]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/82571.c
Merge tag 'ib-mfd-omap-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/lee...
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 /* 82571EB Gigabit Ethernet Controller
23  * 82571EB Gigabit Ethernet Controller (Copper)
24  * 82571EB Gigabit Ethernet Controller (Fiber)
25  * 82571EB Dual Port Gigabit Mezzanine Adapter
26  * 82571EB Quad Port Gigabit Mezzanine Adapter
27  * 82571PT Gigabit PT Quad Port Server ExpressModule
28  * 82572EI Gigabit Ethernet Controller (Copper)
29  * 82572EI Gigabit Ethernet Controller (Fiber)
30  * 82572EI Gigabit Ethernet Controller
31  * 82573V Gigabit Ethernet Controller (Copper)
32  * 82573E Gigabit Ethernet Controller (Copper)
33  * 82573L Gigabit Ethernet Controller
34  * 82574L Gigabit Network Connection
35  * 82583V Gigabit Network Connection
36  */
37
38 #include "e1000.h"
39
40 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
41 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
42 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
43 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
44 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
45                                       u16 words, u16 *data);
46 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
47 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
48 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
49 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
50 static s32 e1000_led_on_82574(struct e1000_hw *hw);
51 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
52 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
53 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
54 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
55 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
56 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
57 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
58
59 /**
60  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
61  *  @hw: pointer to the HW structure
62  **/
63 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
64 {
65         struct e1000_phy_info *phy = &hw->phy;
66         s32 ret_val;
67
68         if (hw->phy.media_type != e1000_media_type_copper) {
69                 phy->type = e1000_phy_none;
70                 return 0;
71         }
72
73         phy->addr = 1;
74         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
75         phy->reset_delay_us = 100;
76
77         phy->ops.power_up = e1000_power_up_phy_copper;
78         phy->ops.power_down = e1000_power_down_phy_copper_82571;
79
80         switch (hw->mac.type) {
81         case e1000_82571:
82         case e1000_82572:
83                 phy->type = e1000_phy_igp_2;
84                 break;
85         case e1000_82573:
86                 phy->type = e1000_phy_m88;
87                 break;
88         case e1000_82574:
89         case e1000_82583:
90                 phy->type = e1000_phy_bm;
91                 phy->ops.acquire = e1000_get_hw_semaphore_82574;
92                 phy->ops.release = e1000_put_hw_semaphore_82574;
93                 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
94                 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
95                 break;
96         default:
97                 return -E1000_ERR_PHY;
98                 break;
99         }
100
101         /* This can only be done after all function pointers are setup. */
102         ret_val = e1000_get_phy_id_82571(hw);
103         if (ret_val) {
104                 e_dbg("Error getting PHY ID\n");
105                 return ret_val;
106         }
107
108         /* Verify phy id */
109         switch (hw->mac.type) {
110         case e1000_82571:
111         case e1000_82572:
112                 if (phy->id != IGP01E1000_I_PHY_ID)
113                         ret_val = -E1000_ERR_PHY;
114                 break;
115         case e1000_82573:
116                 if (phy->id != M88E1111_I_PHY_ID)
117                         ret_val = -E1000_ERR_PHY;
118                 break;
119         case e1000_82574:
120         case e1000_82583:
121                 if (phy->id != BME1000_E_PHY_ID_R2)
122                         ret_val = -E1000_ERR_PHY;
123                 break;
124         default:
125                 ret_val = -E1000_ERR_PHY;
126                 break;
127         }
128
129         if (ret_val)
130                 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
131
132         return ret_val;
133 }
134
135 /**
136  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
137  *  @hw: pointer to the HW structure
138  **/
139 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
140 {
141         struct e1000_nvm_info *nvm = &hw->nvm;
142         u32 eecd = er32(EECD);
143         u16 size;
144
145         nvm->opcode_bits = 8;
146         nvm->delay_usec = 1;
147         switch (nvm->override) {
148         case e1000_nvm_override_spi_large:
149                 nvm->page_size = 32;
150                 nvm->address_bits = 16;
151                 break;
152         case e1000_nvm_override_spi_small:
153                 nvm->page_size = 8;
154                 nvm->address_bits = 8;
155                 break;
156         default:
157                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
158                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
159                 break;
160         }
161
162         switch (hw->mac.type) {
163         case e1000_82573:
164         case e1000_82574:
165         case e1000_82583:
166                 if (((eecd >> 15) & 0x3) == 0x3) {
167                         nvm->type = e1000_nvm_flash_hw;
168                         nvm->word_size = 2048;
169                         /* Autonomous Flash update bit must be cleared due
170                          * to Flash update issue.
171                          */
172                         eecd &= ~E1000_EECD_AUPDEN;
173                         ew32(EECD, eecd);
174                         break;
175                 }
176                 /* Fall Through */
177         default:
178                 nvm->type = e1000_nvm_eeprom_spi;
179                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
180                              E1000_EECD_SIZE_EX_SHIFT);
181                 /* Added to a constant, "size" becomes the left-shift value
182                  * for setting word_size.
183                  */
184                 size += NVM_WORD_SIZE_BASE_SHIFT;
185
186                 /* EEPROM access above 16k is unsupported */
187                 if (size > 14)
188                         size = 14;
189                 nvm->word_size = 1 << size;
190                 break;
191         }
192
193         /* Function Pointers */
194         switch (hw->mac.type) {
195         case e1000_82574:
196         case e1000_82583:
197                 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
198                 nvm->ops.release = e1000_put_hw_semaphore_82574;
199                 break;
200         default:
201                 break;
202         }
203
204         return 0;
205 }
206
207 /**
208  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
209  *  @hw: pointer to the HW structure
210  **/
211 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
212 {
213         struct e1000_mac_info *mac = &hw->mac;
214         u32 swsm = 0;
215         u32 swsm2 = 0;
216         bool force_clear_smbi = false;
217
218         /* Set media type and media-dependent function pointers */
219         switch (hw->adapter->pdev->device) {
220         case E1000_DEV_ID_82571EB_FIBER:
221         case E1000_DEV_ID_82572EI_FIBER:
222         case E1000_DEV_ID_82571EB_QUAD_FIBER:
223                 hw->phy.media_type = e1000_media_type_fiber;
224                 mac->ops.setup_physical_interface =
225                     e1000_setup_fiber_serdes_link_82571;
226                 mac->ops.check_for_link = e1000e_check_for_fiber_link;
227                 mac->ops.get_link_up_info =
228                     e1000e_get_speed_and_duplex_fiber_serdes;
229                 break;
230         case E1000_DEV_ID_82571EB_SERDES:
231         case E1000_DEV_ID_82571EB_SERDES_DUAL:
232         case E1000_DEV_ID_82571EB_SERDES_QUAD:
233         case E1000_DEV_ID_82572EI_SERDES:
234                 hw->phy.media_type = e1000_media_type_internal_serdes;
235                 mac->ops.setup_physical_interface =
236                     e1000_setup_fiber_serdes_link_82571;
237                 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
238                 mac->ops.get_link_up_info =
239                     e1000e_get_speed_and_duplex_fiber_serdes;
240                 break;
241         default:
242                 hw->phy.media_type = e1000_media_type_copper;
243                 mac->ops.setup_physical_interface =
244                     e1000_setup_copper_link_82571;
245                 mac->ops.check_for_link = e1000e_check_for_copper_link;
246                 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
247                 break;
248         }
249
250         /* Set mta register count */
251         mac->mta_reg_count = 128;
252         /* Set rar entry count */
253         mac->rar_entry_count = E1000_RAR_ENTRIES;
254         /* Adaptive IFS supported */
255         mac->adaptive_ifs = true;
256
257         /* MAC-specific function pointers */
258         switch (hw->mac.type) {
259         case e1000_82573:
260                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
261                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
262                 mac->ops.led_on = e1000e_led_on_generic;
263                 mac->ops.blink_led = e1000e_blink_led_generic;
264
265                 /* FWSM register */
266                 mac->has_fwsm = true;
267                 /* ARC supported; valid only if manageability features are
268                  * enabled.
