]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/ich8lan.c
regulator: max8997: Convert max8997_safeout_ops to set_voltage_sel and list_voltage_table
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 82562G 10/100 Network Connection
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  * 82567LM Gigabit Network Connection
42  * 82567LF Gigabit Network Connection
43  * 82567V Gigabit Network Connection
44  * 82567LM-2 Gigabit Network Connection
45  * 82567LF-2 Gigabit Network Connection
46  * 82567V-2 Gigabit Network Connection
47  * 82567LF-3 Gigabit Network Connection
48  * 82567LM-3 Gigabit Network Connection
49  * 82567LM-4 Gigabit Network Connection
50  * 82577LM Gigabit Network Connection
51  * 82577LC Gigabit Network Connection
52  * 82578DM Gigabit Network Connection
53  * 82578DC Gigabit Network Connection
54  * 82579LM Gigabit Network Connection
55  * 82579V Gigabit Network Connection
56  */
57
58 #include "e1000.h"
59
60 #define ICH_FLASH_GFPREG                0x0000
61 #define ICH_FLASH_HSFSTS                0x0004
62 #define ICH_FLASH_HSFCTL                0x0006
63 #define ICH_FLASH_FADDR                 0x0008
64 #define ICH_FLASH_FDATA0                0x0010
65 #define ICH_FLASH_PR0                   0x0074
66
67 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
68 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
70 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
71 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
72
73 #define ICH_CYCLE_READ                  0
74 #define ICH_CYCLE_WRITE                 2
75 #define ICH_CYCLE_ERASE                 3
76
77 #define FLASH_GFPREG_BASE_MASK          0x1FFF
78 #define FLASH_SECTOR_ADDR_SHIFT         12
79
80 #define ICH_FLASH_SEG_SIZE_256          256
81 #define ICH_FLASH_SEG_SIZE_4K           4096
82 #define ICH_FLASH_SEG_SIZE_8K           8192
83 #define ICH_FLASH_SEG_SIZE_64K          65536
84
85
86 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
87 /* FW established a valid mode */
88 #define E1000_ICH_FWSM_FW_VALID         0x00008000
89
90 #define E1000_ICH_MNG_IAMT_MODE         0x2
91
92 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
93                                  (ID_LED_DEF1_OFF2 <<  8) | \
94                                  (ID_LED_DEF1_ON2  <<  4) | \
95                                  (ID_LED_DEF1_DEF2))
96
97 #define E1000_ICH_NVM_SIG_WORD          0x13
98 #define E1000_ICH_NVM_SIG_MASK          0xC000
99 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
100 #define E1000_ICH_NVM_SIG_VALUE         0x80
101
102 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
103
104 #define E1000_FEXTNVM_SW_CONFIG         1
105 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
106
107 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
108 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000
109
110 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
111 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
112 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
113
114 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
115
116 #define E1000_ICH_RAR_ENTRIES           7
117 #define E1000_PCH2_RAR_ENTRIES          5 /* RAR[0], SHRA[0-3] */
118 #define E1000_PCH_LPT_RAR_ENTRIES       12 /* RAR[0], SHRA[0-10] */
119
120 #define PHY_PAGE_SHIFT 5
121 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
122                            ((reg) & MAX_PHY_REG_ADDRESS))
123 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
124 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
125
126 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
127 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
128 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
129
130 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
131
132 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
133
134 /* SMBus Control Phy Register */
135 #define CV_SMB_CTRL             PHY_REG(769, 23)
136 #define CV_SMB_CTRL_FORCE_SMBUS 0x0001
137
138 /* SMBus Address Phy Register */
139 #define HV_SMB_ADDR            PHY_REG(768, 26)
140 #define HV_SMB_ADDR_MASK       0x007F
141 #define HV_SMB_ADDR_PEC_EN     0x0200
142 #define HV_SMB_ADDR_VALID      0x0080
143 #define HV_SMB_ADDR_FREQ_MASK           0x1100
144 #define HV_SMB_ADDR_FREQ_LOW_SHIFT      8
145 #define HV_SMB_ADDR_FREQ_HIGH_SHIFT     12
146
147 /* PHY Power Management Control */
148 #define HV_PM_CTRL              PHY_REG(770, 17)
149 #define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA  0x100
150
151 /* PHY Low Power Idle Control */
152 #define I82579_LPI_CTRL                         PHY_REG(772, 20)
153 #define I82579_LPI_CTRL_ENABLE_MASK             0x6000
154 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT    0x80
155
156 /* EMI Registers */
157 #define I82579_EMI_ADDR         0x10
158 #define I82579_EMI_DATA         0x11
159 #define I82579_LPI_UPDATE_TIMER 0x4805  /* in 40ns units + 40 ns base value */
160 #define I82579_MSE_THRESHOLD    0x084F  /* Mean Square Error Threshold */
161 #define I82579_MSE_LINK_DOWN    0x2411  /* MSE count before dropping link */
162 #define I217_EEE_ADVERTISEMENT  0x8001  /* IEEE MMD Register 7.60 */
163 #define I217_EEE_LP_ABILITY     0x8002  /* IEEE MMD Register 7.61 */
164 #define I217_EEE_100_SUPPORTED  (1 << 1)        /* 100BaseTx EEE supported */
165
166 /* Intel Rapid Start Technology Support */
167 #define I217_PROXY_CTRL                 BM_PHY_REG(BM_WUC_PAGE, 70)
168 #define I217_PROXY_CTRL_AUTO_DISABLE    0x0080
169 #define I217_SxCTRL                     PHY_REG(BM_PORT_CTRL_PAGE, 28)
170 #define I217_SxCTRL_ENABLE_LPI_RESET    0x1000
171 #define I217_CGFREG                     PHY_REG(772, 29)
172 #define I217_CGFREG_ENABLE_MTA_RESET    0x0002
173 #define I217_MEMPWR                     PHY_REG(772, 26)
174 #define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
175
176 /* Strapping Option Register - RO */
177 #define E1000_STRAP                     0x0000C
178 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
179 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
180 #define E1000_STRAP_SMT_FREQ_MASK       0x00003000
181 #define E1000_STRAP_SMT_FREQ_SHIFT      12
182
183 /* OEM Bits Phy Register */
184 #define HV_OEM_BITS            PHY_REG(768, 25)
185 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
186 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
187 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
188
189 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
190 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
191
192 /* KMRN Mode Control */
193 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
194 #define HV_KMRN_MDIO_SLOW      0x0400
195
196 /* KMRN FIFO Control and Status */
197 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
198 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
199 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
200
201 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
202 /* Offset 04h HSFSTS */
203 union ich8_hws_flash_status {
204         struct ich8_hsfsts {
205                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
206                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
207                 u16 dael       :1; /* bit 2 Direct Access error Log */
208                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
209                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
210                 u16 reserved1  :2; /* bit 13:6 Reserved */
211                 u16 reserved2  :6; /* bit 13:6 Reserved */
212                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
213                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
214         } hsf_status;
215         u16 regval;
216 };
217
218 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
219 /* Offset 06h FLCTL */
220 union ich8_hws_flash_ctrl {
221         struct ich8_hsflctl {
222                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
223                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
224                 u16 reserved   :5;   /* 7:3 Reserved  */
225                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
226                 u16 flockdn    :6;   /* 15:10 Reserved */
227         } hsf_ctrl;
228         u16 regval;
229 };
230
231 /* ICH Flash Region Access Permissions */
232 union ich8_hws_flash_regacc {
233         struct ich8_flracc {
234                 u32 grra      :8; /* 0:7 GbE region Read Access */
235                 u32 grwa      :8; /* 8:15 GbE region Write Access */
236                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
237                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
238         } hsf_flregacc;
239         u16 regval;
240 };
241
242 /* ICH Flash Protected Region */
243 union ich8_flash_protected_range {
244         struct ich8_pr {
245                 u32 base:13;     /* 0:12 Protected Range Base */
246                 u32 reserved1:2; /* 13:14 Reserved */
247                 u32 rpe:1;       /* 15 Read Protection Enable */
248                 u32 limit:13;    /* 16:28 Protected Range Limit */
249                 u32 reserved2:2; /* 29:30 Reserved */
250                 u32 wpe:1;       /* 31 Write Protection Enable */
251         } range;
252         u32 regval;
253 };
254
255 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
256 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
257 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
258 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
259 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
260                                                 u32 offset, u8 byte);
261 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
262                                          u8 *data);
263 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
264                                          u16 *data);
265 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
266                                          u8 size, u16 *data);
267 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
268 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
269 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
270 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
271 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
272 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
273 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
274 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
275 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
276 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
277 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
278 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
279 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
280 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
281 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
282 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
283 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
284 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
285 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
286 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
287 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
288 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
289
290 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
291 {
292         return readw(hw->flash_address + reg);
293 }
294
295 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
296 {
297         return readl(hw->flash_address + reg);
298 }
299
300 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
301 {
302         writew(val, hw->flash_address + reg);
303 }
304
305 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
306 {
307         writel(val, hw->flash_address + reg);
308 }
309
310 #define er16flash(reg)          __er16flash(hw, (reg))
311 #define er32flash(reg)          __er32flash(hw, (reg))
312 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
313 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
314
315 /**
316  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
317  *  @hw: pointer to the HW structure
318  *
319  *  Test access to the PHY registers by reading the PHY ID registers.  If
320  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
321  *  otherwise assume the read PHY ID is correct if it is valid.
322  *
323  *  Assumes the sw/fw/hw semaphore is already acquired.
324  **/
325 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
326 {
327         u16 phy_reg = 0;
328         u32 phy_id = 0;
329         s32 ret_val;
330         u16 retry_count;
331
332         for (retry_count = 0; retry_count < 2; retry_count++) {
333                 ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
334                 if (ret_val || (phy_reg == 0xFFFF))
335                         continue;
336                 phy_id = (u32)(phy_reg << 16);
337
338                 ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
339                 if (ret_val || (phy_reg == 0xFFFF)) {
340                         phy_id = 0;
341                         continue;
342                 }
343                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
344                 break;
345         }
346
347         if (hw->phy.id) {
348                 if (hw->phy.id == phy_id)
349                         return true;
350         } else if (phy_id) {
351                 hw->phy.id = phy_id;
352                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
353                 return true;
354         }
355
356         /* In case the PHY needs to be in mdio slow mode,
357          * set slow mode and try to get the PHY id again.
358          */
359         hw->phy.ops.release(hw);
360         ret_val = e1000_set_mdio_slow_mode_hv(hw);
361         if (!ret_val)
362                 ret_val = e1000e_get_phy_id(hw);
363         hw->phy.ops.acquire(hw);
364
365         return !ret_val;
366 }
367
368 /**
369  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
370  *  @hw: pointer to the HW structure
371  *
372  *  Workarounds/flow necessary for PHY initialization during driver load
373  *  and resume paths.
374  **/
375 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
376 {
377         u32 mac_reg, fwsm = er32(FWSM);
378         s32 ret_val;
379         u16 phy_reg;
380
381         ret_val = hw->phy.ops.acquire(hw);
382         if (ret_val) {
383                 e_dbg("Failed to initialize PHY flow\n");
384                 return ret_val;
385         }
386
387         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
388          * inaccessible and resetting the PHY is not blocked, toggle the
389          * LANPHYPC Value bit to force the interconnect to PCIe mode.
390          */
391         switch (hw->mac.type) {
392         case e1000_pch_lpt:
393                 if (e1000_phy_is_accessible_pchlan(hw))
394                         break;
395
396                 /* Before toggling LANPHYPC, see if PHY is accessible by
397                  * forcing MAC to SMBus mode first.
398                  */
399                 mac_reg = er32(CTRL_EXT);
400                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
401                 ew32(CTRL_EXT, mac_reg);
402
403                 /* fall-through */
404         case e1000_pch2lan:
405                 /* Gate automatic PHY configuration by hardware on
406                  * non-managed 82579
407                  */
408                 if ((hw->mac.type == e1000_pch2lan) &&
409                     !(fwsm & E1000_ICH_FWSM_FW_VALID))
410                         e1000_gate_hw_phy_config_ich8lan(hw, true);
411
412                 if (e1000_phy_is_accessible_pchlan(hw)) {
413                         if (hw->mac.type == e1000_pch_lpt) {
414                                 /* Unforce SMBus mode in PHY */
415                                 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
416                                 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
417                                 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
418
419                                 /* Unforce SMBus mode in MAC */
420                                 mac_reg = er32(CTRL_EXT);
421                                 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
422                                 ew32(CTRL_EXT, mac_reg);
423                         }
424                         break;
425                 }
426
427                 /* fall-through */
428         case e1000_pchlan:
429                 if ((hw->mac.type == e1000_pchlan) &&
430                     (fwsm & E1000_ICH_FWSM_FW_VALID))
431                         break;
432
433                 if (hw->phy.ops.check_reset_block(hw)) {
434                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
435                         break;
436                 }
437
438                 e_dbg("Toggling LANPHYPC\n");
439
440                 /* Set Phy Config Counter to 50msec */
441                 mac_reg = er32(FEXTNVM3);
442                 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
443                 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
444                 ew32(FEXTNVM3, mac_reg);
445
446                 /* Toggle LANPHYPC Value bit */
447                 mac_reg = er32(CTRL);
448                 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
449                 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
450                 ew32(CTRL, mac_reg);
451                 e1e_flush();
452                 udelay(10);
453                 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
454                 ew32(CTRL, mac_reg);
455                 e1e_flush();
456                 if (hw->mac.type < e1000_pch_lpt) {
457                         msleep(50);
458                 } else {
459                         u16 count = 20;
460                         do {
461                                 usleep_range(5000, 10000);
462                         } while (!(er32(CTRL_EXT) &
463                                    E1000_CTRL_EXT_LPCD) && count--);
464                 }
465                 break;
466         default:
467                 break;
468         }
469
470         hw->phy.ops.release(hw);
471
472         /* Reset the PHY before any access to it.  Doing so, ensures
473          * that the PHY is in a known good state before we read/write
474          * PHY registers.  The generic reset is sufficient here,
475          * because we haven't determined the PHY type yet.
476          */
477         ret_val = e1000e_phy_hw_reset_generic(hw);
478
479         /* Ungate automatic PHY configuration on non-managed 82579 */
480         if ((hw->mac.type == e1000_pch2lan) &&
481             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
482                 usleep_range(10000, 20000);
483                 e1000_gate_hw_phy_config_ich8lan(hw, false);
484         }
485
486         return ret_val;
487 }
488
489 /**
490  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
491  *  @hw: pointer to the HW structure
492  *
493  *  Initialize family-specific PHY parameters and function pointers.
