10600 {
10601         u32 val, val2;
10602         int func = BP_ABS_FUNC(bp);
10603         int port = BP_PORT(bp);
10604         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10605         u8 *fip_mac = bp->fip_mac;
10606
10607         if (IS_MF(bp)) {
10608                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10609                  * FCoE MAC then the appropriate feature should be disabled.
10610                  * In non SD mode features configuration comes from struct
10611                  * func_ext_config.
10612                  */
10613                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
10614                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10615                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10616                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
10617                                                  iscsi_mac_addr_upper);
10618                                 val = MF_CFG_RD(bp, func_ext_config[func].
10619                                                 iscsi_mac_addr_lower);
10620                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10621                                 BNX2X_DEV_INFO
10622                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
10623                         } else {
10624                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10625                         }
10626
10627                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10628                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
10629                                                  fcoe_mac_addr_upper);
10630                                 val = MF_CFG_RD(bp, func_ext_config[func].
10631                                                 fcoe_mac_addr_lower);
10632                                 bnx2x_set_mac_buf(fip_mac, val, val2);
10633                                 BNX2X_DEV_INFO
10634                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
10635                         } else {
10636                                 bp->flags |= NO_FCOE_FLAG;
10637                         }
10638
10639                         bp->mf_ext_config = cfg;
10640
10641                 } else { /* SD MODE */
10642                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10643                                 /* use primary mac as iscsi mac */
10644                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
10645
10646                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
10647                                 BNX2X_DEV_INFO
10648                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
10649                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
10650                                 /* use primary mac as fip mac */
10651                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
10652                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
10653                                 BNX2X_DEV_INFO
10654                                         ("Read FIP MAC: %pM\n", fip_mac);
10655                         }
10656                 }
10657
10658                 if (IS_MF_STORAGE_SD(bp))
10659                         /* Zero primary MAC configuration */
10660                         memset(bp->dev->dev_addr, 0, ETH_ALEN);
10661
10662                 if (IS_MF_FCOE_AFEX(bp))
10663                         /* use FIP MAC as primary MAC */
10664                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10665
10666         } else {
10667                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10668                                 iscsi_mac_upper);
10669                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10670                                iscsi_mac_lower);
10671                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10672
10673                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10674                                 fcoe_fip_mac_upper);
10675                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10676                                fcoe_fip_mac_lower);
10677                 bnx2x_set_mac_buf(fip_mac, val, val2);
10678         }
10679
10680         /* Disable iSCSI OOO if MAC configuration is invalid. */
10681         if (!is_valid_ether_addr(iscsi_mac)) {
10682                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10683                 memset(iscsi_mac, 0, ETH_ALEN);
10684         }
10685
10686         /* Disable FCoE if MAC configuration is invalid. */
10687         if (!is_valid_ether_addr(fip_mac)) {
10688                 bp->flags |= NO_FCOE_FLAG;
10689                 memset(bp->fip_mac, 0, ETH_ALEN);
10690         }
10691 }
10692
10693 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10694 {
10695         u32 val, val2;
10696         int func = BP_ABS_FUNC(bp);
10697         int port = BP_PORT(bp);
10698
10699         /* Zero primary MAC configuration */
10700         memset(bp->dev->dev_addr, 0, ETH_ALEN);
10701
10702         if (BP_NOMCP(bp)) {
10703                 BNX2X_ERROR("warning: random MAC workaround active\n");
10704                 eth_hw_addr_random(bp->dev);
10705         } else if (IS_MF(bp)) {
10706                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10707                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10708                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10709                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10710                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10711
10712                 if (CNIC_SUPPORT(bp))
10713                         bnx2x_get_cnic_mac_hwinfo(bp);
10714         } else {
10715                 /* in SF read MACs from port configuration */
10716                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10717                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10718                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10719
10720                 if (CNIC_SUPPORT(bp))
10721                         bnx2x_get_cnic_mac_hwinfo(bp);
10722         }
10723
10724         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10725         memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
10726
10727         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10728                 dev_err(&bp->pdev->dev,
10729                         "bad Ethernet MAC address configuration: %pM\n"
10730                         "change it manually before bringing up the appropriate network interface\n",
10731                         bp->dev->dev_addr);
10732 }
10733
10734 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
10735 {
10736         int tmp;
10737         u32 cfg;
10738
10739         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
10740                 /* Take function: tmp = func */
10741                 tmp = BP_ABS_FUNC(bp);
10742                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
10743                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
10744         } else {
10745                 /* Take port: tmp = port */
10746                 tmp = BP_PORT(bp);
10747                 cfg = SHMEM_RD(bp,
10748                                dev_info.port_hw_config[tmp].generic_features);
10749                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
10750         }
10751         return cfg;
10752 }
10753
10754 static int bnx2x_get_hwinfo(struct bnx2x *bp)
10755 {
10756         int /*abs*/func = BP_ABS_FUNC(bp);
10757         int vn;
10758         u32 val = 0;
10759         int rc = 0;
10760
10761         bnx2x_get_common_hwinfo(bp);
10762
10763         /*
10764          * initialize IGU parameters
10765          */
10766         if (CHIP_IS_E1x(bp)) {
10767                 bp->common.int_block = INT_BLOCK_HC;
10768
10769                 bp->igu_dsb_id = DEF_SB_IGU_ID;
10770                 bp->igu_base_sb = 0;
10771         } else {
10772                 bp->common.int_block = INT_BLOCK_IGU;
10773
10774                 /* do not allow device reset during IGU info preocessing */
10775                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10776
10777                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10778
10779                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10780                         int tout = 5000;
10781
10782                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
10783
10784                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10785                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10786                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10787
10788                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10789                                 tout--;
10790                                 usleep_range(1000, 1000);
10791                         }
10792
10793                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10794                                 dev_err(&bp->pdev->dev,
10795                                         "FORCING Normal Mode failed!!!\n");
10796                                 bnx2x_release_hw_lock(bp,
10797                                                       HW_LOCK_RESOURCE_RESET);
10798                                 return -EPERM;
10799                         }
10800                 }
10801
10802                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10803                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10804                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10805                 } else
10806                         BNX2X_DEV_INFO("IGU Normal Mode\n");
10807
10808                 rc = bnx2x_get_igu_cam_info(bp);
10809                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10810                 if (rc)
10811                         return rc;
10812         }
10813
10814         /*
10815          * set base FW non-default (fast path) status block id, this value is
10816          * used to initialize the fw_sb_id saved on the fp/queue structure to
10817          * determine the id used by the FW.
10818          */
10819         if (CHIP_IS_E1x(bp))
10820                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10821         else /*
10822               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10823               * the same queue are indicated on the same IGU SB). So we prefer
10824               * FW and IGU SBs to be the same value.
10825               */
10826                 bp->base_fw_ndsb = bp->igu_base_sb;
10827
10828         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
10829                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10830                        bp->igu_sb_cnt, bp->base_fw_ndsb);
10831
10832         /*
10833          * Initialize MF configuration
10834          */
10835
10836         bp->mf_ov = 0;
10837         bp->mf_mode = 0;
10838         vn = BP_VN(bp);
10839
10840         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10841                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10842                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
10843                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10844
10845                 if (SHMEM2_HAS(bp, mf_cfg_addr))
10846                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10847                 else
10848                         bp->common.mf_cfg_base = bp->common.shmem_base +
10849                                 offsetof(struct shmem_region, func_mb) +
10850                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10851                 /*
10852                  * get mf configuration:
10853                  * 1. existence of MF configuration
10854                  * 2. MAC address must be legal (check only upper bytes)
10855                  *    for  Switch-Independent mode;
10856                  *    OVLAN must be legal for Switch-Dependent mode
10857                  * 3. SF_MODE configures specific MF mode
10858                  */
10859                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10860                         /* get mf configuration */
10861                         val = SHMEM_RD(bp,
10862                                        dev_info.shared_feature_config.config);
10863                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10864
10865                         switch (val) {
10866                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10867                                 val = MF_CFG_RD(bp, func_mf_config[func].
10868                                                 mac_upper);
10869                                 /* check for legal mac (upper bytes)*/
10870                                 if (val != 0xffff) {
10871                                         bp->mf_mode = MULTI_FUNCTION_SI;
10872                                         bp->mf_config[vn] = MF_CFG_RD(bp,
10873                                                    func_mf_config[func].config);
10874                                 } else
10875                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
10876                                 break;
10877                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
10878                                 if ((!CHIP_IS_E1x(bp)) &&
10879                                     (MF_CFG_RD(bp, func_mf_config[func].