269                  */
270                 mac->arc_subsystem_valid = !!(er32(FWSM) &
271                                               E1000_FWSM_MODE_MASK);
272                 break;
273         case e1000_82574:
274         case e1000_82583:
275                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
276                 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
277                 mac->ops.led_on = e1000_led_on_82574;
278                 break;
279         default:
280                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
281                 mac->ops.led_on = e1000e_led_on_generic;
282                 mac->ops.blink_led = e1000e_blink_led_generic;
283
284                 /* FWSM register */
285                 mac->has_fwsm = true;
286                 break;
287         }
288
289         /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
290          * first NVM or PHY access. This should be done for single-port
291          * devices, and for one port only on dual-port devices so that
292          * for those devices we can still use the SMBI lock to synchronize
293          * inter-port accesses to the PHY & NVM.
294          */
295         switch (hw->mac.type) {
296         case e1000_82571:
297         case e1000_82572:
298                 swsm2 = er32(SWSM2);
299
300                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
301                         /* Only do this for the first interface on this card */
302                         ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
303                         force_clear_smbi = true;
304                 } else {
305                         force_clear_smbi = false;
306                 }
307                 break;
308         default:
309                 force_clear_smbi = true;
310                 break;
311         }
312
313         if (force_clear_smbi) {
314                 /* Make sure SWSM.SMBI is clear */
315                 swsm = er32(SWSM);
316                 if (swsm & E1000_SWSM_SMBI) {
317                         /* This bit should not be set on a first interface, and
318                          * indicates that the bootagent or EFI code has
319                          * improperly left this bit enabled
320                          */
321                         e_dbg("Please update your 82571 Bootagent\n");
322                 }
323                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
324         }
325
326         /* Initialize device specific counter of SMBI acquisition timeouts. */
327         hw->dev_spec.e82571.smb_counter = 0;
328
329         return 0;
330 }
331
332 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
333 {
334         struct e1000_hw *hw = &adapter->hw;
335         static int global_quad_port_a;  /* global port a indication */
336         struct pci_dev *pdev = adapter->pdev;
337         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
338         s32 rc;
339
340         rc = e1000_init_mac_params_82571(hw);
341         if (rc)
342                 return rc;
343
344         rc = e1000_init_nvm_params_82571(hw);
345         if (rc)
346                 return rc;
347
348         rc = e1000_init_phy_params_82571(hw);
349         if (rc)
350                 return rc;
351
352         /* tag quad port adapters first, it's used below */
353         switch (pdev->device) {
354         case E1000_DEV_ID_82571EB_QUAD_COPPER:
355         case E1000_DEV_ID_82571EB_QUAD_FIBER:
356         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
357         case E1000_DEV_ID_82571PT_QUAD_COPPER:
358                 adapter->flags |= FLAG_IS_QUAD_PORT;
359                 /* mark the first port */
360                 if (global_quad_port_a == 0)
361                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
362                 /* Reset for multiple quad port adapters */
363                 global_quad_port_a++;
364                 if (global_quad_port_a == 4)
365                         global_quad_port_a = 0;
366                 break;
367         default:
368                 break;
369         }
370
371         switch (adapter->hw.mac.type) {
372         case e1000_82571:
373                 /* these dual ports don't have WoL on port B at all */
374                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
375                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
376                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
377                     (is_port_b))
378                         adapter->flags &= ~FLAG_HAS_WOL;
379                 /* quad ports only support WoL on port A */
380                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
381                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
382                         adapter->flags &= ~FLAG_HAS_WOL;
383                 /* Does not support WoL on any port */
384                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
385                         adapter->flags &= ~FLAG_HAS_WOL;
386                 break;
387         case e1000_82573:
388                 if (pdev->device == E1000_DEV_ID_82573L) {
389                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
390                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
391                 }
392                 break;
393         default:
394                 break;
395         }
396
397         return 0;
398 }
399
400 /**
401  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
402  *  @hw: pointer to the HW structure
403  *
404  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
405  *  revision in the hardware structure.
406  **/
407 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
408 {
409         struct e1000_phy_info *phy = &hw->phy;
410         s32 ret_val;
411         u16 phy_id = 0;
412
413         switch (hw->mac.type) {
414         case e1000_82571:
415         case e1000_82572:
416                 /* The 82571 firmware may still be configuring the PHY.
417                  * In this case, we cannot access the PHY until the
418                  * configuration is done.  So we explicitly set the
419                  * PHY ID.
420                  */
421                 phy->id = IGP01E1000_I_PHY_ID;
422                 break;
423         case e1000_82573:
424                 return e1000e_get_phy_id(hw);
425                 break;
426         case e1000_82574:
427         case e1000_82583:
428                 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
429                 if (ret_val)
430                         return ret_val;
431
432                 phy->id = (u32)(phy_id << 16);
433                 usleep_range(20, 40);
434                 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
435                 if (ret_val)
436                         return ret_val;
437
438                 phy->id |= (u32)(phy_id);
439                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
440                 break;
441         default:
442                 return -E1000_ERR_PHY;
443                 break;
444         }
445
446         return 0;
447 }
448
449 /**
450  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
451  *  @hw: pointer to the HW structure
452  *
453  *  Acquire the HW semaphore to access the PHY or NVM
454  **/
455 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
456 {
457         u32 swsm;
458         s32 sw_timeout = hw->nvm.word_size + 1;
459         s32 fw_timeout = hw->nvm.word_size + 1;
460         s32 i = 0;
461
462         /* If we have timedout 3 times on trying to acquire
463          * the inter-port SMBI semaphore, there is old code
464          * operating on the other port, and it is not
465          * releasing SMBI. Modify the number of times that
466          * we try for the semaphore to interwork with this
467          * older code.
468          */
469         if (hw->dev_spec.e82571.smb_counter > 2)
470                 sw_timeout = 1;
471
472         /* Get the SW semaphore */
473         while (i < sw_timeout) {
474                 swsm = er32(SWSM);
475                 if (!(swsm & E1000_SWSM_SMBI))
476                         break;
477
478                 usleep_range(50, 100);
479                 i++;
480         }
481
482         if (i == sw_timeout) {
483                 e_dbg("Driver can't access device - SMBI bit is set.\n");
484                 hw->dev_spec.e82571.smb_counter++;
485         }
486         /* Get the FW semaphore. */
487         for (i = 0; i < fw_timeout; i++) {
488                 swsm = er32(SWSM);
489                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
490
491                 /* Semaphore acquired if bit latched */
492                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
493                         break;
494
495                 usleep_range(50, 100);
496         }
497
498         if (i == fw_timeout) {
499                 /* Release semaphores */
500                 e1000_put_hw_semaphore_82571(hw);
501                 e_dbg("Driver can't access the NVM\n");
502                 return -E1000_ERR_NVM;
503         }
504
505         return 0;
506 }
507
508 /**
509  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
510  *  @hw: pointer to the HW structure
511  *
512  *  Release hardware semaphore used to access the PHY or NVM
513  **/
514 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
515 {
516         u32 swsm;
517
518         swsm = er32(SWSM);
519         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
520         ew32(SWSM, swsm);
521 }
522
523 /**
524  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
525  *  @hw: pointer to the HW structure
526  *
527  *  Acquire the HW semaphore during reset.
528  *
529  **/
530 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
531 {
532         u32 extcnf_ctrl;
533         s32 i = 0;
534
535         extcnf_ctrl = er32(EXTCNF_CTRL);
536         do {
537                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
538                 ew32(EXTCNF_CTRL, extcnf_ctrl);
539                 extcnf_ctrl = er32(EXTCNF_CTRL);
540
541                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
542                         break;
543
544                 usleep_range(2000, 4000);
545                 i++;
546         } while (i < MDIO_OWNERSHIP_TIMEOUT);
547
548         if (i == MDIO_OWNERSHIP_TIMEOUT) {
549                 /* Release semaphores */
550                 e1000_put_hw_semaphore_82573(hw);
551                 e_dbg("Driver can't access the PHY\n");
552                 return -E1000_ERR_PHY;
553         }
554
555         return 0;
556 }
557
558 /**
559  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
560  *  @hw: pointer to the HW structure
561  *
562  *  Release hardware semaphore used during reset.
