]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
regulator: max8997: Convert max8997_safeout_ops to set_voltage_sel and list_voltage_table
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <asm/uaccess.h>
64
65 #include "cxgb4.h"
66 #include "t4_regs.h"
67 #include "t4_msg.h"
68 #include "t4fw_api.h"
69 #include "l2t.h"
70
71 #define DRV_VERSION "1.3.0-ko"
72 #define DRV_DESC "Chelsio T4 Network Driver"
73
74 /*
75  * Max interrupt hold-off timer value in us.  Queues fall back to this value
76  * under extreme memory pressure so it's largish to give the system time to
77  * recover.
78  */
79 #define MAX_SGE_TIMERVAL 200U
80
81 enum {
82         /*
83          * Physical Function provisioning constants.
84          */
85         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
86         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
87         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
88                                          */
89         PFRES_NEQ = 256,                /* # of egress queues */
90         PFRES_NIQ = 0,                  /* # of ingress queues */
91         PFRES_TC = 0,                   /* PCI-E traffic class */
92         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
93
94         PFRES_R_CAPS = FW_CMD_CAP_PF,
95         PFRES_WX_CAPS = FW_CMD_CAP_PF,
96
97 #ifdef CONFIG_PCI_IOV
98         /*
99          * Virtual Function provisioning constants.  We need two extra Ingress
100          * Queues with Interrupt capability to serve as the VF's Firmware
101          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
102          * neither will have Free Lists associated with them).  For each
103          * Ethernet/Control Egress Queue and for each Free List, we need an
104          * Egress Context.
105          */
106         VFRES_NPORTS = 1,               /* # of "ports" per VF */
107         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
108
109         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
110         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
111         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
112         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
113         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
114         VFRES_TC = 0,                   /* PCI-E traffic class */
115         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
116
117         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
118         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
119 #endif
120 };
121
122 /*
123  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
124  * static and likely not to be useful in the long run.  We really need to
125  * implement some form of persistent configuration which the firmware
126  * controls.
127  */
128 static unsigned int pfvfres_pmask(struct adapter *adapter,
129                                   unsigned int pf, unsigned int vf)
130 {
131         unsigned int portn, portvec;
132
133         /*
134          * Give PF's access to all of the ports.
135          */
136         if (vf == 0)
137                 return FW_PFVF_CMD_PMASK_MASK;
138
139         /*
140          * For VFs, we'll assign them access to the ports based purely on the
141          * PF.  We assign active ports in order, wrapping around if there are
142          * fewer active ports than PFs: e.g. active port[pf % nports].
143          * Unfortunately the adapter's port_info structs haven't been
144          * initialized yet so we have to compute this.
145          */
146         if (adapter->params.nports == 0)
147                 return 0;
148
149         portn = pf % adapter->params.nports;
150         portvec = adapter->params.portvec;
151         for (;;) {
152                 /*
153                  * Isolate the lowest set bit in the port vector.  If we're at
154                  * the port number that we want, return that as the pmask.
155                  * otherwise mask that bit out of the port vector and
156                  * decrement our port number ...
157                  */
158                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
159                 if (portn == 0)
160                         return pmask;
161                 portn--;
162                 portvec &= ~pmask;
163         }
164         /*NOTREACHED*/
165 }
166
167 enum {
168         MAX_TXQ_ENTRIES      = 16384,
169         MAX_CTRL_TXQ_ENTRIES = 1024,
170         MAX_RSPQ_ENTRIES     = 16384,
171         MAX_RX_BUFFERS       = 16384,
172         MIN_TXQ_ENTRIES      = 32,
173         MIN_CTRL_TXQ_ENTRIES = 32,
174         MIN_RSPQ_ENTRIES     = 128,
175         MIN_FL_ENTRIES       = 16
176 };
177
178 /* Host shadow copy of ingress filter entry.  This is in host native format
179  * and doesn't match the ordering or bit order, etc. of the hardware of the
180  * firmware command.  The use of bit-field structure elements is purely to
181  * remind ourselves of the field size limitations and save memory in the case
182  * where the filter table is large.
183  */
184 struct filter_entry {
185         /* Administrative fields for filter.
186          */
187         u32 valid:1;            /* filter allocated and valid */
188         u32 locked:1;           /* filter is administratively locked */
189
190         u32 pending:1;          /* filter action is pending firmware reply */
191         u32 smtidx:8;           /* Source MAC Table index for smac */
192         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
193
194         /* The filter itself.  Most of this is a straight copy of information
195          * provided by the extended ioctl().  Some fields are translated to
196          * internal forms -- for instance the Ingress Queue ID passed in from
197          * the ioctl() is translated into the Absolute Ingress Queue ID.
198          */
199         struct ch_filter_specification fs;
200 };
201
202 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
203                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
204                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
205
206 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
207
208 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
209         CH_DEVICE(0xa000, 0),  /* PE10K */
210         CH_DEVICE(0x4001, -1),
211         CH_DEVICE(0x4002, -1),
212         CH_DEVICE(0x4003, -1),
213         CH_DEVICE(0x4004, -1),
214         CH_DEVICE(0x4005, -1),
215         CH_DEVICE(0x4006, -1),
216         CH_DEVICE(0x4007, -1),
217         CH_DEVICE(0x4008, -1),
218         CH_DEVICE(0x4009, -1),
219         CH_DEVICE(0x400a, -1),
220         CH_DEVICE(0x4401, 4),
221         CH_DEVICE(0x4402, 4),
222         CH_DEVICE(0x4403, 4),
223         CH_DEVICE(0x4404, 4),
224         CH_DEVICE(0x4405, 4),
225         CH_DEVICE(0x4406, 4),
226         CH_DEVICE(0x4407, 4),
227         CH_DEVICE(0x4408, 4),
228         CH_DEVICE(0x4409, 4),
229         CH_DEVICE(0x440a, 4),
230         CH_DEVICE(0x440d, 4),
231         CH_DEVICE(0x440e, 4),
232         { 0, }
233 };
234
235 #define FW_FNAME "cxgb4/t4fw.bin"
236 #define FW_CFNAME "cxgb4/t4-config.txt"
237
238 MODULE_DESCRIPTION(DRV_DESC);
239 MODULE_AUTHOR("Chelsio Communications");
240 MODULE_LICENSE("Dual BSD/GPL");
241 MODULE_VERSION(DRV_VERSION);
242 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
243 MODULE_FIRMWARE(FW_FNAME);
244
245 /*
246  * Normally we're willing to become the firmware's Master PF but will be happy
247  * if another PF has already become the Master and initialized the adapter.
248  * Setting "force_init" will cause this driver to forcibly establish itself as
249  * the Master PF and initialize the adapter.
250  */
251 static uint force_init;
252
253 module_param(force_init, uint, 0644);
254 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
255
256 /*
257  * Normally if the firmware we connect to has Configuration File support, we
258  * use that and only fall back to the old Driver-based initialization if the
259  * Configuration File fails for some reason.  If force_old_init is set, then
260  * we'll always use the old Driver-based initialization sequence.
261  */
262 static uint force_old_init;
263
264 module_param(force_old_init, uint, 0644);
265 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
266
267 static int dflt_msg_enable = DFLT_MSG_ENABLE;
268
269 module_param(dflt_msg_enable, int, 0644);
270 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
271
272 /*
273  * The driver uses the best interrupt scheme available on a platform in the
274  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
275  * of these schemes the driver may consider as follows:
276  *
277  * msi = 2: choose from among all three options
278  * msi = 1: only consider MSI and INTx interrupts
279  * msi = 0: force INTx interrupts
280  */
281 static int msi = 2;
282
283 module_param(msi, int, 0644);
284 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
285
286 /*
287  * Queue interrupt hold-off timer values.  Queues default to the first of these
288  * upon creation.
289  */
290 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
291
292 module_param_array(intr_holdoff, uint, NULL, 0644);
293 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
294                  "0..4 in microseconds");
295
296 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
297
298 module_param_array(intr_cnt, uint, NULL, 0644);
299 MODULE_PARM_DESC(intr_cnt,
300                  "thresholds 1..3 for queue interrupt packet counters");
301
302 /*
303  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
304  * offset by 2 bytes in order to have the IP headers line up on 4-byte
305  * boundaries.  This is a requirement for many architectures which will throw
306  * a machine check fault if an attempt is made to access one of the 4-byte IP
307  * header fields on a non-4-byte boundary.  And it's a major performance issue
308  * even on some architectures which allow it like some implementations of the
309  * x86 ISA.  However, some architectures don't mind this and for some very
310  * edge-case performance sensitive applications (like forwarding large volumes
311  * of small packets), setting this DMA offset to 0 will decrease the number of
312  * PCI-E Bus transfers enough to measurably affect performance.
313  */
314 static int rx_dma_offset = 2;
315
316 static bool vf_acls;
317
318 #ifdef CONFIG_PCI_IOV
319 module_param(vf_acls, bool, 0644);
320 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
321
322 static unsigned int num_vf[4];
323
324 module_param_array(num_vf, uint, NULL, 0644);
325 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
326 #endif
327
328 /*
329  * The filter TCAM has a fixed portion and a variable portion.  The fixed
330  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
331  * ports.  The variable portion is 36 bits which can include things like Exact
332  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
333  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
334  * far exceed the 36-bit budget for this "compressed" header portion of the
335  * filter.  Thus, we have a scarce resource which must be carefully managed.
336  *
337  * By default we set this up to mostly match the set of filter matching
338  * capabilities of T3 but with accommodations for some of T4's more
339  * interesting features:
340  *
341  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
342  *     [Inner] VLAN (17), Port (3), FCoE (1) }
343  */
344 enum {
345         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
346         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
347         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
348 };
349
350 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
351
352 module_param(tp_vlan_pri_map, uint, 0644);
353 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
354
355 static struct dentry *cxgb4_debugfs_root;
356
357 static LIST_HEAD(adapter_list);
358 static DEFINE_MUTEX(uld_mutex);
359 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
360 static const char *uld_str[] = { "RDMA", "iSCSI" };
361
362 static void link_report(struct net_device *dev)
363 {
364         if (!netif_carrier_ok(dev))
365                 netdev_info(dev, "link down\n");
366         else {
367                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
368
369                 const char *s = "10Mbps";
370                 const struct port_info *p = netdev_priv(dev);
371
372                 switch (p->link_cfg.speed) {
373                 case SPEED_10000:
374                         s = "10Gbps";
375                         break;
376                 case SPEED_1000:
377                         s = "1000Mbps";
378                         break;
379                 case SPEED_100:
380                         s = "100Mbps";
381                         break;
382                 }
383
384                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
385                             fc[p->link_cfg.fc]);
386         }
387 }
388
389 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
390 {
391         struct net_device *dev = adapter->port[port_id];
392
393         /* Skip changes from disabled ports. */
394         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
395                 if (link_stat)
396                         netif_carrier_on(dev);
397                 else
398                         netif_carrier_off(dev);
399
400                 link_report(dev);
401         }
402 }
403
404 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
405 {
406         static const char *mod_str[] = {
407                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
408         };
409
410         const struct net_device *dev = adap->port[port_id];
411         const struct port_info *pi = netdev_priv(dev);
412
413         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
414                 netdev_info(dev, "port module unplugged\n");
415         else if (pi->mod_type < ARRAY_SIZE(mod_str))
416                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
417 }
418
419 /*
420  * Configure the exact and hash address filters to handle a port's multicast
421  * and secondary unicast MAC addresses.
422  */
423 static int set_addr_filters(const struct net_device *dev, bool sleep)
424 {
425         u64 mhash = 0;
426         u64 uhash = 0;
427         bool free = true;
428         u16 filt_idx[7];
429         const u8 *addr[7];
430         int ret, naddr = 0;
431         const struct netdev_hw_addr *ha;
432         int uc_cnt = netdev_uc_count(dev);
433         int mc_cnt = netdev_mc_count(dev);
434         const struct port_info *pi = netdev_priv(dev);
435         unsigned int mb = pi->adapter->fn;
436
437         /* first do the secondary unicast addresses */
438         netdev_for_each_uc_addr(ha, dev) {
439                 addr[naddr++] = ha->addr;
440                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
441                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
442                                         naddr, addr, filt_idx, &uhash, sleep);
443                         if (ret < 0)
444                                 return ret;
445
446                         free = false;
447                         naddr = 0;
448                 }
449         }
450
451         /* next set up the multicast addresses */
452         netdev_for_each_mc_addr(ha, dev) {
453                 addr[naddr++] = ha->addr;
454                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
455                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
456                                         naddr, addr, filt_idx, &mhash, sleep);
457                         if (ret < 0)
458                                 return ret;
459
460                         free = false;
461                         naddr = 0;
462                 }
463         }
464
465         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
466                                 uhash | mhash, sleep);
467 }
468
469 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
470 module_param(dbfifo_int_thresh, int, 0644);
471 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
472
473 /*
474  * usecs to sleep while draining the dbfifo
475  */
476 static int dbfifo_drain_delay = 1000;
477 module_param(dbfifo_drain_delay, int, 0644);
478 MODULE_PARM_DESC(dbfifo_drain_delay,
479                  "usecs to sleep while draining the dbfifo");
480
481 /*
482  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
483  * If @mtu is -1 it is left unchanged.
484  */
485 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
486 {
487         int ret;
488         struct port_info *pi = netdev_priv(dev);
489
490         ret = set_addr_filters(dev, sleep_ok);
491         if (ret == 0)
492                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
493                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
494                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
495                                     sleep_ok);
496         return ret;
497 }
498
499 static struct workqueue_struct *workq;
500
501 /**
502  *      link_start - enable a port
503  *      @dev: the port to enable
504  *
505  *      Performs the MAC and PHY actions needed to enable a port.
506  */
507 static int link_start(struct net_device *dev)
508 {
509         int ret;
510         struct port_info *pi = netdev_priv(dev);
511         unsigned int mb = pi->adapter->fn;
512
513         /*
514          * We do not set address filters and promiscuity here, the stack does
515          * that step explicitly.
516          */
517         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
518                             !!(dev->features & NETIF_F_HW_VLAN_RX), true);
519         if (ret == 0) {
520                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
521                                     pi->xact_addr_filt, dev->dev_addr, true,
522                                     true);
523                 if (ret >= 0) {
524                         pi->xact_addr_filt = ret;
525                         ret = 0;
526                 }
527         }
528         if (ret == 0)
529                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
530                                     &pi->link_cfg);
531         if (ret == 0)
532                 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
533         return ret;
534 }
535
536 /* Clear a filter and release any of its resources that we own.  This also
537  * clears the filter's "pending" status.
538  */
539 static void clear_filter(struct adapter *adap, struct filter_entry *f)
540 {
541         /* If the new or old filter have loopback rewriteing rules then we'll
542          * need to free any existing Layer Two Table (L2T) entries of the old
543          * filter rule.  The firmware will handle freeing up any Source MAC
544          * Table (SMT) entries used for rewriting Source MAC Addresses in
545          * loopback rules.
546          */
547         if (f->l2t)
548                 cxgb4_l2t_release(f->l2t);
549
550         /* The zeroing of the filter rule below clears the filter valid,
551          * pending, locked flags, l2t pointer, etc. so it's all we need for
552          * this operation.
553          */
554         memset(f, 0, sizeof(*f));
555 }
556
557 /* Handle a filter write/deletion reply.
558  */
559 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
560 {
561         unsigned int idx = GET_TID(rpl);
562         unsigned int nidx = idx - adap->tids.ftid_base;
563         unsigned int ret;
564         struct filter_entry *f;
565
566         if (idx >= adap->tids.ftid_base && nidx <
567            (adap->tids.nftids + adap->tids.nsftids)) {
568                 idx = nidx;
569                 ret = GET_TCB_COOKIE(rpl->cookie);
570                 f = &adap->tids.ftid_tab[idx];
571
572                 if (ret == FW_FILTER_WR_FLT_DELETED) {
573                         /* Clear the filter when we get confirmation from the
574                          * hardware that the filter has been deleted.
575                          */
576                         clear_filter(adap, f);
577                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
578                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
579                                 idx);
580                         clear_filter(adap, f);
581                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
582                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
583                         f->pending = 0;  /* asynchronous setup completed */
584                         f->valid = 1;
585                 } else {
586                         /* Something went wrong.  Issue a warning about the
587                          * problem and clear everything out.
588                          */
589                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
590                                 idx, ret);
591                         clear_filter(adap, f);
592                 }
593         }
594 }
595
596 /* Response queue handler for the FW event queue.
597  */
598 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
599                           const struct pkt_gl *gl)
600 {
601         u8 opcode = ((const struct rss_header *)rsp)->opcode;
602
603         rsp++;                                          /* skip RSS header */
604         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
605                 const struct cpl_sge_egr_update *p = (void *)rsp;
606                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
607                 struct sge_txq *txq;
608
609                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
610                 txq->restarts++;
611                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
612                         struct sge_eth_txq *eq;
613
614                         eq = container_of(txq, struct sge_eth_txq, q);
615                         netif_tx_wake_queue(eq->txq);
616                 } else {
617                         struct sge_ofld_txq *oq;
618
619                         oq = container_of(txq, struct sge_ofld_txq, q);
620                         tasklet_schedule(&oq->qresume_tsk);
621                 }
622         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
623                 const struct cpl_fw6_msg *p = (void *)rsp;
624
625                 if (p->type == 0)
626                         t4_handle_fw_rpl(q->adap, p->data);
627         } else if (opcode == CPL_L2T_WRITE_RPL) {
628                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
629
630                 do_l2t_write_rpl(q->adap, p);
631         } else if (opcode == CPL_SET_TCB_RPL) {
632                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
633
634                 filter_rpl(q->adap, p);
635         } else
636                 dev_err(q->adap->pdev_dev,
637                         "unexpected CPL %#x on FW event queue\n", opcode);
638         return 0;
639 }
640
641 /**
642  *      uldrx_handler - response queue handler for ULD queues
643  *      @q: the response queue that received the packet
644  *      @rsp: the response queue descriptor holding the offload message
645  *      @gl: the gather list of packet fragments
646  *
647  *      Deliver an ingress offload packet to a ULD.  All processing is done by
648  *      the ULD, we just maintain statistics.
649  */
650 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
651                          const struct pkt_gl *gl)
652 {
653         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
654
655         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
656                 rxq->stats.nomem++;
657                 return -1;
658         }
659         if (gl == NULL)
660                 rxq->stats.imm++;
661         else if (gl == CXGB4_MSG_AN)
662                 rxq->stats.an++;
663         else
664                 rxq->stats.pkts++;
665         return 0;
666 }
667
668 static void disable_msi(struct adapter *adapter)
669 {
670         if (adapter->flags & USING_MSIX) {
671                 pci_disable_msix(adapter->pdev);
672                 adapter->flags &= ~USING_MSIX;
673         } else if (adapter->flags & USING_MSI) {
674                 pci_disable_msi(adapter->pdev);
675                 adapter->flags &= ~USING_MSI;
676         }
677 }
678
679 /*
680  * Interrupt handler for non-data events used with MSI-X.
681  */
682 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
683 {
684         struct adapter *adap = cookie;
685
686         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
687         if (v & PFSW) {
688                 adap->swintr = 1;
689                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
690         }
691         t4_slow_intr_handler(adap);
692         return IRQ_HANDLED;
693 }
694
695 /*
696  * Name the MSI-X interrupts.