494  **/
495 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
496 {
497         struct e1000_phy_info *phy = &hw->phy;
498         s32 ret_val = 0;
499
500         phy->addr                     = 1;
501         phy->reset_delay_us           = 100;
502
503         phy->ops.set_page             = e1000_set_page_igp;
504         phy->ops.read_reg             = e1000_read_phy_reg_hv;
505         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
506         phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
507         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
508         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
509         phy->ops.write_reg            = e1000_write_phy_reg_hv;
510         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
511         phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
512         phy->ops.power_up             = e1000_power_up_phy_copper;
513         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
514         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
515
516         phy->id = e1000_phy_unknown;
517
518         ret_val = e1000_init_phy_workarounds_pchlan(hw);
519         if (ret_val)
520                 return ret_val;
521
522         if (phy->id == e1000_phy_unknown)
523                 switch (hw->mac.type) {
524                 default:
525                         ret_val = e1000e_get_phy_id(hw);
526                         if (ret_val)
527                                 return ret_val;
528                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
529                                 break;
530                         /* fall-through */
531                 case e1000_pch2lan:
532                 case e1000_pch_lpt:
533                         /* In case the PHY needs to be in mdio slow mode,
534                          * set slow mode and try to get the PHY id again.
535                          */
536                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
537                         if (ret_val)
538                                 return ret_val;
539                         ret_val = e1000e_get_phy_id(hw);
540                         if (ret_val)
541                                 return ret_val;
542                         break;
543                 }
544         phy->type = e1000e_get_phy_type_from_id(phy->id);
545
546         switch (phy->type) {
547         case e1000_phy_82577:
548         case e1000_phy_82579:
549         case e1000_phy_i217:
550                 phy->ops.check_polarity = e1000_check_polarity_82577;
551                 phy->ops.force_speed_duplex =
552                     e1000_phy_force_speed_duplex_82577;
553                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
554                 phy->ops.get_info = e1000_get_phy_info_82577;
555                 phy->ops.commit = e1000e_phy_sw_reset;
556                 break;
557         case e1000_phy_82578:
558                 phy->ops.check_polarity = e1000_check_polarity_m88;
559                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
560                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
561                 phy->ops.get_info = e1000e_get_phy_info_m88;
562                 break;
563         default:
564                 ret_val = -E1000_ERR_PHY;
565                 break;
566         }
567
568         return ret_val;
569 }
570
571 /**
572  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
573  *  @hw: pointer to the HW structure
574  *
575  *  Initialize family-specific PHY parameters and function pointers.
576  **/
577 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
578 {
579         struct e1000_phy_info *phy = &hw->phy;
580         s32 ret_val;
581         u16 i = 0;
582
583         phy->addr                       = 1;
584         phy->reset_delay_us             = 100;
585
586         phy->ops.power_up               = e1000_power_up_phy_copper;
587         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
588
589         /* We may need to do this twice - once for IGP and if that fails,
590          * we'll set BM func pointers and try again
591          */
592         ret_val = e1000e_determine_phy_address(hw);
593         if (ret_val) {
594                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
595                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
596                 ret_val = e1000e_determine_phy_address(hw);
597                 if (ret_val) {
598                         e_dbg("Cannot determine PHY addr. Erroring out\n");
599                         return ret_val;
600                 }
601         }
602
603         phy->id = 0;
604         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
605                (i++ < 100)) {
606                 usleep_range(1000, 2000);
607                 ret_val = e1000e_get_phy_id(hw);
608                 if (ret_val)
609                         return ret_val;
610         }
611
612         /* Verify phy id */
613         switch (phy->id) {
614         case IGP03E1000_E_PHY_ID:
615                 phy->type = e1000_phy_igp_3;
616                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
617                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
618                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
619                 phy->ops.get_info = e1000e_get_phy_info_igp;
620                 phy->ops.check_polarity = e1000_check_polarity_igp;
621                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
622                 break;
623         case IFE_E_PHY_ID:
624         case IFE_PLUS_E_PHY_ID:
625         case IFE_C_E_PHY_ID:
626                 phy->type = e1000_phy_ife;
627                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
628                 phy->ops.get_info = e1000_get_phy_info_ife;
629                 phy->ops.check_polarity = e1000_check_polarity_ife;
630                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
631                 break;
632         case BME1000_E_PHY_ID:
633                 phy->type = e1000_phy_bm;
634                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
635                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
636                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
637                 phy->ops.commit = e1000e_phy_sw_reset;
638                 phy->ops.get_info = e1000e_get_phy_info_m88;
639                 phy->ops.check_polarity = e1000_check_polarity_m88;
640                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
641                 break;
642         default:
643                 return -E1000_ERR_PHY;
644                 break;
645         }
646
647         return 0;
648 }
649
650 /**
651  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
652  *  @hw: pointer to the HW structure
653  *
654  *  Initialize family-specific NVM parameters and function
655  *  pointers.
656  **/
657 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
658 {
659         struct e1000_nvm_info *nvm = &hw->nvm;
660         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
661         u32 gfpreg, sector_base_addr, sector_end_addr;
662         u16 i;
663
664         /* Can't read flash registers if the register set isn't mapped. */
665         if (!hw->flash_address) {
666                 e_dbg("ERROR: Flash registers not mapped\n");
667                 return -E1000_ERR_CONFIG;
668         }
669
670         nvm->type = e1000_nvm_flash_sw;
671
672         gfpreg = er32flash(ICH_FLASH_GFPREG);
673
674         /* sector_X_addr is a "sector"-aligned address (4096 bytes)
675          * Add 1 to sector_end_addr since this sector is included in
676          * the overall size.
677          */
678         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
679         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
680
681         /* flash_base_addr is byte-aligned */
682         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
683
684         /* find total size of the NVM, then cut in half since the total
685          * size represents two separate NVM banks.
686          */
687         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
688                                 << FLASH_SECTOR_ADDR_SHIFT;
689         nvm->flash_bank_size /= 2;
690         /* Adjust to word count */
691         nvm->flash_bank_size /= sizeof(u16);
692
693         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
694
695         /* Clear shadow ram */
696         for (i = 0; i < nvm->word_size; i++) {
697                 dev_spec->shadow_ram[i].modified = false;
698                 dev_spec->shadow_ram[i].value    = 0xFFFF;
699         }
700
701         return 0;
702 }
703
704 /**
705  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
706  *  @hw: pointer to the HW structure
707  *
708  *  Initialize family-specific MAC parameters and function
709  *  pointers.
710  **/
711 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
712 {
713         struct e1000_mac_info *mac = &hw->mac;
714
715         /* Set media type function pointer */
716         hw->phy.media_type = e1000_media_type_copper;
717
718         /* Set mta register count */
719         mac->mta_reg_count = 32;
720         /* Set rar entry count */
721         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
722         if (mac->type == e1000_ich8lan)
723                 mac->rar_entry_count--;
724         /* FWSM register */
725         mac->has_fwsm = true;
726         /* ARC subsystem not supported */
727         mac->arc_subsystem_valid = false;
728         /* Adaptive IFS supported */
729         mac->adaptive_ifs = true;
730
731         /* LED and other operations */
732         switch (mac->type) {
733         case e1000_ich8lan:
734         case e1000_ich9lan:
735         case e1000_ich10lan:
736                 /* check management mode */
737                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
738                 /* ID LED init */
739                 mac->ops.id_led_init = e1000e_id_led_init_generic;
740                 /* blink LED */
741                 mac->ops.blink_led = e1000e_blink_led_generic;
742                 /* setup LED */
743                 mac->ops.setup_led = e1000e_setup_led_generic;
744                 /* cleanup LED */
745                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
746                 /* turn on/off LED */
747                 mac->ops.led_on = e1000_led_on_ich8lan;
748                 mac->ops.led_off = e1000_led_off_ich8lan;
749                 break;
750         case e1000_pch2lan:
751                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
752                 mac->ops.rar_set = e1000_rar_set_pch2lan;
753                 /* fall-through */
754         case e1000_pch_lpt:
755         case e1000_pchlan:
756                 /* check management mode */
757                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
758                 /* ID LED init */
759                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
760                 /* setup LED */
761                 mac->ops.setup_led = e1000_setup_led_pchlan;
762                 /* cleanup LED */
763                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
764                 /* turn on/off LED */
765                 mac->ops.led_on = e1000_led_on_pchlan;
766                 mac->ops.led_off = e1000_led_off_pchlan;
767                 break;
768         default:
769                 break;
770         }
771
772         if (mac->type == e1000_pch_lpt) {
773                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
774                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
775         }
776
777         /* Enable PCS Lock-loss workaround for ICH8 */
778         if (mac->type == e1000_ich8lan)
779                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
780
781         /* Gate automatic PHY configuration by hardware on managed
782          * 82579 and i217
783          */
784         if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
785             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
786                 e1000_gate_hw_phy_config_ich8lan(hw, true);
787
788         return 0;
789 }
790
791 /**
792  *  e1000_set_eee_pchlan - Enable/disable EEE support
793  *  @hw: pointer to the HW structure
794  *
795  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
796  *  the LPI Control register will remain set only if/when link is up.
797  **/
798 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
799 {
800         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
801         s32 ret_val = 0;
802         u16 phy_reg;
803
804         if ((hw->phy.type != e1000_phy_82579) &&
805             (hw->phy.type != e1000_phy_i217))
806                 return 0;
807
808         ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
809         if (ret_val)
810                 return ret_val;
811
812         if (dev_spec->eee_disable)
813                 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
814         else
815                 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
816
817         ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
818         if (ret_val)
819                 return ret_val;
820
821         if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
822                 /* Save off link partner's EEE ability */
823                 ret_val = hw->phy.ops.acquire(hw);
824                 if (ret_val)
825                         return ret_val;
826                 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
827                                           I217_EEE_LP_ABILITY);
828                 if (ret_val)
829                         goto release;
830                 e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
831
832                 /* EEE is not supported in 100Half, so ignore partner's EEE
833                  * in 100 ability if full-duplex is not advertised.
834                  */
835                 e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
836                 if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
837                         dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
838 release:
839                 hw->phy.ops.release(hw);
840         }
841
842         return 0;
843 }
844
845 /**
846  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
847  *  @hw: pointer to the HW structure
848  *
849  *  Checks to see of the link status of the hardware has changed.  If a
850  *  change in link status has been detected, then we read the PHY registers
851  *  to get the current speed/duplex if link exists.
852  **/
853 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
854 {
855         struct e1000_mac_info *mac = &hw->mac;
856         s32 ret_val;
857         bool link;
858         u16 phy_reg;
859
860         /* We only want to go out to the PHY registers to see if Auto-Neg
861          * has completed and/or if our link status has changed.  The
862          * get_link_status flag is set upon receiving a Link Status
863          * Change or Rx Sequence Error interrupt.
864          */
865         if (!mac->get_link_status)
866                 return 0;
867
868         /* First we want to see if the MII Status Register reports
869          * link.  If so, then we want to get the current speed/duplex
870          * of the PHY.
871          */
872         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
873         if (ret_val)
874                 return ret_val;
875
876         if (hw->mac.type == e1000_pchlan) {
877                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
878                 if (ret_val)
879                         return ret_val;
880         }
881
882         /* Clear link partner's EEE ability */
883         hw->dev_spec.ich8lan.eee_lp_ability = 0;
884
885         if (!link)
886                 return 0; /* No link detected */
887
888         mac->get_link_status = false;
889
890         switch (hw->mac.type) {
891         case e1000_pch2lan:
892                 ret_val = e1000_k1_workaround_lv(hw);
893                 if (ret_val)
894                         return ret_val;
895                 /* fall-thru */
896         case e1000_pchlan:
897                 if (hw->phy.type == e1000_phy_82578) {
898                         ret_val = e1000_link_stall_workaround_hv(hw);
899                         if (ret_val)
900                                 return ret_val;
901                 }
902
903                 /* Workaround for PCHx parts in half-duplex:
904                  * Set the number of preambles removed from the packet
905                  * when it is passed from the PHY to the MAC to prevent
906                  * the MAC from misinterpreting the packet type.
907                  */
908                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
909                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
910
911                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
912                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
913
914                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
915                 break;
916         default:
917                 break;
918         }
919
920         /* Check if there was DownShift, must be checked
921          * immediately after link-up
922          */
923         e1000e_check_downshift(hw);
924
925         /* Enable/Disable EEE after link up */
926         ret_val = e1000_set_eee_pchlan(hw);
927         if (ret_val)
928                 return ret_val;
929
930         /* If we are forcing speed/duplex, then we simply return since
931          * we have already determined whether we have link or not.
932          */
933         if (!mac->autoneg)
934                 return -E1000_ERR_CONFIG;
935
936         /* Auto-Neg is enabled.  Auto Speed Detection takes care
937          * of MAC speed/duplex configuration.  So we only need to
938          * configure Collision Distance in the MAC.
939          */
940         mac->ops.config_collision_dist(hw);
941
942         /* Configure Flow Control now that Auto-Neg has completed.
943          * First, we need to restore the desired flow control
944          * settings because we may have had to re-autoneg with a
945          * different link partner.
946          */
947         ret_val = e1000e_config_fc_after_link_up(hw);
948         if (ret_val)
949                 e_dbg("Error configuring flow control\n");
950
951         return ret_val;
952 }
953
954 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
955 {
956         struct e1000_hw *hw = &adapter->hw;
957         s32 rc;
958
959         rc = e1000_init_mac_params_ich8lan(hw);
960         if (rc)
961                 return rc;
962
963         rc = e1000_init_nvm_params_ich8lan(hw);
964         if (rc)
965                 return rc;
966
967         switch (hw->mac.type) {
968         case e1000_ich8lan:
969         case e1000_ich9lan:
970         case e1000_ich10lan:
971                 rc = e1000_init_phy_params_ich8lan(hw);
972                 break;
973         case e1000_pchlan:
974         case e1000_pch2lan:
975         case e1000_pch_lpt:
976                 rc = e1000_init_phy_params_pchlan(hw);
977                 break;
978         default:
979                 break;
980         }
981         if (rc)
982                 return rc;
983
984         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
985          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
986          */
987         if ((adapter->hw.phy.type == e1000_phy_ife) ||
988             ((adapter->hw.mac.type >= e1000_pch2lan) &&
989              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
990                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
991                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
992
993                 hw->mac.ops.blink_led = NULL;
994         }
995
996         if ((adapter->hw.mac.type == e1000_ich8lan) &&
997             (adapter->hw.phy.type != e1000_phy_ife))
998                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
999
1000         /* Enable workaround for 82579 w/ ME enabled */
1001         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1002             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1003                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1004
1005         /* Disable EEE by default until IEEE802.3az spec is finalized */
1006         if (adapter->flags2 & FLAG2_HAS_EEE)
1007                 adapter->hw.dev_spec.ich8lan.eee_disable = true;
1008
1009         return 0;
1010 }
1011
1012 static DEFINE_MUTEX(nvm_mutex);
1013
1014 /**
1015  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1016  *  @hw: pointer to the HW structure
1017  *
1018  *  Acquires the mutex for performing NVM operations.