563  *
564  **/
565 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
566 {
567         u32 extcnf_ctrl;
568
569         extcnf_ctrl = er32(EXTCNF_CTRL);
570         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
571         ew32(EXTCNF_CTRL, extcnf_ctrl);
572 }
573
574 static DEFINE_MUTEX(swflag_mutex);
575
576 /**
577  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
578  *  @hw: pointer to the HW structure
579  *
580  *  Acquire the HW semaphore to access the PHY or NVM.
581  *
582  **/
583 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
584 {
585         s32 ret_val;
586
587         mutex_lock(&swflag_mutex);
588         ret_val = e1000_get_hw_semaphore_82573(hw);
589         if (ret_val)
590                 mutex_unlock(&swflag_mutex);
591         return ret_val;
592 }
593
594 /**
595  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
596  *  @hw: pointer to the HW structure
597  *
598  *  Release hardware semaphore used to access the PHY or NVM
599  *
600  **/
601 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
602 {
603         e1000_put_hw_semaphore_82573(hw);
604         mutex_unlock(&swflag_mutex);
605 }
606
607 /**
608  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
609  *  @hw: pointer to the HW structure
610  *  @active: true to enable LPLU, false to disable
611  *
612  *  Sets the LPLU D0 state according to the active flag.
613  *  LPLU will not be activated unless the
614  *  device autonegotiation advertisement meets standards of
615  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
616  *  This is a function pointer entry point only called by
617  *  PHY setup routines.
618  **/
619 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
620 {
621         u32 data = er32(POEMB);
622
623         if (active)
624                 data |= E1000_PHY_CTRL_D0A_LPLU;
625         else
626                 data &= ~E1000_PHY_CTRL_D0A_LPLU;
627
628         ew32(POEMB, data);
629         return 0;
630 }
631
632 /**
633  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
634  *  @hw: pointer to the HW structure
635  *  @active: boolean used to enable/disable lplu
636  *
637  *  The low power link up (lplu) state is set to the power management level D3
638  *  when active is true, else clear lplu for D3. LPLU
639  *  is used during Dx states where the power conservation is most important.
640  *  During driver activity, SmartSpeed should be enabled so performance is
641  *  maintained.
642  **/
643 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
644 {
645         u32 data = er32(POEMB);
646
647         if (!active) {
648                 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
649         } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
650                    (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
651                    (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
652                 data |= E1000_PHY_CTRL_NOND0A_LPLU;
653         }
654
655         ew32(POEMB, data);
656         return 0;
657 }
658
659 /**
660  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
661  *  @hw: pointer to the HW structure
662  *
663  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
664  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
665  *  for EEPROM access grant bit.  If the access grant bit is not set, release
666  *  hardware semaphore.
667  **/
668 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
669 {
670         s32 ret_val;
671
672         ret_val = e1000_get_hw_semaphore_82571(hw);
673         if (ret_val)
674                 return ret_val;
675
676         switch (hw->mac.type) {
677         case e1000_82573:
678                 break;
679         default:
680                 ret_val = e1000e_acquire_nvm(hw);
681                 break;
682         }
683
684         if (ret_val)
685                 e1000_put_hw_semaphore_82571(hw);
686
687         return ret_val;
688 }
689
690 /**
691  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
692  *  @hw: pointer to the HW structure
693  *
694  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
695  **/
696 static void e1000_release_nvm_82571(struct e1000_hw *hw)
697 {
698         e1000e_release_nvm(hw);
699         e1000_put_hw_semaphore_82571(hw);
700 }
701
702 /**
703  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
704  *  @hw: pointer to the HW structure
705  *  @offset: offset within the EEPROM to be written to
706  *  @words: number of words to write
707  *  @data: 16 bit word(s) to be written to the EEPROM
708  *
709  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
710  *
711  *  If e1000e_update_nvm_checksum is not called after this function, the
712  *  EEPROM will most likely contain an invalid checksum.
713  **/
714 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
715                                  u16 *data)
716 {
717         s32 ret_val;
718
719         switch (hw->mac.type) {
720         case e1000_82573:
721         case e1000_82574:
722         case e1000_82583:
723                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
724                 break;
725         case e1000_82571:
726         case e1000_82572:
727                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
728                 break;
729         default:
730                 ret_val = -E1000_ERR_NVM;
731                 break;
732         }
733
734         return ret_val;
735 }
736
737 /**
738  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
739  *  @hw: pointer to the HW structure
740  *
741  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
742  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
743  *  value to the EEPROM.
744  **/
745 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
746 {
747         u32 eecd;
748         s32 ret_val;
749         u16 i;
750
751         ret_val = e1000e_update_nvm_checksum_generic(hw);
752         if (ret_val)
753                 return ret_val;
754
755         /* If our nvm is an EEPROM, then we're done
756          * otherwise, commit the checksum to the flash NVM.
757          */
758         if (hw->nvm.type != e1000_nvm_flash_hw)
759                 return 0;
760
761         /* Check for pending operations. */
762         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
763                 usleep_range(1000, 2000);
764                 if (!(er32(EECD) & E1000_EECD_FLUPD))
765                         break;
766         }
767
768         if (i == E1000_FLASH_UPDATES)
769                 return -E1000_ERR_NVM;
770
771         /* Reset the firmware if using STM opcode. */
772         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
773                 /* The enabling of and the actual reset must be done
774                  * in two write cycles.
775                  */
776                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
777                 e1e_flush();
778                 ew32(HICR, E1000_HICR_FW_RESET);
779         }
780
781         /* Commit the write to flash */
782         eecd = er32(EECD) | E1000_EECD_FLUPD;
783         ew32(EECD, eecd);
784
785         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
786                 usleep_range(1000, 2000);
787                 if (!(er32(EECD) & E1000_EECD_FLUPD))
788                         break;
789         }
790
791         if (i == E1000_FLASH_UPDATES)
792                 return -E1000_ERR_NVM;
793
794         return 0;
795 }
796
797 /**
798  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
799  *  @hw: pointer to the HW structure
800  *
801  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
802  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
803  **/
804 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
805 {
806         if (hw->nvm.type == e1000_nvm_flash_hw)
807                 e1000_fix_nvm_checksum_82571(hw);
808
809         return e1000e_validate_nvm_checksum_generic(hw);
810 }
811
812 /**
813  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
814  *  @hw: pointer to the HW structure
815  *  @offset: offset within the EEPROM to be written to
816  *  @words: number of words to write
817  *  @data: 16 bit word(s) to be written to the EEPROM
818  *
819  *  After checking for invalid values, poll the EEPROM to ensure the previous
820  *  command has completed before trying to write the next word.  After write
821  *  poll for completion.
822  *
823  *  If e1000e_update_nvm_checksum is not called after this function, the
824  *  EEPROM will most likely contain an invalid checksum.
825  **/
826 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
827                                       u16 words, u16 *data)
828 {
829         struct e1000_nvm_info *nvm = &hw->nvm;
830         u32 i, eewr = 0;
831         s32 ret_val = 0;
832
833         /* A check for invalid values:  offset too large, too many words,
834          * and not enough words.
835          */
836         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
837             (words == 0)) {
838                 e_dbg("nvm parameter(s) out of bounds\n");
839                 return -E1000_ERR_NVM;
840         }
841
842         for (i = 0; i < words; i++) {
843                 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
844                         ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
845                         E1000_NVM_RW_REG_START);
846
847                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
848                 if (ret_val)
849                         break;
850
851                 ew32(EEWR, eewr);
852
853                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
854                 if (ret_val)
855                         break;
856         }
857
858         return ret_val;
859 }
860
861 /**
862  *  e1000_get_cfg_done_82571 - Poll for configuration done
863  *  @hw: pointer to the HW structure
864  *
865  *  Reads the management control register for the config done bit to be set.
