]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
Merge remote-tracking branch 'asoc/fix/rt5645' into asoc-linus
[karo-tx-linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT         (5 * HZ)
60
61 static const char version[] =
62         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 92
73
74 enum board_idx {
75         BCM57301,
76         BCM57302,
77         BCM57304,
78         BCM57402,
79         BCM57404,
80         BCM57406,
81         BCM57304_VF,
82         BCM57404_VF,
83 };
84
85 /* indexed by enum above */
86 static const struct {
87         char *name;
88 } board_info[] = {
89         { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90         { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91         { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92         { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93         { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94         { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95         { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96         { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110         { 0 }
111 };
112
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114
115 static const u16 bnxt_vf_req_snif[] = {
116         HWRM_FUNC_CFG,
117         HWRM_PORT_PHY_QCFG,
118         HWRM_CFA_L2_FILTER_ALLOC,
119 };
120
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123         return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125
126 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
129
130 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
131                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132
133 #define BNXT_CP_DB(db, raw_cons)                                        \
134                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135
136 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
137                 writel(DB_CP_IRQ_DIS_FLAGS, db)
138
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141         /* Tell compiler to fetch tx indices from memory. */
142         barrier();
143
144         return bp->tx_ring_size -
145                 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147
148 static const u16 bnxt_lhint_arr[] = {
149         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150         TX_BD_FLAGS_LHINT_512_TO_1023,
151         TX_BD_FLAGS_LHINT_1024_TO_2047,
152         TX_BD_FLAGS_LHINT_1024_TO_2047,
153         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172         struct bnxt *bp = netdev_priv(dev);
173         struct tx_bd *txbd;
174         struct tx_bd_ext *txbd1;
175         struct netdev_queue *txq;
176         int i;
177         dma_addr_t mapping;
178         unsigned int length, pad = 0;
179         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180         u16 prod, last_frag;
181         struct pci_dev *pdev = bp->pdev;
182         struct bnxt_tx_ring_info *txr;
183         struct bnxt_sw_tx_bd *tx_buf;
184
185         i = skb_get_queue_mapping(skb);
186         if (unlikely(i >= bp->tx_nr_rings)) {
187                 dev_kfree_skb_any(skb);
188                 return NETDEV_TX_OK;
189         }
190
191         txr = &bp->tx_ring[i];
192         txq = netdev_get_tx_queue(dev, i);
193         prod = txr->tx_prod;
194
195         free_size = bnxt_tx_avail(bp, txr);
196         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197                 netif_tx_stop_queue(txq);
198                 return NETDEV_TX_BUSY;
199         }
200
201         length = skb->len;
202         len = skb_headlen(skb);
203         last_frag = skb_shinfo(skb)->nr_frags;
204
205         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206
207         txbd->tx_bd_opaque = prod;
208
209         tx_buf = &txr->tx_buf_ring[prod];
210         tx_buf->skb = skb;
211         tx_buf->nr_frags = last_frag;
212
213         vlan_tag_flags = 0;
214         cfa_action = 0;
215         if (skb_vlan_tag_present(skb)) {
216                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217                                  skb_vlan_tag_get(skb);
218                 /* Currently supports 8021Q, 8021AD vlan offloads
219                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220                  */
221                 if (skb->vlan_proto == htons(ETH_P_8021Q))
222                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223         }
224
225         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226                 struct tx_push_bd *push = txr->tx_push;
227                 struct tx_bd *tx_push = &push->txbd1;
228                 struct tx_bd_ext *tx_push1 = &push->txbd2;
229                 void *pdata = tx_push1 + 1;
230                 int j;
231
232                 /* Set COAL_NOW to be ready quickly for the next push */
233                 tx_push->tx_bd_len_flags_type =
234                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
235                                         TX_BD_TYPE_LONG_TX_BD |
236                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
237                                         TX_BD_FLAGS_COAL_NOW |
238                                         TX_BD_FLAGS_PACKET_END |
239                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
240
241                 if (skb->ip_summed == CHECKSUM_PARTIAL)
242                         tx_push1->tx_bd_hsize_lflags =
243                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
244                 else
245                         tx_push1->tx_bd_hsize_lflags = 0;
246
247                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
248                 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
249
250                 skb_copy_from_linear_data(skb, pdata, len);
251                 pdata += len;
252                 for (j = 0; j < last_frag; j++) {
253                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
254                         void *fptr;
255
256                         fptr = skb_frag_address_safe(frag);
257                         if (!fptr)
258                                 goto normal_tx;
259
260                         memcpy(pdata, fptr, skb_frag_size(frag));
261                         pdata += skb_frag_size(frag);
262                 }
263
264                 memcpy(txbd, tx_push, sizeof(*txbd));
265                 prod = NEXT_TX(prod);
266                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
267                 memcpy(txbd, tx_push1, sizeof(*txbd));
268                 prod = NEXT_TX(prod);
269                 push->doorbell =
270                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
271                 txr->tx_prod = prod;
272
273                 netdev_tx_sent_queue(txq, skb->len);
274
275                 __iowrite64_copy(txr->tx_doorbell, push,
276                                  (length + sizeof(*push) + 8) / 8);
277
278                 tx_buf->is_push = 1;
279
280                 goto tx_done;
281         }
282
283 normal_tx:
284         if (length < BNXT_MIN_PKT_SIZE) {
285                 pad = BNXT_MIN_PKT_SIZE - length;
286                 if (skb_pad(skb, pad)) {
287                         /* SKB already freed. */
288                         tx_buf->skb = NULL;
289                         return NETDEV_TX_OK;
290                 }
291                 length = BNXT_MIN_PKT_SIZE;
292         }
293
294         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
295
296         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
297                 dev_kfree_skb_any(skb);
298                 tx_buf->skb = NULL;
299                 return NETDEV_TX_OK;
300         }
301
302         dma_unmap_addr_set(tx_buf, mapping, mapping);
303         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
304                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
305
306         txbd->tx_bd_haddr = cpu_to_le64(mapping);
307
308         prod = NEXT_TX(prod);
309         txbd1 = (struct tx_bd_ext *)
310                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
311
312         txbd1->tx_bd_hsize_lflags = 0;
313         if (skb_is_gso(skb)) {
314                 u32 hdr_len;
315
316                 if (skb->encapsulation)
317                         hdr_len = skb_inner_network_offset(skb) +
318                                 skb_inner_network_header_len(skb) +
319                                 inner_tcp_hdrlen(skb);
320                 else
321                         hdr_len = skb_transport_offset(skb) +
322                                 tcp_hdrlen(skb);
323
324                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
325                                         TX_BD_FLAGS_T_IPID |
326                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
327                 length = skb_shinfo(skb)->gso_size;
328                 txbd1->tx_bd_mss = cpu_to_le32(length);
329                 length += hdr_len;
330         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
331                 txbd1->tx_bd_hsize_lflags =
332                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
333                 txbd1->tx_bd_mss = 0;
334         }
335
336         length >>= 9;
337         flags |= bnxt_lhint_arr[length];
338         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
339
340         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
341         txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
342         for (i = 0; i < last_frag; i++) {
343                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
344
345                 prod = NEXT_TX(prod);
346                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
347
348                 len = skb_frag_size(frag);
349                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
350                                            DMA_TO_DEVICE);
351
352                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
353                         goto tx_dma_error;
354
355                 tx_buf = &txr->tx_buf_ring[prod];
356                 dma_unmap_addr_set(tx_buf, mapping, mapping);
357
358                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
359
360                 flags = len << TX_BD_LEN_SHIFT;
361                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
362         }
363
364         flags &= ~TX_BD_LEN;
365         txbd->tx_bd_len_flags_type =
366                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
367                             TX_BD_FLAGS_PACKET_END);
368
369         netdev_tx_sent_queue(txq, skb->len);
370
371         /* Sync BD data before updating doorbell */
372         wmb();
373
374         prod = NEXT_TX(prod);
375         txr->tx_prod = prod;
376
377         writel(DB_KEY_TX | prod, txr->tx_doorbell);
378         writel(DB_KEY_TX | prod, txr->tx_doorbell);
379
380 tx_done:
381
382         mmiowb();
383
384         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
385                 netif_tx_stop_queue(txq);
386
387                 /* netif_tx_stop_queue() must be done before checking
388                  * tx index in bnxt_tx_avail() below, because in
389                  * bnxt_tx_int(), we update tx index before checking for
390                  * netif_tx_queue_stopped().
391                  */
392                 smp_mb();
393                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
394                         netif_tx_wake_queue(txq);
395         }
396         return NETDEV_TX_OK;
397
398 tx_dma_error:
399         last_frag = i;
400
401         /* start back at beginning and unmap skb */
402         prod = txr->tx_prod;
403         tx_buf = &txr->tx_buf_ring[prod];
404         tx_buf->skb = NULL;
405         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
406                          skb_headlen(skb), PCI_DMA_TODEVICE);
407         prod = NEXT_TX(prod);
408
409         /* unmap remaining mapped pages */
410         for (i = 0; i < last_frag; i++) {
411                 prod = NEXT_TX(prod);
412                 tx_buf = &txr->tx_buf_ring[prod];
413                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
414                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
415                                PCI_DMA_TODEVICE);
416         }
417
418         dev_kfree_skb_any(skb);
419         return NETDEV_TX_OK;
420 }
421
422 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
423 {
424         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
425         int index = txr - &bp->tx_ring[0];
426         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
427         u16 cons = txr->tx_cons;
428         struct pci_dev *pdev = bp->pdev;
429         int i;
430         unsigned int tx_bytes = 0;
431
432         for (i = 0; i < nr_pkts; i++) {
433                 struct bnxt_sw_tx_bd *tx_buf;
434                 struct sk_buff *skb;
435                 int j, last;
436
437                 tx_buf = &txr->tx_buf_ring[cons];
438                 cons = NEXT_TX(cons);
439                 skb = tx_buf->skb;
440                 tx_buf->skb = NULL;
441
442                 if (tx_buf->is_push) {
443                         tx_buf->is_push = 0;
444                         goto next_tx_int;
445                 }
446
447                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
448                                  skb_headlen(skb), PCI_DMA_TODEVICE);
449                 last = tx_buf->nr_frags;
450
451                 for (j = 0; j < last; j++) {
452                         cons = NEXT_TX(cons);
453                         tx_buf = &txr->tx_buf_ring[cons];
454                         dma_unmap_page(
455                                 &pdev->dev,
456                                 dma_unmap_addr(tx_buf, mapping),
457                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
458                                 PCI_DMA_TODEVICE);
459                 }
460
461 next_tx_int:
462                 cons = NEXT_TX(cons);
463
464                 tx_bytes += skb->len;
465                 dev_kfree_skb_any(skb);
466         }
467
468         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
469         txr->tx_cons = cons;
470
471         /* Need to make the tx_cons update visible to bnxt_start_xmit()
472          * before checking for netif_tx_queue_stopped().  Without the
473          * memory barrier, there is a small possibility that bnxt_start_xmit()
474          * will miss it and cause the queue to be stopped forever.
475          */
476         smp_mb();
477
478         if (unlikely(netif_tx_queue_stopped(txq)) &&
479             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
480                 __netif_tx_lock(txq, smp_processor_id());
481                 if (netif_tx_queue_stopped(txq) &&
482                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
483                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
484                         netif_tx_wake_queue(txq);
485                 __netif_tx_unlock(txq);
486         }
487 }
488
489 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
490                                        gfp_t gfp)
491 {
492         u8 *data;
493         struct pci_dev *pdev = bp->pdev;
494
495         data = kmalloc(bp->rx_buf_size, gfp);
496         if (!data)
497                 return NULL;
498
499         *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
500                                   bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
501
502         if (dma_mapping_error(&pdev->dev, *mapping)) {
503                 kfree(data);
504                 data = NULL;
505         }
506         return data;
507 }
508
509 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
510                                      struct bnxt_rx_ring_info *rxr,
511                                      u16 prod, gfp_t gfp)
512 {
513         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
514         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
515         u8 *data;
516         dma_addr_t mapping;
517
518         data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
519         if (!data)
520                 return -ENOMEM;
521
522         rx_buf->data = data;
523         dma_unmap_addr_set(rx_buf, mapping, mapping);
524
525         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
526
527         return 0;
528 }
529
530 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
531                                u8 *data)
532 {
533         u16 prod = rxr->rx_prod;
534         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
535         struct rx_bd *cons_bd, *prod_bd;
536
537         prod_rx_buf = &rxr->rx_buf_ring[prod];
538         cons_rx_buf = &rxr->rx_buf_ring[cons];
539
540         prod_rx_buf->data = data;
541
542         dma_unmap_addr_set(prod_rx_buf, mapping,
543                            dma_unmap_addr(cons_rx_buf, mapping));
544
545         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
546         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
547
548         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
549 }
550
551 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
552 {
553         u16 next, max = rxr->rx_agg_bmap_size;
554
555         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
556         if (next >= max)
557                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
558         return next;
559 }
560
561 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
562                                      struct bnxt_rx_ring_info *rxr,
563                                      u16 prod, gfp_t gfp)
564 {
565         struct rx_bd *rxbd =
566                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
567         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
568         struct pci_dev *pdev = bp->pdev;
569         struct page *page;
570         dma_addr_t mapping;
571         u16 sw_prod = rxr->rx_sw_agg_prod;
572
573         page = alloc_page(gfp);
574         if (!page)
575                 return -ENOMEM;
576
577         mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
578                                PCI_DMA_FROMDEVICE);
579         if (dma_mapping_error(&pdev->dev, mapping)) {
580                 __free_page(page);
581                 return -EIO;
582         }
583
584         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
585                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
586
587         __set_bit(sw_prod, rxr->rx_agg_bmap);
588         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
589         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
590
591         rx_agg_buf->page = page;
592         rx_agg_buf->mapping = mapping;
593         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
594         rxbd->rx_bd_opaque = sw_prod;
595         return 0;
596 }
597
598 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
599                                    u32 agg_bufs)
600 {
601         struct bnxt *bp = bnapi->bp;
602         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
603         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
604         u16 prod = rxr->rx_agg_prod;
605         u16 sw_prod = rxr->rx_sw_agg_prod;
606         u32 i;
607
608         for (i = 0; i < agg_bufs; i++) {
609                 u16 cons;
610                 struct rx_agg_cmp *agg;
611                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
612                 struct rx_bd *prod_bd;
613                 struct page *page;
614
615                 agg = (struct rx_agg_cmp *)
616                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
617                 cons = agg->rx_agg_cmp_opaque;
618                 __clear_bit(cons, rxr->rx_agg_bmap);
619
620                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
621                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
622
623                 __set_bit(sw_prod, rxr->rx_agg_bmap);
624                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
625                 cons_rx_buf = &rxr->rx_agg_ring[cons];
626
627                 /* It is possible for sw_prod to be equal to cons, so
628                  * set cons_rx_buf->page to NULL first.
629                  */
630                 page = cons_rx_buf->page;
631                 cons_rx_buf->page = NULL;
632                 prod_rx_buf->page = page;
633
634                 prod_rx_buf->mapping = cons_rx_buf->mapping;
635
636                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
637
638                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
639                 prod_bd->rx_bd_opaque = sw_prod;
640
641                 prod = NEXT_RX_AGG(prod);
642                 sw_prod = NEXT_RX_AGG(sw_prod);
643                 cp_cons = NEXT_CMP(cp_cons);
644         }
645         rxr->rx_agg_prod = prod;
646         rxr->rx_sw_agg_prod = sw_prod;
647 }
648
649 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
650                                    struct bnxt_rx_ring_info *rxr, u16 cons,
651                                    u16 prod, u8 *data, dma_addr_t dma_addr,
652                                    unsigned int len)
653 {
654         int err;
655         struct sk_buff *skb;
656
657         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
658         if (unlikely(err)) {
659                 bnxt_reuse_rx_data(rxr, cons, data);
660                 return NULL;
661         }
662
663         skb = build_skb(data, 0);
664         dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
665                          PCI_DMA_FROMDEVICE);
666         if (!skb) {
667                 kfree(data);
668                 return NULL;
669         }
670
671         skb_reserve(skb, BNXT_RX_OFFSET);
672         skb_put(skb, len);
673         return skb;
674 }
675
676 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
677                                      struct sk_buff *skb, u16 cp_cons,
678                                      u32 agg_bufs)
679 {
680         struct pci_dev *pdev = bp->pdev;
681         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
682         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
683         u16 prod = rxr->rx_agg_prod;
684         u32 i;
685
686         for (i = 0; i < agg_bufs; i++) {
687                 u16 cons, frag_len;
688                 struct rx_agg_cmp *agg;
689                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
690                 struct page *page;
691                 dma_addr_t mapping;
692
693                 agg = (struct rx_agg_cmp *)
694                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
695                 cons = agg->rx_agg_cmp_opaque;
696                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
697                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
698
699                 cons_rx_buf = &rxr->rx_agg_ring[cons];
700                 skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
701                 __clear_bit(cons, rxr->rx_agg_bmap);
702
703                 /* It is possible for bnxt_alloc_rx_page() to allocate
704                  * a sw_prod index that equals the cons index, so we
705                  * need to clear the cons entry now.
706                  */
707                 mapping = dma_unmap_addr(cons_rx_buf, mapping);
708                 page = cons_rx_buf->page;
709                 cons_rx_buf->page = NULL;
710
711                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
712                         struct skb_shared_info *shinfo;
713                         unsigned int nr_frags;
714
715                         shinfo = skb_shinfo(skb);
716                         nr_frags = --shinfo->nr_frags;
717                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
718
719                         dev_kfree_skb(skb);
720
721                         cons_rx_buf->page = page;
722
723                         /* Update prod since possibly some pages have been
724                          * allocated already.