1019  **/
1020 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1021 {
1022         mutex_lock(&nvm_mutex);
1023
1024         return 0;
1025 }
1026
1027 /**
1028  *  e1000_release_nvm_ich8lan - Release NVM mutex
1029  *  @hw: pointer to the HW structure
1030  *
1031  *  Releases the mutex used while performing NVM operations.
1032  **/
1033 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1034 {
1035         mutex_unlock(&nvm_mutex);
1036 }
1037
1038 /**
1039  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1040  *  @hw: pointer to the HW structure
1041  *
1042  *  Acquires the software control flag for performing PHY and select
1043  *  MAC CSR accesses.
1044  **/
1045 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1046 {
1047         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1048         s32 ret_val = 0;
1049
1050         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1051                              &hw->adapter->state)) {
1052                 e_dbg("contention for Phy access\n");
1053                 return -E1000_ERR_PHY;
1054         }
1055
1056         while (timeout) {
1057                 extcnf_ctrl = er32(EXTCNF_CTRL);
1058                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1059                         break;
1060
1061                 mdelay(1);
1062                 timeout--;
1063         }
1064
1065         if (!timeout) {
1066                 e_dbg("SW has already locked the resource.\n");
1067                 ret_val = -E1000_ERR_CONFIG;
1068                 goto out;
1069         }
1070
1071         timeout = SW_FLAG_TIMEOUT;
1072
1073         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1074         ew32(EXTCNF_CTRL, extcnf_ctrl);
1075
1076         while (timeout) {
1077                 extcnf_ctrl = er32(EXTCNF_CTRL);
1078                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1079                         break;
1080
1081                 mdelay(1);
1082                 timeout--;
1083         }
1084
1085         if (!timeout) {
1086                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1087                       er32(FWSM), extcnf_ctrl);
1088                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1089                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1090                 ret_val = -E1000_ERR_CONFIG;
1091                 goto out;
1092         }
1093
1094 out:
1095         if (ret_val)
1096                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1097
1098         return ret_val;
1099 }
1100
1101 /**
1102  *  e1000_release_swflag_ich8lan - Release software control flag
1103  *  @hw: pointer to the HW structure
1104  *
1105  *  Releases the software control flag for performing PHY and select
1106  *  MAC CSR accesses.
1107  **/
1108 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1109 {
1110         u32 extcnf_ctrl;
1111
1112         extcnf_ctrl = er32(EXTCNF_CTRL);
1113
1114         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1115                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1116                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1117         } else {
1118                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1119         }
1120
1121         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1122 }
1123
1124 /**
1125  *  e1000_check_mng_mode_ich8lan - Checks management mode
1126  *  @hw: pointer to the HW structure
1127  *
1128  *  This checks if the adapter has any manageability enabled.
1129  *  This is a function pointer entry point only called by read/write
1130  *  routines for the PHY and NVM parts.
1131  **/
1132 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1133 {
1134         u32 fwsm;
1135
1136         fwsm = er32(FWSM);
1137         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1138                ((fwsm & E1000_FWSM_MODE_MASK) ==
1139                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1140 }
1141
1142 /**
1143  *  e1000_check_mng_mode_pchlan - Checks management mode
1144  *  @hw: pointer to the HW structure
1145  *
1146  *  This checks if the adapter has iAMT enabled.
1147  *  This is a function pointer entry point only called by read/write
1148  *  routines for the PHY and NVM parts.
1149  **/
1150 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1151 {
1152         u32 fwsm;
1153
1154         fwsm = er32(FWSM);
1155         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1156                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1157 }
1158
1159 /**
1160  *  e1000_rar_set_pch2lan - Set receive address register
1161  *  @hw: pointer to the HW structure
1162  *  @addr: pointer to the receive address
1163  *  @index: receive address array register
1164  *
1165  *  Sets the receive address array register at index to the address passed
1166  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1167  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1168  *  Use SHRA[0-3] in place of those reserved for ME.
1169  **/
1170 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1171 {
1172         u32 rar_low, rar_high;
1173
1174         /* HW expects these in little endian so we reverse the byte order
1175          * from network order (big endian) to little endian
1176          */
1177         rar_low = ((u32)addr[0] |
1178                    ((u32)addr[1] << 8) |
1179                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1180
1181         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1182
1183         /* If MAC address zero, no need to set the AV bit */
1184         if (rar_low || rar_high)
1185                 rar_high |= E1000_RAH_AV;
1186
1187         if (index == 0) {
1188                 ew32(RAL(index), rar_low);
1189                 e1e_flush();
1190                 ew32(RAH(index), rar_high);
1191                 e1e_flush();
1192                 return;
1193         }
1194
1195         if (index < hw->mac.rar_entry_count) {
1196                 s32 ret_val;
1197
1198                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1199                 if (ret_val)
1200                         goto out;
1201
1202                 ew32(SHRAL(index - 1), rar_low);
1203                 e1e_flush();
1204                 ew32(SHRAH(index - 1), rar_high);
1205                 e1e_flush();
1206
1207                 e1000_release_swflag_ich8lan(hw);
1208
1209                 /* verify the register updates */
1210                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1211                     (er32(SHRAH(index - 1)) == rar_high))
1212                         return;
1213
1214                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1215                       (index - 1), er32(FWSM));
1216         }
1217
1218 out:
1219         e_dbg("Failed to write receive address at index %d\n", index);
1220 }
1221
1222 /**
1223  *  e1000_rar_set_pch_lpt - Set receive address registers
1224  *  @hw: pointer to the HW structure
1225  *  @addr: pointer to the receive address
1226  *  @index: receive address array register
1227  *
1228  *  Sets the receive address register array at index to the address passed
1229  *  in by addr. For LPT, RAR[0] is the base address register that is to
1230  *  contain the MAC address. SHRA[0-10] are the shared receive address
1231  *  registers that are shared between the Host and manageability engine (ME).
1232  **/
1233 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1234 {
1235         u32 rar_low, rar_high;
1236         u32 wlock_mac;
1237
1238         /* HW expects these in little endian so we reverse the byte order
1239          * from network order (big endian) to little endian
1240          */
1241         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1242                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1243
1244         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1245
1246         /* If MAC address zero, no need to set the AV bit */
1247         if (rar_low || rar_high)
1248                 rar_high |= E1000_RAH_AV;
1249
1250         if (index == 0) {
1251                 ew32(RAL(index), rar_low);
1252                 e1e_flush();
1253                 ew32(RAH(index), rar_high);
1254                 e1e_flush();
1255                 return;
1256         }
1257
1258         /* The manageability engine (ME) can lock certain SHRAR registers that
1259          * it is using - those registers are unavailable for use.
1260          */
1261         if (index < hw->mac.rar_entry_count) {
1262                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1263                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1264
1265                 /* Check if all SHRAR registers are locked */
1266                 if (wlock_mac == 1)
1267                         goto out;
1268
1269                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1270                         s32 ret_val;
1271
1272                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1273
1274                         if (ret_val)
1275                                 goto out;
1276
1277                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1278                         e1e_flush();
1279                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1280                         e1e_flush();
1281
1282                         e1000_release_swflag_ich8lan(hw);
1283
1284                         /* verify the register updates */
1285                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1286                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1287                                 return;
1288                 }
1289         }
1290
1291 out:
1292         e_dbg("Failed to write receive address at index %d\n", index);
1293 }
1294
1295 /**
1296  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1297  *  @hw: pointer to the HW structure
1298  *
1299  *  Checks if firmware is blocking the reset of the PHY.
1300  *  This is a function pointer entry point only called by
1301  *  reset routines.
1302  **/
1303 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1304 {
1305         u32 fwsm;
1306
1307         fwsm = er32(FWSM);
1308
1309         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1310 }
1311
1312 /**
1313  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1314  *  @hw: pointer to the HW structure
1315  *
1316  *  Assumes semaphore already acquired.
1317  *
1318  **/
1319 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1320 {
1321         u16 phy_data;
1322         u32 strap = er32(STRAP);
1323         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1324             E1000_STRAP_SMT_FREQ_SHIFT;
1325         s32 ret_val = 0;
1326
1327         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1328
1329         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1330         if (ret_val)
1331                 return ret_val;
1332
1333         phy_data &= ~HV_SMB_ADDR_MASK;
1334         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1335         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1336
1337         if (hw->phy.type == e1000_phy_i217) {
1338                 /* Restore SMBus frequency */
1339                 if (freq--) {
1340                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1341                         phy_data |= (freq & (1 << 0)) <<
1342                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
1343                         phy_data |= (freq & (1 << 1)) <<
1344                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1345                 } else {
1346                         e_dbg("Unsupported SMB frequency in PHY\n");
1347                 }
1348         }
1349
1350         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1351 }
1352
1353 /**
1354  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1355  *  @hw:   pointer to the HW structure
1356  *
1357  *  SW should configure the LCD from the NVM extended configuration region
1358  *  as a workaround for certain parts.
1359  **/
1360 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1361 {
1362         struct e1000_phy_info *phy = &hw->phy;
1363         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1364         s32 ret_val = 0;
1365         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1366
1367         /* Initialize the PHY from the NVM on ICH platforms.  This
1368          * is needed due to an issue where the NVM configuration is
1369          * not properly autoloaded after power transitions.
1370          * Therefore, after each PHY reset, we will load the
1371          * configuration data out of the NVM manually.
1372          */
1373         switch (hw->mac.type) {
1374         case e1000_ich8lan:
1375                 if (phy->type != e1000_phy_igp_3)
1376                         return ret_val;
1377
1378                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1379                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1380                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1381                         break;
1382                 }
1383                 /* Fall-thru */
1384         case e1000_pchlan:
1385         case e1000_pch2lan:
1386         case e1000_pch_lpt:
1387                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1388                 break;
1389         default:
1390                 return ret_val;
1391         }
1392
1393         ret_val = hw->phy.ops.acquire(hw);
1394         if (ret_val)
1395                 return ret_val;
1396
1397         data = er32(FEXTNVM);
1398         if (!(data & sw_cfg_mask))
1399                 goto release;
1400
1401         /* Make sure HW does not configure LCD from PHY
1402          * extended configuration before SW configuration
1403          */
1404         data = er32(EXTCNF_CTRL);
1405         if ((hw->mac.type < e1000_pch2lan) &&
1406             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1407                 goto release;
1408
1409         cnf_size = er32(EXTCNF_SIZE);
1410         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1411         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1412         if (!cnf_size)
1413                 goto release;
1414
1415         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1416         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1417
1418         if (((hw->mac.type == e1000_pchlan) &&
1419              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1420             (hw->mac.type > e1000_pchlan)) {
1421                 /* HW configures the SMBus address and LEDs when the
1422                  * OEM and LCD Write Enable bits are set in the NVM.
1423                  * When both NVM bits are cleared, SW will configure
1424                  * them instead.
1425                  */
1426                 ret_val = e1000_write_smbus_addr(hw);
1427                 if (ret_val)
1428                         goto release;
1429
1430                 data = er32(LEDCTL);
1431                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1432                                                         (u16)data);
1433                 if (ret_val)
1434                         goto release;
1435         }
1436
1437         /* Configure LCD from extended configuration region. */
1438
1439         /* cnf_base_addr is in DWORD */
1440         word_addr = (u16)(cnf_base_addr << 1);
1441
1442         for (i = 0; i < cnf_size; i++) {
1443                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1444                                          &reg_data);
1445                 if (ret_val)
1446                         goto release;
1447
1448                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1449                                          1, &reg_addr);
1450                 if (ret_val)
1451                         goto release;
1452
1453                 /* Save off the PHY page for future writes. */
1454                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1455                         phy_page = reg_data;
1456                         continue;
1457                 }
1458
1459                 reg_addr &= PHY_REG_MASK;
1460                 reg_addr |= phy_page;
1461
1462                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1463                 if (ret_val)
1464                         goto release;
1465         }
1466
1467 release:
1468         hw->phy.ops.release(hw);
1469         return ret_val;
1470 }
1471
1472 /**
1473  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1474  *  @hw:   pointer to the HW structure
1475  *  @link: link up bool flag
1476  *
1477  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1478  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1479  *  If link is down, the function will restore the default K1 setting located
1480  *  in the NVM.
1481  **/
1482 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1483 {
1484         s32 ret_val = 0;
1485         u16 status_reg = 0;
1486         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1487
1488         if (hw->mac.type != e1000_pchlan)
1489                 return 0;
1490
1491         /* Wrap the whole flow with the sw flag */
1492         ret_val = hw->phy.ops.acquire(hw);
1493         if (ret_val)
1494                 return ret_val;
1495
1496         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1497         if (link) {
1498                 if (hw->phy.type == e1000_phy_82578) {
1499                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1500                                                   &status_reg);
1501                         if (ret_val)
1502                                 goto release;
1503
1504                         status_reg &= BM_CS_STATUS_LINK_UP |
1505                                       BM_CS_STATUS_RESOLVED |
1506                                       BM_CS_STATUS_SPEED_MASK;
1507
1508                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1509                                            BM_CS_STATUS_RESOLVED |
1510                                            BM_CS_STATUS_SPEED_1000))
1511                                 k1_enable = false;
1512                 }
1513
1514                 if (hw->phy.type == e1000_phy_82577) {
1515                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1516                         if (ret_val)
1517                                 goto release;
1518
1519                         status_reg &= HV_M_STATUS_LINK_UP |
1520                                       HV_M_STATUS_AUTONEG_COMPLETE |
1521                                       HV_M_STATUS_SPEED_MASK;
1522
1523                         if (status_reg == (HV_M_STATUS_LINK_UP |
1524                                            HV_M_STATUS_AUTONEG_COMPLETE |
1525                                            HV_M_STATUS_SPEED_1000))
1526                                 k1_enable = false;
1527                 }
1528
1529                 /* Link stall fix for link up */
1530                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1531                 if (ret_val)
1532                         goto release;
1533
1534         } else {
1535                 /* Link stall fix for link down */
1536                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1537                 if (ret_val)
1538                         goto release;
1539         }
1540
1541         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1542
1543 release:
1544         hw->phy.ops.release(hw);
1545
1546         return ret_val;
1547 }
1548
1549 /**
1550  *  e1000_configure_k1_ich8lan - Configure K1 power state
1551  *  @hw: pointer to the HW structure
1552  *  @enable: K1 state to configure
1553  *
1554  *  Configure the K1 power state based on the provided parameter.