866  **/
867 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
868 {
869         s32 timeout = PHY_CFG_TIMEOUT;
870
871         while (timeout) {
872                 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
873                         break;
874                 usleep_range(1000, 2000);
875                 timeout--;
876         }
877         if (!timeout) {
878                 e_dbg("MNG configuration cycle has not completed.\n");
879                 return -E1000_ERR_RESET;
880         }
881
882         return 0;
883 }
884
885 /**
886  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
887  *  @hw: pointer to the HW structure
888  *  @active: true to enable LPLU, false to disable
889  *
890  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
891  *  this function also disables smart speed and vice versa.  LPLU will not be
892  *  activated unless the device autonegotiation advertisement meets standards
893  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
894  *  pointer entry point only called by PHY setup routines.
895  **/
896 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
897 {
898         struct e1000_phy_info *phy = &hw->phy;
899         s32 ret_val;
900         u16 data;
901
902         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
903         if (ret_val)
904                 return ret_val;
905
906         if (active) {
907                 data |= IGP02E1000_PM_D0_LPLU;
908                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
909                 if (ret_val)
910                         return ret_val;
911
912                 /* When LPLU is enabled, we should disable SmartSpeed */
913                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
914                 if (ret_val)
915                         return ret_val;
916                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
917                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
918                 if (ret_val)
919                         return ret_val;
920         } else {
921                 data &= ~IGP02E1000_PM_D0_LPLU;
922                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
923                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
924                  * during Dx states where the power conservation is most
925                  * important.  During driver activity we should enable
926                  * SmartSpeed, so performance is maintained.
927                  */
928                 if (phy->smart_speed == e1000_smart_speed_on) {
929                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
930                                            &data);
931                         if (ret_val)
932                                 return ret_val;
933
934                         data |= IGP01E1000_PSCFR_SMART_SPEED;
935                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
936                                            data);
937                         if (ret_val)
938                                 return ret_val;
939                 } else if (phy->smart_speed == e1000_smart_speed_off) {
940                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
941                                            &data);
942                         if (ret_val)
943                                 return ret_val;
944
945                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
946                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
947                                            data);
948                         if (ret_val)
949                                 return ret_val;
950                 }
951         }
952
953         return 0;
954 }
955
956 /**
957  *  e1000_reset_hw_82571 - Reset hardware
958  *  @hw: pointer to the HW structure
959  *
960  *  This resets the hardware into a known state.
961  **/
962 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
963 {
964         u32 ctrl, ctrl_ext, eecd, tctl;
965         s32 ret_val;
966
967         /* Prevent the PCI-E bus from sticking if there is no TLP connection
968          * on the last TLP read/write transaction when MAC is reset.
969          */
970         ret_val = e1000e_disable_pcie_master(hw);
971         if (ret_val)
972                 e_dbg("PCI-E Master disable polling has failed.\n");
973
974         e_dbg("Masking off all interrupts\n");
975         ew32(IMC, 0xffffffff);
976
977         ew32(RCTL, 0);
978         tctl = er32(TCTL);
979         tctl &= ~E1000_TCTL_EN;
980         ew32(TCTL, tctl);
981         e1e_flush();
982
983         usleep_range(10000, 20000);
984
985         /* Must acquire the MDIO ownership before MAC reset.
986          * Ownership defaults to firmware after a reset.
987          */
988         switch (hw->mac.type) {
989         case e1000_82573:
990                 ret_val = e1000_get_hw_semaphore_82573(hw);
991                 break;
992         case e1000_82574:
993         case e1000_82583:
994                 ret_val = e1000_get_hw_semaphore_82574(hw);
995                 break;
996         default:
997                 break;
998         }
999
1000         ctrl = er32(CTRL);
1001
1002         e_dbg("Issuing a global reset to MAC\n");
1003         ew32(CTRL, ctrl | E1000_CTRL_RST);
1004
1005         /* Must release MDIO ownership and mutex after MAC reset. */
1006         switch (hw->mac.type) {
1007         case e1000_82573:
1008                 /* Release mutex only if the hw semaphore is acquired */
1009                 if (!ret_val)
1010                         e1000_put_hw_semaphore_82573(hw);
1011                 break;
1012         case e1000_82574:
1013         case e1000_82583:
1014                 /* Release mutex only if the hw semaphore is acquired */
1015                 if (!ret_val)
1016                         e1000_put_hw_semaphore_82574(hw);
1017                 break;
1018         default:
1019                 break;
1020         }
1021
1022         if (hw->nvm.type == e1000_nvm_flash_hw) {
1023                 usleep_range(10, 20);
1024                 ctrl_ext = er32(CTRL_EXT);
1025                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1026                 ew32(CTRL_EXT, ctrl_ext);
1027                 e1e_flush();
1028         }
1029
1030         ret_val = e1000e_get_auto_rd_done(hw);
1031         if (ret_val)
1032                 /* We don't want to continue accessing MAC registers. */
1033                 return ret_val;
1034
1035         /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1036          * Need to wait for Phy configuration completion before accessing
1037          * NVM and Phy.
1038          */
1039
1040         switch (hw->mac.type) {
1041         case e1000_82571:
1042         case e1000_82572:
1043                 /* REQ and GNT bits need to be cleared when using AUTO_RD
1044                  * to access the EEPROM.
1045                  */
1046                 eecd = er32(EECD);
1047                 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1048                 ew32(EECD, eecd);
1049                 break;
1050         case e1000_82573:
1051         case e1000_82574:
1052         case e1000_82583:
1053                 msleep(25);
1054                 break;
1055         default:
1056                 break;
1057         }
1058
1059         /* Clear any pending interrupt events. */
1060         ew32(IMC, 0xffffffff);
1061         er32(ICR);
1062
1063         if (hw->mac.type == e1000_82571) {
1064                 /* Install any alternate MAC address into RAR0 */
1065                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1066                 if (ret_val)
1067                         return ret_val;
1068
1069                 e1000e_set_laa_state_82571(hw, true);
1070         }
1071
1072         /* Reinitialize the 82571 serdes link state machine */
1073         if (hw->phy.media_type == e1000_media_type_internal_serdes)
1074                 hw->mac.serdes_link_state = e1000_serdes_link_down;
1075
1076         return 0;
1077 }
1078
1079 /**
1080  *  e1000_init_hw_82571 - Initialize hardware
1081  *  @hw: pointer to the HW structure
1082  *
1083  *  This inits the hardware readying it for operation.
1084  **/
1085 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1086 {
1087         struct e1000_mac_info *mac = &hw->mac;
1088         u32 reg_data;
1089         s32 ret_val;
1090         u16 i, rar_count = mac->rar_entry_count;
1091
1092         e1000_initialize_hw_bits_82571(hw);
1093
1094         /* Initialize identification LED */
1095         ret_val = mac->ops.id_led_init(hw);
1096         /* An error is not fatal and we should not stop init due to this */
1097         if (ret_val)
1098                 e_dbg("Error initializing identification LED\n");
1099
1100         /* Disabling VLAN filtering */
1101         e_dbg("Initializing the IEEE VLAN\n");
1102         mac->ops.clear_vfta(hw);
1103
1104         /* Setup the receive address.
1105          * If, however, a locally administered address was assigned to the
1106          * 82571, we must reserve a RAR for it to work around an issue where
1107          * resetting one port will reload the MAC on the other port.
1108          */
1109         if (e1000e_get_laa_state_82571(hw))
1110                 rar_count--;
1111         e1000e_init_rx_addrs(hw, rar_count);
1112
1113         /* Zero out the Multicast HASH table */
1114         e_dbg("Zeroing the MTA\n");
1115         for (i = 0; i < mac->mta_reg_count; i++)
1116                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1117
1118         /* Setup link and flow control */
1119         ret_val = mac->ops.setup_link(hw);
1120
1121         /* Set the transmit descriptor write-back policy */
1122         reg_data = er32(TXDCTL(0));
1123         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1124                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1125         ew32(TXDCTL(0), reg_data);
1126
1127         /* ...for both queues. */
1128         switch (mac->type) {
1129         case e1000_82573:
1130                 e1000e_enable_tx_pkt_filtering(hw);
1131                 /* fall through */
1132         case e1000_82574:
1133         case e1000_82583:
1134                 reg_data = er32(GCR);
1135                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1136                 ew32(GCR, reg_data);
1137                 break;
1138         default:
1139                 reg_data = er32(TXDCTL(1));
1140                 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1141                             E1000_TXDCTL_FULL_TX_DESC_WB |
1142                             E1000_TXDCTL_COUNT_DESC);
1143                 ew32(TXDCTL(1), reg_data);
1144                 break;
1145         }
1146
1147         /* Clear all of the statistics registers (clear on read).  It is
1148          * important that we do this after we have tried to establish link
1149          * because the symbol error count will increment wildly if there
1150          * is no link.
