]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <asm/uaccess.h>
64
65 #include "cxgb4.h"
66 #include "t4_regs.h"
67 #include "t4_msg.h"
68 #include "t4fw_api.h"
69 #include "l2t.h"
70
71 #define DRV_VERSION "1.3.0-ko"
72 #define DRV_DESC "Chelsio T4 Network Driver"
73
74 /*
75  * Max interrupt hold-off timer value in us.  Queues fall back to this value
76  * under extreme memory pressure so it's largish to give the system time to
77  * recover.
78  */
79 #define MAX_SGE_TIMERVAL 200U
80
81 #ifdef CONFIG_PCI_IOV
82 /*
83  * Virtual Function provisioning constants.  We need two extra Ingress Queues
84  * with Interrupt capability to serve as the VF's Firmware Event Queue and
85  * Forwarded Interrupt Queue (when using MSI mode) -- neither will have Free
86  * Lists associated with them).  For each Ethernet/Control Egress Queue and
87  * for each Free List, we need an Egress Context.
88  */
89 enum {
90         VFRES_NPORTS = 1,               /* # of "ports" per VF */
91         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
92
93         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
94         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
95         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
96         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
97         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
98         VFRES_TC = 0,                   /* PCI-E traffic class */
99         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
100
101         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
102         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
103 };
104
105 /*
106  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
107  * static and likely not to be useful in the long run.  We really need to
108  * implement some form of persistent configuration which the firmware
109  * controls.
110  */
111 static unsigned int pfvfres_pmask(struct adapter *adapter,
112                                   unsigned int pf, unsigned int vf)
113 {
114         unsigned int portn, portvec;
115
116         /*
117          * Give PF's access to all of the ports.
118          */
119         if (vf == 0)
120                 return FW_PFVF_CMD_PMASK_MASK;
121
122         /*
123          * For VFs, we'll assign them access to the ports based purely on the
124          * PF.  We assign active ports in order, wrapping around if there are
125          * fewer active ports than PFs: e.g. active port[pf % nports].
126          * Unfortunately the adapter's port_info structs haven't been
127          * initialized yet so we have to compute this.
128          */
129         if (adapter->params.nports == 0)
130                 return 0;
131
132         portn = pf % adapter->params.nports;
133         portvec = adapter->params.portvec;
134         for (;;) {
135                 /*
136                  * Isolate the lowest set bit in the port vector.  If we're at
137                  * the port number that we want, return that as the pmask.
138                  * otherwise mask that bit out of the port vector and
139                  * decrement our port number ...
140                  */
141                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
142                 if (portn == 0)
143                         return pmask;
144                 portn--;
145                 portvec &= ~pmask;
146         }
147         /*NOTREACHED*/
148 }
149 #endif
150
151 enum {
152         MEMWIN0_APERTURE = 65536,
153         MEMWIN0_BASE     = 0x30000,
154         MEMWIN1_APERTURE = 32768,
155         MEMWIN1_BASE     = 0x28000,
156         MEMWIN2_APERTURE = 2048,
157         MEMWIN2_BASE     = 0x1b800,
158 };
159
160 enum {
161         MAX_TXQ_ENTRIES      = 16384,
162         MAX_CTRL_TXQ_ENTRIES = 1024,
163         MAX_RSPQ_ENTRIES     = 16384,
164         MAX_RX_BUFFERS       = 16384,
165         MIN_TXQ_ENTRIES      = 32,
166         MIN_CTRL_TXQ_ENTRIES = 32,
167         MIN_RSPQ_ENTRIES     = 128,
168         MIN_FL_ENTRIES       = 16
169 };
170
171 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
172                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
173                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
174
175 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
176
177 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
178         CH_DEVICE(0xa000, 0),  /* PE10K */
179         CH_DEVICE(0x4001, -1),
180         CH_DEVICE(0x4002, -1),
181         CH_DEVICE(0x4003, -1),
182         CH_DEVICE(0x4004, -1),
183         CH_DEVICE(0x4005, -1),
184         CH_DEVICE(0x4006, -1),
185         CH_DEVICE(0x4007, -1),
186         CH_DEVICE(0x4008, -1),
187         CH_DEVICE(0x4009, -1),
188         CH_DEVICE(0x400a, -1),
189         CH_DEVICE(0x4401, 4),
190         CH_DEVICE(0x4402, 4),
191         CH_DEVICE(0x4403, 4),
192         CH_DEVICE(0x4404, 4),
193         CH_DEVICE(0x4405, 4),
194         CH_DEVICE(0x4406, 4),
195         CH_DEVICE(0x4407, 4),
196         CH_DEVICE(0x4408, 4),
197         CH_DEVICE(0x4409, 4),
198         CH_DEVICE(0x440a, 4),
199         CH_DEVICE(0x440d, 4),
200         CH_DEVICE(0x440e, 4),
201         { 0, }
202 };
203
204 #define FW_FNAME "cxgb4/t4fw.bin"
205
206 MODULE_DESCRIPTION(DRV_DESC);
207 MODULE_AUTHOR("Chelsio Communications");
208 MODULE_LICENSE("Dual BSD/GPL");
209 MODULE_VERSION(DRV_VERSION);
210 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
211 MODULE_FIRMWARE(FW_FNAME);
212
213 static int dflt_msg_enable = DFLT_MSG_ENABLE;
214
215 module_param(dflt_msg_enable, int, 0644);
216 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
217
218 /*
219  * The driver uses the best interrupt scheme available on a platform in the
220  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
221  * of these schemes the driver may consider as follows:
222  *
223  * msi = 2: choose from among all three options
224  * msi = 1: only consider MSI and INTx interrupts
225  * msi = 0: force INTx interrupts
226  */
227 static int msi = 2;
228
229 module_param(msi, int, 0644);
230 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
231
232 /*
233  * Queue interrupt hold-off timer values.  Queues default to the first of these
234  * upon creation.
235  */
236 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
237
238 module_param_array(intr_holdoff, uint, NULL, 0644);
239 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
240                  "0..4 in microseconds");
241
242 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
243
244 module_param_array(intr_cnt, uint, NULL, 0644);
245 MODULE_PARM_DESC(intr_cnt,
246                  "thresholds 1..3 for queue interrupt packet counters");
247
248 static bool vf_acls;
249
250 #ifdef CONFIG_PCI_IOV
251 module_param(vf_acls, bool, 0644);
252 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
253
254 static unsigned int num_vf[4];
255
256 module_param_array(num_vf, uint, NULL, 0644);
257 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
258 #endif
259
260 static struct dentry *cxgb4_debugfs_root;
261
262 static LIST_HEAD(adapter_list);
263 static DEFINE_MUTEX(uld_mutex);
264 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
265 static const char *uld_str[] = { "RDMA", "iSCSI" };
266
267 static void link_report(struct net_device *dev)
268 {
269         if (!netif_carrier_ok(dev))
270                 netdev_info(dev, "link down\n");
271         else {
272                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
273
274                 const char *s = "10Mbps";
275                 const struct port_info *p = netdev_priv(dev);
276
277                 switch (p->link_cfg.speed) {
278                 case SPEED_10000:
279                         s = "10Gbps";
280                         break;
281                 case SPEED_1000:
282                         s = "1000Mbps";
283                         break;
284                 case SPEED_100:
285                         s = "100Mbps";
286                         break;
287                 }
288
289                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
290                             fc[p->link_cfg.fc]);
291         }
292 }
293
294 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
295 {
296         struct net_device *dev = adapter->port[port_id];
297
298         /* Skip changes from disabled ports. */
299         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
300                 if (link_stat)
301                         netif_carrier_on(dev);
302                 else
303                         netif_carrier_off(dev);
304
305                 link_report(dev);
306         }
307 }
308
309 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
310 {
311         static const char *mod_str[] = {
312                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
313         };
314
315         const struct net_device *dev = adap->port[port_id];
316         const struct port_info *pi = netdev_priv(dev);
317
318         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
319                 netdev_info(dev, "port module unplugged\n");
320         else if (pi->mod_type < ARRAY_SIZE(mod_str))
321                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
322 }
323
324 /*
325  * Configure the exact and hash address filters to handle a port's multicast
326  * and secondary unicast MAC addresses.
327  */
328 static int set_addr_filters(const struct net_device *dev, bool sleep)
329 {
330         u64 mhash = 0;
331         u64 uhash = 0;
332         bool free = true;
333         u16 filt_idx[7];
334         const u8 *addr[7];
335         int ret, naddr = 0;
336         const struct netdev_hw_addr *ha;
337         int uc_cnt = netdev_uc_count(dev);
338         int mc_cnt = netdev_mc_count(dev);
339         const struct port_info *pi = netdev_priv(dev);
340         unsigned int mb = pi->adapter->fn;
341
342         /* first do the secondary unicast addresses */
343         netdev_for_each_uc_addr(ha, dev) {
344                 addr[naddr++] = ha->addr;
345                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
346                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
347                                         naddr, addr, filt_idx, &uhash, sleep);
348                         if (ret < 0)
349                                 return ret;
350
351                         free = false;
352                         naddr = 0;
353                 }
354         }
355
356         /* next set up the multicast addresses */
357         netdev_for_each_mc_addr(ha, dev) {
358                 addr[naddr++] = ha->addr;
359                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
360                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
361                                         naddr, addr, filt_idx, &mhash, sleep);
362                         if (ret < 0)
363                                 return ret;
364
365                         free = false;
366                         naddr = 0;
367                 }
368         }
369
370         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
371                                 uhash | mhash, sleep);
372 }
373
374 /*
375  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
376  * If @mtu is -1 it is left unchanged.
377  */
378 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
379 {
380         int ret;
381         struct port_info *pi = netdev_priv(dev);
382
383         ret = set_addr_filters(dev, sleep_ok);
384         if (ret == 0)
385                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
386                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
387                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
388                                     sleep_ok);
389         return ret;
390 }
391
392 /**
393  *      link_start - enable a port
394  *      @dev: the port to enable
395  *
396  *      Performs the MAC and PHY actions needed to enable a port.
397  */
398 static int link_start(struct net_device *dev)
399 {
400         int ret;
401         struct port_info *pi = netdev_priv(dev);
402         unsigned int mb = pi->adapter->fn;
403
404         /*
405          * We do not set address filters and promiscuity here, the stack does
406          * that step explicitly.
407          */
408         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
409                             !!(dev->features & NETIF_F_HW_VLAN_RX), true);
410         if (ret == 0) {
411                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
412                                     pi->xact_addr_filt, dev->dev_addr, true,
413                                     true);
414                 if (ret >= 0) {
415                         pi->xact_addr_filt = ret;
416                         ret = 0;
417                 }
418         }
419         if (ret == 0)
420                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
421                                     &pi->link_cfg);
422         if (ret == 0)
423                 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
424         return ret;
425 }
426
427 /*
428  * Response queue handler for the FW event queue.
429  */
430 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
431                           const struct pkt_gl *gl)
432 {
433         u8 opcode = ((const struct rss_header *)rsp)->opcode;
434
435         rsp++;                                          /* skip RSS header */
436         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
437                 const struct cpl_sge_egr_update *p = (void *)rsp;
438                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
439                 struct sge_txq *txq;
440
441                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
442                 txq->restarts++;
443                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
444                         struct sge_eth_txq *eq;
445
446                         eq = container_of(txq, struct sge_eth_txq, q);
447                         netif_tx_wake_queue(eq->txq);
448                 } else {
449                         struct sge_ofld_txq *oq;
450
451                         oq = container_of(txq, struct sge_ofld_txq, q);
452                         tasklet_schedule(&oq->qresume_tsk);
453                 }
454         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
455                 const struct cpl_fw6_msg *p = (void *)rsp;
456
457                 if (p->type == 0)
458                         t4_handle_fw_rpl(q->adap, p->data);
459         } else if (opcode == CPL_L2T_WRITE_RPL) {
460                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
461
462                 do_l2t_write_rpl(q->adap, p);
463         } else
464                 dev_err(q->adap->pdev_dev,
465                         "unexpected CPL %#x on FW event queue\n", opcode);
466         return 0;
467 }
468
469 /**
470  *      uldrx_handler - response queue handler for ULD queues
471  *      @q: the response queue that received the packet
472  *      @rsp: the response queue descriptor holding the offload message
473  *      @gl: the gather list of packet fragments
474  *
475  *      Deliver an ingress offload packet to a ULD.  All processing is done by
476  *      the ULD, we just maintain statistics.
477  */
478 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
479                          const struct pkt_gl *gl)
480 {
481         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
482
483         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
484                 rxq->stats.nomem++;
485                 return -1;
486         }
487         if (gl == NULL)
488                 rxq->stats.imm++;
489         else if (gl == CXGB4_MSG_AN)
490                 rxq->stats.an++;
491         else
492                 rxq->stats.pkts++;
493         return 0;
494 }
495
496 static void disable_msi(struct adapter *adapter)
497 {
498         if (adapter->flags & USING_MSIX) {
499                 pci_disable_msix(adapter->pdev);
500                 adapter->flags &= ~USING_MSIX;
501         } else if (adapter->flags & USING_MSI) {
502                 pci_disable_msi(adapter->pdev);
503                 adapter->flags &= ~USING_MSI;
504         }
505 }
506
507 /*
508  * Interrupt handler for non-data events used with MSI-X.
509  */
510 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
511 {
512         struct adapter *adap = cookie;
513
514         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
515         if (v & PFSW) {
516                 adap->swintr = 1;
517                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
518         }
519         t4_slow_intr_handler(adap);
520         return IRQ_HANDLED;
521 }
522
523 /*
524  * Name the MSI-X interrupts.