1555  *  Assumes semaphore already acquired.
1556  *
1557  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1558  **/
1559 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1560 {
1561         s32 ret_val = 0;
1562         u32 ctrl_reg = 0;
1563         u32 ctrl_ext = 0;
1564         u32 reg = 0;
1565         u16 kmrn_reg = 0;
1566
1567         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1568                                               &kmrn_reg);
1569         if (ret_val)
1570                 return ret_val;
1571
1572         if (k1_enable)
1573                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1574         else
1575                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1576
1577         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1578                                                kmrn_reg);
1579         if (ret_val)
1580                 return ret_val;
1581
1582         udelay(20);
1583         ctrl_ext = er32(CTRL_EXT);
1584         ctrl_reg = er32(CTRL);
1585
1586         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1587         reg |= E1000_CTRL_FRCSPD;
1588         ew32(CTRL, reg);
1589
1590         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1591         e1e_flush();
1592         udelay(20);
1593         ew32(CTRL, ctrl_reg);
1594         ew32(CTRL_EXT, ctrl_ext);
1595         e1e_flush();
1596         udelay(20);
1597
1598         return 0;
1599 }
1600
1601 /**
1602  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1603  *  @hw:       pointer to the HW structure
1604  *  @d0_state: boolean if entering d0 or d3 device state
1605  *
1606  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1607  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1608  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1609  **/
1610 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1611 {
1612         s32 ret_val = 0;
1613         u32 mac_reg;
1614         u16 oem_reg;
1615
1616         if (hw->mac.type < e1000_pchlan)
1617                 return ret_val;
1618
1619         ret_val = hw->phy.ops.acquire(hw);
1620         if (ret_val)
1621                 return ret_val;
1622
1623         if (hw->mac.type == e1000_pchlan) {
1624                 mac_reg = er32(EXTCNF_CTRL);
1625                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1626                         goto release;
1627         }
1628
1629         mac_reg = er32(FEXTNVM);
1630         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1631                 goto release;
1632
1633         mac_reg = er32(PHY_CTRL);
1634
1635         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1636         if (ret_val)
1637                 goto release;
1638
1639         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1640
1641         if (d0_state) {
1642                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1643                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1644
1645                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1646                         oem_reg |= HV_OEM_BITS_LPLU;
1647         } else {
1648                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1649                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1650                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1651
1652                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1653                                E1000_PHY_CTRL_NOND0A_LPLU))
1654                         oem_reg |= HV_OEM_BITS_LPLU;
1655         }
1656
1657         /* Set Restart auto-neg to activate the bits */
1658         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1659             !hw->phy.ops.check_reset_block(hw))
1660                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1661
1662         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1663
1664 release:
1665         hw->phy.ops.release(hw);
1666
1667         return ret_val;
1668 }
1669
1670
1671 /**
1672  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1673  *  @hw:   pointer to the HW structure
1674  **/
1675 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1676 {
1677         s32 ret_val;
1678         u16 data;
1679
1680         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1681         if (ret_val)
1682                 return ret_val;
1683
1684         data |= HV_KMRN_MDIO_SLOW;
1685
1686         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1687
1688         return ret_val;
1689 }
1690
1691 /**
1692  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1693  *  done after every PHY reset.
1694  **/
1695 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1696 {
1697         s32 ret_val = 0;
1698         u16 phy_data;
1699
1700         if (hw->mac.type != e1000_pchlan)
1701                 return 0;
1702
1703         /* Set MDIO slow mode before any other MDIO access */
1704         if (hw->phy.type == e1000_phy_82577) {
1705                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1706                 if (ret_val)
1707                         return ret_val;
1708         }
1709
1710         if (((hw->phy.type == e1000_phy_82577) &&
1711              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1712             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1713                 /* Disable generation of early preamble */
1714                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1715                 if (ret_val)
1716                         return ret_val;
1717
1718                 /* Preamble tuning for SSC */
1719                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1720                 if (ret_val)
1721                         return ret_val;
1722         }
1723
1724         if (hw->phy.type == e1000_phy_82578) {
1725                 /* Return registers to default by doing a soft reset then
1726                  * writing 0x3140 to the control register.
1727                  */
1728                 if (hw->phy.revision < 2) {
1729                         e1000e_phy_sw_reset(hw);
1730                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1731                 }
1732         }
1733
1734         /* Select page 0 */
1735         ret_val = hw->phy.ops.acquire(hw);
1736         if (ret_val)
1737                 return ret_val;
1738
1739         hw->phy.addr = 1;
1740         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1741         hw->phy.ops.release(hw);
1742         if (ret_val)
1743                 return ret_val;
1744
1745         /* Configure the K1 Si workaround during phy reset assuming there is
1746          * link so that it disables K1 if link is in 1Gbps.
1747          */
1748         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1749         if (ret_val)
1750                 return ret_val;
1751
1752         /* Workaround for link disconnects on a busy hub in half duplex */
1753         ret_val = hw->phy.ops.acquire(hw);
1754         if (ret_val)
1755                 return ret_val;
1756         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1757         if (ret_val)
1758                 goto release;
1759         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1760 release:
1761         hw->phy.ops.release(hw);
1762
1763         return ret_val;
1764 }
1765
1766 /**
1767  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1768  *  @hw:   pointer to the HW structure
1769  **/
1770 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1771 {
1772         u32 mac_reg;
1773         u16 i, phy_reg = 0;
1774         s32 ret_val;
1775
1776         ret_val = hw->phy.ops.acquire(hw);
1777         if (ret_val)
1778                 return;
1779         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1780         if (ret_val)
1781                 goto release;
1782
1783         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1784         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1785                 mac_reg = er32(RAL(i));
1786                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1787                                            (u16)(mac_reg & 0xFFFF));
1788                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1789                                            (u16)((mac_reg >> 16) & 0xFFFF));
1790
1791                 mac_reg = er32(RAH(i));
1792                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1793                                            (u16)(mac_reg & 0xFFFF));
1794                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1795                                            (u16)((mac_reg & E1000_RAH_AV)
1796                                                  >> 16));
1797         }
1798
1799         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1800
1801 release:
1802         hw->phy.ops.release(hw);
1803 }
1804
1805 /**
1806  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1807  *  with 82579 PHY
1808  *  @hw: pointer to the HW structure
1809  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1810  **/
1811 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1812 {
1813         s32 ret_val = 0;
1814         u16 phy_reg, data;
1815         u32 mac_reg;
1816         u16 i;
1817
1818         if (hw->mac.type < e1000_pch2lan)
1819                 return 0;
1820
1821         /* disable Rx path while enabling/disabling workaround */
1822         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1823         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1824         if (ret_val)
1825                 return ret_val;
1826
1827         if (enable) {
1828                 /* Write Rx addresses (rar_entry_count for RAL/H, +4 for
1829                  * SHRAL/H) and initial CRC values to the MAC
1830                  */
1831                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1832                         u8 mac_addr[ETH_ALEN] = {0};
1833                         u32 addr_high, addr_low;
1834
1835                         addr_high = er32(RAH(i));
1836                         if (!(addr_high & E1000_RAH_AV))
1837                                 continue;
1838                         addr_low = er32(RAL(i));
1839                         mac_addr[0] = (addr_low & 0xFF);
1840                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1841                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1842                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1843                         mac_addr[4] = (addr_high & 0xFF);
1844                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1845
1846                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1847                 }
1848
1849                 /* Write Rx addresses to the PHY */
1850                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1851
1852                 /* Enable jumbo frame workaround in the MAC */
1853                 mac_reg = er32(FFLT_DBG);
1854                 mac_reg &= ~(1 << 14);
1855                 mac_reg |= (7 << 15);
1856                 ew32(FFLT_DBG, mac_reg);
1857
1858                 mac_reg = er32(RCTL);
1859                 mac_reg |= E1000_RCTL_SECRC;
1860                 ew32(RCTL, mac_reg);
1861
1862                 ret_val = e1000e_read_kmrn_reg(hw,
1863                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1864                                                 &data);
1865                 if (ret_val)
1866                         return ret_val;
1867                 ret_val = e1000e_write_kmrn_reg(hw,
1868                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1869                                                 data | (1 << 0));
1870                 if (ret_val)
1871                         return ret_val;
1872                 ret_val = e1000e_read_kmrn_reg(hw,
1873                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1874                                                 &data);
1875                 if (ret_val)
1876                         return ret_val;
1877                 data &= ~(0xF << 8);
1878                 data |= (0xB << 8);
1879                 ret_val = e1000e_write_kmrn_reg(hw,
1880                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1881                                                 data);
1882                 if (ret_val)
1883                         return ret_val;
1884
1885                 /* Enable jumbo frame workaround in the PHY */
1886                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1887                 data &= ~(0x7F << 5);
1888                 data |= (0x37 << 5);
1889                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1890                 if (ret_val)
1891                         return ret_val;
1892                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1893                 data &= ~(1 << 13);
1894                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1895                 if (ret_val)
1896                         return ret_val;
1897                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1898                 data &= ~(0x3FF << 2);
1899                 data |= (0x1A << 2);
1900                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1901                 if (ret_val)
1902                         return ret_val;
1903                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1904                 if (ret_val)
1905                         return ret_val;
1906                 e1e_rphy(hw, HV_PM_CTRL, &data);
1907                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1908                 if (ret_val)
1909                         return ret_val;
1910         } else {
1911                 /* Write MAC register values back to h/w defaults */
1912                 mac_reg = er32(FFLT_DBG);
1913                 mac_reg &= ~(0xF << 14);
1914                 ew32(FFLT_DBG, mac_reg);
1915
1916                 mac_reg = er32(RCTL);
1917                 mac_reg &= ~E1000_RCTL_SECRC;
1918                 ew32(RCTL, mac_reg);
1919
1920                 ret_val = e1000e_read_kmrn_reg(hw,
1921                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1922                                                 &data);
1923                 if (ret_val)
1924                         return ret_val;
1925                 ret_val = e1000e_write_kmrn_reg(hw,
1926                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1927                                                 data & ~(1 << 0));
1928                 if (ret_val)
1929                         return ret_val;
1930                 ret_val = e1000e_read_kmrn_reg(hw,
1931                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1932                                                 &data);
1933                 if (ret_val)
1934                         return ret_val;
1935                 data &= ~(0xF << 8);
1936                 data |= (0xB << 8);
1937                 ret_val = e1000e_write_kmrn_reg(hw,
1938                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1939                                                 data);
1940                 if (ret_val)
1941                         return ret_val;
1942
1943                 /* Write PHY register values back to h/w defaults */
1944                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1945                 data &= ~(0x7F << 5);
1946                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1947                 if (ret_val)
1948                         return ret_val;
1949                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1950                 data |= (1 << 13);
1951                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1952                 if (ret_val)
1953                         return ret_val;
1954                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1955                 data &= ~(0x3FF << 2);
1956                 data |= (0x8 << 2);
1957                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1958                 if (ret_val)
1959                         return ret_val;
1960                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1961                 if (ret_val)
1962                         return ret_val;
1963                 e1e_rphy(hw, HV_PM_CTRL, &data);
1964                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1965                 if (ret_val)
1966                         return ret_val;
1967         }
1968
1969         /* re-enable Rx path after enabling/disabling workaround */
1970         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1971 }
1972
1973 /**
1974  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1975  *  done after every PHY reset.
1976  **/
1977 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1978 {
1979         s32 ret_val = 0;
1980
1981         if (hw->mac.type != e1000_pch2lan)
1982                 return 0;
1983
1984         /* Set MDIO slow mode before any other MDIO access */
1985         ret_val = e1000_set_mdio_slow_mode_hv(hw);
1986
1987         ret_val = hw->phy.ops.acquire(hw);
1988         if (ret_val)
1989                 return ret_val;
1990         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
1991         if (ret_val)
1992                 goto release;
1993         /* set MSE higher to enable link to stay up when noise is high */
1994         ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
1995         if (ret_val)
1996                 goto release;
1997         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
1998         if (ret_val)
1999                 goto release;
2000         /* drop link after 5 times MSE threshold was reached */
2001         ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2002 release:
2003         hw->phy.ops.release(hw);
2004
2005         return ret_val;
2006 }
2007
2008 /**
2009  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2010  *  @hw:   pointer to the HW structure
2011  *
2012  *  Workaround to set the K1 beacon duration for 82579 parts
2013  **/
2014 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2015 {
2016         s32 ret_val = 0;
2017         u16 status_reg = 0;
2018         u32 mac_reg;
2019         u16 phy_reg;
2020
2021         if (hw->mac.type != e1000_pch2lan)
2022                 return 0;
2023
2024         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
2025         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2026         if (ret_val)
2027                 return ret_val;
2028
2029         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2030             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2031                 mac_reg = er32(FEXTNVM4);
2032                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2033
2034                 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2035                 if (ret_val)
2036                         return ret_val;
2037
2038                 if (status_reg & HV_M_STATUS_SPEED_1000) {
2039                         u16 pm_phy_reg;
2040
2041                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2042                         phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2043                         /* LV 1G Packet drop issue wa  */
2044                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2045                         if (ret_val)
2046                                 return ret_val;
2047                         pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2048                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2049                         if (ret_val)
2050                                 return ret_val;
2051                 } else {
2052                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2053                         phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2054                 }
2055                 ew32(FEXTNVM4, mac_reg);
2056                 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2057         }
2058
2059         return ret_val;
2060 }
2061
2062 /**
2063  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2064  *  @hw:   pointer to the HW structure
2065  *  @gate: boolean set to true to gate, false to ungate
2066  *
2067  *  Gate/ungate the automatic PHY configuration via hardware; perform
2068  *  the configuration via software instead.