725                          */
726                         rxr->rx_agg_prod = prod;
727                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
728                         return NULL;
729                 }
730
731                 dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
732                                PCI_DMA_FROMDEVICE);
733
734                 skb->data_len += frag_len;
735                 skb->len += frag_len;
736                 skb->truesize += PAGE_SIZE;
737
738                 prod = NEXT_RX_AGG(prod);
739                 cp_cons = NEXT_CMP(cp_cons);
740         }
741         rxr->rx_agg_prod = prod;
742         return skb;
743 }
744
745 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
746                                u8 agg_bufs, u32 *raw_cons)
747 {
748         u16 last;
749         struct rx_agg_cmp *agg;
750
751         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
752         last = RING_CMP(*raw_cons);
753         agg = (struct rx_agg_cmp *)
754                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
755         return RX_AGG_CMP_VALID(agg, *raw_cons);
756 }
757
758 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
759                                             unsigned int len,
760                                             dma_addr_t mapping)
761 {
762         struct bnxt *bp = bnapi->bp;
763         struct pci_dev *pdev = bp->pdev;
764         struct sk_buff *skb;
765
766         skb = napi_alloc_skb(&bnapi->napi, len);
767         if (!skb)
768                 return NULL;
769
770         dma_sync_single_for_cpu(&pdev->dev, mapping,
771                                 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
772
773         memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
774
775         dma_sync_single_for_device(&pdev->dev, mapping,
776                                    bp->rx_copy_thresh,
777                                    PCI_DMA_FROMDEVICE);
778
779         skb_put(skb, len);
780         return skb;
781 }
782
783 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
784                            struct rx_tpa_start_cmp *tpa_start,
785                            struct rx_tpa_start_cmp_ext *tpa_start1)
786 {
787         u8 agg_id = TPA_START_AGG_ID(tpa_start);
788         u16 cons, prod;
789         struct bnxt_tpa_info *tpa_info;
790         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
791         struct rx_bd *prod_bd;
792         dma_addr_t mapping;
793
794         cons = tpa_start->rx_tpa_start_cmp_opaque;
795         prod = rxr->rx_prod;
796         cons_rx_buf = &rxr->rx_buf_ring[cons];
797         prod_rx_buf = &rxr->rx_buf_ring[prod];
798         tpa_info = &rxr->rx_tpa[agg_id];
799
800         prod_rx_buf->data = tpa_info->data;
801
802         mapping = tpa_info->mapping;
803         dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
804
805         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
806
807         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
808
809         tpa_info->data = cons_rx_buf->data;
810         cons_rx_buf->data = NULL;
811         tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
812
813         tpa_info->len =
814                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
815                                 RX_TPA_START_CMP_LEN_SHIFT;
816         if (likely(TPA_START_HASH_VALID(tpa_start))) {
817                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
818
819                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
820                 tpa_info->gso_type = SKB_GSO_TCPV4;
821                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
822                 if (hash_type == 3)
823                         tpa_info->gso_type = SKB_GSO_TCPV6;
824                 tpa_info->rss_hash =
825                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
826         } else {
827                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
828                 tpa_info->gso_type = 0;
829                 if (netif_msg_rx_err(bp))
830                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
831         }
832         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
833         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
834
835         rxr->rx_prod = NEXT_RX(prod);
836         cons = NEXT_RX(cons);
837         cons_rx_buf = &rxr->rx_buf_ring[cons];
838
839         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
840         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
841         cons_rx_buf->data = NULL;
842 }
843
844 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
845                            u16 cp_cons, u32 agg_bufs)
846 {
847         if (agg_bufs)
848                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
849 }
850
851 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
852 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
853
854 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
855                                            struct rx_tpa_end_cmp *tpa_end,
856                                            struct rx_tpa_end_cmp_ext *tpa_end1,
857                                            struct sk_buff *skb)
858 {
859 #ifdef CONFIG_INET
860         struct tcphdr *th;
861         int payload_off, tcp_opt_len = 0;
862         int len, nw_off;
863         u16 segs;
864
865         segs = TPA_END_TPA_SEGS(tpa_end);
866         if (segs == 1)
867                 return skb;
868
869         NAPI_GRO_CB(skb)->count = segs;
870         skb_shinfo(skb)->gso_size =
871                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
872         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
873         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
874                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
875                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
876         if (TPA_END_GRO_TS(tpa_end))
877                 tcp_opt_len = 12;
878
879         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
880                 struct iphdr *iph;
881
882                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
883                          ETH_HLEN;
884                 skb_set_network_header(skb, nw_off);
885                 iph = ip_hdr(skb);
886                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
887                 len = skb->len - skb_transport_offset(skb);
888                 th = tcp_hdr(skb);
889                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
890         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
891                 struct ipv6hdr *iph;
892
893                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
894                          ETH_HLEN;
895                 skb_set_network_header(skb, nw_off);
896                 iph = ipv6_hdr(skb);
897                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
898                 len = skb->len - skb_transport_offset(skb);
899                 th = tcp_hdr(skb);
900                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
901         } else {
902                 dev_kfree_skb_any(skb);
903                 return NULL;
904         }
905         tcp_gro_complete(skb);
906
907         if (nw_off) { /* tunnel */
908                 struct udphdr *uh = NULL;
909
910                 if (skb->protocol == htons(ETH_P_IP)) {
911                         struct iphdr *iph = (struct iphdr *)skb->data;
912
913                         if (iph->protocol == IPPROTO_UDP)
914                                 uh = (struct udphdr *)(iph + 1);
915                 } else {
916                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
917
918                         if (iph->nexthdr == IPPROTO_UDP)
919                                 uh = (struct udphdr *)(iph + 1);
920                 }
921                 if (uh) {
922                         if (uh->check)
923                                 skb_shinfo(skb)->gso_type |=
924                                         SKB_GSO_UDP_TUNNEL_CSUM;
925                         else
926                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
927                 }
928         }
929 #endif
930         return skb;
931 }
932
933 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
934                                            struct bnxt_napi *bnapi,
935                                            u32 *raw_cons,
936                                            struct rx_tpa_end_cmp *tpa_end,
937                                            struct rx_tpa_end_cmp_ext *tpa_end1,
938                                            bool *agg_event)
939 {
940         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
941         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
942         u8 agg_id = TPA_END_AGG_ID(tpa_end);
943         u8 *data, agg_bufs;
944         u16 cp_cons = RING_CMP(*raw_cons);
945         unsigned int len;
946         struct bnxt_tpa_info *tpa_info;
947         dma_addr_t mapping;
948         struct sk_buff *skb;
949
950         tpa_info = &rxr->rx_tpa[agg_id];
951         data = tpa_info->data;
952         prefetch(data);
953         len = tpa_info->len;
954         mapping = tpa_info->mapping;
955
956         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
957                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
958
959         if (agg_bufs) {
960                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
961                         return ERR_PTR(-EBUSY);
962
963                 *agg_event = true;
964                 cp_cons = NEXT_CMP(cp_cons);
965         }
966
967         if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
968                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
969                 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
970                             agg_bufs, (int)MAX_SKB_FRAGS);
971                 return NULL;
972         }
973
974         if (len <= bp->rx_copy_thresh) {
975                 skb = bnxt_copy_skb(bnapi, data, len, mapping);
976                 if (!skb) {
977                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
978                         return NULL;
979                 }
980         } else {
981                 u8 *new_data;
982                 dma_addr_t new_mapping;
983
984                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
985                 if (!new_data) {
986                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
987                         return NULL;
988                 }
989
990                 tpa_info->data = new_data;
991                 tpa_info->mapping = new_mapping;
992
993                 skb = build_skb(data, 0);
994                 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
995                                  PCI_DMA_FROMDEVICE);
996
997                 if (!skb) {
998                         kfree(data);
999                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1000                         return NULL;
1001                 }
1002                 skb_reserve(skb, BNXT_RX_OFFSET);
1003                 skb_put(skb, len);
1004         }
1005
1006         if (agg_bufs) {
1007                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1008                 if (!skb) {
1009                         /* Page reuse already handled by bnxt_rx_pages(). */
1010                         return NULL;
1011                 }
1012         }
1013         skb->protocol = eth_type_trans(skb, bp->dev);
1014
1015         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1016                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1017
1018         if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1019                 netdev_features_t features = skb->dev->features;
1020                 u16 vlan_proto = tpa_info->metadata >>
1021                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1022
1023                 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1024                      vlan_proto == ETH_P_8021Q) ||
1025                     ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1026                      vlan_proto == ETH_P_8021AD)) {
1027                         __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1028                                                tpa_info->metadata &
1029                                                RX_CMP_FLAGS2_METADATA_VID_MASK);
1030                 }
1031         }
1032
1033         skb_checksum_none_assert(skb);
1034         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1035                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1036                 skb->csum_level =
1037                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1038         }
1039
1040         if (TPA_END_GRO(tpa_end))
1041                 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1042
1043         return skb;
1044 }
1045
1046 /* returns the following:
1047  * 1       - 1 packet successfully received
1048  * 0       - successful TPA_START, packet not completed yet
1049  * -EBUSY  - completion ring does not have all the agg buffers yet
1050  * -ENOMEM - packet aborted due to out of memory
1051  * -EIO    - packet aborted due to hw error indicated in BD
1052  */
1053 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1054                        bool *agg_event)
1055 {
1056         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1057         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1058         struct net_device *dev = bp->dev;
1059         struct rx_cmp *rxcmp;
1060         struct rx_cmp_ext *rxcmp1;
1061         u32 tmp_raw_cons = *raw_cons;
1062         u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1063         struct bnxt_sw_rx_bd *rx_buf;
1064         unsigned int len;
1065         u8 *data, agg_bufs, cmp_type;
1066         dma_addr_t dma_addr;
1067         struct sk_buff *skb;
1068         int rc = 0;
1069
1070         rxcmp = (struct rx_cmp *)
1071                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1072
1073         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1074         cp_cons = RING_CMP(tmp_raw_cons);
1075         rxcmp1 = (struct rx_cmp_ext *)
1076                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1077
1078         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1079                 return -EBUSY;
1080
1081         cmp_type = RX_CMP_TYPE(rxcmp);
1082
1083         prod = rxr->rx_prod;
1084
1085         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1086                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1087                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1088
1089                 goto next_rx_no_prod;
1090
1091         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1092                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1093                                    (struct rx_tpa_end_cmp *)rxcmp,
1094                                    (struct rx_tpa_end_cmp_ext *)rxcmp1,
1095                                    agg_event);
1096
1097                 if (unlikely(IS_ERR(skb)))
1098                         return -EBUSY;
1099
1100                 rc = -ENOMEM;
1101                 if (likely(skb)) {
1102                         skb_record_rx_queue(skb, bnapi->index);
1103                         skb_mark_napi_id(skb, &bnapi->napi);
1104                         if (bnxt_busy_polling(bnapi))
1105                                 netif_receive_skb(skb);
1106                         else
1107                                 napi_gro_receive(&bnapi->napi, skb);
1108                         rc = 1;
1109                 }
1110                 goto next_rx_no_prod;
1111         }
1112
1113         cons = rxcmp->rx_cmp_opaque;
1114         rx_buf = &rxr->rx_buf_ring[cons];
1115         data = rx_buf->data;
1116         prefetch(data);
1117
1118         agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1119                                 RX_CMP_AGG_BUFS_SHIFT;
1120
1121         if (agg_bufs) {
1122                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1123                         return -EBUSY;
1124
1125                 cp_cons = NEXT_CMP(cp_cons);
1126                 *agg_event = true;
1127         }
1128
1129         rx_buf->data = NULL;
1130         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1131                 bnxt_reuse_rx_data(rxr, cons, data);
1132                 if (agg_bufs)
1133                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1134
1135                 rc = -EIO;
1136                 goto next_rx;
1137         }
1138
1139         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1140         dma_addr = dma_unmap_addr(rx_buf, mapping);
1141
1142         if (len <= bp->rx_copy_thresh) {
1143                 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1144                 bnxt_reuse_rx_data(rxr, cons, data);
1145                 if (!skb) {
1146                         rc = -ENOMEM;
1147                         goto next_rx;
1148                 }
1149         } else {
1150                 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1151                 if (!skb) {
1152                         rc = -ENOMEM;
1153                         goto next_rx;
1154                 }
1155         }
1156
1157         if (agg_bufs) {
1158                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1159                 if (!skb) {
1160                         rc = -ENOMEM;
1161                         goto next_rx;
1162                 }
1163         }
1164
1165         if (RX_CMP_HASH_VALID(rxcmp)) {
1166                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1167                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1168
1169                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1170                 if (hash_type != 1 && hash_type != 3)
1171                         type = PKT_HASH_TYPE_L3;
1172                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1173         }
1174
1175         skb->protocol = eth_type_trans(skb, dev);
1176
1177         if (rxcmp1->rx_cmp_flags2 &
1178             cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1179                 netdev_features_t features = skb->dev->features;
1180                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1181                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1182
1183                 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1184                      vlan_proto == ETH_P_8021Q) ||
1185                     ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1186                      vlan_proto == ETH_P_8021AD))
1187                         __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1188                                                meta_data &
1189                                                RX_CMP_FLAGS2_METADATA_VID_MASK);
1190         }
1191
1192         skb_checksum_none_assert(skb);
1193         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1194                 if (dev->features & NETIF_F_RXCSUM) {
1195                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1196                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1197                 }
1198         } else {
1199                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1200                         if (dev->features & NETIF_F_RXCSUM)
1201                                 cpr->rx_l4_csum_errors++;
1202                 }
1203         }
1204
1205         skb_record_rx_queue(skb, bnapi->index);
1206         skb_mark_napi_id(skb, &bnapi->napi);
1207         if (bnxt_busy_polling(bnapi))
1208                 netif_receive_skb(skb);
1209         else
1210                 napi_gro_receive(&bnapi->napi, skb);
1211         rc = 1;
1212
1213 next_rx:
1214         rxr->rx_prod = NEXT_RX(prod);
1215
1216 next_rx_no_prod:
1217         *raw_cons = tmp_raw_cons;
1218
1219         return rc;
1220 }
1221
1222 static int bnxt_async_event_process(struct bnxt *bp,
1223                                     struct hwrm_async_event_cmpl *cmpl)
1224 {
1225         u16 event_id = le16_to_cpu(cmpl->event_id);
1226
1227         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1228         switch (event_id) {
1229         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1230                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1231                 schedule_work(&bp->sp_task);
1232                 break;
1233         default:
1234                 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1235                            event_id);
1236                 break;
1237         }
1238         return 0;
1239 }
1240
1241 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1242 {
1243         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1244         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1245         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1246                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1247
1248         switch (cmpl_type) {
1249         case CMPL_BASE_TYPE_HWRM_DONE:
1250                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1251                 if (seq_id == bp->hwrm_intr_seq_id)
1252                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1253                 else
1254                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1255                 break;
1256
1257         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1258                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1259
1260                 if ((vf_id < bp->pf.first_vf_id) ||
1261                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1262                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1263                                    vf_id);
1264                         return -EINVAL;
1265                 }
1266
1267                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1268                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1269                 schedule_work(&bp->sp_task);
1270                 break;
1271
1272         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1273                 bnxt_async_event_process(bp,
1274                                          (struct hwrm_async_event_cmpl *)txcmp);
1275
1276         default:
1277                 break;
1278         }
1279
1280         return 0;
1281 }
1282
1283 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1284 {
1285         struct bnxt_napi *bnapi = dev_instance;
1286         struct bnxt *bp = bnapi->bp;
1287         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1288         u32 cons = RING_CMP(cpr->cp_raw_cons);
1289
1290         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1291         napi_schedule(&bnapi->napi);
1292         return IRQ_HANDLED;
1293 }
1294
1295 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1296 {
1297         u32 raw_cons = cpr->cp_raw_cons;
1298         u16 cons = RING_CMP(raw_cons);
1299         struct tx_cmp *txcmp;
1300
1301         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1302
1303         return TX_CMP_VALID(txcmp, raw_cons);
1304 }
1305
1306 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1307 {
1308         struct bnxt_napi *bnapi = dev_instance;
1309         struct bnxt *bp = bnapi->bp;
1310         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1311         u32 cons = RING_CMP(cpr->cp_raw_cons);
1312         u32 int_status;
1313
1314         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1315
1316         if (!bnxt_has_work(bp, cpr)) {
1317                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1318                 /* return if erroneous interrupt */
1319                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1320                         return IRQ_NONE;
1321         }
1322
1323         /* disable ring IRQ */
1324         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1325
1326         /* Return here if interrupt is shared and is disabled. */
1327         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1328                 return IRQ_HANDLED;
1329
1330         napi_schedule(&bnapi->napi);
1331         return IRQ_HANDLED;
1332 }
1333
1334 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1335 {
1336         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1337         u32 raw_cons = cpr->cp_raw_cons;
1338         u32 cons;
1339         int tx_pkts = 0;
1340         int rx_pkts = 0;
1341         bool rx_event = false;
1342         bool agg_event = false;
1343         struct tx_cmp *txcmp;
1344
1345         while (1) {
1346                 int rc;
1347
1348                 cons = RING_CMP(raw_cons);
1349                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1350
1351                 if (!TX_CMP_VALID(txcmp, raw_cons))
1352                         break;
1353
1354                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1355                         tx_pkts++;
1356                         /* return full budget so NAPI will complete. */
1357                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1358                                 rx_pkts = budget;
1359                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1360                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1361                         if (likely(rc >= 0))
1362                                 rx_pkts += rc;
1363                         else if (rc == -EBUSY)  /* partial completion */
1364                                 break;
1365                         rx_event = true;
1366                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1367                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1368                                     (TX_CMP_TYPE(txcmp) ==
1369                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1370                                     (TX_CMP_TYPE(txcmp) ==
1371                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1372                         bnxt_hwrm_handler(bp, txcmp);
1373                 }
1374                 raw_cons = NEXT_RAW_CMP(raw_cons);
1375
1376                 if (rx_pkts == budget)
1377                         break;
1378         }
1379
1380         cpr->cp_raw_cons = raw_cons;
1381         /* ACK completion ring before freeing tx ring and producing new
1382          * buffers in rx/agg rings to prevent overflowing the completion
1383          * ring.