525  */
526 static void name_msix_vecs(struct adapter *adap)
527 {
528         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
529
530         /* non-data interrupts */
531         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
532
533         /* FW events */
534         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
535                  adap->port[0]->name);
536
537         /* Ethernet queues */
538         for_each_port(adap, j) {
539                 struct net_device *d = adap->port[j];
540                 const struct port_info *pi = netdev_priv(d);
541
542                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
543                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
544                                  d->name, i);
545         }
546
547         /* offload queues */
548         for_each_ofldrxq(&adap->sge, i)
549                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
550                          adap->port[0]->name, i);
551
552         for_each_rdmarxq(&adap->sge, i)
553                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
554                          adap->port[0]->name, i);
555 }
556
557 static int request_msix_queue_irqs(struct adapter *adap)
558 {
559         struct sge *s = &adap->sge;
560         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi = 2;
561
562         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
563                           adap->msix_info[1].desc, &s->fw_evtq);
564         if (err)
565                 return err;
566
567         for_each_ethrxq(s, ethqidx) {
568                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
569                                   adap->msix_info[msi].desc,
570                                   &s->ethrxq[ethqidx].rspq);
571                 if (err)
572                         goto unwind;
573                 msi++;
574         }
575         for_each_ofldrxq(s, ofldqidx) {
576                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
577                                   adap->msix_info[msi].desc,
578                                   &s->ofldrxq[ofldqidx].rspq);
579                 if (err)
580                         goto unwind;
581                 msi++;
582         }
583         for_each_rdmarxq(s, rdmaqidx) {
584                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
585                                   adap->msix_info[msi].desc,
586                                   &s->rdmarxq[rdmaqidx].rspq);
587                 if (err)
588                         goto unwind;
589                 msi++;
590         }
591         return 0;
592
593 unwind:
594         while (--rdmaqidx >= 0)
595                 free_irq(adap->msix_info[--msi].vec,
596                          &s->rdmarxq[rdmaqidx].rspq);
597         while (--ofldqidx >= 0)
598                 free_irq(adap->msix_info[--msi].vec,
599                          &s->ofldrxq[ofldqidx].rspq);
600         while (--ethqidx >= 0)
601                 free_irq(adap->msix_info[--msi].vec, &s->ethrxq[ethqidx].rspq);
602         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
603         return err;
604 }
605
606 static void free_msix_queue_irqs(struct adapter *adap)
607 {
608         int i, msi = 2;
609         struct sge *s = &adap->sge;
610
611         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
612         for_each_ethrxq(s, i)
613                 free_irq(adap->msix_info[msi++].vec, &s->ethrxq[i].rspq);
614         for_each_ofldrxq(s, i)
615                 free_irq(adap->msix_info[msi++].vec, &s->ofldrxq[i].rspq);
616         for_each_rdmarxq(s, i)
617                 free_irq(adap->msix_info[msi++].vec, &s->rdmarxq[i].rspq);
618 }
619
620 /**
621  *      write_rss - write the RSS table for a given port
622  *      @pi: the port
623  *      @queues: array of queue indices for RSS
624  *
625  *      Sets up the portion of the HW RSS table for the port's VI to distribute
626  *      packets to the Rx queues in @queues.
627  */
628 static int write_rss(const struct port_info *pi, const u16 *queues)
629 {
630         u16 *rss;
631         int i, err;
632         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
633
634         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
635         if (!rss)
636                 return -ENOMEM;
637
638         /* map the queue indices to queue ids */
639         for (i = 0; i < pi->rss_size; i++, queues++)
640                 rss[i] = q[*queues].rspq.abs_id;
641
642         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
643                                   pi->rss_size, rss, pi->rss_size);
644         kfree(rss);
645         return err;
646 }
647
648 /**
649  *      setup_rss - configure RSS
650  *      @adap: the adapter
651  *
652  *      Sets up RSS for each port.
653  */
654 static int setup_rss(struct adapter *adap)
655 {
656         int i, err;
657
658         for_each_port(adap, i) {
659                 const struct port_info *pi = adap2pinfo(adap, i);
660
661                 err = write_rss(pi, pi->rss);
662                 if (err)
663                         return err;
664         }
665         return 0;
666 }
667
668 /*
669  * Return the channel of the ingress queue with the given qid.
670  */
671 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
672 {
673         qid -= p->ingr_start;
674         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
675 }
676
677 /*
678  * Wait until all NAPI handlers are descheduled.
679  */
680 static void quiesce_rx(struct adapter *adap)
681 {
682         int i;
683
684         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
685                 struct sge_rspq *q = adap->sge.ingr_map[i];
686
687                 if (q && q->handler)
688                         napi_disable(&q->napi);
689         }
690 }
691
692 /*
693  * Enable NAPI scheduling and interrupt generation for all Rx queues.
694  */
695 static void enable_rx(struct adapter *adap)
696 {
697         int i;
698
699         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
700                 struct sge_rspq *q = adap->sge.ingr_map[i];
701
702                 if (!q)
703                         continue;
704                 if (q->handler)
705                         napi_enable(&q->napi);
706                 /* 0-increment GTS to start the timer and enable interrupts */
707                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
708                              SEINTARM(q->intr_params) |
709                              INGRESSQID(q->cntxt_id));
710         }
711 }
712
713 /**
714  *      setup_sge_queues - configure SGE Tx/Rx/response queues
715  *      @adap: the adapter
716  *
717  *      Determines how many sets of SGE queues to use and initializes them.
718  *      We support multiple queue sets per port if we have MSI-X, otherwise
719  *      just one queue set per port.
720  */
721 static int setup_sge_queues(struct adapter *adap)
722 {
723         int err, msi_idx, i, j;
724         struct sge *s = &adap->sge;
725
726         bitmap_zero(s->starving_fl, MAX_EGRQ);
727         bitmap_zero(s->txq_maperr, MAX_EGRQ);
728
729         if (adap->flags & USING_MSIX)
730                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
731         else {
732                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
733                                        NULL, NULL);
734                 if (err)
735                         return err;
736                 msi_idx = -((int)s->intrq.abs_id + 1);
737         }
738
739         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
740                                msi_idx, NULL, fwevtq_handler);
741         if (err) {
742 freeout:        t4_free_sge_resources(adap);
743                 return err;
744         }
745
746         for_each_port(adap, i) {
747                 struct net_device *dev = adap->port[i];
748                 struct port_info *pi = netdev_priv(dev);
749                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
750                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
751
752                 for (j = 0; j < pi->nqsets; j++, q++) {
753                         if (msi_idx > 0)
754                                 msi_idx++;
755                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
756                                                msi_idx, &q->fl,
757                                                t4_ethrx_handler);
758                         if (err)
759                                 goto freeout;
760                         q->rspq.idx = j;
761                         memset(&q->stats, 0, sizeof(q->stats));
762                 }
763                 for (j = 0; j < pi->nqsets; j++, t++) {
764                         err = t4_sge_alloc_eth_txq(adap, t, dev,
765                                         netdev_get_tx_queue(dev, j),
766                                         s->fw_evtq.cntxt_id);
767                         if (err)
768                                 goto freeout;
769                 }
770         }
771
772         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
773         for_each_ofldrxq(s, i) {
774                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
775                 struct net_device *dev = adap->port[i / j];
776
777                 if (msi_idx > 0)
778                         msi_idx++;
779                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
780                                        &q->fl, uldrx_handler);
781                 if (err)
782                         goto freeout;
783                 memset(&q->stats, 0, sizeof(q->stats));
784                 s->ofld_rxq[i] = q->rspq.abs_id;
785                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
786                                             s->fw_evtq.cntxt_id);
787                 if (err)
788                         goto freeout;
789         }
790
791         for_each_rdmarxq(s, i) {
792                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
793
794                 if (msi_idx > 0)
795                         msi_idx++;
796                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
797                                        msi_idx, &q->fl, uldrx_handler);
798                 if (err)
799                         goto freeout;
800                 memset(&q->stats, 0, sizeof(q->stats));
801                 s->rdma_rxq[i] = q->rspq.abs_id;
802         }
803
804         for_each_port(adap, i) {
805                 /*
806                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
807                  * have RDMA queues, and that's the right value.
808                  */
809                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
810                                             s->fw_evtq.cntxt_id,
811                                             s->rdmarxq[i].rspq.cntxt_id);
812                 if (err)
813                         goto freeout;
814         }
815
816         t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
817                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
818                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
819         return 0;
820 }
821
822 /*
823  * Returns 0 if new FW was successfully loaded, a positive errno if a load was
824  * started but failed, and a negative errno if flash load couldn't start.
825  */
826 static int upgrade_fw(struct adapter *adap)
827 {
828         int ret;
829         u32 vers;
830         const struct fw_hdr *hdr;
831         const struct firmware *fw;
832         struct device *dev = adap->pdev_dev;
833
834         ret = request_firmware(&fw, FW_FNAME, dev);
835         if (ret < 0) {
836                 dev_err(dev, "unable to load firmware image " FW_FNAME
837                         ", error %d\n", ret);
838                 return ret;
839         }
840
841         hdr = (const struct fw_hdr *)fw->data;
842         vers = ntohl(hdr->fw_ver);
843         if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) {
844                 ret = -EINVAL;              /* wrong major version, won't do */
845                 goto out;
846         }
847
848         /*
849          * If the flash FW is unusable or we found something newer, load it.
850          */
851         if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR ||
852             vers > adap->params.fw_vers) {
853                 ret = -t4_load_fw(adap, fw->data, fw->size);
854                 if (!ret)
855                         dev_info(dev, "firmware upgraded to version %pI4 from "
856                                  FW_FNAME "\n", &hdr->fw_ver);
857         }
858 out:    release_firmware(fw);
859         return ret;
860 }
861
862 /*
863  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
864  * The allocated memory is cleared.
865  */
866 void *t4_alloc_mem(size_t size)
867 {
868         void *p = kzalloc(size, GFP_KERNEL);
869
870         if (!p)
871                 p = vzalloc(size);
872         return p;
873 }
874
875 /*
876  * Free memory allocated through alloc_mem().
877  */
878 static void t4_free_mem(void *addr)
879 {
880         if (is_vmalloc_addr(addr))
881                 vfree(addr);
882         else
883                 kfree(addr);
884 }
885
886 static inline int is_offload(const struct adapter *adap)
887 {
888         return adap->params.offload;
889 }
890
891 /*
892  * Implementation of ethtool operations.
893  */
894
895 static u32 get_msglevel(struct net_device *dev)
896 {
897         return netdev2adap(dev)->msg_enable;
898 }
899
900 static void set_msglevel(struct net_device *dev, u32 val)
901 {
902         netdev2adap(dev)->msg_enable = val;
903 }
904
905 static char stats_strings[][ETH_GSTRING_LEN] = {
906         "TxOctetsOK         ",
907         "TxFramesOK         ",
908         "TxBroadcastFrames  ",
909         "TxMulticastFrames  ",
910         "TxUnicastFrames    ",
911         "TxErrorFrames      ",
912
913         "TxFrames64         ",
914         "TxFrames65To127    ",
915         "TxFrames128To255   ",
916         "TxFrames256To511   ",
917         "TxFrames512To1023  ",
918         "TxFrames1024To1518 ",
919         "TxFrames1519ToMax  ",
920
921         "TxFramesDropped    ",
922         "TxPauseFrames      ",
923         "TxPPP0Frames       ",
924         "TxPPP1Frames       ",
925         "TxPPP2Frames       ",
926         "TxPPP3Frames       ",
927         "TxPPP4Frames       ",
928         "TxPPP5Frames       ",
929         "TxPPP6Frames       ",
930         "TxPPP7Frames       ",
931
932         "RxOctetsOK         ",
933         "RxFramesOK         ",
934         "RxBroadcastFrames  ",
935         "RxMulticastFrames  ",
936         "RxUnicastFrames    ",
937
938         "RxFramesTooLong    ",
939         "RxJabberErrors     ",
940         "RxFCSErrors        ",
941         "RxLengthErrors     ",
942         "RxSymbolErrors     ",
943         "RxRuntFrames       ",
944
945         "RxFrames64         ",
946         "RxFrames65To127    ",
947         "RxFrames128To255   ",
948         "RxFrames256To511   ",
949         "RxFrames512To1023  ",
950         "RxFrames1024To1518 ",
951         "RxFrames1519ToMax  ",
952
953         "RxPauseFrames      ",
954         "RxPPP0Frames       ",
955         "RxPPP1Frames       ",
956         "RxPPP2Frames       ",
957         "RxPPP3Frames       ",
958         "RxPPP4Frames       ",
959         "RxPPP5Frames       ",
960         "RxPPP6Frames       ",
961         "RxPPP7Frames       ",
962
963         "RxBG0FramesDropped ",
964         "RxBG1FramesDropped ",
965         "RxBG2FramesDropped ",
966         "RxBG3FramesDropped ",
967         "RxBG0FramesTrunc   ",
968         "RxBG1FramesTrunc   ",
969         "RxBG2FramesTrunc   ",
970         "RxBG3FramesTrunc   ",
971
972         "TSO                ",
973         "TxCsumOffload      ",
974         "RxCsumGood         ",
975         "VLANextractions    ",
976         "VLANinsertions     ",
977         "GROpackets         ",
978         "GROmerged          ",
979 };
980
981 static int get_sset_count(struct net_device *dev, int sset)
982 {
983         switch (sset) {
984         case ETH_SS_STATS:
985                 return ARRAY_SIZE(stats_strings);
986         default:
987                 return -EOPNOTSUPP;
988         }
989 }
990
991 #define T4_REGMAP_SIZE (160 * 1024)
992
993 static int get_regs_len(struct net_device *dev)
994 {
995         return T4_REGMAP_SIZE;
996 }
997
998 static int get_eeprom_len(struct net_device *dev)
999 {
1000         return EEPROMSIZE;
1001 }
1002
1003 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1004 {
1005         struct adapter *adapter = netdev2adap(dev);
1006
1007         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1008         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1009         strlcpy(info->bus_info, pci_name(adapter->pdev),
1010                 sizeof(info->bus_info));
1011
1012         if (adapter->params.fw_vers)
1013                 snprintf(info->fw_version, sizeof(info->fw_version),
1014                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1015                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1016                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1017                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1018                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1019                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1020                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1021                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1022                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1023 }
1024
1025 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1026 {
1027         if (stringset == ETH_SS_STATS)
1028                 memcpy(data, stats_strings, sizeof(stats_strings));
1029 }
1030
1031 /*
1032  * port stats maintained per queue of the port.  They should be in the same
1033  * order as in stats_strings above.