697  */
698 static void name_msix_vecs(struct adapter *adap)
699 {
700         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
701
702         /* non-data interrupts */
703         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
704
705         /* FW events */
706         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
707                  adap->port[0]->name);
708
709         /* Ethernet queues */
710         for_each_port(adap, j) {
711                 struct net_device *d = adap->port[j];
712                 const struct port_info *pi = netdev_priv(d);
713
714                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
715                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
716                                  d->name, i);
717         }
718
719         /* offload queues */
720         for_each_ofldrxq(&adap->sge, i)
721                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
722                          adap->port[0]->name, i);
723
724         for_each_rdmarxq(&adap->sge, i)
725                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
726                          adap->port[0]->name, i);
727 }
728
729 static int request_msix_queue_irqs(struct adapter *adap)
730 {
731         struct sge *s = &adap->sge;
732         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi_index = 2;
733
734         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
735                           adap->msix_info[1].desc, &s->fw_evtq);
736         if (err)
737                 return err;
738
739         for_each_ethrxq(s, ethqidx) {
740                 err = request_irq(adap->msix_info[msi_index].vec,
741                                   t4_sge_intr_msix, 0,
742                                   adap->msix_info[msi_index].desc,
743                                   &s->ethrxq[ethqidx].rspq);
744                 if (err)
745                         goto unwind;
746                 msi_index++;
747         }
748         for_each_ofldrxq(s, ofldqidx) {
749                 err = request_irq(adap->msix_info[msi_index].vec,
750                                   t4_sge_intr_msix, 0,
751                                   adap->msix_info[msi_index].desc,
752                                   &s->ofldrxq[ofldqidx].rspq);
753                 if (err)
754                         goto unwind;
755                 msi_index++;
756         }
757         for_each_rdmarxq(s, rdmaqidx) {
758                 err = request_irq(adap->msix_info[msi_index].vec,
759                                   t4_sge_intr_msix, 0,
760                                   adap->msix_info[msi_index].desc,
761                                   &s->rdmarxq[rdmaqidx].rspq);
762                 if (err)
763                         goto unwind;
764                 msi_index++;
765         }
766         return 0;
767
768 unwind:
769         while (--rdmaqidx >= 0)
770                 free_irq(adap->msix_info[--msi_index].vec,
771                          &s->rdmarxq[rdmaqidx].rspq);
772         while (--ofldqidx >= 0)
773                 free_irq(adap->msix_info[--msi_index].vec,
774                          &s->ofldrxq[ofldqidx].rspq);
775         while (--ethqidx >= 0)
776                 free_irq(adap->msix_info[--msi_index].vec,
777                          &s->ethrxq[ethqidx].rspq);
778         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
779         return err;
780 }
781
782 static void free_msix_queue_irqs(struct adapter *adap)
783 {
784         int i, msi_index = 2;
785         struct sge *s = &adap->sge;
786
787         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
788         for_each_ethrxq(s, i)
789                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
790         for_each_ofldrxq(s, i)
791                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
792         for_each_rdmarxq(s, i)
793                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
794 }
795
796 /**
797  *      write_rss - write the RSS table for a given port
798  *      @pi: the port
799  *      @queues: array of queue indices for RSS
800  *
801  *      Sets up the portion of the HW RSS table for the port's VI to distribute
802  *      packets to the Rx queues in @queues.
803  */
804 static int write_rss(const struct port_info *pi, const u16 *queues)
805 {
806         u16 *rss;
807         int i, err;
808         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
809
810         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
811         if (!rss)
812                 return -ENOMEM;
813
814         /* map the queue indices to queue ids */
815         for (i = 0; i < pi->rss_size; i++, queues++)
816                 rss[i] = q[*queues].rspq.abs_id;
817
818         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
819                                   pi->rss_size, rss, pi->rss_size);
820         kfree(rss);
821         return err;
822 }
823
824 /**
825  *      setup_rss - configure RSS
826  *      @adap: the adapter
827  *
828  *      Sets up RSS for each port.
829  */
830 static int setup_rss(struct adapter *adap)
831 {
832         int i, err;
833
834         for_each_port(adap, i) {
835                 const struct port_info *pi = adap2pinfo(adap, i);
836
837                 err = write_rss(pi, pi->rss);
838                 if (err)
839                         return err;
840         }
841         return 0;
842 }
843
844 /*
845  * Return the channel of the ingress queue with the given qid.
846  */
847 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
848 {
849         qid -= p->ingr_start;
850         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
851 }
852
853 /*
854  * Wait until all NAPI handlers are descheduled.
855  */
856 static void quiesce_rx(struct adapter *adap)
857 {
858         int i;
859
860         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
861                 struct sge_rspq *q = adap->sge.ingr_map[i];
862
863                 if (q && q->handler)
864                         napi_disable(&q->napi);
865         }
866 }
867
868 /*
869  * Enable NAPI scheduling and interrupt generation for all Rx queues.
870  */
871 static void enable_rx(struct adapter *adap)
872 {
873         int i;
874
875         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
876                 struct sge_rspq *q = adap->sge.ingr_map[i];
877
878                 if (!q)
879                         continue;
880                 if (q->handler)
881                         napi_enable(&q->napi);
882                 /* 0-increment GTS to start the timer and enable interrupts */
883                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
884                              SEINTARM(q->intr_params) |
885                              INGRESSQID(q->cntxt_id));
886         }
887 }
888
889 /**
890  *      setup_sge_queues - configure SGE Tx/Rx/response queues
891  *      @adap: the adapter
892  *
893  *      Determines how many sets of SGE queues to use and initializes them.
894  *      We support multiple queue sets per port if we have MSI-X, otherwise
895  *      just one queue set per port.
896  */
897 static int setup_sge_queues(struct adapter *adap)
898 {
899         int err, msi_idx, i, j;
900         struct sge *s = &adap->sge;
901
902         bitmap_zero(s->starving_fl, MAX_EGRQ);
903         bitmap_zero(s->txq_maperr, MAX_EGRQ);
904
905         if (adap->flags & USING_MSIX)
906                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
907         else {
908                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
909                                        NULL, NULL);
910                 if (err)
911                         return err;
912                 msi_idx = -((int)s->intrq.abs_id + 1);
913         }
914
915         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
916                                msi_idx, NULL, fwevtq_handler);
917         if (err) {
918 freeout:        t4_free_sge_resources(adap);
919                 return err;
920         }
921
922         for_each_port(adap, i) {
923                 struct net_device *dev = adap->port[i];
924                 struct port_info *pi = netdev_priv(dev);
925                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
926                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
927
928                 for (j = 0; j < pi->nqsets; j++, q++) {
929                         if (msi_idx > 0)
930                                 msi_idx++;
931                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
932                                                msi_idx, &q->fl,
933                                                t4_ethrx_handler);
934                         if (err)
935                                 goto freeout;
936                         q->rspq.idx = j;
937                         memset(&q->stats, 0, sizeof(q->stats));
938                 }
939                 for (j = 0; j < pi->nqsets; j++, t++) {
940                         err = t4_sge_alloc_eth_txq(adap, t, dev,
941                                         netdev_get_tx_queue(dev, j),
942                                         s->fw_evtq.cntxt_id);
943                         if (err)
944                                 goto freeout;
945                 }
946         }
947
948         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
949         for_each_ofldrxq(s, i) {
950                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
951                 struct net_device *dev = adap->port[i / j];
952
953                 if (msi_idx > 0)
954                         msi_idx++;
955                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
956                                        &q->fl, uldrx_handler);
957                 if (err)
958                         goto freeout;
959                 memset(&q->stats, 0, sizeof(q->stats));
960                 s->ofld_rxq[i] = q->rspq.abs_id;
961                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
962                                             s->fw_evtq.cntxt_id);
963                 if (err)
964                         goto freeout;
965         }
966
967         for_each_rdmarxq(s, i) {
968                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
969
970                 if (msi_idx > 0)
971                         msi_idx++;
972                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
973                                        msi_idx, &q->fl, uldrx_handler);
974                 if (err)
975                         goto freeout;
976                 memset(&q->stats, 0, sizeof(q->stats));
977                 s->rdma_rxq[i] = q->rspq.abs_id;
978         }
979
980         for_each_port(adap, i) {
981                 /*
982                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
983                  * have RDMA queues, and that's the right value.
984                  */
985                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
986                                             s->fw_evtq.cntxt_id,
987                                             s->rdmarxq[i].rspq.cntxt_id);
988                 if (err)
989                         goto freeout;
990         }
991
992         t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
993                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
994                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
995         return 0;
996 }
997
998 /*
999  * Returns 0 if new FW was successfully loaded, a positive errno if a load was
1000  * started but failed, and a negative errno if flash load couldn't start.
1001  */
1002 static int upgrade_fw(struct adapter *adap)
1003 {
1004         int ret;
1005         u32 vers;
1006         const struct fw_hdr *hdr;
1007         const struct firmware *fw;
1008         struct device *dev = adap->pdev_dev;
1009
1010         ret = request_firmware(&fw, FW_FNAME, dev);
1011         if (ret < 0) {
1012                 dev_err(dev, "unable to load firmware image " FW_FNAME
1013                         ", error %d\n", ret);
1014                 return ret;
1015         }
1016
1017         hdr = (const struct fw_hdr *)fw->data;
1018         vers = ntohl(hdr->fw_ver);
1019         if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) {
1020                 ret = -EINVAL;              /* wrong major version, won't do */
1021                 goto out;
1022         }
1023
1024         /*
1025          * If the flash FW is unusable or we found something newer, load it.
1026          */
1027         if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR ||
1028             vers > adap->params.fw_vers) {
1029                 dev_info(dev, "upgrading firmware ...\n");
1030                 ret = t4_fw_upgrade(adap, adap->mbox, fw->data, fw->size,
1031                                     /*force=*/false);
1032                 if (!ret)
1033                         dev_info(dev, "firmware successfully upgraded to "
1034                                  FW_FNAME " (%d.%d.%d.%d)\n",
1035                                  FW_HDR_FW_VER_MAJOR_GET(vers),
1036                                  FW_HDR_FW_VER_MINOR_GET(vers),
1037                                  FW_HDR_FW_VER_MICRO_GET(vers),
1038                                  FW_HDR_FW_VER_BUILD_GET(vers));
1039                 else
1040                         dev_err(dev, "firmware upgrade failed! err=%d\n", -ret);
1041         } else {
1042                 /*
1043                  * Tell our caller that we didn't upgrade the firmware.
1044                  */
1045                 ret = -EINVAL;
1046         }
1047
1048 out:    release_firmware(fw);
1049         return ret;
1050 }
1051
1052 /*
1053  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1054  * The allocated memory is cleared.
1055  */
1056 void *t4_alloc_mem(size_t size)
1057 {
1058         void *p = kzalloc(size, GFP_KERNEL);
1059
1060         if (!p)
1061                 p = vzalloc(size);
1062         return p;
1063 }
1064
1065 /*
1066  * Free memory allocated through alloc_mem().
1067  */
1068 static void t4_free_mem(void *addr)
1069 {
1070         if (is_vmalloc_addr(addr))
1071                 vfree(addr);
1072         else
1073                 kfree(addr);
1074 }
1075
1076 /* Send a Work Request to write the filter at a specified index.  We construct
1077  * a Firmware Filter Work Request to have the work done and put the indicated
1078  * filter into "pending" mode which will prevent any further actions against
1079  * it till we get a reply from the firmware on the completion status of the
1080  * request.
1081  */
1082 static int set_filter_wr(struct adapter *adapter, int fidx)
1083 {
1084         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1085         struct sk_buff *skb;
1086         struct fw_filter_wr *fwr;
1087         unsigned int ftid;
1088
1089         /* If the new filter requires loopback Destination MAC and/or VLAN
1090          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1091          * the filter.
1092          */
1093         if (f->fs.newdmac || f->fs.newvlan) {
1094                 /* allocate L2T entry for new filter */
1095                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1096                 if (f->l2t == NULL)
1097                         return -EAGAIN;
1098                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1099                                         f->fs.eport, f->fs.dmac)) {
1100                         cxgb4_l2t_release(f->l2t);
1101                         f->l2t = NULL;
1102                         return -ENOMEM;
1103                 }
1104         }
1105
1106         ftid = adapter->tids.ftid_base + fidx;
1107
1108         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1109         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1110         memset(fwr, 0, sizeof(*fwr));
1111
1112         /* It would be nice to put most of the following in t4_hw.c but most
1113          * of the work is translating the cxgbtool ch_filter_specification
1114          * into the Work Request and the definition of that structure is
1115          * currently in cxgbtool.h which isn't appropriate to pull into the
1116          * common code.  We may eventually try to come up with a more neutral
1117          * filter specification structure but for now it's easiest to simply
1118          * put this fairly direct code in line ...
1119          */
1120         fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1121         fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1122         fwr->tid_to_iq =
1123                 htonl(V_FW_FILTER_WR_TID(ftid) |
1124                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1125                       V_FW_FILTER_WR_NOREPLY(0) |
1126                       V_FW_FILTER_WR_IQ(f->fs.iq));
1127         fwr->del_filter_to_l2tix =
1128                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1129                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1130                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1131                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1132                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1133                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1134                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1135                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1136                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1137                                              f->fs.newvlan == VLAN_REWRITE) |
1138                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1139                                             f->fs.newvlan == VLAN_REWRITE) |
1140                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1141                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1142                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1143                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1144         fwr->ethtype = htons(f->fs.val.ethtype);
1145         fwr->ethtypem = htons(f->fs.mask.ethtype);
1146         fwr->frag_to_ovlan_vldm =
1147                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1148                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1149                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1150                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1151                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1152                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1153         fwr->smac_sel = 0;
1154         fwr->rx_chan_rx_rpl_iq =
1155                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1156                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1157         fwr->maci_to_matchtypem =
1158                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1159                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1160                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1161                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1162                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1163                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1164                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1165                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1166         fwr->ptcl = f->fs.val.proto;
1167         fwr->ptclm = f->fs.mask.proto;
1168         fwr->ttyp = f->fs.val.tos;
1169         fwr->ttypm = f->fs.mask.tos;
1170         fwr->ivlan = htons(f->fs.val.ivlan);
1171         fwr->ivlanm = htons(f->fs.mask.ivlan);
1172         fwr->ovlan = htons(f->fs.val.ovlan);
1173         fwr->ovlanm = htons(f->fs.mask.ovlan);
1174         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1175         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1176         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1177         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1178         fwr->lp = htons(f->fs.val.lport);
1179         fwr->lpm = htons(f->fs.mask.lport);
1180         fwr->fp = htons(f->fs.val.fport);
1181         fwr->fpm = htons(f->fs.mask.fport);
1182         if (f->fs.newsmac)
1183                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1184
1185         /* Mark the filter as "pending" and ship off the Filter Work Request.
1186          * When we get the Work Request Reply we'll clear the pending status.
1187          */
1188         f->pending = 1;
1189         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1190         t4_ofld_send(adapter, skb);
1191         return 0;
1192 }
1193
1194 /* Delete the filter at a specified index.
1195  */
1196 static int del_filter_wr(struct adapter *adapter, int fidx)
1197 {
1198         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1199         struct sk_buff *skb;
1200         struct fw_filter_wr *fwr;
1201         unsigned int len, ftid;
1202
1203         len = sizeof(*fwr);
1204         ftid = adapter->tids.ftid_base + fidx;
1205
1206         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1207         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1208         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1209
1210         /* Mark the filter as "pending" and ship off the Filter Work Request.
1211          * When we get the Work Request Reply we'll clear the pending status.
1212          */
1213         f->pending = 1;
1214         t4_mgmt_tx(adapter, skb);
1215         return 0;
1216 }
1217
1218 static inline int is_offload(const struct adapter *adap)
1219 {
1220         return adap->params.offload;
1221 }
1222
1223 /*
1224  * Implementation of ethtool operations.
1225  */
1226
1227 static u32 get_msglevel(struct net_device *dev)
1228 {
1229         return netdev2adap(dev)->msg_enable;
1230 }
1231
1232 static void set_msglevel(struct net_device *dev, u32 val)
1233 {
1234         netdev2adap(dev)->msg_enable = val;
1235 }
1236
1237 static char stats_strings[][ETH_GSTRING_LEN] = {
1238         "TxOctetsOK         ",
1239         "TxFramesOK         ",
1240         "TxBroadcastFrames  ",
1241         "TxMulticastFrames  ",
1242         "TxUnicastFrames    ",
1243         "TxErrorFrames      ",
1244
1245         "TxFrames64         ",
1246         "TxFrames65To127    ",
1247         "TxFrames128To255   ",
1248         "TxFrames256To511   ",
1249         "TxFrames512To1023  ",
1250         "TxFrames1024To1518 ",
1251         "TxFrames1519ToMax  ",
1252
1253         "TxFramesDropped    ",
1254         "TxPauseFrames      ",
1255         "TxPPP0Frames       ",
1256         "TxPPP1Frames       ",
1257         "TxPPP2Frames       ",
1258         "TxPPP3Frames       ",
1259         "TxPPP4Frames       ",
1260         "TxPPP5Frames       ",
1261         "TxPPP6Frames       ",
1262         "TxPPP7Frames       ",
1263
1264         "RxOctetsOK         ",
1265         "RxFramesOK         ",
1266         "RxBroadcastFrames  ",
1267         "RxMulticastFrames  ",
1268         "RxUnicastFrames    ",
1269
1270         "RxFramesTooLong    ",
1271         "RxJabberErrors     ",
1272         "RxFCSErrors        ",
1273         "RxLengthErrors     ",
1274         "RxSymbolErrors     ",
1275         "RxRuntFrames       ",
1276
1277         "RxFrames64         ",
1278         "RxFrames65To127    ",
1279         "RxFrames128To255   ",
1280         "RxFrames256To511   ",
1281         "RxFrames512To1023  ",
1282         "RxFrames1024To1518 ",
1283         "RxFrames1519ToMax  ",
1284
1285         "RxPauseFrames      ",
1286         "RxPPP0Frames       ",
1287         "RxPPP1Frames       ",
1288         "RxPPP2Frames       ",
1289         "RxPPP3Frames       ",
1290         "RxPPP4Frames       ",
1291         "RxPPP5Frames       ",
1292         "RxPPP6Frames       ",
1293         "RxPPP7Frames       ",
1294
1295         "RxBG0FramesDropped ",
1296         "RxBG1FramesDropped ",
1297         "RxBG2FramesDropped ",
1298         "RxBG3FramesDropped ",
1299         "RxBG0FramesTrunc   ",
1300         "RxBG1FramesTrunc   ",
1301         "RxBG2FramesTrunc   ",
1302         "RxBG3FramesTrunc   ",
1303
1304         "TSO                ",
1305         "TxCsumOffload      ",
1306         "RxCsumGood         ",
1307         "VLANextractions    ",
1308         "VLANinsertions     ",
1309         "GROpackets         ",
1310         "GROmerged          ",
1311 };
1312
1313 static int get_sset_count(struct net_device *dev, int sset)
1314 {
1315         switch (sset) {
1316         case ETH_SS_STATS:
1317                 return ARRAY_SIZE(stats_strings);
1318         default:
1319                 return -EOPNOTSUPP;
1320         }
1321 }
1322
1323 #define T4_REGMAP_SIZE (160 * 1024)
1324
1325 static int get_regs_len(struct net_device *dev)
1326 {
1327         return T4_REGMAP_SIZE;
1328 }
1329
1330 static int get_eeprom_len(struct net_device *dev)
1331 {
1332         return EEPROMSIZE;
1333 }
1334
1335 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1336 {
1337         struct adapter *adapter = netdev2adap(dev);
1338
1339         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1340         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1341         strlcpy(info->bus_info, pci_name(adapter->pdev),
1342                 sizeof(info->bus_info));
1343
1344         if (adapter->params.fw_vers)
1345                 snprintf(info->fw_version, sizeof(info->fw_version),
1346                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1347                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1348                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1349                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1350                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1351                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1352                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1353                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1354                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1355 }
1356
1357 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1358 {
1359         if (stringset == ETH_SS_STATS)
1360                 memcpy(data, stats_strings, sizeof(stats_strings));
1361 }
1362
1363 /*
1364  * port stats maintained per queue of the port.  They should be in the same
1365  * order as in stats_strings above.