1384          */
1385         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1386
1387         if (tx_pkts)
1388                 bnxt_tx_int(bp, bnapi, tx_pkts);
1389
1390         if (rx_event) {
1391                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1392
1393                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1394                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1395                 if (agg_event) {
1396                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1397                                rxr->rx_agg_doorbell);
1398                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1399                                rxr->rx_agg_doorbell);
1400                 }
1401         }
1402         return rx_pkts;
1403 }
1404
1405 static int bnxt_poll(struct napi_struct *napi, int budget)
1406 {
1407         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1408         struct bnxt *bp = bnapi->bp;
1409         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1410         int work_done = 0;
1411
1412         if (!bnxt_lock_napi(bnapi))
1413                 return budget;
1414
1415         while (1) {
1416                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1417
1418                 if (work_done >= budget)
1419                         break;
1420
1421                 if (!bnxt_has_work(bp, cpr)) {
1422                         napi_complete(napi);
1423                         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1424                         break;
1425                 }
1426         }
1427         mmiowb();
1428         bnxt_unlock_napi(bnapi);
1429         return work_done;
1430 }
1431
1432 #ifdef CONFIG_NET_RX_BUSY_POLL
1433 static int bnxt_busy_poll(struct napi_struct *napi)
1434 {
1435         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1436         struct bnxt *bp = bnapi->bp;
1437         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1438         int rx_work, budget = 4;
1439
1440         if (atomic_read(&bp->intr_sem) != 0)
1441                 return LL_FLUSH_FAILED;
1442
1443         if (!bnxt_lock_poll(bnapi))
1444                 return LL_FLUSH_BUSY;
1445
1446         rx_work = bnxt_poll_work(bp, bnapi, budget);
1447
1448         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1449
1450         bnxt_unlock_poll(bnapi);
1451         return rx_work;
1452 }
1453 #endif
1454
1455 static void bnxt_free_tx_skbs(struct bnxt *bp)
1456 {
1457         int i, max_idx;
1458         struct pci_dev *pdev = bp->pdev;
1459
1460         if (!bp->tx_ring)
1461                 return;
1462
1463         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1464         for (i = 0; i < bp->tx_nr_rings; i++) {
1465                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1466                 int j;
1467
1468                 for (j = 0; j < max_idx;) {
1469                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1470                         struct sk_buff *skb = tx_buf->skb;
1471                         int k, last;
1472
1473                         if (!skb) {
1474                                 j++;
1475                                 continue;
1476                         }
1477
1478                         tx_buf->skb = NULL;
1479
1480                         if (tx_buf->is_push) {
1481                                 dev_kfree_skb(skb);
1482                                 j += 2;
1483                                 continue;
1484                         }
1485
1486                         dma_unmap_single(&pdev->dev,
1487                                          dma_unmap_addr(tx_buf, mapping),
1488                                          skb_headlen(skb),
1489                                          PCI_DMA_TODEVICE);
1490
1491                         last = tx_buf->nr_frags;
1492                         j += 2;
1493                         for (k = 0; k < last; k++, j++) {
1494                                 int ring_idx = j & bp->tx_ring_mask;
1495                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1496
1497                                 tx_buf = &txr->tx_buf_ring[ring_idx];
1498                                 dma_unmap_page(
1499                                         &pdev->dev,
1500                                         dma_unmap_addr(tx_buf, mapping),
1501                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
1502                         }
1503                         dev_kfree_skb(skb);
1504                 }
1505                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1506         }
1507 }
1508
1509 static void bnxt_free_rx_skbs(struct bnxt *bp)
1510 {
1511         int i, max_idx, max_agg_idx;
1512         struct pci_dev *pdev = bp->pdev;
1513
1514         if (!bp->rx_ring)
1515                 return;
1516
1517         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1518         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1519         for (i = 0; i < bp->rx_nr_rings; i++) {
1520                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1521                 int j;
1522
1523                 if (rxr->rx_tpa) {
1524                         for (j = 0; j < MAX_TPA; j++) {
1525                                 struct bnxt_tpa_info *tpa_info =
1526                                                         &rxr->rx_tpa[j];
1527                                 u8 *data = tpa_info->data;
1528
1529                                 if (!data)
1530                                         continue;
1531
1532                                 dma_unmap_single(
1533                                         &pdev->dev,
1534                                         dma_unmap_addr(tpa_info, mapping),
1535                                         bp->rx_buf_use_size,
1536                                         PCI_DMA_FROMDEVICE);
1537
1538                                 tpa_info->data = NULL;
1539
1540                                 kfree(data);
1541                         }
1542                 }
1543
1544                 for (j = 0; j < max_idx; j++) {
1545                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1546                         u8 *data = rx_buf->data;
1547
1548                         if (!data)
1549                                 continue;
1550
1551                         dma_unmap_single(&pdev->dev,
1552                                          dma_unmap_addr(rx_buf, mapping),
1553                                          bp->rx_buf_use_size,
1554                                          PCI_DMA_FROMDEVICE);
1555
1556                         rx_buf->data = NULL;
1557
1558                         kfree(data);
1559                 }
1560
1561                 for (j = 0; j < max_agg_idx; j++) {
1562                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1563                                 &rxr->rx_agg_ring[j];
1564                         struct page *page = rx_agg_buf->page;
1565
1566                         if (!page)
1567                                 continue;
1568
1569                         dma_unmap_page(&pdev->dev,
1570                                        dma_unmap_addr(rx_agg_buf, mapping),
1571                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1572
1573                         rx_agg_buf->page = NULL;
1574                         __clear_bit(j, rxr->rx_agg_bmap);
1575
1576                         __free_page(page);
1577                 }
1578         }
1579 }
1580
1581 static void bnxt_free_skbs(struct bnxt *bp)
1582 {
1583         bnxt_free_tx_skbs(bp);
1584         bnxt_free_rx_skbs(bp);
1585 }
1586
1587 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1588 {
1589         struct pci_dev *pdev = bp->pdev;
1590         int i;
1591
1592         for (i = 0; i < ring->nr_pages; i++) {
1593                 if (!ring->pg_arr[i])
1594                         continue;
1595
1596                 dma_free_coherent(&pdev->dev, ring->page_size,
1597                                   ring->pg_arr[i], ring->dma_arr[i]);
1598
1599                 ring->pg_arr[i] = NULL;
1600         }
1601         if (ring->pg_tbl) {
1602                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1603                                   ring->pg_tbl, ring->pg_tbl_map);
1604                 ring->pg_tbl = NULL;
1605         }
1606         if (ring->vmem_size && *ring->vmem) {
1607                 vfree(*ring->vmem);
1608                 *ring->vmem = NULL;
1609         }
1610 }
1611
1612 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1613 {
1614         int i;
1615         struct pci_dev *pdev = bp->pdev;
1616
1617         if (ring->nr_pages > 1) {
1618                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1619                                                   ring->nr_pages * 8,
1620                                                   &ring->pg_tbl_map,
1621                                                   GFP_KERNEL);
1622                 if (!ring->pg_tbl)
1623                         return -ENOMEM;
1624         }
1625
1626         for (i = 0; i < ring->nr_pages; i++) {
1627                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1628                                                      ring->page_size,
1629                                                      &ring->dma_arr[i],
1630                                                      GFP_KERNEL);
1631                 if (!ring->pg_arr[i])
1632                         return -ENOMEM;
1633
1634                 if (ring->nr_pages > 1)
1635                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1636         }
1637
1638         if (ring->vmem_size) {
1639                 *ring->vmem = vzalloc(ring->vmem_size);
1640                 if (!(*ring->vmem))
1641                         return -ENOMEM;
1642         }
1643         return 0;
1644 }
1645
1646 static void bnxt_free_rx_rings(struct bnxt *bp)
1647 {
1648         int i;
1649
1650         if (!bp->rx_ring)
1651                 return;
1652
1653         for (i = 0; i < bp->rx_nr_rings; i++) {
1654                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1655                 struct bnxt_ring_struct *ring;
1656
1657                 kfree(rxr->rx_tpa);
1658                 rxr->rx_tpa = NULL;
1659
1660                 kfree(rxr->rx_agg_bmap);
1661                 rxr->rx_agg_bmap = NULL;
1662
1663                 ring = &rxr->rx_ring_struct;
1664                 bnxt_free_ring(bp, ring);
1665
1666                 ring = &rxr->rx_agg_ring_struct;
1667                 bnxt_free_ring(bp, ring);
1668         }
1669 }
1670
1671 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1672 {
1673         int i, rc, agg_rings = 0, tpa_rings = 0;
1674
1675         if (!bp->rx_ring)
1676                 return -ENOMEM;
1677
1678         if (bp->flags & BNXT_FLAG_AGG_RINGS)
1679                 agg_rings = 1;
1680
1681         if (bp->flags & BNXT_FLAG_TPA)
1682                 tpa_rings = 1;
1683
1684         for (i = 0; i < bp->rx_nr_rings; i++) {
1685                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1686                 struct bnxt_ring_struct *ring;
1687
1688                 ring = &rxr->rx_ring_struct;
1689
1690                 rc = bnxt_alloc_ring(bp, ring);
1691                 if (rc)
1692                         return rc;
1693
1694                 if (agg_rings) {
1695                         u16 mem_size;
1696
1697                         ring = &rxr->rx_agg_ring_struct;
1698                         rc = bnxt_alloc_ring(bp, ring);
1699                         if (rc)
1700                                 return rc;
1701
1702                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1703                         mem_size = rxr->rx_agg_bmap_size / 8;
1704                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1705                         if (!rxr->rx_agg_bmap)
1706                                 return -ENOMEM;
1707
1708                         if (tpa_rings) {
1709                                 rxr->rx_tpa = kcalloc(MAX_TPA,
1710                                                 sizeof(struct bnxt_tpa_info),
1711                                                 GFP_KERNEL);
1712                                 if (!rxr->rx_tpa)
1713                                         return -ENOMEM;
1714                         }
1715                 }
1716         }
1717         return 0;
1718 }
1719
1720 static void bnxt_free_tx_rings(struct bnxt *bp)
1721 {
1722         int i;
1723         struct pci_dev *pdev = bp->pdev;
1724
1725         if (!bp->tx_ring)
1726                 return;
1727
1728         for (i = 0; i < bp->tx_nr_rings; i++) {
1729                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1730                 struct bnxt_ring_struct *ring;
1731
1732                 if (txr->tx_push) {
1733                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
1734                                           txr->tx_push, txr->tx_push_mapping);
1735                         txr->tx_push = NULL;
1736                 }
1737
1738                 ring = &txr->tx_ring_struct;
1739
1740                 bnxt_free_ring(bp, ring);
1741         }
1742 }
1743
1744 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1745 {
1746         int i, j, rc;
1747         struct pci_dev *pdev = bp->pdev;
1748
1749         bp->tx_push_size = 0;
1750         if (bp->tx_push_thresh) {
1751                 int push_size;
1752
1753                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1754                                         bp->tx_push_thresh);
1755
1756                 if (push_size > 128) {
1757                         push_size = 0;
1758                         bp->tx_push_thresh = 0;
1759                 }
1760
1761                 bp->tx_push_size = push_size;
1762         }
1763
1764         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1765                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1766                 struct bnxt_ring_struct *ring;
1767
1768                 ring = &txr->tx_ring_struct;
1769
1770                 rc = bnxt_alloc_ring(bp, ring);
1771                 if (rc)
1772                         return rc;
1773
1774                 if (bp->tx_push_size) {
1775                         struct tx_bd *txbd;
1776                         dma_addr_t mapping;
1777
1778                         /* One pre-allocated DMA buffer to backup
1779                          * TX push operation
1780                          */
1781                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
1782                                                 bp->tx_push_size,
1783                                                 &txr->tx_push_mapping,
1784                                                 GFP_KERNEL);
1785
1786                         if (!txr->tx_push)
1787                                 return -ENOMEM;
1788
1789                         txbd = &txr->tx_push->txbd1;
1790
1791                         mapping = txr->tx_push_mapping +
1792                                 sizeof(struct tx_push_bd);
1793                         txbd->tx_bd_haddr = cpu_to_le64(mapping);
1794
1795                         memset(txbd + 1, 0, sizeof(struct tx_bd_ext));
1796                 }
1797                 ring->queue_id = bp->q_info[j].queue_id;
1798                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1799                         j++;
1800         }
1801         return 0;
1802 }
1803
1804 static void bnxt_free_cp_rings(struct bnxt *bp)
1805 {
1806         int i;
1807
1808         if (!bp->bnapi)
1809                 return;
1810
1811         for (i = 0; i < bp->cp_nr_rings; i++) {
1812                 struct bnxt_napi *bnapi = bp->bnapi[i];
1813                 struct bnxt_cp_ring_info *cpr;
1814                 struct bnxt_ring_struct *ring;
1815
1816                 if (!bnapi)
1817                         continue;
1818
1819                 cpr = &bnapi->cp_ring;
1820                 ring = &cpr->cp_ring_struct;
1821
1822                 bnxt_free_ring(bp, ring);
1823         }
1824 }
1825
1826 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1827 {
1828         int i, rc;
1829
1830         for (i = 0; i < bp->cp_nr_rings; i++) {
1831                 struct bnxt_napi *bnapi = bp->bnapi[i];
1832                 struct bnxt_cp_ring_info *cpr;
1833                 struct bnxt_ring_struct *ring;
1834
1835                 if (!bnapi)
1836                         continue;
1837
1838                 cpr = &bnapi->cp_ring;
1839                 ring = &cpr->cp_ring_struct;
1840
1841                 rc = bnxt_alloc_ring(bp, ring);
1842                 if (rc)
1843                         return rc;
1844         }
1845         return 0;
1846 }
1847
1848 static void bnxt_init_ring_struct(struct bnxt *bp)
1849 {
1850         int i;
1851
1852         for (i = 0; i < bp->cp_nr_rings; i++) {
1853                 struct bnxt_napi *bnapi = bp->bnapi[i];
1854                 struct bnxt_cp_ring_info *cpr;
1855                 struct bnxt_rx_ring_info *rxr;
1856                 struct bnxt_tx_ring_info *txr;
1857                 struct bnxt_ring_struct *ring;
1858
1859                 if (!bnapi)
1860                         continue;
1861
1862                 cpr = &bnapi->cp_ring;
1863                 ring = &cpr->cp_ring_struct;
1864                 ring->nr_pages = bp->cp_nr_pages;
1865                 ring->page_size = HW_CMPD_RING_SIZE;
1866                 ring->pg_arr = (void **)cpr->cp_desc_ring;
1867                 ring->dma_arr = cpr->cp_desc_mapping;
1868                 ring->vmem_size = 0;
1869
1870                 rxr = bnapi->rx_ring;
1871                 if (!rxr)
1872                         goto skip_rx;
1873
1874                 ring = &rxr->rx_ring_struct;
1875                 ring->nr_pages = bp->rx_nr_pages;
1876                 ring->page_size = HW_RXBD_RING_SIZE;
1877                 ring->pg_arr = (void **)rxr->rx_desc_ring;
1878                 ring->dma_arr = rxr->rx_desc_mapping;
1879                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1880                 ring->vmem = (void **)&rxr->rx_buf_ring;
1881
1882                 ring = &rxr->rx_agg_ring_struct;
1883                 ring->nr_pages = bp->rx_agg_nr_pages;
1884                 ring->page_size = HW_RXBD_RING_SIZE;
1885                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1886                 ring->dma_arr = rxr->rx_agg_desc_mapping;
1887                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1888                 ring->vmem = (void **)&rxr->rx_agg_ring;
1889
1890 skip_rx:
1891                 txr = bnapi->tx_ring;
1892                 if (!txr)
1893                         continue;
1894
1895                 ring = &txr->tx_ring_struct;
1896                 ring->nr_pages = bp->tx_nr_pages;
1897                 ring->page_size = HW_RXBD_RING_SIZE;
1898                 ring->pg_arr = (void **)txr->tx_desc_ring;
1899                 ring->dma_arr = txr->tx_desc_mapping;
1900                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1901                 ring->vmem = (void **)&txr->tx_buf_ring;
1902         }
1903 }
1904
1905 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1906 {
1907         int i;
1908         u32 prod;
1909         struct rx_bd **rx_buf_ring;
1910
1911         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1912         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1913                 int j;
1914                 struct rx_bd *rxbd;
1915
1916                 rxbd = rx_buf_ring[i];
1917                 if (!rxbd)
1918                         continue;
1919
1920                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1921                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1922                         rxbd->rx_bd_opaque = prod;
1923                 }
1924         }
1925 }
1926
1927 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1928 {
1929         struct net_device *dev = bp->dev;
1930         struct bnxt_rx_ring_info *rxr;
1931         struct bnxt_ring_struct *ring;
1932         u32 prod, type;
1933         int i;
1934
1935         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1936                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1937
1938         if (NET_IP_ALIGN == 2)
1939                 type |= RX_BD_FLAGS_SOP;
1940
1941         rxr = &bp->rx_ring[ring_nr];
1942         ring = &rxr->rx_ring_struct;
1943         bnxt_init_rxbd_pages(ring, type);
1944
1945         prod = rxr->rx_prod;
1946         for (i = 0; i < bp->rx_ring_size; i++) {
1947                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1948                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1949                                     ring_nr, i, bp->rx_ring_size);
1950                         break;
1951                 }
1952                 prod = NEXT_RX(prod);
1953         }
1954         rxr->rx_prod = prod;
1955         ring->fw_ring_id = INVALID_HW_RING_ID;
1956
1957         ring = &rxr->rx_agg_ring_struct;
1958         ring->fw_ring_id = INVALID_HW_RING_ID;
1959
1960         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1961                 return 0;
1962
1963         type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1964                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1965
1966         bnxt_init_rxbd_pages(ring, type);
1967
1968         prod = rxr->rx_agg_prod;
1969         for (i = 0; i < bp->rx_agg_ring_size; i++) {
1970                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1971                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1972                                     ring_nr, i, bp->rx_ring_size);
1973                         break;
1974                 }
1975                 prod = NEXT_RX_AGG(prod);
1976         }
1977         rxr->rx_agg_prod = prod;
1978
1979         if (bp->flags & BNXT_FLAG_TPA) {
1980                 if (rxr->rx_tpa) {
1981                         u8 *data;
1982                         dma_addr_t mapping;
1983
1984                         for (i = 0; i < MAX_TPA; i++) {
1985                                 data = __bnxt_alloc_rx_data(bp, &mapping,
1986                                                             GFP_KERNEL);
1987                                 if (!data)
1988                                         return -ENOMEM;
1989
1990                                 rxr->rx_tpa[i].data = data;
1991                                 rxr->rx_tpa[i].mapping = mapping;
1992                         }
1993                 } else {
1994                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
1995                         return -ENOMEM;
1996                 }
1997         }
1998
1999         return 0;
2000 }
2001
2002 static int bnxt_init_rx_rings(struct bnxt *bp)
2003 {
2004         int i, rc = 0;
2005
2006         for (i = 0; i < bp->rx_nr_rings; i++) {
2007                 rc = bnxt_init_one_rx_ring(bp, i);
2008                 if (rc)
2009                         break;
2010         }
2011
2012         return rc;
2013 }
2014
2015 static int bnxt_init_tx_rings(struct bnxt *bp)
2016 {
2017         u16 i;
2018
2019         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2020                                    MAX_SKB_FRAGS + 1);
2021
2022         for (i = 0; i < bp->tx_nr_rings; i++) {
2023                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2024                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2025
2026                 ring->fw_ring_id = INVALID_HW_RING_ID;
2027         }
2028
2029         return 0;
2030 }
2031
2032 static void bnxt_free_ring_grps(struct bnxt *bp)
2033 {
2034         kfree(bp->grp_info);
2035         bp->grp_info = NULL;
2036 }
2037
2038 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2039 {
2040         int i;
2041
2042         if (irq_re_init) {
2043                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2044                                        sizeof(struct bnxt_ring_grp_info),
2045                                        GFP_KERNEL);
2046                 if (!bp->grp_info)
2047                         return -ENOMEM;
2048         }
2049         for (i = 0; i < bp->cp_nr_rings; i++) {
2050                 if (irq_re_init)
2051                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2052                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2053                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2054                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2055                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2056         }
2057         return 0;
2058 }
2059
2060 static void bnxt_free_vnics(struct bnxt *bp)
2061 {
2062         kfree(bp->vnic_info);
2063         bp->vnic_info = NULL;
2064         bp->nr_vnics = 0;
2065 }
2066
2067 static int bnxt_alloc_vnics(struct bnxt *bp)
2068 {
2069         int num_vnics = 1;
2070
2071 #ifdef CONFIG_RFS_ACCEL
2072         if (bp->flags & BNXT_FLAG_RFS)
2073                 num_vnics += bp->rx_nr_rings;
2074 #endif
2075
2076         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2077                                 GFP_KERNEL);
2078         if (!bp->vnic_info)
2079                 return -ENOMEM;
2080
2081         bp->nr_vnics = num_vnics;
2082         return 0;
2083 }
2084
2085 static void bnxt_init_vnics(struct bnxt *bp)
2086 {
2087         int i;
2088
2089         for (i = 0; i < bp->nr_vnics; i++) {
2090                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2091
2092                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2093                 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2094                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2095
2096                 if (bp->vnic_info[i].rss_hash_key) {
2097                         if (i == 0)
2098                                 prandom_bytes(vnic->rss_hash_key,
2099                                               HW_HASH_KEY_SIZE);
2100                         else
2101                                 memcpy(vnic->rss_hash_key,
2102                                        bp->vnic_info[0].rss_hash_key,
2103                                        HW_HASH_KEY_SIZE);
2104                 }
2105         }
2106 }
2107
2108 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2109 {
2110         int pages;
2111
2112         pages = ring_size / desc_per_pg;
2113
2114         if (!pages)
2115                 return 1;
2116
2117         pages++;
2118
2119         while (pages & (pages - 1))
2120                 pages++;
2121
2122         return pages;
2123 }
2124
2125 static void bnxt_set_tpa_flags(struct bnxt *bp)
2126 {
2127         bp->flags &= ~BNXT_FLAG_TPA;
2128         if (bp->dev->features & NETIF_F_LRO)
2129                 bp->flags |= BNXT_FLAG_LRO;
2130         if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2131                 bp->flags |= BNXT_FLAG_GRO;
2132 }
2133
2134 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2135  * be set on entry.