10880                                                mac_upper) != 0xffff) &&
10881                                     (SHMEM2_HAS(bp,
10882                                                 afex_driver_support))) {
10883                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
10884                                         bp->mf_config[vn] = MF_CFG_RD(bp,
10885                                                 func_mf_config[func].config);
10886                                 } else {
10887                                         BNX2X_DEV_INFO("can not configure afex mode\n");
10888                                 }
10889                                 break;
10890                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10891                                 /* get OV configuration */
10892                                 val = MF_CFG_RD(bp,
10893                                         func_mf_config[FUNC_0].e1hov_tag);
10894                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10895
10896                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10897                                         bp->mf_mode = MULTI_FUNCTION_SD;
10898                                         bp->mf_config[vn] = MF_CFG_RD(bp,
10899                                                 func_mf_config[func].config);
10900                                 } else
10901                                         BNX2X_DEV_INFO("illegal OV for SD\n");
10902                                 break;
10903                         default:
10904                                 /* Unknown configuration: reset mf_config */
10905                                 bp->mf_config[vn] = 0;
10906                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10907                         }
10908                 }
10909
10910                 BNX2X_DEV_INFO("%s function mode\n",
10911                                IS_MF(bp) ? "multi" : "single");
10912
10913                 switch (bp->mf_mode) {
10914                 case MULTI_FUNCTION_SD:
10915                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10916                               FUNC_MF_CFG_E1HOV_TAG_MASK;
10917                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10918                                 bp->mf_ov = val;
10919                                 bp->path_has_ovlan = true;
10920
10921                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10922                                                func, bp->mf_ov, bp->mf_ov);
10923                         } else {
10924                                 dev_err(&bp->pdev->dev,
10925                                         "No valid MF OV for func %d, aborting\n",
10926                                         func);
10927                                 return -EPERM;
10928                         }
10929                         break;
10930                 case MULTI_FUNCTION_AFEX:
10931                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
10932                         break;
10933                 case MULTI_FUNCTION_SI:
10934                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10935                                        func);
10936                         break;
10937                 default:
10938                         if (vn) {
10939                                 dev_err(&bp->pdev->dev,
10940                                         "VN %d is in a single function mode, aborting\n",
10941                                         vn);
10942                                 return -EPERM;
10943                         }
10944                         break;
10945                 }
10946
10947                 /* check if other port on the path needs ovlan:
10948                  * Since MF configuration is shared between ports
10949                  * Possible mixed modes are only
10950                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10951                  */
10952                 if (CHIP_MODE_IS_4_PORT(bp) &&
10953                     !bp->path_has_ovlan &&
10954                     !IS_MF(bp) &&
10955                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10956                         u8 other_port = !BP_PORT(bp);
10957                         u8 other_func = BP_PATH(bp) + 2*other_port;
10958                         val = MF_CFG_RD(bp,
10959                                         func_mf_config[other_func].e1hov_tag);
10960                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10961                                 bp->path_has_ovlan = true;
10962                 }
10963         }
10964
10965         /* adjust igu_sb_cnt to MF for E1x */
10966         if (CHIP_IS_E1x(bp) && IS_MF(bp))
10967                 bp->igu_sb_cnt /= E1HVN_MAX;
10968
10969         /* port info */
10970         bnx2x_get_port_hwinfo(bp);
10971
10972         /* Get MAC addresses */
10973         bnx2x_get_mac_hwinfo(bp);
10974
10975         bnx2x_get_cnic_info(bp);
10976
10977         return rc;
10978 }
10979
10980 static void bnx2x_read_fwinfo(struct bnx2x *bp)
10981 {
10982         int cnt, i, block_end, rodi;
10983         char vpd_start[BNX2X_VPD_LEN+1];
10984         char str_id_reg[VENDOR_ID_LEN+1];
10985         char str_id_cap[VENDOR_ID_LEN+1];
10986         char *vpd_data;
10987         char *vpd_extended_data = NULL;
10988         u8 len;
10989
10990         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10991         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10992
10993         if (cnt < BNX2X_VPD_LEN)
10994                 goto out_not_found;
10995
10996         /* VPD RO tag should be first tag after identifier string, hence
10997          * we should be able to find it in first BNX2X_VPD_LEN chars
10998          */
10999         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11000                              PCI_VPD_LRDT_RO_DATA);
11001         if (i < 0)
11002                 goto out_not_found;
11003
11004         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11005                     pci_vpd_lrdt_size(&vpd_start[i]);
11006
11007         i += PCI_VPD_LRDT_TAG_SIZE;
11008
11009         if (block_end > BNX2X_VPD_LEN) {
11010                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11011                 if (vpd_extended_data  == NULL)
11012                         goto out_not_found;
11013
11014                 /* read rest of vpd image into vpd_extended_data */
11015                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11016                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11017                                    block_end - BNX2X_VPD_LEN,
11018                                    vpd_extended_data + BNX2X_VPD_LEN);
11019                 if (cnt < (block_end - BNX2X_VPD_LEN))
11020                         goto out_not_found;
11021                 vpd_data = vpd_extended_data;
11022         } else
11023                 vpd_data = vpd_start;
11024
11025         /* now vpd_data holds full vpd content in both cases */
11026
11027         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11028                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11029         if (rodi < 0)
11030                 goto out_not_found;
11031
11032         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11033
11034         if (len != VENDOR_ID_LEN)
11035                 goto out_not_found;
11036
11037         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11038
11039         /* vendor specific info */
11040         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11041         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11042         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11043             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11044
11045                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11046                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11047                 if (rodi >= 0) {
11048                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11049
11050                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11051
11052                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11053                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11054                                 bp->fw_ver[len] = ' ';
11055                         }
11056                 }
11057                 kfree(vpd_extended_data);
11058                 return;
11059         }
11060 out_not_found:
11061         kfree(vpd_extended_data);
11062         return;
11063 }
11064
11065 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11066 {
11067         u32 flags = 0;
11068
11069         if (CHIP_REV_IS_FPGA(bp))
11070                 SET_FLAGS(flags, MODE_FPGA);
11071         else if (CHIP_REV_IS_EMUL(bp))
11072                 SET_FLAGS(flags, MODE_EMUL);
11073         else
11074                 SET_FLAGS(flags, MODE_ASIC);
11075
11076         if (CHIP_MODE_IS_4_PORT(bp))
11077                 SET_FLAGS(flags, MODE_PORT4);
11078         else
11079                 SET_FLAGS(flags, MODE_PORT2);
11080
11081         if (CHIP_IS_E2(bp))
11082                 SET_FLAGS(flags, MODE_E2);
11083         else if (CHIP_IS_E3(bp)) {
11084                 SET_FLAGS(flags, MODE_E3);
11085                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11086                         SET_FLAGS(flags, MODE_E3_A0);
11087                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11088                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11089         }
11090
11091         if (IS_MF(bp)) {
11092                 SET_FLAGS(flags, MODE_MF);
11093                 switch (bp->mf_mode) {
11094                 case MULTI_FUNCTION_SD:
11095                         SET_FLAGS(flags, MODE_MF_SD);
11096                         break;
11097                 case MULTI_FUNCTION_SI:
11098                         SET_FLAGS(flags, MODE_MF_SI);
11099                         break;
11100                 case MULTI_FUNCTION_AFEX:
11101                         SET_FLAGS(flags, MODE_MF_AFEX);
11102                         break;
11103                 }
11104         } else
11105                 SET_FLAGS(flags, MODE_SF);
11106
11107 #if defined(__LITTLE_ENDIAN)
11108         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11109 #else /*(__BIG_ENDIAN)*/
11110         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11111 #endif
11112         INIT_MODE_FLAGS(bp) = flags;
11113 }
11114
11115 static int bnx2x_init_bp(struct bnx2x *bp)
11116 {
11117         int func;
11118         int rc;
11119
11120         mutex_init(&bp->port.phy_mutex);
11121         mutex_init(&bp->fw_mb_mutex);
11122         spin_lock_init(&bp->stats_lock);
11123
11124
11125         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11126         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11127         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11128         rc = bnx2x_get_hwinfo(bp);
11129         if (rc)
11130                 return rc;
11131
11132         bnx2x_set_modes_bitmap(bp);
11133
11134         rc = bnx2x_alloc_mem_bp(bp);
11135         if (rc)
11136                 return rc;
11137
11138         bnx2x_read_fwinfo(bp);
11139
11140         func = BP_FUNC(bp);
11141
11142         /* need to reset chip if undi was active */
11143         if (!BP_NOMCP(bp)) {
11144                 /* init fw_seq */
11145                 bp->fw_seq =
11146                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11147                                                         DRV_MSG_SEQ_NUMBER_MASK;
11148                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11149
11150                 bnx2x_prev_unload(bp);
11151         }
11152
11153
11154         if (CHIP_REV_IS_FPGA(bp))
11155                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11156
11157         if (BP_NOMCP(bp) && (func == 0))
11158                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11159
11160         bp->disable_tpa = disable_tpa;
11161         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11162
11163         /* Set TPA flags */
11164         if (bp->disable_tpa) {
11165                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11166                 bp->dev->features &= ~NETIF_F_LRO;
11167         } else {
11168                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11169                 bp->dev->features |= NETIF_F_LRO;
11170         }
11171
11172         if (CHIP_IS_E1(bp))
11173                 bp->dropless_fc = 0;
11174         else
11175                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11176
11177         bp->mrrs = mrrs;
11178
11179         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11180
11181         /* make sure that the numbers are in the right granularity */
11182         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11183         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11184
11185         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11186
11187         init_timer(&bp->timer);
11188         bp->timer.expires = jiffies + bp->current_interval;
11189         bp->timer.data = (unsigned long) bp;
11190         bp->timer.function = bnx2x_timer;
11191
11192         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11193             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11194             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11195             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11196                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11197                 bnx2x_dcbx_init_params(bp);
11198         } else {
11199                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11200         }
11201
11202         if (CHIP_IS_E1x(bp))
11203                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11204         else
11205                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11206
11207         /* multiple tx priority */
11208         if (CHIP_IS_E1x(bp))
11209                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11210         if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11211                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11212         if (CHIP_IS_E3B0(bp))
11213                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11214
11215         /* We need at least one default status block for slow-path events,
11216          * second status block for the L2 queue, and a third status block for
11217          * CNIC if supproted.