1034  */
1035 struct queue_port_stats {
1036         u64 tso;
1037         u64 tx_csum;
1038         u64 rx_csum;
1039         u64 vlan_ex;
1040         u64 vlan_ins;
1041         u64 gro_pkts;
1042         u64 gro_merged;
1043 };
1044
1045 static void collect_sge_port_stats(const struct adapter *adap,
1046                 const struct port_info *p, struct queue_port_stats *s)
1047 {
1048         int i;
1049         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1050         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1051
1052         memset(s, 0, sizeof(*s));
1053         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1054                 s->tso += tx->tso;
1055                 s->tx_csum += tx->tx_cso;
1056                 s->rx_csum += rx->stats.rx_cso;
1057                 s->vlan_ex += rx->stats.vlan_ex;
1058                 s->vlan_ins += tx->vlan_ins;
1059                 s->gro_pkts += rx->stats.lro_pkts;
1060                 s->gro_merged += rx->stats.lro_merged;
1061         }
1062 }
1063
1064 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1065                       u64 *data)
1066 {
1067         struct port_info *pi = netdev_priv(dev);
1068         struct adapter *adapter = pi->adapter;
1069
1070         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1071
1072         data += sizeof(struct port_stats) / sizeof(u64);
1073         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1074 }
1075
1076 /*
1077  * Return a version number to identify the type of adapter.  The scheme is:
1078  * - bits 0..9: chip version
1079  * - bits 10..15: chip revision
1080  * - bits 16..23: register dump version
1081  */
1082 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1083 {
1084         return 4 | (ap->params.rev << 10) | (1 << 16);
1085 }
1086
1087 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1088                            unsigned int end)
1089 {
1090         u32 *p = buf + start;
1091
1092         for ( ; start <= end; start += sizeof(u32))
1093                 *p++ = t4_read_reg(ap, start);
1094 }
1095
1096 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1097                      void *buf)
1098 {
1099         static const unsigned int reg_ranges[] = {
1100                 0x1008, 0x1108,
1101                 0x1180, 0x11b4,
1102                 0x11fc, 0x123c,
1103                 0x1300, 0x173c,
1104                 0x1800, 0x18fc,
1105                 0x3000, 0x30d8,
1106                 0x30e0, 0x5924,
1107                 0x5960, 0x59d4,
1108                 0x5a00, 0x5af8,
1109                 0x6000, 0x6098,
1110                 0x6100, 0x6150,
1111                 0x6200, 0x6208,
1112                 0x6240, 0x6248,
1113                 0x6280, 0x6338,
1114                 0x6370, 0x638c,
1115                 0x6400, 0x643c,
1116                 0x6500, 0x6524,
1117                 0x6a00, 0x6a38,
1118                 0x6a60, 0x6a78,
1119                 0x6b00, 0x6b84,
1120                 0x6bf0, 0x6c84,
1121                 0x6cf0, 0x6d84,
1122                 0x6df0, 0x6e84,
1123                 0x6ef0, 0x6f84,
1124                 0x6ff0, 0x7084,
1125                 0x70f0, 0x7184,
1126                 0x71f0, 0x7284,
1127                 0x72f0, 0x7384,
1128                 0x73f0, 0x7450,
1129                 0x7500, 0x7530,
1130                 0x7600, 0x761c,
1131                 0x7680, 0x76cc,
1132                 0x7700, 0x7798,
1133                 0x77c0, 0x77fc,
1134                 0x7900, 0x79fc,
1135                 0x7b00, 0x7c38,
1136                 0x7d00, 0x7efc,
1137                 0x8dc0, 0x8e1c,
1138                 0x8e30, 0x8e78,
1139                 0x8ea0, 0x8f6c,
1140                 0x8fc0, 0x9074,
1141                 0x90fc, 0x90fc,
1142                 0x9400, 0x9458,
1143                 0x9600, 0x96bc,
1144                 0x9800, 0x9808,
1145                 0x9820, 0x983c,
1146                 0x9850, 0x9864,
1147                 0x9c00, 0x9c6c,
1148                 0x9c80, 0x9cec,
1149                 0x9d00, 0x9d6c,
1150                 0x9d80, 0x9dec,
1151                 0x9e00, 0x9e6c,
1152                 0x9e80, 0x9eec,
1153                 0x9f00, 0x9f6c,
1154                 0x9f80, 0x9fec,
1155                 0xd004, 0xd03c,
1156                 0xdfc0, 0xdfe0,
1157                 0xe000, 0xea7c,
1158                 0xf000, 0x11190,
1159                 0x19040, 0x1906c,
1160                 0x19078, 0x19080,
1161                 0x1908c, 0x19124,
1162                 0x19150, 0x191b0,
1163                 0x191d0, 0x191e8,
1164                 0x19238, 0x1924c,
1165                 0x193f8, 0x19474,
1166                 0x19490, 0x194f8,
1167                 0x19800, 0x19f30,
1168                 0x1a000, 0x1a06c,
1169                 0x1a0b0, 0x1a120,
1170                 0x1a128, 0x1a138,
1171                 0x1a190, 0x1a1c4,
1172                 0x1a1fc, 0x1a1fc,
1173                 0x1e040, 0x1e04c,
1174                 0x1e284, 0x1e28c,
1175                 0x1e2c0, 0x1e2c0,
1176                 0x1e2e0, 0x1e2e0,
1177                 0x1e300, 0x1e384,
1178                 0x1e3c0, 0x1e3c8,
1179                 0x1e440, 0x1e44c,
1180                 0x1e684, 0x1e68c,
1181                 0x1e6c0, 0x1e6c0,
1182                 0x1e6e0, 0x1e6e0,
1183                 0x1e700, 0x1e784,
1184                 0x1e7c0, 0x1e7c8,
1185                 0x1e840, 0x1e84c,
1186                 0x1ea84, 0x1ea8c,
1187                 0x1eac0, 0x1eac0,
1188                 0x1eae0, 0x1eae0,
1189                 0x1eb00, 0x1eb84,
1190                 0x1ebc0, 0x1ebc8,
1191                 0x1ec40, 0x1ec4c,
1192                 0x1ee84, 0x1ee8c,
1193                 0x1eec0, 0x1eec0,
1194                 0x1eee0, 0x1eee0,
1195                 0x1ef00, 0x1ef84,
1196                 0x1efc0, 0x1efc8,
1197                 0x1f040, 0x1f04c,
1198                 0x1f284, 0x1f28c,
1199                 0x1f2c0, 0x1f2c0,
1200                 0x1f2e0, 0x1f2e0,
1201                 0x1f300, 0x1f384,
1202                 0x1f3c0, 0x1f3c8,
1203                 0x1f440, 0x1f44c,
1204                 0x1f684, 0x1f68c,
1205                 0x1f6c0, 0x1f6c0,
1206                 0x1f6e0, 0x1f6e0,
1207                 0x1f700, 0x1f784,
1208                 0x1f7c0, 0x1f7c8,
1209                 0x1f840, 0x1f84c,
1210                 0x1fa84, 0x1fa8c,
1211                 0x1fac0, 0x1fac0,
1212                 0x1fae0, 0x1fae0,
1213                 0x1fb00, 0x1fb84,
1214                 0x1fbc0, 0x1fbc8,
1215                 0x1fc40, 0x1fc4c,
1216                 0x1fe84, 0x1fe8c,
1217                 0x1fec0, 0x1fec0,
1218                 0x1fee0, 0x1fee0,
1219                 0x1ff00, 0x1ff84,
1220                 0x1ffc0, 0x1ffc8,
1221                 0x20000, 0x2002c,
1222                 0x20100, 0x2013c,
1223                 0x20190, 0x201c8,
1224                 0x20200, 0x20318,
1225                 0x20400, 0x20528,
1226                 0x20540, 0x20614,
1227                 0x21000, 0x21040,
1228                 0x2104c, 0x21060,
1229                 0x210c0, 0x210ec,
1230                 0x21200, 0x21268,
1231                 0x21270, 0x21284,
1232                 0x212fc, 0x21388,
1233                 0x21400, 0x21404,
1234                 0x21500, 0x21518,
1235                 0x2152c, 0x2153c,
1236                 0x21550, 0x21554,
1237                 0x21600, 0x21600,
1238                 0x21608, 0x21628,
1239                 0x21630, 0x2163c,
1240                 0x21700, 0x2171c,
1241                 0x21780, 0x2178c,
1242                 0x21800, 0x21c38,
1243                 0x21c80, 0x21d7c,
1244                 0x21e00, 0x21e04,
1245                 0x22000, 0x2202c,
1246                 0x22100, 0x2213c,
1247                 0x22190, 0x221c8,
1248                 0x22200, 0x22318,
1249                 0x22400, 0x22528,
1250                 0x22540, 0x22614,
1251                 0x23000, 0x23040,
1252                 0x2304c, 0x23060,
1253                 0x230c0, 0x230ec,
1254                 0x23200, 0x23268,
1255                 0x23270, 0x23284,
1256                 0x232fc, 0x23388,
1257                 0x23400, 0x23404,
1258                 0x23500, 0x23518,
1259                 0x2352c, 0x2353c,
1260                 0x23550, 0x23554,
1261                 0x23600, 0x23600,
1262                 0x23608, 0x23628,
1263                 0x23630, 0x2363c,
1264                 0x23700, 0x2371c,
1265                 0x23780, 0x2378c,
1266                 0x23800, 0x23c38,
1267                 0x23c80, 0x23d7c,
1268                 0x23e00, 0x23e04,
1269                 0x24000, 0x2402c,
1270                 0x24100, 0x2413c,
1271                 0x24190, 0x241c8,
1272                 0x24200, 0x24318,
1273                 0x24400, 0x24528,
1274                 0x24540, 0x24614,
1275                 0x25000, 0x25040,
1276                 0x2504c, 0x25060,
1277                 0x250c0, 0x250ec,
1278                 0x25200, 0x25268,
1279                 0x25270, 0x25284,
1280                 0x252fc, 0x25388,
1281                 0x25400, 0x25404,
1282                 0x25500, 0x25518,
1283                 0x2552c, 0x2553c,
1284                 0x25550, 0x25554,
1285                 0x25600, 0x25600,
1286                 0x25608, 0x25628,
1287                 0x25630, 0x2563c,
1288                 0x25700, 0x2571c,
1289                 0x25780, 0x2578c,
1290                 0x25800, 0x25c38,
1291                 0x25c80, 0x25d7c,
1292                 0x25e00, 0x25e04,
1293                 0x26000, 0x2602c,
1294                 0x26100, 0x2613c,
1295                 0x26190, 0x261c8,
1296                 0x26200, 0x26318,
1297                 0x26400, 0x26528,
1298                 0x26540, 0x26614,
1299                 0x27000, 0x27040,
1300                 0x2704c, 0x27060,
1301                 0x270c0, 0x270ec,
1302                 0x27200, 0x27268,
1303                 0x27270, 0x27284,
1304                 0x272fc, 0x27388,
1305                 0x27400, 0x27404,
1306                 0x27500, 0x27518,
1307                 0x2752c, 0x2753c,
1308                 0x27550, 0x27554,
1309                 0x27600, 0x27600,
1310                 0x27608, 0x27628,
1311                 0x27630, 0x2763c,
1312                 0x27700, 0x2771c,
1313                 0x27780, 0x2778c,
1314                 0x27800, 0x27c38,
1315                 0x27c80, 0x27d7c,
1316                 0x27e00, 0x27e04
1317         };
1318
1319         int i;
1320         struct adapter *ap = netdev2adap(dev);
1321
1322         regs->version = mk_adap_vers(ap);
1323
1324         memset(buf, 0, T4_REGMAP_SIZE);
1325         for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
1326                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
1327 }
1328
1329 static int restart_autoneg(struct net_device *dev)
1330 {
1331         struct port_info *p = netdev_priv(dev);
1332
1333         if (!netif_running(dev))
1334                 return -EAGAIN;
1335         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
1336                 return -EINVAL;
1337         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
1338         return 0;
1339 }
1340
1341 static int identify_port(struct net_device *dev,
1342                          enum ethtool_phys_id_state state)
1343 {
1344         unsigned int val;
1345         struct adapter *adap = netdev2adap(dev);
1346
1347         if (state == ETHTOOL_ID_ACTIVE)
1348                 val = 0xffff;
1349         else if (state == ETHTOOL_ID_INACTIVE)
1350                 val = 0;
1351         else
1352                 return -EINVAL;
1353
1354         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
1355 }
1356
1357 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
1358 {
1359         unsigned int v = 0;
1360
1361         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
1362             type == FW_PORT_TYPE_BT_XAUI) {
1363                 v |= SUPPORTED_TP;
1364                 if (caps & FW_PORT_CAP_SPEED_100M)
1365                         v |= SUPPORTED_100baseT_Full;
1366                 if (caps & FW_PORT_CAP_SPEED_1G)
1367                         v |= SUPPORTED_1000baseT_Full;
1368                 if (caps & FW_PORT_CAP_SPEED_10G)
1369                         v |= SUPPORTED_10000baseT_Full;
1370         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
1371                 v |= SUPPORTED_Backplane;
1372                 if (caps & FW_PORT_CAP_SPEED_1G)
1373                         v |= SUPPORTED_1000baseKX_Full;
1374                 if (caps & FW_PORT_CAP_SPEED_10G)
1375                         v |= SUPPORTED_10000baseKX4_Full;
1376         } else if (type == FW_PORT_TYPE_KR)
1377                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1378         else if (type == FW_PORT_TYPE_BP_AP)
1379                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1380                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
1381         else if (type == FW_PORT_TYPE_BP4_AP)
1382                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1383                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
1384                      SUPPORTED_10000baseKX4_Full;
1385         else if (type == FW_PORT_TYPE_FIBER_XFI ||
1386                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
1387                 v |= SUPPORTED_FIBRE;
1388
1389         if (caps & FW_PORT_CAP_ANEG)
1390                 v |= SUPPORTED_Autoneg;
1391         return v;
1392 }
1393
1394 static unsigned int to_fw_linkcaps(unsigned int caps)
1395 {
1396         unsigned int v = 0;
1397
1398         if (caps & ADVERTISED_100baseT_Full)
1399                 v |= FW_PORT_CAP_SPEED_100M;
1400         if (caps & ADVERTISED_1000baseT_Full)
1401                 v |= FW_PORT_CAP_SPEED_1G;
1402         if (caps & ADVERTISED_10000baseT_Full)
1403                 v |= FW_PORT_CAP_SPEED_10G;
1404         return v;
1405 }
1406
1407 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1408 {
1409         const struct port_info *p = netdev_priv(dev);
1410
1411         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1412             p->port_type == FW_PORT_TYPE_BT_XFI ||
1413             p->port_type == FW_PORT_TYPE_BT_XAUI)
1414                 cmd->port = PORT_TP;
1415         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
1416                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
1417                 cmd->port = PORT_FIBRE;
1418         else if (p->port_type == FW_PORT_TYPE_SFP) {
1419                 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1420                     p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1421                         cmd->port = PORT_DA;
1422                 else
1423                         cmd->port = PORT_FIBRE;
1424         } else
1425                 cmd->port = PORT_OTHER;
1426
1427         if (p->mdio_addr >= 0) {
1428                 cmd->phy_address = p->mdio_addr;
1429                 cmd->transceiver = XCVR_EXTERNAL;
1430                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
1431                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
1432         } else {
1433                 cmd->phy_address = 0;  /* not really, but no better option */
1434                 cmd->transceiver = XCVR_INTERNAL;
1435                 cmd->mdio_support = 0;
1436         }
1437
1438         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
1439         cmd->advertising = from_fw_linkcaps(p->port_type,
1440                                             p->link_cfg.advertising);
1441         ethtool_cmd_speed_set(cmd,
1442                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
1443         cmd->duplex = DUPLEX_FULL;
1444         cmd->autoneg = p->link_cfg.autoneg;
1445         cmd->maxtxpkt = 0;
1446         cmd->maxrxpkt = 0;
1447         return 0;
1448 }
1449
1450 static unsigned int speed_to_caps(int speed)
1451 {
1452         if (speed == SPEED_100)
1453                 return FW_PORT_CAP_SPEED_100M;
1454         if (speed == SPEED_1000)
1455                 return FW_PORT_CAP_SPEED_1G;
1456         if (speed == SPEED_10000)
1457                 return FW_PORT_CAP_SPEED_10G;
1458         return 0;
1459 }
1460
1461 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1462 {
1463         unsigned int cap;
1464         struct port_info *p = netdev_priv(dev);
1465         struct link_config *lc = &p->link_cfg;
1466         u32 speed = ethtool_cmd_speed(cmd);
1467
1468         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
1469                 return -EINVAL;
1470
1471         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1472                 /*
1473                  * PHY offers a single speed.  See if that's what's
1474                  * being requested.