2136  */
2137 void bnxt_set_ring_params(struct bnxt *bp)
2138 {
2139         u32 ring_size, rx_size, rx_space;
2140         u32 agg_factor = 0, agg_ring_size = 0;
2141
2142         /* 8 for CRC and VLAN */
2143         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2144
2145         rx_space = rx_size + NET_SKB_PAD +
2146                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2147
2148         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2149         ring_size = bp->rx_ring_size;
2150         bp->rx_agg_ring_size = 0;
2151         bp->rx_agg_nr_pages = 0;
2152
2153         if (bp->flags & BNXT_FLAG_TPA)
2154                 agg_factor = 4;
2155
2156         bp->flags &= ~BNXT_FLAG_JUMBO;
2157         if (rx_space > PAGE_SIZE) {
2158                 u32 jumbo_factor;
2159
2160                 bp->flags |= BNXT_FLAG_JUMBO;
2161                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2162                 if (jumbo_factor > agg_factor)
2163                         agg_factor = jumbo_factor;
2164         }
2165         agg_ring_size = ring_size * agg_factor;
2166
2167         if (agg_ring_size) {
2168                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2169                                                         RX_DESC_CNT);
2170                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2171                         u32 tmp = agg_ring_size;
2172
2173                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2174                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2175                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2176                                     tmp, agg_ring_size);
2177                 }
2178                 bp->rx_agg_ring_size = agg_ring_size;
2179                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2180                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2181                 rx_space = rx_size + NET_SKB_PAD +
2182                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2183         }
2184
2185         bp->rx_buf_use_size = rx_size;
2186         bp->rx_buf_size = rx_space;
2187
2188         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2189         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2190
2191         ring_size = bp->tx_ring_size;
2192         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2193         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2194
2195         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2196         bp->cp_ring_size = ring_size;
2197
2198         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2199         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2200                 bp->cp_nr_pages = MAX_CP_PAGES;
2201                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2202                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2203                             ring_size, bp->cp_ring_size);
2204         }
2205         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2206         bp->cp_ring_mask = bp->cp_bit - 1;
2207 }
2208
2209 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2210 {
2211         int i;
2212         struct bnxt_vnic_info *vnic;
2213         struct pci_dev *pdev = bp->pdev;
2214
2215         if (!bp->vnic_info)
2216                 return;
2217
2218         for (i = 0; i < bp->nr_vnics; i++) {
2219                 vnic = &bp->vnic_info[i];
2220
2221                 kfree(vnic->fw_grp_ids);
2222                 vnic->fw_grp_ids = NULL;
2223
2224                 kfree(vnic->uc_list);
2225                 vnic->uc_list = NULL;
2226
2227                 if (vnic->mc_list) {
2228                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2229                                           vnic->mc_list, vnic->mc_list_mapping);
2230                         vnic->mc_list = NULL;
2231                 }
2232
2233                 if (vnic->rss_table) {
2234                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2235                                           vnic->rss_table,
2236                                           vnic->rss_table_dma_addr);
2237                         vnic->rss_table = NULL;
2238                 }
2239
2240                 vnic->rss_hash_key = NULL;
2241                 vnic->flags = 0;
2242         }
2243 }
2244
2245 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2246 {
2247         int i, rc = 0, size;
2248         struct bnxt_vnic_info *vnic;
2249         struct pci_dev *pdev = bp->pdev;
2250         int max_rings;
2251
2252         for (i = 0; i < bp->nr_vnics; i++) {
2253                 vnic = &bp->vnic_info[i];
2254
2255                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2256                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2257
2258                         if (mem_size > 0) {
2259                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2260                                 if (!vnic->uc_list) {
2261                                         rc = -ENOMEM;
2262                                         goto out;
2263                                 }
2264                         }
2265                 }
2266
2267                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2268                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2269                         vnic->mc_list =
2270                                 dma_alloc_coherent(&pdev->dev,
2271                                                    vnic->mc_list_size,
2272                                                    &vnic->mc_list_mapping,
2273                                                    GFP_KERNEL);
2274                         if (!vnic->mc_list) {
2275                                 rc = -ENOMEM;
2276                                 goto out;
2277                         }
2278                 }
2279
2280                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2281                         max_rings = bp->rx_nr_rings;
2282                 else
2283                         max_rings = 1;
2284
2285                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2286                 if (!vnic->fw_grp_ids) {
2287                         rc = -ENOMEM;
2288                         goto out;
2289                 }
2290
2291                 /* Allocate rss table and hash key */
2292                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2293                                                      &vnic->rss_table_dma_addr,
2294                                                      GFP_KERNEL);
2295                 if (!vnic->rss_table) {
2296                         rc = -ENOMEM;
2297                         goto out;
2298                 }
2299
2300                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2301
2302                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2303                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2304         }
2305         return 0;
2306
2307 out:
2308         return rc;
2309 }
2310
2311 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2312 {
2313         struct pci_dev *pdev = bp->pdev;
2314
2315         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2316                           bp->hwrm_cmd_resp_dma_addr);
2317
2318         bp->hwrm_cmd_resp_addr = NULL;
2319         if (bp->hwrm_dbg_resp_addr) {
2320                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2321                                   bp->hwrm_dbg_resp_addr,
2322                                   bp->hwrm_dbg_resp_dma_addr);
2323
2324                 bp->hwrm_dbg_resp_addr = NULL;
2325         }
2326 }
2327
2328 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2329 {
2330         struct pci_dev *pdev = bp->pdev;
2331
2332         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2333                                                    &bp->hwrm_cmd_resp_dma_addr,
2334                                                    GFP_KERNEL);
2335         if (!bp->hwrm_cmd_resp_addr)
2336                 return -ENOMEM;
2337         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2338                                                     HWRM_DBG_REG_BUF_SIZE,
2339                                                     &bp->hwrm_dbg_resp_dma_addr,
2340                                                     GFP_KERNEL);
2341         if (!bp->hwrm_dbg_resp_addr)
2342                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2343
2344         return 0;
2345 }
2346
2347 static void bnxt_free_stats(struct bnxt *bp)
2348 {
2349         u32 size, i;
2350         struct pci_dev *pdev = bp->pdev;
2351
2352         if (!bp->bnapi)
2353                 return;
2354
2355         size = sizeof(struct ctx_hw_stats);
2356
2357         for (i = 0; i < bp->cp_nr_rings; i++) {
2358                 struct bnxt_napi *bnapi = bp->bnapi[i];
2359                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2360
2361                 if (cpr->hw_stats) {
2362                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2363                                           cpr->hw_stats_map);
2364                         cpr->hw_stats = NULL;
2365                 }
2366         }
2367 }
2368
2369 static int bnxt_alloc_stats(struct bnxt *bp)
2370 {
2371         u32 size, i;
2372         struct pci_dev *pdev = bp->pdev;
2373
2374         size = sizeof(struct ctx_hw_stats);
2375
2376         for (i = 0; i < bp->cp_nr_rings; i++) {
2377                 struct bnxt_napi *bnapi = bp->bnapi[i];
2378                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2379
2380                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2381                                                    &cpr->hw_stats_map,
2382                                                    GFP_KERNEL);
2383                 if (!cpr->hw_stats)
2384                         return -ENOMEM;
2385
2386                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2387         }
2388         return 0;
2389 }
2390
2391 static void bnxt_clear_ring_indices(struct bnxt *bp)
2392 {
2393         int i;
2394
2395         if (!bp->bnapi)
2396                 return;
2397
2398         for (i = 0; i < bp->cp_nr_rings; i++) {
2399                 struct bnxt_napi *bnapi = bp->bnapi[i];
2400                 struct bnxt_cp_ring_info *cpr;
2401                 struct bnxt_rx_ring_info *rxr;
2402                 struct bnxt_tx_ring_info *txr;
2403
2404                 if (!bnapi)
2405                         continue;
2406
2407                 cpr = &bnapi->cp_ring;
2408                 cpr->cp_raw_cons = 0;
2409
2410                 txr = bnapi->tx_ring;
2411                 if (txr) {
2412                         txr->tx_prod = 0;
2413                         txr->tx_cons = 0;
2414                 }
2415
2416                 rxr = bnapi->rx_ring;
2417                 if (rxr) {
2418                         rxr->rx_prod = 0;
2419                         rxr->rx_agg_prod = 0;
2420                         rxr->rx_sw_agg_prod = 0;
2421                 }
2422         }
2423 }
2424
2425 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2426 {
2427 #ifdef CONFIG_RFS_ACCEL
2428         int i;
2429
2430         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
2431          * safe to delete the hash table.
2432          */
2433         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2434                 struct hlist_head *head;
2435                 struct hlist_node *tmp;
2436                 struct bnxt_ntuple_filter *fltr;
2437
2438                 head = &bp->ntp_fltr_hash_tbl[i];
2439                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2440                         hlist_del(&fltr->hash);
2441                         kfree(fltr);
2442                 }
2443         }
2444         if (irq_reinit) {
2445                 kfree(bp->ntp_fltr_bmap);
2446                 bp->ntp_fltr_bmap = NULL;
2447         }
2448         bp->ntp_fltr_count = 0;
2449 #endif
2450 }
2451
2452 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2453 {
2454 #ifdef CONFIG_RFS_ACCEL
2455         int i, rc = 0;
2456
2457         if (!(bp->flags & BNXT_FLAG_RFS))
2458                 return 0;
2459
2460         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2461                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2462
2463         bp->ntp_fltr_count = 0;
2464         bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2465                                     GFP_KERNEL);
2466
2467         if (!bp->ntp_fltr_bmap)
2468                 rc = -ENOMEM;
2469
2470         return rc;
2471 #else
2472         return 0;
2473 #endif
2474 }
2475
2476 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2477 {
2478         bnxt_free_vnic_attributes(bp);
2479         bnxt_free_tx_rings(bp);
2480         bnxt_free_rx_rings(bp);
2481         bnxt_free_cp_rings(bp);
2482         bnxt_free_ntp_fltrs(bp, irq_re_init);
2483         if (irq_re_init) {
2484                 bnxt_free_stats(bp);
2485                 bnxt_free_ring_grps(bp);
2486                 bnxt_free_vnics(bp);
2487                 kfree(bp->tx_ring);
2488                 bp->tx_ring = NULL;
2489                 kfree(bp->rx_ring);
2490                 bp->rx_ring = NULL;
2491                 kfree(bp->bnapi);
2492                 bp->bnapi = NULL;
2493         } else {
2494                 bnxt_clear_ring_indices(bp);
2495         }
2496 }
2497
2498 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2499 {
2500         int i, j, rc, size, arr_size;
2501         void *bnapi;
2502
2503         if (irq_re_init) {
2504                 /* Allocate bnapi mem pointer array and mem block for
2505                  * all queues
2506                  */
2507                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2508                                 bp->cp_nr_rings);
2509                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2510                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2511                 if (!bnapi)
2512                         return -ENOMEM;
2513
2514                 bp->bnapi = bnapi;
2515                 bnapi += arr_size;
2516                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2517                         bp->bnapi[i] = bnapi;
2518                         bp->bnapi[i]->index = i;
2519                         bp->bnapi[i]->bp = bp;
2520                 }
2521
2522                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2523                                       sizeof(struct bnxt_rx_ring_info),
2524                                       GFP_KERNEL);
2525                 if (!bp->rx_ring)
2526                         return -ENOMEM;
2527
2528                 for (i = 0; i < bp->rx_nr_rings; i++) {
2529                         bp->rx_ring[i].bnapi = bp->bnapi[i];
2530                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2531                 }
2532
2533                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2534                                       sizeof(struct bnxt_tx_ring_info),
2535                                       GFP_KERNEL);
2536                 if (!bp->tx_ring)
2537                         return -ENOMEM;
2538
2539                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2540                         j = 0;
2541                 else
2542                         j = bp->rx_nr_rings;
2543
2544                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2545                         bp->tx_ring[i].bnapi = bp->bnapi[j];
2546                         bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2547                 }
2548
2549                 rc = bnxt_alloc_stats(bp);
2550                 if (rc)
2551                         goto alloc_mem_err;
2552
2553                 rc = bnxt_alloc_ntp_fltrs(bp);
2554                 if (rc)
2555                         goto alloc_mem_err;
2556
2557                 rc = bnxt_alloc_vnics(bp);
2558                 if (rc)
2559                         goto alloc_mem_err;
2560         }
2561
2562         bnxt_init_ring_struct(bp);
2563
2564         rc = bnxt_alloc_rx_rings(bp);
2565         if (rc)
2566                 goto alloc_mem_err;
2567
2568         rc = bnxt_alloc_tx_rings(bp);
2569         if (rc)
2570                 goto alloc_mem_err;
2571
2572         rc = bnxt_alloc_cp_rings(bp);
2573         if (rc)
2574                 goto alloc_mem_err;
2575
2576         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2577                                   BNXT_VNIC_UCAST_FLAG;
2578         rc = bnxt_alloc_vnic_attributes(bp);
2579         if (rc)
2580                 goto alloc_mem_err;
2581         return 0;
2582
2583 alloc_mem_err:
2584         bnxt_free_mem(bp, true);
2585         return rc;
2586 }
2587
2588 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2589                             u16 cmpl_ring, u16 target_id)
2590 {
2591         struct hwrm_cmd_req_hdr *req = request;
2592
2593         req->cmpl_ring_req_type =
2594                 cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2595         req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2596         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2597 }
2598
2599 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2600 {
2601         int i, intr_process, rc;
2602         struct hwrm_cmd_req_hdr *req = msg;
2603         u32 *data = msg;
2604         __le32 *resp_len, *valid;
2605         u16 cp_ring_id, len = 0;
2606         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2607
2608         req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2609         memset(resp, 0, PAGE_SIZE);
2610         cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2611                       HWRM_CMPL_RING_MASK) >>
2612                      HWRM_CMPL_RING_SFT;
2613         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2614
2615         /* Write request msg to hwrm channel */
2616         __iowrite32_copy(bp->bar0, data, msg_len / 4);
2617
2618         for (i = msg_len; i < HWRM_MAX_REQ_LEN; i += 4)
2619                 writel(0, bp->bar0 + i);
2620
2621         /* currently supports only one outstanding message */
2622         if (intr_process)
2623                 bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2624                                        HWRM_SEQ_ID_MASK;
2625
2626         /* Ring channel doorbell */
2627         writel(1, bp->bar0 + 0x100);
2628
2629         i = 0;
2630         if (intr_process) {
2631                 /* Wait until hwrm response cmpl interrupt is processed */
2632                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2633                        i++ < timeout) {
2634                         usleep_range(600, 800);
2635                 }
2636
2637                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2638                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2639                                    req->cmpl_ring_req_type);
2640                         return -1;
2641                 }
2642         } else {
2643                 /* Check if response len is updated */
2644                 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2645                 for (i = 0; i < timeout; i++) {
2646                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2647                               HWRM_RESP_LEN_SFT;
2648                         if (len)
2649                                 break;
2650                         usleep_range(600, 800);
2651                 }
2652
2653                 if (i >= timeout) {
2654                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2655                                    timeout, req->cmpl_ring_req_type,
2656                                    req->target_id_seq_id, *resp_len);
2657                         return -1;
2658                 }
2659
2660                 /* Last word of resp contains valid bit */
2661                 valid = bp->hwrm_cmd_resp_addr + len - 4;
2662                 for (i = 0; i < timeout; i++) {
2663                         if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2664                                 break;
2665                         usleep_range(600, 800);
2666                 }
2667
2668                 if (i >= timeout) {
2669                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2670                                    timeout, req->cmpl_ring_req_type,
2671                                    req->target_id_seq_id, len, *valid);
2672                         return -1;
2673                 }
2674         }
2675
2676         rc = le16_to_cpu(resp->error_code);
2677         if (rc) {
2678                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2679                            le16_to_cpu(resp->req_type),
2680                            le16_to_cpu(resp->seq_id), rc);
2681                 return rc;
2682         }
2683         return 0;
2684 }
2685
2686 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2687 {
2688         int rc;
2689
2690         mutex_lock(&bp->hwrm_cmd_lock);
2691         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2692         mutex_unlock(&bp->hwrm_cmd_lock);
2693         return rc;
2694 }
2695
2696 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2697 {
2698         struct hwrm_func_drv_rgtr_input req = {0};
2699         int i;
2700
2701         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2702
2703         req.enables =
2704                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2705                             FUNC_DRV_RGTR_REQ_ENABLES_VER |
2706                             FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2707
2708         /* TODO: current async event fwd bits are not defined and the firmware
2709          * only checks if it is non-zero to enable async event forwarding
2710          */
2711         req.async_event_fwd[0] |= cpu_to_le32(1);
2712         req.os_type = cpu_to_le16(1);
2713         req.ver_maj = DRV_VER_MAJ;
2714         req.ver_min = DRV_VER_MIN;
2715         req.ver_upd = DRV_VER_UPD;
2716
2717         if (BNXT_PF(bp)) {
2718                 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2719                 u32 *data = (u32 *)vf_req_snif_bmap;
2720
2721                 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2722                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2723                         __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2724
2725                 for (i = 0; i < 8; i++)
2726                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2727
2728                 req.enables |=
2729                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2730         }
2731
2732         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2733 }
2734
2735 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2736 {
2737         struct hwrm_func_drv_unrgtr_input req = {0};
2738
2739         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2740         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2741 }
2742
2743 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2744 {
2745         u32 rc = 0;
2746         struct hwrm_tunnel_dst_port_free_input req = {0};
2747
2748         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2749         req.tunnel_type = tunnel_type;
2750
2751         switch (tunnel_type) {
2752         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2753                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2754                 break;
2755         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2756                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2757                 break;
2758         default:
2759                 break;
2760         }
2761
2762         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2763         if (rc)
2764                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2765                            rc);
2766         return rc;
2767 }
2768
2769 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2770                                            u8 tunnel_type)
2771 {
2772         u32 rc = 0;
2773         struct hwrm_tunnel_dst_port_alloc_input req = {0};
2774         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2775
2776         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2777
2778         req.tunnel_type = tunnel_type;
2779         req.tunnel_dst_port_val = port;
2780
2781         mutex_lock(&bp->hwrm_cmd_lock);
2782         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2783         if (rc) {
2784                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2785                            rc);
2786                 goto err_out;
2787         }
2788
2789         if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2790                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2791
2792         else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2793                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2794 err_out:
2795         mutex_unlock(&bp->hwrm_cmd_lock);
2796         return rc;
2797 }
2798
2799 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2800 {
2801         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2802         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2803
2804         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2805         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2806
2807         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2808         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2809         req.mask = cpu_to_le32(vnic->rx_mask);
2810         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2811 }
2812
2813 #ifdef CONFIG_RFS_ACCEL
2814 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2815                                             struct bnxt_ntuple_filter *fltr)
2816 {
2817         struct hwrm_cfa_ntuple_filter_free_input req = {0};
2818
2819         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2820         req.ntuple_filter_id = fltr->filter_id;
2821         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2822 }
2823
2824 #define BNXT_NTP_FLTR_FLAGS                                     \
2825         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
2826          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
2827          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
2828          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
2829          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
2830          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
2831          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
2832          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
2833          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
2834          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
2835          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
2836          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
2837          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
2838          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2839
2840 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2841                                              struct bnxt_ntuple_filter *fltr)
2842 {
2843         int rc = 0;
2844         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2845         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2846                 bp->hwrm_cmd_resp_addr;
2847         struct flow_keys *keys = &fltr->fkeys;
2848         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2849
2850         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2851         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2852
2853         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2854
2855         req.ethertype = htons(ETH_P_IP);
2856         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2857         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
2858         req.ip_protocol = keys->basic.ip_proto;
2859
2860         req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2861         req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2862         req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2863         req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2864
2865         req.src_port = keys->ports.src;
2866         req.src_port_mask = cpu_to_be16(0xffff);
2867         req.dst_port = keys->ports.dst;
2868         req.dst_port_mask = cpu_to_be16(0xffff);
2869
2870         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
2871         mutex_lock(&bp->hwrm_cmd_lock);
2872         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2873         if (!rc)
2874                 fltr->filter_id = resp->ntuple_filter_id;
2875         mutex_unlock(&bp->hwrm_cmd_lock);
2876         return rc;
2877 }
2878 #endif
2879
2880 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2881                                      u8 *mac_addr)
2882 {
2883         u32 rc = 0;
2884         struct hwrm_cfa_l2_filter_alloc_input req = {0};
2885         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2886
2887         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2888         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2889                                 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2890         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2891         req.enables =
2892                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2893                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
2894                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2895         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2896         req.l2_addr_mask[0] = 0xff;
2897         req.l2_addr_mask[1] = 0xff;
2898         req.l2_addr_mask[2] = 0xff;
2899         req.l2_addr_mask[3] = 0xff;
2900         req.l2_addr_mask[4] = 0xff;
2901         req.l2_addr_mask[5] = 0xff;
2902
2903         mutex_lock(&bp->hwrm_cmd_lock);
2904         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2905         if (!rc)
2906                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2907                                                         resp->l2_filter_id;
2908         mutex_unlock(&bp->hwrm_cmd_lock);
2909         return rc;
2910 }
2911
2912 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2913 {
2914         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2915         int rc = 0;
2916
2917         /* Any associated ntuple filters will also be cleared by firmware. */
2918         mutex_lock(&bp->hwrm_cmd_lock);
2919         for (i = 0; i < num_of_vnics; i++) {
2920                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2921
2922                 for (j = 0; j < vnic->uc_filter_count; j++) {
2923                         struct hwrm_cfa_l2_filter_free_input req = {0};
2924
2925                         bnxt_hwrm_cmd_hdr_init(bp, &req,
2926                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
2927
2928                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
2929
2930                         rc = _hwrm_send_message(bp, &req, sizeof(req),
2931                                                 HWRM_CMD_TIMEOUT);
2932                 }
2933                 vnic->uc_filter_count = 0;
2934         }
2935         mutex_unlock(&bp->hwrm_cmd_lock);
2936
2937         return rc;
2938 }
2939
2940 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2941 {
2942         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2943         struct hwrm_vnic_tpa_cfg_input req = {0};
2944
2945         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2946
2947         if (tpa_flags) {
2948                 u16 mss = bp->dev->mtu - 40;
2949                 u32 nsegs, n, segs = 0, flags;
2950
2951                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2952                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2953                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2954                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2955                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2956                 if (tpa_flags & BNXT_FLAG_GRO)
2957                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2958
2959                 req.flags = cpu_to_le32(flags);
2960
2961                 req.enables =
2962                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2963                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
2964                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
2965
2966                 /* Number of segs are log2 units, and first packet is not
2967                  * included as part of this units.