11218          */
11219         if (CNIC_SUPPORT(bp))
11220                 bp->min_msix_vec_cnt = 3;
11221         else
11222                 bp->min_msix_vec_cnt = 2;
11223         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11224
11225         return rc;
11226 }
11227
11228
11229 /****************************************************************************
11230 * General service functions
11231 ****************************************************************************/
11232
11233 /*
11234  * net_device service functions
11235  */
11236
11237 /* called with rtnl_lock */
11238 static int bnx2x_open(struct net_device *dev)
11239 {
11240         struct bnx2x *bp = netdev_priv(dev);
11241         bool global = false;
11242         int other_engine = BP_PATH(bp) ? 0 : 1;
11243         bool other_load_status, load_status;
11244
11245         bp->stats_init = true;
11246
11247         netif_carrier_off(dev);
11248
11249         bnx2x_set_power_state(bp, PCI_D0);
11250
11251         other_load_status = bnx2x_get_load_status(bp, other_engine);
11252         load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11253
11254         /*
11255          * If parity had happen during the unload, then attentions
11256          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11257          * want the first function loaded on the current engine to
11258          * complete the recovery.
11259          */
11260         if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11261             bnx2x_chk_parity_attn(bp, &global, true))
11262                 do {
11263                         /*
11264                          * If there are attentions and they are in a global
11265                          * blocks, set the GLOBAL_RESET bit regardless whether
11266                          * it will be this function that will complete the
11267                          * recovery or not.
11268                          */
11269                         if (global)
11270                                 bnx2x_set_reset_global(bp);
11271
11272                         /*
11273                          * Only the first function on the current engine should
11274                          * try to recover in open. In case of attentions in
11275                          * global blocks only the first in the chip should try
11276                          * to recover.
11277                          */
11278                         if ((!load_status &&
11279                              (!global || !other_load_status)) &&
11280                             bnx2x_trylock_leader_lock(bp) &&
11281                             !bnx2x_leader_reset(bp)) {
11282                                 netdev_info(bp->dev, "Recovered in open\n");
11283                                 break;
11284                         }
11285
11286                         /* recovery has failed... */
11287                         bnx2x_set_power_state(bp, PCI_D3hot);
11288                         bp->recovery_state = BNX2X_RECOVERY_FAILED;
11289
11290                         BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11291                                   "If you still see this message after a few retries then power cycle is required.\n");
11292
11293                         return -EAGAIN;
11294                 } while (0);
11295
11296         bp->recovery_state = BNX2X_RECOVERY_DONE;
11297         return bnx2x_nic_load(bp, LOAD_OPEN);
11298 }
11299
11300 /* called with rtnl_lock */
11301 static int bnx2x_close(struct net_device *dev)
11302 {
11303         struct bnx2x *bp = netdev_priv(dev);
11304
11305         /* Unload the driver, release IRQs */
11306         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11307
11308         /* Power off */
11309         bnx2x_set_power_state(bp, PCI_D3hot);
11310
11311         return 0;
11312 }
11313
11314 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11315                                       struct bnx2x_mcast_ramrod_params *p)
11316 {
11317         int mc_count = netdev_mc_count(bp->dev);
11318         struct bnx2x_mcast_list_elem *mc_mac =
11319                 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11320         struct netdev_hw_addr *ha;
11321
11322         if (!mc_mac)
11323                 return -ENOMEM;
11324
11325         INIT_LIST_HEAD(&p->mcast_list);
11326
11327         netdev_for_each_mc_addr(ha, bp->dev) {
11328                 mc_mac->mac = bnx2x_mc_addr(ha);
11329                 list_add_tail(&mc_mac->link, &p->mcast_list);
11330                 mc_mac++;
11331         }
11332
11333         p->mcast_list_len = mc_count;
11334
11335         return 0;
11336 }
11337
11338 static void bnx2x_free_mcast_macs_list(
11339         struct bnx2x_mcast_ramrod_params *p)
11340 {
11341         struct bnx2x_mcast_list_elem *mc_mac =
11342                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11343                                  link);
11344
11345         WARN_ON(!mc_mac);
11346         kfree(mc_mac);
11347 }
11348
11349 /**
11350  * bnx2x_set_uc_list - configure a new unicast MACs list.
11351  *
11352  * @bp: driver handle
11353  *
11354  * We will use zero (0) as a MAC type for these MACs.
11355  */
11356 static int bnx2x_set_uc_list(struct bnx2x *bp)
11357 {
11358         int rc;
11359         struct net_device *dev = bp->dev;
11360         struct netdev_hw_addr *ha;
11361         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11362         unsigned long ramrod_flags = 0;
11363
11364         /* First schedule a cleanup up of old configuration */
11365         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11366         if (rc < 0) {
11367                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11368                 return rc;
11369         }
11370
11371         netdev_for_each_uc_addr(ha, dev) {
11372                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11373                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
11374                 if (rc == -EEXIST) {
11375                         DP(BNX2X_MSG_SP,
11376                            "Failed to schedule ADD operations: %d\n", rc);
11377                         /* do not treat adding same MAC as error */
11378                         rc = 0;
11379
11380                 } else if (rc < 0) {
11381
11382                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11383                                   rc);
11384                         return rc;
11385                 }
11386         }
11387
11388         /* Execute the pending commands */
11389         __set_bit(RAMROD_CONT, &ramrod_flags);
11390         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11391                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
11392 }
11393
11394 static int bnx2x_set_mc_list(struct bnx2x *bp)
11395 {
11396         struct net_device *dev = bp->dev;
11397         struct bnx2x_mcast_ramrod_params rparam = {NULL};
11398         int rc = 0;
11399
11400         rparam.mcast_obj = &bp->mcast_obj;
11401
11402         /* first, clear all configured multicast MACs */
11403         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11404         if (rc < 0) {
11405                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11406                 return rc;
11407         }
11408
11409         /* then, configure a new MACs list */
11410         if (netdev_mc_count(dev)) {
11411                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11412                 if (rc) {
11413                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11414                                   rc);
11415                         return rc;
11416                 }
11417
11418                 /* Now add the new MACs */
11419                 rc = bnx2x_config_mcast(bp, &rparam,
11420                                         BNX2X_MCAST_CMD_ADD);
11421                 if (rc < 0)
11422                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11423                                   rc);
11424
11425                 bnx2x_free_mcast_macs_list(&rparam);
11426         }
11427
11428         return rc;
11429 }
11430
11431
11432 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11433 void bnx2x_set_rx_mode(struct net_device *dev)
11434 {
11435         struct bnx2x *bp = netdev_priv(dev);
11436         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11437
11438         if (bp->state != BNX2X_STATE_OPEN) {
11439                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11440                 return;
11441         }
11442
11443         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11444
11445         if (dev->flags & IFF_PROMISC)
11446                 rx_mode = BNX2X_RX_MODE_PROMISC;
11447         else if ((dev->flags & IFF_ALLMULTI) ||
11448                  ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11449                   CHIP_IS_E1(bp)))
11450                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11451         else {
11452                 /* some multicasts */
11453                 if (bnx2x_set_mc_list(bp) < 0)
11454                         rx_mode = BNX2X_RX_MODE_ALLMULTI;
11455
11456                 if (bnx2x_set_uc_list(bp) < 0)
11457                         rx_mode = BNX2X_RX_MODE_PROMISC;
11458         }
11459
11460         bp->rx_mode = rx_mode;
11461         /* handle ISCSI SD mode */
11462         if (IS_MF_ISCSI_SD(bp))
11463                 bp->rx_mode = BNX2X_RX_MODE_NONE;
11464
11465         /* Schedule the rx_mode command */
11466         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11467                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11468                 return;
11469         }
11470
11471         bnx2x_set_storm_rx_mode(bp);
11472 }
11473
11474 /* called with rtnl_lock */
11475 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11476                            int devad, u16 addr)
11477 {
11478         struct bnx2x *bp = netdev_priv(netdev);
11479         u16 value;
11480         int rc;
11481
11482         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11483            prtad, devad, addr);
11484
11485         /* The HW expects different devad if CL22 is used */
11486         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11487
11488         bnx2x_acquire_phy_lock(bp);
11489         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11490         bnx2x_release_phy_lock(bp);
11491         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11492
11493         if (!rc)
11494                 rc = value;
11495         return rc;
11496 }
11497
11498 /* called with rtnl_lock */
11499 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11500                             u16 addr, u16 value)
11501 {
11502         struct bnx2x *bp = netdev_priv(netdev);
11503         int rc;
11504
11505         DP(NETIF_MSG_LINK,
11506            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11507            prtad, devad, addr, value);
11508
11509         /* The HW expects different devad if CL22 is used */
11510         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11511
11512         bnx2x_acquire_phy_lock(bp);
11513         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11514         bnx2x_release_phy_lock(bp);
11515         return rc;
11516 }
11517
11518 /* called with rtnl_lock */
11519 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11520 {
11521         struct bnx2x *bp = netdev_priv(dev);
11522         struct mii_ioctl_data *mdio = if_mii(ifr);
11523
11524         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11525            mdio->phy_id, mdio->reg_num, mdio->val_in);
11526
11527         if (!netif_running(dev))
11528                 return -EAGAIN;
11529
11530         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11531 }
11532
11533 #ifdef CONFIG_NET_POLL_CONTROLLER
11534 static void poll_bnx2x(struct net_device *dev)
11535 {
11536         struct bnx2x *bp = netdev_priv(dev);
11537         int i;
11538
11539         for_each_eth_queue(bp, i) {
11540                 struct bnx2x_fastpath *fp = &bp->fp[i];
11541                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11542         }
11543 }
11544 #endif
11545
11546 static int bnx2x_validate_addr(struct net_device *dev)
11547 {
11548         struct bnx2x *bp = netdev_priv(dev);
11549
11550         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11551                 BNX2X_ERR("Non-valid Ethernet address\n");
11552                 return -EADDRNOTAVAIL;