1151          */
1152         e1000_clear_hw_cntrs_82571(hw);
1153
1154         return ret_val;
1155 }
1156
1157 /**
1158  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1159  *  @hw: pointer to the HW structure
1160  *
1161  *  Initializes required hardware-dependent bits needed for normal operation.
1162  **/
1163 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1164 {
1165         u32 reg;
1166
1167         /* Transmit Descriptor Control 0 */
1168         reg = er32(TXDCTL(0));
1169         reg |= (1 << 22);
1170         ew32(TXDCTL(0), reg);
1171
1172         /* Transmit Descriptor Control 1 */
1173         reg = er32(TXDCTL(1));
1174         reg |= (1 << 22);
1175         ew32(TXDCTL(1), reg);
1176
1177         /* Transmit Arbitration Control 0 */
1178         reg = er32(TARC(0));
1179         reg &= ~(0xF << 27);    /* 30:27 */
1180         switch (hw->mac.type) {
1181         case e1000_82571:
1182         case e1000_82572:
1183                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1184                 break;
1185         case e1000_82574:
1186         case e1000_82583:
1187                 reg |= (1 << 26);
1188                 break;
1189         default:
1190                 break;
1191         }
1192         ew32(TARC(0), reg);
1193
1194         /* Transmit Arbitration Control 1 */
1195         reg = er32(TARC(1));
1196         switch (hw->mac.type) {
1197         case e1000_82571:
1198         case e1000_82572:
1199                 reg &= ~((1 << 29) | (1 << 30));
1200                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1201                 if (er32(TCTL) & E1000_TCTL_MULR)
1202                         reg &= ~(1 << 28);
1203                 else
1204                         reg |= (1 << 28);
1205                 ew32(TARC(1), reg);
1206                 break;
1207         default:
1208                 break;
1209         }
1210
1211         /* Device Control */
1212         switch (hw->mac.type) {
1213         case e1000_82573:
1214         case e1000_82574:
1215         case e1000_82583:
1216                 reg = er32(CTRL);
1217                 reg &= ~(1 << 29);
1218                 ew32(CTRL, reg);
1219                 break;
1220         default:
1221                 break;
1222         }
1223
1224         /* Extended Device Control */
1225         switch (hw->mac.type) {
1226         case e1000_82573:
1227         case e1000_82574:
1228         case e1000_82583:
1229                 reg = er32(CTRL_EXT);
1230                 reg &= ~(1 << 23);
1231                 reg |= (1 << 22);
1232                 ew32(CTRL_EXT, reg);
1233                 break;
1234         default:
1235                 break;
1236         }
1237
1238         if (hw->mac.type == e1000_82571) {
1239                 reg = er32(PBA_ECC);
1240                 reg |= E1000_PBA_ECC_CORR_EN;
1241                 ew32(PBA_ECC, reg);
1242         }
1243
1244         /* Workaround for hardware errata.
1245          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1246          */
1247         if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1248                 reg = er32(CTRL_EXT);
1249                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1250                 ew32(CTRL_EXT, reg);
1251         }
1252
1253         /* Disable IPv6 extension header parsing because some malformed
1254          * IPv6 headers can hang the Rx.
1255          */
1256         if (hw->mac.type <= e1000_82573) {
1257                 reg = er32(RFCTL);
1258                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1259                 ew32(RFCTL, reg);
1260         }
1261
1262         /* PCI-Ex Control Registers */
1263         switch (hw->mac.type) {
1264         case e1000_82574:
1265         case e1000_82583:
1266                 reg = er32(GCR);
1267                 reg |= (1 << 22);
1268                 ew32(GCR, reg);
1269
1270                 /* Workaround for hardware errata.
1271                  * apply workaround for hardware errata documented in errata
1272                  * docs Fixes issue where some error prone or unreliable PCIe
1273                  * completions are occurring, particularly with ASPM enabled.
1274                  * Without fix, issue can cause Tx timeouts.
1275                  */
1276                 reg = er32(GCR2);
1277                 reg |= 1;
1278                 ew32(GCR2, reg);
1279                 break;
1280         default:
1281                 break;
1282         }
1283 }
1284
1285 /**
1286  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1287  *  @hw: pointer to the HW structure
1288  *
1289  *  Clears the register array which contains the VLAN filter table by
1290  *  setting all the values to 0.
1291  **/
1292 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1293 {
1294         u32 offset;
1295         u32 vfta_value = 0;
1296         u32 vfta_offset = 0;
1297         u32 vfta_bit_in_reg = 0;
1298
1299         switch (hw->mac.type) {
1300         case e1000_82573:
1301         case e1000_82574:
1302         case e1000_82583:
1303                 if (hw->mng_cookie.vlan_id != 0) {
1304                         /* The VFTA is a 4096b bit-field, each identifying
1305                          * a single VLAN ID.  The following operations
1306                          * determine which 32b entry (i.e. offset) into the
1307                          * array we want to set the VLAN ID (i.e. bit) of
1308                          * the manageability unit.
1309                          */
1310                         vfta_offset = (hw->mng_cookie.vlan_id >>
1311                                        E1000_VFTA_ENTRY_SHIFT) &
1312                             E1000_VFTA_ENTRY_MASK;
1313                         vfta_bit_in_reg =
1314                             1 << (hw->mng_cookie.vlan_id &
1315                                   E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1316                 }
1317                 break;
1318         default:
1319                 break;
1320         }
1321         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1322                 /* If the offset we want to clear is the same offset of the
1323                  * manageability VLAN ID, then clear all bits except that of
1324                  * the manageability unit.
1325                  */
1326                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1327                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1328                 e1e_flush();
1329         }
1330 }
1331
1332 /**
1333  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1334  *  @hw: pointer to the HW structure
1335  *
1336  *  Reads the NVM Initialization Control Word 2 and returns true
1337  *  (>0) if any manageability is enabled, else false (0).
1338  **/
1339 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1340 {
1341         u16 data;
1342
1343         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1344         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1345 }
1346
1347 /**
1348  *  e1000_led_on_82574 - Turn LED on
1349  *  @hw: pointer to the HW structure
1350  *
1351  *  Turn LED on.
1352  **/
1353 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1354 {
1355         u32 ctrl;
1356         u32 i;
1357
1358         ctrl = hw->mac.ledctl_mode2;
1359         if (!(E1000_STATUS_LU & er32(STATUS))) {
1360                 /* If no link, then turn LED on by setting the invert bit
1361                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1362                  */
1363                 for (i = 0; i < 4; i++)
1364                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1365                             E1000_LEDCTL_MODE_LED_ON)
1366                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1367         }
1368         ew32(LEDCTL, ctrl);
1369
1370         return 0;
1371 }
1372
1373 /**
1374  *  e1000_check_phy_82574 - check 82574 phy hung state
1375  *  @hw: pointer to the HW structure
1376  *
1377  *  Returns whether phy is hung or not
1378  **/
1379 bool e1000_check_phy_82574(struct e1000_hw *hw)
1380 {
1381         u16 status_1kbt = 0;
1382         u16 receive_errors = 0;
1383         s32 ret_val;
1384
1385         /* Read PHY Receive Error counter first, if its is max - all F's then
1386          * read the Base1000T status register If both are max then PHY is hung.
1387          */
1388         ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1389         if (ret_val)
1390                 return false;
1391         if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1392                 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1393                 if (ret_val)
1394                         return false;
1395                 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1396                     E1000_IDLE_ERROR_COUNT_MASK)
1397                         return true;
1398         }
1399
1400         return false;
1401 }
1402
1403 /**
1404  *  e1000_setup_link_82571 - Setup flow control and link settings
1405  *  @hw: pointer to the HW structure
1406  *
1407  *  Determines which flow control settings to use, then configures flow
1408  *  control.  Calls the appropriate media-specific link configuration
1409  *  function.  Assuming the adapter has a valid link partner, a valid link
1410  *  should be established.  Assumes the hardware has previously been reset
1411  *  and the transmitter and receiver are not enabled.