1366  */
1367 struct queue_port_stats {
1368         u64 tso;
1369         u64 tx_csum;
1370         u64 rx_csum;
1371         u64 vlan_ex;
1372         u64 vlan_ins;
1373         u64 gro_pkts;
1374         u64 gro_merged;
1375 };
1376
1377 static void collect_sge_port_stats(const struct adapter *adap,
1378                 const struct port_info *p, struct queue_port_stats *s)
1379 {
1380         int i;
1381         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1382         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1383
1384         memset(s, 0, sizeof(*s));
1385         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1386                 s->tso += tx->tso;
1387                 s->tx_csum += tx->tx_cso;
1388                 s->rx_csum += rx->stats.rx_cso;
1389                 s->vlan_ex += rx->stats.vlan_ex;
1390                 s->vlan_ins += tx->vlan_ins;
1391                 s->gro_pkts += rx->stats.lro_pkts;
1392                 s->gro_merged += rx->stats.lro_merged;
1393         }
1394 }
1395
1396 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1397                       u64 *data)
1398 {
1399         struct port_info *pi = netdev_priv(dev);
1400         struct adapter *adapter = pi->adapter;
1401
1402         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1403
1404         data += sizeof(struct port_stats) / sizeof(u64);
1405         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1406 }
1407
1408 /*
1409  * Return a version number to identify the type of adapter.  The scheme is:
1410  * - bits 0..9: chip version
1411  * - bits 10..15: chip revision
1412  * - bits 16..23: register dump version
1413  */
1414 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1415 {
1416         return 4 | (ap->params.rev << 10) | (1 << 16);
1417 }
1418
1419 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1420                            unsigned int end)
1421 {
1422         u32 *p = buf + start;
1423
1424         for ( ; start <= end; start += sizeof(u32))
1425                 *p++ = t4_read_reg(ap, start);
1426 }
1427
1428 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1429                      void *buf)
1430 {
1431         static const unsigned int reg_ranges[] = {
1432                 0x1008, 0x1108,
1433                 0x1180, 0x11b4,
1434                 0x11fc, 0x123c,
1435                 0x1300, 0x173c,
1436                 0x1800, 0x18fc,
1437                 0x3000, 0x30d8,
1438                 0x30e0, 0x5924,
1439                 0x5960, 0x59d4,
1440                 0x5a00, 0x5af8,
1441                 0x6000, 0x6098,
1442                 0x6100, 0x6150,
1443                 0x6200, 0x6208,
1444                 0x6240, 0x6248,
1445                 0x6280, 0x6338,
1446                 0x6370, 0x638c,
1447                 0x6400, 0x643c,
1448                 0x6500, 0x6524,
1449                 0x6a00, 0x6a38,
1450                 0x6a60, 0x6a78,
1451                 0x6b00, 0x6b84,
1452                 0x6bf0, 0x6c84,
1453                 0x6cf0, 0x6d84,
1454                 0x6df0, 0x6e84,
1455                 0x6ef0, 0x6f84,
1456                 0x6ff0, 0x7084,
1457                 0x70f0, 0x7184,
1458                 0x71f0, 0x7284,
1459                 0x72f0, 0x7384,
1460                 0x73f0, 0x7450,
1461                 0x7500, 0x7530,
1462                 0x7600, 0x761c,
1463                 0x7680, 0x76cc,
1464                 0x7700, 0x7798,
1465                 0x77c0, 0x77fc,
1466                 0x7900, 0x79fc,
1467                 0x7b00, 0x7c38,
1468                 0x7d00, 0x7efc,
1469                 0x8dc0, 0x8e1c,
1470                 0x8e30, 0x8e78,
1471                 0x8ea0, 0x8f6c,
1472                 0x8fc0, 0x9074,
1473                 0x90fc, 0x90fc,
1474                 0x9400, 0x9458,
1475                 0x9600, 0x96bc,
1476                 0x9800, 0x9808,
1477                 0x9820, 0x983c,
1478                 0x9850, 0x9864,
1479                 0x9c00, 0x9c6c,
1480                 0x9c80, 0x9cec,
1481                 0x9d00, 0x9d6c,
1482                 0x9d80, 0x9dec,
1483                 0x9e00, 0x9e6c,
1484                 0x9e80, 0x9eec,
1485                 0x9f00, 0x9f6c,
1486                 0x9f80, 0x9fec,
1487                 0xd004, 0xd03c,
1488                 0xdfc0, 0xdfe0,
1489                 0xe000, 0xea7c,
1490                 0xf000, 0x11190,
1491                 0x19040, 0x1906c,
1492                 0x19078, 0x19080,
1493                 0x1908c, 0x19124,
1494                 0x19150, 0x191b0,
1495                 0x191d0, 0x191e8,
1496                 0x19238, 0x1924c,
1497                 0x193f8, 0x19474,
1498                 0x19490, 0x194f8,
1499                 0x19800, 0x19f30,
1500                 0x1a000, 0x1a06c,
1501                 0x1a0b0, 0x1a120,
1502                 0x1a128, 0x1a138,
1503                 0x1a190, 0x1a1c4,
1504                 0x1a1fc, 0x1a1fc,
1505                 0x1e040, 0x1e04c,
1506                 0x1e284, 0x1e28c,
1507                 0x1e2c0, 0x1e2c0,
1508                 0x1e2e0, 0x1e2e0,
1509                 0x1e300, 0x1e384,
1510                 0x1e3c0, 0x1e3c8,
1511                 0x1e440, 0x1e44c,
1512                 0x1e684, 0x1e68c,
1513                 0x1e6c0, 0x1e6c0,
1514                 0x1e6e0, 0x1e6e0,
1515                 0x1e700, 0x1e784,
1516                 0x1e7c0, 0x1e7c8,
1517                 0x1e840, 0x1e84c,
1518                 0x1ea84, 0x1ea8c,
1519                 0x1eac0, 0x1eac0,
1520                 0x1eae0, 0x1eae0,
1521                 0x1eb00, 0x1eb84,
1522                 0x1ebc0, 0x1ebc8,
1523                 0x1ec40, 0x1ec4c,
1524                 0x1ee84, 0x1ee8c,
1525                 0x1eec0, 0x1eec0,
1526                 0x1eee0, 0x1eee0,
1527                 0x1ef00, 0x1ef84,
1528                 0x1efc0, 0x1efc8,
1529                 0x1f040, 0x1f04c,
1530                 0x1f284, 0x1f28c,
1531                 0x1f2c0, 0x1f2c0,
1532                 0x1f2e0, 0x1f2e0,
1533                 0x1f300, 0x1f384,
1534                 0x1f3c0, 0x1f3c8,
1535                 0x1f440, 0x1f44c,
1536                 0x1f684, 0x1f68c,
1537                 0x1f6c0, 0x1f6c0,
1538                 0x1f6e0, 0x1f6e0,
1539                 0x1f700, 0x1f784,
1540                 0x1f7c0, 0x1f7c8,
1541                 0x1f840, 0x1f84c,
1542                 0x1fa84, 0x1fa8c,
1543                 0x1fac0, 0x1fac0,
1544                 0x1fae0, 0x1fae0,
1545                 0x1fb00, 0x1fb84,
1546                 0x1fbc0, 0x1fbc8,
1547                 0x1fc40, 0x1fc4c,
1548                 0x1fe84, 0x1fe8c,
1549                 0x1fec0, 0x1fec0,
1550                 0x1fee0, 0x1fee0,
1551                 0x1ff00, 0x1ff84,
1552                 0x1ffc0, 0x1ffc8,
1553                 0x20000, 0x2002c,
1554                 0x20100, 0x2013c,
1555                 0x20190, 0x201c8,
1556                 0x20200, 0x20318,
1557                 0x20400, 0x20528,
1558                 0x20540, 0x20614,
1559                 0x21000, 0x21040,
1560                 0x2104c, 0x21060,
1561                 0x210c0, 0x210ec,
1562                 0x21200, 0x21268,
1563                 0x21270, 0x21284,
1564                 0x212fc, 0x21388,
1565                 0x21400, 0x21404,
1566                 0x21500, 0x21518,
1567                 0x2152c, 0x2153c,
1568                 0x21550, 0x21554,
1569                 0x21600, 0x21600,
1570                 0x21608, 0x21628,
1571                 0x21630, 0x2163c,
1572                 0x21700, 0x2171c,
1573                 0x21780, 0x2178c,
1574                 0x21800, 0x21c38,
1575                 0x21c80, 0x21d7c,
1576                 0x21e00, 0x21e04,
1577                 0x22000, 0x2202c,
1578                 0x22100, 0x2213c,
1579                 0x22190, 0x221c8,
1580                 0x22200, 0x22318,
1581                 0x22400, 0x22528,
1582                 0x22540, 0x22614,
1583                 0x23000, 0x23040,
1584                 0x2304c, 0x23060,
1585                 0x230c0, 0x230ec,
1586                 0x23200, 0x23268,
1587                 0x23270, 0x23284,
1588                 0x232fc, 0x23388,
1589                 0x23400, 0x23404,
1590                 0x23500, 0x23518,
1591                 0x2352c, 0x2353c,
1592                 0x23550, 0x23554,
1593                 0x23600, 0x23600,
1594                 0x23608, 0x23628,
1595                 0x23630, 0x2363c,
1596                 0x23700, 0x2371c,
1597                 0x23780, 0x2378c,
1598                 0x23800, 0x23c38,
1599                 0x23c80, 0x23d7c,
1600                 0x23e00, 0x23e04,
1601                 0x24000, 0x2402c,
1602                 0x24100, 0x2413c,
1603                 0x24190, 0x241c8,
1604                 0x24200, 0x24318,
1605                 0x24400, 0x24528,
1606                 0x24540, 0x24614,
1607                 0x25000, 0x25040,
1608                 0x2504c, 0x25060,
1609                 0x250c0, 0x250ec,
1610                 0x25200, 0x25268,
1611                 0x25270, 0x25284,
1612                 0x252fc, 0x25388,
1613                 0x25400, 0x25404,
1614                 0x25500, 0x25518,
1615                 0x2552c, 0x2553c,
1616                 0x25550, 0x25554,
1617                 0x25600, 0x25600,
1618                 0x25608, 0x25628,
1619                 0x25630, 0x2563c,
1620                 0x25700, 0x2571c,
1621                 0x25780, 0x2578c,
1622                 0x25800, 0x25c38,
1623                 0x25c80, 0x25d7c,
1624                 0x25e00, 0x25e04,
1625                 0x26000, 0x2602c,
1626                 0x26100, 0x2613c,
1627                 0x26190, 0x261c8,
1628                 0x26200, 0x26318,
1629                 0x26400, 0x26528,
1630                 0x26540, 0x26614,
1631                 0x27000, 0x27040,
1632                 0x2704c, 0x27060,
1633                 0x270c0, 0x270ec,
1634                 0x27200, 0x27268,
1635                 0x27270, 0x27284,
1636                 0x272fc, 0x27388,
1637                 0x27400, 0x27404,
1638                 0x27500, 0x27518,
1639                 0x2752c, 0x2753c,
1640                 0x27550, 0x27554,
1641                 0x27600, 0x27600,
1642                 0x27608, 0x27628,
1643                 0x27630, 0x2763c,
1644                 0x27700, 0x2771c,
1645                 0x27780, 0x2778c,
1646                 0x27800, 0x27c38,
1647                 0x27c80, 0x27d7c,
1648                 0x27e00, 0x27e04
1649         };
1650
1651         int i;
1652         struct adapter *ap = netdev2adap(dev);
1653
1654         regs->version = mk_adap_vers(ap);
1655
1656         memset(buf, 0, T4_REGMAP_SIZE);
1657         for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
1658                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
1659 }
1660
1661 static int restart_autoneg(struct net_device *dev)
1662 {
1663         struct port_info *p = netdev_priv(dev);
1664
1665         if (!netif_running(dev))
1666                 return -EAGAIN;
1667         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
1668                 return -EINVAL;
1669         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
1670         return 0;
1671 }
1672
1673 static int identify_port(struct net_device *dev,
1674                          enum ethtool_phys_id_state state)
1675 {
1676         unsigned int val;
1677         struct adapter *adap = netdev2adap(dev);
1678
1679         if (state == ETHTOOL_ID_ACTIVE)
1680                 val = 0xffff;
1681         else if (state == ETHTOOL_ID_INACTIVE)
1682                 val = 0;
1683         else
1684                 return -EINVAL;
1685
1686         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
1687 }
1688
1689 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
1690 {
1691         unsigned int v = 0;
1692
1693         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
1694             type == FW_PORT_TYPE_BT_XAUI) {
1695                 v |= SUPPORTED_TP;
1696                 if (caps & FW_PORT_CAP_SPEED_100M)
1697                         v |= SUPPORTED_100baseT_Full;
1698                 if (caps & FW_PORT_CAP_SPEED_1G)
1699                         v |= SUPPORTED_1000baseT_Full;
1700                 if (caps & FW_PORT_CAP_SPEED_10G)
1701                         v |= SUPPORTED_10000baseT_Full;
1702         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
1703                 v |= SUPPORTED_Backplane;
1704                 if (caps & FW_PORT_CAP_SPEED_1G)
1705                         v |= SUPPORTED_1000baseKX_Full;
1706                 if (caps & FW_PORT_CAP_SPEED_10G)
1707                         v |= SUPPORTED_10000baseKX4_Full;
1708         } else if (type == FW_PORT_TYPE_KR)
1709                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1710         else if (type == FW_PORT_TYPE_BP_AP)
1711                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1712                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
1713         else if (type == FW_PORT_TYPE_BP4_AP)
1714                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1715                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
1716                      SUPPORTED_10000baseKX4_Full;
1717         else if (type == FW_PORT_TYPE_FIBER_XFI ||
1718                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
1719                 v |= SUPPORTED_FIBRE;
1720
1721         if (caps & FW_PORT_CAP_ANEG)
1722                 v |= SUPPORTED_Autoneg;
1723         return v;
1724 }
1725
1726 static unsigned int to_fw_linkcaps(unsigned int caps)
1727 {
1728         unsigned int v = 0;
1729
1730         if (caps & ADVERTISED_100baseT_Full)
1731                 v |= FW_PORT_CAP_SPEED_100M;
1732         if (caps & ADVERTISED_1000baseT_Full)
1733                 v |= FW_PORT_CAP_SPEED_1G;
1734         if (caps & ADVERTISED_10000baseT_Full)
1735                 v |= FW_PORT_CAP_SPEED_10G;
1736         return v;
1737 }
1738
1739 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1740 {
1741         const struct port_info *p = netdev_priv(dev);
1742
1743         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1744             p->port_type == FW_PORT_TYPE_BT_XFI ||
1745             p->port_type == FW_PORT_TYPE_BT_XAUI)
1746                 cmd->port = PORT_TP;
1747         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
1748                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
1749                 cmd->port = PORT_FIBRE;
1750         else if (p->port_type == FW_PORT_TYPE_SFP) {
1751                 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1752                     p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1753                         cmd->port = PORT_DA;
1754                 else
1755                         cmd->port = PORT_FIBRE;
1756         } else
1757                 cmd->port = PORT_OTHER;
1758
1759         if (p->mdio_addr >= 0) {
1760                 cmd->phy_address = p->mdio_addr;
1761                 cmd->transceiver = XCVR_EXTERNAL;
1762                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
1763                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
1764         } else {
1765                 cmd->phy_address = 0;  /* not really, but no better option */
1766                 cmd->transceiver = XCVR_INTERNAL;
1767                 cmd->mdio_support = 0;
1768         }
1769
1770         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
1771         cmd->advertising = from_fw_linkcaps(p->port_type,
1772                                             p->link_cfg.advertising);
1773         ethtool_cmd_speed_set(cmd,
1774                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
1775         cmd->duplex = DUPLEX_FULL;
1776         cmd->autoneg = p->link_cfg.autoneg;
1777         cmd->maxtxpkt = 0;
1778         cmd->maxrxpkt = 0;
1779         return 0;
1780 }
1781
1782 static unsigned int speed_to_caps(int speed)
1783 {
1784         if (speed == SPEED_100)
1785                 return FW_PORT_CAP_SPEED_100M;
1786         if (speed == SPEED_1000)
1787                 return FW_PORT_CAP_SPEED_1G;
1788         if (speed == SPEED_10000)
1789                 return FW_PORT_CAP_SPEED_10G;
1790         return 0;
1791 }
1792
1793 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1794 {
1795         unsigned int cap;
1796         struct port_info *p = netdev_priv(dev);
1797         struct link_config *lc = &p->link_cfg;
1798         u32 speed = ethtool_cmd_speed(cmd);
1799
1800         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
1801                 return -EINVAL;
1802
1803         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1804                 /*
1805                  * PHY offers a single speed.  See if that's what's
1806                  * being requested.
1807                  */
1808                 if (cmd->autoneg == AUTONEG_DISABLE &&
1809                     (lc->supported & speed_to_caps(speed)))
1810                         return 0;
1811                 return -EINVAL;
1812         }
1813
1814         if (cmd->autoneg == AUTONEG_DISABLE) {
1815                 cap = speed_to_caps(speed);
1816
1817                 if (!(lc->supported & cap) || (speed == SPEED_1000) ||
1818                     (speed == SPEED_10000))
1819                         return -EINVAL;
1820                 lc->requested_speed = cap;
1821                 lc->advertising = 0;
1822         } else {
1823                 cap = to_fw_linkcaps(cmd->advertising);
1824                 if (!(lc->supported & cap))
1825                         return -EINVAL;
1826                 lc->requested_speed = 0;
1827                 lc->advertising = cap | FW_PORT_CAP_ANEG;
1828         }
1829         lc->autoneg = cmd->autoneg;
1830
1831         if (netif_running(dev))
1832                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1833                                      lc);
1834         return 0;
1835 }
1836
1837 static void get_pauseparam(struct net_device *dev,
1838                            struct ethtool_pauseparam *epause)
1839 {
1840         struct port_info *p = netdev_priv(dev);
1841
1842         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1843         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
1844         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
1845 }
1846
1847 static int set_pauseparam(struct net_device *dev,
1848                           struct ethtool_pauseparam *epause)
1849 {
1850         struct port_info *p = netdev_priv(dev);
1851         struct link_config *lc = &p->link_cfg;
1852
1853         if (epause->autoneg == AUTONEG_DISABLE)
1854                 lc->requested_fc = 0;
1855         else if (lc->supported & FW_PORT_CAP_ANEG)
1856                 lc->requested_fc = PAUSE_AUTONEG;
1857         else
1858                 return -EINVAL;
1859
1860         if (epause->rx_pause)
1861                 lc->requested_fc |= PAUSE_RX;
1862         if (epause->tx_pause)
1863                 lc->requested_fc |= PAUSE_TX;
1864         if (netif_running(dev))
1865                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1866                                      lc);
1867         return 0;
1868 }
1869
1870 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1871 {
1872         const struct port_info *pi = netdev_priv(dev);
1873         const struct sge *s = &pi->adapter->sge;
1874
1875         e->rx_max_pending = MAX_RX_BUFFERS;
1876         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1877         e->rx_jumbo_max_pending = 0;
1878         e->tx_max_pending = MAX_TXQ_ENTRIES;
1879
1880         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
1881         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1882         e->rx_jumbo_pending = 0;
1883         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
1884 }
1885
1886 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1887 {
1888         int i;
1889         const struct port_info *pi = netdev_priv(dev);
1890         struct adapter *adapter = pi->adapter;
1891         struct sge *s = &adapter->sge;
1892
1893         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
1894             e->tx_pending > MAX_TXQ_ENTRIES ||
1895             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1896             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1897             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
1898                 return -EINVAL;
1899
1900         if (adapter->flags & FULL_INIT_DONE)
1901                 return -EBUSY;
1902
1903         for (i = 0; i < pi->nqsets; ++i) {
1904                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
1905                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
1906                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
1907         }
1908         return 0;
1909 }
1910
1911 static int closest_timer(const struct sge *s, int time)
1912 {
1913         int i, delta, match = 0, min_delta = INT_MAX;
1914
1915         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1916                 delta = time - s->timer_val[i];
1917                 if (delta < 0)
1918                         delta = -delta;
1919                 if (delta < min_delta) {
1920                         min_delta = delta;
1921                         match = i;
1922                 }
1923         }
1924         return match;
1925 }
1926
1927 static int closest_thres(const struct sge *s, int thres)
1928 {
1929         int i, delta, match = 0, min_delta = INT_MAX;
1930
1931         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1932                 delta = thres - s->counter_val[i];
1933                 if (delta < 0)
1934                         delta = -delta;
1935                 if (delta < min_delta) {
1936                         min_delta = delta;
1937                         match = i;
1938                 }
1939         }
1940         return match;
1941 }
1942
1943 /*
1944  * Return a queue's interrupt hold-off time in us.  0 means no timer.