11553         }
11554         return 0;
11555 }
11556
11557 static const struct net_device_ops bnx2x_netdev_ops = {
11558         .ndo_open               = bnx2x_open,
11559         .ndo_stop               = bnx2x_close,
11560         .ndo_start_xmit         = bnx2x_start_xmit,
11561         .ndo_select_queue       = bnx2x_select_queue,
11562         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
11563         .ndo_set_mac_address    = bnx2x_change_mac_addr,
11564         .ndo_validate_addr      = bnx2x_validate_addr,
11565         .ndo_do_ioctl           = bnx2x_ioctl,
11566         .ndo_change_mtu         = bnx2x_change_mtu,
11567         .ndo_fix_features       = bnx2x_fix_features,
11568         .ndo_set_features       = bnx2x_set_features,
11569         .ndo_tx_timeout         = bnx2x_tx_timeout,
11570 #ifdef CONFIG_NET_POLL_CONTROLLER
11571         .ndo_poll_controller    = poll_bnx2x,
11572 #endif
11573         .ndo_setup_tc           = bnx2x_setup_tc,
11574
11575 #ifdef NETDEV_FCOE_WWNN
11576         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
11577 #endif
11578 };
11579
11580 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11581 {
11582         struct device *dev = &bp->pdev->dev;
11583
11584         if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11585                 bp->flags |= USING_DAC_FLAG;
11586                 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11587                         dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11588                         return -EIO;
11589                 }
11590         } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11591                 dev_err(dev, "System does not support DMA, aborting\n");
11592                 return -EIO;
11593         }
11594
11595         return 0;
11596 }
11597
11598 static int bnx2x_init_dev(struct pci_dev *pdev, struct net_device *dev,
11599                           unsigned long board_type)
11600 {
11601         struct bnx2x *bp;
11602         int rc;
11603         u32 pci_cfg_dword;
11604         bool chip_is_e1x = (board_type == BCM57710 ||
11605                             board_type == BCM57711 ||
11606                             board_type == BCM57711E);
11607
11608         SET_NETDEV_DEV(dev, &pdev->dev);
11609         bp = netdev_priv(dev);
11610
11611         bp->dev = dev;
11612         bp->pdev = pdev;
11613         bp->flags = 0;
11614
11615         rc = pci_enable_device(pdev);
11616         if (rc) {
11617                 dev_err(&bp->pdev->dev,
11618                         "Cannot enable PCI device, aborting\n");
11619                 goto err_out;
11620         }
11621
11622         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11623                 dev_err(&bp->pdev->dev,
11624                         "Cannot find PCI device base address, aborting\n");
11625                 rc = -ENODEV;
11626                 goto err_out_disable;
11627         }
11628
11629         if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11630                 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
11631                        " base address, aborting\n");
11632                 rc = -ENODEV;
11633                 goto err_out_disable;
11634         }
11635
11636         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
11637         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
11638             PCICFG_REVESION_ID_ERROR_VAL) {
11639                 pr_err("PCI device error, probably due to fan failure, aborting\n");
11640                 rc = -ENODEV;
11641                 goto err_out_disable;
11642         }
11643
11644         if (atomic_read(&pdev->enable_cnt) == 1) {
11645                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11646                 if (rc) {
11647                         dev_err(&bp->pdev->dev,
11648                                 "Cannot obtain PCI resources, aborting\n");
11649                         goto err_out_disable;
11650                 }
11651
11652                 pci_set_master(pdev);
11653                 pci_save_state(pdev);
11654         }
11655
11656         bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11657         if (bp->pm_cap == 0) {
11658                 dev_err(&bp->pdev->dev,
11659                         "Cannot find power management capability, aborting\n");
11660                 rc = -EIO;
11661                 goto err_out_release;
11662         }
11663
11664         if (!pci_is_pcie(pdev)) {
11665                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11666                 rc = -EIO;
11667                 goto err_out_release;
11668         }
11669
11670         rc = bnx2x_set_coherency_mask(bp);
11671         if (rc)
11672                 goto err_out_release;
11673
11674         dev->mem_start = pci_resource_start(pdev, 0);
11675         dev->base_addr = dev->mem_start;
11676         dev->mem_end = pci_resource_end(pdev, 0);
11677
11678         dev->irq = pdev->irq;
11679
11680         bp->regview = pci_ioremap_bar(pdev, 0);
11681         if (!bp->regview) {
11682                 dev_err(&bp->pdev->dev,
11683                         "Cannot map register space, aborting\n");
11684                 rc = -ENOMEM;
11685                 goto err_out_release;
11686         }
11687
11688         /* In E1/E1H use pci device function given by kernel.
11689          * In E2/E3 read physical function from ME register since these chips
11690          * support Physical Device Assignment where kernel BDF maybe arbitrary
11691          * (depending on hypervisor).
11692          */
11693         if (chip_is_e1x)
11694                 bp->pf_num = PCI_FUNC(pdev->devfn);
11695         else {/* chip is E2/3*/
11696                 pci_read_config_dword(bp->pdev,
11697                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
11698                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
11699                     ME_REG_ABS_PF_NUM_SHIFT);
11700         }
11701         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
11702
11703         bnx2x_set_power_state(bp, PCI_D0);
11704
11705         /* clean indirect addresses */
11706         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
11707                                PCICFG_VENDOR_ID_OFFSET);
11708         /*
11709          * Clean the following indirect addresses for all functions since it
11710          * is not used by the driver.
11711          */
11712         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
11713         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
11714         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
11715         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
11716
11717         if (chip_is_e1x) {
11718                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
11719                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
11720                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
11721                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
11722         }
11723
11724         /*
11725          * Enable internal target-read (in case we are probed after PF FLR).
11726          * Must be done prior to any BAR read access. Only for 57712 and up
11727          */
11728         if (!chip_is_e1x)
11729                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11730
11731         dev->watchdog_timeo = TX_TIMEOUT;
11732
11733         dev->netdev_ops = &bnx2x_netdev_ops;
11734         bnx2x_set_ethtool_ops(dev);
11735
11736         dev->priv_flags |= IFF_UNICAST_FLT;
11737
11738         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11739                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
11740                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
11741                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
11742
11743         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11744                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
11745
11746         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
11747         if (bp->flags & USING_DAC_FLAG)
11748                 dev->features |= NETIF_F_HIGHDMA;
11749
11750         /* Add Loopback capability to the device */
11751         dev->hw_features |= NETIF_F_LOOPBACK;
11752
11753 #ifdef BCM_DCBNL
11754         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
11755 #endif
11756
11757         /* get_port_hwinfo() will set prtad and mmds properly */
11758         bp->mdio.prtad = MDIO_PRTAD_NONE;
11759         bp->mdio.mmds = 0;
11760         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
11761         bp->mdio.dev = dev;
11762         bp->mdio.mdio_read = bnx2x_mdio_read;
11763         bp->mdio.mdio_write = bnx2x_mdio_write;
11764
11765         return 0;
11766
11767 err_out_release:
11768         if (atomic_read(&pdev->enable_cnt) == 1)
11769                 pci_release_regions(pdev);
11770
11771 err_out_disable:
11772         pci_disable_device(pdev);
11773         pci_set_drvdata(pdev, NULL);
11774
11775 err_out:
11776         return rc;
11777 }
11778
11779 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, int *speed)
11780 {
11781         u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
11782
11783         *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11784
11785         /* return value of 1=2.5GHz 2=5GHz */
11786         *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11787 }
11788
11789 static int bnx2x_check_firmware(struct bnx2x *bp)
11790 {
11791         const struct firmware *firmware = bp->firmware;
11792         struct bnx2x_fw_file_hdr *fw_hdr;
11793         struct bnx2x_fw_file_section *sections;
11794         u32 offset, len, num_ops;
11795         u16 *ops_offsets;
11796         int i;
11797         const u8 *fw_ver;
11798
11799         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11800                 BNX2X_ERR("Wrong FW size\n");
11801                 return -EINVAL;
11802         }
11803
11804         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11805         sections = (struct bnx2x_fw_file_section *)fw_hdr;
11806
11807         /* Make sure none of the offsets and sizes make us read beyond
11808          * the end of the firmware data */
11809         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11810                 offset = be32_to_cpu(sections[i].offset);
11811                 len = be32_to_cpu(sections[i].len);
11812                 if (offset + len > firmware->size) {
11813                         BNX2X_ERR("Section %d length is out of bounds\n", i);
11814                         return -EINVAL;
11815                 }
11816         }
11817
11818         /* Likewise for the init_ops offsets */
11819         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11820         ops_offsets = (u16 *)(firmware->data + offset);
11821         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11822
11823         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11824                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11825                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
11826                         return -EINVAL;
11827                 }
11828         }
11829
11830         /* Check FW version */
11831         offset = be32_to_cpu(fw_hdr->fw_version.offset);
11832         fw_ver = firmware->data + offset;
11833         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11834             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11835             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11836             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11837                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11838                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11839                        BCM_5710_FW_MAJOR_VERSION,
11840                        BCM_5710_FW_MINOR_VERSION,
11841                        BCM_5710_FW_REVISION_VERSION,
11842                        BCM_5710_FW_ENGINEERING_VERSION);
11843                 return -EINVAL;
11844         }
11845
11846         return 0;
11847 }
11848
11849 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11850 {
11851         const __be32 *source = (const __be32 *)_source;
11852         u32 *target = (u32 *)_target;
11853         u32 i;
11854
11855         for (i = 0; i < n/4; i++)
11856                 target[i] = be32_to_cpu(source[i]);
11857 }
11858
11859 /*
11860    Ops array is stored in the following format:
11861    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11862  */
11863 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11864 {
11865         const __be32 *source = (const __be32 *)_source;
11866         struct raw_op *target = (struct raw_op *)_target;
11867         u32 i, j, tmp;
11868
11869         for (i = 0, j = 0; i < n/8; i++, j += 2) {
11870                 tmp = be32_to_cpu(source[j]);
11871                 target[i].op = (tmp >> 24) & 0xff;
11872                 target[i].offset = tmp & 0xffffff;
11873                 target[i].raw_data = be32_to_cpu(source[j + 1]);
11874         }
11875 }
11876
11877 /* IRO array is stored in the following format:
11878  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11879  */
11880 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11881 {
11882         const __be32 *source = (const __be32 *)_source;
11883         struct iro *target = (struct iro *)_target;
11884         u32 i, j, tmp;
11885
11886         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11887                 target[i].base = be32_to_cpu(source[j]);
11888                 j++;
11889                 tmp = be32_to_cpu(source[j]);
11890                 target[i].m1 = (tmp >> 16) & 0xffff;
11891                 target[i].m2 = tmp & 0xffff;
11892                 j++;
11893                 tmp = be32_to_cpu(source[j]);
11894                 target[i].m3 = (tmp >> 16) & 0xffff;
11895                 target[i].size = tmp & 0xffff;
11896                 j++;
11897         }
11898 }
11899
11900 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11901 {
11902         const __be16 *source = (const __be16 *)_source;
11903         u16 *target = (u16 *)_target;
11904         u32 i;
11905
11906         for (i = 0; i < n/2; i++)
11907                 target[i] = be16_to_cpu(source[i]);
11908 }
11909
11910 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
11911 do {                                                                    \
11912         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
11913         bp->arr = kmalloc(len, GFP_KERNEL);                             \
11914         if (!bp->arr)                                                   \
11915                 goto lbl;                                               \
11916         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
11917              (u8 *)bp->arr, len);                                       \
11918 } while (0)
11919
11920 static int bnx2x_init_firmware(struct bnx2x *bp)
11921 {
11922         const char *fw_file_name;
11923         struct bnx2x_fw_file_hdr *fw_hdr;
11924         int rc;
11925
11926         if (bp->firmware)
11927                 return 0;
11928
11929         if (CHIP_IS_E1(bp))
11930                 fw_file_name = FW_FILE_NAME_E1;
11931         else if (CHIP_IS_E1H(bp))
11932                 fw_file_name = FW_FILE_NAME_E1H;
11933         else if (!CHIP_IS_E1x(bp))
11934                 fw_file_name = FW_FILE_NAME_E2;
11935         else {
11936                 BNX2X_ERR("Unsupported chip revision\n");
11937                 return -EINVAL;
11938         }
11939         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11940
11941         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11942         if (rc) {
11943                 BNX2X_ERR("Can't load firmware file %s\n",
11944                           fw_file_name);
11945                 goto request_firmware_exit;
11946         }
11947
11948         rc = bnx2x_check_firmware(bp);
11949         if (rc) {
11950                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11951                 goto request_firmware_exit;
11952         }
11953
11954         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11955
11956         /* Initialize the pointers to the init arrays */
11957         /* Blob */
11958         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11959
11960         /* Opcodes */
11961         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11962
11963         /* Offsets */
11964         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11965                             be16_to_cpu_n);
11966
11967         /* STORMs firmware */
11968         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11969                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11970         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
11971                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11972         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11973                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11974         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
11975                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
11976         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11977                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11978         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
11979                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11980         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11981                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11982         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
11983                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
11984         /* IRO */
11985         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11986
11987         return 0;
11988
11989 iro_alloc_err:
11990         kfree(bp->init_ops_offsets);
11991 init_offsets_alloc_err:
11992         kfree(bp->init_ops);
11993 init_ops_alloc_err:
11994         kfree(bp->init_data);
11995 request_firmware_exit:
11996         release_firmware(bp->firmware);
11997         bp->firmware = NULL;
11998
11999         return rc;
12000 }
12001
12002 static void bnx2x_release_firmware(struct bnx2x *bp)
12003 {
12004         kfree(bp->init_ops_offsets);
12005         kfree(bp->init_ops);
12006         kfree(bp->init_data);
12007         release_firmware(bp->firmware);
12008         bp->firmware = NULL;
12009 }
12010
12011
12012 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12013         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12014         .init_hw_cmn      = bnx2x_init_hw_common,
12015         .init_hw_port     = bnx2x_init_hw_port,
12016         .init_hw_func     = bnx2x_init_hw_func,
12017
12018         .reset_hw_cmn     = bnx2x_reset_common,
12019         .reset_hw_port    = bnx2x_reset_port,
12020         .reset_hw_func    = bnx2x_reset_func,
12021
12022         .gunzip_init      = bnx2x_gunzip_init,
12023         .gunzip_end       = bnx2x_gunzip_end,
12024
12025         .init_fw          = bnx2x_init_firmware,
12026         .release_fw       = bnx2x_release_firmware,
12027 };
12028
12029 void bnx2x__init_func_obj(struct bnx2x *bp)
12030 {
12031         /* Prepare DMAE related driver resources */
12032         bnx2x_setup_dmae(bp);
12033
12034         bnx2x_init_func_obj(bp, &bp->func_obj,
12035                             bnx2x_sp(bp, func_rdata),
12036                             bnx2x_sp_mapping(bp, func_rdata),
12037                             bnx2x_sp(bp, func_afex_rdata),
12038                             bnx2x_sp_mapping(bp, func_afex_rdata),
12039                             &bnx2x_func_sp_drv);
12040 }
12041
12042 /* must be called after sriov-enable */
12043 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12044 {
12045         int cid_count = BNX2X_L2_MAX_CID(bp);
12046
12047         if (CNIC_SUPPORT(bp))
12048                 cid_count += CNIC_CID_MAX;
12049         return roundup(cid_count, QM_CID_ROUND);
12050 }
12051
12052 /**
12053  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12054  *
12055  * @dev:        pci device
12056  *
12057  */
12058 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12059                                      int cnic_cnt)
12060 {
12061         int pos;
12062         u16 control;
12063
12064         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12065
12066         /*
12067          * If MSI-X is not supported - return number of SBs needed to support
12068          * one fast path queue: one FP queue + SB for CNIC
12069          */
12070         if (!pos)
12071                 return 1 + cnic_cnt;
12072
12073         /*
12074          * The value in the PCI configuration space is the index of the last
12075          * entry, namely one less than the actual size of the table, which is
12076          * exactly what we want to return from this function: number of all SBs
12077          * without the default SB.
12078          */
12079         pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
12080         return control & PCI_MSIX_FLAGS_QSIZE;
12081 }
12082
12083 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *);
12084
12085 static int bnx2x_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
12086 {
12087         struct net_device *dev = NULL;
12088         struct bnx2x *bp;
12089         int pcie_width, pcie_speed;
12090         int rc, max_non_def_sbs;
12091         int rx_count, tx_count, rss_count, doorbell_size;
12092         int cnic_cnt;
12093         /*
12094          * An estimated maximum supported CoS number according to the chip
12095          * version.
12096          * We will try to roughly estimate the maximum number of CoSes this chip
12097          * may support in order to minimize the memory allocated for Tx
12098          * netdev_queue's. This number will be accurately calculated during the
12099          * initialization of bp->max_cos based on the chip versions AND chip
12100          * revision in the bnx2x_init_bp().
12101          */
12102         u8 max_cos_est = 0;
12103
12104         switch (ent->driver_data) {
12105         case BCM57710:
12106         case BCM57711:
12107         case BCM57711E:
12108                 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
12109                 break;
12110
12111         case BCM57712:
12112         case BCM57712_MF:
12113                 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
12114                 break;
12115
12116         case BCM57800:
12117         case BCM57800_MF:
12118         case BCM57810:
12119         case BCM57810_MF:
12120         case BCM57840_O:
12121         case BCM57840_4_10:
12122         case BCM57840_2_20:
12123         case BCM57840_MFO:
12124         case BCM57840_MF:
12125         case BCM57811:
12126         case BCM57811_MF:
12127                 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
12128                 break;
12129
12130         default:
12131                 pr_err("Unknown board_type (%ld), aborting\n",
12132                            ent->driver_data);
12133                 return -ENODEV;
12134         }
12135
12136         cnic_cnt = 1;
12137         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12138
12139         WARN_ON(!max_non_def_sbs);
12140
12141         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12142         rss_count = max_non_def_sbs - cnic_cnt;
12143
12144         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12145         rx_count = rss_count + cnic_cnt;
12146
12147         /*
12148          * Maximum number of netdev Tx queues:
12149          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12150          */
12151         tx_count = rss_count * max_cos_est + cnic_cnt;
12152
12153         /* dev zeroed in init_etherdev */
12154         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12155         if (!dev)
12156                 return -ENOMEM;
12157
12158         bp = netdev_priv(dev);
12159
12160         bp->igu_sb_cnt = max_non_def_sbs;
12161         bp->msg_enable = debug;
12162         bp->cnic_support = cnic_cnt;
12163         bp->cnic_probe = bnx2x_cnic_probe;
12164
12165         pci_set_drvdata(pdev, dev);
12166
12167         rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
12168         if (rc < 0) {
12169                 free_netdev(dev);
12170                 return rc;
12171         }
12172
12173         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12174         BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
12175
12176         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12177                           tx_count, rx_count);
12178
12179         rc = bnx2x_init_bp(bp);
12180         if (rc)
12181                 goto init_one_exit;
12182
12183         /*
12184          * Map doorbels here as we need the real value of bp->max_cos which
12185          * is initialized in bnx2x_init_bp().