2968                  */
2969                 if (mss <= PAGE_SIZE) {
2970                         n = PAGE_SIZE / mss;
2971                         nsegs = (MAX_SKB_FRAGS - 1) * n;
2972                 } else {
2973                         n = mss / PAGE_SIZE;
2974                         if (mss & (PAGE_SIZE - 1))
2975                                 n++;
2976                         nsegs = (MAX_SKB_FRAGS - n) / n;
2977                 }
2978
2979                 segs = ilog2(nsegs);
2980                 req.max_agg_segs = cpu_to_le16(segs);
2981                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2982
2983                 req.min_agg_len = cpu_to_le32(512);
2984         }
2985         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2986
2987         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2988 }
2989
2990 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
2991 {
2992         u32 i, j, max_rings;
2993         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2994         struct hwrm_vnic_rss_cfg_input req = {0};
2995
2996         if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
2997                 return 0;
2998
2999         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3000         if (set_rss) {
3001                 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3002                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3003                                  BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3004                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3005
3006                 req.hash_type = cpu_to_le32(vnic->hash_type);
3007
3008                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3009                         max_rings = bp->rx_nr_rings;
3010                 else
3011                         max_rings = 1;
3012
3013                 /* Fill the RSS indirection table with ring group ids */
3014                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3015                         if (j == max_rings)
3016                                 j = 0;
3017                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3018                 }
3019
3020                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3021                 req.hash_key_tbl_addr =
3022                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
3023         }
3024         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3025         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3026 }
3027
3028 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3029 {
3030         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3031         struct hwrm_vnic_plcmodes_cfg_input req = {0};
3032
3033         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3034         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3035                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3036                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3037         req.enables =
3038                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3039                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3040         /* thresholds not implemented in firmware yet */
3041         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3042         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3043         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3044         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3045 }
3046
3047 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3048 {
3049         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3050
3051         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3052         req.rss_cos_lb_ctx_id =
3053                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3054
3055         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3056         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3057 }
3058
3059 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3060 {
3061         int i;
3062
3063         for (i = 0; i < bp->nr_vnics; i++) {
3064                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3065
3066                 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3067                         bnxt_hwrm_vnic_ctx_free_one(bp, i);
3068         }
3069         bp->rsscos_nr_ctxs = 0;
3070 }
3071
3072 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3073 {
3074         int rc;
3075         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3076         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3077                                                 bp->hwrm_cmd_resp_addr;
3078
3079         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3080                                -1);
3081
3082         mutex_lock(&bp->hwrm_cmd_lock);
3083         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3084         if (!rc)
3085                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3086                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
3087         mutex_unlock(&bp->hwrm_cmd_lock);
3088
3089         return rc;
3090 }
3091
3092 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3093 {
3094         unsigned int ring = 0, grp_idx;
3095         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3096         struct hwrm_vnic_cfg_input req = {0};
3097
3098         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3099         /* Only RSS support for now TBD: COS & LB */
3100         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3101                                   VNIC_CFG_REQ_ENABLES_RSS_RULE);
3102         req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3103         req.cos_rule = cpu_to_le16(0xffff);
3104         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3105                 ring = 0;
3106         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3107                 ring = vnic_id - 1;
3108
3109         grp_idx = bp->rx_ring[ring].bnapi->index;
3110         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3111         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3112
3113         req.lb_rule = cpu_to_le16(0xffff);
3114         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3115                               VLAN_HLEN);
3116
3117         if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3118                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3119
3120         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3121 }
3122
3123 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3124 {
3125         u32 rc = 0;
3126
3127         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3128                 struct hwrm_vnic_free_input req = {0};
3129
3130                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3131                 req.vnic_id =
3132                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3133
3134                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3135                 if (rc)
3136                         return rc;
3137                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3138         }
3139         return rc;
3140 }
3141
3142 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3143 {
3144         u16 i;
3145
3146         for (i = 0; i < bp->nr_vnics; i++)
3147                 bnxt_hwrm_vnic_free_one(bp, i);
3148 }
3149
3150 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3151                                 unsigned int start_rx_ring_idx,
3152                                 unsigned int nr_rings)
3153 {
3154         int rc = 0;
3155         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3156         struct hwrm_vnic_alloc_input req = {0};
3157         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3158
3159         /* map ring groups to this vnic */
3160         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3161                 grp_idx = bp->rx_ring[i].bnapi->index;
3162                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3163                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3164                                    j, nr_rings);
3165                         break;
3166                 }
3167                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3168                                         bp->grp_info[grp_idx].fw_grp_id;
3169         }
3170
3171         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3172         if (vnic_id == 0)
3173                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3174
3175         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3176
3177         mutex_lock(&bp->hwrm_cmd_lock);
3178         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3179         if (!rc)
3180                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3181         mutex_unlock(&bp->hwrm_cmd_lock);
3182         return rc;
3183 }
3184
3185 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3186 {
3187         u16 i;
3188         u32 rc = 0;
3189
3190         mutex_lock(&bp->hwrm_cmd_lock);
3191         for (i = 0; i < bp->rx_nr_rings; i++) {
3192                 struct hwrm_ring_grp_alloc_input req = {0};
3193                 struct hwrm_ring_grp_alloc_output *resp =
3194                                         bp->hwrm_cmd_resp_addr;
3195                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3196
3197                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3198
3199                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3200                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3201                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3202                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3203
3204                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3205                                         HWRM_CMD_TIMEOUT);
3206                 if (rc)
3207                         break;
3208
3209                 bp->grp_info[grp_idx].fw_grp_id =
3210                         le32_to_cpu(resp->ring_group_id);
3211         }
3212         mutex_unlock(&bp->hwrm_cmd_lock);
3213         return rc;
3214 }
3215
3216 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3217 {
3218         u16 i;
3219         u32 rc = 0;
3220         struct hwrm_ring_grp_free_input req = {0};
3221
3222         if (!bp->grp_info)
3223                 return 0;
3224
3225         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3226
3227         mutex_lock(&bp->hwrm_cmd_lock);
3228         for (i = 0; i < bp->cp_nr_rings; i++) {
3229                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3230                         continue;
3231                 req.ring_group_id =
3232                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
3233
3234                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3235                                         HWRM_CMD_TIMEOUT);
3236                 if (rc)
3237                         break;
3238                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3239         }
3240         mutex_unlock(&bp->hwrm_cmd_lock);
3241         return rc;
3242 }
3243
3244 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3245                                     struct bnxt_ring_struct *ring,
3246                                     u32 ring_type, u32 map_index,
3247                                     u32 stats_ctx_id)
3248 {
3249         int rc = 0, err = 0;
3250         struct hwrm_ring_alloc_input req = {0};
3251         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3252         u16 ring_id;
3253
3254         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3255
3256         req.enables = 0;
3257         if (ring->nr_pages > 1) {
3258                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3259                 /* Page size is in log2 units */
3260                 req.page_size = BNXT_PAGE_SHIFT;
3261                 req.page_tbl_depth = 1;
3262         } else {
3263                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3264         }
3265         req.fbo = 0;
3266         /* Association of ring index with doorbell index and MSIX number */
3267         req.logical_id = cpu_to_le16(map_index);
3268
3269         switch (ring_type) {
3270         case HWRM_RING_ALLOC_TX:
3271                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3272                 /* Association of transmit ring with completion ring */
3273                 req.cmpl_ring_id =
3274                         cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3275                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3276                 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3277                 req.queue_id = cpu_to_le16(ring->queue_id);
3278                 break;
3279         case HWRM_RING_ALLOC_RX:
3280                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3281                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3282                 break;
3283         case HWRM_RING_ALLOC_AGG:
3284                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3285                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3286                 break;
3287         case HWRM_RING_ALLOC_CMPL:
3288                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3289                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3290                 if (bp->flags & BNXT_FLAG_USING_MSIX)
3291                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3292                 break;
3293         default:
3294                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3295                            ring_type);
3296                 return -1;
3297         }
3298
3299         mutex_lock(&bp->hwrm_cmd_lock);
3300         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3301         err = le16_to_cpu(resp->error_code);
3302         ring_id = le16_to_cpu(resp->ring_id);
3303         mutex_unlock(&bp->hwrm_cmd_lock);
3304
3305         if (rc || err) {
3306                 switch (ring_type) {
3307                 case RING_FREE_REQ_RING_TYPE_CMPL:
3308                         netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3309                                    rc, err);
3310                         return -1;
3311
3312                 case RING_FREE_REQ_RING_TYPE_RX:
3313                         netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3314                                    rc, err);
3315                         return -1;
3316
3317                 case RING_FREE_REQ_RING_TYPE_TX:
3318                         netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3319                                    rc, err);
3320                         return -1;
3321
3322                 default:
3323                         netdev_err(bp->dev, "Invalid ring\n");
3324                         return -1;
3325                 }
3326         }
3327         ring->fw_ring_id = ring_id;
3328         return rc;
3329 }
3330
3331 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3332 {
3333         int i, rc = 0;
3334
3335         for (i = 0; i < bp->cp_nr_rings; i++) {
3336                 struct bnxt_napi *bnapi = bp->bnapi[i];
3337                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3338                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3339
3340                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3341                                               INVALID_STATS_CTX_ID);
3342                 if (rc)
3343                         goto err_out;
3344                 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3345                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3346                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3347         }
3348
3349         for (i = 0; i < bp->tx_nr_rings; i++) {
3350                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3351                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3352                 u32 map_idx = txr->bnapi->index;
3353                 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3354
3355                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3356                                               map_idx, fw_stats_ctx);
3357                 if (rc)
3358                         goto err_out;
3359                 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3360         }
3361
3362         for (i = 0; i < bp->rx_nr_rings; i++) {
3363                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3364                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3365                 u32 map_idx = rxr->bnapi->index;
3366
3367                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3368                                               map_idx, INVALID_STATS_CTX_ID);
3369                 if (rc)
3370                         goto err_out;
3371                 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3372                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3373                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3374         }
3375
3376         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3377                 for (i = 0; i < bp->rx_nr_rings; i++) {
3378                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3379                         struct bnxt_ring_struct *ring =
3380                                                 &rxr->rx_agg_ring_struct;
3381                         u32 grp_idx = rxr->bnapi->index;
3382                         u32 map_idx = grp_idx + bp->rx_nr_rings;
3383
3384                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3385                                                       HWRM_RING_ALLOC_AGG,
3386                                                       map_idx,
3387                                                       INVALID_STATS_CTX_ID);
3388                         if (rc)
3389                                 goto err_out;
3390
3391                         rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3392                         writel(DB_KEY_RX | rxr->rx_agg_prod,
3393                                rxr->rx_agg_doorbell);
3394                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3395                 }
3396         }
3397 err_out:
3398         return rc;
3399 }
3400
3401 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3402                                    struct bnxt_ring_struct *ring,
3403                                    u32 ring_type, int cmpl_ring_id)
3404 {
3405         int rc;
3406         struct hwrm_ring_free_input req = {0};
3407         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3408         u16 error_code;
3409
3410         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3411         req.ring_type = ring_type;
3412         req.ring_id = cpu_to_le16(ring->fw_ring_id);
3413
3414         mutex_lock(&bp->hwrm_cmd_lock);
3415         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3416         error_code = le16_to_cpu(resp->error_code);
3417         mutex_unlock(&bp->hwrm_cmd_lock);
3418
3419         if (rc || error_code) {
3420                 switch (ring_type) {
3421                 case RING_FREE_REQ_RING_TYPE_CMPL:
3422                         netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3423                                    rc);
3424                         return rc;
3425                 case RING_FREE_REQ_RING_TYPE_RX:
3426                         netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3427                                    rc);
3428                         return rc;
3429                 case RING_FREE_REQ_RING_TYPE_TX:
3430                         netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3431                                    rc);
3432                         return rc;
3433                 default:
3434                         netdev_err(bp->dev, "Invalid ring\n");
3435                         return -1;
3436                 }
3437         }
3438         return 0;
3439 }
3440
3441 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3442 {
3443         int i;
3444
3445         if (!bp->bnapi)
3446                 return;
3447
3448         for (i = 0; i < bp->tx_nr_rings; i++) {
3449                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3450                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3451                 u32 grp_idx = txr->bnapi->index;
3452                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3453
3454                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3455                         hwrm_ring_free_send_msg(bp, ring,
3456                                                 RING_FREE_REQ_RING_TYPE_TX,
3457                                                 close_path ? cmpl_ring_id :
3458                                                 INVALID_HW_RING_ID);
3459                         ring->fw_ring_id = INVALID_HW_RING_ID;
3460                 }
3461         }
3462
3463         for (i = 0; i < bp->rx_nr_rings; i++) {
3464                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3465                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3466                 u32 grp_idx = rxr->bnapi->index;
3467                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3468
3469                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3470                         hwrm_ring_free_send_msg(bp, ring,
3471                                                 RING_FREE_REQ_RING_TYPE_RX,
3472                                                 close_path ? cmpl_ring_id :
3473                                                 INVALID_HW_RING_ID);
3474                         ring->fw_ring_id = INVALID_HW_RING_ID;
3475                         bp->grp_info[grp_idx].rx_fw_ring_id =
3476                                 INVALID_HW_RING_ID;
3477                 }
3478         }
3479
3480         for (i = 0; i < bp->rx_nr_rings; i++) {
3481                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3482                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3483                 u32 grp_idx = rxr->bnapi->index;
3484                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3485
3486                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3487                         hwrm_ring_free_send_msg(bp, ring,
3488                                                 RING_FREE_REQ_RING_TYPE_RX,
3489                                                 close_path ? cmpl_ring_id :
3490                                                 INVALID_HW_RING_ID);
3491                         ring->fw_ring_id = INVALID_HW_RING_ID;
3492                         bp->grp_info[grp_idx].agg_fw_ring_id =
3493                                 INVALID_HW_RING_ID;
3494                 }
3495         }
3496
3497         for (i = 0; i < bp->cp_nr_rings; i++) {
3498                 struct bnxt_napi *bnapi = bp->bnapi[i];
3499                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3500                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3501
3502                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3503                         hwrm_ring_free_send_msg(bp, ring,
3504                                                 RING_FREE_REQ_RING_TYPE_CMPL,
3505                                                 INVALID_HW_RING_ID);
3506                         ring->fw_ring_id = INVALID_HW_RING_ID;
3507                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3508                 }
3509         }
3510 }
3511
3512 int bnxt_hwrm_set_coal(struct bnxt *bp)
3513 {
3514         int i, rc = 0;
3515         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3516         u16 max_buf, max_buf_irq;
3517         u16 buf_tmr, buf_tmr_irq;
3518         u32 flags;
3519
3520         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3521                                -1, -1);
3522
3523         /* Each rx completion (2 records) should be DMAed immediately */
3524         max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3525         /* max_buf must not be zero */
3526         max_buf = clamp_t(u16, max_buf, 1, 63);
3527         max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3528         buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3529         buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3530
3531         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3532
3533         /* RING_IDLE generates more IRQs for lower latency.  Enable it only
3534          * if coal_ticks is less than 25 us.