2069  **/
2070 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2071 {
2072         u32 extcnf_ctrl;
2073
2074         if (hw->mac.type < e1000_pch2lan)
2075                 return;
2076
2077         extcnf_ctrl = er32(EXTCNF_CTRL);
2078
2079         if (gate)
2080                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2081         else
2082                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2083
2084         ew32(EXTCNF_CTRL, extcnf_ctrl);
2085 }
2086
2087 /**
2088  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2089  *  @hw: pointer to the HW structure
2090  *
2091  *  Check the appropriate indication the MAC has finished configuring the
2092  *  PHY after a software reset.
2093  **/
2094 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2095 {
2096         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2097
2098         /* Wait for basic configuration completes before proceeding */
2099         do {
2100                 data = er32(STATUS);
2101                 data &= E1000_STATUS_LAN_INIT_DONE;
2102                 udelay(100);
2103         } while ((!data) && --loop);
2104
2105         /* If basic configuration is incomplete before the above loop
2106          * count reaches 0, loading the configuration from NVM will
2107          * leave the PHY in a bad state possibly resulting in no link.
2108          */
2109         if (loop == 0)
2110                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2111
2112         /* Clear the Init Done bit for the next init event */
2113         data = er32(STATUS);
2114         data &= ~E1000_STATUS_LAN_INIT_DONE;
2115         ew32(STATUS, data);
2116 }
2117
2118 /**
2119  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2120  *  @hw: pointer to the HW structure
2121  **/
2122 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2123 {
2124         s32 ret_val = 0;
2125         u16 reg;
2126
2127         if (hw->phy.ops.check_reset_block(hw))
2128                 return 0;
2129
2130         /* Allow time for h/w to get to quiescent state after reset */
2131         usleep_range(10000, 20000);
2132
2133         /* Perform any necessary post-reset workarounds */
2134         switch (hw->mac.type) {
2135         case e1000_pchlan:
2136                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2137                 if (ret_val)
2138                         return ret_val;
2139                 break;
2140         case e1000_pch2lan:
2141                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2142                 if (ret_val)
2143                         return ret_val;
2144                 break;
2145         default:
2146                 break;
2147         }
2148
2149         /* Clear the host wakeup bit after lcd reset */
2150         if (hw->mac.type >= e1000_pchlan) {
2151                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2152                 reg &= ~BM_WUC_HOST_WU_BIT;
2153                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2154         }
2155
2156         /* Configure the LCD with the extended configuration region in NVM */
2157         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2158         if (ret_val)
2159                 return ret_val;
2160
2161         /* Configure the LCD with the OEM bits in NVM */
2162         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2163
2164         if (hw->mac.type == e1000_pch2lan) {
2165                 /* Ungate automatic PHY configuration on non-managed 82579 */
2166                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2167                         usleep_range(10000, 20000);
2168                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2169                 }
2170
2171                 /* Set EEE LPI Update Timer to 200usec */
2172                 ret_val = hw->phy.ops.acquire(hw);
2173                 if (ret_val)
2174                         return ret_val;
2175                 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2176                                           I82579_LPI_UPDATE_TIMER);
2177                 if (!ret_val)
2178                         ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2179                 hw->phy.ops.release(hw);
2180         }
2181
2182         return ret_val;
2183 }
2184
2185 /**
2186  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2187  *  @hw: pointer to the HW structure
2188  *
2189  *  Resets the PHY
2190  *  This is a function pointer entry point called by drivers
2191  *  or other shared routines.
2192  **/
2193 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2194 {
2195         s32 ret_val = 0;
2196
2197         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2198         if ((hw->mac.type == e1000_pch2lan) &&
2199             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2200                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2201
2202         ret_val = e1000e_phy_hw_reset_generic(hw);
2203         if (ret_val)
2204                 return ret_val;
2205
2206         return e1000_post_phy_reset_ich8lan(hw);
2207 }
2208
2209 /**
2210  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2211  *  @hw: pointer to the HW structure
2212  *  @active: true to enable LPLU, false to disable
2213  *
2214  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2215  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2216  *  the phy speed. This function will manually set the LPLU bit and restart
2217  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2218  *  since it configures the same bit.
2219  **/
2220 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2221 {
2222         s32 ret_val = 0;
2223         u16 oem_reg;
2224
2225         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2226         if (ret_val)
2227                 return ret_val;
2228
2229         if (active)
2230                 oem_reg |= HV_OEM_BITS_LPLU;
2231         else
2232                 oem_reg &= ~HV_OEM_BITS_LPLU;
2233
2234         if (!hw->phy.ops.check_reset_block(hw))
2235                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2236
2237         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2238 }
2239
2240 /**
2241  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2242  *  @hw: pointer to the HW structure
2243  *  @active: true to enable LPLU, false to disable
2244  *
2245  *  Sets the LPLU D0 state according to the active flag.  When
2246  *  activating LPLU this function also disables smart speed
2247  *  and vice versa.  LPLU will not be activated unless the
2248  *  device autonegotiation advertisement meets standards of
2249  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2250  *  This is a function pointer entry point only called by
2251  *  PHY setup routines.
2252  **/
2253 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2254 {
2255         struct e1000_phy_info *phy = &hw->phy;
2256         u32 phy_ctrl;
2257         s32 ret_val = 0;
2258         u16 data;
2259
2260         if (phy->type == e1000_phy_ife)
2261                 return 0;
2262
2263         phy_ctrl = er32(PHY_CTRL);
2264
2265         if (active) {
2266                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2267                 ew32(PHY_CTRL, phy_ctrl);
2268
2269                 if (phy->type != e1000_phy_igp_3)
2270                         return 0;
2271
2272                 /* Call gig speed drop workaround on LPLU before accessing
2273                  * any PHY registers
2274                  */
2275                 if (hw->mac.type == e1000_ich8lan)
2276                         e1000e_gig_downshift_workaround_ich8lan(hw);
2277
2278                 /* When LPLU is enabled, we should disable SmartSpeed */
2279                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2280                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2281                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2282                 if (ret_val)
2283                         return ret_val;
2284         } else {
2285                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2286                 ew32(PHY_CTRL, phy_ctrl);
2287
2288                 if (phy->type != e1000_phy_igp_3)
2289                         return 0;
2290
2291                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2292                  * during Dx states where the power conservation is most
2293                  * important.  During driver activity we should enable
2294                  * SmartSpeed, so performance is maintained.
2295                  */
2296                 if (phy->smart_speed == e1000_smart_speed_on) {
2297                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2298                                            &data);
2299                         if (ret_val)
2300                                 return ret_val;
2301
2302                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2303                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2304                                            data);
2305                         if (ret_val)
2306                                 return ret_val;
2307                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2308                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2309                                            &data);
2310                         if (ret_val)
2311                                 return ret_val;
2312
2313                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2314                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2315                                            data);
2316                         if (ret_val)
2317                                 return ret_val;
2318                 }
2319         }
2320
2321         return 0;
2322 }
2323
2324 /**
2325  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2326  *  @hw: pointer to the HW structure
2327  *  @active: true to enable LPLU, false to disable
2328  *
2329  *  Sets the LPLU D3 state according to the active flag.  When
2330  *  activating LPLU this function also disables smart speed
2331  *  and vice versa.  LPLU will not be activated unless the
2332  *  device autonegotiation advertisement meets standards of
2333  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2334  *  This is a function pointer entry point only called by
2335  *  PHY setup routines.
2336  **/
2337 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2338 {
2339         struct e1000_phy_info *phy = &hw->phy;
2340         u32 phy_ctrl;
2341         s32 ret_val = 0;
2342         u16 data;
2343
2344         phy_ctrl = er32(PHY_CTRL);
2345
2346         if (!active) {
2347                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2348                 ew32(PHY_CTRL, phy_ctrl);
2349
2350                 if (phy->type != e1000_phy_igp_3)
2351                         return 0;
2352
2353                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2354                  * during Dx states where the power conservation is most
2355                  * important.  During driver activity we should enable
2356                  * SmartSpeed, so performance is maintained.
2357                  */
2358                 if (phy->smart_speed == e1000_smart_speed_on) {
2359                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2360                                            &data);
2361                         if (ret_val)
2362                                 return ret_val;
2363
2364                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2365                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2366                                            data);
2367                         if (ret_val)
2368                                 return ret_val;
2369                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2370                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2371                                            &data);
2372                         if (ret_val)
2373                                 return ret_val;
2374
2375                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2376                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2377                                            data);
2378                         if (ret_val)
2379                                 return ret_val;
2380                 }
2381         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2382                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2383                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2384                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2385                 ew32(PHY_CTRL, phy_ctrl);
2386
2387                 if (phy->type != e1000_phy_igp_3)
2388                         return 0;
2389
2390                 /* Call gig speed drop workaround on LPLU before accessing
2391                  * any PHY registers
2392                  */
2393                 if (hw->mac.type == e1000_ich8lan)
2394                         e1000e_gig_downshift_workaround_ich8lan(hw);
2395
2396                 /* When LPLU is enabled, we should disable SmartSpeed */
2397                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2398                 if (ret_val)
2399                         return ret_val;
2400
2401                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2402                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2403         }
2404
2405         return ret_val;
2406 }
2407
2408 /**
2409  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2410  *  @hw: pointer to the HW structure
2411  *  @bank:  pointer to the variable that returns the active bank
2412  *
2413  *  Reads signature byte from the NVM using the flash access registers.
2414  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2415  **/
2416 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2417 {
2418         u32 eecd;
2419         struct e1000_nvm_info *nvm = &hw->nvm;
2420         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2421         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2422         u8 sig_byte = 0;
2423         s32 ret_val;
2424
2425         switch (hw->mac.type) {
2426         case e1000_ich8lan:
2427         case e1000_ich9lan:
2428                 eecd = er32(EECD);
2429                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2430                     E1000_EECD_SEC1VAL_VALID_MASK) {
2431                         if (eecd & E1000_EECD_SEC1VAL)
2432                                 *bank = 1;
2433                         else
2434                                 *bank = 0;
2435
2436                         return 0;
2437                 }
2438                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2439                 /* fall-thru */
2440         default:
2441                 /* set bank to 0 in case flash read fails */
2442                 *bank = 0;
2443
2444                 /* Check bank 0 */
2445                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2446                                                         &sig_byte);
2447                 if (ret_val)
2448                         return ret_val;
2449                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2450                     E1000_ICH_NVM_SIG_VALUE) {
2451                         *bank = 0;
2452                         return 0;
2453                 }
2454
2455                 /* Check bank 1 */
2456                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2457                                                         bank1_offset,
2458                                                         &sig_byte);
2459                 if (ret_val)
2460                         return ret_val;
2461                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2462                     E1000_ICH_NVM_SIG_VALUE) {
2463                         *bank = 1;
2464                         return 0;
2465                 }
2466
2467                 e_dbg("ERROR: No valid NVM bank present\n");
2468                 return -E1000_ERR_NVM;
2469         }
2470 }
2471
2472 /**
2473  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2474  *  @hw: pointer to the HW structure
2475  *  @offset: The offset (in bytes) of the word(s) to read.
2476  *  @words: Size of data to read in words
2477  *  @data: Pointer to the word(s) to read at offset.
2478  *
2479  *  Reads a word(s) from the NVM using the flash access registers.
2480  **/
2481 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2482                                   u16 *data)
2483 {
2484         struct e1000_nvm_info *nvm = &hw->nvm;
2485         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2486         u32 act_offset;
2487         s32 ret_val = 0;
2488         u32 bank = 0;
2489         u16 i, word;
2490
2491         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2492             (words == 0)) {
2493                 e_dbg("nvm parameter(s) out of bounds\n");
2494                 ret_val = -E1000_ERR_NVM;
2495                 goto out;
2496         }
2497
2498         nvm->ops.acquire(hw);
2499
2500         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2501         if (ret_val) {
2502                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2503                 bank = 0;
2504         }
2505
2506         act_offset = (bank) ? nvm->flash_bank_size : 0;
2507         act_offset += offset;
2508
2509         ret_val = 0;
2510         for (i = 0; i < words; i++) {
2511                 if (dev_spec->shadow_ram[offset+i].modified) {
2512                         data[i] = dev_spec->shadow_ram[offset+i].value;
2513                 } else {
2514                         ret_val = e1000_read_flash_word_ich8lan(hw,
2515                                                                 act_offset + i,
2516                                                                 &word);
2517                         if (ret_val)
2518                                 break;
2519                         data[i] = word;
2520                 }
2521         }
2522
2523         nvm->ops.release(hw);
2524
2525 out:
2526         if (ret_val)
2527                 e_dbg("NVM read error: %d\n", ret_val);
2528
2529         return ret_val;
2530 }
2531
2532 /**
2533  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2534  *  @hw: pointer to the HW structure
2535  *
2536  *  This function does initial flash setup so that a new read/write/erase cycle
2537  *  can be started.
2538  **/
2539 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2540 {
2541         union ich8_hws_flash_status hsfsts;
2542         s32 ret_val = -E1000_ERR_NVM;
2543
2544         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2545
2546         /* Check if the flash descriptor is valid */
2547         if (!hsfsts.hsf_status.fldesvalid) {
2548                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2549                 return -E1000_ERR_NVM;
2550         }
2551
2552         /* Clear FCERR and DAEL in hw status by writing 1 */
2553         hsfsts.hsf_status.flcerr = 1;
2554         hsfsts.hsf_status.dael = 1;
2555
2556         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2557
2558         /* Either we should have a hardware SPI cycle in progress
2559          * bit to check against, in order to start a new cycle or
2560          * FDONE bit should be changed in the hardware so that it
2561          * is 1 after hardware reset, which can then be used as an
2562          * indication whether a cycle is in progress or has been
2563          * completed.
2564          */
2565
2566         if (!hsfsts.hsf_status.flcinprog) {
2567                 /* There is no cycle running at present,
2568                  * so we can start a cycle.
2569                  * Begin by setting Flash Cycle Done.
2570                  */
2571                 hsfsts.hsf_status.flcdone = 1;
2572                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2573                 ret_val = 0;
2574         } else {
2575                 s32 i;
2576
2577                 /* Otherwise poll for sometime so the current
2578                  * cycle has a chance to end before giving up.