1475                  */
1476                 if (cmd->autoneg == AUTONEG_DISABLE &&
1477                     (lc->supported & speed_to_caps(speed)))
1478                         return 0;
1479                 return -EINVAL;
1480         }
1481
1482         if (cmd->autoneg == AUTONEG_DISABLE) {
1483                 cap = speed_to_caps(speed);
1484
1485                 if (!(lc->supported & cap) || (speed == SPEED_1000) ||
1486                     (speed == SPEED_10000))
1487                         return -EINVAL;
1488                 lc->requested_speed = cap;
1489                 lc->advertising = 0;
1490         } else {
1491                 cap = to_fw_linkcaps(cmd->advertising);
1492                 if (!(lc->supported & cap))
1493                         return -EINVAL;
1494                 lc->requested_speed = 0;
1495                 lc->advertising = cap | FW_PORT_CAP_ANEG;
1496         }
1497         lc->autoneg = cmd->autoneg;
1498
1499         if (netif_running(dev))
1500                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1501                                      lc);
1502         return 0;
1503 }
1504
1505 static void get_pauseparam(struct net_device *dev,
1506                            struct ethtool_pauseparam *epause)
1507 {
1508         struct port_info *p = netdev_priv(dev);
1509
1510         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1511         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
1512         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
1513 }
1514
1515 static int set_pauseparam(struct net_device *dev,
1516                           struct ethtool_pauseparam *epause)
1517 {
1518         struct port_info *p = netdev_priv(dev);
1519         struct link_config *lc = &p->link_cfg;
1520
1521         if (epause->autoneg == AUTONEG_DISABLE)
1522                 lc->requested_fc = 0;
1523         else if (lc->supported & FW_PORT_CAP_ANEG)
1524                 lc->requested_fc = PAUSE_AUTONEG;
1525         else
1526                 return -EINVAL;
1527
1528         if (epause->rx_pause)
1529                 lc->requested_fc |= PAUSE_RX;
1530         if (epause->tx_pause)
1531                 lc->requested_fc |= PAUSE_TX;
1532         if (netif_running(dev))
1533                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1534                                      lc);
1535         return 0;
1536 }
1537
1538 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1539 {
1540         const struct port_info *pi = netdev_priv(dev);
1541         const struct sge *s = &pi->adapter->sge;
1542
1543         e->rx_max_pending = MAX_RX_BUFFERS;
1544         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1545         e->rx_jumbo_max_pending = 0;
1546         e->tx_max_pending = MAX_TXQ_ENTRIES;
1547
1548         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
1549         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1550         e->rx_jumbo_pending = 0;
1551         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
1552 }
1553
1554 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1555 {
1556         int i;
1557         const struct port_info *pi = netdev_priv(dev);
1558         struct adapter *adapter = pi->adapter;
1559         struct sge *s = &adapter->sge;
1560
1561         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
1562             e->tx_pending > MAX_TXQ_ENTRIES ||
1563             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1564             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1565             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
1566                 return -EINVAL;
1567
1568         if (adapter->flags & FULL_INIT_DONE)
1569                 return -EBUSY;
1570
1571         for (i = 0; i < pi->nqsets; ++i) {
1572                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
1573                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
1574                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
1575         }
1576         return 0;
1577 }
1578
1579 static int closest_timer(const struct sge *s, int time)
1580 {
1581         int i, delta, match = 0, min_delta = INT_MAX;
1582
1583         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1584                 delta = time - s->timer_val[i];
1585                 if (delta < 0)
1586                         delta = -delta;
1587                 if (delta < min_delta) {
1588                         min_delta = delta;
1589                         match = i;
1590                 }
1591         }
1592         return match;
1593 }
1594
1595 static int closest_thres(const struct sge *s, int thres)
1596 {
1597         int i, delta, match = 0, min_delta = INT_MAX;
1598
1599         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1600                 delta = thres - s->counter_val[i];
1601                 if (delta < 0)
1602                         delta = -delta;
1603                 if (delta < min_delta) {
1604                         min_delta = delta;
1605                         match = i;
1606                 }
1607         }
1608         return match;
1609 }
1610
1611 /*
1612  * Return a queue's interrupt hold-off time in us.  0 means no timer.
1613  */
1614 static unsigned int qtimer_val(const struct adapter *adap,
1615                                const struct sge_rspq *q)
1616 {
1617         unsigned int idx = q->intr_params >> 1;
1618
1619         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
1620 }
1621
1622 /**
1623  *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
1624  *      @adap: the adapter
1625  *      @q: the Rx queue
1626  *      @us: the hold-off time in us, or 0 to disable timer
1627  *      @cnt: the hold-off packet count, or 0 to disable counter
1628  *
1629  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1630  *      one of the two needs to be enabled for the queue to generate interrupts.
1631  */
1632 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
1633                                unsigned int us, unsigned int cnt)
1634 {
1635         if ((us | cnt) == 0)
1636                 cnt = 1;
1637
1638         if (cnt) {
1639                 int err;
1640                 u32 v, new_idx;
1641
1642                 new_idx = closest_thres(&adap->sge, cnt);
1643                 if (q->desc && q->pktcnt_idx != new_idx) {
1644                         /* the queue has already been created, update it */
1645                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1646                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1647                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
1648                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1649                                             &new_idx);
1650                         if (err)
1651                                 return err;
1652                 }
1653                 q->pktcnt_idx = new_idx;
1654         }
1655
1656         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1657         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1658         return 0;
1659 }
1660
1661 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1662 {
1663         const struct port_info *pi = netdev_priv(dev);
1664         struct adapter *adap = pi->adapter;
1665
1666         return set_rxq_intr_params(adap, &adap->sge.ethrxq[pi->first_qset].rspq,
1667                         c->rx_coalesce_usecs, c->rx_max_coalesced_frames);
1668 }
1669
1670 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1671 {
1672         const struct port_info *pi = netdev_priv(dev);
1673         const struct adapter *adap = pi->adapter;
1674         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
1675
1676         c->rx_coalesce_usecs = qtimer_val(adap, rq);
1677         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
1678                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
1679         return 0;
1680 }
1681
1682 /**
1683  *      eeprom_ptov - translate a physical EEPROM address to virtual
1684  *      @phys_addr: the physical EEPROM address
1685  *      @fn: the PCI function number
1686  *      @sz: size of function-specific area
1687  *
1688  *      Translate a physical EEPROM address to virtual.  The first 1K is
1689  *      accessed through virtual addresses starting at 31K, the rest is
1690  *      accessed through virtual addresses starting at 0.
1691  *
1692  *      The mapping is as follows:
1693  *      [0..1K) -> [31K..32K)
1694  *      [1K..1K+A) -> [31K-A..31K)
1695  *      [1K+A..ES) -> [0..ES-A-1K)
1696  *
1697  *      where A = @fn * @sz, and ES = EEPROM size.
1698  */
1699 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
1700 {
1701         fn *= sz;
1702         if (phys_addr < 1024)
1703                 return phys_addr + (31 << 10);
1704         if (phys_addr < 1024 + fn)
1705                 return 31744 - fn + phys_addr - 1024;
1706         if (phys_addr < EEPROMSIZE)
1707                 return phys_addr - 1024 - fn;
1708         return -EINVAL;
1709 }
1710
1711 /*
1712  * The next two routines implement eeprom read/write from physical addresses.
1713  */
1714 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
1715 {
1716         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1717
1718         if (vaddr >= 0)
1719                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
1720         return vaddr < 0 ? vaddr : 0;
1721 }
1722
1723 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
1724 {
1725         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1726
1727         if (vaddr >= 0)
1728                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
1729         return vaddr < 0 ? vaddr : 0;
1730 }
1731
1732 #define EEPROM_MAGIC 0x38E2F10C
1733
1734 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1735                       u8 *data)
1736 {
1737         int i, err = 0;
1738         struct adapter *adapter = netdev2adap(dev);
1739
1740         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1741         if (!buf)
1742                 return -ENOMEM;
1743
1744         e->magic = EEPROM_MAGIC;
1745         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1746                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
1747
1748         if (!err)
1749                 memcpy(data, buf + e->offset, e->len);
1750         kfree(buf);
1751         return err;
1752 }
1753
1754 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1755                       u8 *data)
1756 {
1757         u8 *buf;
1758         int err = 0;
1759         u32 aligned_offset, aligned_len, *p;
1760         struct adapter *adapter = netdev2adap(dev);
1761
1762         if (eeprom->magic != EEPROM_MAGIC)
1763                 return -EINVAL;
1764
1765         aligned_offset = eeprom->offset & ~3;
1766         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1767
1768         if (adapter->fn > 0) {
1769                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
1770
1771                 if (aligned_offset < start ||
1772                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
1773                         return -EPERM;
1774         }
1775
1776         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1777                 /*
1778                  * RMW possibly needed for first or last words.
1779                  */
1780                 buf = kmalloc(aligned_len, GFP_KERNEL);
1781                 if (!buf)
1782                         return -ENOMEM;
1783                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
1784                 if (!err && aligned_len > 4)
1785                         err = eeprom_rd_phys(adapter,
1786                                              aligned_offset + aligned_len - 4,
1787                                              (u32 *)&buf[aligned_len - 4]);
1788                 if (err)
1789                         goto out;
1790                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1791         } else
1792                 buf = data;
1793
1794         err = t4_seeprom_wp(adapter, false);
1795         if (err)
1796                 goto out;
1797
1798         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
1799                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
1800                 aligned_offset += 4;
1801         }
1802
1803         if (!err)
1804                 err = t4_seeprom_wp(adapter, true);
1805 out:
1806         if (buf != data)
1807                 kfree(buf);
1808         return err;
1809 }
1810
1811 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
1812 {
1813         int ret;
1814         const struct firmware *fw;
1815         struct adapter *adap = netdev2adap(netdev);
1816
1817         ef->data[sizeof(ef->data) - 1] = '\0';
1818         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
1819         if (ret < 0)
1820                 return ret;
1821
1822         ret = t4_load_fw(adap, fw->data, fw->size);
1823         release_firmware(fw);
1824         if (!ret)
1825                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
1826         return ret;
1827 }
1828
1829 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
1830 #define BCAST_CRC 0xa0ccc1a6
1831
1832 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1833 {
1834         wol->supported = WAKE_BCAST | WAKE_MAGIC;
1835         wol->wolopts = netdev2adap(dev)->wol;
1836         memset(&wol->sopass, 0, sizeof(wol->sopass));
1837 }
1838
1839 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1840 {
1841         int err = 0;
1842         struct port_info *pi = netdev_priv(dev);
1843
1844         if (wol->wolopts & ~WOL_SUPPORTED)
1845                 return -EINVAL;
1846         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
1847                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
1848         if (wol->wolopts & WAKE_BCAST) {
1849                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
1850                                         ~0ULL, 0, false);
1851                 if (!err)
1852                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
1853                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
1854         } else
1855                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
1856         return err;
1857 }
1858
1859 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1860 {
1861         const struct port_info *pi = netdev_priv(dev);
1862         netdev_features_t changed = dev->features ^ features;
1863         int err;
1864
1865         if (!(changed & NETIF_F_HW_VLAN_RX))
1866                 return 0;
1867
1868         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1869                             -1, -1, -1,
1870                             !!(features & NETIF_F_HW_VLAN_RX), true);
1871         if (unlikely(err))
1872                 dev->features = features ^ NETIF_F_HW_VLAN_RX;
1873         return err;
1874 }
1875
1876 static u32 get_rss_table_size(struct net_device *dev)
1877 {
1878         const struct port_info *pi = netdev_priv(dev);
1879
1880         return pi->rss_size;
1881 }
1882
1883 static int get_rss_table(struct net_device *dev, u32 *p)
1884 {
1885         const struct port_info *pi = netdev_priv(dev);
1886         unsigned int n = pi->rss_size;
1887
1888         while (n--)
1889                 p[n] = pi->rss[n];
1890         return 0;
1891 }
1892
1893 static int set_rss_table(struct net_device *dev, const u32 *p)
1894 {
1895         unsigned int i;
1896         struct port_info *pi = netdev_priv(dev);
1897
1898         for (i = 0; i < pi->rss_size; i++)
1899                 pi->rss[i] = p[i];
1900         if (pi->adapter->flags & FULL_INIT_DONE)
1901                 return write_rss(pi, pi->rss);
1902         return 0;
1903 }
1904
1905 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1906                      u32 *rules)
1907 {
1908         const struct port_info *pi = netdev_priv(dev);
1909
1910         switch (info->cmd) {
1911         case ETHTOOL_GRXFH: {
1912                 unsigned int v = pi->rss_mode;
1913
1914                 info->data = 0;
1915                 switch (info->flow_type) {
1916                 case TCP_V4_FLOW:
1917                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
1918                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1919                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1920                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1921                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1922                         break;
1923                 case UDP_V4_FLOW:
1924                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
1925                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
1926                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1927                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1928                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1929                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1930                         break;
1931                 case SCTP_V4_FLOW:
1932                 case AH_ESP_V4_FLOW:
1933                 case IPV4_FLOW:
1934                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1935                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1936                         break;
1937                 case TCP_V6_FLOW:
1938                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
1939                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1940                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1941                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1942                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1943                         break;
1944                 case UDP_V6_FLOW:
1945                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
1946                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
1947                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1948                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1949                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1950                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1951                         break;
1952                 case SCTP_V6_FLOW:
1953                 case AH_ESP_V6_FLOW:
1954                 case IPV6_FLOW:
1955                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1956                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1957                         break;
1958                 }
1959                 return 0;
1960         }
1961         case ETHTOOL_GRXRINGS:
1962                 info->data = pi->nqsets;
1963                 return 0;
1964         }
1965         return -EOPNOTSUPP;
1966 }
1967
1968 static const struct ethtool_ops cxgb_ethtool_ops = {
1969         .get_settings      = get_settings,
1970         .set_settings      = set_settings,
1971         .get_drvinfo       = get_drvinfo,
1972         .get_msglevel      = get_msglevel,
1973         .set_msglevel      = set_msglevel,
1974         .get_ringparam     = get_sge_param,
1975         .set_ringparam     = set_sge_param,
1976         .get_coalesce      = get_coalesce,
1977         .set_coalesce      = set_coalesce,
1978         .get_eeprom_len    = get_eeprom_len,
1979         .get_eeprom        = get_eeprom,
1980         .set_eeprom        = set_eeprom,
1981         .get_pauseparam    = get_pauseparam,
1982         .set_pauseparam    = set_pauseparam,
1983         .get_link          = ethtool_op_get_link,
1984         .get_strings       = get_strings,
1985         .set_phys_id       = identify_port,
1986         .nway_reset        = restart_autoneg,
1987         .get_sset_count    = get_sset_count,
1988         .get_ethtool_stats = get_stats,
1989         .get_regs_len      = get_regs_len,
1990         .get_regs          = get_regs,
1991         .get_wol           = get_wol,
1992         .set_wol           = set_wol,
1993         .get_rxnfc         = get_rxnfc,
1994         .get_rxfh_indir_size = get_rss_table_size,
1995         .get_rxfh_indir    = get_rss_table,
1996         .set_rxfh_indir    = set_rss_table,
1997         .flash_device      = set_flash,
1998 };
1999
2000 /*
2001  * debugfs support
2002  */
2003
2004 static int mem_open(struct inode *inode, struct file *file)
2005 {
2006         file->private_data = inode->i_private;
2007         return 0;
2008 }
2009
2010 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2011                         loff_t *ppos)
2012 {
2013         loff_t pos = *ppos;
2014         loff_t avail = file->f_path.dentry->d_inode->i_size;
2015         unsigned int mem = (uintptr_t)file->private_data & 3;
2016         struct adapter *adap = file->private_data - mem;
2017
2018         if (pos < 0)
2019                 return -EINVAL;
2020         if (pos >= avail)
2021                 return 0;
2022         if (count > avail - pos)
2023                 count = avail - pos;
2024
2025         while (count) {
2026                 size_t len;
2027                 int ret, ofst;
2028                 __be32 data[16];
2029
2030                 if (mem == MEM_MC)
2031                         ret = t4_mc_read(adap, pos, data, NULL);
2032                 else
2033                         ret = t4_edc_read(adap, mem, pos, data, NULL);
2034                 if (ret)
2035                         return ret;
2036
2037                 ofst = pos % sizeof(data);
2038                 len = min(count, sizeof(data) - ofst);
2039                 if (copy_to_user(buf, (u8 *)data + ofst, len))
2040                         return -EFAULT;
2041
2042                 buf += len;
2043                 pos += len;
2044                 count -= len;
2045         }
2046         count = pos - *ppos;
2047         *ppos = pos;
2048         return count;
2049 }
2050
2051 static const struct file_operations mem_debugfs_fops = {
2052         .owner   = THIS_MODULE,
2053         .open    = mem_open,
2054         .read    = mem_read,
2055         .llseek  = default_llseek,
2056 };
2057
2058 static void __devinit add_debugfs_mem(struct adapter *adap, const char *name,
2059                                       unsigned int idx, unsigned int size_mb)
2060 {
2061         struct dentry *de;
2062
2063         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2064                                  (void *)adap + idx, &mem_debugfs_fops);
2065         if (de && de->d_inode)
2066                 de->d_inode->i_size = size_mb << 20;
2067 }
2068
2069 static int __devinit setup_debugfs(struct adapter *adap)
2070 {
2071         int i;
2072
2073         if (IS_ERR_OR_NULL(adap->debugfs_root))
2074                 return -1;
2075
2076         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2077         if (i & EDRAM0_ENABLE)
2078                 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
2079         if (i & EDRAM1_ENABLE)
2080                 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
2081         if (i & EXT_MEM_ENABLE)
2082                 add_debugfs_mem(adap, "mc", MEM_MC,
2083                         EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
2084         if (adap->l2t)
2085                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2086                                     &t4_l2t_fops);
2087         return 0;
2088 }
2089
2090 /*
2091  * upper-layer driver support
2092  */
2093
2094 /*
2095  * Allocate an active-open TID and set it to the supplied value.