1945  */
1946 static unsigned int qtimer_val(const struct adapter *adap,
1947                                const struct sge_rspq *q)
1948 {
1949         unsigned int idx = q->intr_params >> 1;
1950
1951         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
1952 }
1953
1954 /**
1955  *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
1956  *      @adap: the adapter
1957  *      @q: the Rx queue
1958  *      @us: the hold-off time in us, or 0 to disable timer
1959  *      @cnt: the hold-off packet count, or 0 to disable counter
1960  *
1961  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1962  *      one of the two needs to be enabled for the queue to generate interrupts.
1963  */
1964 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
1965                                unsigned int us, unsigned int cnt)
1966 {
1967         if ((us | cnt) == 0)
1968                 cnt = 1;
1969
1970         if (cnt) {
1971                 int err;
1972                 u32 v, new_idx;
1973
1974                 new_idx = closest_thres(&adap->sge, cnt);
1975                 if (q->desc && q->pktcnt_idx != new_idx) {
1976                         /* the queue has already been created, update it */
1977                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1978                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1979                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
1980                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1981                                             &new_idx);
1982                         if (err)
1983                                 return err;
1984                 }
1985                 q->pktcnt_idx = new_idx;
1986         }
1987
1988         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1989         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1990         return 0;
1991 }
1992
1993 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1994 {
1995         const struct port_info *pi = netdev_priv(dev);
1996         struct adapter *adap = pi->adapter;
1997
1998         return set_rxq_intr_params(adap, &adap->sge.ethrxq[pi->first_qset].rspq,
1999                         c->rx_coalesce_usecs, c->rx_max_coalesced_frames);
2000 }
2001
2002 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2003 {
2004         const struct port_info *pi = netdev_priv(dev);
2005         const struct adapter *adap = pi->adapter;
2006         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2007
2008         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2009         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2010                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2011         return 0;
2012 }
2013
2014 /**
2015  *      eeprom_ptov - translate a physical EEPROM address to virtual
2016  *      @phys_addr: the physical EEPROM address
2017  *      @fn: the PCI function number
2018  *      @sz: size of function-specific area
2019  *
2020  *      Translate a physical EEPROM address to virtual.  The first 1K is
2021  *      accessed through virtual addresses starting at 31K, the rest is
2022  *      accessed through virtual addresses starting at 0.
2023  *
2024  *      The mapping is as follows:
2025  *      [0..1K) -> [31K..32K)
2026  *      [1K..1K+A) -> [31K-A..31K)
2027  *      [1K+A..ES) -> [0..ES-A-1K)
2028  *
2029  *      where A = @fn * @sz, and ES = EEPROM size.
2030  */
2031 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2032 {
2033         fn *= sz;
2034         if (phys_addr < 1024)
2035                 return phys_addr + (31 << 10);
2036         if (phys_addr < 1024 + fn)
2037                 return 31744 - fn + phys_addr - 1024;
2038         if (phys_addr < EEPROMSIZE)
2039                 return phys_addr - 1024 - fn;
2040         return -EINVAL;
2041 }
2042
2043 /*
2044  * The next two routines implement eeprom read/write from physical addresses.
2045  */
2046 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2047 {
2048         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2049
2050         if (vaddr >= 0)
2051                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2052         return vaddr < 0 ? vaddr : 0;
2053 }
2054
2055 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2056 {
2057         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2058
2059         if (vaddr >= 0)
2060                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2061         return vaddr < 0 ? vaddr : 0;
2062 }
2063
2064 #define EEPROM_MAGIC 0x38E2F10C
2065
2066 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2067                       u8 *data)
2068 {
2069         int i, err = 0;
2070         struct adapter *adapter = netdev2adap(dev);
2071
2072         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2073         if (!buf)
2074                 return -ENOMEM;
2075
2076         e->magic = EEPROM_MAGIC;
2077         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2078                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2079
2080         if (!err)
2081                 memcpy(data, buf + e->offset, e->len);
2082         kfree(buf);
2083         return err;
2084 }
2085
2086 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2087                       u8 *data)
2088 {
2089         u8 *buf;
2090         int err = 0;
2091         u32 aligned_offset, aligned_len, *p;
2092         struct adapter *adapter = netdev2adap(dev);
2093
2094         if (eeprom->magic != EEPROM_MAGIC)
2095                 return -EINVAL;
2096
2097         aligned_offset = eeprom->offset & ~3;
2098         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2099
2100         if (adapter->fn > 0) {
2101                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2102
2103                 if (aligned_offset < start ||
2104                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2105                         return -EPERM;
2106         }
2107
2108         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2109                 /*
2110                  * RMW possibly needed for first or last words.
2111                  */
2112                 buf = kmalloc(aligned_len, GFP_KERNEL);
2113                 if (!buf)
2114                         return -ENOMEM;
2115                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2116                 if (!err && aligned_len > 4)
2117                         err = eeprom_rd_phys(adapter,
2118                                              aligned_offset + aligned_len - 4,
2119                                              (u32 *)&buf[aligned_len - 4]);
2120                 if (err)
2121                         goto out;
2122                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2123         } else
2124                 buf = data;
2125
2126         err = t4_seeprom_wp(adapter, false);
2127         if (err)
2128                 goto out;
2129
2130         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2131                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2132                 aligned_offset += 4;
2133         }
2134
2135         if (!err)
2136                 err = t4_seeprom_wp(adapter, true);
2137 out:
2138         if (buf != data)
2139                 kfree(buf);
2140         return err;
2141 }
2142
2143 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2144 {
2145         int ret;
2146         const struct firmware *fw;
2147         struct adapter *adap = netdev2adap(netdev);
2148
2149         ef->data[sizeof(ef->data) - 1] = '\0';
2150         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2151         if (ret < 0)
2152                 return ret;
2153
2154         ret = t4_load_fw(adap, fw->data, fw->size);
2155         release_firmware(fw);
2156         if (!ret)
2157                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2158         return ret;
2159 }
2160
2161 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2162 #define BCAST_CRC 0xa0ccc1a6
2163
2164 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2165 {
2166         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2167         wol->wolopts = netdev2adap(dev)->wol;
2168         memset(&wol->sopass, 0, sizeof(wol->sopass));
2169 }
2170
2171 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2172 {
2173         int err = 0;
2174         struct port_info *pi = netdev_priv(dev);
2175
2176         if (wol->wolopts & ~WOL_SUPPORTED)
2177                 return -EINVAL;
2178         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2179                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2180         if (wol->wolopts & WAKE_BCAST) {
2181                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2182                                         ~0ULL, 0, false);
2183                 if (!err)
2184                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2185                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2186         } else
2187                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2188         return err;
2189 }
2190
2191 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2192 {
2193         const struct port_info *pi = netdev_priv(dev);
2194         netdev_features_t changed = dev->features ^ features;
2195         int err;
2196
2197         if (!(changed & NETIF_F_HW_VLAN_RX))
2198                 return 0;
2199
2200         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2201                             -1, -1, -1,
2202                             !!(features & NETIF_F_HW_VLAN_RX), true);
2203         if (unlikely(err))
2204                 dev->features = features ^ NETIF_F_HW_VLAN_RX;
2205         return err;
2206 }
2207
2208 static u32 get_rss_table_size(struct net_device *dev)
2209 {
2210         const struct port_info *pi = netdev_priv(dev);
2211
2212         return pi->rss_size;
2213 }
2214
2215 static int get_rss_table(struct net_device *dev, u32 *p)
2216 {
2217         const struct port_info *pi = netdev_priv(dev);
2218         unsigned int n = pi->rss_size;
2219
2220         while (n--)
2221                 p[n] = pi->rss[n];
2222         return 0;
2223 }
2224
2225 static int set_rss_table(struct net_device *dev, const u32 *p)
2226 {
2227         unsigned int i;
2228         struct port_info *pi = netdev_priv(dev);
2229
2230         for (i = 0; i < pi->rss_size; i++)
2231                 pi->rss[i] = p[i];
2232         if (pi->adapter->flags & FULL_INIT_DONE)
2233                 return write_rss(pi, pi->rss);
2234         return 0;
2235 }
2236
2237 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2238                      u32 *rules)
2239 {
2240         const struct port_info *pi = netdev_priv(dev);
2241
2242         switch (info->cmd) {
2243         case ETHTOOL_GRXFH: {
2244                 unsigned int v = pi->rss_mode;
2245
2246                 info->data = 0;
2247                 switch (info->flow_type) {
2248                 case TCP_V4_FLOW:
2249                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2250                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2251                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2252                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2253                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2254                         break;
2255                 case UDP_V4_FLOW:
2256                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
2257                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2258                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2259                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2260                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2261                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2262                         break;
2263                 case SCTP_V4_FLOW:
2264                 case AH_ESP_V4_FLOW:
2265                 case IPV4_FLOW:
2266                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2267                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2268                         break;
2269                 case TCP_V6_FLOW:
2270                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
2271                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2272                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2273                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2274                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2275                         break;
2276                 case UDP_V6_FLOW:
2277                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
2278                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2279                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2280                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2281                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2282                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2283                         break;
2284                 case SCTP_V6_FLOW:
2285                 case AH_ESP_V6_FLOW:
2286                 case IPV6_FLOW:
2287                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2288                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2289                         break;
2290                 }
2291                 return 0;
2292         }
2293         case ETHTOOL_GRXRINGS:
2294                 info->data = pi->nqsets;
2295                 return 0;
2296         }
2297         return -EOPNOTSUPP;
2298 }
2299
2300 static const struct ethtool_ops cxgb_ethtool_ops = {
2301         .get_settings      = get_settings,
2302         .set_settings      = set_settings,
2303         .get_drvinfo       = get_drvinfo,
2304         .get_msglevel      = get_msglevel,
2305         .set_msglevel      = set_msglevel,
2306         .get_ringparam     = get_sge_param,
2307         .set_ringparam     = set_sge_param,
2308         .get_coalesce      = get_coalesce,
2309         .set_coalesce      = set_coalesce,
2310         .get_eeprom_len    = get_eeprom_len,
2311         .get_eeprom        = get_eeprom,
2312         .set_eeprom        = set_eeprom,
2313         .get_pauseparam    = get_pauseparam,
2314         .set_pauseparam    = set_pauseparam,
2315         .get_link          = ethtool_op_get_link,
2316         .get_strings       = get_strings,
2317         .set_phys_id       = identify_port,
2318         .nway_reset        = restart_autoneg,
2319         .get_sset_count    = get_sset_count,
2320         .get_ethtool_stats = get_stats,
2321         .get_regs_len      = get_regs_len,
2322         .get_regs          = get_regs,
2323         .get_wol           = get_wol,
2324         .set_wol           = set_wol,
2325         .get_rxnfc         = get_rxnfc,
2326         .get_rxfh_indir_size = get_rss_table_size,
2327         .get_rxfh_indir    = get_rss_table,
2328         .set_rxfh_indir    = set_rss_table,
2329         .flash_device      = set_flash,
2330 };
2331
2332 /*
2333  * debugfs support
2334  */
2335 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2336                         loff_t *ppos)
2337 {
2338         loff_t pos = *ppos;
2339         loff_t avail = file->f_path.dentry->d_inode->i_size;
2340         unsigned int mem = (uintptr_t)file->private_data & 3;
2341         struct adapter *adap = file->private_data - mem;
2342
2343         if (pos < 0)
2344                 return -EINVAL;
2345         if (pos >= avail)
2346                 return 0;
2347         if (count > avail - pos)
2348                 count = avail - pos;
2349
2350         while (count) {
2351                 size_t len;
2352                 int ret, ofst;
2353                 __be32 data[16];
2354
2355                 if (mem == MEM_MC)
2356                         ret = t4_mc_read(adap, pos, data, NULL);
2357                 else
2358                         ret = t4_edc_read(adap, mem, pos, data, NULL);
2359                 if (ret)
2360                         return ret;
2361
2362                 ofst = pos % sizeof(data);
2363                 len = min(count, sizeof(data) - ofst);
2364                 if (copy_to_user(buf, (u8 *)data + ofst, len))
2365                         return -EFAULT;
2366
2367                 buf += len;
2368                 pos += len;
2369                 count -= len;
2370         }
2371         count = pos - *ppos;
2372         *ppos = pos;
2373         return count;
2374 }
2375
2376 static const struct file_operations mem_debugfs_fops = {
2377         .owner   = THIS_MODULE,
2378         .open    = simple_open,
2379         .read    = mem_read,
2380         .llseek  = default_llseek,
2381 };
2382
2383 static void add_debugfs_mem(struct adapter *adap, const char *name,
2384                             unsigned int idx, unsigned int size_mb)
2385 {
2386         struct dentry *de;
2387
2388         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2389                                  (void *)adap + idx, &mem_debugfs_fops);
2390         if (de && de->d_inode)
2391                 de->d_inode->i_size = size_mb << 20;
2392 }
2393
2394 static int setup_debugfs(struct adapter *adap)
2395 {
2396         int i;
2397
2398         if (IS_ERR_OR_NULL(adap->debugfs_root))
2399                 return -1;
2400
2401         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2402         if (i & EDRAM0_ENABLE)
2403                 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
2404         if (i & EDRAM1_ENABLE)
2405                 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
2406         if (i & EXT_MEM_ENABLE)
2407                 add_debugfs_mem(adap, "mc", MEM_MC,
2408                         EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
2409         if (adap->l2t)
2410                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2411                                     &t4_l2t_fops);
2412         return 0;
2413 }
2414
2415 /*
2416  * upper-layer driver support
2417  */
2418
2419 /*
2420  * Allocate an active-open TID and set it to the supplied value.
2421  */
2422 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2423 {
2424         int atid = -1;
2425
2426         spin_lock_bh(&t->atid_lock);
2427         if (t->afree) {
2428                 union aopen_entry *p = t->afree;
2429
2430                 atid = (p - t->atid_tab) + t->atid_base;
2431                 t->afree = p->next;
2432                 p->data = data;
2433                 t->atids_in_use++;
2434         }
2435         spin_unlock_bh(&t->atid_lock);
2436         return atid;
2437 }
2438 EXPORT_SYMBOL(cxgb4_alloc_atid);
2439
2440 /*
2441  * Release an active-open TID.
2442  */
2443 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2444 {
2445         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
2446
2447         spin_lock_bh(&t->atid_lock);
2448         p->next = t->afree;
2449         t->afree = p;
2450         t->atids_in_use--;
2451         spin_unlock_bh(&t->atid_lock);
2452 }
2453 EXPORT_SYMBOL(cxgb4_free_atid);
2454
2455 /*
2456  * Allocate a server TID and set it to the supplied value.
2457  */
2458 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2459 {
2460         int stid;
2461
2462         spin_lock_bh(&t->stid_lock);
2463         if (family == PF_INET) {
2464                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2465                 if (stid < t->nstids)
2466                         __set_bit(stid, t->stid_bmap);
2467                 else
2468                         stid = -1;
2469         } else {
2470                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2471                 if (stid < 0)
2472                         stid = -1;
2473         }
2474         if (stid >= 0) {
2475                 t->stid_tab[stid].data = data;
2476                 stid += t->stid_base;
2477                 t->stids_in_use++;
2478         }
2479         spin_unlock_bh(&t->stid_lock);
2480         return stid;
2481 }
2482 EXPORT_SYMBOL(cxgb4_alloc_stid);
2483
2484 /* Allocate a server filter TID and set it to the supplied value.
2485  */
2486 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
2487 {
2488         int stid;
2489
2490         spin_lock_bh(&t->stid_lock);
2491         if (family == PF_INET) {
2492                 stid = find_next_zero_bit(t->stid_bmap,
2493                                 t->nstids + t->nsftids, t->nstids);
2494                 if (stid < (t->nstids + t->nsftids))
2495                         __set_bit(stid, t->stid_bmap);
2496                 else
2497                         stid = -1;
2498         } else {
2499                 stid = -1;
2500         }
2501         if (stid >= 0) {
2502                 t->stid_tab[stid].data = data;
2503                 stid += t->stid_base;
2504                 t->stids_in_use++;
2505         }
2506         spin_unlock_bh(&t->stid_lock);
2507         return stid;
2508 }
2509 EXPORT_SYMBOL(cxgb4_alloc_sftid);
2510
2511 /* Release a server TID.
2512  */
2513 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
2514 {
2515         stid -= t->stid_base;
2516         spin_lock_bh(&t->stid_lock);
2517         if (family == PF_INET)
2518                 __clear_bit(stid, t->stid_bmap);
2519         else
2520                 bitmap_release_region(t->stid_bmap, stid, 2);
2521         t->stid_tab[stid].data = NULL;
2522         t->stids_in_use--;
2523         spin_unlock_bh(&t->stid_lock);
2524 }
2525 EXPORT_SYMBOL(cxgb4_free_stid);
2526
2527 /*
2528  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
2529  */
2530 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
2531                            unsigned int tid)
2532 {
2533         struct cpl_tid_release *req;
2534
2535         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
2536         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
2537         INIT_TP_WR(req, tid);
2538         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
2539 }
2540
2541 /*
2542  * Queue a TID release request and if necessary schedule a work queue to
2543  * process it.
2544  */
2545 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
2546                                     unsigned int tid)
2547 {
2548         void **p = &t->tid_tab[tid];
2549         struct adapter *adap = container_of(t, struct adapter, tids);
2550
2551         spin_lock_bh(&adap->tid_release_lock);
2552         *p = adap->tid_release_head;
2553         /* Low 2 bits encode the Tx channel number */
2554         adap->tid_release_head = (void **)((uintptr_t)p | chan);
2555         if (!adap->tid_release_task_busy) {
2556                 adap->tid_release_task_busy = true;
2557                 queue_work(workq, &adap->tid_release_task);
2558         }
2559         spin_unlock_bh(&adap->tid_release_lock);
2560 }
2561
2562 /*
2563  * Process the list of pending TID release requests.
2564  */
2565 static void process_tid_release_list(struct work_struct *work)
2566 {
2567         struct sk_buff *skb;
2568         struct adapter *adap;
2569
2570         adap = container_of(work, struct adapter, tid_release_task);
2571
2572         spin_lock_bh(&adap->tid_release_lock);
2573         while (adap->tid_release_head) {
2574                 void **p = adap->tid_release_head;
2575                 unsigned int chan = (uintptr_t)p & 3;
2576                 p = (void *)p - chan;
2577
2578                 adap->tid_release_head = *p;
2579                 *p = NULL;
2580                 spin_unlock_bh(&adap->tid_release_lock);
2581
2582                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
2583                                          GFP_KERNEL)))
2584                         schedule_timeout_uninterruptible(1);
2585
2586                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
2587                 t4_ofld_send(adap, skb);
2588                 spin_lock_bh(&adap->tid_release_lock);
2589         }
2590         adap->tid_release_task_busy = false;
2591         spin_unlock_bh(&adap->tid_release_lock);
2592 }
2593
2594 /*
2595  * Release a TID and inform HW.  If we are unable to allocate the release
2596  * message we defer to a work queue.
2597  */
2598 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
2599 {
2600         void *old;
2601         struct sk_buff *skb;
2602         struct adapter *adap = container_of(t, struct adapter, tids);
2603
2604         old = t->tid_tab[tid];
2605         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
2606         if (likely(skb)) {
2607                 t->tid_tab[tid] = NULL;
2608                 mk_tid_release(skb, chan, tid);
2609                 t4_ofld_send(adap, skb);
2610         } else
2611                 cxgb4_queue_tid_release(t, chan, tid);
2612         if (old)
2613                 atomic_dec(&t->tids_in_use);
2614 }
2615 EXPORT_SYMBOL(cxgb4_remove_tid);
2616
2617 /*
2618  * Allocate and initialize the TID tables.  Returns 0 on success.