3535          */
3536         if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3537                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3538
3539         req.flags = cpu_to_le16(flags);
3540         req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3541         req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3542         req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3543         req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3544         req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3545         req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3546         req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3547
3548         mutex_lock(&bp->hwrm_cmd_lock);
3549         for (i = 0; i < bp->cp_nr_rings; i++) {
3550                 req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3551
3552                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3553                                         HWRM_CMD_TIMEOUT);
3554                 if (rc)
3555                         break;
3556         }
3557         mutex_unlock(&bp->hwrm_cmd_lock);
3558         return rc;
3559 }
3560
3561 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3562 {
3563         int rc = 0, i;
3564         struct hwrm_stat_ctx_free_input req = {0};
3565
3566         if (!bp->bnapi)
3567                 return 0;
3568
3569         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3570
3571         mutex_lock(&bp->hwrm_cmd_lock);
3572         for (i = 0; i < bp->cp_nr_rings; i++) {
3573                 struct bnxt_napi *bnapi = bp->bnapi[i];
3574                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3575
3576                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3577                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3578
3579                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3580                                                 HWRM_CMD_TIMEOUT);
3581                         if (rc)
3582                                 break;
3583
3584                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3585                 }
3586         }
3587         mutex_unlock(&bp->hwrm_cmd_lock);
3588         return rc;
3589 }
3590
3591 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3592 {
3593         int rc = 0, i;
3594         struct hwrm_stat_ctx_alloc_input req = {0};
3595         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3596
3597         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3598
3599         req.update_period_ms = cpu_to_le32(1000);
3600
3601         mutex_lock(&bp->hwrm_cmd_lock);
3602         for (i = 0; i < bp->cp_nr_rings; i++) {
3603                 struct bnxt_napi *bnapi = bp->bnapi[i];
3604                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3605
3606                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3607
3608                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3609                                         HWRM_CMD_TIMEOUT);
3610                 if (rc)
3611                         break;
3612
3613                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3614
3615                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3616         }
3617         mutex_unlock(&bp->hwrm_cmd_lock);
3618         return 0;
3619 }
3620
3621 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3622 {
3623         int rc = 0;
3624         struct hwrm_func_qcaps_input req = {0};
3625         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3626
3627         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3628         req.fid = cpu_to_le16(0xffff);
3629
3630         mutex_lock(&bp->hwrm_cmd_lock);
3631         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3632         if (rc)
3633                 goto hwrm_func_qcaps_exit;
3634
3635         if (BNXT_PF(bp)) {
3636                 struct bnxt_pf_info *pf = &bp->pf;
3637
3638                 pf->fw_fid = le16_to_cpu(resp->fid);
3639                 pf->port_id = le16_to_cpu(resp->port_id);
3640                 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3641                 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3642                 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3643                 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3644                 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3645                 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3646                 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3647                 if (!pf->max_hw_ring_grps)
3648                         pf->max_hw_ring_grps = pf->max_tx_rings;
3649                 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3650                 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3651                 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3652                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3653                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3654                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3655                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3656                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3657                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3658                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3659                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3660         } else {
3661 #ifdef CONFIG_BNXT_SRIOV
3662                 struct bnxt_vf_info *vf = &bp->vf;
3663
3664                 vf->fw_fid = le16_to_cpu(resp->fid);
3665                 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3666                 if (is_valid_ether_addr(vf->mac_addr))
3667                         /* overwrite netdev dev_adr with admin VF MAC */
3668                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3669                 else
3670                         random_ether_addr(bp->dev->dev_addr);
3671
3672                 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3673                 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3674                 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3675                 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3676                 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3677                 if (!vf->max_hw_ring_grps)
3678                         vf->max_hw_ring_grps = vf->max_tx_rings;
3679                 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3680                 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3681                 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3682 #endif
3683         }
3684
3685         bp->tx_push_thresh = 0;
3686         if (resp->flags &
3687             cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3688                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3689
3690 hwrm_func_qcaps_exit:
3691         mutex_unlock(&bp->hwrm_cmd_lock);
3692         return rc;
3693 }
3694
3695 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3696 {
3697         struct hwrm_func_reset_input req = {0};
3698
3699         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3700         req.enables = 0;
3701
3702         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3703 }
3704
3705 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3706 {
3707         int rc = 0;
3708         struct hwrm_queue_qportcfg_input req = {0};
3709         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3710         u8 i, *qptr;
3711
3712         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3713
3714         mutex_lock(&bp->hwrm_cmd_lock);
3715         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3716         if (rc)
3717                 goto qportcfg_exit;
3718
3719         if (!resp->max_configurable_queues) {
3720                 rc = -EINVAL;
3721                 goto qportcfg_exit;
3722         }
3723         bp->max_tc = resp->max_configurable_queues;
3724         if (bp->max_tc > BNXT_MAX_QUEUE)
3725                 bp->max_tc = BNXT_MAX_QUEUE;
3726
3727         qptr = &resp->queue_id0;
3728         for (i = 0; i < bp->max_tc; i++) {
3729                 bp->q_info[i].queue_id = *qptr++;
3730                 bp->q_info[i].queue_profile = *qptr++;
3731         }
3732
3733 qportcfg_exit:
3734         mutex_unlock(&bp->hwrm_cmd_lock);
3735         return rc;
3736 }
3737
3738 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3739 {
3740         int rc;
3741         struct hwrm_ver_get_input req = {0};
3742         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3743
3744         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3745         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3746         req.hwrm_intf_min = HWRM_VERSION_MINOR;
3747         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3748         mutex_lock(&bp->hwrm_cmd_lock);
3749         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3750         if (rc)
3751                 goto hwrm_ver_get_exit;
3752
3753         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3754
3755         if (resp->hwrm_intf_maj < 1) {
3756                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3757                             resp->hwrm_intf_maj, resp->hwrm_intf_min,
3758                             resp->hwrm_intf_upd);
3759                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3760         }
3761         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3762                  resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3763                  resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3764
3765 hwrm_ver_get_exit:
3766         mutex_unlock(&bp->hwrm_cmd_lock);
3767         return rc;
3768 }
3769
3770 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3771 {
3772         if (bp->vxlan_port_cnt) {
3773                 bnxt_hwrm_tunnel_dst_port_free(
3774                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3775         }
3776         bp->vxlan_port_cnt = 0;
3777         if (bp->nge_port_cnt) {
3778                 bnxt_hwrm_tunnel_dst_port_free(
3779                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3780         }
3781         bp->nge_port_cnt = 0;
3782 }
3783
3784 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3785 {
3786         int rc, i;
3787         u32 tpa_flags = 0;
3788
3789         if (set_tpa)
3790                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
3791         for (i = 0; i < bp->nr_vnics; i++) {
3792                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3793                 if (rc) {
3794                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3795                                    rc, i);
3796                         return rc;
3797                 }
3798         }
3799         return 0;
3800 }
3801
3802 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3803 {
3804         int i;
3805
3806         for (i = 0; i < bp->nr_vnics; i++)
3807                 bnxt_hwrm_vnic_set_rss(bp, i, false);
3808 }
3809
3810 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3811                                     bool irq_re_init)
3812 {
3813         if (bp->vnic_info) {
3814                 bnxt_hwrm_clear_vnic_filter(bp);
3815                 /* clear all RSS setting before free vnic ctx */
3816                 bnxt_hwrm_clear_vnic_rss(bp);
3817                 bnxt_hwrm_vnic_ctx_free(bp);
3818                 /* before free the vnic, undo the vnic tpa settings */
3819                 if (bp->flags & BNXT_FLAG_TPA)
3820                         bnxt_set_tpa(bp, false);
3821                 bnxt_hwrm_vnic_free(bp);
3822         }
3823         bnxt_hwrm_ring_free(bp, close_path);
3824         bnxt_hwrm_ring_grp_free(bp);
3825         if (irq_re_init) {
3826                 bnxt_hwrm_stat_ctx_free(bp);
3827                 bnxt_hwrm_free_tunnel_ports(bp);
3828         }
3829 }
3830
3831 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3832 {
3833         int rc;
3834
3835         /* allocate context for vnic */
3836         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3837         if (rc) {
3838                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3839                            vnic_id, rc);
3840                 goto vnic_setup_err;
3841         }
3842         bp->rsscos_nr_ctxs++;
3843
3844         /* configure default vnic, ring grp */
3845         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3846         if (rc) {
3847                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3848                            vnic_id, rc);
3849                 goto vnic_setup_err;
3850         }
3851
3852         /* Enable RSS hashing on vnic */
3853         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3854         if (rc) {
3855                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3856                            vnic_id, rc);
3857                 goto vnic_setup_err;
3858         }
3859
3860         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3861                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3862                 if (rc) {
3863                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3864                                    vnic_id, rc);
3865                 }
3866         }
3867
3868 vnic_setup_err:
3869         return rc;
3870 }
3871
3872 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3873 {
3874 #ifdef CONFIG_RFS_ACCEL
3875         int i, rc = 0;
3876
3877         for (i = 0; i < bp->rx_nr_rings; i++) {
3878                 u16 vnic_id = i + 1;
3879                 u16 ring_id = i;
3880
3881                 if (vnic_id >= bp->nr_vnics)
3882                         break;
3883
3884                 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3885                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
3886                 if (rc) {
3887                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3888                                    vnic_id, rc);
3889                         break;
3890                 }
3891                 rc = bnxt_setup_vnic(bp, vnic_id);
3892                 if (rc)
3893                         break;
3894         }
3895         return rc;
3896 #else
3897         return 0;
3898 #endif
3899 }
3900
3901 static int bnxt_cfg_rx_mode(struct bnxt *);
3902
3903 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3904 {
3905         int rc = 0;
3906
3907         if (irq_re_init) {
3908                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
3909                 if (rc) {
3910                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3911                                    rc);
3912                         goto err_out;
3913                 }
3914         }
3915
3916         rc = bnxt_hwrm_ring_alloc(bp);
3917         if (rc) {
3918                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3919                 goto err_out;
3920         }
3921
3922         rc = bnxt_hwrm_ring_grp_alloc(bp);
3923         if (rc) {
3924                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3925                 goto err_out;
3926         }
3927
3928         /* default vnic 0 */
3929         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3930         if (rc) {
3931                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3932                 goto err_out;
3933         }
3934
3935         rc = bnxt_setup_vnic(bp, 0);
3936         if (rc)
3937                 goto err_out;
3938
3939         if (bp->flags & BNXT_FLAG_RFS) {
3940                 rc = bnxt_alloc_rfs_vnics(bp);
3941                 if (rc)
3942                         goto err_out;
3943         }
3944
3945         if (bp->flags & BNXT_FLAG_TPA) {
3946                 rc = bnxt_set_tpa(bp, true);
3947                 if (rc)
3948                         goto err_out;
3949         }
3950
3951         if (BNXT_VF(bp))
3952                 bnxt_update_vf_mac(bp);
3953
3954         /* Filter for default vnic 0 */
3955         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3956         if (rc) {
3957                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3958                 goto err_out;
3959         }
3960         bp->vnic_info[0].uc_filter_count = 1;
3961
3962         bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3963
3964         if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3965                 bp->vnic_info[0].rx_mask |=
3966                                 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3967
3968         rc = bnxt_cfg_rx_mode(bp);
3969         if (rc)
3970                 goto err_out;
3971
3972         rc = bnxt_hwrm_set_coal(bp);
3973         if (rc)
3974                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3975                             rc);
3976
3977         return 0;
3978
3979 err_out:
3980         bnxt_hwrm_resource_free(bp, 0, true);
3981
3982         return rc;
3983 }
3984
3985 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
3986 {
3987         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
3988         return 0;
3989 }
3990
3991 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
3992 {
3993         bnxt_init_rx_rings(bp);
3994         bnxt_init_tx_rings(bp);
3995         bnxt_init_ring_grps(bp, irq_re_init);
3996         bnxt_init_vnics(bp);
3997
3998         return bnxt_init_chip(bp, irq_re_init);
3999 }
4000
4001 static void bnxt_disable_int(struct bnxt *bp)
4002 {
4003         int i;
4004
4005         if (!bp->bnapi)
4006                 return;
4007
4008         for (i = 0; i < bp->cp_nr_rings; i++) {
4009                 struct bnxt_napi *bnapi = bp->bnapi[i];
4010                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4011
4012                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4013         }
4014 }
4015
4016 static void bnxt_enable_int(struct bnxt *bp)
4017 {
4018         int i;
4019
4020         atomic_set(&bp->intr_sem, 0);
4021         for (i = 0; i < bp->cp_nr_rings; i++) {
4022                 struct bnxt_napi *bnapi = bp->bnapi[i];
4023                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4024
4025                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4026         }
4027 }
4028
4029 static int bnxt_set_real_num_queues(struct bnxt *bp)
4030 {
4031         int rc;
4032         struct net_device *dev = bp->dev;
4033
4034         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4035         if (rc)
4036                 return rc;
4037
4038         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4039         if (rc)
4040                 return rc;
4041
4042 #ifdef CONFIG_RFS_ACCEL
4043         if (bp->flags & BNXT_FLAG_RFS)
4044                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4045 #endif
4046
4047         return rc;
4048 }
4049
4050 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4051                            bool shared)
4052 {
4053         int _rx = *rx, _tx = *tx;
4054
4055         if (shared) {
4056                 *rx = min_t(int, _rx, max);
4057                 *tx = min_t(int, _tx, max);
4058         } else {
4059                 if (max < 2)
4060                         return -ENOMEM;
4061
4062                 while (_rx + _tx > max) {
4063                         if (_rx > _tx && _rx > 1)
4064                                 _rx--;
4065                         else if (_tx > 1)
4066                                 _tx--;
4067                 }
4068                 *rx = _rx;
4069                 *tx = _tx;
4070         }
4071         return 0;
4072 }
4073
4074 static int bnxt_setup_msix(struct bnxt *bp)
4075 {
4076         struct msix_entry *msix_ent;
4077         struct net_device *dev = bp->dev;
4078         int i, total_vecs, rc = 0, min = 1;
4079         const int len = sizeof(bp->irq_tbl[0].name);
4080
4081         bp->flags &= ~BNXT_FLAG_USING_MSIX;
4082         total_vecs = bp->cp_nr_rings;
4083
4084         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4085         if (!msix_ent)
4086                 return -ENOMEM;
4087
4088         for (i = 0; i < total_vecs; i++) {
4089                 msix_ent[i].entry = i;
4090                 msix_ent[i].vector = 0;
4091         }
4092
4093         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4094                 min = 2;
4095
4096         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4097         if (total_vecs < 0) {
4098                 rc = -ENODEV;
4099                 goto msix_setup_exit;
4100         }
4101
4102         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4103         if (bp->irq_tbl) {
4104                 int tcs;
4105
4106                 /* Trim rings based upon num of vectors allocated */
4107                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4108                                      total_vecs, min == 1);
4109                 if (rc)
4110                         goto msix_setup_exit;
4111
4112                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4113                 tcs = netdev_get_num_tc(dev);
4114                 if (tcs > 1) {
4115                         bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4116                         if (bp->tx_nr_rings_per_tc == 0) {
4117                                 netdev_reset_tc(dev);
4118                                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4119                         } else {
4120                                 int i, off, count;
4121
4122                                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4123                                 for (i = 0; i < tcs; i++) {
4124                                         count = bp->tx_nr_rings_per_tc;
4125                                         off = i * count;
4126                                         netdev_set_tc_queue(dev, i, count, off);
4127                                 }
4128                         }
4129                 }
4130                 bp->cp_nr_rings = total_vecs;
4131
4132                 for (i = 0; i < bp->cp_nr_rings; i++) {
4133                         char *attr;
4134
4135                         bp->irq_tbl[i].vector = msix_ent[i].vector;
4136                         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4137                                 attr = "TxRx";
4138                         else if (i < bp->rx_nr_rings)
4139                                 attr = "rx";
4140                         else
4141                                 attr = "tx";
4142
4143                         snprintf(bp->irq_tbl[i].name, len,
4144                                  "%s-%s-%d", dev->name, attr, i);
4145                         bp->irq_tbl[i].handler = bnxt_msix;
4146                 }
4147                 rc = bnxt_set_real_num_queues(bp);
4148                 if (rc)
4149                         goto msix_setup_exit;
4150         } else {
4151                 rc = -ENOMEM;
4152                 goto msix_setup_exit;
4153         }
4154         bp->flags |= BNXT_FLAG_USING_MSIX;
4155         kfree(msix_ent);
4156         return 0;
4157
4158 msix_setup_exit:
4159         netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4160         pci_disable_msix(bp->pdev);
4161         kfree(msix_ent);
4162         return rc;
4163 }
4164
4165 static int bnxt_setup_inta(struct bnxt *bp)
4166 {
4167         int rc;
4168         const int len = sizeof(bp->irq_tbl[0].name);
4169
4170         if (netdev_get_num_tc(bp->dev))
4171                 netdev_reset_tc(bp->dev);
4172
4173         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4174         if (!bp->irq_tbl) {
4175                 rc = -ENOMEM;
4176                 return rc;
4177         }
4178         bp->rx_nr_rings = 1;
4179         bp->tx_nr_rings = 1;
4180         bp->cp_nr_rings = 1;
4181         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4182         bp->flags |= BNXT_FLAG_SHARED_RINGS;
4183         bp->irq_tbl[0].vector = bp->pdev->irq;
4184         snprintf(bp->irq_tbl[0].name, len,
4185                  "%s-%s-%d", bp->dev->name, "TxRx", 0);
4186         bp->irq_tbl[0].handler = bnxt_inta;
4187         rc = bnxt_set_real_num_queues(bp);
4188         return rc;
4189 }
4190
4191 static int bnxt_setup_int_mode(struct bnxt *bp)
4192 {
4193         int rc = 0;
4194
4195         if (bp->flags & BNXT_FLAG_MSIX_CAP)
4196                 rc = bnxt_setup_msix(bp);
4197
4198         if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4199                 /* fallback to INTA */
4200                 rc = bnxt_setup_inta(bp);
4201         }
4202         return rc;
4203 }
4204
4205 static void bnxt_free_irq(struct bnxt *bp)
4206 {
4207         struct bnxt_irq *irq;
4208         int i;
4209
4210 #ifdef CONFIG_RFS_ACCEL
4211         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4212         bp->dev->rx_cpu_rmap = NULL;
4213 #endif
4214         if (!bp->irq_tbl)
4215                 return;
4216
4217         for (i = 0; i < bp->cp_nr_rings; i++) {
4218                 irq = &bp->irq_tbl[i];
4219                 if (irq->requested)
4220                         free_irq(irq->vector, bp->bnapi[i]);
4221                 irq->requested = 0;
4222         }
4223         if (bp->flags & BNXT_FLAG_USING_MSIX)
4224                 pci_disable_msix(bp->pdev);
4225         kfree(bp->irq_tbl);
4226         bp->irq_tbl = NULL;
4227 }
4228
4229 static int bnxt_request_irq(struct bnxt *bp)
4230 {
4231         int i, j, rc = 0;
4232         unsigned long flags = 0;
4233 #ifdef CONFIG_RFS_ACCEL
4234         struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4235 #endif
4236
4237         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4238                 flags = IRQF_SHARED;
4239
4240         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4241                 struct bnxt_irq *irq = &bp->irq_tbl[i];
4242 #ifdef CONFIG_RFS_ACCEL
4243                 if (rmap && bp->bnapi[i]->rx_ring) {
4244                         rc = irq_cpu_rmap_add(rmap, irq->vector);
4245                         if (rc)
4246                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4247                                             j);
4248                         j++;
4249                 }
4250 #endif
4251                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4252                                  bp->bnapi[i]);
4253                 if (rc)
4254                         break;
4255
4256                 irq->requested = 1;
4257         }
4258         return rc;
4259 }
4260
4261 static void bnxt_del_napi(struct bnxt *bp)
4262 {
4263         int i;
4264
4265         if (!bp->bnapi)
4266                 return;
4267
4268         for (i = 0; i < bp->cp_nr_rings; i++) {
4269                 struct bnxt_napi *bnapi = bp->bnapi[i];
4270
4271                 napi_hash_del(&bnapi->napi);
4272                 netif_napi_del(&bnapi->napi);
4273         }
4274 }
4275
4276 static void bnxt_init_napi(struct bnxt *bp)
4277 {
4278         int i;
4279         struct bnxt_napi *bnapi;
4280
4281         if (bp->flags & BNXT_FLAG_USING_MSIX) {
4282                 for (i = 0; i < bp->cp_nr_rings; i++) {
4283                         bnapi = bp->bnapi[i];
4284                         netif_napi_add(bp->dev, &bnapi->napi,
4285                                        bnxt_poll, 64);
4286                 }
4287         } else {
4288                 bnapi = bp->bnapi[0];
4289                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4290         }
4291 }
4292
4293 static void bnxt_disable_napi(struct bnxt *bp)
4294 {
4295         int i;
4296
4297         if (!bp->bnapi)
4298                 return;
4299
4300         for (i = 0; i < bp->cp_nr_rings; i++) {
4301                 napi_disable(&bp->bnapi[i]->napi);
4302                 bnxt_disable_poll(bp->bnapi[i]);
4303         }
4304 }
4305
4306 static void bnxt_enable_napi(struct bnxt *bp)
4307 {
4308         int i;
4309
4310         for (i = 0; i < bp->cp_nr_rings; i++) {
4311                 bnxt_enable_poll(bp->bnapi[i]);
4312                 napi_enable(&bp->bnapi[i]->napi);
4313         }
4314 }
4315
4316 static void bnxt_tx_disable(struct bnxt *bp)
4317 {
4318         int i;
4319         struct bnxt_tx_ring_info *txr;
4320         struct netdev_queue *txq;
4321
4322         if (bp->tx_ring) {
4323                 for (i = 0; i < bp->tx_nr_rings; i++) {
4324                         txr = &bp->tx_ring[i];
4325                         txq = netdev_get_tx_queue(bp->dev, i);
4326                         __netif_tx_lock(txq, smp_processor_id());
4327                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
4328                         __netif_tx_unlock(txq);
4329                 }
4330         }
4331         /* Stop all TX queues */
4332         netif_tx_disable(bp->dev);
4333         netif_carrier_off(bp->dev);
4334 }
4335
4336 static void bnxt_tx_enable(struct bnxt *bp)
4337 {
4338         int i;
4339         struct bnxt_tx_ring_info *txr;
4340         struct netdev_queue *txq;
4341
4342         for (i = 0; i < bp->tx_nr_rings; i++) {
4343                 txr = &bp->tx_ring[i];
4344                 txq = netdev_get_tx_queue(bp->dev, i);
4345                 txr->dev_state = 0;
4346         }
4347         netif_tx_wake_all_queues(bp->dev);
4348         if (bp->link_info.link_up)
4349                 netif_carrier_on(bp->dev);
4350 }
4351
4352 static void bnxt_report_link(struct bnxt *bp)
4353 {
4354         if (bp->link_info.link_up) {
4355                 const char *duplex;
4356                 const char *flow_ctrl;
4357                 u16 speed;
4358
4359                 netif_carrier_on(bp->dev);
4360                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4361                         duplex = "full";
4362                 else
4363                         duplex = "half";
4364                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4365                         flow_ctrl = "ON - receive & transmit";
4366                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4367                         flow_ctrl = "ON - transmit";
4368                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4369                         flow_ctrl = "ON - receive";
4370                 else
4371                         flow_ctrl = "none";
4372                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4373                 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4374                             speed, duplex, flow_ctrl);
4375         } else {
4376                 netif_carrier_off(bp->dev);
4377                 netdev_err(bp->dev, "NIC Link is Down\n");
4378         }
4379 }
4380
4381 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4382 {
4383         int rc = 0;
4384         struct bnxt_link_info *link_info = &bp->link_info;
4385         struct hwrm_port_phy_qcfg_input req = {0};
4386         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4387         u8 link_up = link_info->link_up;
4388
4389         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4390
4391         mutex_lock(&bp->hwrm_cmd_lock);
4392         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4393         if (rc) {
4394                 mutex_unlock(&bp->hwrm_cmd_lock);
4395                 return rc;
4396         }
4397
4398         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4399         link_info->phy_link_status = resp->link;
4400         link_info->duplex =  resp->duplex;
4401         link_info->pause = resp->pause;
4402         link_info->auto_mode = resp->auto_mode;
4403         link_info->auto_pause_setting = resp->auto_pause;
4404         link_info->force_pause_setting = resp->force_pause;
4405         link_info->duplex_setting = resp->duplex;
4406         if (link_info->phy_link_status == BNXT_LINK_LINK)
4407                 link_info->link_speed = le16_to_cpu(resp->link_speed);
4408         else
4409                 link_info->link_speed = 0;
4410         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4411         link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4412         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4413         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4414         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4415         link_info->phy_ver[0] = resp->phy_maj;
4416         link_info->phy_ver[1] = resp->phy_min;
4417         link_info->phy_ver[2] = resp->phy_bld;
4418         link_info->media_type = resp->media_type;
4419         link_info->transceiver = resp->transceiver_type;
4420         link_info->phy_addr = resp->phy_addr;
4421
4422         /* TODO: need to add more logic to report VF link */
4423         if (chng_link_state) {
4424                 if (link_info->phy_link_status == BNXT_LINK_LINK)
4425                         link_info->link_up = 1;
4426                 else
4427                         link_info->link_up = 0;
4428                 if (link_up != link_info->link_up)
4429                         bnxt_report_link(bp);
4430         } else {
4431                 /* alwasy link down if not require to update link state */
4432                 link_info->link_up = 0;
4433         }
4434         mutex_unlock(&bp->hwrm_cmd_lock);
4435         return 0;
4436 }
4437
4438 static void
4439 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4440 {
4441         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4442                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4443                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4444                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4445                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4446                 req->enables |=
4447                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4448         } else {
4449                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4450                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4451                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4452                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4453                 req->enables |=
4454                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4455         }
4456 }
4457
4458 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4459                                       struct hwrm_port_phy_cfg_input *req)
4460 {
4461         u8 autoneg = bp->link_info.autoneg;
4462         u16 fw_link_speed = bp->link_info.req_link_speed;
4463         u32 advertising = bp->link_info.advertising;
4464
4465         if (autoneg & BNXT_AUTONEG_SPEED) {
4466                 req->auto_mode |=
4467                         PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4468
4469                 req->enables |= cpu_to_le32(
4470                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4471                 req->auto_link_speed_mask = cpu_to_le16(advertising);
4472
4473                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4474                 req->flags |=
4475                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4476         } else {
4477                 req->force_link_speed = cpu_to_le16(fw_link_speed);
4478                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4479         }
4480
4481         /* currently don't support half duplex */
4482         req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4483         req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4484         /* tell chimp that the setting takes effect immediately */
4485         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4486 }
4487
4488 int bnxt_hwrm_set_pause(struct bnxt *bp)
4489 {
4490         struct hwrm_port_phy_cfg_input req = {0};
4491         int rc;
4492
4493         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4494         bnxt_hwrm_set_pause_common(bp, &req);
4495
4496         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4497             bp->link_info.force_link_chng)
4498                 bnxt_hwrm_set_link_common(bp, &req);
4499
4500         mutex_lock(&bp->hwrm_cmd_lock);
4501         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4502         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4503                 /* since changing of pause setting doesn't trigger any link
4504                  * change event, the driver needs to update the current pause
4505                  * result upon successfully return of the phy_cfg command
4506                  */
4507                 bp->link_info.pause =
4508                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4509                 bp->link_info.auto_pause_setting = 0;
4510                 if (!bp->link_info.force_link_chng)
4511                         bnxt_report_link(bp);
4512         }
4513         bp->link_info.force_link_chng = false;
4514         mutex_unlock(&bp->hwrm_cmd_lock);
4515         return rc;
4516 }
4517
4518 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4519 {
4520         struct hwrm_port_phy_cfg_input req = {0};
4521
4522         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4523         if (set_pause)
4524                 bnxt_hwrm_set_pause_common(bp, &req);
4525
4526         bnxt_hwrm_set_link_common(bp, &req);
4527         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4528 }
4529
4530 static int bnxt_update_phy_setting(struct bnxt *bp)
4531 {
4532         int rc;
4533         bool update_link = false;
4534         bool update_pause = false;
4535         struct bnxt_link_info *link_info = &bp->link_info;
4536
4537         rc = bnxt_update_link(bp, true);
4538         if (rc) {
4539                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4540                            rc);
4541                 return rc;
4542         }
4543         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4544             link_info->auto_pause_setting != link_info->req_flow_ctrl)
4545                 update_pause = true;
4546         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4547             link_info->force_pause_setting != link_info->req_flow_ctrl)
4548                 update_pause = true;
4549         if (link_info->req_duplex != link_info->duplex_setting)
4550                 update_link = true;
4551         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4552                 if (BNXT_AUTO_MODE(link_info->auto_mode))
4553                         update_link = true;
4554                 if (link_info->req_link_speed != link_info->force_link_speed)
4555                         update_link = true;
4556         } else {
4557                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4558                         update_link = true;
4559                 if (link_info->advertising != link_info->auto_link_speeds)
4560                         update_link = true;
4561                 if (link_info->req_link_speed != link_info->auto_link_speed)
4562                         update_link = true;
4563         }
4564
4565         if (update_link)
4566                 rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4567         else if (update_pause)
4568                 rc = bnxt_hwrm_set_pause(bp);
4569         if (rc) {
4570                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4571                            rc);
4572                 return rc;
4573         }
4574
4575         return rc;
4576 }
4577
4578 /* Common routine to pre-map certain register block to different GRC window.