2096  */
2097 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2098 {
2099         int atid = -1;
2100
2101         spin_lock_bh(&t->atid_lock);
2102         if (t->afree) {
2103                 union aopen_entry *p = t->afree;
2104
2105                 atid = p - t->atid_tab;
2106                 t->afree = p->next;
2107                 p->data = data;
2108                 t->atids_in_use++;
2109         }
2110         spin_unlock_bh(&t->atid_lock);
2111         return atid;
2112 }
2113 EXPORT_SYMBOL(cxgb4_alloc_atid);
2114
2115 /*
2116  * Release an active-open TID.
2117  */
2118 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2119 {
2120         union aopen_entry *p = &t->atid_tab[atid];
2121
2122         spin_lock_bh(&t->atid_lock);
2123         p->next = t->afree;
2124         t->afree = p;
2125         t->atids_in_use--;
2126         spin_unlock_bh(&t->atid_lock);
2127 }
2128 EXPORT_SYMBOL(cxgb4_free_atid);
2129
2130 /*
2131  * Allocate a server TID and set it to the supplied value.
2132  */
2133 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2134 {
2135         int stid;
2136
2137         spin_lock_bh(&t->stid_lock);
2138         if (family == PF_INET) {
2139                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2140                 if (stid < t->nstids)
2141                         __set_bit(stid, t->stid_bmap);
2142                 else
2143                         stid = -1;
2144         } else {
2145                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2146                 if (stid < 0)
2147                         stid = -1;
2148         }
2149         if (stid >= 0) {
2150                 t->stid_tab[stid].data = data;
2151                 stid += t->stid_base;
2152                 t->stids_in_use++;
2153         }
2154         spin_unlock_bh(&t->stid_lock);
2155         return stid;
2156 }
2157 EXPORT_SYMBOL(cxgb4_alloc_stid);
2158
2159 /*
2160  * Release a server TID.
2161  */
2162 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
2163 {
2164         stid -= t->stid_base;
2165         spin_lock_bh(&t->stid_lock);
2166         if (family == PF_INET)
2167                 __clear_bit(stid, t->stid_bmap);
2168         else
2169                 bitmap_release_region(t->stid_bmap, stid, 2);
2170         t->stid_tab[stid].data = NULL;
2171         t->stids_in_use--;
2172         spin_unlock_bh(&t->stid_lock);
2173 }
2174 EXPORT_SYMBOL(cxgb4_free_stid);
2175
2176 /*
2177  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
2178  */
2179 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
2180                            unsigned int tid)
2181 {
2182         struct cpl_tid_release *req;
2183
2184         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
2185         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
2186         INIT_TP_WR(req, tid);
2187         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
2188 }
2189
2190 /*
2191  * Queue a TID release request and if necessary schedule a work queue to
2192  * process it.
2193  */
2194 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
2195                                     unsigned int tid)
2196 {
2197         void **p = &t->tid_tab[tid];
2198         struct adapter *adap = container_of(t, struct adapter, tids);
2199
2200         spin_lock_bh(&adap->tid_release_lock);
2201         *p = adap->tid_release_head;
2202         /* Low 2 bits encode the Tx channel number */
2203         adap->tid_release_head = (void **)((uintptr_t)p | chan);
2204         if (!adap->tid_release_task_busy) {
2205                 adap->tid_release_task_busy = true;
2206                 schedule_work(&adap->tid_release_task);
2207         }
2208         spin_unlock_bh(&adap->tid_release_lock);
2209 }
2210
2211 /*
2212  * Process the list of pending TID release requests.
2213  */
2214 static void process_tid_release_list(struct work_struct *work)
2215 {
2216         struct sk_buff *skb;
2217         struct adapter *adap;
2218
2219         adap = container_of(work, struct adapter, tid_release_task);
2220
2221         spin_lock_bh(&adap->tid_release_lock);
2222         while (adap->tid_release_head) {
2223                 void **p = adap->tid_release_head;
2224                 unsigned int chan = (uintptr_t)p & 3;
2225                 p = (void *)p - chan;
2226
2227                 adap->tid_release_head = *p;
2228                 *p = NULL;
2229                 spin_unlock_bh(&adap->tid_release_lock);
2230
2231                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
2232                                          GFP_KERNEL)))
2233                         schedule_timeout_uninterruptible(1);
2234
2235                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
2236                 t4_ofld_send(adap, skb);
2237                 spin_lock_bh(&adap->tid_release_lock);
2238         }
2239         adap->tid_release_task_busy = false;
2240         spin_unlock_bh(&adap->tid_release_lock);
2241 }
2242
2243 /*
2244  * Release a TID and inform HW.  If we are unable to allocate the release
2245  * message we defer to a work queue.
2246  */
2247 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
2248 {
2249         void *old;
2250         struct sk_buff *skb;
2251         struct adapter *adap = container_of(t, struct adapter, tids);
2252
2253         old = t->tid_tab[tid];
2254         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
2255         if (likely(skb)) {
2256                 t->tid_tab[tid] = NULL;
2257                 mk_tid_release(skb, chan, tid);
2258                 t4_ofld_send(adap, skb);
2259         } else
2260                 cxgb4_queue_tid_release(t, chan, tid);
2261         if (old)
2262                 atomic_dec(&t->tids_in_use);
2263 }
2264 EXPORT_SYMBOL(cxgb4_remove_tid);
2265
2266 /*
2267  * Allocate and initialize the TID tables.  Returns 0 on success.
2268  */
2269 static int tid_init(struct tid_info *t)
2270 {
2271         size_t size;
2272         unsigned int natids = t->natids;
2273
2274         size = t->ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) +
2275                t->nstids * sizeof(*t->stid_tab) +
2276                BITS_TO_LONGS(t->nstids) * sizeof(long);
2277         t->tid_tab = t4_alloc_mem(size);
2278         if (!t->tid_tab)
2279                 return -ENOMEM;
2280
2281         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
2282         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
2283         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids];
2284         spin_lock_init(&t->stid_lock);
2285         spin_lock_init(&t->atid_lock);
2286
2287         t->stids_in_use = 0;
2288         t->afree = NULL;
2289         t->atids_in_use = 0;
2290         atomic_set(&t->tids_in_use, 0);
2291
2292         /* Setup the free list for atid_tab and clear the stid bitmap. */
2293         if (natids) {
2294                 while (--natids)
2295                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
2296                 t->afree = t->atid_tab;
2297         }
2298         bitmap_zero(t->stid_bmap, t->nstids);
2299         return 0;
2300 }
2301
2302 /**
2303  *      cxgb4_create_server - create an IP server
2304  *      @dev: the device
2305  *      @stid: the server TID
2306  *      @sip: local IP address to bind server to
2307  *      @sport: the server's TCP port
2308  *      @queue: queue to direct messages from this server to
2309  *
2310  *      Create an IP server for the given port and address.
2311  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
2312  */
2313 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
2314                         __be32 sip, __be16 sport, unsigned int queue)
2315 {
2316         unsigned int chan;
2317         struct sk_buff *skb;
2318         struct adapter *adap;
2319         struct cpl_pass_open_req *req;
2320
2321         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2322         if (!skb)
2323                 return -ENOMEM;
2324
2325         adap = netdev2adap(dev);
2326         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
2327         INIT_TP_WR(req, 0);
2328         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
2329         req->local_port = sport;
2330         req->peer_port = htons(0);
2331         req->local_ip = sip;
2332         req->peer_ip = htonl(0);
2333         chan = rxq_to_chan(&adap->sge, queue);
2334         req->opt0 = cpu_to_be64(TX_CHAN(chan));
2335         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
2336                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
2337         return t4_mgmt_tx(adap, skb);
2338 }
2339 EXPORT_SYMBOL(cxgb4_create_server);
2340
2341 /**
2342  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2343  *      @mtus: the HW MTU table
2344  *      @mtu: the target MTU
2345  *      @idx: index of selected entry in the MTU table
2346  *
2347  *      Returns the index and the value in the HW MTU table that is closest to
2348  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
2349  *      table, in which case that smallest available value is selected.
2350  */
2351 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2352                             unsigned int *idx)
2353 {
2354         unsigned int i = 0;
2355
2356         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2357                 ++i;
2358         if (idx)
2359                 *idx = i;
2360         return mtus[i];
2361 }
2362 EXPORT_SYMBOL(cxgb4_best_mtu);
2363
2364 /**
2365  *      cxgb4_port_chan - get the HW channel of a port
2366  *      @dev: the net device for the port
2367  *
2368  *      Return the HW Tx channel of the given port.
2369  */
2370 unsigned int cxgb4_port_chan(const struct net_device *dev)
2371 {
2372         return netdev2pinfo(dev)->tx_chan;
2373 }
2374 EXPORT_SYMBOL(cxgb4_port_chan);
2375
2376 /**
2377  *      cxgb4_port_viid - get the VI id of a port
2378  *      @dev: the net device for the port
2379  *
2380  *      Return the VI id of the given port.
2381  */
2382 unsigned int cxgb4_port_viid(const struct net_device *dev)
2383 {
2384         return netdev2pinfo(dev)->viid;
2385 }
2386 EXPORT_SYMBOL(cxgb4_port_viid);
2387
2388 /**
2389  *      cxgb4_port_idx - get the index of a port
2390  *      @dev: the net device for the port
2391  *
2392  *      Return the index of the given port.