2619  */
2620 static int tid_init(struct tid_info *t)
2621 {
2622         size_t size;
2623         unsigned int stid_bmap_size;
2624         unsigned int natids = t->natids;
2625
2626         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
2627         size = t->ntids * sizeof(*t->tid_tab) +
2628                natids * sizeof(*t->atid_tab) +
2629                t->nstids * sizeof(*t->stid_tab) +
2630                t->nsftids * sizeof(*t->stid_tab) +
2631                stid_bmap_size * sizeof(long) +
2632                t->nftids * sizeof(*t->ftid_tab) +
2633                t->nsftids * sizeof(*t->ftid_tab);
2634
2635         t->tid_tab = t4_alloc_mem(size);
2636         if (!t->tid_tab)
2637                 return -ENOMEM;
2638
2639         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
2640         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
2641         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
2642         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
2643         spin_lock_init(&t->stid_lock);
2644         spin_lock_init(&t->atid_lock);
2645
2646         t->stids_in_use = 0;
2647         t->afree = NULL;
2648         t->atids_in_use = 0;
2649         atomic_set(&t->tids_in_use, 0);
2650
2651         /* Setup the free list for atid_tab and clear the stid bitmap. */
2652         if (natids) {
2653                 while (--natids)
2654                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
2655                 t->afree = t->atid_tab;
2656         }
2657         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
2658         return 0;
2659 }
2660
2661 /**
2662  *      cxgb4_create_server - create an IP server
2663  *      @dev: the device
2664  *      @stid: the server TID
2665  *      @sip: local IP address to bind server to
2666  *      @sport: the server's TCP port
2667  *      @queue: queue to direct messages from this server to
2668  *
2669  *      Create an IP server for the given port and address.
2670  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
2671  */
2672 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
2673                         __be32 sip, __be16 sport, __be16 vlan,
2674                         unsigned int queue)
2675 {
2676         unsigned int chan;
2677         struct sk_buff *skb;
2678         struct adapter *adap;
2679         struct cpl_pass_open_req *req;
2680
2681         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2682         if (!skb)
2683                 return -ENOMEM;
2684
2685         adap = netdev2adap(dev);
2686         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
2687         INIT_TP_WR(req, 0);
2688         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
2689         req->local_port = sport;
2690         req->peer_port = htons(0);
2691         req->local_ip = sip;
2692         req->peer_ip = htonl(0);
2693         chan = rxq_to_chan(&adap->sge, queue);
2694         req->opt0 = cpu_to_be64(TX_CHAN(chan));
2695         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
2696                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
2697         return t4_mgmt_tx(adap, skb);
2698 }
2699 EXPORT_SYMBOL(cxgb4_create_server);
2700
2701 /**
2702  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2703  *      @mtus: the HW MTU table
2704  *      @mtu: the target MTU
2705  *      @idx: index of selected entry in the MTU table
2706  *
2707  *      Returns the index and the value in the HW MTU table that is closest to
2708  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
2709  *      table, in which case that smallest available value is selected.
2710  */
2711 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2712                             unsigned int *idx)
2713 {
2714         unsigned int i = 0;
2715
2716         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2717                 ++i;
2718         if (idx)
2719                 *idx = i;
2720         return mtus[i];
2721 }
2722 EXPORT_SYMBOL(cxgb4_best_mtu);
2723
2724 /**
2725  *      cxgb4_port_chan - get the HW channel of a port
2726  *      @dev: the net device for the port
2727  *
2728  *      Return the HW Tx channel of the given port.
2729  */
2730 unsigned int cxgb4_port_chan(const struct net_device *dev)
2731 {
2732         return netdev2pinfo(dev)->tx_chan;
2733 }
2734 EXPORT_SYMBOL(cxgb4_port_chan);
2735
2736 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2737 {
2738         struct adapter *adap = netdev2adap(dev);
2739         u32 v;
2740
2741         v = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
2742         return lpfifo ? G_LP_COUNT(v) : G_HP_COUNT(v);
2743 }
2744 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2745
2746 /**
2747  *      cxgb4_port_viid - get the VI id of a port
2748  *      @dev: the net device for the port
2749  *
2750  *      Return the VI id of the given port.
2751  */
2752 unsigned int cxgb4_port_viid(const struct net_device *dev)
2753 {
2754         return netdev2pinfo(dev)->viid;
2755 }
2756 EXPORT_SYMBOL(cxgb4_port_viid);
2757
2758 /**
2759  *      cxgb4_port_idx - get the index of a port
2760  *      @dev: the net device for the port
2761  *
2762  *      Return the index of the given port.
2763  */
2764 unsigned int cxgb4_port_idx(const struct net_device *dev)
2765 {
2766         return netdev2pinfo(dev)->port_id;
2767 }
2768 EXPORT_SYMBOL(cxgb4_port_idx);
2769
2770 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2771                          struct tp_tcp_stats *v6)
2772 {
2773         struct adapter *adap = pci_get_drvdata(pdev);
2774
2775         spin_lock(&adap->stats_lock);
2776         t4_tp_get_tcp_stats(adap, v4, v6);
2777         spin_unlock(&adap->stats_lock);
2778 }
2779 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2780
2781 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2782                       const unsigned int *pgsz_order)
2783 {
2784         struct adapter *adap = netdev2adap(dev);
2785
2786         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
2787         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
2788                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
2789                      HPZ3(pgsz_order[3]));
2790 }
2791 EXPORT_SYMBOL(cxgb4_iscsi_init);
2792
2793 int cxgb4_flush_eq_cache(struct net_device *dev)
2794 {
2795         struct adapter *adap = netdev2adap(dev);
2796         int ret;
2797
2798         ret = t4_fwaddrspace_write(adap, adap->mbox,
2799                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
2800         return ret;
2801 }
2802 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2803
2804 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2805 {
2806         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
2807         __be64 indices;
2808         int ret;
2809
2810         ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8);
2811         if (!ret) {
2812                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2813                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2814         }
2815         return ret;
2816 }
2817
2818 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2819                         u16 size)
2820 {
2821         struct adapter *adap = netdev2adap(dev);
2822         u16 hw_pidx, hw_cidx;
2823         int ret;
2824
2825         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2826         if (ret)
2827                 goto out;
2828
2829         if (pidx != hw_pidx) {
2830                 u16 delta;
2831
2832                 if (pidx >= hw_pidx)
2833                         delta = pidx - hw_pidx;
2834                 else
2835                         delta = size - hw_pidx + pidx;
2836                 wmb();
2837                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
2838                              QID(qid) | PIDX(delta));
2839         }
2840 out:
2841         return ret;
2842 }
2843 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2844
2845 static struct pci_driver cxgb4_driver;
2846
2847 static void check_neigh_update(struct neighbour *neigh)
2848 {
2849         const struct device *parent;
2850         const struct net_device *netdev = neigh->dev;
2851
2852         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2853                 netdev = vlan_dev_real_dev(netdev);
2854         parent = netdev->dev.parent;
2855         if (parent && parent->driver == &cxgb4_driver.driver)
2856                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2857 }
2858
2859 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2860                        void *data)
2861 {
2862         switch (event) {
2863         case NETEVENT_NEIGH_UPDATE:
2864                 check_neigh_update(data);
2865                 break;
2866         case NETEVENT_REDIRECT:
2867         default:
2868                 break;
2869         }
2870         return 0;
2871 }
2872
2873 static bool netevent_registered;
2874 static struct notifier_block cxgb4_netevent_nb = {
2875         .notifier_call = netevent_cb
2876 };
2877
2878 static void drain_db_fifo(struct adapter *adap, int usecs)
2879 {
2880         u32 v;
2881
2882         do {
2883                 set_current_state(TASK_UNINTERRUPTIBLE);
2884                 schedule_timeout(usecs_to_jiffies(usecs));
2885                 v = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
2886                 if (G_LP_COUNT(v) == 0 && G_HP_COUNT(v) == 0)
2887                         break;
2888         } while (1);
2889 }
2890
2891 static void disable_txq_db(struct sge_txq *q)
2892 {
2893         spin_lock_irq(&q->db_lock);
2894         q->db_disabled = 1;
2895         spin_unlock_irq(&q->db_lock);
2896 }
2897
2898 static void enable_txq_db(struct sge_txq *q)
2899 {
2900         spin_lock_irq(&q->db_lock);
2901         q->db_disabled = 0;
2902         spin_unlock_irq(&q->db_lock);
2903 }
2904
2905 static void disable_dbs(struct adapter *adap)
2906 {
2907         int i;
2908
2909         for_each_ethrxq(&adap->sge, i)
2910                 disable_txq_db(&adap->sge.ethtxq[i].q);
2911         for_each_ofldrxq(&adap->sge, i)
2912                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2913         for_each_port(adap, i)
2914                 disable_txq_db(&adap->sge.ctrlq[i].q);
2915 }
2916
2917 static void enable_dbs(struct adapter *adap)
2918 {
2919         int i;
2920
2921         for_each_ethrxq(&adap->sge, i)
2922                 enable_txq_db(&adap->sge.ethtxq[i].q);
2923         for_each_ofldrxq(&adap->sge, i)
2924                 enable_txq_db(&adap->sge.ofldtxq[i].q);
2925         for_each_port(adap, i)
2926                 enable_txq_db(&adap->sge.ctrlq[i].q);
2927 }
2928
2929 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2930 {
2931         u16 hw_pidx, hw_cidx;
2932         int ret;
2933
2934         spin_lock_bh(&q->db_lock);
2935         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2936         if (ret)
2937                 goto out;
2938         if (q->db_pidx != hw_pidx) {
2939                 u16 delta;
2940
2941                 if (q->db_pidx >= hw_pidx)
2942                         delta = q->db_pidx - hw_pidx;
2943                 else
2944                         delta = q->size - hw_pidx + q->db_pidx;
2945                 wmb();
2946                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
2947                              QID(q->cntxt_id) | PIDX(delta));
2948         }
2949 out:
2950         q->db_disabled = 0;
2951         spin_unlock_bh(&q->db_lock);
2952         if (ret)
2953                 CH_WARN(adap, "DB drop recovery failed.\n");
2954 }
2955 static void recover_all_queues(struct adapter *adap)
2956 {
2957         int i;
2958
2959         for_each_ethrxq(&adap->sge, i)
2960                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2961         for_each_ofldrxq(&adap->sge, i)
2962                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2963         for_each_port(adap, i)
2964                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2965 }
2966
2967 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2968 {
2969         mutex_lock(&uld_mutex);
2970         if (adap->uld_handle[CXGB4_ULD_RDMA])
2971                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2972                                 cmd);
2973         mutex_unlock(&uld_mutex);
2974 }
2975
2976 static void process_db_full(struct work_struct *work)
2977 {
2978         struct adapter *adap;
2979
2980         adap = container_of(work, struct adapter, db_full_task);
2981
2982         notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2983         drain_db_fifo(adap, dbfifo_drain_delay);
2984         t4_set_reg_field(adap, SGE_INT_ENABLE3,
2985                          DBFIFO_HP_INT | DBFIFO_LP_INT,
2986                          DBFIFO_HP_INT | DBFIFO_LP_INT);
2987         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2988 }
2989
2990 static void process_db_drop(struct work_struct *work)
2991 {
2992         struct adapter *adap;
2993
2994         adap = container_of(work, struct adapter, db_drop_task);
2995
2996         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
2997         disable_dbs(adap);
2998         notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2999         drain_db_fifo(adap, 1);
3000         recover_all_queues(adap);
3001         enable_dbs(adap);
3002 }
3003
3004 void t4_db_full(struct adapter *adap)
3005 {
3006         t4_set_reg_field(adap, SGE_INT_ENABLE3,
3007                          DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
3008         queue_work(workq, &adap->db_full_task);
3009 }
3010
3011 void t4_db_dropped(struct adapter *adap)
3012 {
3013         queue_work(workq, &adap->db_drop_task);
3014 }
3015
3016 static void uld_attach(struct adapter *adap, unsigned int uld)
3017 {
3018         void *handle;
3019         struct cxgb4_lld_info lli;
3020         unsigned short i;
3021
3022         lli.pdev = adap->pdev;
3023         lli.l2t = adap->l2t;
3024         lli.tids = &adap->tids;
3025         lli.ports = adap->port;
3026         lli.vr = &adap->vres;
3027         lli.mtus = adap->params.mtus;
3028         if (uld == CXGB4_ULD_RDMA) {
3029                 lli.rxq_ids = adap->sge.rdma_rxq;
3030                 lli.nrxq = adap->sge.rdmaqs;
3031         } else if (uld == CXGB4_ULD_ISCSI) {
3032                 lli.rxq_ids = adap->sge.ofld_rxq;
3033                 lli.nrxq = adap->sge.ofldqsets;
3034         }
3035         lli.ntxq = adap->sge.ofldqsets;
3036         lli.nchan = adap->params.nports;
3037         lli.nports = adap->params.nports;
3038         lli.wr_cred = adap->params.ofldq_wr_cred;
3039         lli.adapter_type = adap->params.rev;
3040         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
3041         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
3042                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
3043                         (adap->fn * 4));
3044         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
3045                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
3046                         (adap->fn * 4));
3047         lli.filt_mode = adap->filter_mode;
3048         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
3049         for (i = 0; i < NCHAN; i++)
3050                 lli.tx_modq[i] = i;
3051         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
3052         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
3053         lli.fw_vers = adap->params.fw_vers;
3054         lli.dbfifo_int_thresh = dbfifo_int_thresh;
3055         lli.sge_pktshift = adap->sge.pktshift;
3056         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
3057
3058         handle = ulds[uld].add(&lli);
3059         if (IS_ERR(handle)) {
3060                 dev_warn(adap->pdev_dev,
3061                          "could not attach to the %s driver, error %ld\n",
3062                          uld_str[uld], PTR_ERR(handle));
3063                 return;
3064         }
3065
3066         adap->uld_handle[uld] = handle;
3067
3068         if (!netevent_registered) {
3069                 register_netevent_notifier(&cxgb4_netevent_nb);
3070                 netevent_registered = true;
3071         }
3072
3073         if (adap->flags & FULL_INIT_DONE)
3074                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
3075 }
3076
3077 static void attach_ulds(struct adapter *adap)
3078 {
3079         unsigned int i;
3080
3081         mutex_lock(&uld_mutex);
3082         list_add_tail(&adap->list_node, &adapter_list);
3083         for (i = 0; i < CXGB4_ULD_MAX; i++)
3084                 if (ulds[i].add)
3085                         uld_attach(adap, i);
3086         mutex_unlock(&uld_mutex);
3087 }
3088
3089 static void detach_ulds(struct adapter *adap)
3090 {
3091         unsigned int i;
3092
3093         mutex_lock(&uld_mutex);
3094         list_del(&adap->list_node);
3095         for (i = 0; i < CXGB4_ULD_MAX; i++)
3096                 if (adap->uld_handle[i]) {
3097                         ulds[i].state_change(adap->uld_handle[i],
3098                                              CXGB4_STATE_DETACH);
3099                         adap->uld_handle[i] = NULL;
3100                 }
3101         if (netevent_registered && list_empty(&adapter_list)) {
3102                 unregister_netevent_notifier(&cxgb4_netevent_nb);
3103                 netevent_registered = false;
3104         }
3105         mutex_unlock(&uld_mutex);
3106 }
3107
3108 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
3109 {
3110         unsigned int i;
3111
3112         mutex_lock(&uld_mutex);
3113         for (i = 0; i < CXGB4_ULD_MAX; i++)
3114                 if (adap->uld_handle[i])
3115                         ulds[i].state_change(adap->uld_handle[i], new_state);
3116         mutex_unlock(&uld_mutex);
3117 }
3118
3119 /**
3120  *      cxgb4_register_uld - register an upper-layer driver
3121  *      @type: the ULD type
3122  *      @p: the ULD methods
3123  *
3124  *      Registers an upper-layer driver with this driver and notifies the ULD
3125  *      about any presently available devices that support its type.  Returns
3126  *      %-EBUSY if a ULD of the same type is already registered.
3127  */
3128 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
3129 {
3130         int ret = 0;
3131         struct adapter *adap;
3132
3133         if (type >= CXGB4_ULD_MAX)
3134                 return -EINVAL;
3135         mutex_lock(&uld_mutex);
3136         if (ulds[type].add) {
3137                 ret = -EBUSY;
3138                 goto out;
3139         }
3140         ulds[type] = *p;
3141         list_for_each_entry(adap, &adapter_list, list_node)
3142                 uld_attach(adap, type);
3143 out:    mutex_unlock(&uld_mutex);
3144         return ret;
3145 }
3146 EXPORT_SYMBOL(cxgb4_register_uld);
3147
3148 /**
3149  *      cxgb4_unregister_uld - unregister an upper-layer driver
3150  *      @type: the ULD type
3151  *
3152  *      Unregisters an existing upper-layer driver.
3153  */
3154 int cxgb4_unregister_uld(enum cxgb4_uld type)
3155 {
3156         struct adapter *adap;
3157
3158         if (type >= CXGB4_ULD_MAX)
3159                 return -EINVAL;
3160         mutex_lock(&uld_mutex);
3161         list_for_each_entry(adap, &adapter_list, list_node)
3162                 adap->uld_handle[type] = NULL;
3163         ulds[type].add = NULL;
3164         mutex_unlock(&uld_mutex);
3165         return 0;
3166 }
3167 EXPORT_SYMBOL(cxgb4_unregister_uld);
3168
3169 /**
3170  *      cxgb_up - enable the adapter
3171  *      @adap: adapter being enabled
3172  *
3173  *      Called when the first port is enabled, this function performs the
3174  *      actions necessary to make an adapter operational, such as completing
3175  *      the initialization of HW modules, and enabling interrupts.
3176  *
3177  *      Must be called with the rtnl lock held.
3178  */
3179 static int cxgb_up(struct adapter *adap)
3180 {
3181         int err;
3182
3183         err = setup_sge_queues(adap);
3184         if (err)
3185                 goto out;
3186         err = setup_rss(adap);
3187         if (err)
3188                 goto freeq;
3189
3190         if (adap->flags & USING_MSIX) {
3191                 name_msix_vecs(adap);
3192                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
3193                                   adap->msix_info[0].desc, adap);
3194                 if (err)
3195                         goto irq_err;
3196
3197                 err = request_msix_queue_irqs(adap);
3198                 if (err) {
3199                         free_irq(adap->msix_info[0].vec, adap);
3200                         goto irq_err;
3201                 }
3202         } else {
3203                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
3204                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
3205                                   adap->port[0]->name, adap);
3206                 if (err)
3207                         goto irq_err;
3208         }
3209         enable_rx(adap);
3210         t4_sge_start(adap);
3211         t4_intr_enable(adap);
3212         adap->flags |= FULL_INIT_DONE;
3213         notify_ulds(adap, CXGB4_STATE_UP);
3214  out:
3215         return err;
3216  irq_err:
3217         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
3218  freeq:
3219         t4_free_sge_resources(adap);
3220         goto out;
3221 }
3222
3223 static void cxgb_down(struct adapter *adapter)
3224 {
3225         t4_intr_disable(adapter);
3226         cancel_work_sync(&adapter->tid_release_task);
3227         cancel_work_sync(&adapter->db_full_task);
3228         cancel_work_sync(&adapter->db_drop_task);
3229         adapter->tid_release_task_busy = false;
3230         adapter->tid_release_head = NULL;
3231
3232         if (adapter->flags & USING_MSIX) {
3233                 free_msix_queue_irqs(adapter);
3234                 free_irq(adapter->msix_info[0].vec, adapter);
3235         } else
3236                 free_irq(adapter->pdev->irq, adapter);
3237         quiesce_rx(adapter);
3238         t4_sge_stop(adapter);
3239         t4_free_sge_resources(adapter);
3240         adapter->flags &= ~FULL_INIT_DONE;
3241 }
3242
3243 /*
3244  * net_device operations
3245  */
3246 static int cxgb_open(struct net_device *dev)
3247 {
3248         int err;
3249         struct port_info *pi = netdev_priv(dev);
3250         struct adapter *adapter = pi->adapter;
3251
3252         netif_carrier_off(dev);
3253
3254         if (!(adapter->flags & FULL_INIT_DONE)) {
3255                 err = cxgb_up(adapter);
3256                 if (err < 0)
3257                         return err;
3258         }
3259
3260         err = link_start(dev);
3261         if (!err)
3262                 netif_tx_start_all_queues(dev);
3263         return err;
3264 }
3265
3266 static int cxgb_close(struct net_device *dev)
3267 {
3268         struct port_info *pi = netdev_priv(dev);
3269         struct adapter *adapter = pi->adapter;
3270
3271         netif_tx_stop_all_queues(dev);
3272         netif_carrier_off(dev);
3273         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
3274 }
3275
3276 /* Return an error number if the indicated filter isn't writable ...