1412  **/
1413 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1414 {
1415         /* 82573 does not have a word in the NVM to determine
1416          * the default flow control setting, so we explicitly
1417          * set it to full.
1418          */
1419         switch (hw->mac.type) {
1420         case e1000_82573:
1421         case e1000_82574:
1422         case e1000_82583:
1423                 if (hw->fc.requested_mode == e1000_fc_default)
1424                         hw->fc.requested_mode = e1000_fc_full;
1425                 break;
1426         default:
1427                 break;
1428         }
1429
1430         return e1000e_setup_link_generic(hw);
1431 }
1432
1433 /**
1434  *  e1000_setup_copper_link_82571 - Configure copper link settings
1435  *  @hw: pointer to the HW structure
1436  *
1437  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1438  *  for link, once link is established calls to configure collision distance
1439  *  and flow control are called.
1440  **/
1441 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1442 {
1443         u32 ctrl;
1444         s32 ret_val;
1445
1446         ctrl = er32(CTRL);
1447         ctrl |= E1000_CTRL_SLU;
1448         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1449         ew32(CTRL, ctrl);
1450
1451         switch (hw->phy.type) {
1452         case e1000_phy_m88:
1453         case e1000_phy_bm:
1454                 ret_val = e1000e_copper_link_setup_m88(hw);
1455                 break;
1456         case e1000_phy_igp_2:
1457                 ret_val = e1000e_copper_link_setup_igp(hw);
1458                 break;
1459         default:
1460                 return -E1000_ERR_PHY;
1461                 break;
1462         }
1463
1464         if (ret_val)
1465                 return ret_val;
1466
1467         return e1000e_setup_copper_link(hw);
1468 }
1469
1470 /**
1471  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1472  *  @hw: pointer to the HW structure
1473  *
1474  *  Configures collision distance and flow control for fiber and serdes links.
1475  *  Upon successful setup, poll for link.
1476  **/
1477 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1478 {
1479         switch (hw->mac.type) {
1480         case e1000_82571:
1481         case e1000_82572:
1482                 /* If SerDes loopback mode is entered, there is no form
1483                  * of reset to take the adapter out of that mode.  So we
1484                  * have to explicitly take the adapter out of loopback
1485                  * mode.  This prevents drivers from twiddling their thumbs
1486                  * if another tool failed to take it out of loopback mode.
1487                  */
1488                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1489                 break;
1490         default:
1491                 break;
1492         }
1493
1494         return e1000e_setup_fiber_serdes_link(hw);
1495 }
1496
1497 /**
1498  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1499  *  @hw: pointer to the HW structure
1500  *
1501  *  Reports the link state as up or down.
1502  *
1503  *  If autonegotiation is supported by the link partner, the link state is
1504  *  determined by the result of autonegotiation. This is the most likely case.
1505  *  If autonegotiation is not supported by the link partner, and the link
1506  *  has a valid signal, force the link up.
1507  *
1508  *  The link state is represented internally here by 4 states:
1509  *
1510  *  1) down
1511  *  2) autoneg_progress
1512  *  3) autoneg_complete (the link successfully autonegotiated)
1513  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1514  *
1515  **/
1516 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1517 {
1518         struct e1000_mac_info *mac = &hw->mac;
1519         u32 rxcw;
1520         u32 ctrl;
1521         u32 status;
1522         u32 txcw;
1523         u32 i;
1524         s32 ret_val = 0;
1525
1526         ctrl = er32(CTRL);
1527         status = er32(STATUS);
1528         er32(RXCW);
1529         /* SYNCH bit and IV bit are sticky */
1530         usleep_range(10, 20);
1531         rxcw = er32(RXCW);
1532
1533         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1534                 /* Receiver is synchronized with no invalid bits.  */
1535                 switch (mac->serdes_link_state) {
1536                 case e1000_serdes_link_autoneg_complete:
1537                         if (!(status & E1000_STATUS_LU)) {
1538                                 /* We have lost link, retry autoneg before
1539                                  * reporting link failure
1540                                  */
1541                                 mac->serdes_link_state =
1542                                     e1000_serdes_link_autoneg_progress;
1543                                 mac->serdes_has_link = false;
1544                                 e_dbg("AN_UP     -> AN_PROG\n");
1545                         } else {
1546                                 mac->serdes_has_link = true;
1547                         }
1548                         break;
1549
1550                 case e1000_serdes_link_forced_up:
1551                         /* If we are receiving /C/ ordered sets, re-enable
1552                          * auto-negotiation in the TXCW register and disable
1553                          * forced link in the Device Control register in an
1554                          * attempt to auto-negotiate with our link partner.
1555                          */
1556                         if (rxcw & E1000_RXCW_C) {
1557                                 /* Enable autoneg, and unforce link up */
1558                                 ew32(TXCW, mac->txcw);
1559                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1560                                 mac->serdes_link_state =
1561                                     e1000_serdes_link_autoneg_progress;
1562                                 mac->serdes_has_link = false;
1563                                 e_dbg("FORCED_UP -> AN_PROG\n");
1564                         } else {
1565                                 mac->serdes_has_link = true;
1566                         }
1567                         break;
1568
1569                 case e1000_serdes_link_autoneg_progress:
1570                         if (rxcw & E1000_RXCW_C) {
1571                                 /* We received /C/ ordered sets, meaning the
1572                                  * link partner has autonegotiated, and we can
1573                                  * trust the Link Up (LU) status bit.
1574                                  */
1575                                 if (status & E1000_STATUS_LU) {
1576                                         mac->serdes_link_state =
1577                                             e1000_serdes_link_autoneg_complete;
1578                                         e_dbg("AN_PROG   -> AN_UP\n");
1579                                         mac->serdes_has_link = true;
1580                                 } else {
1581                                         /* Autoneg completed, but failed. */
1582                                         mac->serdes_link_state =
1583                                             e1000_serdes_link_down;
1584                                         e_dbg("AN_PROG   -> DOWN\n");
1585                                 }
1586                         } else {
1587                                 /* The link partner did not autoneg.
1588                                  * Force link up and full duplex, and change
1589                                  * state to forced.
1590                                  */
1591                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1592                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1593                                 ew32(CTRL, ctrl);
1594
1595                                 /* Configure Flow Control after link up. */
1596                                 ret_val = e1000e_config_fc_after_link_up(hw);
1597                                 if (ret_val) {
1598                                         e_dbg("Error config flow control\n");
1599                                         break;
1600                                 }
1601                                 mac->serdes_link_state =
1602                                     e1000_serdes_link_forced_up;
1603                                 mac->serdes_has_link = true;
1604                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1605                         }
1606                         break;
1607
1608                 case e1000_serdes_link_down:
1609                 default:
1610                         /* The link was down but the receiver has now gained
1611                          * valid sync, so lets see if we can bring the link
1612                          * up.
1613                          */
1614                         ew32(TXCW, mac->txcw);
1615                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1616                         mac->serdes_link_state =
1617                             e1000_serdes_link_autoneg_progress;
1618                         mac->serdes_has_link = false;
1619                         e_dbg("DOWN      -> AN_PROG\n");
1620                         break;
1621                 }
1622         } else {
1623                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1624                         mac->serdes_has_link = false;
1625                         mac->serdes_link_state = e1000_serdes_link_down;
1626                         e_dbg("ANYSTATE  -> DOWN\n");
1627                 } else {
1628                         /* Check several times, if SYNCH bit and CONFIG
1629                          * bit both are consistently 1 then simply ignore
1630                          * the IV bit and restart Autoneg
1631                          */
1632                         for (i = 0; i < AN_RETRY_COUNT; i++) {
1633                                 usleep_range(10, 20);
1634                                 rxcw = er32(RXCW);
1635                                 if ((rxcw & E1000_RXCW_SYNCH) &&
1636                                     (rxcw & E1000_RXCW_C))
1637                                         continue;
1638
1639                                 if (rxcw & E1000_RXCW_IV) {
1640                                         mac->serdes_has_link = false;
1641                                         mac->serdes_link_state =
1642                                             e1000_serdes_link_down;
1643                                         e_dbg("ANYSTATE  -> DOWN\n");
1644                                         break;
1645                                 }
1646                         }
1647
1648                         if (i == AN_RETRY_COUNT) {
1649                                 txcw = er32(TXCW);
1650                                 txcw |= E1000_TXCW_ANE;
1651                                 ew32(TXCW, txcw);
1652                                 mac->serdes_link_state =
1653                                     e1000_serdes_link_autoneg_progress;
1654                                 mac->serdes_has_link = false;
1655                                 e_dbg("ANYSTATE  -> AN_PROG\n");
1656                         }
1657                 }
1658         }
1659
1660         return ret_val;
1661 }
1662
1663 /**
1664  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1665  *  @hw: pointer to the HW structure
1666  *  @data: pointer to the NVM (EEPROM)
1667  *
1668  *  Read the EEPROM for the current default LED configuration.  If the
1669  *  LED configuration is not valid, set to a valid LED configuration.