2393  */
2394 unsigned int cxgb4_port_idx(const struct net_device *dev)
2395 {
2396         return netdev2pinfo(dev)->port_id;
2397 }
2398 EXPORT_SYMBOL(cxgb4_port_idx);
2399
2400 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2401                          struct tp_tcp_stats *v6)
2402 {
2403         struct adapter *adap = pci_get_drvdata(pdev);
2404
2405         spin_lock(&adap->stats_lock);
2406         t4_tp_get_tcp_stats(adap, v4, v6);
2407         spin_unlock(&adap->stats_lock);
2408 }
2409 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2410
2411 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2412                       const unsigned int *pgsz_order)
2413 {
2414         struct adapter *adap = netdev2adap(dev);
2415
2416         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
2417         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
2418                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
2419                      HPZ3(pgsz_order[3]));
2420 }
2421 EXPORT_SYMBOL(cxgb4_iscsi_init);
2422
2423 static struct pci_driver cxgb4_driver;
2424
2425 static void check_neigh_update(struct neighbour *neigh)
2426 {
2427         const struct device *parent;
2428         const struct net_device *netdev = neigh->dev;
2429
2430         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2431                 netdev = vlan_dev_real_dev(netdev);
2432         parent = netdev->dev.parent;
2433         if (parent && parent->driver == &cxgb4_driver.driver)
2434                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2435 }
2436
2437 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2438                        void *data)
2439 {
2440         switch (event) {
2441         case NETEVENT_NEIGH_UPDATE:
2442                 check_neigh_update(data);
2443                 break;
2444         case NETEVENT_REDIRECT:
2445         default:
2446                 break;
2447         }
2448         return 0;
2449 }
2450
2451 static bool netevent_registered;
2452 static struct notifier_block cxgb4_netevent_nb = {
2453         .notifier_call = netevent_cb
2454 };
2455
2456 static void uld_attach(struct adapter *adap, unsigned int uld)
2457 {
2458         void *handle;
2459         struct cxgb4_lld_info lli;
2460
2461         lli.pdev = adap->pdev;
2462         lli.l2t = adap->l2t;
2463         lli.tids = &adap->tids;
2464         lli.ports = adap->port;
2465         lli.vr = &adap->vres;
2466         lli.mtus = adap->params.mtus;
2467         if (uld == CXGB4_ULD_RDMA) {
2468                 lli.rxq_ids = adap->sge.rdma_rxq;
2469                 lli.nrxq = adap->sge.rdmaqs;
2470         } else if (uld == CXGB4_ULD_ISCSI) {
2471                 lli.rxq_ids = adap->sge.ofld_rxq;
2472                 lli.nrxq = adap->sge.ofldqsets;
2473         }
2474         lli.ntxq = adap->sge.ofldqsets;
2475         lli.nchan = adap->params.nports;
2476         lli.nports = adap->params.nports;
2477         lli.wr_cred = adap->params.ofldq_wr_cred;
2478         lli.adapter_type = adap->params.rev;
2479         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
2480         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
2481                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
2482                         (adap->fn * 4));
2483         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
2484                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
2485                         (adap->fn * 4));
2486         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
2487         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
2488         lli.fw_vers = adap->params.fw_vers;
2489
2490         handle = ulds[uld].add(&lli);
2491         if (IS_ERR(handle)) {
2492                 dev_warn(adap->pdev_dev,
2493                          "could not attach to the %s driver, error %ld\n",
2494                          uld_str[uld], PTR_ERR(handle));
2495                 return;
2496         }
2497
2498         adap->uld_handle[uld] = handle;
2499
2500         if (!netevent_registered) {
2501                 register_netevent_notifier(&cxgb4_netevent_nb);
2502                 netevent_registered = true;
2503         }
2504
2505         if (adap->flags & FULL_INIT_DONE)
2506                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2507 }
2508
2509 static void attach_ulds(struct adapter *adap)
2510 {
2511         unsigned int i;
2512
2513         mutex_lock(&uld_mutex);
2514         list_add_tail(&adap->list_node, &adapter_list);
2515         for (i = 0; i < CXGB4_ULD_MAX; i++)
2516                 if (ulds[i].add)
2517                         uld_attach(adap, i);
2518         mutex_unlock(&uld_mutex);
2519 }
2520
2521 static void detach_ulds(struct adapter *adap)
2522 {
2523         unsigned int i;
2524
2525         mutex_lock(&uld_mutex);
2526         list_del(&adap->list_node);
2527         for (i = 0; i < CXGB4_ULD_MAX; i++)
2528                 if (adap->uld_handle[i]) {
2529                         ulds[i].state_change(adap->uld_handle[i],
2530                                              CXGB4_STATE_DETACH);
2531                         adap->uld_handle[i] = NULL;
2532                 }
2533         if (netevent_registered && list_empty(&adapter_list)) {
2534                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2535                 netevent_registered = false;
2536         }
2537         mutex_unlock(&uld_mutex);
2538 }
2539
2540 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2541 {
2542         unsigned int i;
2543
2544         mutex_lock(&uld_mutex);
2545         for (i = 0; i < CXGB4_ULD_MAX; i++)
2546                 if (adap->uld_handle[i])
2547                         ulds[i].state_change(adap->uld_handle[i], new_state);
2548         mutex_unlock(&uld_mutex);
2549 }
2550
2551 /**
2552  *      cxgb4_register_uld - register an upper-layer driver
2553  *      @type: the ULD type
2554  *      @p: the ULD methods
2555  *
2556  *      Registers an upper-layer driver with this driver and notifies the ULD
2557  *      about any presently available devices that support its type.  Returns
2558  *      %-EBUSY if a ULD of the same type is already registered.
2559  */
2560 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2561 {
2562         int ret = 0;
2563         struct adapter *adap;
2564
2565         if (type >= CXGB4_ULD_MAX)
2566                 return -EINVAL;
2567         mutex_lock(&uld_mutex);
2568         if (ulds[type].add) {
2569                 ret = -EBUSY;
2570                 goto out;
2571         }
2572         ulds[type] = *p;
2573         list_for_each_entry(adap, &adapter_list, list_node)
2574                 uld_attach(adap, type);
2575 out:    mutex_unlock(&uld_mutex);
2576         return ret;
2577 }
2578 EXPORT_SYMBOL(cxgb4_register_uld);
2579
2580 /**
2581  *      cxgb4_unregister_uld - unregister an upper-layer driver
2582  *      @type: the ULD type
2583  *
2584  *      Unregisters an existing upper-layer driver.
2585  */
2586 int cxgb4_unregister_uld(enum cxgb4_uld type)
2587 {
2588         struct adapter *adap;
2589
2590         if (type >= CXGB4_ULD_MAX)
2591                 return -EINVAL;
2592         mutex_lock(&uld_mutex);
2593         list_for_each_entry(adap, &adapter_list, list_node)
2594                 adap->uld_handle[type] = NULL;
2595         ulds[type].add = NULL;
2596         mutex_unlock(&uld_mutex);
2597         return 0;
2598 }
2599 EXPORT_SYMBOL(cxgb4_unregister_uld);
2600
2601 /**
2602  *      cxgb_up - enable the adapter
2603  *      @adap: adapter being enabled
2604  *
2605  *      Called when the first port is enabled, this function performs the
2606  *      actions necessary to make an adapter operational, such as completing
2607  *      the initialization of HW modules, and enabling interrupts.
2608  *
2609  *      Must be called with the rtnl lock held.
2610  */
2611 static int cxgb_up(struct adapter *adap)
2612 {
2613         int err;
2614
2615         err = setup_sge_queues(adap);
2616         if (err)
2617                 goto out;
2618         err = setup_rss(adap);
2619         if (err)
2620                 goto freeq;
2621
2622         if (adap->flags & USING_MSIX) {
2623                 name_msix_vecs(adap);
2624                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2625                                   adap->msix_info[0].desc, adap);
2626                 if (err)
2627                         goto irq_err;
2628
2629                 err = request_msix_queue_irqs(adap);
2630                 if (err) {
2631                         free_irq(adap->msix_info[0].vec, adap);
2632                         goto irq_err;
2633                 }
2634         } else {
2635                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2636                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2637                                   adap->port[0]->name, adap);
2638                 if (err)
2639                         goto irq_err;
2640         }
2641         enable_rx(adap);
2642         t4_sge_start(adap);
2643         t4_intr_enable(adap);
2644         adap->flags |= FULL_INIT_DONE;
2645         notify_ulds(adap, CXGB4_STATE_UP);
2646  out:
2647         return err;
2648  irq_err:
2649         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2650  freeq:
2651         t4_free_sge_resources(adap);
2652         goto out;
2653 }
2654
2655 static void cxgb_down(struct adapter *adapter)
2656 {
2657         t4_intr_disable(adapter);
2658         cancel_work_sync(&adapter->tid_release_task);
2659         adapter->tid_release_task_busy = false;
2660         adapter->tid_release_head = NULL;
2661
2662         if (adapter->flags & USING_MSIX) {
2663                 free_msix_queue_irqs(adapter);
2664                 free_irq(adapter->msix_info[0].vec, adapter);
2665         } else
2666                 free_irq(adapter->pdev->irq, adapter);
2667         quiesce_rx(adapter);
2668         t4_sge_stop(adapter);
2669         t4_free_sge_resources(adapter);
2670         adapter->flags &= ~FULL_INIT_DONE;
2671 }
2672
2673 /*
2674  * net_device operations
2675  */
2676 static int cxgb_open(struct net_device *dev)
2677 {
2678         int err;
2679         struct port_info *pi = netdev_priv(dev);
2680         struct adapter *adapter = pi->adapter;
2681
2682         netif_carrier_off(dev);
2683
2684         if (!(adapter->flags & FULL_INIT_DONE)) {
2685                 err = cxgb_up(adapter);
2686                 if (err < 0)
2687                         return err;
2688         }
2689
2690         err = link_start(dev);
2691         if (!err)
2692                 netif_tx_start_all_queues(dev);
2693         return err;
2694 }
2695
2696 static int cxgb_close(struct net_device *dev)
2697 {
2698         struct port_info *pi = netdev_priv(dev);
2699         struct adapter *adapter = pi->adapter;
2700
2701         netif_tx_stop_all_queues(dev);
2702         netif_carrier_off(dev);
2703         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2704 }
2705
2706 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2707                                                 struct rtnl_link_stats64 *ns)
2708 {
2709         struct port_stats stats;
2710         struct port_info *p = netdev_priv(dev);
2711         struct adapter *adapter = p->adapter;
2712
2713         spin_lock(&adapter->stats_lock);
2714         t4_get_port_stats(adapter, p->tx_chan, &stats);
2715         spin_unlock(&adapter->stats_lock);
2716
2717         ns->tx_bytes   = stats.tx_octets;
2718         ns->tx_packets = stats.tx_frames;
2719         ns->rx_bytes   = stats.rx_octets;
2720         ns->rx_packets = stats.rx_frames;
2721         ns->multicast  = stats.rx_mcast_frames;
2722
2723         /* detailed rx_errors */
2724         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2725                                stats.rx_runt;
2726         ns->rx_over_errors   = 0;
2727         ns->rx_crc_errors    = stats.rx_fcs_err;
2728         ns->rx_frame_errors  = stats.rx_symbol_err;
2729         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2730                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2731                                stats.rx_trunc0 + stats.rx_trunc1 +
2732                                stats.rx_trunc2 + stats.rx_trunc3;
2733         ns->rx_missed_errors = 0;
2734
2735         /* detailed tx_errors */
2736         ns->tx_aborted_errors   = 0;
2737         ns->tx_carrier_errors   = 0;
2738         ns->tx_fifo_errors      = 0;
2739         ns->tx_heartbeat_errors = 0;
2740         ns->tx_window_errors    = 0;
2741
2742         ns->tx_errors = stats.tx_error_frames;
2743         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2744                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2745         return ns;
2746 }
2747
2748 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2749 {
2750         unsigned int mbox;
2751         int ret = 0, prtad, devad;
2752         struct port_info *pi = netdev_priv(dev);
2753         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2754
2755         switch (cmd) {
2756         case SIOCGMIIPHY:
2757                 if (pi->mdio_addr < 0)
2758                         return -EOPNOTSUPP;
2759                 data->phy_id = pi->mdio_addr;
2760                 break;
2761         case SIOCGMIIREG:
2762         case SIOCSMIIREG:
2763                 if (mdio_phy_id_is_c45(data->phy_id)) {
2764                         prtad = mdio_phy_id_prtad(data->phy_id);
2765                         devad = mdio_phy_id_devad(data->phy_id);
2766                 } else if (data->phy_id < 32) {
2767                         prtad = data->phy_id;
2768                         devad = 0;
2769                         data->reg_num &= 0x1f;
2770                 } else
2771                         return -EINVAL;
2772
2773                 mbox = pi->adapter->fn;
2774                 if (cmd == SIOCGMIIREG)
2775                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2776                                          data->reg_num, &data->val_out);
2777                 else
2778                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2779                                          data->reg_num, data->val_in);
2780                 break;
2781         default:
2782                 return -EOPNOTSUPP;
2783         }
2784         return ret;
2785 }
2786
2787 static void cxgb_set_rxmode(struct net_device *dev)
2788 {
2789         /* unfortunately we can't return errors to the stack */
2790         set_rxmode(dev, -1, false);
2791 }
2792
2793 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2794 {
2795         int ret;
2796         struct port_info *pi = netdev_priv(dev);
2797
2798         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2799                 return -EINVAL;
2800         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2801                             -1, -1, -1, true);
2802         if (!ret)
2803                 dev->mtu = new_mtu;
2804         return ret;
2805 }
2806
2807 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2808 {
2809         int ret;
2810         struct sockaddr *addr = p;
2811         struct port_info *pi = netdev_priv(dev);
2812
2813         if (!is_valid_ether_addr(addr->sa_data))
2814                 return -EADDRNOTAVAIL;
2815
2816         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2817                             pi->xact_addr_filt, addr->sa_data, true, true);
2818         if (ret < 0)
2819                 return ret;
2820
2821         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2822         pi->xact_addr_filt = ret;
2823         return 0;
2824 }
2825
2826 #ifdef CONFIG_NET_POLL_CONTROLLER
2827 static void cxgb_netpoll(struct net_device *dev)
2828 {
2829         struct port_info *pi = netdev_priv(dev);
2830         struct adapter *adap = pi->adapter;
2831
2832         if (adap->flags & USING_MSIX) {
2833                 int i;
2834                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2835
2836                 for (i = pi->nqsets; i; i--, rx++)
2837                         t4_sge_intr_msix(0, &rx->rspq);
2838         } else
2839                 t4_intr_handler(adap)(0, adap);
2840 }
2841 #endif
2842
2843 static const struct net_device_ops cxgb4_netdev_ops = {
2844         .ndo_open             = cxgb_open,
2845         .ndo_stop             = cxgb_close,
2846         .ndo_start_xmit       = t4_eth_xmit,
2847         .ndo_get_stats64      = cxgb_get_stats,
2848         .ndo_set_rx_mode      = cxgb_set_rxmode,
2849         .ndo_set_mac_address  = cxgb_set_mac_addr,
2850         .ndo_set_features     = cxgb_set_features,
2851         .ndo_validate_addr    = eth_validate_addr,
2852         .ndo_do_ioctl         = cxgb_ioctl,
2853         .ndo_change_mtu       = cxgb_change_mtu,
2854 #ifdef CONFIG_NET_POLL_CONTROLLER
2855         .ndo_poll_controller  = cxgb_netpoll,
2856 #endif
2857 };
2858
2859 void t4_fatal_err(struct adapter *adap)
2860 {
2861         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
2862         t4_intr_disable(adap);
2863         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2864 }
2865
2866 static void setup_memwin(struct adapter *adap)
2867 {
2868         u32 bar0;
2869
2870         bar0 = pci_resource_start(adap->pdev, 0);  /* truncation intentional */
2871         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
2872                      (bar0 + MEMWIN0_BASE) | BIR(0) |
2873                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
2874         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
2875                      (bar0 + MEMWIN1_BASE) | BIR(0) |
2876                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
2877         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
2878                      (bar0 + MEMWIN2_BASE) | BIR(0) |
2879                      WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
2880         if (adap->vres.ocq.size) {
2881                 unsigned int start, sz_kb;
2882
2883                 start = pci_resource_start(adap->pdev, 2) +
2884                         OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2885                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2886                 t4_write_reg(adap,
2887                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
2888                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
2889                 t4_write_reg(adap,
2890                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
2891                              adap->vres.ocq.start);
2892                 t4_read_reg(adap,
2893                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
2894         }
2895 }
2896
2897 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2898 {
2899         u32 v;
2900         int ret;
2901
2902         /* get device capabilities */
2903         memset(c, 0, sizeof(*c));
2904         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2905                                FW_CMD_REQUEST | FW_CMD_READ);