4579  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4580  * in PF and 3 windows in VF that can be customized to map in different
4581  * register blocks.
4582  */
4583 static void bnxt_preset_reg_win(struct bnxt *bp)
4584 {
4585         if (BNXT_PF(bp)) {
4586                 /* CAG registers map to GRC window #4 */
4587                 writel(BNXT_CAG_REG_BASE,
4588                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4589         }
4590 }
4591
4592 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4593 {
4594         int rc = 0;
4595
4596         bnxt_preset_reg_win(bp);
4597         netif_carrier_off(bp->dev);
4598         if (irq_re_init) {
4599                 rc = bnxt_setup_int_mode(bp);
4600                 if (rc) {
4601                         netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4602                                    rc);
4603                         return rc;
4604                 }
4605         }
4606         if ((bp->flags & BNXT_FLAG_RFS) &&
4607             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4608                 /* disable RFS if falling back to INTA */
4609                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4610                 bp->flags &= ~BNXT_FLAG_RFS;
4611         }
4612
4613         rc = bnxt_alloc_mem(bp, irq_re_init);
4614         if (rc) {
4615                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4616                 goto open_err_free_mem;
4617         }
4618
4619         if (irq_re_init) {
4620                 bnxt_init_napi(bp);
4621                 rc = bnxt_request_irq(bp);
4622                 if (rc) {
4623                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4624                         goto open_err;
4625                 }
4626         }
4627
4628         bnxt_enable_napi(bp);
4629
4630         rc = bnxt_init_nic(bp, irq_re_init);
4631         if (rc) {
4632                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4633                 goto open_err;
4634         }
4635
4636         if (link_re_init) {
4637                 rc = bnxt_update_phy_setting(bp);
4638                 if (rc)
4639                         goto open_err;
4640         }
4641
4642         if (irq_re_init) {
4643 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4644                 vxlan_get_rx_port(bp->dev);
4645 #endif
4646                 if (!bnxt_hwrm_tunnel_dst_port_alloc(
4647                                 bp, htons(0x17c1),
4648                                 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4649                         bp->nge_port_cnt = 1;
4650         }
4651
4652         set_bit(BNXT_STATE_OPEN, &bp->state);
4653         bnxt_enable_int(bp);
4654         /* Enable TX queues */
4655         bnxt_tx_enable(bp);
4656         mod_timer(&bp->timer, jiffies + bp->current_interval);
4657
4658         return 0;
4659
4660 open_err:
4661         bnxt_disable_napi(bp);
4662         bnxt_del_napi(bp);
4663
4664 open_err_free_mem:
4665         bnxt_free_skbs(bp);
4666         bnxt_free_irq(bp);
4667         bnxt_free_mem(bp, true);
4668         return rc;
4669 }
4670
4671 /* rtnl_lock held */
4672 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4673 {
4674         int rc = 0;
4675
4676         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4677         if (rc) {
4678                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4679                 dev_close(bp->dev);
4680         }
4681         return rc;
4682 }
4683
4684 static int bnxt_open(struct net_device *dev)
4685 {
4686         struct bnxt *bp = netdev_priv(dev);
4687         int rc = 0;
4688
4689         rc = bnxt_hwrm_func_reset(bp);
4690         if (rc) {
4691                 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4692                            rc);
4693                 rc = -1;
4694                 return rc;
4695         }
4696         return __bnxt_open_nic(bp, true, true);
4697 }
4698
4699 static void bnxt_disable_int_sync(struct bnxt *bp)
4700 {
4701         int i;
4702
4703         atomic_inc(&bp->intr_sem);
4704         if (!netif_running(bp->dev))
4705                 return;
4706
4707         bnxt_disable_int(bp);
4708         for (i = 0; i < bp->cp_nr_rings; i++)
4709                 synchronize_irq(bp->irq_tbl[i].vector);
4710 }
4711
4712 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4713 {
4714         int rc = 0;
4715
4716 #ifdef CONFIG_BNXT_SRIOV
4717         if (bp->sriov_cfg) {
4718                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4719                                                       !bp->sriov_cfg,
4720                                                       BNXT_SRIOV_CFG_WAIT_TMO);
4721                 if (rc)
4722                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4723         }
4724 #endif
4725         /* Change device state to avoid TX queue wake up's */
4726         bnxt_tx_disable(bp);
4727
4728         clear_bit(BNXT_STATE_OPEN, &bp->state);
4729         smp_mb__after_atomic();
4730         while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4731                 msleep(20);
4732
4733         /* Flush rings before disabling interrupts */
4734         bnxt_shutdown_nic(bp, irq_re_init);
4735
4736         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4737
4738         bnxt_disable_napi(bp);
4739         bnxt_disable_int_sync(bp);
4740         del_timer_sync(&bp->timer);
4741         bnxt_free_skbs(bp);
4742
4743         if (irq_re_init) {
4744                 bnxt_free_irq(bp);
4745                 bnxt_del_napi(bp);
4746         }
4747         bnxt_free_mem(bp, irq_re_init);
4748         return rc;
4749 }
4750
4751 static int bnxt_close(struct net_device *dev)
4752 {
4753         struct bnxt *bp = netdev_priv(dev);
4754
4755         bnxt_close_nic(bp, true, true);
4756         return 0;
4757 }
4758
4759 /* rtnl_lock held */
4760 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4761 {
4762         switch (cmd) {
4763         case SIOCGMIIPHY:
4764                 /* fallthru */
4765         case SIOCGMIIREG: {
4766                 if (!netif_running(dev))
4767                         return -EAGAIN;
4768
4769                 return 0;
4770         }
4771
4772         case SIOCSMIIREG:
4773                 if (!netif_running(dev))
4774                         return -EAGAIN;
4775
4776                 return 0;
4777
4778         default:
4779                 /* do nothing */
4780                 break;
4781         }
4782         return -EOPNOTSUPP;
4783 }
4784
4785 static struct rtnl_link_stats64 *
4786 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4787 {
4788         u32 i;
4789         struct bnxt *bp = netdev_priv(dev);
4790
4791         memset(stats, 0, sizeof(struct rtnl_link_stats64));
4792
4793         if (!bp->bnapi)
4794                 return stats;
4795
4796         /* TODO check if we need to synchronize with bnxt_close path */
4797         for (i = 0; i < bp->cp_nr_rings; i++) {
4798                 struct bnxt_napi *bnapi = bp->bnapi[i];
4799                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4800                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4801
4802                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4803                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4804                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4805
4806                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4807                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4808                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4809
4810                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4811                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4812                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4813
4814                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4815                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4816                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4817
4818                 stats->rx_missed_errors +=
4819                         le64_to_cpu(hw_stats->rx_discard_pkts);
4820
4821                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4822
4823                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4824         }
4825
4826         return stats;
4827 }
4828
4829 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4830 {
4831         struct net_device *dev = bp->dev;
4832         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4833         struct netdev_hw_addr *ha;
4834         u8 *haddr;
4835         int mc_count = 0;
4836         bool update = false;
4837         int off = 0;
4838
4839         netdev_for_each_mc_addr(ha, dev) {
4840                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
4841                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4842                         vnic->mc_list_count = 0;
4843                         return false;
4844                 }
4845                 haddr = ha->addr;
4846                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4847                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4848                         update = true;
4849                 }
4850                 off += ETH_ALEN;
4851                 mc_count++;
4852         }
4853         if (mc_count)
4854                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4855
4856         if (mc_count != vnic->mc_list_count) {
4857                 vnic->mc_list_count = mc_count;
4858                 update = true;
4859         }
4860         return update;
4861 }
4862
4863 static bool bnxt_uc_list_updated(struct bnxt *bp)
4864 {
4865         struct net_device *dev = bp->dev;
4866         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4867         struct netdev_hw_addr *ha;
4868         int off = 0;
4869
4870         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4871                 return true;
4872
4873         netdev_for_each_uc_addr(ha, dev) {
4874                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4875                         return true;
4876
4877                 off += ETH_ALEN;
4878         }
4879         return false;
4880 }
4881
4882 static void bnxt_set_rx_mode(struct net_device *dev)
4883 {
4884         struct bnxt *bp = netdev_priv(dev);
4885         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4886         u32 mask = vnic->rx_mask;
4887         bool mc_update = false;
4888         bool uc_update;
4889
4890         if (!netif_running(dev))
4891                 return;
4892
4893         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4894                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4895                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4896
4897         /* Only allow PF to be in promiscuous mode */
4898         if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4899                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4900
4901         uc_update = bnxt_uc_list_updated(bp);
4902
4903         if (dev->flags & IFF_ALLMULTI) {
4904                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4905                 vnic->mc_list_count = 0;
4906         } else {
4907                 mc_update = bnxt_mc_list_updated(bp, &mask);
4908         }
4909
4910         if (mask != vnic->rx_mask || uc_update || mc_update) {
4911                 vnic->rx_mask = mask;
4912
4913                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4914                 schedule_work(&bp->sp_task);
4915         }
4916 }
4917
4918 static int bnxt_cfg_rx_mode(struct bnxt *bp)
4919 {
4920         struct net_device *dev = bp->dev;
4921         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4922         struct netdev_hw_addr *ha;
4923         int i, off = 0, rc;
4924         bool uc_update;
4925
4926         netif_addr_lock_bh(dev);
4927         uc_update = bnxt_uc_list_updated(bp);
4928         netif_addr_unlock_bh(dev);
4929
4930         if (!uc_update)
4931                 goto skip_uc;
4932
4933         mutex_lock(&bp->hwrm_cmd_lock);
4934         for (i = 1; i < vnic->uc_filter_count; i++) {
4935                 struct hwrm_cfa_l2_filter_free_input req = {0};
4936
4937                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4938                                        -1);
4939
4940                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
4941
4942                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4943                                         HWRM_CMD_TIMEOUT);
4944         }
4945         mutex_unlock(&bp->hwrm_cmd_lock);
4946
4947         vnic->uc_filter_count = 1;
4948
4949         netif_addr_lock_bh(dev);
4950         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4951                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4952         } else {
4953                 netdev_for_each_uc_addr(ha, dev) {
4954                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4955                         off += ETH_ALEN;
4956                         vnic->uc_filter_count++;
4957                 }
4958         }
4959         netif_addr_unlock_bh(dev);
4960
4961         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4962                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4963                 if (rc) {
4964                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4965                                    rc);
4966                         vnic->uc_filter_count = i;
4967                         return rc;
4968                 }
4969         }
4970
4971 skip_uc:
4972         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4973         if (rc)
4974                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
4975                            rc);
4976
4977         return rc;
4978 }
4979
4980 static bool bnxt_rfs_capable(struct bnxt *bp)
4981 {
4982 #ifdef CONFIG_RFS_ACCEL
4983         struct bnxt_pf_info *pf = &bp->pf;
4984         int vnics;
4985
4986         if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
4987                 return false;
4988
4989         vnics = 1 + bp->rx_nr_rings;
4990         if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
4991                 return false;
4992
4993         return true;
4994 #else
4995         return false;
4996 #endif
4997 }
4998
4999 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5000                                            netdev_features_t features)
5001 {
5002         struct bnxt *bp = netdev_priv(dev);
5003
5004         if (!bnxt_rfs_capable(bp))
5005                 features &= ~NETIF_F_NTUPLE;
5006         return features;
5007 }
5008
5009 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5010 {
5011         struct bnxt *bp = netdev_priv(dev);
5012         u32 flags = bp->flags;
5013         u32 changes;
5014         int rc = 0;
5015         bool re_init = false;
5016         bool update_tpa = false;
5017
5018         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5019         if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5020                 flags |= BNXT_FLAG_GRO;
5021         if (features & NETIF_F_LRO)
5022                 flags |= BNXT_FLAG_LRO;
5023
5024         if (features & NETIF_F_HW_VLAN_CTAG_RX)
5025                 flags |= BNXT_FLAG_STRIP_VLAN;
5026
5027         if (features & NETIF_F_NTUPLE)
5028                 flags |= BNXT_FLAG_RFS;
5029
5030         changes = flags ^ bp->flags;
5031         if (changes & BNXT_FLAG_TPA) {
5032                 update_tpa = true;
5033                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5034                     (flags & BNXT_FLAG_TPA) == 0)
5035                         re_init = true;
5036         }
5037
5038         if (changes & ~BNXT_FLAG_TPA)
5039                 re_init = true;
5040
5041         if (flags != bp->flags) {
5042                 u32 old_flags = bp->flags;
5043
5044                 bp->flags = flags;
5045
5046                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5047                         if (update_tpa)
5048                                 bnxt_set_ring_params(bp);
5049                         return rc;
5050                 }
5051
5052                 if (re_init) {
5053                         bnxt_close_nic(bp, false, false);
5054                         if (update_tpa)
5055                                 bnxt_set_ring_params(bp);
5056
5057                         return bnxt_open_nic(bp, false, false);
5058                 }
5059                 if (update_tpa) {
5060                         rc = bnxt_set_tpa(bp,
5061                                           (flags & BNXT_FLAG_TPA) ?
5062                                           true : false);
5063                         if (rc)
5064                                 bp->flags = old_flags;
5065                 }
5066         }
5067         return rc;
5068 }
5069
5070 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5071 {
5072         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5073         int i = bnapi->index;
5074
5075         if (!txr)
5076                 return;
5077
5078         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5079                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5080                     txr->tx_cons);
5081 }
5082
5083 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5084 {
5085         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5086         int i = bnapi->index;
5087
5088         if (!rxr)
5089                 return;
5090
5091         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5092                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5093                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5094                     rxr->rx_sw_agg_prod);
5095 }
5096
5097 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5098 {
5099         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5100         int i = bnapi->index;
5101
5102         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5103                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5104 }
5105
5106 static void bnxt_dbg_dump_states(struct bnxt *bp)
5107 {
5108         int i;
5109         struct bnxt_napi *bnapi;
5110
5111         for (i = 0; i < bp->cp_nr_rings; i++) {
5112                 bnapi = bp->bnapi[i];
5113                 if (netif_msg_drv(bp)) {
5114                         bnxt_dump_tx_sw_state(bnapi);
5115                         bnxt_dump_rx_sw_state(bnapi);
5116                         bnxt_dump_cp_sw_state(bnapi);
5117                 }
5118         }
5119 }
5120
5121 static void bnxt_reset_task(struct bnxt *bp)
5122 {
5123         bnxt_dbg_dump_states(bp);
5124         if (netif_running(bp->dev)) {
5125                 bnxt_close_nic(bp, false, false);
5126                 bnxt_open_nic(bp, false, false);
5127         }
5128 }
5129
5130 static void bnxt_tx_timeout(struct net_device *dev)
5131 {
5132         struct bnxt *bp = netdev_priv(dev);
5133
5134         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5135         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5136         schedule_work(&bp->sp_task);
5137 }
5138
5139 #ifdef CONFIG_NET_POLL_CONTROLLER
5140 static void bnxt_poll_controller(struct net_device *dev)
5141 {
5142         struct bnxt *bp = netdev_priv(dev);
5143         int i;
5144
5145         for (i = 0; i < bp->cp_nr_rings; i++) {
5146                 struct bnxt_irq *irq = &bp->irq_tbl[i];
5147
5148                 disable_irq(irq->vector);
5149                 irq->handler(irq->vector, bp->bnapi[i]);
5150                 enable_irq(irq->vector);
5151         }
5152 }
5153 #endif
5154
5155 static void bnxt_timer(unsigned long data)
5156 {
5157         struct bnxt *bp = (struct bnxt *)data;
5158         struct net_device *dev = bp->dev;
5159
5160         if (!netif_running(dev))
5161                 return;
5162
5163         if (atomic_read(&bp->intr_sem) != 0)
5164                 goto bnxt_restart_timer;
5165
5166 bnxt_restart_timer:
5167         mod_timer(&bp->timer, jiffies + bp->current_interval);
5168 }
5169
5170 static void bnxt_cfg_ntp_filters(struct bnxt *);
5171
5172 static void bnxt_sp_task(struct work_struct *work)
5173 {
5174         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5175         int rc;
5176
5177         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5178         smp_mb__after_atomic();
5179         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5180                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5181                 return;
5182         }
5183
5184         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5185                 bnxt_cfg_rx_mode(bp);
5186
5187         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5188                 bnxt_cfg_ntp_filters(bp);
5189         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5190                 rc = bnxt_update_link(bp, true);
5191                 if (rc)
5192                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5193                                    rc);
5194         }
5195         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5196                 bnxt_hwrm_exec_fwd_req(bp);
5197         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5198                 bnxt_hwrm_tunnel_dst_port_alloc(
5199                         bp, bp->vxlan_port,
5200                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5201         }
5202         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5203                 bnxt_hwrm_tunnel_dst_port_free(
5204                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5205         }
5206         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5207                 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5208                  * for BNXT_STATE_IN_SP_TASK to clear.