1670  **/
1671 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1672 {
1673         s32 ret_val;
1674
1675         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1676         if (ret_val) {
1677                 e_dbg("NVM Read Error\n");
1678                 return ret_val;
1679         }
1680
1681         switch (hw->mac.type) {
1682         case e1000_82573:
1683         case e1000_82574:
1684         case e1000_82583:
1685                 if (*data == ID_LED_RESERVED_F746)
1686                         *data = ID_LED_DEFAULT_82573;
1687                 break;
1688         default:
1689                 if (*data == ID_LED_RESERVED_0000 ||
1690                     *data == ID_LED_RESERVED_FFFF)
1691                         *data = ID_LED_DEFAULT;
1692                 break;
1693         }
1694
1695         return 0;
1696 }
1697
1698 /**
1699  *  e1000e_get_laa_state_82571 - Get locally administered address state
1700  *  @hw: pointer to the HW structure
1701  *
1702  *  Retrieve and return the current locally administered address state.
1703  **/
1704 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1705 {
1706         if (hw->mac.type != e1000_82571)
1707                 return false;
1708
1709         return hw->dev_spec.e82571.laa_is_present;
1710 }
1711
1712 /**
1713  *  e1000e_set_laa_state_82571 - Set locally administered address state
1714  *  @hw: pointer to the HW structure
1715  *  @state: enable/disable locally administered address
1716  *
1717  *  Enable/Disable the current locally administered address state.
1718  **/
1719 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1720 {
1721         if (hw->mac.type != e1000_82571)
1722                 return;
1723
1724         hw->dev_spec.e82571.laa_is_present = state;
1725
1726         /* If workaround is activated... */
1727         if (state)
1728                 /* Hold a copy of the LAA in RAR[14] This is done so that
1729                  * between the time RAR[0] gets clobbered and the time it
1730                  * gets fixed, the actual LAA is in one of the RARs and no
1731                  * incoming packets directed to this port are dropped.
1732                  * Eventually the LAA will be in RAR[0] and RAR[14].
1733                  */
1734                 hw->mac.ops.rar_set(hw, hw->mac.addr,
1735                                     hw->mac.rar_entry_count - 1);
1736 }
1737
1738 /**
1739  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1740  *  @hw: pointer to the HW structure
1741  *
1742  *  Verifies that the EEPROM has completed the update.  After updating the
1743  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1744  *  the checksum fix is not implemented, we need to set the bit and update
1745  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1746  *  we need to return bad checksum.
1747  **/
1748 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1749 {
1750         struct e1000_nvm_info *nvm = &hw->nvm;
1751         s32 ret_val;
1752         u16 data;
1753
1754         if (nvm->type != e1000_nvm_flash_hw)
1755                 return 0;
1756
1757         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1758          * 10h-12h.  Checksum may need to be fixed.
1759          */
1760         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1761         if (ret_val)
1762                 return ret_val;
1763
1764         if (!(data & 0x10)) {
1765                 /* Read 0x23 and check bit 15.  This bit is a 1
1766                  * when the checksum has already been fixed.  If
1767                  * the checksum is still wrong and this bit is a
1768                  * 1, we need to return bad checksum.  Otherwise,
1769                  * we need to set this bit to a 1 and update the
1770                  * checksum.
1771                  */
1772                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1773                 if (ret_val)
1774                         return ret_val;
1775
1776                 if (!(data & 0x8000)) {
1777                         data |= 0x8000;
1778                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1779                         if (ret_val)
1780                                 return ret_val;
1781                         ret_val = e1000e_update_nvm_checksum(hw);
1782                         if (ret_val)
1783                                 return ret_val;
1784                 }
1785         }
1786
1787         return 0;
1788 }
1789
1790 /**
1791  *  e1000_read_mac_addr_82571 - Read device MAC address
1792  *  @hw: pointer to the HW structure
1793  **/
1794 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1795 {
1796         if (hw->mac.type == e1000_82571) {
1797                 s32 ret_val;
1798
1799                 /* If there's an alternate MAC address place it in RAR0
1800                  * so that it will override the Si installed default perm
1801                  * address.
1802                  */
1803                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1804                 if (ret_val)
1805                         return ret_val;
1806         }
1807
1808         return e1000_read_mac_addr_generic(hw);
1809 }
1810
1811 /**
1812  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1813  * @hw: pointer to the HW structure
1814  *
1815  * In the case of a PHY power down to save power, or to turn off link during a
1816  * driver unload, or wake on lan is not enabled, remove the link.
1817  **/
1818 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1819 {
1820         struct e1000_phy_info *phy = &hw->phy;
1821         struct e1000_mac_info *mac = &hw->mac;
1822
1823         if (!phy->ops.check_reset_block)
1824                 return;
1825
1826         /* If the management interface is not enabled, then power down */
1827         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1828                 e1000_power_down_phy_copper(hw);
1829 }
1830
1831 /**
1832  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1833  *  @hw: pointer to the HW structure
1834  *
1835  *  Clears the hardware counters by reading the counter registers.