2906         c->retval_len16 = htonl(FW_LEN16(*c));
2907         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
2908         if (ret < 0)
2909                 return ret;
2910
2911         /* select capabilities we'll be using */
2912         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
2913                 if (!vf_acls)
2914                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
2915                 else
2916                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
2917         } else if (vf_acls) {
2918                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
2919                 return ret;
2920         }
2921         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2922                                FW_CMD_REQUEST | FW_CMD_WRITE);
2923         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
2924         if (ret < 0)
2925                 return ret;
2926
2927         ret = t4_config_glbl_rss(adap, adap->fn,
2928                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2929                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
2930                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
2931         if (ret < 0)
2932                 return ret;
2933
2934         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
2935                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
2936         if (ret < 0)
2937                 return ret;
2938
2939         t4_sge_init(adap);
2940
2941         /* tweak some settings */
2942         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
2943         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
2944         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
2945         v = t4_read_reg(adap, TP_PIO_DATA);
2946         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
2947
2948         /* get basic stuff going */
2949         return t4_early_init(adap, adap->fn);
2950 }
2951
2952 /*
2953  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2954  */
2955 #define MAX_ATIDS 8192U
2956
2957 /*
2958  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2959  */
2960 static int adap_init0(struct adapter *adap)
2961 {
2962         int ret;
2963         u32 v, port_vec;
2964         enum dev_state state;
2965         u32 params[7], val[7];
2966         struct fw_caps_config_cmd c;
2967
2968         ret = t4_check_fw_version(adap);
2969         if (ret == -EINVAL || ret > 0) {
2970                 if (upgrade_fw(adap) >= 0)             /* recache FW version */
2971                         ret = t4_check_fw_version(adap);
2972         }
2973         if (ret < 0)
2974                 return ret;
2975
2976         /* contact FW, request master */
2977         ret = t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, &state);
2978         if (ret < 0) {
2979                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
2980                         ret);
2981                 return ret;
2982         }
2983
2984         /* reset device */
2985         ret = t4_fw_reset(adap, adap->fn, PIORSTMODE | PIORST);
2986         if (ret < 0)
2987                 goto bye;
2988
2989         for (v = 0; v < SGE_NTIMERS - 1; v++)
2990                 adap->sge.timer_val[v] = min(intr_holdoff[v], MAX_SGE_TIMERVAL);
2991         adap->sge.timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
2992         adap->sge.counter_val[0] = 1;
2993         for (v = 1; v < SGE_NCOUNTERS; v++)
2994                 adap->sge.counter_val[v] = min(intr_cnt[v - 1],
2995                                                THRESHOLD_3_MASK);
2996 #define FW_PARAM_DEV(param) \
2997         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
2998          FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
2999
3000         params[0] = FW_PARAM_DEV(CCLK);
3001         ret = t4_query_params(adap, adap->fn, adap->fn, 0, 1, params, val);
3002         if (ret < 0)
3003                 goto bye;
3004         adap->params.vpd.cclk = val[0];
3005
3006         ret = adap_init1(adap, &c);
3007         if (ret < 0)
3008                 goto bye;
3009
3010 #define FW_PARAM_PFVF(param) \
3011         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3012          FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \
3013          FW_PARAMS_PARAM_Y(adap->fn))
3014
3015         params[0] = FW_PARAM_DEV(PORTVEC);
3016         params[1] = FW_PARAM_PFVF(L2T_START);
3017         params[2] = FW_PARAM_PFVF(L2T_END);
3018         params[3] = FW_PARAM_PFVF(FILTER_START);
3019         params[4] = FW_PARAM_PFVF(FILTER_END);
3020         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3021         params[6] = FW_PARAM_PFVF(EQ_START);
3022         ret = t4_query_params(adap, adap->fn, adap->fn, 0, 7, params, val);
3023         if (ret < 0)
3024                 goto bye;
3025         port_vec = val[0];
3026         adap->tids.ftid_base = val[3];
3027         adap->tids.nftids = val[4] - val[3] + 1;
3028         adap->sge.ingr_start = val[5];
3029         adap->sge.egr_start = val[6];
3030
3031         if (c.ofldcaps) {
3032                 /* query offload-related parameters */
3033                 params[0] = FW_PARAM_DEV(NTID);
3034                 params[1] = FW_PARAM_PFVF(SERVER_START);
3035                 params[2] = FW_PARAM_PFVF(SERVER_END);
3036                 params[3] = FW_PARAM_PFVF(TDDP_START);
3037                 params[4] = FW_PARAM_PFVF(TDDP_END);
3038                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3039                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3040                                       val);
3041                 if (ret < 0)
3042                         goto bye;
3043                 adap->tids.ntids = val[0];
3044                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3045                 adap->tids.stid_base = val[1];
3046                 adap->tids.nstids = val[2] - val[1] + 1;
3047                 adap->vres.ddp.start = val[3];
3048                 adap->vres.ddp.size = val[4] - val[3] + 1;
3049                 adap->params.ofldq_wr_cred = val[5];
3050                 adap->params.offload = 1;
3051         }
3052         if (c.rdmacaps) {
3053                 params[0] = FW_PARAM_PFVF(STAG_START);
3054                 params[1] = FW_PARAM_PFVF(STAG_END);
3055                 params[2] = FW_PARAM_PFVF(RQ_START);
3056                 params[3] = FW_PARAM_PFVF(RQ_END);
3057                 params[4] = FW_PARAM_PFVF(PBL_START);
3058                 params[5] = FW_PARAM_PFVF(PBL_END);
3059                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3060                                       val);
3061                 if (ret < 0)
3062                         goto bye;
3063                 adap->vres.stag.start = val[0];
3064                 adap->vres.stag.size = val[1] - val[0] + 1;
3065                 adap->vres.rq.start = val[2];
3066                 adap->vres.rq.size = val[3] - val[2] + 1;
3067                 adap->vres.pbl.start = val[4];
3068                 adap->vres.pbl.size = val[5] - val[4] + 1;
3069
3070                 params[0] = FW_PARAM_PFVF(SQRQ_START);
3071                 params[1] = FW_PARAM_PFVF(SQRQ_END);
3072                 params[2] = FW_PARAM_PFVF(CQ_START);
3073                 params[3] = FW_PARAM_PFVF(CQ_END);
3074                 params[4] = FW_PARAM_PFVF(OCQ_START);
3075                 params[5] = FW_PARAM_PFVF(OCQ_END);
3076                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3077                                       val);
3078                 if (ret < 0)
3079                         goto bye;
3080                 adap->vres.qp.start = val[0];
3081                 adap->vres.qp.size = val[1] - val[0] + 1;
3082                 adap->vres.cq.start = val[2];
3083                 adap->vres.cq.size = val[3] - val[2] + 1;
3084                 adap->vres.ocq.start = val[4];
3085                 adap->vres.ocq.size = val[5] - val[4] + 1;
3086         }
3087         if (c.iscsicaps) {
3088                 params[0] = FW_PARAM_PFVF(ISCSI_START);
3089                 params[1] = FW_PARAM_PFVF(ISCSI_END);
3090                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 2, params,
3091                                       val);
3092                 if (ret < 0)
3093                         goto bye;
3094                 adap->vres.iscsi.start = val[0];
3095                 adap->vres.iscsi.size = val[1] - val[0] + 1;
3096         }
3097 #undef FW_PARAM_PFVF
3098 #undef FW_PARAM_DEV
3099
3100         adap->params.nports = hweight32(port_vec);
3101         adap->params.portvec = port_vec;
3102         adap->flags |= FW_OK;
3103
3104         /* These are finalized by FW initialization, load their values now */
3105         v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
3106         adap->params.tp.tre = TIMERRESOLUTION_GET(v);
3107         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3108         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3109                      adap->params.b_wnd);
3110
3111 #ifdef CONFIG_PCI_IOV
3112         /*
3113          * Provision resource limits for Virtual Functions.  We currently
3114          * grant them all the same static resource limits except for the Port
3115          * Access Rights Mask which we're assigning based on the PF.  All of
3116          * the static provisioning stuff for both the PF and VF really needs
3117          * to be managed in a persistent manner for each device which the
3118          * firmware controls.
3119          */
3120         {
3121                 int pf, vf;
3122
3123                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
3124                         if (num_vf[pf] <= 0)
3125                                 continue;
3126
3127                         /* VF numbering starts at 1! */
3128                         for (vf = 1; vf <= num_vf[pf]; vf++) {
3129                                 ret = t4_cfg_pfvf(adap, adap->fn, pf, vf,
3130                                                   VFRES_NEQ, VFRES_NETHCTRL,
3131                                                   VFRES_NIQFLINT, VFRES_NIQ,
3132                                                   VFRES_TC, VFRES_NVI,
3133                                                   FW_PFVF_CMD_CMASK_MASK,
3134                                                   pfvfres_pmask(adap, pf, vf),
3135                                                   VFRES_NEXACTF,
3136                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
3137                                 if (ret < 0)
3138                                         dev_warn(adap->pdev_dev, "failed to "
3139                                                  "provision pf/vf=%d/%d; "
3140                                                  "err=%d\n", pf, vf, ret);
3141                         }
3142                 }
3143         }
3144 #endif
3145
3146         setup_memwin(adap);
3147         return 0;
3148
3149         /*
3150          * If a command timed out or failed with EIO FW does not operate within
3151          * its spec or something catastrophic happened to HW/FW, stop issuing
3152          * commands.
3153          */
3154 bye:    if (ret != -ETIMEDOUT && ret != -EIO)
3155                 t4_fw_bye(adap, adap->fn);
3156         return ret;
3157 }
3158
3159 /* EEH callbacks */
3160
3161 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3162                                          pci_channel_state_t state)
3163 {
3164         int i;
3165         struct adapter *adap = pci_get_drvdata(pdev);
3166
3167         if (!adap)
3168                 goto out;
3169
3170         rtnl_lock();
3171         adap->flags &= ~FW_OK;
3172         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3173         for_each_port(adap, i) {
3174                 struct net_device *dev = adap->port[i];
3175
3176                 netif_device_detach(dev);
3177                 netif_carrier_off(dev);
3178         }
3179         if (adap->flags & FULL_INIT_DONE)
3180                 cxgb_down(adap);
3181         rtnl_unlock();
3182         pci_disable_device(pdev);
3183 out:    return state == pci_channel_io_perm_failure ?
3184                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3185 }
3186
3187 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3188 {
3189         int i, ret;
3190         struct fw_caps_config_cmd c;
3191         struct adapter *adap = pci_get_drvdata(pdev);
3192
3193         if (!adap) {
3194                 pci_restore_state(pdev);
3195                 pci_save_state(pdev);
3196                 return PCI_ERS_RESULT_RECOVERED;
3197         }
3198
3199         if (pci_enable_device(pdev)) {
3200                 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
3201                 return PCI_ERS_RESULT_DISCONNECT;
3202         }
3203
3204         pci_set_master(pdev);
3205         pci_restore_state(pdev);
3206         pci_save_state(pdev);
3207         pci_cleanup_aer_uncorrect_error_status(pdev);
3208
3209         if (t4_wait_dev_ready(adap) < 0)
3210                 return PCI_ERS_RESULT_DISCONNECT;
3211         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL))
3212                 return PCI_ERS_RESULT_DISCONNECT;
3213         adap->flags |= FW_OK;
3214         if (adap_init1(adap, &c))
3215                 return PCI_ERS_RESULT_DISCONNECT;
3216
3217         for_each_port(adap, i) {
3218                 struct port_info *p = adap2pinfo(adap, i);
3219
3220                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
3221                                   NULL, NULL);
3222                 if (ret < 0)
3223                         return PCI_ERS_RESULT_DISCONNECT;
3224                 p->viid = ret;
3225                 p->xact_addr_filt = -1;
3226         }
3227
3228         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3229                      adap->params.b_wnd);
3230         setup_memwin(adap);
3231         if (cxgb_up(adap))
3232                 return PCI_ERS_RESULT_DISCONNECT;
3233         return PCI_ERS_RESULT_RECOVERED;
3234 }
3235
3236 static void eeh_resume(struct pci_dev *pdev)
3237 {
3238         int i;
3239         struct adapter *adap = pci_get_drvdata(pdev);
3240
3241         if (!adap)
3242                 return;
3243
3244         rtnl_lock();
3245         for_each_port(adap, i) {
3246                 struct net_device *dev = adap->port[i];
3247
3248                 if (netif_running(dev)) {
3249                         link_start(dev);
3250                         cxgb_set_rxmode(dev);
3251                 }
3252                 netif_device_attach(dev);
3253         }
3254         rtnl_unlock();
3255 }
3256
3257 static struct pci_error_handlers cxgb4_eeh = {
3258         .error_detected = eeh_err_detected,
3259         .slot_reset     = eeh_slot_reset,
3260         .resume         = eeh_resume,
3261 };
3262
3263 static inline bool is_10g_port(const struct link_config *lc)
3264 {
3265         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
3266 }
3267
3268 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
3269                              unsigned int size, unsigned int iqe_size)
3270 {
3271         q->intr_params = QINTR_TIMER_IDX(timer_idx) |
3272                          (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
3273         q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
3274         q->iqe_len = iqe_size;
3275         q->size = size;
3276 }
3277
3278 /*
3279  * Perform default configuration of DMA queues depending on the number and type
3280  * of ports we found and the number of available CPUs.  Most settings can be
3281  * modified by the admin prior to actual use.
3282  */
3283 static void __devinit cfg_queues(struct adapter *adap)
3284 {
3285         struct sge *s = &adap->sge;
3286         int i, q10g = 0, n10g = 0, qidx = 0;
3287
3288         for_each_port(adap, i)
3289                 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
3290
3291         /*
3292          * We default to 1 queue per non-10G port and up to # of cores queues
3293          * per 10G port.
3294          */
3295         if (n10g)
3296                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
3297         if (q10g > num_online_cpus())
3298                 q10g = num_online_cpus();
3299
3300         for_each_port(adap, i) {
3301                 struct port_info *pi = adap2pinfo(adap, i);
3302
3303                 pi->first_qset = qidx;
3304                 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
3305                 qidx += pi->nqsets;
3306         }
3307
3308         s->ethqsets = qidx;
3309         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
3310
3311         if (is_offload(adap)) {
3312                 /*
3313                  * For offload we use 1 queue/channel if all ports are up to 1G,
3314                  * otherwise we divide all available queues amongst the channels
3315                  * capped by the number of available cores.
3316                  */
3317                 if (n10g) {
3318                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
3319                                   num_online_cpus());
3320                         s->ofldqsets = roundup(i, adap->params.nports);
3321                 } else
3322                         s->ofldqsets = adap->params.nports;
3323                 /* For RDMA one Rx queue per channel suffices */
3324                 s->rdmaqs = adap->params.nports;
3325         }
3326
3327         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
3328                 struct sge_eth_rxq *r = &s->ethrxq[i];
3329
3330                 init_rspq(&r->rspq, 0, 0, 1024, 64);
3331                 r->fl.size = 72;
3332         }
3333
3334         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
3335                 s->ethtxq[i].q.size = 1024;
3336
3337         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
3338                 s->ctrlq[i].q.size = 512;
3339
3340         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
3341                 s->ofldtxq[i].q.size = 1024;
3342
3343         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
3344                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
3345
3346                 init_rspq(&r->rspq, 0, 0, 1024, 64);
3347                 r->rspq.uld = CXGB4_ULD_ISCSI;
3348                 r->fl.size = 72;
3349         }
3350
3351         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
3352                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
3353
3354                 init_rspq(&r->rspq, 0, 0, 511, 64);
3355                 r->rspq.uld = CXGB4_ULD_RDMA;
3356                 r->fl.size = 72;
3357         }
3358
3359         init_rspq(&s->fw_evtq, 6, 0, 512, 64);
3360         init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
3361 }
3362
3363 /*
3364  * Reduce the number of Ethernet queues across all ports to at most n.