2579                  */
2580                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2581                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2582                         if (!hsfsts.hsf_status.flcinprog) {
2583                                 ret_val = 0;
2584                                 break;
2585                         }
2586                         udelay(1);
2587                 }
2588                 if (!ret_val) {
2589                         /* Successful in waiting for previous cycle to timeout,
2590                          * now set the Flash Cycle Done.
2591                          */
2592                         hsfsts.hsf_status.flcdone = 1;
2593                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2594                 } else {
2595                         e_dbg("Flash controller busy, cannot get access\n");
2596                 }
2597         }
2598
2599         return ret_val;
2600 }
2601
2602 /**
2603  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2604  *  @hw: pointer to the HW structure
2605  *  @timeout: maximum time to wait for completion
2606  *
2607  *  This function starts a flash cycle and waits for its completion.
2608  **/
2609 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2610 {
2611         union ich8_hws_flash_ctrl hsflctl;
2612         union ich8_hws_flash_status hsfsts;
2613         u32 i = 0;
2614
2615         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2616         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2617         hsflctl.hsf_ctrl.flcgo = 1;
2618         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2619
2620         /* wait till FDONE bit is set to 1 */
2621         do {
2622                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2623                 if (hsfsts.hsf_status.flcdone)
2624                         break;
2625                 udelay(1);
2626         } while (i++ < timeout);
2627
2628         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2629                 return 0;
2630
2631         return -E1000_ERR_NVM;
2632 }
2633
2634 /**
2635  *  e1000_read_flash_word_ich8lan - Read word from flash
2636  *  @hw: pointer to the HW structure
2637  *  @offset: offset to data location
2638  *  @data: pointer to the location for storing the data
2639  *
2640  *  Reads the flash word at offset into data.  Offset is converted
2641  *  to bytes before read.
2642  **/
2643 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2644                                          u16 *data)
2645 {
2646         /* Must convert offset into bytes. */
2647         offset <<= 1;
2648
2649         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2650 }
2651
2652 /**
2653  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2654  *  @hw: pointer to the HW structure
2655  *  @offset: The offset of the byte to read.
2656  *  @data: Pointer to a byte to store the value read.
2657  *
2658  *  Reads a single byte from the NVM using the flash access registers.
2659  **/
2660 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2661                                          u8 *data)
2662 {
2663         s32 ret_val;
2664         u16 word = 0;
2665
2666         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2667         if (ret_val)
2668                 return ret_val;
2669
2670         *data = (u8)word;
2671
2672         return 0;
2673 }
2674
2675 /**
2676  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2677  *  @hw: pointer to the HW structure
2678  *  @offset: The offset (in bytes) of the byte or word to read.
2679  *  @size: Size of data to read, 1=byte 2=word
2680  *  @data: Pointer to the word to store the value read.
2681  *
2682  *  Reads a byte or word from the NVM using the flash access registers.
2683  **/
2684 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2685                                          u8 size, u16 *data)
2686 {
2687         union ich8_hws_flash_status hsfsts;
2688         union ich8_hws_flash_ctrl hsflctl;
2689         u32 flash_linear_addr;
2690         u32 flash_data = 0;
2691         s32 ret_val = -E1000_ERR_NVM;
2692         u8 count = 0;
2693
2694         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2695                 return -E1000_ERR_NVM;
2696
2697         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2698                             hw->nvm.flash_base_addr;
2699
2700         do {
2701                 udelay(1);
2702                 /* Steps */
2703                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2704                 if (ret_val)
2705                         break;
2706
2707                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2708                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2709                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2710                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2711                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2712
2713                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2714
2715                 ret_val = e1000_flash_cycle_ich8lan(hw,
2716                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
2717
2718                 /* Check if FCERR is set to 1, if set to 1, clear it
2719                  * and try the whole sequence a few more times, else
2720                  * read in (shift in) the Flash Data0, the order is
2721                  * least significant byte first msb to lsb
2722                  */
2723                 if (!ret_val) {
2724                         flash_data = er32flash(ICH_FLASH_FDATA0);
2725                         if (size == 1)
2726                                 *data = (u8)(flash_data & 0x000000FF);
2727                         else if (size == 2)
2728                                 *data = (u16)(flash_data & 0x0000FFFF);
2729                         break;
2730                 } else {
2731                         /* If we've gotten here, then things are probably
2732                          * completely hosed, but if the error condition is
2733                          * detected, it won't hurt to give it another try...
2734                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2735                          */
2736                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2737                         if (hsfsts.hsf_status.flcerr) {
2738                                 /* Repeat for some time before giving up. */
2739                                 continue;
2740                         } else if (!hsfsts.hsf_status.flcdone) {
2741                                 e_dbg("Timeout error - flash cycle did not complete.\n");
2742                                 break;
2743                         }
2744                 }
2745         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2746
2747         return ret_val;
2748 }
2749
2750 /**
2751  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2752  *  @hw: pointer to the HW structure
2753  *  @offset: The offset (in bytes) of the word(s) to write.
2754  *  @words: Size of data to write in words
2755  *  @data: Pointer to the word(s) to write at offset.
2756  *
2757  *  Writes a byte or word to the NVM using the flash access registers.
2758  **/
2759 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2760                                    u16 *data)
2761 {
2762         struct e1000_nvm_info *nvm = &hw->nvm;
2763         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2764         u16 i;
2765
2766         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2767             (words == 0)) {
2768                 e_dbg("nvm parameter(s) out of bounds\n");
2769                 return -E1000_ERR_NVM;
2770         }
2771
2772         nvm->ops.acquire(hw);
2773
2774         for (i = 0; i < words; i++) {
2775                 dev_spec->shadow_ram[offset+i].modified = true;
2776                 dev_spec->shadow_ram[offset+i].value = data[i];
2777         }
2778
2779         nvm->ops.release(hw);
2780
2781         return 0;
2782 }
2783
2784 /**
2785  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2786  *  @hw: pointer to the HW structure
2787  *
2788  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2789  *  which writes the checksum to the shadow ram.  The changes in the shadow
2790  *  ram are then committed to the EEPROM by processing each bank at a time
2791  *  checking for the modified bit and writing only the pending changes.
2792  *  After a successful commit, the shadow ram is cleared and is ready for
2793  *  future writes.
2794  **/
2795 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2796 {
2797         struct e1000_nvm_info *nvm = &hw->nvm;
2798         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2799         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2800         s32 ret_val;
2801         u16 data;
2802
2803         ret_val = e1000e_update_nvm_checksum_generic(hw);
2804         if (ret_val)
2805                 goto out;
2806
2807         if (nvm->type != e1000_nvm_flash_sw)
2808                 goto out;
2809
2810         nvm->ops.acquire(hw);
2811
2812         /* We're writing to the opposite bank so if we're on bank 1,
2813          * write to bank 0 etc.  We also need to erase the segment that
2814          * is going to be written
2815          */
2816         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2817         if (ret_val) {
2818                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2819                 bank = 0;
2820         }
2821
2822         if (bank == 0) {
2823                 new_bank_offset = nvm->flash_bank_size;
2824                 old_bank_offset = 0;
2825                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2826                 if (ret_val)
2827                         goto release;
2828         } else {
2829                 old_bank_offset = nvm->flash_bank_size;
2830                 new_bank_offset = 0;
2831                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2832                 if (ret_val)
2833                         goto release;
2834         }
2835
2836         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2837                 /* Determine whether to write the value stored
2838                  * in the other NVM bank or a modified value stored
2839                  * in the shadow RAM
2840                  */
2841                 if (dev_spec->shadow_ram[i].modified) {
2842                         data = dev_spec->shadow_ram[i].value;
2843                 } else {
2844                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2845                                                                 old_bank_offset,
2846                                                                 &data);
2847                         if (ret_val)
2848                                 break;
2849                 }
2850
2851                 /* If the word is 0x13, then make sure the signature bits
2852                  * (15:14) are 11b until the commit has completed.
2853                  * This will allow us to write 10b which indicates the
2854                  * signature is valid.  We want to do this after the write
2855                  * has completed so that we don't mark the segment valid
2856                  * while the write is still in progress
2857                  */
2858                 if (i == E1000_ICH_NVM_SIG_WORD)
2859                         data |= E1000_ICH_NVM_SIG_MASK;
2860
2861                 /* Convert offset to bytes. */
2862                 act_offset = (i + new_bank_offset) << 1;
2863
2864                 udelay(100);
2865                 /* Write the bytes to the new bank. */
2866                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2867                                                                act_offset,
2868                                                                (u8)data);
2869                 if (ret_val)
2870                         break;
2871
2872                 udelay(100);
2873                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2874                                                           act_offset + 1,
2875                                                           (u8)(data >> 8));
2876                 if (ret_val)
2877                         break;
2878         }
2879
2880         /* Don't bother writing the segment valid bits if sector
2881          * programming failed.
2882          */
2883         if (ret_val) {
2884                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2885                 e_dbg("Flash commit failed.\n");
2886                 goto release;
2887         }
2888
2889         /* Finally validate the new segment by setting bit 15:14
2890          * to 10b in word 0x13 , this can be done without an
2891          * erase as well since these bits are 11 to start with
2892          * and we need to change bit 14 to 0b
2893          */
2894         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2895         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2896         if (ret_val)
2897                 goto release;
2898
2899         data &= 0xBFFF;
2900         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2901                                                        act_offset * 2 + 1,
2902                                                        (u8)(data >> 8));
2903         if (ret_val)
2904                 goto release;
2905
2906         /* And invalidate the previously valid segment by setting
2907          * its signature word (0x13) high_byte to 0b. This can be
2908          * done without an erase because flash erase sets all bits
2909          * to 1's. We can write 1's to 0's without an erase
2910          */
2911         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2912         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2913         if (ret_val)
2914                 goto release;
2915
2916         /* Great!  Everything worked, we can now clear the cached entries. */
2917         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2918                 dev_spec->shadow_ram[i].modified = false;
2919                 dev_spec->shadow_ram[i].value = 0xFFFF;
2920         }
2921
2922 release:
2923         nvm->ops.release(hw);
2924
2925         /* Reload the EEPROM, or else modifications will not appear
2926          * until after the next adapter reset.
2927          */
2928         if (!ret_val) {
2929                 nvm->ops.reload(hw);
2930                 usleep_range(10000, 20000);
2931         }
2932
2933 out:
2934         if (ret_val)
2935                 e_dbg("NVM update error: %d\n", ret_val);
2936
2937         return ret_val;
2938 }
2939
2940 /**
2941  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2942  *  @hw: pointer to the HW structure
2943  *
2944  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2945  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2946  *  calculated, in which case we need to calculate the checksum and set bit 6.
2947  **/
2948 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2949 {
2950         s32 ret_val;
2951         u16 data;
2952
2953         /* Read 0x19 and check bit 6.  If this bit is 0, the checksum
2954          * needs to be fixed.  This bit is an indication that the NVM
2955          * was prepared by OEM software and did not calculate the
2956          * checksum...a likely scenario.
2957          */
2958         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2959         if (ret_val)
2960                 return ret_val;
2961
2962         if (!(data & 0x40)) {
2963                 data |= 0x40;
2964                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2965                 if (ret_val)
2966                         return ret_val;
2967                 ret_val = e1000e_update_nvm_checksum(hw);
2968                 if (ret_val)
2969                         return ret_val;
2970         }
2971
2972         return e1000e_validate_nvm_checksum_generic(hw);
2973 }
2974
2975 /**
2976  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2977  *  @hw: pointer to the HW structure
2978  *
2979  *  To prevent malicious write/erase of the NVM, set it to be read-only
2980  *  so that the hardware ignores all write/erase cycles of the NVM via
2981  *  the flash control registers.  The shadow-ram copy of the NVM will
2982  *  still be updated, however any updates to this copy will not stick
2983  *  across driver reloads.
2984  **/
2985 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2986 {
2987         struct e1000_nvm_info *nvm = &hw->nvm;
2988         union ich8_flash_protected_range pr0;
2989         union ich8_hws_flash_status hsfsts;
2990         u32 gfpreg;
2991
2992         nvm->ops.acquire(hw);
2993
2994         gfpreg = er32flash(ICH_FLASH_GFPREG);
2995
2996         /* Write-protect GbE Sector of NVM */
2997         pr0.regval = er32flash(ICH_FLASH_PR0);
2998         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2999         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3000         pr0.range.wpe = true;
3001         ew32flash(ICH_FLASH_PR0, pr0.regval);
3002
3003         /* Lock down a subset of GbE Flash Control Registers, e.g.
3004          * PR0 to prevent the write-protection from being lifted.
3005          * Once FLOCKDN is set, the registers protected by it cannot
3006          * be written until FLOCKDN is cleared by a hardware reset.
3007          */
3008         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3009         hsfsts.hsf_status.flockdn = true;
3010         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3011
3012         nvm->ops.release(hw);
3013 }
3014
3015 /**
3016  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3017  *  @hw: pointer to the HW structure
3018  *  @offset: The offset (in bytes) of the byte/word to read.
3019  *  @size: Size of data to read, 1=byte 2=word
3020  *  @data: The byte(s) to write to the NVM.
3021  *
3022  *  Writes one/two bytes to the NVM using the flash access registers.
3023  **/
3024 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3025                                           u8 size, u16 data)
3026 {
3027         union ich8_hws_flash_status hsfsts;
3028         union ich8_hws_flash_ctrl hsflctl;
3029         u32 flash_linear_addr;
3030         u32 flash_data = 0;
3031         s32 ret_val;
3032         u8 count = 0;
3033
3034         if (size < 1 || size > 2 || data > size * 0xff ||
3035             offset > ICH_FLASH_LINEAR_ADDR_MASK)
3036                 return -E1000_ERR_NVM;
3037
3038         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3039                             hw->nvm.flash_base_addr;
3040
3041         do {
3042                 udelay(1);
3043                 /* Steps */
3044                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3045                 if (ret_val)
3046                         break;
3047
3048                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3049                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3050                 hsflctl.hsf_ctrl.fldbcount = size -1;
3051                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3052                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3053
3054                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3055
3056                 if (size == 1)
3057                         flash_data = (u32)data & 0x00FF;
3058                 else
3059                         flash_data = (u32)data;
3060
3061                 ew32flash(ICH_FLASH_FDATA0, flash_data);
3062
3063                 /* check if FCERR is set to 1 , if set to 1, clear it
3064                  * and try the whole sequence a few more times else done
3065                  */
3066                 ret_val = e1000_flash_cycle_ich8lan(hw,
3067                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3068                 if (!ret_val)
3069                         break;
3070
3071                 /* If we're here, then things are most likely
3072                  * completely hosed, but if the error condition
3073                  * is detected, it won't hurt to give it another
3074                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3075                  */
3076                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3077                 if (hsfsts.hsf_status.flcerr)
3078                         /* Repeat for some time before giving up. */
3079                         continue;
3080                 if (!hsfsts.hsf_status.flcdone) {
3081                         e_dbg("Timeout error - flash cycle did not complete.\n");
3082                         break;
3083                 }
3084         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3085
3086         return ret_val;
3087 }
3088
3089 /**
3090  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3091  *  @hw: pointer to the HW structure
3092  *  @offset: The index of the byte to read.