5209                  */
5210                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5211                 rtnl_lock();
5212                 bnxt_reset_task(bp);
5213                 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5214                 rtnl_unlock();
5215         }
5216
5217         smp_mb__before_atomic();
5218         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5219 }
5220
5221 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5222 {
5223         int rc;
5224         struct bnxt *bp = netdev_priv(dev);
5225
5226         SET_NETDEV_DEV(dev, &pdev->dev);
5227
5228         /* enable device (incl. PCI PM wakeup), and bus-mastering */
5229         rc = pci_enable_device(pdev);
5230         if (rc) {
5231                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5232                 goto init_err;
5233         }
5234
5235         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5236                 dev_err(&pdev->dev,
5237                         "Cannot find PCI device base address, aborting\n");
5238                 rc = -ENODEV;
5239                 goto init_err_disable;
5240         }
5241
5242         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5243         if (rc) {
5244                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5245                 goto init_err_disable;
5246         }
5247
5248         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5249             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5250                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5251                 goto init_err_disable;
5252         }
5253
5254         pci_set_master(pdev);
5255
5256         bp->dev = dev;
5257         bp->pdev = pdev;
5258
5259         bp->bar0 = pci_ioremap_bar(pdev, 0);
5260         if (!bp->bar0) {
5261                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5262                 rc = -ENOMEM;
5263                 goto init_err_release;
5264         }
5265
5266         bp->bar1 = pci_ioremap_bar(pdev, 2);
5267         if (!bp->bar1) {
5268                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5269                 rc = -ENOMEM;
5270                 goto init_err_release;
5271         }
5272
5273         bp->bar2 = pci_ioremap_bar(pdev, 4);
5274         if (!bp->bar2) {
5275                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5276                 rc = -ENOMEM;
5277                 goto init_err_release;
5278         }
5279
5280         INIT_WORK(&bp->sp_task, bnxt_sp_task);
5281
5282         spin_lock_init(&bp->ntp_fltr_lock);
5283
5284         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5285         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5286
5287         bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5288         bp->coal_bufs = 20;
5289         bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5290         bp->coal_bufs_irq = 2;
5291
5292         init_timer(&bp->timer);
5293         bp->timer.data = (unsigned long)bp;
5294         bp->timer.function = bnxt_timer;
5295         bp->current_interval = BNXT_TIMER_INTERVAL;
5296
5297         clear_bit(BNXT_STATE_OPEN, &bp->state);
5298
5299         return 0;
5300
5301 init_err_release:
5302         if (bp->bar2) {
5303                 pci_iounmap(pdev, bp->bar2);
5304                 bp->bar2 = NULL;
5305         }
5306
5307         if (bp->bar1) {
5308                 pci_iounmap(pdev, bp->bar1);
5309                 bp->bar1 = NULL;
5310         }
5311
5312         if (bp->bar0) {
5313                 pci_iounmap(pdev, bp->bar0);
5314                 bp->bar0 = NULL;
5315         }
5316
5317         pci_release_regions(pdev);
5318
5319 init_err_disable:
5320         pci_disable_device(pdev);
5321
5322 init_err:
5323         return rc;
5324 }
5325
5326 /* rtnl_lock held */
5327 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5328 {
5329         struct sockaddr *addr = p;
5330         struct bnxt *bp = netdev_priv(dev);
5331         int rc = 0;
5332
5333         if (!is_valid_ether_addr(addr->sa_data))
5334                 return -EADDRNOTAVAIL;
5335
5336 #ifdef CONFIG_BNXT_SRIOV
5337         if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5338                 return -EADDRNOTAVAIL;
5339 #endif
5340
5341         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5342                 return 0;
5343
5344         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5345         if (netif_running(dev)) {
5346                 bnxt_close_nic(bp, false, false);
5347                 rc = bnxt_open_nic(bp, false, false);
5348         }
5349
5350         return rc;
5351 }
5352
5353 /* rtnl_lock held */
5354 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5355 {
5356         struct bnxt *bp = netdev_priv(dev);
5357
5358         if (new_mtu < 60 || new_mtu > 9000)
5359                 return -EINVAL;
5360
5361         if (netif_running(dev))
5362                 bnxt_close_nic(bp, false, false);
5363
5364         dev->mtu = new_mtu;
5365         bnxt_set_ring_params(bp);
5366
5367         if (netif_running(dev))
5368                 return bnxt_open_nic(bp, false, false);
5369
5370         return 0;
5371 }
5372
5373 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5374 {
5375         struct bnxt *bp = netdev_priv(dev);
5376
5377         if (tc > bp->max_tc) {
5378                 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5379                            tc, bp->max_tc);
5380                 return -EINVAL;
5381         }
5382
5383         if (netdev_get_num_tc(dev) == tc)
5384                 return 0;
5385
5386         if (tc) {
5387                 int max_rx_rings, max_tx_rings, rc;
5388                 bool sh = false;
5389
5390                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5391                         sh = true;
5392
5393                 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5394                 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5395                         return -ENOMEM;
5396         }
5397
5398         /* Needs to close the device and do hw resource re-allocations */
5399         if (netif_running(bp->dev))
5400                 bnxt_close_nic(bp, true, false);
5401
5402         if (tc) {
5403                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5404                 netdev_set_num_tc(dev, tc);
5405         } else {
5406                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5407                 netdev_reset_tc(dev);
5408         }
5409         bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5410         bp->num_stat_ctxs = bp->cp_nr_rings;
5411
5412         if (netif_running(bp->dev))
5413                 return bnxt_open_nic(bp, true, false);
5414
5415         return 0;
5416 }
5417
5418 #ifdef CONFIG_RFS_ACCEL
5419 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5420                             struct bnxt_ntuple_filter *f2)
5421 {
5422         struct flow_keys *keys1 = &f1->fkeys;
5423         struct flow_keys *keys2 = &f2->fkeys;
5424
5425         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5426             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5427             keys1->ports.ports == keys2->ports.ports &&
5428             keys1->basic.ip_proto == keys2->basic.ip_proto &&
5429             keys1->basic.n_proto == keys2->basic.n_proto &&
5430             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5431                 return true;
5432
5433         return false;
5434 }
5435
5436 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5437                               u16 rxq_index, u32 flow_id)
5438 {
5439         struct bnxt *bp = netdev_priv(dev);
5440         struct bnxt_ntuple_filter *fltr, *new_fltr;
5441         struct flow_keys *fkeys;
5442         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5443         int rc = 0, idx, bit_id;
5444         struct hlist_head *head;
5445
5446         if (skb->encapsulation)
5447                 return -EPROTONOSUPPORT;
5448
5449         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5450         if (!new_fltr)
5451                 return -ENOMEM;
5452
5453         fkeys = &new_fltr->fkeys;
5454         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5455                 rc = -EPROTONOSUPPORT;
5456                 goto err_free;
5457         }
5458
5459         if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5460             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5461              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5462                 rc = -EPROTONOSUPPORT;
5463                 goto err_free;
5464         }
5465
5466         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5467
5468         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5469         head = &bp->ntp_fltr_hash_tbl[idx];
5470         rcu_read_lock();
5471         hlist_for_each_entry_rcu(fltr, head, hash) {
5472                 if (bnxt_fltr_match(fltr, new_fltr)) {
5473                         rcu_read_unlock();
5474                         rc = 0;
5475                         goto err_free;
5476                 }
5477         }
5478         rcu_read_unlock();
5479
5480         spin_lock_bh(&bp->ntp_fltr_lock);
5481         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5482                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
5483         if (bit_id < 0) {
5484                 spin_unlock_bh(&bp->ntp_fltr_lock);
5485                 rc = -ENOMEM;
5486                 goto err_free;
5487         }
5488
5489         new_fltr->sw_id = (u16)bit_id;
5490         new_fltr->flow_id = flow_id;
5491         new_fltr->rxq = rxq_index;
5492         hlist_add_head_rcu(&new_fltr->hash, head);
5493         bp->ntp_fltr_count++;
5494         spin_unlock_bh(&bp->ntp_fltr_lock);
5495
5496         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5497         schedule_work(&bp->sp_task);
5498
5499         return new_fltr->sw_id;
5500
5501 err_free:
5502         kfree(new_fltr);
5503         return rc;
5504 }
5505
5506 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5507 {
5508         int i;
5509
5510         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5511                 struct hlist_head *head;
5512                 struct hlist_node *tmp;
5513                 struct bnxt_ntuple_filter *fltr;
5514                 int rc;
5515
5516                 head = &bp->ntp_fltr_hash_tbl[i];
5517                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5518                         bool del = false;
5519
5520                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5521                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
5522                                                         fltr->flow_id,
5523                                                         fltr->sw_id)) {
5524                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
5525                                                                          fltr);
5526                                         del = true;
5527                                 }
5528                         } else {
5529                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5530                                                                        fltr);
5531                                 if (rc)
5532                                         del = true;
5533                                 else
5534                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
5535                         }
5536
5537                         if (del) {
5538                                 spin_lock_bh(&bp->ntp_fltr_lock);
5539                                 hlist_del_rcu(&fltr->hash);
5540                                 bp->ntp_fltr_count--;
5541                                 spin_unlock_bh(&bp->ntp_fltr_lock);
5542                                 synchronize_rcu();
5543                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5544                                 kfree(fltr);
5545                         }
5546                 }
5547         }
5548 }
5549
5550 #else
5551
5552 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5553 {
5554 }
5555
5556 #endif /* CONFIG_RFS_ACCEL */
5557
5558 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5559                                 __be16 port)
5560 {
5561         struct bnxt *bp = netdev_priv(dev);
5562
5563         if (!netif_running(dev))
5564                 return;
5565
5566         if (sa_family != AF_INET6 && sa_family != AF_INET)
5567                 return;
5568
5569         if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5570                 return;
5571
5572         bp->vxlan_port_cnt++;
5573         if (bp->vxlan_port_cnt == 1) {
5574                 bp->vxlan_port = port;
5575                 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5576                 schedule_work(&bp->sp_task);
5577         }
5578 }
5579
5580 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5581                                 __be16 port)
5582 {
5583         struct bnxt *bp = netdev_priv(dev);
5584
5585         if (!netif_running(dev))
5586                 return;
5587
5588         if (sa_family != AF_INET6 && sa_family != AF_INET)
5589                 return;
5590
5591         if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5592                 bp->vxlan_port_cnt--;
5593
5594                 if (bp->vxlan_port_cnt == 0) {
5595                         set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5596                         schedule_work(&bp->sp_task);
5597                 }
5598         }
5599 }
5600
5601 static const struct net_device_ops bnxt_netdev_ops = {
5602         .ndo_open               = bnxt_open,
5603         .ndo_start_xmit         = bnxt_start_xmit,
5604         .ndo_stop               = bnxt_close,
5605         .ndo_get_stats64        = bnxt_get_stats64,
5606         .ndo_set_rx_mode        = bnxt_set_rx_mode,
5607         .ndo_do_ioctl           = bnxt_ioctl,
5608         .ndo_validate_addr      = eth_validate_addr,
5609         .ndo_set_mac_address    = bnxt_change_mac_addr,
5610         .ndo_change_mtu         = bnxt_change_mtu,
5611         .ndo_fix_features       = bnxt_fix_features,
5612         .ndo_set_features       = bnxt_set_features,
5613         .ndo_tx_timeout         = bnxt_tx_timeout,
5614 #ifdef CONFIG_BNXT_SRIOV
5615         .ndo_get_vf_config      = bnxt_get_vf_config,
5616         .ndo_set_vf_mac         = bnxt_set_vf_mac,
5617         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
5618         .ndo_set_vf_rate        = bnxt_set_vf_bw,
5619         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
5620         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
5621 #endif
5622 #ifdef CONFIG_NET_POLL_CONTROLLER
5623         .ndo_poll_controller    = bnxt_poll_controller,
5624 #endif
5625         .ndo_setup_tc           = bnxt_setup_tc,
5626 #ifdef CONFIG_RFS_ACCEL
5627         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
5628 #endif
5629         .ndo_add_vxlan_port     = bnxt_add_vxlan_port,
5630         .ndo_del_vxlan_port     = bnxt_del_vxlan_port,
5631 #ifdef CONFIG_NET_RX_BUSY_POLL
5632         .ndo_busy_poll          = bnxt_busy_poll,
5633 #endif
5634 };
5635
5636 static void bnxt_remove_one(struct pci_dev *pdev)
5637 {
5638         struct net_device *dev = pci_get_drvdata(pdev);
5639         struct bnxt *bp = netdev_priv(dev);
5640
5641         if (BNXT_PF(bp))
5642                 bnxt_sriov_disable(bp);
5643
5644         unregister_netdev(dev);
5645         cancel_work_sync(&bp->sp_task);
5646         bp->sp_event = 0;
5647
5648         bnxt_hwrm_func_drv_unrgtr(bp);
5649         bnxt_free_hwrm_resources(bp);
5650         pci_iounmap(pdev, bp->bar2);
5651         pci_iounmap(pdev, bp->bar1);
5652         pci_iounmap(pdev, bp->bar0);
5653         free_netdev(dev);
5654
5655         pci_release_regions(pdev);
5656         pci_disable_device(pdev);
5657 }
5658
5659 static int bnxt_probe_phy(struct bnxt *bp)
5660 {
5661         int rc = 0;
5662         struct bnxt_link_info *link_info = &bp->link_info;
5663         char phy_ver[PHY_VER_STR_LEN];
5664
5665         rc = bnxt_update_link(bp, false);
5666         if (rc) {
5667                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5668                            rc);
5669                 return rc;
5670         }
5671
5672         /*initialize the ethool setting copy with NVM settings */
5673         if (BNXT_AUTO_MODE(link_info->auto_mode))
5674                 link_info->autoneg |= BNXT_AUTONEG_SPEED;
5675
5676         if (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5677                 if (link_info->auto_pause_setting == BNXT_LINK_PAUSE_BOTH)
5678                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
5679                 link_info->req_flow_ctrl = link_info->auto_pause_setting;
5680         } else if (link_info->force_pause_setting & BNXT_LINK_PAUSE_BOTH) {
5681                 link_info->req_flow_ctrl = link_info->force_pause_setting;
5682         }
5683         link_info->req_duplex = link_info->duplex_setting;
5684         if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5685                 link_info->req_link_speed = link_info->auto_link_speed;
5686         else
5687                 link_info->req_link_speed = link_info->force_link_speed;
5688         link_info->advertising = link_info->auto_link_speeds;
5689         snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5690                  link_info->phy_ver[0],
5691                  link_info->phy_ver[1],
5692                  link_info->phy_ver[2]);
5693         strcat(bp->fw_ver_str, phy_ver);
5694         return rc;
5695 }
5696
5697 static int bnxt_get_max_irq(struct pci_dev *pdev)
5698 {
5699         u16 ctrl;
5700
5701         if (!pdev->msix_cap)
5702                 return 1;
5703
5704         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5705         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5706 }
5707
5708 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5709                                 int *max_cp)
5710 {
5711         int max_ring_grps = 0;
5712
5713 #ifdef CONFIG_BNXT_SRIOV
5714         if (!BNXT_PF(bp)) {
5715                 *max_tx = bp->vf.max_tx_rings;
5716                 *max_rx = bp->vf.max_rx_rings;
5717                 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5718                 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5719                 max_ring_grps = bp->vf.max_hw_ring_grps;
5720         } else
5721 #endif
5722         {
5723                 *max_tx = bp->pf.max_tx_rings;
5724                 *max_rx = bp->pf.max_rx_rings;
5725                 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5726                 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5727                 max_ring_grps = bp->pf.max_hw_ring_grps;
5728         }
5729
5730         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5731                 *max_rx >>= 1;
5732         *max_rx = min_t(int, *max_rx, max_ring_grps);
5733 }
5734
5735 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5736 {
5737         int rx, tx, cp;
5738
5739         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
5740         if (!rx || !tx || !cp)
5741                 return -ENOMEM;
5742
5743         *max_rx = rx;
5744         *max_tx = tx;
5745         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5746 }
5747
5748 static int bnxt_set_dflt_rings(struct bnxt *bp)
5749 {
5750         int dflt_rings, max_rx_rings, max_tx_rings, rc;
5751         bool sh = true;
5752
5753         if (sh)
5754                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
5755         dflt_rings = netif_get_num_default_rss_queues();
5756         rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5757         if (rc)
5758                 return rc;
5759         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5760         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5761         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5762         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5763                                bp->tx_nr_rings + bp->rx_nr_rings;
5764         bp->num_stat_ctxs = bp->cp_nr_rings;
5765         return rc;
5766 }
5767
5768 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5769 {
5770         static int version_printed;
5771         struct net_device *dev;
5772         struct bnxt *bp;
5773         int rc, max_irqs;
5774
5775         if (version_printed++ == 0)
5776                 pr_info("%s", version);
5777
5778         max_irqs = bnxt_get_max_irq(pdev);
5779         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5780         if (!dev)
5781                 return -ENOMEM;
5782
5783         bp = netdev_priv(dev);
5784
5785         if (bnxt_vf_pciid(ent->driver_data))
5786                 bp->flags |= BNXT_FLAG_VF;
5787
5788         if (pdev->msix_cap)
5789                 bp->flags |= BNXT_FLAG_MSIX_CAP;
5790
5791         rc = bnxt_init_board(pdev, dev);
5792         if (rc < 0)
5793                 goto init_err_free;
5794
5795         dev->netdev_ops = &bnxt_netdev_ops;
5796         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5797         dev->ethtool_ops = &bnxt_ethtool_ops;
5798
5799         pci_set_drvdata(pdev, dev);
5800
5801         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5802                            NETIF_F_TSO | NETIF_F_TSO6 |
5803                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5804                            NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5805                            NETIF_F_RXHASH |
5806                            NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5807
5808         dev->hw_enc_features =
5809                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5810                         NETIF_F_TSO | NETIF_F_TSO6 |
5811                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5812                         NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5813         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5814         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5815                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5816         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5817         dev->priv_flags |= IFF_UNICAST_FLT;
5818
5819 #ifdef CONFIG_BNXT_SRIOV
5820         init_waitqueue_head(&bp->sriov_cfg_wait);
5821 #endif
5822         rc = bnxt_alloc_hwrm_resources(bp);
5823         if (rc)
5824                 goto init_err;
5825
5826         mutex_init(&bp->hwrm_cmd_lock);
5827         bnxt_hwrm_ver_get(bp);
5828
5829         rc = bnxt_hwrm_func_drv_rgtr(bp);
5830         if (rc)
5831                 goto init_err;
5832
5833         /* Get the MAX capabilities for this function */
5834         rc = bnxt_hwrm_func_qcaps(bp);
5835         if (rc) {
5836                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5837                            rc);
5838                 rc = -1;
5839                 goto init_err;
5840         }
5841
5842         rc = bnxt_hwrm_queue_qportcfg(bp);
5843         if (rc) {
5844                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5845                            rc);
5846                 rc = -1;
5847                 goto init_err;
5848         }
5849
5850         bnxt_set_tpa_flags(bp);
5851         bnxt_set_ring_params(bp);
5852         if (BNXT_PF(bp))
5853                 bp->pf.max_irqs = max_irqs;
5854 #if defined(CONFIG_BNXT_SRIOV)
5855         else
5856                 bp->vf.max_irqs = max_irqs;
5857 #endif
5858         bnxt_set_dflt_rings(bp);
5859
5860         if (BNXT_PF(bp)) {
5861                 dev->hw_features |= NETIF_F_NTUPLE;
5862                 if (bnxt_rfs_capable(bp)) {
5863                         bp->flags |= BNXT_FLAG_RFS;
5864                         dev->features |= NETIF_F_NTUPLE;
5865                 }
5866         }
5867
5868         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5869                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
5870
5871         rc = bnxt_probe_phy(bp);
5872         if (rc)
5873                 goto init_err;
5874
5875         rc = register_netdev(dev);
5876         if (rc)
5877                 goto init_err;
5878
5879         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5880                     board_info[ent->driver_data].name,
5881                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
5882
5883         return 0;
5884
5885 init_err:
5886         pci_iounmap(pdev, bp->bar0);
5887         pci_release_regions(pdev);
5888         pci_disable_device(pdev);
5889
5890 init_err_free:
5891         free_netdev(dev);
5892         return rc;
5893 }
5894
5895 static struct pci_driver bnxt_pci_driver = {
5896         .name           = DRV_MODULE_NAME,
5897         .id_table       = bnxt_pci_tbl,
5898         .probe          = bnxt_init_one,
5899         .remove         = bnxt_remove_one,
5900 #if defined(CONFIG_BNXT_SRIOV)
5901         .sriov_configure = bnxt_sriov_configure,
5902 #endif
5903 };
5904
5905 module_pci_driver(bnxt_pci_driver);