3277  */
3278 static int writable_filter(struct filter_entry *f)
3279 {
3280         if (f->locked)
3281                 return -EPERM;
3282         if (f->pending)
3283                 return -EBUSY;
3284
3285         return 0;
3286 }
3287
3288 /* Delete the filter at the specified index (if valid).  The checks for all
3289  * the common problems with doing this like the filter being locked, currently
3290  * pending in another operation, etc.
3291  */
3292 static int delete_filter(struct adapter *adapter, unsigned int fidx)
3293 {
3294         struct filter_entry *f;
3295         int ret;
3296
3297         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
3298                 return -EINVAL;
3299
3300         f = &adapter->tids.ftid_tab[fidx];
3301         ret = writable_filter(f);
3302         if (ret)
3303                 return ret;
3304         if (f->valid)
3305                 return del_filter_wr(adapter, fidx);
3306
3307         return 0;
3308 }
3309
3310 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
3311                 __be32 sip, __be16 sport, __be16 vlan,
3312                 unsigned int queue, unsigned char port, unsigned char mask)
3313 {
3314         int ret;
3315         struct filter_entry *f;
3316         struct adapter *adap;
3317         int i;
3318         u8 *val;
3319
3320         adap = netdev2adap(dev);
3321
3322         /* Adjust stid to correct filter index */
3323         stid -= adap->tids.nstids;
3324         stid += adap->tids.nftids;
3325
3326         /* Check to make sure the filter requested is writable ...
3327          */
3328         f = &adap->tids.ftid_tab[stid];
3329         ret = writable_filter(f);
3330         if (ret)
3331                 return ret;
3332
3333         /* Clear out any old resources being used by the filter before
3334          * we start constructing the new filter.
3335          */
3336         if (f->valid)
3337                 clear_filter(adap, f);
3338
3339         /* Clear out filter specifications */
3340         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
3341         f->fs.val.lport = cpu_to_be16(sport);
3342         f->fs.mask.lport  = ~0;
3343         val = (u8 *)&sip;
3344         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
3345                 for (i = 0; i < 4; i++) {
3346                         f->fs.val.lip[i] = val[i];
3347                         f->fs.mask.lip[i] = ~0;
3348                 }
3349                 if (adap->filter_mode & F_PORT) {
3350                         f->fs.val.iport = port;
3351                         f->fs.mask.iport = mask;
3352                 }
3353         }
3354
3355         f->fs.dirsteer = 1;
3356         f->fs.iq = queue;
3357         /* Mark filter as locked */
3358         f->locked = 1;
3359         f->fs.rpttid = 1;
3360
3361         ret = set_filter_wr(adap, stid);
3362         if (ret) {
3363                 clear_filter(adap, f);
3364                 return ret;
3365         }
3366
3367         return 0;
3368 }
3369 EXPORT_SYMBOL(cxgb4_create_server_filter);
3370
3371 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
3372                 unsigned int queue, bool ipv6)
3373 {
3374         int ret;
3375         struct filter_entry *f;
3376         struct adapter *adap;
3377
3378         adap = netdev2adap(dev);
3379
3380         /* Adjust stid to correct filter index */
3381         stid -= adap->tids.nstids;
3382         stid += adap->tids.nftids;
3383
3384         f = &adap->tids.ftid_tab[stid];
3385         /* Unlock the filter */
3386         f->locked = 0;
3387
3388         ret = delete_filter(adap, stid);
3389         if (ret)
3390                 return ret;
3391
3392         return 0;
3393 }
3394 EXPORT_SYMBOL(cxgb4_remove_server_filter);
3395
3396 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
3397                                                 struct rtnl_link_stats64 *ns)
3398 {
3399         struct port_stats stats;
3400         struct port_info *p = netdev_priv(dev);
3401         struct adapter *adapter = p->adapter;
3402
3403         spin_lock(&adapter->stats_lock);
3404         t4_get_port_stats(adapter, p->tx_chan, &stats);
3405         spin_unlock(&adapter->stats_lock);
3406
3407         ns->tx_bytes   = stats.tx_octets;
3408         ns->tx_packets = stats.tx_frames;
3409         ns->rx_bytes   = stats.rx_octets;
3410         ns->rx_packets = stats.rx_frames;
3411         ns->multicast  = stats.rx_mcast_frames;
3412
3413         /* detailed rx_errors */
3414         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3415                                stats.rx_runt;
3416         ns->rx_over_errors   = 0;
3417         ns->rx_crc_errors    = stats.rx_fcs_err;
3418         ns->rx_frame_errors  = stats.rx_symbol_err;
3419         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
3420                                stats.rx_ovflow2 + stats.rx_ovflow3 +
3421                                stats.rx_trunc0 + stats.rx_trunc1 +
3422                                stats.rx_trunc2 + stats.rx_trunc3;
3423         ns->rx_missed_errors = 0;
3424
3425         /* detailed tx_errors */
3426         ns->tx_aborted_errors   = 0;
3427         ns->tx_carrier_errors   = 0;
3428         ns->tx_fifo_errors      = 0;
3429         ns->tx_heartbeat_errors = 0;
3430         ns->tx_window_errors    = 0;
3431
3432         ns->tx_errors = stats.tx_error_frames;
3433         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3434                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3435         return ns;
3436 }
3437
3438 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3439 {
3440         unsigned int mbox;
3441         int ret = 0, prtad, devad;
3442         struct port_info *pi = netdev_priv(dev);
3443         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3444
3445         switch (cmd) {
3446         case SIOCGMIIPHY:
3447                 if (pi->mdio_addr < 0)
3448                         return -EOPNOTSUPP;
3449                 data->phy_id = pi->mdio_addr;
3450                 break;
3451         case SIOCGMIIREG:
3452         case SIOCSMIIREG:
3453                 if (mdio_phy_id_is_c45(data->phy_id)) {
3454                         prtad = mdio_phy_id_prtad(data->phy_id);
3455                         devad = mdio_phy_id_devad(data->phy_id);
3456                 } else if (data->phy_id < 32) {
3457                         prtad = data->phy_id;
3458                         devad = 0;
3459                         data->reg_num &= 0x1f;
3460                 } else
3461                         return -EINVAL;
3462
3463                 mbox = pi->adapter->fn;
3464                 if (cmd == SIOCGMIIREG)
3465                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3466                                          data->reg_num, &data->val_out);
3467                 else
3468                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3469                                          data->reg_num, data->val_in);
3470                 break;
3471         default:
3472                 return -EOPNOTSUPP;
3473         }
3474         return ret;
3475 }
3476
3477 static void cxgb_set_rxmode(struct net_device *dev)
3478 {
3479         /* unfortunately we can't return errors to the stack */
3480         set_rxmode(dev, -1, false);
3481 }
3482
3483 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3484 {
3485         int ret;
3486         struct port_info *pi = netdev_priv(dev);
3487
3488         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3489                 return -EINVAL;
3490         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
3491                             -1, -1, -1, true);
3492         if (!ret)
3493                 dev->mtu = new_mtu;
3494         return ret;
3495 }
3496
3497 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3498 {
3499         int ret;
3500         struct sockaddr *addr = p;
3501         struct port_info *pi = netdev_priv(dev);
3502
3503         if (!is_valid_ether_addr(addr->sa_data))
3504                 return -EADDRNOTAVAIL;
3505
3506         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
3507                             pi->xact_addr_filt, addr->sa_data, true, true);
3508         if (ret < 0)
3509                 return ret;
3510
3511         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3512         pi->xact_addr_filt = ret;
3513         return 0;
3514 }
3515
3516 #ifdef CONFIG_NET_POLL_CONTROLLER
3517 static void cxgb_netpoll(struct net_device *dev)
3518 {
3519         struct port_info *pi = netdev_priv(dev);
3520         struct adapter *adap = pi->adapter;
3521
3522         if (adap->flags & USING_MSIX) {
3523                 int i;
3524                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3525
3526                 for (i = pi->nqsets; i; i--, rx++)
3527                         t4_sge_intr_msix(0, &rx->rspq);
3528         } else
3529                 t4_intr_handler(adap)(0, adap);
3530 }
3531 #endif
3532
3533 static const struct net_device_ops cxgb4_netdev_ops = {
3534         .ndo_open             = cxgb_open,
3535         .ndo_stop             = cxgb_close,
3536         .ndo_start_xmit       = t4_eth_xmit,
3537         .ndo_get_stats64      = cxgb_get_stats,
3538         .ndo_set_rx_mode      = cxgb_set_rxmode,
3539         .ndo_set_mac_address  = cxgb_set_mac_addr,
3540         .ndo_set_features     = cxgb_set_features,
3541         .ndo_validate_addr    = eth_validate_addr,
3542         .ndo_do_ioctl         = cxgb_ioctl,
3543         .ndo_change_mtu       = cxgb_change_mtu,
3544 #ifdef CONFIG_NET_POLL_CONTROLLER
3545         .ndo_poll_controller  = cxgb_netpoll,
3546 #endif
3547 };
3548
3549 void t4_fatal_err(struct adapter *adap)
3550 {
3551         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
3552         t4_intr_disable(adap);
3553         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3554 }
3555
3556 static void setup_memwin(struct adapter *adap)
3557 {
3558         u32 bar0;
3559
3560         bar0 = pci_resource_start(adap->pdev, 0);  /* truncation intentional */
3561         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
3562                      (bar0 + MEMWIN0_BASE) | BIR(0) |
3563                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
3564         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
3565                      (bar0 + MEMWIN1_BASE) | BIR(0) |
3566                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
3567         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
3568                      (bar0 + MEMWIN2_BASE) | BIR(0) |
3569                      WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
3570 }
3571
3572 static void setup_memwin_rdma(struct adapter *adap)
3573 {
3574         if (adap->vres.ocq.size) {
3575                 unsigned int start, sz_kb;
3576
3577                 start = pci_resource_start(adap->pdev, 2) +
3578                         OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3579                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3580                 t4_write_reg(adap,
3581                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
3582                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
3583                 t4_write_reg(adap,
3584                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
3585                              adap->vres.ocq.start);
3586                 t4_read_reg(adap,
3587                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
3588         }
3589 }
3590
3591 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3592 {
3593         u32 v;
3594         int ret;
3595
3596         /* get device capabilities */
3597         memset(c, 0, sizeof(*c));
3598         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3599                                FW_CMD_REQUEST | FW_CMD_READ);
3600         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3601         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
3602         if (ret < 0)
3603                 return ret;
3604
3605         /* select capabilities we'll be using */
3606         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3607                 if (!vf_acls)
3608                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3609                 else
3610                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3611         } else if (vf_acls) {
3612                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3613                 return ret;
3614         }
3615         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3616                                FW_CMD_REQUEST | FW_CMD_WRITE);
3617         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
3618         if (ret < 0)
3619                 return ret;
3620
3621         ret = t4_config_glbl_rss(adap, adap->fn,
3622                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3623                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
3624                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
3625         if (ret < 0)
3626                 return ret;
3627
3628         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
3629                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
3630         if (ret < 0)
3631                 return ret;
3632
3633         t4_sge_init(adap);
3634
3635         /* tweak some settings */
3636         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
3637         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
3638         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
3639         v = t4_read_reg(adap, TP_PIO_DATA);
3640         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
3641
3642         /* first 4 Tx modulation queues point to consecutive Tx channels */
3643         adap->params.tp.tx_modq_map = 0xE4;
3644         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
3645                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
3646
3647         /* associate each Tx modulation queue with consecutive Tx channels */
3648         v = 0x84218421;
3649         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
3650                           &v, 1, A_TP_TX_SCHED_HDR);
3651         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
3652                           &v, 1, A_TP_TX_SCHED_FIFO);
3653         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
3654                           &v, 1, A_TP_TX_SCHED_PCMD);
3655
3656 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3657         if (is_offload(adap)) {
3658                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
3659                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3660                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3661                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3662                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3663                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
3664                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3665                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3666                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3667                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3668         }
3669
3670         /* get basic stuff going */
3671         return t4_early_init(adap, adap->fn);
3672 }
3673
3674 /*
3675  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3676  */
3677 #define MAX_ATIDS 8192U
3678
3679 /*
3680  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3681  *
3682  * If the firmware we're dealing with has Configuration File support, then
3683  * we use that to perform all configuration
3684  */
3685
3686 /*
3687  * Tweak configuration based on module parameters, etc.  Most of these have
3688  * defaults assigned to them by Firmware Configuration Files (if we're using
3689  * them) but need to be explicitly set if we're using hard-coded
3690  * initialization.  But even in the case of using Firmware Configuration
3691  * Files, we'd like to expose the ability to change these via module
3692  * parameters so these are essentially common tweaks/settings for
3693  * Configuration Files and hard-coded initialization ...
3694  */
3695 static int adap_init0_tweaks(struct adapter *adapter)
3696 {
3697         /*
3698          * Fix up various Host-Dependent Parameters like Page Size, Cache
3699          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3700          * 64B Cache Line Size ...
3701          */
3702         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3703
3704         /*
3705          * Process module parameters which affect early initialization.
3706          */
3707         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3708                 dev_err(&adapter->pdev->dev,
3709                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3710                         rx_dma_offset);
3711                 rx_dma_offset = 2;
3712         }
3713         t4_set_reg_field(adapter, SGE_CONTROL,
3714                          PKTSHIFT_MASK,
3715                          PKTSHIFT(rx_dma_offset));
3716
3717         /*
3718          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3719          * adds the pseudo header itself.
3720          */
3721         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
3722                                CSUM_HAS_PSEUDO_HDR, 0);
3723
3724         return 0;
3725 }
3726
3727 /*
3728  * Attempt to initialize the adapter via a Firmware Configuration File.
3729  */
3730 static int adap_init0_config(struct adapter *adapter, int reset)
3731 {
3732         struct fw_caps_config_cmd caps_cmd;
3733         const struct firmware *cf;
3734         unsigned long mtype = 0, maddr = 0;
3735         u32 finiver, finicsum, cfcsum;
3736         int ret, using_flash;
3737
3738         /*
3739          * Reset device if necessary.
3740          */
3741         if (reset) {
3742                 ret = t4_fw_reset(adapter, adapter->mbox,
3743                                   PIORSTMODE | PIORST);
3744                 if (ret < 0)
3745                         goto bye;
3746         }
3747
3748         /*
3749          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3750          * then use that.  Otherwise, use the configuration file stored
3751          * in the adapter flash ...
3752          */
3753         ret = request_firmware(&cf, FW_CFNAME, adapter->pdev_dev);
3754         if (ret < 0) {
3755                 using_flash = 1;
3756                 mtype = FW_MEMTYPE_CF_FLASH;
3757                 maddr = t4_flash_cfg_addr(adapter);
3758         } else {
3759                 u32 params[7], val[7];
3760
3761                 using_flash = 0;
3762                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3763                         ret = -ENOMEM;
3764                 else {
3765                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3766                              FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
3767                         ret = t4_query_params(adapter, adapter->mbox,
3768                                               adapter->fn, 0, 1, params, val);
3769                         if (ret == 0) {
3770                                 /*
3771                                  * For t4_memory_write() below addresses and
3772                                  * sizes have to be in terms of multiples of 4
3773                                  * bytes.  So, if the Configuration File isn't
3774                                  * a multiple of 4 bytes in length we'll have
3775                                  * to write that out separately since we can't
3776                                  * guarantee that the bytes following the
3777                                  * residual byte in the buffer returned by
3778                                  * request_firmware() are zeroed out ...
3779                                  */
3780                                 size_t resid = cf->size & 0x3;
3781                                 size_t size = cf->size & ~0x3;
3782                                 __be32 *data = (__be32 *)cf->data;
3783
3784                                 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
3785                                 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
3786
3787                                 ret = t4_memory_write(adapter, mtype, maddr,
3788                                                       size, data);
3789                                 if (ret == 0 && resid != 0) {
3790                                         union {
3791                                                 __be32 word;
3792                                                 char buf[4];
3793                                         } last;
3794                                         int i;
3795
3796                                         last.word = data[size >> 2];
3797                                         for (i = resid; i < 4; i++)
3798                                                 last.buf[i] = 0;
3799                                         ret = t4_memory_write(adapter, mtype,
3800                                                               maddr + size,
3801                                                               4, &last.word);
3802                                 }
3803                         }
3804                 }
3805
3806                 release_firmware(cf);
3807                 if (ret)
3808                         goto bye;
3809         }
3810
3811         /*
3812          * Issue a Capability Configuration command to the firmware to get it
3813          * to parse the Configuration File.  We don't use t4_fw_config_file()
3814          * because we want the ability to modify various features after we've
3815          * processed the configuration file ...
3816          */
3817         memset(&caps_cmd, 0, sizeof(caps_cmd));
3818         caps_cmd.op_to_write =
3819                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3820                       FW_CMD_REQUEST |
3821                       FW_CMD_READ);
3822         caps_cmd.cfvalid_to_len16 =
3823                 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
3824                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3825                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
3826                       FW_LEN16(caps_cmd));
3827         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3828                          &caps_cmd);
3829         if (ret < 0)
3830                 goto bye;
3831
3832         finiver = ntohl(caps_cmd.finiver);
3833         finicsum = ntohl(caps_cmd.finicsum);
3834         cfcsum = ntohl(caps_cmd.cfcsum);
3835         if (finicsum != cfcsum)
3836                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3837                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3838                          finicsum, cfcsum);
3839
3840         /*
3841          * And now tell the firmware to use the configuration we just loaded.
3842          */
3843         caps_cmd.op_to_write =
3844                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3845                       FW_CMD_REQUEST |
3846                       FW_CMD_WRITE);
3847         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3848         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3849                          NULL);
3850         if (ret < 0)
3851                 goto bye;
3852
3853         /*
3854          * Tweak configuration based on system architecture, module
3855          * parameters, etc.
3856          */
3857         ret = adap_init0_tweaks(adapter);
3858         if (ret < 0)
3859                 goto bye;
3860
3861         /*
3862          * And finally tell the firmware to initialize itself using the
3863          * parameters from the Configuration File.
3864          */
3865         ret = t4_fw_initialize(adapter, adapter->mbox);
3866         if (ret < 0)
3867                 goto bye;
3868
3869         /*
3870          * Return successfully and note that we're operating with parameters
3871          * not supplied by the driver, rather than from hard-wired
3872          * initialization constants burried in the driver.
3873          */
3874         adapter->flags |= USING_SOFT_PARAMS;
3875         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3876                  "Configuration File %s, version %#x, computed checksum %#x\n",
3877                  (using_flash
3878                   ? "in device FLASH"
3879                   : "/lib/firmware/" FW_CFNAME),
3880                  finiver, cfcsum);
3881         return 0;
3882
3883         /*
3884          * Something bad happened.  Return the error ...  (If the "error"
3885          * is that there's no Configuration File on the adapter we don't
3886          * want to issue a warning since this is fairly common.)
3887          */
3888 bye:
3889         if (ret != -ENOENT)
3890                 dev_warn(adapter->pdev_dev, "Configuration file error %d\n",
3891                          -ret);
3892         return ret;
3893 }
3894
3895 /*
3896  * Attempt to initialize the adapter via hard-coded, driver supplied
3897  * parameters ...