12186          */
12187         doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12188         if (doorbell_size > pci_resource_len(pdev, 2)) {
12189                 dev_err(&bp->pdev->dev,
12190                         "Cannot map doorbells, bar size too small, aborting\n");
12191                 rc = -ENOMEM;
12192                 goto init_one_exit;
12193         }
12194         bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12195                                         doorbell_size);
12196         if (!bp->doorbells) {
12197                 dev_err(&bp->pdev->dev,
12198                         "Cannot map doorbell space, aborting\n");
12199                 rc = -ENOMEM;
12200                 goto init_one_exit;
12201         }
12202
12203         /* calc qm_cid_count */
12204         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12205
12206         /* disable FCOE L2 queue for E1x*/
12207         if (CHIP_IS_E1x(bp))
12208                 bp->flags |= NO_FCOE_FLAG;
12209
12210         /* disable FCOE for 57840 device, until FW supports it */
12211         switch (ent->driver_data) {
12212         case BCM57840_O:
12213         case BCM57840_4_10:
12214         case BCM57840_2_20:
12215         case BCM57840_MFO:
12216         case BCM57840_MF:
12217                 bp->flags |= NO_FCOE_FLAG;
12218         }
12219
12220         /* Set bp->num_queues for MSI-X mode*/
12221         bnx2x_set_num_queues(bp);
12222
12223         /* Configure interrupt mode: try to enable MSI-X/MSI if
12224          * needed.
12225          */
12226         bnx2x_set_int_mode(bp);
12227
12228         rc = register_netdev(dev);
12229         if (rc) {
12230                 dev_err(&pdev->dev, "Cannot register net device\n");
12231                 goto init_one_exit;
12232         }
12233
12234
12235         if (!NO_FCOE(bp)) {
12236                 /* Add storage MAC address */
12237                 rtnl_lock();
12238                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12239                 rtnl_unlock();
12240         }
12241
12242         bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12243
12244         BNX2X_DEV_INFO(
12245                 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12246                     board_info[ent->driver_data].name,
12247                     (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12248                     pcie_width,
12249                     ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
12250                      (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
12251                     "5GHz (Gen2)" : "2.5GHz",
12252                     dev->base_addr, bp->pdev->irq, dev->dev_addr);
12253
12254         return 0;
12255
12256 init_one_exit:
12257         if (bp->regview)
12258                 iounmap(bp->regview);
12259
12260         if (bp->doorbells)
12261                 iounmap(bp->doorbells);
12262
12263         free_netdev(dev);
12264
12265         if (atomic_read(&pdev->enable_cnt) == 1)
12266                 pci_release_regions(pdev);
12267
12268         pci_disable_device(pdev);
12269         pci_set_drvdata(pdev, NULL);
12270
12271         return rc;
12272 }
12273
12274 static void bnx2x_remove_one(struct pci_dev *pdev)
12275 {
12276         struct net_device *dev = pci_get_drvdata(pdev);
12277         struct bnx2x *bp;
12278
12279         if (!dev) {
12280                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12281                 return;
12282         }
12283         bp = netdev_priv(dev);
12284
12285         /* Delete storage MAC address */
12286         if (!NO_FCOE(bp)) {
12287                 rtnl_lock();
12288                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12289                 rtnl_unlock();
12290         }
12291
12292 #ifdef BCM_DCBNL
12293         /* Delete app tlvs from dcbnl */
12294         bnx2x_dcbnl_update_applist(bp, true);
12295 #endif
12296
12297         unregister_netdev(dev);
12298
12299         /* Power on: we can't let PCI layer write to us while we are in D3 */
12300         bnx2x_set_power_state(bp, PCI_D0);
12301
12302         /* Disable MSI/MSI-X */
12303         bnx2x_disable_msi(bp);
12304
12305         /* Power off */
12306         bnx2x_set_power_state(bp, PCI_D3hot);
12307
12308         /* Make sure RESET task is not scheduled before continuing */
12309         cancel_delayed_work_sync(&bp->sp_rtnl_task);
12310
12311         if (bp->regview)
12312                 iounmap(bp->regview);
12313
12314         if (bp->doorbells)
12315                 iounmap(bp->doorbells);
12316
12317         bnx2x_release_firmware(bp);
12318
12319         bnx2x_free_mem_bp(bp);
12320
12321         free_netdev(dev);
12322
12323         if (atomic_read(&pdev->enable_cnt) == 1)
12324                 pci_release_regions(pdev);
12325
12326         pci_disable_device(pdev);
12327         pci_set_drvdata(pdev, NULL);
12328 }
12329
12330 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12331 {
12332         int i;
12333
12334         bp->state = BNX2X_STATE_ERROR;
12335
12336         bp->rx_mode = BNX2X_RX_MODE_NONE;
12337
12338         if (CNIC_LOADED(bp))
12339                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12340
12341         /* Stop Tx */
12342         bnx2x_tx_disable(bp);
12343
12344         bnx2x_netif_stop(bp, 0);
12345         /* Delete all NAPI objects */
12346         bnx2x_del_all_napi(bp);
12347         if (CNIC_LOADED(bp))
12348                 bnx2x_del_all_napi_cnic(bp);
12349
12350         del_timer_sync(&bp->timer);
12351
12352         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
12353
12354         /* Release IRQs */
12355         bnx2x_free_irq(bp);
12356
12357         /* Free SKBs, SGEs, TPA pool and driver internals */
12358         bnx2x_free_skbs(bp);
12359
12360         for_each_rx_queue(bp, i)
12361                 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12362
12363         bnx2x_free_mem(bp);
12364
12365         bp->state = BNX2X_STATE_CLOSED;
12366
12367         netif_carrier_off(bp->dev);
12368
12369         return 0;
12370 }
12371
12372 static void bnx2x_eeh_recover(struct bnx2x *bp)
12373 {
12374         u32 val;
12375
12376         mutex_init(&bp->port.phy_mutex);
12377
12378
12379         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12380         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12381                 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12382                 BNX2X_ERR("BAD MCP validity signature\n");
12383 }
12384
12385 /**
12386  * bnx2x_io_error_detected - called when PCI error is detected
12387  * @pdev: Pointer to PCI device
12388  * @state: The current pci connection state
12389  *
12390  * This function is called after a PCI bus error affecting
12391  * this device has been detected.
12392  */
12393 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12394                                                 pci_channel_state_t state)
12395 {
12396         struct net_device *dev = pci_get_drvdata(pdev);
12397         struct bnx2x *bp = netdev_priv(dev);
12398
12399         rtnl_lock();
12400
12401         netif_device_detach(dev);
12402
12403         if (state == pci_channel_io_perm_failure) {
12404                 rtnl_unlock();
12405                 return PCI_ERS_RESULT_DISCONNECT;
12406         }
12407
12408         if (netif_running(dev))
12409                 bnx2x_eeh_nic_unload(bp);
12410
12411         pci_disable_device(pdev);
12412
12413         rtnl_unlock();
12414
12415         /* Request a slot reset */
12416         return PCI_ERS_RESULT_NEED_RESET;
12417 }
12418
12419 /**
12420  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12421  * @pdev: Pointer to PCI device
12422  *
12423  * Restart the card from scratch, as if from a cold-boot.
12424  */
12425 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12426 {
12427         struct net_device *dev = pci_get_drvdata(pdev);
12428         struct bnx2x *bp = netdev_priv(dev);
12429
12430         rtnl_lock();
12431
12432         if (pci_enable_device(pdev)) {
12433                 dev_err(&pdev->dev,
12434                         "Cannot re-enable PCI device after reset\n");
12435                 rtnl_unlock();
12436                 return PCI_ERS_RESULT_DISCONNECT;
12437         }
12438
12439         pci_set_master(pdev);
12440         pci_restore_state(pdev);
12441
12442         if (netif_running(dev))
12443                 bnx2x_set_power_state(bp, PCI_D0);
12444
12445         rtnl_unlock();
12446
12447         return PCI_ERS_RESULT_RECOVERED;
12448 }
12449
12450 /**
12451  * bnx2x_io_resume - called when traffic can start flowing again
12452  * @pdev: Pointer to PCI device
12453  *
12454  * This callback is called when the error recovery driver tells us that
12455  * its OK to resume normal operation.