3093  *  @data: The byte to write to the NVM.
3094  *
3095  *  Writes a single byte to the NVM using the flash access registers.
3096  **/
3097 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3098                                           u8 data)
3099 {
3100         u16 word = (u16)data;
3101
3102         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3103 }
3104
3105 /**
3106  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3107  *  @hw: pointer to the HW structure
3108  *  @offset: The offset of the byte to write.
3109  *  @byte: The byte to write to the NVM.
3110  *
3111  *  Writes a single byte to the NVM using the flash access registers.
3112  *  Goes through a retry algorithm before giving up.
3113  **/
3114 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3115                                                 u32 offset, u8 byte)
3116 {
3117         s32 ret_val;
3118         u16 program_retries;
3119
3120         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3121         if (!ret_val)
3122                 return ret_val;
3123
3124         for (program_retries = 0; program_retries < 100; program_retries++) {
3125                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3126                 udelay(100);
3127                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3128                 if (!ret_val)
3129                         break;
3130         }
3131         if (program_retries == 100)
3132                 return -E1000_ERR_NVM;
3133
3134         return 0;
3135 }
3136
3137 /**
3138  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3139  *  @hw: pointer to the HW structure
3140  *  @bank: 0 for first bank, 1 for second bank, etc.
3141  *
3142  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3143  *  bank N is 4096 * N + flash_reg_addr.
3144  **/
3145 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3146 {
3147         struct e1000_nvm_info *nvm = &hw->nvm;
3148         union ich8_hws_flash_status hsfsts;
3149         union ich8_hws_flash_ctrl hsflctl;
3150         u32 flash_linear_addr;
3151         /* bank size is in 16bit words - adjust to bytes */
3152         u32 flash_bank_size = nvm->flash_bank_size * 2;
3153         s32 ret_val;
3154         s32 count = 0;
3155         s32 j, iteration, sector_size;
3156
3157         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3158
3159         /* Determine HW Sector size: Read BERASE bits of hw flash status
3160          * register
3161          * 00: The Hw sector is 256 bytes, hence we need to erase 16
3162          *     consecutive sectors.  The start index for the nth Hw sector
3163          *     can be calculated as = bank * 4096 + n * 256
3164          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3165          *     The start index for the nth Hw sector can be calculated
3166          *     as = bank * 4096
3167          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3168          *     (ich9 only, otherwise error condition)
3169          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3170          */
3171         switch (hsfsts.hsf_status.berasesz) {
3172         case 0:
3173                 /* Hw sector size 256 */
3174                 sector_size = ICH_FLASH_SEG_SIZE_256;
3175                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3176                 break;
3177         case 1:
3178                 sector_size = ICH_FLASH_SEG_SIZE_4K;
3179                 iteration = 1;
3180                 break;
3181         case 2:
3182                 sector_size = ICH_FLASH_SEG_SIZE_8K;
3183                 iteration = 1;
3184                 break;
3185         case 3:
3186                 sector_size = ICH_FLASH_SEG_SIZE_64K;
3187                 iteration = 1;
3188                 break;
3189         default:
3190                 return -E1000_ERR_NVM;
3191         }
3192
3193         /* Start with the base address, then add the sector offset. */
3194         flash_linear_addr = hw->nvm.flash_base_addr;
3195         flash_linear_addr += (bank) ? flash_bank_size : 0;
3196
3197         for (j = 0; j < iteration ; j++) {
3198                 do {
3199                         /* Steps */
3200                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
3201                         if (ret_val)
3202                                 return ret_val;
3203
3204                         /* Write a value 11 (block Erase) in Flash
3205                          * Cycle field in hw flash control
3206                          */
3207                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3208                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3209                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3210
3211                         /* Write the last 24 bits of an index within the
3212                          * block into Flash Linear address field in Flash
3213                          * Address.
3214                          */
3215                         flash_linear_addr += (j * sector_size);
3216                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3217
3218                         ret_val = e1000_flash_cycle_ich8lan(hw,
3219                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3220                         if (!ret_val)
3221                                 break;
3222
3223                         /* Check if FCERR is set to 1.  If 1,
3224                          * clear it and try the whole sequence
3225                          * a few more times else Done
3226                          */
3227                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3228                         if (hsfsts.hsf_status.flcerr)
3229                                 /* repeat for some time before giving up */
3230                                 continue;
3231                         else if (!hsfsts.hsf_status.flcdone)
3232                                 return ret_val;
3233                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3234         }
3235
3236         return 0;
3237 }
3238
3239 /**
3240  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3241  *  @hw: pointer to the HW structure
3242  *  @data: Pointer to the LED settings
3243  *
3244  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3245  *  settings is all 0's or F's, set the LED default to a valid LED default
3246  *  setting.
3247  **/
3248 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3249 {
3250         s32 ret_val;
3251
3252         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3253         if (ret_val) {
3254                 e_dbg("NVM Read Error\n");
3255                 return ret_val;
3256         }
3257
3258         if (*data == ID_LED_RESERVED_0000 ||
3259             *data == ID_LED_RESERVED_FFFF)
3260                 *data = ID_LED_DEFAULT_ICH8LAN;
3261
3262         return 0;
3263 }
3264
3265 /**
3266  *  e1000_id_led_init_pchlan - store LED configurations
3267  *  @hw: pointer to the HW structure
3268  *
3269  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3270  *  the PHY LED configuration register.
3271  *
3272  *  PCH also does not have an "always on" or "always off" mode which
3273  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3274  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3275  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3276  *  link based on logic in e1000_led_[on|off]_pchlan().
3277  **/
3278 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3279 {
3280         struct e1000_mac_info *mac = &hw->mac;
3281         s32 ret_val;
3282         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3283         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3284         u16 data, i, temp, shift;
3285
3286         /* Get default ID LED modes */
3287         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3288         if (ret_val)
3289                 return ret_val;
3290
3291         mac->ledctl_default = er32(LEDCTL);
3292         mac->ledctl_mode1 = mac->ledctl_default;
3293         mac->ledctl_mode2 = mac->ledctl_default;
3294
3295         for (i = 0; i < 4; i++) {
3296                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3297                 shift = (i * 5);
3298                 switch (temp) {
3299                 case ID_LED_ON1_DEF2:
3300                 case ID_LED_ON1_ON2:
3301                 case ID_LED_ON1_OFF2:
3302                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3303                         mac->ledctl_mode1 |= (ledctl_on << shift);
3304                         break;
3305                 case ID_LED_OFF1_DEF2:
3306                 case ID_LED_OFF1_ON2:
3307                 case ID_LED_OFF1_OFF2:
3308                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3309                         mac->ledctl_mode1 |= (ledctl_off << shift);
3310                         break;
3311                 default:
3312                         /* Do nothing */
3313                         break;
3314                 }
3315                 switch (temp) {
3316                 case ID_LED_DEF1_ON2:
3317                 case ID_LED_ON1_ON2:
3318                 case ID_LED_OFF1_ON2:
3319                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3320                         mac->ledctl_mode2 |= (ledctl_on << shift);
3321                         break;
3322                 case ID_LED_DEF1_OFF2:
3323                 case ID_LED_ON1_OFF2:
3324                 case ID_LED_OFF1_OFF2:
3325                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3326                         mac->ledctl_mode2 |= (ledctl_off << shift);
3327                         break;
3328                 default:
3329                         /* Do nothing */
3330                         break;
3331                 }
3332         }
3333
3334         return 0;
3335 }
3336
3337 /**
3338  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3339  *  @hw: pointer to the HW structure
3340  *
3341  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3342  *  register, so the the bus width is hard coded.
3343  **/
3344 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3345 {
3346         struct e1000_bus_info *bus = &hw->bus;
3347         s32 ret_val;
3348
3349         ret_val = e1000e_get_bus_info_pcie(hw);
3350
3351         /* ICH devices are "PCI Express"-ish.  They have
3352          * a configuration space, but do not contain
3353          * PCI Express Capability registers, so bus width
3354          * must be hardcoded.
3355          */
3356         if (bus->width == e1000_bus_width_unknown)
3357                 bus->width = e1000_bus_width_pcie_x1;
3358
3359         return ret_val;
3360 }
3361
3362 /**
3363  *  e1000_reset_hw_ich8lan - Reset the hardware
3364  *  @hw: pointer to the HW structure
3365  *
3366  *  Does a full reset of the hardware which includes a reset of the PHY and
3367  *  MAC.
3368  **/
3369 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3370 {
3371         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3372         u16 kum_cfg;
3373         u32 ctrl, reg;
3374         s32 ret_val;
3375
3376         /* Prevent the PCI-E bus from sticking if there is no TLP connection
3377          * on the last TLP read/write transaction when MAC is reset.
3378          */
3379         ret_val = e1000e_disable_pcie_master(hw);
3380         if (ret_val)
3381                 e_dbg("PCI-E Master disable polling has failed.\n");
3382
3383         e_dbg("Masking off all interrupts\n");
3384         ew32(IMC, 0xffffffff);
3385
3386         /* Disable the Transmit and Receive units.  Then delay to allow
3387          * any pending transactions to complete before we hit the MAC
3388          * with the global reset.
3389          */
3390         ew32(RCTL, 0);
3391         ew32(TCTL, E1000_TCTL_PSP);
3392         e1e_flush();
3393
3394         usleep_range(10000, 20000);
3395
3396         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3397         if (hw->mac.type == e1000_ich8lan) {
3398                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3399                 ew32(PBA, E1000_PBA_8K);
3400                 /* Set Packet Buffer Size to 16k. */
3401                 ew32(PBS, E1000_PBS_16K);
3402         }
3403
3404         if (hw->mac.type == e1000_pchlan) {
3405                 /* Save the NVM K1 bit setting */
3406                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3407                 if (ret_val)
3408                         return ret_val;
3409
3410                 if (kum_cfg & E1000_NVM_K1_ENABLE)
3411                         dev_spec->nvm_k1_enabled = true;
3412                 else
3413                         dev_spec->nvm_k1_enabled = false;
3414         }
3415
3416         ctrl = er32(CTRL);
3417
3418         if (!hw->phy.ops.check_reset_block(hw)) {
3419                 /* Full-chip reset requires MAC and PHY reset at the same
3420                  * time to make sure the interface between MAC and the
3421                  * external PHY is reset.
3422                  */
3423                 ctrl |= E1000_CTRL_PHY_RST;
3424
3425                 /* Gate automatic PHY configuration by hardware on
3426                  * non-managed 82579
3427                  */
3428                 if ((hw->mac.type == e1000_pch2lan) &&
3429                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3430                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3431         }
3432         ret_val = e1000_acquire_swflag_ich8lan(hw);
3433         e_dbg("Issuing a global reset to ich8lan\n");
3434         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3435         /* cannot issue a flush here because it hangs the hardware */
3436         msleep(20);
3437
3438         /* Set Phy Config Counter to 50msec */
3439         if (hw->mac.type == e1000_pch2lan) {
3440                 reg = er32(FEXTNVM3);
3441                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3442                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3443                 ew32(FEXTNVM3, reg);
3444         }
3445
3446         if (!ret_val)
3447                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3448
3449         if (ctrl & E1000_CTRL_PHY_RST) {
3450                 ret_val = hw->phy.ops.get_cfg_done(hw);
3451                 if (ret_val)
3452                         return ret_val;
3453
3454                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3455                 if (ret_val)
3456                         return ret_val;
3457         }
3458
3459         /* For PCH, this write will make sure that any noise
3460          * will be detected as a CRC error and be dropped rather than show up
3461          * as a bad packet to the DMA engine.
3462          */
3463         if (hw->mac.type == e1000_pchlan)
3464                 ew32(CRC_OFFSET, 0x65656565);
3465
3466         ew32(IMC, 0xffffffff);
3467         er32(ICR);
3468
3469         reg = er32(KABGTXD);
3470         reg |= E1000_KABGTXD_BGSQLBIAS;
3471         ew32(KABGTXD, reg);
3472
3473         return 0;
3474 }
3475
3476 /**
3477  *  e1000_init_hw_ich8lan - Initialize the hardware
3478  *  @hw: pointer to the HW structure
3479  *
3480  *  Prepares the hardware for transmit and receive by doing the following:
3481  *   - initialize hardware bits
3482  *   - initialize LED identification
3483  *   - setup receive address registers
3484  *   - setup flow control
3485  *   - setup transmit descriptors
3486  *   - clear statistics
3487  **/
3488 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3489 {
3490         struct e1000_mac_info *mac = &hw->mac;
3491         u32 ctrl_ext, txdctl, snoop;
3492         s32 ret_val;
3493         u16 i;
3494
3495         e1000_initialize_hw_bits_ich8lan(hw);
3496
3497         /* Initialize identification LED */
3498         ret_val = mac->ops.id_led_init(hw);
3499         if (ret_val)
3500                 e_dbg("Error initializing identification LED\n");
3501                 /* This is not fatal and we should not stop init due to this */
3502
3503         /* Setup the receive address. */
3504         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3505
3506         /* Zero out the Multicast HASH table */
3507         e_dbg("Zeroing the MTA\n");
3508         for (i = 0; i < mac->mta_reg_count; i++)
3509                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3510
3511         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
3512          * the ME.  Disable wakeup by clearing the host wakeup bit.
3513          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3514          */
3515         if (hw->phy.type == e1000_phy_82578) {
3516                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3517                 i &= ~BM_WUC_HOST_WU_BIT;
3518                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3519                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3520                 if (ret_val)
3521                         return ret_val;
3522         }
3523
3524         /* Setup link and flow control */
3525         ret_val = mac->ops.setup_link(hw);
3526
3527         /* Set the transmit descriptor write-back policy for both queues */
3528         txdctl = er32(TXDCTL(0));
3529         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3530                  E1000_TXDCTL_FULL_TX_DESC_WB;
3531         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3532                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3533         ew32(TXDCTL(0), txdctl);
3534         txdctl = er32(TXDCTL(1));
3535         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3536                  E1000_TXDCTL_FULL_TX_DESC_WB;
3537         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3538                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3539         ew32(TXDCTL(1), txdctl);
3540
3541         /* ICH8 has opposite polarity of no_snoop bits.