3898  */
3899 static int adap_init0_no_config(struct adapter *adapter, int reset)
3900 {
3901         struct sge *s = &adapter->sge;
3902         struct fw_caps_config_cmd caps_cmd;
3903         u32 v;
3904         int i, ret;
3905
3906         /*
3907          * Reset device if necessary
3908          */
3909         if (reset) {
3910                 ret = t4_fw_reset(adapter, adapter->mbox,
3911                                   PIORSTMODE | PIORST);
3912                 if (ret < 0)
3913                         goto bye;
3914         }
3915
3916         /*
3917          * Get device capabilities and select which we'll be using.
3918          */
3919         memset(&caps_cmd, 0, sizeof(caps_cmd));
3920         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3921                                      FW_CMD_REQUEST | FW_CMD_READ);
3922         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3923         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3924                          &caps_cmd);
3925         if (ret < 0)
3926                 goto bye;
3927
3928         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3929                 if (!vf_acls)
3930                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3931                 else
3932                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3933         } else if (vf_acls) {
3934                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
3935                 goto bye;
3936         }
3937         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3938                               FW_CMD_REQUEST | FW_CMD_WRITE);
3939         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3940                          NULL);
3941         if (ret < 0)
3942                 goto bye;
3943
3944         /*
3945          * Tweak configuration based on system architecture, module
3946          * parameters, etc.
3947          */
3948         ret = adap_init0_tweaks(adapter);
3949         if (ret < 0)
3950                 goto bye;
3951
3952         /*
3953          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
3954          * mode which maps each Virtual Interface to its own section of
3955          * the RSS Table and we turn on all map and hash enables ...
3956          */
3957         adapter->flags |= RSS_TNLALLLOOKUP;
3958         ret = t4_config_glbl_rss(adapter, adapter->mbox,
3959                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3960                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
3961                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
3962                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
3963                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
3964         if (ret < 0)
3965                 goto bye;
3966
3967         /*
3968          * Set up our own fundamental resource provisioning ...
3969          */
3970         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
3971                           PFRES_NEQ, PFRES_NETHCTRL,
3972                           PFRES_NIQFLINT, PFRES_NIQ,
3973                           PFRES_TC, PFRES_NVI,
3974                           FW_PFVF_CMD_CMASK_MASK,
3975                           pfvfres_pmask(adapter, adapter->fn, 0),
3976                           PFRES_NEXACTF,
3977                           PFRES_R_CAPS, PFRES_WX_CAPS);
3978         if (ret < 0)
3979                 goto bye;
3980
3981         /*
3982          * Perform low level SGE initialization.  We need to do this before we
3983          * send the firmware the INITIALIZE command because that will cause
3984          * any other PF Drivers which are waiting for the Master
3985          * Initialization to proceed forward.
3986          */
3987         for (i = 0; i < SGE_NTIMERS - 1; i++)
3988                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
3989         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
3990         s->counter_val[0] = 1;
3991         for (i = 1; i < SGE_NCOUNTERS; i++)
3992                 s->counter_val[i] = min(intr_cnt[i - 1],
3993                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
3994         t4_sge_init(adapter);
3995
3996 #ifdef CONFIG_PCI_IOV
3997         /*
3998          * Provision resource limits for Virtual Functions.  We currently
3999          * grant them all the same static resource limits except for the Port
4000          * Access Rights Mask which we're assigning based on the PF.  All of
4001          * the static provisioning stuff for both the PF and VF really needs
4002          * to be managed in a persistent manner for each device which the
4003          * firmware controls.
4004          */
4005         {
4006                 int pf, vf;
4007
4008                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
4009                         if (num_vf[pf] <= 0)
4010                                 continue;
4011
4012                         /* VF numbering starts at 1! */
4013                         for (vf = 1; vf <= num_vf[pf]; vf++) {
4014                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
4015                                                   pf, vf,
4016                                                   VFRES_NEQ, VFRES_NETHCTRL,
4017                                                   VFRES_NIQFLINT, VFRES_NIQ,
4018                                                   VFRES_TC, VFRES_NVI,
4019                                                   FW_PFVF_CMD_CMASK_GET(
4020                                                   FW_PFVF_CMD_CMASK_MASK),
4021                                                   pfvfres_pmask(
4022                                                   adapter, pf, vf),
4023                                                   VFRES_NEXACTF,
4024                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
4025                                 if (ret < 0)
4026                                         dev_warn(adapter->pdev_dev,
4027                                                  "failed to "\
4028                                                  "provision pf/vf=%d/%d; "
4029                                                  "err=%d\n", pf, vf, ret);
4030                         }
4031                 }
4032         }
4033 #endif
4034
4035         /*
4036          * Set up the default filter mode.  Later we'll want to implement this
4037          * via a firmware command, etc. ...  This needs to be done before the
4038          * firmare initialization command ...  If the selected set of fields
4039          * isn't equal to the default value, we'll need to make sure that the
4040          * field selections will fit in the 36-bit budget.
4041          */
4042         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
4043                 int j, bits = 0;
4044
4045                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
4046                         switch (tp_vlan_pri_map & (1 << j)) {
4047                         case 0:
4048                                 /* compressed filter field not enabled */
4049                                 break;
4050                         case FCOE_MASK:
4051                                 bits +=  1;
4052                                 break;
4053                         case PORT_MASK:
4054                                 bits +=  3;
4055                                 break;
4056                         case VNIC_ID_MASK:
4057                                 bits += 17;
4058                                 break;
4059                         case VLAN_MASK:
4060                                 bits += 17;
4061                                 break;
4062                         case TOS_MASK:
4063                                 bits +=  8;
4064                                 break;
4065                         case PROTOCOL_MASK:
4066                                 bits +=  8;
4067                                 break;
4068                         case ETHERTYPE_MASK:
4069                                 bits += 16;
4070                                 break;
4071                         case MACMATCH_MASK:
4072                                 bits +=  9;
4073                                 break;
4074                         case MPSHITTYPE_MASK:
4075                                 bits +=  3;
4076                                 break;
4077                         case FRAGMENTATION_MASK:
4078                                 bits +=  1;
4079                                 break;
4080                         }
4081
4082                 if (bits > 36) {
4083                         dev_err(adapter->pdev_dev,
4084                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
4085                                 " using %#x\n", tp_vlan_pri_map, bits,
4086                                 TP_VLAN_PRI_MAP_DEFAULT);
4087                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
4088                 }
4089         }
4090         v = tp_vlan_pri_map;
4091         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
4092                           &v, 1, TP_VLAN_PRI_MAP);
4093
4094         /*
4095          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
4096          * to support any of the compressed filter fields above.  Newer
4097          * versions of the firmware do this automatically but it doesn't hurt
4098          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
4099          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
4100          * since the firmware automatically turns this on and off when we have
4101          * a non-zero number of filters active (since it does have a
4102          * performance impact).
4103          */
4104         if (tp_vlan_pri_map)
4105                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
4106                                  FIVETUPLELOOKUP_MASK,
4107                                  FIVETUPLELOOKUP_MASK);
4108
4109         /*
4110          * Tweak some settings.
4111          */
4112         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
4113                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
4114                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
4115                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
4116
4117         /*
4118          * Get basic stuff going by issuing the Firmware Initialize command.
4119          * Note that this _must_ be after all PFVF commands ...
4120          */
4121         ret = t4_fw_initialize(adapter, adapter->mbox);
4122         if (ret < 0)
4123                 goto bye;
4124
4125         /*
4126          * Return successfully!
4127          */
4128         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
4129                  "driver parameters\n");
4130         return 0;
4131
4132         /*
4133          * Something bad happened.  Return the error ...
4134          */
4135 bye:
4136         return ret;
4137 }
4138
4139 /*
4140  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4141  */
4142 static int adap_init0(struct adapter *adap)
4143 {
4144         int ret;
4145         u32 v, port_vec;
4146         enum dev_state state;
4147         u32 params[7], val[7];
4148         struct fw_caps_config_cmd caps_cmd;
4149         int reset = 1, j;
4150
4151         /*
4152          * Contact FW, advertising Master capability (and potentially forcing
4153          * ourselves as the Master PF if our module parameter force_init is
4154          * set).
4155          */
4156         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
4157                           force_init ? MASTER_MUST : MASTER_MAY,
4158                           &state);
4159         if (ret < 0) {
4160                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4161                         ret);
4162                 return ret;
4163         }
4164         if (ret == adap->mbox)
4165                 adap->flags |= MASTER_PF;
4166         if (force_init && state == DEV_STATE_INIT)
4167                 state = DEV_STATE_UNINIT;
4168
4169         /*
4170          * If we're the Master PF Driver and the device is uninitialized,
4171          * then let's consider upgrading the firmware ...  (We always want
4172          * to check the firmware version number in order to A. get it for
4173          * later reporting and B. to warn if the currently loaded firmware
4174          * is excessively mismatched relative to the driver.)
4175          */
4176         ret = t4_check_fw_version(adap);
4177         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4178                 if (ret == -EINVAL || ret > 0) {
4179                         if (upgrade_fw(adap) >= 0) {
4180                                 /*
4181                                  * Note that the chip was reset as part of the
4182                                  * firmware upgrade so we don't reset it again
4183                                  * below and grab the new firmware version.
4184                                  */
4185                                 reset = 0;
4186                                 ret = t4_check_fw_version(adap);
4187                         }
4188                 }
4189                 if (ret < 0)
4190                         return ret;
4191         }
4192
4193         /*
4194          * Grab VPD parameters.  This should be done after we establish a
4195          * connection to the firmware since some of the VPD parameters
4196          * (notably the Core Clock frequency) are retrieved via requests to
4197          * the firmware.  On the other hand, we need these fairly early on
4198          * so we do this right after getting ahold of the firmware.
4199          */
4200         ret = get_vpd_params(adap, &adap->params.vpd);
4201         if (ret < 0)
4202                 goto bye;
4203
4204         /*
4205          * Find out what ports are available to us.  Note that we need to do
4206          * this before calling adap_init0_no_config() since it needs nports
4207          * and portvec ...
4208          */
4209         v =
4210             FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4211             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
4212         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
4213         if (ret < 0)
4214                 goto bye;
4215
4216         adap->params.nports = hweight32(port_vec);
4217         adap->params.portvec = port_vec;
4218
4219         /*
4220          * If the firmware is initialized already (and we're not forcing a
4221          * master initialization), note that we're living with existing
4222          * adapter parameters.  Otherwise, it's time to try initializing the
4223          * adapter ...
4224          */
4225         if (state == DEV_STATE_INIT) {
4226                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4227                          "Adapter already initialized\n",
4228                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4229                 adap->flags |= USING_SOFT_PARAMS;
4230         } else {
4231                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4232                          "Initializing adapter\n");
4233
4234                 /*
4235                  * If the firmware doesn't support Configuration
4236                  * Files warn user and exit,
4237                  */
4238                 if (ret < 0)
4239                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
4240                                  "configuration file.\n");
4241                 if (force_old_init)
4242                         ret = adap_init0_no_config(adap, reset);
4243                 else {
4244                         /*
4245                          * Find out whether we're dealing with a version of
4246                          * the firmware which has configuration file support.
4247                          */
4248                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4249                                      FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4250                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
4251                                               params, val);
4252
4253                         /*
4254                          * If the firmware doesn't support Configuration
4255                          * Files, use the old Driver-based, hard-wired
4256                          * initialization.  Otherwise, try using the
4257                          * Configuration File support and fall back to the
4258                          * Driver-based initialization if there's no
4259                          * Configuration File found.
4260                          */
4261                         if (ret < 0)
4262                                 ret = adap_init0_no_config(adap, reset);
4263                         else {
4264                                 /*
4265                                  * The firmware provides us with a memory
4266                                  * buffer where we can load a Configuration
4267                                  * File from the host if we want to override
4268                                  * the Configuration File in flash.
4269                                  */
4270
4271                                 ret = adap_init0_config(adap, reset);
4272                                 if (ret == -ENOENT) {
4273                                         dev_info(adap->pdev_dev,
4274                                             "No Configuration File present "
4275                                             "on adapter.  Using hard-wired "
4276                                             "configuration parameters.\n");
4277                                         ret = adap_init0_no_config(adap, reset);
4278                                 }
4279                         }
4280                 }
4281                 if (ret < 0) {
4282                         dev_err(adap->pdev_dev,
4283                                 "could not initialize adapter, error %d\n",
4284                                 -ret);
4285                         goto bye;
4286                 }
4287         }
4288
4289         /*
4290          * If we're living with non-hard-coded parameters (either from a
4291          * Firmware Configuration File or values programmed by a different PF
4292          * Driver), give the SGE code a chance to pull in anything that it
4293          * needs ...  Note that this must be called after we retrieve our VPD
4294          * parameters in order to know how to convert core ticks to seconds.
4295          */
4296         if (adap->flags & USING_SOFT_PARAMS) {
4297                 ret = t4_sge_init(adap);
4298                 if (ret < 0)
4299                         goto bye;
4300         }
4301
4302         if (is_bypass_device(adap->pdev->device))
4303                 adap->params.bypass = 1;
4304
4305         /*
4306          * Grab some of our basic fundamental operating parameters.
4307          */
4308 #define FW_PARAM_DEV(param) \
4309         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
4310         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
4311
4312 #define FW_PARAM_PFVF(param) \
4313         FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
4314         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
4315         FW_PARAMS_PARAM_Y(0) | \
4316         FW_PARAMS_PARAM_Z(0)
4317
4318         params[0] = FW_PARAM_PFVF(EQ_START);
4319         params[1] = FW_PARAM_PFVF(L2T_START);
4320         params[2] = FW_PARAM_PFVF(L2T_END);
4321         params[3] = FW_PARAM_PFVF(FILTER_START);
4322         params[4] = FW_PARAM_PFVF(FILTER_END);
4323         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4324         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
4325         if (ret < 0)
4326                 goto bye;
4327         adap->sge.egr_start = val[0];
4328         adap->l2t_start = val[1];
4329         adap->l2t_end = val[2];
4330         adap->tids.ftid_base = val[3];
4331         adap->tids.nftids = val[4] - val[3] + 1;
4332         adap->sge.ingr_start = val[5];
4333
4334         /* query params related to active filter region */
4335         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4336         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4337         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
4338         /* If Active filter size is set we enable establishing
4339          * offload connection through firmware work request
4340          */
4341         if ((val[0] != val[1]) && (ret >= 0)) {
4342                 adap->flags |= FW_OFLD_CONN;
4343                 adap->tids.aftid_base = val[0];
4344                 adap->tids.aftid_end = val[1];
4345         }
4346
4347         /*
4348          * Get device capabilities so we can determine what resources we need
4349          * to manage.
4350          */
4351         memset(&caps_cmd, 0, sizeof(caps_cmd));
4352         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4353                                      FW_CMD_REQUEST | FW_CMD_READ);
4354         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4355         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4356                          &caps_cmd);
4357         if (ret < 0)
4358                 goto bye;
4359
4360         if (caps_cmd.ofldcaps) {
4361                 /* query offload-related parameters */
4362                 params[0] = FW_PARAM_DEV(NTID);
4363                 params[1] = FW_PARAM_PFVF(SERVER_START);
4364                 params[2] = FW_PARAM_PFVF(SERVER_END);
4365                 params[3] = FW_PARAM_PFVF(TDDP_START);
4366                 params[4] = FW_PARAM_PFVF(TDDP_END);
4367                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4368                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
4369                                       params, val);
4370                 if (ret < 0)
4371                         goto bye;
4372                 adap->tids.ntids = val[0];
4373                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4374                 adap->tids.stid_base = val[1];
4375                 adap->tids.nstids = val[2] - val[1] + 1;
4376                 /*
4377                  * Setup server filter region. Divide the availble filter
4378                  * region into two parts. Regular filters get 1/3rd and server
4379                  * filters get 2/3rd part. This is only enabled if workarond
4380                  * path is enabled.
4381                  * 1. For regular filters.
4382                  * 2. Server filter: This are special filters which are used
4383                  * to redirect SYN packets to offload queue.
4384                  */
4385                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4386                         adap->tids.sftid_base = adap->tids.ftid_base +
4387                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4388                         adap->tids.nsftids = adap->tids.nftids -
4389                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4390                         adap->tids.nftids = adap->tids.sftid_base -
4391                                                 adap->tids.ftid_base;
4392                 }
4393                 adap->vres.ddp.start = val[3];
4394                 adap->vres.ddp.size = val[4] - val[3] + 1;
4395                 adap->params.ofldq_wr_cred = val[5];
4396
4397                 adap->params.offload = 1;
4398         }
4399         if (caps_cmd.rdmacaps) {
4400                 params[0] = FW_PARAM_PFVF(STAG_START);
4401                 params[1] = FW_PARAM_PFVF(STAG_END);
4402                 params[2] = FW_PARAM_PFVF(RQ_START);
4403                 params[3] = FW_PARAM_PFVF(RQ_END);
4404                 params[4] = FW_PARAM_PFVF(PBL_START);
4405                 params[5] = FW_PARAM_PFVF(PBL_END);
4406                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
4407                                       params, val);
4408                 if (ret < 0)
4409                         goto bye;
4410                 adap->vres.stag.start = val[0];
4411                 adap->vres.stag.size = val[1] - val[0] + 1;
4412                 adap->vres.rq.start = val[2];
4413                 adap->vres.rq.size = val[3] - val[2] + 1;
4414                 adap->vres.pbl.start = val[4];
4415                 adap->vres.pbl.size = val[5] - val[4] + 1;
4416
4417                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4418                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4419                 params[2] = FW_PARAM_PFVF(CQ_START);
4420                 params[3] = FW_PARAM_PFVF(CQ_END);
4421                 params[4] = FW_PARAM_PFVF(OCQ_START);
4422                 params[5] = FW_PARAM_PFVF(OCQ_END);
4423                 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
4424                 if (ret < 0)
4425                         goto bye;
4426                 adap->vres.qp.start = val[0];
4427                 adap->vres.qp.size = val[1] - val[0] + 1;
4428                 adap->vres.cq.start = val[2];
4429                 adap->vres.cq.size = val[3] - val[2] + 1;
4430                 adap->vres.ocq.start = val[4];
4431                 adap->vres.ocq.size = val[5] - val[4] + 1;
4432         }
4433         if (caps_cmd.iscsicaps) {
4434                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4435                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4436                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
4437                                       params, val);
4438                 if (ret < 0)
4439                         goto bye;
4440                 adap->vres.iscsi.start = val[0];
4441                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4442         }
4443 #undef FW_PARAM_PFVF
4444 #undef FW_PARAM_DEV
4445
4446         /*
4447          * These are finalized by FW initialization, load their values now.
4448          */
4449         v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
4450         adap->params.tp.tre = TIMERRESOLUTION_GET(v);
4451         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v);
4452         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4453         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4454                      adap->params.b_wnd);
4455
4456         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
4457         for (j = 0; j < NCHAN; j++)
4458                 adap->params.tp.tx_modq[j] = j;
4459
4460         t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4461                          &adap->filter_mode, 1,
4462                          TP_VLAN_PRI_MAP);
4463
4464         adap->flags |= FW_OK;
4465         return 0;
4466
4467         /*
4468          * Something bad happened.  If a command timed out or failed with EIO
4469          * FW does not operate within its spec or something catastrophic
4470          * happened to HW/FW, stop issuing commands.
4471          */
4472 bye:
4473         if (ret != -ETIMEDOUT && ret != -EIO)
4474                 t4_fw_bye(adap, adap->mbox);
4475         return ret;
4476 }
4477
4478 /* EEH callbacks */
4479
4480 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4481                                          pci_channel_state_t state)
4482 {
4483         int i;
4484         struct adapter *adap = pci_get_drvdata(pdev);
4485
4486         if (!adap)
4487                 goto out;
4488
4489         rtnl_lock();
4490         adap->flags &= ~FW_OK;
4491         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4492         for_each_port(adap, i) {
4493                 struct net_device *dev = adap->port[i];
4494
4495                 netif_device_detach(dev);
4496                 netif_carrier_off(dev);
4497         }
4498         if (adap->flags & FULL_INIT_DONE)
4499                 cxgb_down(adap);
4500         rtnl_unlock();
4501         pci_disable_device(pdev);
4502 out:    return state == pci_channel_io_perm_failure ?