12456  */
12457 static void bnx2x_io_resume(struct pci_dev *pdev)
12458 {
12459         struct net_device *dev = pci_get_drvdata(pdev);
12460         struct bnx2x *bp = netdev_priv(dev);
12461
12462         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12463                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12464                 return;
12465         }
12466
12467         rtnl_lock();
12468
12469         bnx2x_eeh_recover(bp);
12470
12471         if (netif_running(dev))
12472                 bnx2x_nic_load(bp, LOAD_NORMAL);
12473
12474         netif_device_attach(dev);
12475
12476         rtnl_unlock();
12477 }
12478
12479 static const struct pci_error_handlers bnx2x_err_handler = {
12480         .error_detected = bnx2x_io_error_detected,
12481         .slot_reset     = bnx2x_io_slot_reset,
12482         .resume         = bnx2x_io_resume,
12483 };
12484
12485 static struct pci_driver bnx2x_pci_driver = {
12486         .name        = DRV_MODULE_NAME,
12487         .id_table    = bnx2x_pci_tbl,
12488         .probe       = bnx2x_init_one,
12489         .remove      = bnx2x_remove_one,
12490         .suspend     = bnx2x_suspend,
12491         .resume      = bnx2x_resume,
12492         .err_handler = &bnx2x_err_handler,
12493 };
12494
12495 static int __init bnx2x_init(void)
12496 {
12497         int ret;
12498
12499         pr_info("%s", version);
12500
12501         bnx2x_wq = create_singlethread_workqueue("bnx2x");
12502         if (bnx2x_wq == NULL) {
12503                 pr_err("Cannot create workqueue\n");
12504                 return -ENOMEM;
12505         }
12506
12507         ret = pci_register_driver(&bnx2x_pci_driver);
12508         if (ret) {
12509                 pr_err("Cannot register driver\n");
12510                 destroy_workqueue(bnx2x_wq);
12511         }
12512         return ret;
12513 }
12514
12515 static void __exit bnx2x_cleanup(void)
12516 {
12517         struct list_head *pos, *q;
12518         pci_unregister_driver(&bnx2x_pci_driver);
12519
12520         destroy_workqueue(bnx2x_wq);
12521
12522         /* Free globablly allocated resources */
12523         list_for_each_safe(pos, q, &bnx2x_prev_list) {
12524                 struct bnx2x_prev_path_list *tmp =
12525                         list_entry(pos, struct bnx2x_prev_path_list, list);
12526                 list_del(pos);
12527                 kfree(tmp);
12528         }
12529 }
12530
12531 void bnx2x_notify_link_changed(struct bnx2x *bp)
12532 {
12533         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12534 }
12535
12536 module_init(bnx2x_init);
12537 module_exit(bnx2x_cleanup);
12538
12539 /**
12540  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12541  *
12542  * @bp:         driver handle
12543  * @set:        set or clear the CAM entry
12544  *
12545  * This function will wait until the ramdord completion returns.
12546  * Return 0 if success, -ENODEV if ramrod doesn't return.
12547  */
12548 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12549 {
12550         unsigned long ramrod_flags = 0;
12551
12552         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12553         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12554                                  &bp->iscsi_l2_mac_obj, true,
12555                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12556 }
12557
12558 /* count denotes the number of new completions we have seen */
12559 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12560 {
12561         struct eth_spe *spe;
12562         int cxt_index, cxt_offset;
12563
12564 #ifdef BNX2X_STOP_ON_ERROR
12565         if (unlikely(bp->panic))
12566                 return;
12567 #endif
12568
12569         spin_lock_bh(&bp->spq_lock);
12570         BUG_ON(bp->cnic_spq_pending < count);
12571         bp->cnic_spq_pending -= count;
12572
12573
12574         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
12575                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
12576                                 & SPE_HDR_CONN_TYPE) >>
12577                                 SPE_HDR_CONN_TYPE_SHIFT;
12578                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
12579                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
12580
12581                 /* Set validation for iSCSI L2 client before sending SETUP
12582                  *  ramrod
12583                  */
12584                 if (type == ETH_CONNECTION_TYPE) {
12585                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
12586                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
12587                                         ILT_PAGE_CIDS;
12588                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
12589                                         (cxt_index * ILT_PAGE_CIDS);
12590                                 bnx2x_set_ctx_validation(bp,
12591                                         &bp->context[cxt_index].
12592                                                          vcxt[cxt_offset].eth,
12593                                         BNX2X_ISCSI_ETH_CID(bp));
12594                         }
12595                 }
12596
12597                 /*
12598                  * There may be not more than 8 L2, not more than 8 L5 SPEs
12599                  * and in the air. We also check that number of outstanding
12600                  * COMMON ramrods is not more than the EQ and SPQ can
12601                  * accommodate.
12602                  */
12603                 if (type == ETH_CONNECTION_TYPE) {
12604                         if (!atomic_read(&bp->cq_spq_left))
12605                                 break;
12606                         else
12607                                 atomic_dec(&bp->cq_spq_left);
12608                 } else if (type == NONE_CONNECTION_TYPE) {
12609                         if (!atomic_read(&bp->eq_spq_left))
12610                                 break;
12611                         else
12612                                 atomic_dec(&bp->eq_spq_left);
12613                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
12614                            (type == FCOE_CONNECTION_TYPE)) {
12615                         if (bp->cnic_spq_pending >=
12616                             bp->cnic_eth_dev.max_kwqe_pending)
12617                                 break;
12618                         else
12619                                 bp->cnic_spq_pending++;
12620                 } else {
12621                         BNX2X_ERR("Unknown SPE type: %d\n", type);
12622                         bnx2x_panic();
12623                         break;
12624                 }
12625
12626                 spe = bnx2x_sp_get_next(bp);
12627                 *spe = *bp->cnic_kwq_cons;
12628
12629                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
12630                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
12631
12632                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
12633                         bp->cnic_kwq_cons = bp->cnic_kwq;
12634                 else
12635                         bp->cnic_kwq_cons++;
12636         }
12637         bnx2x_sp_prod_update(bp);
12638         spin_unlock_bh(&bp->spq_lock);
12639 }
12640
12641 static int bnx2x_cnic_sp_queue(struct net_device *dev,
12642                                struct kwqe_16 *kwqes[], u32 count)
12643 {
12644         struct bnx2x *bp = netdev_priv(dev);
12645         int i;
12646
12647 #ifdef BNX2X_STOP_ON_ERROR
12648         if (unlikely(bp->panic)) {
12649                 BNX2X_ERR("Can't post to SP queue while panic\n");
12650                 return -EIO;
12651         }
12652 #endif
12653
12654         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
12655             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
12656                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
12657                 return -EAGAIN;
12658         }
12659
12660         spin_lock_bh(&bp->spq_lock);
12661
12662         for (i = 0; i < count; i++) {
12663                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
12664
12665                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
12666                         break;
12667
12668                 *bp->cnic_kwq_prod = *spe;
12669
12670                 bp->cnic_kwq_pending++;
12671
12672                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
12673                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
12674                    spe->data.update_data_addr.hi,
12675                    spe->data.update_data_addr.lo,
12676                    bp->cnic_kwq_pending);
12677
12678                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
12679                         bp->cnic_kwq_prod = bp->cnic_kwq;
12680                 else
12681                         bp->cnic_kwq_prod++;
12682         }
12683
12684         spin_unlock_bh(&bp->spq_lock);
12685
12686         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
12687                 bnx2x_cnic_sp_post(bp, 0);
12688
12689         return i;
12690 }
12691
12692 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12693 {
12694         struct cnic_ops *c_ops;
12695         int rc = 0;
12696
12697         mutex_lock(&bp->cnic_mutex);
12698         c_ops = rcu_dereference_protected(bp->cnic_ops,
12699                                           lockdep_is_held(&bp->cnic_mutex));
12700         if (c_ops)
12701                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12702         mutex_unlock(&bp->cnic_mutex);
12703
12704         return rc;
12705 }
12706
12707 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12708 {
12709         struct cnic_ops *c_ops;
12710         int rc = 0;
12711
12712         rcu_read_lock();
12713         c_ops = rcu_dereference(bp->cnic_ops);
12714         if (c_ops)
12715                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12716         rcu_read_unlock();
12717
12718         return rc;
12719 }
12720
12721 /*
12722  * for commands that have no data
12723  */
12724 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
12725 {
12726         struct cnic_ctl_info ctl = {0};
12727
12728         ctl.cmd = cmd;
12729
12730         return bnx2x_cnic_ctl_send(bp, &ctl);
12731 }
12732
12733 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
12734 {
12735         struct cnic_ctl_info ctl = {0};
12736
12737         /* first we tell CNIC and only then we count this as a completion */
12738         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
12739         ctl.data.comp.cid = cid;
12740         ctl.data.comp.error = err;
12741
12742         bnx2x_cnic_ctl_send_bh(bp, &ctl);
12743         bnx2x_cnic_sp_post(bp, 0);
12744 }
12745
12746
12747 /* Called with netif_addr_lock_bh() taken.
12748  * Sets an rx_mode config for an iSCSI ETH client.
12749  * Doesn't block.
12750  * Completion should be checked outside.
12751  */
12752 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
12753 {
12754         unsigned long accept_flags = 0, ramrod_flags = 0;
12755         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12756         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
12757
12758         if (start) {
12759                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
12760                  * because it's the only way for UIO Queue to accept
12761                  * multicasts (in non-promiscuous mode only one Queue per
12762                  * function will receive multicast packets (leading in our
12763                  * case).