1836  **/
1837 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1838 {
1839         e1000e_clear_hw_cntrs_base(hw);
1840
1841         er32(PRC64);
1842         er32(PRC127);
1843         er32(PRC255);
1844         er32(PRC511);
1845         er32(PRC1023);
1846         er32(PRC1522);
1847         er32(PTC64);
1848         er32(PTC127);
1849         er32(PTC255);
1850         er32(PTC511);
1851         er32(PTC1023);
1852         er32(PTC1522);
1853
1854         er32(ALGNERRC);
1855         er32(RXERRC);
1856         er32(TNCRS);
1857         er32(CEXTERR);
1858         er32(TSCTC);
1859         er32(TSCTFC);
1860
1861         er32(MGTPRC);
1862         er32(MGTPDC);
1863         er32(MGTPTC);
1864
1865         er32(IAC);
1866         er32(ICRXOC);
1867
1868         er32(ICRXPTC);
1869         er32(ICRXATC);
1870         er32(ICTXPTC);
1871         er32(ICTXATC);
1872         er32(ICTXQEC);
1873         er32(ICTXQMTC);
1874         er32(ICRXDMTC);
1875 }
1876
1877 static const struct e1000_mac_operations e82571_mac_ops = {
1878         /* .check_mng_mode: mac type dependent */
1879         /* .check_for_link: media type dependent */
1880         .id_led_init            = e1000e_id_led_init_generic,
1881         .cleanup_led            = e1000e_cleanup_led_generic,
1882         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1883         .get_bus_info           = e1000e_get_bus_info_pcie,
1884         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1885         /* .get_link_up_info: media type dependent */
1886         /* .led_on: mac type dependent */
1887         .led_off                = e1000e_led_off_generic,
1888         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1889         .write_vfta             = e1000_write_vfta_generic,
1890         .clear_vfta             = e1000_clear_vfta_82571,
1891         .reset_hw               = e1000_reset_hw_82571,
1892         .init_hw                = e1000_init_hw_82571,
1893         .setup_link             = e1000_setup_link_82571,
1894         /* .setup_physical_interface: media type dependent */
1895         .setup_led              = e1000e_setup_led_generic,
1896         .config_collision_dist  = e1000e_config_collision_dist_generic,
1897         .read_mac_addr          = e1000_read_mac_addr_82571,
1898         .rar_set                = e1000e_rar_set_generic,
1899 };
1900
1901 static const struct e1000_phy_operations e82_phy_ops_igp = {
1902         .acquire                = e1000_get_hw_semaphore_82571,
1903         .check_polarity         = e1000_check_polarity_igp,
1904         .check_reset_block      = e1000e_check_reset_block_generic,
1905         .commit                 = NULL,
1906         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1907         .get_cfg_done           = e1000_get_cfg_done_82571,
1908         .get_cable_length       = e1000e_get_cable_length_igp_2,
1909         .get_info               = e1000e_get_phy_info_igp,
1910         .read_reg               = e1000e_read_phy_reg_igp,
1911         .release                = e1000_put_hw_semaphore_82571,
1912         .reset                  = e1000e_phy_hw_reset_generic,
1913         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1914         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1915         .write_reg              = e1000e_write_phy_reg_igp,
1916         .cfg_on_link_up         = NULL,
1917 };
1918
1919 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1920         .acquire                = e1000_get_hw_semaphore_82571,
1921         .check_polarity         = e1000_check_polarity_m88,
1922         .check_reset_block      = e1000e_check_reset_block_generic,
1923         .commit                 = e1000e_phy_sw_reset,
1924         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1925         .get_cfg_done           = e1000e_get_cfg_done_generic,
1926         .get_cable_length       = e1000e_get_cable_length_m88,
1927         .get_info               = e1000e_get_phy_info_m88,
1928         .read_reg               = e1000e_read_phy_reg_m88,
1929         .release                = e1000_put_hw_semaphore_82571,
1930         .reset                  = e1000e_phy_hw_reset_generic,
1931         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1932         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1933         .write_reg              = e1000e_write_phy_reg_m88,
1934         .cfg_on_link_up         = NULL,
1935 };
1936
1937 static const struct e1000_phy_operations e82_phy_ops_bm = {
1938         .acquire                = e1000_get_hw_semaphore_82571,
1939         .check_polarity         = e1000_check_polarity_m88,
1940         .check_reset_block      = e1000e_check_reset_block_generic,
1941         .commit                 = e1000e_phy_sw_reset,
1942         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1943         .get_cfg_done           = e1000e_get_cfg_done_generic,
1944         .get_cable_length       = e1000e_get_cable_length_m88,
1945         .get_info               = e1000e_get_phy_info_m88,
1946         .read_reg               = e1000e_read_phy_reg_bm2,
1947         .release                = e1000_put_hw_semaphore_82571,
1948         .reset                  = e1000e_phy_hw_reset_generic,
1949         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1950         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1951         .write_reg              = e1000e_write_phy_reg_bm2,
1952         .cfg_on_link_up         = NULL,
1953 };
1954
1955 static const struct e1000_nvm_operations e82571_nvm_ops = {
1956         .acquire                = e1000_acquire_nvm_82571,
1957         .read                   = e1000e_read_nvm_eerd,
1958         .release                = e1000_release_nvm_82571,
1959         .reload                 = e1000e_reload_nvm_generic,
1960         .update                 = e1000_update_nvm_checksum_82571,
1961         .valid_led_default      = e1000_valid_led_default_82571,
1962         .validate               = e1000_validate_nvm_checksum_82571,
1963         .write                  = e1000_write_nvm_82571,
1964 };
1965
1966 const struct e1000_info e1000_82571_info = {
1967         .mac                    = e1000_82571,
1968         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1969                                   | FLAG_HAS_JUMBO_FRAMES
1970                                   | FLAG_HAS_WOL
1971                                   | FLAG_APME_IN_CTRL3
1972                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1973                                   | FLAG_HAS_SMART_POWER_DOWN
1974                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1975                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1976                                   | FLAG_APME_CHECK_PORT_B,
1977         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1978                                   | FLAG2_DMA_BURST,
1979         .pba                    = 38,
1980         .max_hw_frame_size      = DEFAULT_JUMBO,
1981         .get_variants           = e1000_get_variants_82571,
1982         .mac_ops                = &e82571_mac_ops,
1983         .phy_ops                = &e82_phy_ops_igp,
1984         .nvm_ops                = &e82571_nvm_ops,
1985 };
1986
1987 const struct e1000_info e1000_82572_info = {
1988         .mac                    = e1000_82572,
1989         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1990                                   | FLAG_HAS_JUMBO_FRAMES
1991                                   | FLAG_HAS_WOL
1992                                   | FLAG_APME_IN_CTRL3
1993                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1994                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1995         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1996                                   | FLAG2_DMA_BURST,
1997         .pba                    = 38,
1998         .max_hw_frame_size      = DEFAULT_JUMBO,
1999         .get_variants           = e1000_get_variants_82571,
2000         .mac_ops                = &e82571_mac_ops,
2001         .phy_ops                = &e82_phy_ops_igp,
2002         .nvm_ops                = &e82571_nvm_ops,
2003 };
2004
2005 const struct e1000_info e1000_82573_info = {
2006         .mac                    = e1000_82573,
2007         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2008                                   | FLAG_HAS_WOL
2009                                   | FLAG_APME_IN_CTRL3
2010                                   | FLAG_HAS_SMART_POWER_DOWN
2011                                   | FLAG_HAS_AMT
2012                                   | FLAG_HAS_SWSM_ON_LOAD,
2013         .flags2                 = FLAG2_DISABLE_ASPM_L1
2014                                   | FLAG2_DISABLE_ASPM_L0S,
2015         .pba                    = 20,
2016         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
2017         .get_variants           = e1000_get_variants_82571,
2018         .mac_ops                = &e82571_mac_ops,
2019         .phy_ops                = &e82_phy_ops_m88,
2020         .nvm_ops                = &e82571_nvm_ops,
2021 };
2022
2023 const struct e1000_info e1000_82574_info = {
2024         .mac                    = e1000_82574,
2025         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2026                                   | FLAG_HAS_MSIX
2027                                   | FLAG_HAS_JUMBO_FRAMES
2028                                   | FLAG_HAS_WOL
2029                                   | FLAG_HAS_HW_TIMESTAMP
2030                                   | FLAG_APME_IN_CTRL3
2031                                   | FLAG_HAS_SMART_POWER_DOWN
2032                                   | FLAG_HAS_AMT
2033                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2034         .flags2                  = FLAG2_CHECK_PHY_HANG
2035                                   | FLAG2_DISABLE_ASPM_L0S
2036                                   | FLAG2_DISABLE_ASPM_L1
2037                                   | FLAG2_NO_DISABLE_RX
2038                                   | FLAG2_DMA_BURST,
2039         .pba                    = 32,
2040         .max_hw_frame_size      = DEFAULT_JUMBO,
2041         .get_variants           = e1000_get_variants_82571,
2042         .mac_ops                = &e82571_mac_ops,
2043         .phy_ops                = &e82_phy_ops_bm,
2044         .nvm_ops                = &e82571_nvm_ops,
2045 };
2046
2047 const struct e1000_info e1000_82583_info = {
2048         .mac                    = e1000_82583,
2049         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2050                                   | FLAG_HAS_WOL
2051                                   | FLAG_HAS_HW_TIMESTAMP
2052                                   | FLAG_APME_IN_CTRL3
2053                                   | FLAG_HAS_SMART_POWER_DOWN
2054                                   | FLAG_HAS_AMT
2055                                   | FLAG_HAS_JUMBO_FRAMES
2056                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2057         .flags2                 = FLAG2_DISABLE_ASPM_L0S
2058                                   | FLAG2_DISABLE_ASPM_L1
2059                                   | FLAG2_NO_DISABLE_RX,
2060         .pba                    = 32,
2061         .max_hw_frame_size      = DEFAULT_JUMBO,
2062         .get_variants           = e1000_get_variants_82571,
2063         .mac_ops                = &e82571_mac_ops,
2064         .phy_ops                = &e82_phy_ops_bm,
2065         .nvm_ops                = &e82571_nvm_ops,
2066 };