4503                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4504 }
4505
4506 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4507 {
4508         int i, ret;
4509         struct fw_caps_config_cmd c;
4510         struct adapter *adap = pci_get_drvdata(pdev);
4511
4512         if (!adap) {
4513                 pci_restore_state(pdev);
4514                 pci_save_state(pdev);
4515                 return PCI_ERS_RESULT_RECOVERED;
4516         }
4517
4518         if (pci_enable_device(pdev)) {
4519                 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
4520                 return PCI_ERS_RESULT_DISCONNECT;
4521         }
4522
4523         pci_set_master(pdev);
4524         pci_restore_state(pdev);
4525         pci_save_state(pdev);
4526         pci_cleanup_aer_uncorrect_error_status(pdev);
4527
4528         if (t4_wait_dev_ready(adap) < 0)
4529                 return PCI_ERS_RESULT_DISCONNECT;
4530         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL))
4531                 return PCI_ERS_RESULT_DISCONNECT;
4532         adap->flags |= FW_OK;
4533         if (adap_init1(adap, &c))
4534                 return PCI_ERS_RESULT_DISCONNECT;
4535
4536         for_each_port(adap, i) {
4537                 struct port_info *p = adap2pinfo(adap, i);
4538
4539                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
4540                                   NULL, NULL);
4541                 if (ret < 0)
4542                         return PCI_ERS_RESULT_DISCONNECT;
4543                 p->viid = ret;
4544                 p->xact_addr_filt = -1;
4545         }
4546
4547         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4548                      adap->params.b_wnd);
4549         setup_memwin(adap);
4550         if (cxgb_up(adap))
4551                 return PCI_ERS_RESULT_DISCONNECT;
4552         return PCI_ERS_RESULT_RECOVERED;
4553 }
4554
4555 static void eeh_resume(struct pci_dev *pdev)
4556 {
4557         int i;
4558         struct adapter *adap = pci_get_drvdata(pdev);
4559
4560         if (!adap)
4561                 return;
4562
4563         rtnl_lock();
4564         for_each_port(adap, i) {
4565                 struct net_device *dev = adap->port[i];
4566
4567                 if (netif_running(dev)) {
4568                         link_start(dev);
4569                         cxgb_set_rxmode(dev);
4570                 }
4571                 netif_device_attach(dev);
4572         }
4573         rtnl_unlock();
4574 }
4575
4576 static const struct pci_error_handlers cxgb4_eeh = {
4577         .error_detected = eeh_err_detected,
4578         .slot_reset     = eeh_slot_reset,
4579         .resume         = eeh_resume,
4580 };
4581
4582 static inline bool is_10g_port(const struct link_config *lc)
4583 {
4584         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
4585 }
4586
4587 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
4588                              unsigned int size, unsigned int iqe_size)
4589 {
4590         q->intr_params = QINTR_TIMER_IDX(timer_idx) |
4591                          (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
4592         q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
4593         q->iqe_len = iqe_size;
4594         q->size = size;
4595 }
4596
4597 /*
4598  * Perform default configuration of DMA queues depending on the number and type
4599  * of ports we found and the number of available CPUs.  Most settings can be
4600  * modified by the admin prior to actual use.
4601  */
4602 static void cfg_queues(struct adapter *adap)
4603 {
4604         struct sge *s = &adap->sge;
4605         int i, q10g = 0, n10g = 0, qidx = 0;
4606
4607         for_each_port(adap, i)
4608                 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
4609
4610         /*
4611          * We default to 1 queue per non-10G port and up to # of cores queues
4612          * per 10G port.
4613          */
4614         if (n10g)
4615                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4616         if (q10g > netif_get_num_default_rss_queues())
4617                 q10g = netif_get_num_default_rss_queues();
4618
4619         for_each_port(adap, i) {
4620                 struct port_info *pi = adap2pinfo(adap, i);
4621
4622                 pi->first_qset = qidx;
4623                 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
4624                 qidx += pi->nqsets;
4625         }
4626
4627         s->ethqsets = qidx;
4628         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4629
4630         if (is_offload(adap)) {
4631                 /*
4632                  * For offload we use 1 queue/channel if all ports are up to 1G,
4633                  * otherwise we divide all available queues amongst the channels
4634                  * capped by the number of available cores.
4635                  */
4636                 if (n10g) {
4637                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4638                                   num_online_cpus());
4639                         s->ofldqsets = roundup(i, adap->params.nports);
4640                 } else
4641                         s->ofldqsets = adap->params.nports;
4642                 /* For RDMA one Rx queue per channel suffices */
4643                 s->rdmaqs = adap->params.nports;
4644         }
4645
4646         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4647                 struct sge_eth_rxq *r = &s->ethrxq[i];
4648
4649                 init_rspq(&r->rspq, 0, 0, 1024, 64);
4650                 r->fl.size = 72;
4651         }
4652
4653         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4654                 s->ethtxq[i].q.size = 1024;
4655
4656         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4657                 s->ctrlq[i].q.size = 512;
4658
4659         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4660                 s->ofldtxq[i].q.size = 1024;
4661
4662         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4663                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4664
4665                 init_rspq(&r->rspq, 0, 0, 1024, 64);
4666                 r->rspq.uld = CXGB4_ULD_ISCSI;
4667                 r->fl.size = 72;
4668         }
4669
4670         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4671                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4672
4673                 init_rspq(&r->rspq, 0, 0, 511, 64);
4674                 r->rspq.uld = CXGB4_ULD_RDMA;
4675                 r->fl.size = 72;
4676         }
4677
4678         init_rspq(&s->fw_evtq, 6, 0, 512, 64);
4679         init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
4680 }
4681
4682 /*
4683  * Reduce the number of Ethernet queues across all ports to at most n.
4684  * n provides at least one queue per port.
4685  */
4686 static void reduce_ethqs(struct adapter *adap, int n)
4687 {
4688         int i;
4689         struct port_info *pi;
4690
4691         while (n < adap->sge.ethqsets)
4692                 for_each_port(adap, i) {
4693                         pi = adap2pinfo(adap, i);
4694                         if (pi->nqsets > 1) {
4695                                 pi->nqsets--;
4696                                 adap->sge.ethqsets--;
4697                                 if (adap->sge.ethqsets <= n)
4698                                         break;
4699                         }
4700                 }
4701
4702         n = 0;
4703         for_each_port(adap, i) {
4704                 pi = adap2pinfo(adap, i);
4705                 pi->first_qset = n;
4706                 n += pi->nqsets;
4707         }
4708 }
4709
4710 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4711 #define EXTRA_VECS 2
4712
4713 static int enable_msix(struct adapter *adap)
4714 {
4715         int ofld_need = 0;
4716         int i, err, want, need;
4717         struct sge *s = &adap->sge;
4718         unsigned int nchan = adap->params.nports;
4719         struct msix_entry entries[MAX_INGQ + 1];
4720
4721         for (i = 0; i < ARRAY_SIZE(entries); ++i)
4722                 entries[i].entry = i;
4723
4724         want = s->max_ethqsets + EXTRA_VECS;
4725         if (is_offload(adap)) {
4726                 want += s->rdmaqs + s->ofldqsets;
4727                 /* need nchan for each possible ULD */
4728                 ofld_need = 2 * nchan;
4729         }
4730         need = adap->params.nports + EXTRA_VECS + ofld_need;
4731
4732         while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
4733                 want = err;
4734
4735         if (!err) {
4736                 /*
4737                  * Distribute available vectors to the various queue groups.
4738                  * Every group gets its minimum requirement and NIC gets top
4739                  * priority for leftovers.
4740                  */
4741                 i = want - EXTRA_VECS - ofld_need;
4742                 if (i < s->max_ethqsets) {
4743                         s->max_ethqsets = i;
4744                         if (i < s->ethqsets)
4745                                 reduce_ethqs(adap, i);
4746                 }
4747                 if (is_offload(adap)) {
4748                         i = want - EXTRA_VECS - s->max_ethqsets;
4749                         i -= ofld_need - nchan;
4750                         s->ofldqsets = (i / nchan) * nchan;  /* round down */
4751                 }
4752                 for (i = 0; i < want; ++i)
4753                         adap->msix_info[i].vec = entries[i].vector;
4754         } else if (err > 0)
4755                 dev_info(adap->pdev_dev,
4756                          "only %d MSI-X vectors left, not using MSI-X\n", err);
4757         return err;
4758 }
4759
4760 #undef EXTRA_VECS
4761
4762 static int init_rss(struct adapter *adap)
4763 {
4764         unsigned int i, j;
4765
4766         for_each_port(adap, i) {
4767                 struct port_info *pi = adap2pinfo(adap, i);
4768
4769                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4770                 if (!pi->rss)
4771                         return -ENOMEM;
4772                 for (j = 0; j < pi->rss_size; j++)
4773                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
4774         }
4775         return 0;
4776 }
4777
4778 static void print_port_info(const struct net_device *dev)
4779 {
4780         static const char *base[] = {
4781                 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
4782                 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4"
4783         };
4784
4785         char buf[80];
4786         char *bufp = buf;
4787         const char *spd = "";
4788         const struct port_info *pi = netdev_priv(dev);
4789         const struct adapter *adap = pi->adapter;
4790
4791         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4792                 spd = " 2.5 GT/s";
4793         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4794                 spd = " 5 GT/s";
4795
4796         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4797                 bufp += sprintf(bufp, "100/");
4798         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4799                 bufp += sprintf(bufp, "1000/");
4800         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4801                 bufp += sprintf(bufp, "10G/");
4802         if (bufp != buf)
4803                 --bufp;
4804         sprintf(bufp, "BASE-%s", base[pi->port_type]);
4805
4806         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4807                     adap->params.vpd.id, adap->params.rev, buf,
4808                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4809                     (adap->flags & USING_MSIX) ? " MSI-X" :
4810                     (adap->flags & USING_MSI) ? " MSI" : "");
4811         netdev_info(dev, "S/N: %s, E/C: %s\n",
4812                     adap->params.vpd.sn, adap->params.vpd.ec);
4813 }
4814
4815 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4816 {
4817         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4818 }
4819
4820 /*
4821  * Free the following resources:
4822  * - memory used for tables
4823  * - MSI/MSI-X
4824  * - net devices
4825  * - resources FW is holding for us
4826  */
4827 static void free_some_resources(struct adapter *adapter)
4828 {
4829         unsigned int i;
4830
4831         t4_free_mem(adapter->l2t);
4832         t4_free_mem(adapter->tids.tid_tab);
4833         disable_msi(adapter);
4834
4835         for_each_port(adapter, i)
4836                 if (adapter->port[i]) {
4837                         kfree(adap2pinfo(adapter, i)->rss);
4838                         free_netdev(adapter->port[i]);
4839                 }
4840         if (adapter->flags & FW_OK)
4841                 t4_fw_bye(adapter, adapter->fn);
4842 }
4843
4844 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4845 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4846                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4847
4848 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4849 {
4850         int func, i, err;
4851         struct port_info *pi;
4852         bool highdma = false;
4853         struct adapter *adapter = NULL;
4854
4855         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4856
4857         err = pci_request_regions(pdev, KBUILD_MODNAME);
4858         if (err) {
4859                 /* Just info, some other driver may have claimed the device. */
4860                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4861                 return err;
4862         }
4863
4864         /* We control everything through one PF */
4865         func = PCI_FUNC(pdev->devfn);
4866         if (func != ent->driver_data) {
4867                 pci_save_state(pdev);        /* to restore SR-IOV later */
4868                 goto sriov;
4869         }
4870
4871         err = pci_enable_device(pdev);
4872         if (err) {
4873                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4874                 goto out_release_regions;
4875         }
4876
4877         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4878                 highdma = true;
4879                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4880                 if (err) {
4881                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4882                                 "coherent allocations\n");
4883                         goto out_disable_device;
4884                 }
4885         } else {
4886                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4887                 if (err) {
4888                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4889                         goto out_disable_device;
4890                 }
4891         }
4892
4893         pci_enable_pcie_error_reporting(pdev);
4894         enable_pcie_relaxed_ordering(pdev);
4895         pci_set_master(pdev);
4896         pci_save_state(pdev);
4897
4898         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4899         if (!adapter) {
4900                 err = -ENOMEM;
4901                 goto out_disable_device;
4902         }
4903
4904         adapter->regs = pci_ioremap_bar(pdev, 0);
4905         if (!adapter->regs) {
4906                 dev_err(&pdev->dev, "cannot map device registers\n");
4907                 err = -ENOMEM;
4908                 goto out_free_adapter;
4909         }
4910
4911         adapter->pdev = pdev;
4912         adapter->pdev_dev = &pdev->dev;
4913         adapter->mbox = func;
4914         adapter->fn = func;
4915         adapter->msg_enable = dflt_msg_enable;
4916         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4917
4918         spin_lock_init(&adapter->stats_lock);
4919         spin_lock_init(&adapter->tid_release_lock);
4920
4921         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4922         INIT_WORK(&adapter->db_full_task, process_db_full);
4923         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4924
4925         err = t4_prep_adapter(adapter);
4926         if (err)
4927                 goto out_unmap_bar;
4928         setup_memwin(adapter);
4929         err = adap_init0(adapter);
4930         setup_memwin_rdma(adapter);
4931         if (err)
4932                 goto out_unmap_bar;
4933
4934         for_each_port(adapter, i) {
4935                 struct net_device *netdev;
4936
4937                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4938                                            MAX_ETH_QSETS);
4939                 if (!netdev) {
4940                         err = -ENOMEM;
4941                         goto out_free_dev;
4942                 }
4943
4944                 SET_NETDEV_DEV(netdev, &pdev->dev);
4945
4946                 adapter->port[i] = netdev;
4947                 pi = netdev_priv(netdev);
4948                 pi->adapter = adapter;
4949                 pi->xact_addr_filt = -1;
4950                 pi->port_id = i;
4951                 netdev->irq = pdev->irq;
4952
4953                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4954                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4955                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4956                         NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
4957                 if (highdma)
4958                         netdev->hw_features |= NETIF_F_HIGHDMA;
4959                 netdev->features |= netdev->hw_features;
4960                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4961
4962                 netdev->priv_flags |= IFF_UNICAST_FLT;
4963
4964                 netdev->netdev_ops = &cxgb4_netdev_ops;
4965                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
4966         }
4967
4968         pci_set_drvdata(pdev, adapter);
4969
4970         if (adapter->flags & FW_OK) {
4971                 err = t4_port_init(adapter, func, func, 0);
4972                 if (err)
4973                         goto out_free_dev;
4974         }
4975
4976         /*
4977          * Configure queues and allocate tables now, they can be needed as
4978          * soon as the first register_netdev completes.
4979          */
4980         cfg_queues(adapter);
4981
4982         adapter->l2t = t4_init_l2t();
4983         if (!adapter->l2t) {
4984                 /* We tolerate a lack of L2T, giving up some functionality */
4985                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4986                 adapter->params.offload = 0;
4987         }
4988
4989         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4990                 dev_warn(&pdev->dev, "could not allocate TID table, "
4991                          "continuing\n");
4992                 adapter->params.offload = 0;
4993         }
4994
4995         /* See what interrupts we'll be using */
4996         if (msi > 1 && enable_msix(adapter) == 0)
4997                 adapter->flags |= USING_MSIX;
4998         else if (msi > 0 && pci_enable_msi(pdev) == 0)
4999                 adapter->flags |= USING_MSI;
5000
5001         err = init_rss(adapter);
5002         if (err)
5003                 goto out_free_dev;
5004
5005         /*
5006          * The card is now ready to go.  If any errors occur during device
5007          * registration we do not fail the whole card but rather proceed only
5008          * with the ports we manage to register successfully.  However we must
5009          * register at least one net device.
5010          */
5011         for_each_port(adapter, i) {
5012                 pi = adap2pinfo(adapter, i);
5013                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5014                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5015
5016                 err = register_netdev(adapter->port[i]);
5017                 if (err)
5018                         break;
5019                 adapter->chan_map[pi->tx_chan] = i;
5020                 print_port_info(adapter->port[i]);
5021         }
5022         if (i == 0) {
5023                 dev_err(&pdev->dev, "could not register any net devices\n");
5024                 goto out_free_dev;
5025         }
5026         if (err) {
5027                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5028                 err = 0;
5029         }
5030
5031         if (cxgb4_debugfs_root) {
5032                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5033                                                            cxgb4_debugfs_root);
5034                 setup_debugfs(adapter);
5035         }
5036
5037         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5038         pdev->needs_freset = 1;
5039
5040         if (is_offload(adapter))
5041                 attach_ulds(adapter);
5042
5043 sriov:
5044 #ifdef CONFIG_PCI_IOV
5045         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
5046                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5047                         dev_info(&pdev->dev,
5048                                  "instantiated %u virtual functions\n",
5049                                  num_vf[func]);
5050 #endif
5051         return 0;
5052
5053  out_free_dev:
5054         free_some_resources(adapter);
5055  out_unmap_bar:
5056         iounmap(adapter->regs);
5057  out_free_adapter:
5058         kfree(adapter);
5059  out_disable_device:
5060         pci_disable_pcie_error_reporting(pdev);
5061         pci_disable_device(pdev);
5062  out_release_regions:
5063         pci_release_regions(pdev);
5064         pci_set_drvdata(pdev, NULL);
5065         return err;
5066 }
5067
5068 static void remove_one(struct pci_dev *pdev)
5069 {
5070         struct adapter *adapter = pci_get_drvdata(pdev);
5071
5072 #ifdef CONFIG_PCI_IOV
5073         pci_disable_sriov(pdev);
5074
5075 #endif
5076
5077         if (adapter) {
5078                 int i;
5079
5080                 if (is_offload(adapter))
5081                         detach_ulds(adapter);
5082
5083                 for_each_port(adapter, i)
5084                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5085                                 unregister_netdev(adapter->port[i]);
5086
5087                 if (adapter->debugfs_root)
5088                         debugfs_remove_recursive(adapter->debugfs_root);
5089
5090                 /* If we allocated filters, free up state associated with any
5091                  * valid filters ...
5092                  */
5093                 if (adapter->tids.ftid_tab) {
5094                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
5095                         for (i = 0; i < (adapter->tids.nftids +
5096                                         adapter->tids.nsftids); i++, f++)
5097                                 if (f->valid)
5098                                         clear_filter(adapter, f);
5099                 }
5100
5101                 if (adapter->flags & FULL_INIT_DONE)
5102                         cxgb_down(adapter);
5103
5104                 free_some_resources(adapter);
5105                 iounmap(adapter->regs);
5106                 kfree(adapter);
5107                 pci_disable_pcie_error_reporting(pdev);
5108                 pci_disable_device(pdev);
5109                 pci_release_regions(pdev);
5110                 pci_set_drvdata(pdev, NULL);
5111         } else
5112                 pci_release_regions(pdev);
5113 }
5114
5115 static struct pci_driver cxgb4_driver = {
5116         .name     = KBUILD_MODNAME,
5117         .id_table = cxgb4_pci_tbl,
5118         .probe    = init_one,
5119         .remove   = remove_one,
5120         .err_handler = &cxgb4_eeh,
5121 };
5122
5123 static int __init cxgb4_init_module(void)
5124 {
5125         int ret;
5126
5127         workq = create_singlethread_workqueue("cxgb4");
5128         if (!workq)
5129                 return -ENOMEM;
5130
5131         /* Debugfs support is optional, just warn if this fails */
5132         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5133         if (!cxgb4_debugfs_root)
5134                 pr_warning("could not create debugfs entry, continuing\n");
5135
5136         ret = pci_register_driver(&cxgb4_driver);
5137         if (ret < 0)
5138                 debugfs_remove(cxgb4_debugfs_root);
5139         return ret;
5140 }
5141
5142 static void __exit cxgb4_cleanup_module(void)
5143 {
5144         pci_unregister_driver(&cxgb4_driver);
5145         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5146         flush_workqueue(workq);
5147         destroy_workqueue(workq);
5148 }
5149
5150 module_init(cxgb4_init_module);
5151 module_exit(cxgb4_cleanup_module);