12764                  */
12765                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
12766                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
12767                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
12768                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
12769
12770                 /* Clear STOP_PENDING bit if START is requested */
12771                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
12772
12773                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
12774         } else
12775                 /* Clear START_PENDING bit if STOP is requested */
12776                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
12777
12778         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
12779                 set_bit(sched_state, &bp->sp_state);
12780         else {
12781                 __set_bit(RAMROD_RX, &ramrod_flags);
12782                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
12783                                     ramrod_flags);
12784         }
12785 }
12786
12787
12788 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
12789 {
12790         struct bnx2x *bp = netdev_priv(dev);
12791         int rc = 0;
12792
12793         switch (ctl->cmd) {
12794         case DRV_CTL_CTXTBL_WR_CMD: {
12795                 u32 index = ctl->data.io.offset;
12796                 dma_addr_t addr = ctl->data.io.dma_addr;
12797
12798                 bnx2x_ilt_wr(bp, index, addr);
12799                 break;
12800         }
12801
12802         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12803                 int count = ctl->data.credit.credit_count;
12804
12805                 bnx2x_cnic_sp_post(bp, count);
12806                 break;
12807         }
12808
12809         /* rtnl_lock is held.  */
12810         case DRV_CTL_START_L2_CMD: {
12811                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12812                 unsigned long sp_bits = 0;
12813
12814                 /* Configure the iSCSI classification object */
12815                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12816                                    cp->iscsi_l2_client_id,
12817                                    cp->iscsi_l2_cid, BP_FUNC(bp),
12818                                    bnx2x_sp(bp, mac_rdata),
12819                                    bnx2x_sp_mapping(bp, mac_rdata),
12820                                    BNX2X_FILTER_MAC_PENDING,
12821                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12822                                    &bp->macs_pool);
12823
12824                 /* Set iSCSI MAC address */
12825                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12826                 if (rc)
12827                         break;
12828
12829                 mmiowb();
12830                 barrier();
12831
12832                 /* Start accepting on iSCSI L2 ring */
12833
12834                 netif_addr_lock_bh(dev);
12835                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
12836                 netif_addr_unlock_bh(dev);
12837
12838                 /* bits to wait on */
12839                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12840                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12841
12842                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
12843                         BNX2X_ERR("rx_mode completion timed out!\n");
12844
12845                 break;
12846         }
12847
12848         /* rtnl_lock is held.  */
12849         case DRV_CTL_STOP_L2_CMD: {
12850                 unsigned long sp_bits = 0;
12851
12852                 /* Stop accepting on iSCSI L2 ring */
12853                 netif_addr_lock_bh(dev);
12854                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
12855                 netif_addr_unlock_bh(dev);
12856
12857                 /* bits to wait on */
12858                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12859                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12860
12861                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
12862                         BNX2X_ERR("rx_mode completion timed out!\n");
12863
12864                 mmiowb();
12865                 barrier();
12866
12867                 /* Unset iSCSI L2 MAC */
12868                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12869                                         BNX2X_ISCSI_ETH_MAC, true);
12870                 break;
12871         }
12872         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12873                 int count = ctl->data.credit.credit_count;
12874
12875                 smp_mb__before_atomic_inc();
12876                 atomic_add(count, &bp->cq_spq_left);
12877                 smp_mb__after_atomic_inc();
12878                 break;
12879         }
12880         case DRV_CTL_ULP_REGISTER_CMD: {
12881                 int ulp_type = ctl->data.register_data.ulp_type;
12882
12883                 if (CHIP_IS_E3(bp)) {
12884                         int idx = BP_FW_MB_IDX(bp);
12885                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12886                         int path = BP_PATH(bp);
12887                         int port = BP_PORT(bp);
12888                         int i;
12889                         u32 scratch_offset;
12890                         u32 *host_addr;
12891
12892                         /* first write capability to shmem2 */
12893                         if (ulp_type == CNIC_ULP_ISCSI)
12894                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12895                         else if (ulp_type == CNIC_ULP_FCOE)
12896                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12897                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12898
12899                         if ((ulp_type != CNIC_ULP_FCOE) ||
12900                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
12901                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
12902                                 break;
12903
12904                         /* if reached here - should write fcoe capabilities */
12905                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
12906                         if (!scratch_offset)
12907                                 break;
12908                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
12909                                                    fcoe_features[path][port]);
12910                         host_addr = (u32 *) &(ctl->data.register_data.
12911                                               fcoe_features);
12912                         for (i = 0; i < sizeof(struct fcoe_capabilities);
12913                              i += 4)
12914                                 REG_WR(bp, scratch_offset + i,
12915                                        *(host_addr + i/4));
12916                 }
12917                 break;
12918         }
12919
12920         case DRV_CTL_ULP_UNREGISTER_CMD: {
12921                 int ulp_type = ctl->data.ulp_type;
12922
12923                 if (CHIP_IS_E3(bp)) {
12924                         int idx = BP_FW_MB_IDX(bp);
12925                         u32 cap;
12926
12927                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12928                         if (ulp_type == CNIC_ULP_ISCSI)
12929                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12930                         else if (ulp_type == CNIC_ULP_FCOE)
12931                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12932                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12933                 }
12934                 break;
12935         }
12936
12937         default:
12938                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
12939                 rc = -EINVAL;
12940         }
12941
12942         return rc;
12943 }
12944
12945 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12946 {
12947         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12948
12949         if (bp->flags & USING_MSIX_FLAG) {
12950                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12951                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12952                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
12953         } else {
12954                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12955                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12956         }
12957         if (!CHIP_IS_E1x(bp))
12958                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12959         else
12960                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12961
12962         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
12963         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12964         cp->irq_arr[1].status_blk = bp->def_status_blk;
12965         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12966         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12967
12968         cp->num_irq = 2;
12969 }
12970
12971 void bnx2x_setup_cnic_info(struct bnx2x *bp)
12972 {
12973         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12974
12975
12976         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12977                              bnx2x_cid_ilt_lines(bp);
12978         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12979         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12980         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12981
12982         if (NO_ISCSI_OOO(bp))
12983                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12984 }
12985
12986 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12987                                void *data)
12988 {
12989         struct bnx2x *bp = netdev_priv(dev);
12990         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12991         int rc;
12992
12993         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
12994
12995         if (ops == NULL) {
12996                 BNX2X_ERR("NULL ops received\n");
12997                 return -EINVAL;
12998         }
12999
13000         if (!CNIC_SUPPORT(bp)) {
13001                 BNX2X_ERR("Can't register CNIC when not supported\n");
13002                 return -EOPNOTSUPP;
13003         }
13004
13005         if (!CNIC_LOADED(bp)) {
13006                 rc = bnx2x_load_cnic(bp);
13007                 if (rc) {
13008                         BNX2X_ERR("CNIC-related load failed\n");
13009                         return rc;
13010                 }
13011
13012         }
13013
13014         bp->cnic_enabled = true;
13015
13016         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13017         if (!bp->cnic_kwq)
13018                 return -ENOMEM;
13019
13020         bp->cnic_kwq_cons = bp->cnic_kwq;
13021         bp->cnic_kwq_prod = bp->cnic_kwq;
13022         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13023
13024         bp->cnic_spq_pending = 0;
13025         bp->cnic_kwq_pending = 0;
13026
13027         bp->cnic_data = data;
13028
13029         cp->num_irq = 0;
13030         cp->drv_state |= CNIC_DRV_STATE_REGD;
13031         cp->iro_arr = bp->iro_arr;
13032
13033         bnx2x_setup_cnic_irq_info(bp);
13034
13035         rcu_assign_pointer(bp->cnic_ops, ops);
13036
13037         return 0;
13038 }
13039
13040 static int bnx2x_unregister_cnic(struct net_device *dev)
13041 {
13042         struct bnx2x *bp = netdev_priv(dev);
13043         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13044
13045         mutex_lock(&bp->cnic_mutex);
13046         cp->drv_state = 0;
13047         RCU_INIT_POINTER(bp->cnic_ops, NULL);
13048         mutex_unlock(&bp->cnic_mutex);
13049         synchronize_rcu();
13050         kfree(bp->cnic_kwq);
13051         bp->cnic_kwq = NULL;
13052
13053         return 0;
13054 }
13055
13056 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13057 {
13058         struct bnx2x *bp = netdev_priv(dev);
13059         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13060
13061         /* If both iSCSI and FCoE are disabled - return NULL in
13062          * order to indicate CNIC that it should not try to work
13063          * with this device.
13064          */
13065         if (NO_ISCSI(bp) && NO_FCOE(bp))
13066                 return NULL;
13067
13068         cp->drv_owner = THIS_MODULE;
13069         cp->chip_id = CHIP_ID(bp);
13070         cp->pdev = bp->pdev;
13071         cp->io_base = bp->regview;
13072         cp->io_base2 = bp->doorbells;
13073         cp->max_kwqe_pending = 8;
13074         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13075         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13076                              bnx2x_cid_ilt_lines(bp);
13077         cp->ctx_tbl_len = CNIC_ILT_LINES;
13078         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13079         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13080         cp->drv_ctl = bnx2x_drv_ctl;
13081         cp->drv_register_cnic = bnx2x_register_cnic;
13082         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13083         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13084         cp->iscsi_l2_client_id =
13085                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13086         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13087
13088         if (NO_ISCSI_OOO(bp))
13089                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13090
13091         if (NO_ISCSI(bp))
13092                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13093
13094         if (NO_FCOE(bp))
13095                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13096
13097         BNX2X_DEV_INFO(
13098                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13099            cp->ctx_blk_size,
13100            cp->ctx_tbl_offset,
13101            cp->ctx_tbl_len,
13102            cp->starting_cid);
13103         return cp;
13104 }
13105
13106