3365  * n provides at least one queue per port.
3366  */
3367 static void __devinit reduce_ethqs(struct adapter *adap, int n)
3368 {
3369         int i;
3370         struct port_info *pi;
3371
3372         while (n < adap->sge.ethqsets)
3373                 for_each_port(adap, i) {
3374                         pi = adap2pinfo(adap, i);
3375                         if (pi->nqsets > 1) {
3376                                 pi->nqsets--;
3377                                 adap->sge.ethqsets--;
3378                                 if (adap->sge.ethqsets <= n)
3379                                         break;
3380                         }
3381                 }
3382
3383         n = 0;
3384         for_each_port(adap, i) {
3385                 pi = adap2pinfo(adap, i);
3386                 pi->first_qset = n;
3387                 n += pi->nqsets;
3388         }
3389 }
3390
3391 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
3392 #define EXTRA_VECS 2
3393
3394 static int __devinit enable_msix(struct adapter *adap)
3395 {
3396         int ofld_need = 0;
3397         int i, err, want, need;
3398         struct sge *s = &adap->sge;
3399         unsigned int nchan = adap->params.nports;
3400         struct msix_entry entries[MAX_INGQ + 1];
3401
3402         for (i = 0; i < ARRAY_SIZE(entries); ++i)
3403                 entries[i].entry = i;
3404
3405         want = s->max_ethqsets + EXTRA_VECS;
3406         if (is_offload(adap)) {
3407                 want += s->rdmaqs + s->ofldqsets;
3408                 /* need nchan for each possible ULD */
3409                 ofld_need = 2 * nchan;
3410         }
3411         need = adap->params.nports + EXTRA_VECS + ofld_need;
3412
3413         while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
3414                 want = err;
3415
3416         if (!err) {
3417                 /*
3418                  * Distribute available vectors to the various queue groups.
3419                  * Every group gets its minimum requirement and NIC gets top
3420                  * priority for leftovers.
3421                  */
3422                 i = want - EXTRA_VECS - ofld_need;
3423                 if (i < s->max_ethqsets) {
3424                         s->max_ethqsets = i;
3425                         if (i < s->ethqsets)
3426                                 reduce_ethqs(adap, i);
3427                 }
3428                 if (is_offload(adap)) {
3429                         i = want - EXTRA_VECS - s->max_ethqsets;
3430                         i -= ofld_need - nchan;
3431                         s->ofldqsets = (i / nchan) * nchan;  /* round down */
3432                 }
3433                 for (i = 0; i < want; ++i)
3434                         adap->msix_info[i].vec = entries[i].vector;
3435         } else if (err > 0)
3436                 dev_info(adap->pdev_dev,
3437                          "only %d MSI-X vectors left, not using MSI-X\n", err);
3438         return err;
3439 }
3440
3441 #undef EXTRA_VECS
3442
3443 static int __devinit init_rss(struct adapter *adap)
3444 {
3445         unsigned int i, j;
3446
3447         for_each_port(adap, i) {
3448                 struct port_info *pi = adap2pinfo(adap, i);
3449
3450                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
3451                 if (!pi->rss)
3452                         return -ENOMEM;
3453                 for (j = 0; j < pi->rss_size; j++)
3454                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
3455         }
3456         return 0;
3457 }
3458
3459 static void __devinit print_port_info(const struct net_device *dev)
3460 {
3461         static const char *base[] = {
3462                 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
3463                 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4"
3464         };
3465
3466         char buf[80];
3467         char *bufp = buf;
3468         const char *spd = "";
3469         const struct port_info *pi = netdev_priv(dev);
3470         const struct adapter *adap = pi->adapter;
3471
3472         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
3473                 spd = " 2.5 GT/s";
3474         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
3475                 spd = " 5 GT/s";
3476
3477         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
3478                 bufp += sprintf(bufp, "100/");
3479         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
3480                 bufp += sprintf(bufp, "1000/");
3481         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
3482                 bufp += sprintf(bufp, "10G/");
3483         if (bufp != buf)
3484                 --bufp;
3485         sprintf(bufp, "BASE-%s", base[pi->port_type]);
3486
3487         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
3488                     adap->params.vpd.id, adap->params.rev, buf,
3489                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
3490                     (adap->flags & USING_MSIX) ? " MSI-X" :
3491                     (adap->flags & USING_MSI) ? " MSI" : "");
3492         netdev_info(dev, "S/N: %s, E/C: %s\n",
3493                     adap->params.vpd.sn, adap->params.vpd.ec);
3494 }
3495
3496 static void __devinit enable_pcie_relaxed_ordering(struct pci_dev *dev)
3497 {
3498         u16 v;
3499         int pos;
3500
3501         pos = pci_pcie_cap(dev);
3502         if (pos > 0) {
3503                 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &v);
3504                 v |= PCI_EXP_DEVCTL_RELAX_EN;
3505                 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, v);
3506         }
3507 }
3508
3509 /*
3510  * Free the following resources:
3511  * - memory used for tables
3512  * - MSI/MSI-X
3513  * - net devices
3514  * - resources FW is holding for us
3515  */
3516 static void free_some_resources(struct adapter *adapter)
3517 {
3518         unsigned int i;
3519
3520         t4_free_mem(adapter->l2t);
3521         t4_free_mem(adapter->tids.tid_tab);
3522         disable_msi(adapter);
3523
3524         for_each_port(adapter, i)
3525                 if (adapter->port[i]) {
3526                         kfree(adap2pinfo(adapter, i)->rss);
3527                         free_netdev(adapter->port[i]);
3528                 }
3529         if (adapter->flags & FW_OK)
3530                 t4_fw_bye(adapter, adapter->fn);
3531 }
3532
3533 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3534 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3535                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3536
3537 static int __devinit init_one(struct pci_dev *pdev,
3538                               const struct pci_device_id *ent)
3539 {
3540         int func, i, err;
3541         struct port_info *pi;
3542         bool highdma = false;
3543         struct adapter *adapter = NULL;
3544
3545         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3546
3547         err = pci_request_regions(pdev, KBUILD_MODNAME);
3548         if (err) {
3549                 /* Just info, some other driver may have claimed the device. */
3550                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3551                 return err;
3552         }
3553
3554         /* We control everything through one PF */
3555         func = PCI_FUNC(pdev->devfn);
3556         if (func != ent->driver_data) {
3557                 pci_save_state(pdev);        /* to restore SR-IOV later */
3558                 goto sriov;
3559         }
3560
3561         err = pci_enable_device(pdev);
3562         if (err) {
3563                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3564                 goto out_release_regions;
3565         }
3566
3567         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3568                 highdma = true;
3569                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3570                 if (err) {
3571                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3572                                 "coherent allocations\n");
3573                         goto out_disable_device;
3574                 }
3575         } else {
3576                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3577                 if (err) {
3578                         dev_err(&pdev->dev, "no usable DMA configuration\n");
3579                         goto out_disable_device;
3580                 }
3581         }
3582
3583         pci_enable_pcie_error_reporting(pdev);
3584         enable_pcie_relaxed_ordering(pdev);
3585         pci_set_master(pdev);
3586         pci_save_state(pdev);
3587
3588         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3589         if (!adapter) {
3590                 err = -ENOMEM;
3591                 goto out_disable_device;
3592         }
3593
3594         adapter->regs = pci_ioremap_bar(pdev, 0);
3595         if (!adapter->regs) {
3596                 dev_err(&pdev->dev, "cannot map device registers\n");
3597                 err = -ENOMEM;
3598                 goto out_free_adapter;
3599         }
3600
3601         adapter->pdev = pdev;
3602         adapter->pdev_dev = &pdev->dev;
3603         adapter->fn = func;
3604         adapter->msg_enable = dflt_msg_enable;
3605         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
3606
3607         spin_lock_init(&adapter->stats_lock);
3608         spin_lock_init(&adapter->tid_release_lock);
3609
3610         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
3611
3612         err = t4_prep_adapter(adapter);
3613         if (err)
3614                 goto out_unmap_bar;
3615         err = adap_init0(adapter);
3616         if (err)
3617                 goto out_unmap_bar;
3618
3619         for_each_port(adapter, i) {
3620                 struct net_device *netdev;
3621
3622                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
3623                                            MAX_ETH_QSETS);
3624                 if (!netdev) {
3625                         err = -ENOMEM;
3626                         goto out_free_dev;
3627                 }
3628
3629                 SET_NETDEV_DEV(netdev, &pdev->dev);
3630
3631                 adapter->port[i] = netdev;
3632                 pi = netdev_priv(netdev);
3633                 pi->adapter = adapter;
3634                 pi->xact_addr_filt = -1;
3635                 pi->port_id = i;
3636                 netdev->irq = pdev->irq;
3637
3638                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
3639                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3640                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
3641                         NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3642                 if (highdma)
3643                         netdev->hw_features |= NETIF_F_HIGHDMA;
3644                 netdev->features |= netdev->hw_features;
3645                 netdev->vlan_features = netdev->features & VLAN_FEAT;
3646
3647                 netdev->priv_flags |= IFF_UNICAST_FLT;
3648
3649                 netdev->netdev_ops = &cxgb4_netdev_ops;
3650                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3651         }
3652
3653         pci_set_drvdata(pdev, adapter);
3654
3655         if (adapter->flags & FW_OK) {
3656                 err = t4_port_init(adapter, func, func, 0);
3657                 if (err)
3658                         goto out_free_dev;
3659         }
3660
3661         /*
3662          * Configure queues and allocate tables now, they can be needed as
3663          * soon as the first register_netdev completes.
3664          */
3665         cfg_queues(adapter);
3666
3667         adapter->l2t = t4_init_l2t();
3668         if (!adapter->l2t) {
3669                 /* We tolerate a lack of L2T, giving up some functionality */
3670                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
3671                 adapter->params.offload = 0;
3672         }
3673
3674         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
3675                 dev_warn(&pdev->dev, "could not allocate TID table, "
3676                          "continuing\n");
3677                 adapter->params.offload = 0;
3678         }
3679
3680         /* See what interrupts we'll be using */
3681         if (msi > 1 && enable_msix(adapter) == 0)
3682                 adapter->flags |= USING_MSIX;
3683         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3684                 adapter->flags |= USING_MSI;
3685
3686         err = init_rss(adapter);
3687         if (err)
3688                 goto out_free_dev;
3689
3690         /*
3691          * The card is now ready to go.  If any errors occur during device
3692          * registration we do not fail the whole card but rather proceed only
3693          * with the ports we manage to register successfully.  However we must
3694          * register at least one net device.
3695          */
3696         for_each_port(adapter, i) {
3697                 pi = adap2pinfo(adapter, i);
3698                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
3699                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
3700
3701                 err = register_netdev(adapter->port[i]);
3702                 if (err)
3703                         break;
3704                 adapter->chan_map[pi->tx_chan] = i;
3705                 print_port_info(adapter->port[i]);
3706         }
3707         if (i == 0) {
3708                 dev_err(&pdev->dev, "could not register any net devices\n");
3709                 goto out_free_dev;
3710         }
3711         if (err) {
3712                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
3713                 err = 0;
3714         }
3715
3716         if (cxgb4_debugfs_root) {
3717                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
3718                                                            cxgb4_debugfs_root);
3719                 setup_debugfs(adapter);
3720         }
3721
3722         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
3723         pdev->needs_freset = 1;
3724
3725         if (is_offload(adapter))
3726                 attach_ulds(adapter);
3727
3728 sriov:
3729 #ifdef CONFIG_PCI_IOV
3730         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
3731                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
3732                         dev_info(&pdev->dev,
3733                                  "instantiated %u virtual functions\n",
3734                                  num_vf[func]);
3735 #endif
3736         return 0;
3737
3738  out_free_dev:
3739         free_some_resources(adapter);
3740  out_unmap_bar:
3741         iounmap(adapter->regs);
3742  out_free_adapter:
3743         kfree(adapter);
3744  out_disable_device:
3745         pci_disable_pcie_error_reporting(pdev);
3746         pci_disable_device(pdev);
3747  out_release_regions:
3748         pci_release_regions(pdev);
3749         pci_set_drvdata(pdev, NULL);
3750         return err;
3751 }
3752
3753 static void __devexit remove_one(struct pci_dev *pdev)
3754 {
3755         struct adapter *adapter = pci_get_drvdata(pdev);
3756
3757         pci_disable_sriov(pdev);
3758
3759         if (adapter) {
3760                 int i;
3761
3762                 if (is_offload(adapter))
3763                         detach_ulds(adapter);
3764
3765                 for_each_port(adapter, i)
3766                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
3767                                 unregister_netdev(adapter->port[i]);
3768
3769                 if (adapter->debugfs_root)
3770                         debugfs_remove_recursive(adapter->debugfs_root);
3771
3772                 if (adapter->flags & FULL_INIT_DONE)
3773                         cxgb_down(adapter);
3774
3775                 free_some_resources(adapter);
3776                 iounmap(adapter->regs);
3777                 kfree(adapter);
3778                 pci_disable_pcie_error_reporting(pdev);
3779                 pci_disable_device(pdev);
3780                 pci_release_regions(pdev);
3781                 pci_set_drvdata(pdev, NULL);
3782         } else
3783                 pci_release_regions(pdev);
3784 }
3785
3786 static struct pci_driver cxgb4_driver = {
3787         .name     = KBUILD_MODNAME,
3788         .id_table = cxgb4_pci_tbl,
3789         .probe    = init_one,
3790         .remove   = __devexit_p(remove_one),
3791         .err_handler = &cxgb4_eeh,
3792 };
3793
3794 static int __init cxgb4_init_module(void)
3795 {
3796         int ret;
3797
3798         /* Debugfs support is optional, just warn if this fails */
3799         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3800         if (!cxgb4_debugfs_root)
3801                 pr_warning("could not create debugfs entry, continuing\n");
3802
3803         ret = pci_register_driver(&cxgb4_driver);
3804         if (ret < 0)
3805                 debugfs_remove(cxgb4_debugfs_root);
3806         return ret;
3807 }
3808
3809 static void __exit cxgb4_cleanup_module(void)
3810 {
3811         pci_unregister_driver(&cxgb4_driver);
3812         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
3813 }
3814
3815 module_init(cxgb4_init_module);
3816 module_exit(cxgb4_cleanup_module);