3542          * By default, we should use snoop behavior.
3543          */
3544         if (mac->type == e1000_ich8lan)
3545                 snoop = PCIE_ICH8_SNOOP_ALL;
3546         else
3547                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3548         e1000e_set_pcie_no_snoop(hw, snoop);
3549
3550         ctrl_ext = er32(CTRL_EXT);
3551         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3552         ew32(CTRL_EXT, ctrl_ext);
3553
3554         /* Clear all of the statistics registers (clear on read).  It is
3555          * important that we do this after we have tried to establish link
3556          * because the symbol error count will increment wildly if there
3557          * is no link.
3558          */
3559         e1000_clear_hw_cntrs_ich8lan(hw);
3560
3561         return ret_val;
3562 }
3563 /**
3564  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3565  *  @hw: pointer to the HW structure
3566  *
3567  *  Sets/Clears required hardware bits necessary for correctly setting up the
3568  *  hardware for transmit and receive.
3569  **/
3570 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3571 {
3572         u32 reg;
3573
3574         /* Extended Device Control */
3575         reg = er32(CTRL_EXT);
3576         reg |= (1 << 22);
3577         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3578         if (hw->mac.type >= e1000_pchlan)
3579                 reg |= E1000_CTRL_EXT_PHYPDEN;
3580         ew32(CTRL_EXT, reg);
3581
3582         /* Transmit Descriptor Control 0 */
3583         reg = er32(TXDCTL(0));
3584         reg |= (1 << 22);
3585         ew32(TXDCTL(0), reg);
3586
3587         /* Transmit Descriptor Control 1 */
3588         reg = er32(TXDCTL(1));
3589         reg |= (1 << 22);
3590         ew32(TXDCTL(1), reg);
3591
3592         /* Transmit Arbitration Control 0 */
3593         reg = er32(TARC(0));
3594         if (hw->mac.type == e1000_ich8lan)
3595                 reg |= (1 << 28) | (1 << 29);
3596         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3597         ew32(TARC(0), reg);
3598
3599         /* Transmit Arbitration Control 1 */
3600         reg = er32(TARC(1));
3601         if (er32(TCTL) & E1000_TCTL_MULR)
3602                 reg &= ~(1 << 28);
3603         else
3604                 reg |= (1 << 28);
3605         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3606         ew32(TARC(1), reg);
3607
3608         /* Device Status */
3609         if (hw->mac.type == e1000_ich8lan) {
3610                 reg = er32(STATUS);
3611                 reg &= ~(1 << 31);
3612                 ew32(STATUS, reg);
3613         }
3614
3615         /* work-around descriptor data corruption issue during nfs v2 udp
3616          * traffic, just disable the nfs filtering capability
3617          */
3618         reg = er32(RFCTL);
3619         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3620
3621         /* Disable IPv6 extension header parsing because some malformed
3622          * IPv6 headers can hang the Rx.
3623          */
3624         if (hw->mac.type == e1000_ich8lan)
3625                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3626         ew32(RFCTL, reg);
3627 }
3628
3629 /**
3630  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3631  *  @hw: pointer to the HW structure
3632  *
3633  *  Determines which flow control settings to use, then configures flow
3634  *  control.  Calls the appropriate media-specific link configuration
3635  *  function.  Assuming the adapter has a valid link partner, a valid link
3636  *  should be established.  Assumes the hardware has previously been reset
3637  *  and the transmitter and receiver are not enabled.
3638  **/
3639 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3640 {
3641         s32 ret_val;
3642
3643         if (hw->phy.ops.check_reset_block(hw))
3644                 return 0;
3645
3646         /* ICH parts do not have a word in the NVM to determine
3647          * the default flow control setting, so we explicitly
3648          * set it to full.
3649          */
3650         if (hw->fc.requested_mode == e1000_fc_default) {
3651                 /* Workaround h/w hang when Tx flow control enabled */
3652                 if (hw->mac.type == e1000_pchlan)
3653                         hw->fc.requested_mode = e1000_fc_rx_pause;
3654                 else
3655                         hw->fc.requested_mode = e1000_fc_full;
3656         }
3657
3658         /* Save off the requested flow control mode for use later.  Depending
3659          * on the link partner's capabilities, we may or may not use this mode.
3660          */
3661         hw->fc.current_mode = hw->fc.requested_mode;
3662
3663         e_dbg("After fix-ups FlowControl is now = %x\n",
3664                 hw->fc.current_mode);
3665
3666         /* Continue to configure the copper link. */
3667         ret_val = hw->mac.ops.setup_physical_interface(hw);
3668         if (ret_val)
3669                 return ret_val;
3670
3671         ew32(FCTTV, hw->fc.pause_time);
3672         if ((hw->phy.type == e1000_phy_82578) ||
3673             (hw->phy.type == e1000_phy_82579) ||
3674             (hw->phy.type == e1000_phy_i217) ||
3675             (hw->phy.type == e1000_phy_82577)) {
3676                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3677
3678                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3679                                    hw->fc.pause_time);
3680                 if (ret_val)
3681                         return ret_val;
3682         }
3683
3684         return e1000e_set_fc_watermarks(hw);
3685 }
3686
3687 /**
3688  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3689  *  @hw: pointer to the HW structure
3690  *
3691  *  Configures the kumeran interface to the PHY to wait the appropriate time
3692  *  when polling the PHY, then call the generic setup_copper_link to finish
3693  *  configuring the copper link.
3694  **/
3695 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3696 {
3697         u32 ctrl;
3698         s32 ret_val;
3699         u16 reg_data;
3700
3701         ctrl = er32(CTRL);
3702         ctrl |= E1000_CTRL_SLU;
3703         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3704         ew32(CTRL, ctrl);
3705
3706         /* Set the mac to wait the maximum time between each iteration
3707          * and increase the max iterations when polling the phy;
3708          * this fixes erroneous timeouts at 10Mbps.
3709          */
3710         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3711         if (ret_val)
3712                 return ret_val;
3713         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3714                                        &reg_data);
3715         if (ret_val)
3716                 return ret_val;
3717         reg_data |= 0x3F;
3718         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3719                                         reg_data);
3720         if (ret_val)
3721                 return ret_val;
3722
3723         switch (hw->phy.type) {
3724         case e1000_phy_igp_3:
3725                 ret_val = e1000e_copper_link_setup_igp(hw);
3726                 if (ret_val)
3727                         return ret_val;
3728                 break;
3729         case e1000_phy_bm:
3730         case e1000_phy_82578:
3731                 ret_val = e1000e_copper_link_setup_m88(hw);
3732                 if (ret_val)
3733                         return ret_val;
3734                 break;
3735         case e1000_phy_82577:
3736         case e1000_phy_82579:
3737         case e1000_phy_i217:
3738                 ret_val = e1000_copper_link_setup_82577(hw);
3739                 if (ret_val)
3740                         return ret_val;
3741                 break;
3742         case e1000_phy_ife:
3743                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3744                 if (ret_val)
3745                         return ret_val;
3746
3747                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3748
3749                 switch (hw->phy.mdix) {
3750                 case 1:
3751                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3752                         break;
3753                 case 2:
3754                         reg_data |= IFE_PMC_FORCE_MDIX;
3755                         break;
3756                 case 0:
3757                 default:
3758                         reg_data |= IFE_PMC_AUTO_MDIX;
3759                         break;
3760                 }
3761                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3762                 if (ret_val)
3763                         return ret_val;
3764                 break;
3765         default:
3766                 break;
3767         }
3768
3769         return e1000e_setup_copper_link(hw);
3770 }
3771
3772 /**
3773  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3774  *  @hw: pointer to the HW structure
3775  *  @speed: pointer to store current link speed
3776  *  @duplex: pointer to store the current link duplex
3777  *
3778  *  Calls the generic get_speed_and_duplex to retrieve the current link
3779  *  information and then calls the Kumeran lock loss workaround for links at
3780  *  gigabit speeds.
3781  **/
3782 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3783                                           u16 *duplex)
3784 {
3785         s32 ret_val;
3786
3787         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3788         if (ret_val)
3789                 return ret_val;
3790
3791         if ((hw->mac.type == e1000_ich8lan) &&
3792             (hw->phy.type == e1000_phy_igp_3) &&
3793             (*speed == SPEED_1000)) {
3794                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3795         }
3796
3797         return ret_val;
3798 }
3799
3800 /**
3801  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3802  *  @hw: pointer to the HW structure
3803  *
3804  *  Work-around for 82566 Kumeran PCS lock loss:
3805  *  On link status change (i.e. PCI reset, speed change) and link is up and
3806  *  speed is gigabit-
3807  *    0) if workaround is optionally disabled do nothing
3808  *    1) wait 1ms for Kumeran link to come up
3809  *    2) check Kumeran Diagnostic register PCS lock loss bit
3810  *    3) if not set the link is locked (all is good), otherwise...
3811  *    4) reset the PHY
3812  *    5) repeat up to 10 times
3813  *  Note: this is only called for IGP3 copper when speed is 1gb.
3814  **/
3815 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3816 {
3817         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3818         u32 phy_ctrl;
3819         s32 ret_val;
3820         u16 i, data;
3821         bool link;
3822
3823         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3824                 return 0;
3825
3826         /* Make sure link is up before proceeding.  If not just return.
3827          * Attempting this while link is negotiating fouled up link
3828          * stability
3829          */
3830         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3831         if (!link)
3832                 return 0;
3833
3834         for (i = 0; i < 10; i++) {
3835                 /* read once to clear */
3836                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3837                 if (ret_val)
3838                         return ret_val;
3839                 /* and again to get new status */
3840                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3841                 if (ret_val)
3842                         return ret_val;
3843
3844                 /* check for PCS lock */
3845                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3846                         return 0;
3847
3848                 /* Issue PHY reset */
3849                 e1000_phy_hw_reset(hw);
3850                 mdelay(5);
3851         }
3852         /* Disable GigE link negotiation */
3853         phy_ctrl = er32(PHY_CTRL);
3854         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3855                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3856         ew32(PHY_CTRL, phy_ctrl);
3857
3858         /* Call gig speed drop workaround on Gig disable before accessing
3859          * any PHY registers
3860          */
3861         e1000e_gig_downshift_workaround_ich8lan(hw);
3862
3863         /* unable to acquire PCS lock */
3864         return -E1000_ERR_PHY;
3865 }
3866
3867 /**
3868  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3869  *  @hw: pointer to the HW structure
3870  *  @state: boolean value used to set the current Kumeran workaround state
3871  *
3872  *  If ICH8, set the current Kumeran workaround state (enabled - true
3873  *  /disabled - false).
3874  **/
3875 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3876                                                  bool state)
3877 {
3878         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3879
3880         if (hw->mac.type != e1000_ich8lan) {
3881                 e_dbg("Workaround applies to ICH8 only.\n");
3882                 return;
3883         }
3884
3885         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3886 }
3887
3888 /**
3889  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3890  *  @hw: pointer to the HW structure
3891  *
3892  *  Workaround for 82566 power-down on D3 entry:
3893  *    1) disable gigabit link
3894  *    2) write VR power-down enable
3895  *    3) read it back
3896  *  Continue if successful, else issue LCD reset and repeat
3897  **/
3898 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3899 {
3900         u32 reg;
3901         u16 data;
3902         u8  retry = 0;
3903
3904         if (hw->phy.type != e1000_phy_igp_3)
3905                 return;
3906
3907         /* Try the workaround twice (if needed) */
3908         do {
3909                 /* Disable link */
3910                 reg = er32(PHY_CTRL);
3911                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3912                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3913                 ew32(PHY_CTRL, reg);
3914
3915                 /* Call gig speed drop workaround on Gig disable before
3916                  * accessing any PHY registers
3917                  */
3918                 if (hw->mac.type == e1000_ich8lan)
3919                         e1000e_gig_downshift_workaround_ich8lan(hw);
3920
3921                 /* Write VR power-down enable */
3922                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3923                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3924                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3925
3926                 /* Read it back and test */
3927                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3928                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3929                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3930                         break;
3931
3932                 /* Issue PHY reset and repeat at most one more time */
3933                 reg = er32(CTRL);
3934                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3935                 retry++;
3936         } while (retry);
3937 }
3938
3939 /**
3940  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3941  *  @hw: pointer to the HW structure
3942  *
3943  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3944  *  LPLU, Gig disable, MDIC PHY reset):
3945  *    1) Set Kumeran Near-end loopback
3946  *    2) Clear Kumeran Near-end loopback
3947  *  Should only be called for ICH8[m] devices with any 1G Phy.
3948  **/
3949 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3950 {
3951         s32 ret_val;
3952         u16 reg_data;
3953
3954         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3955                 return;
3956
3957         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3958                                       &reg_data);
3959         if (ret_val)
3960                 return;
3961         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3962         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3963                                        reg_data);
3964         if (ret_val)
3965                 return;
3966         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3967         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3968                                        reg_data);
3969 }
3970
3971 /**
3972  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3973  *  @hw: pointer to the HW structure
3974  *
3975  *  During S0 to Sx transition, it is possible the link remains at gig
3976  *  instead of negotiating to a lower speed.  Before going to Sx, set
3977  *  'Gig Disable' to force link speed negotiation to a lower speed based on
3978  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
3979  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3980  *  needs to be written.
3981  *  Parts that support (and are linked to a partner which support) EEE in
3982  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
3983  *  than 10Mbps w/o EEE.
3984  **/
3985 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3986 {
3987         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3988         u32 phy_ctrl;
3989         s32 ret_val;
3990
3991         phy_ctrl = er32(PHY_CTRL);
3992         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3993         if (hw->phy.type == e1000_phy_i217) {
3994                 u16 phy_reg;
3995
3996                 ret_val = hw->phy.ops.acquire(hw);
3997                 if (ret_val)
3998                         goto out;
3999
4000                 if (!dev_spec->eee_disable) {
4001                         u16 eee_advert;
4002
4003                         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4004                                                   I217_EEE_ADVERTISEMENT);
4005                         if (ret_val)
4006                                 goto release;
4007                         e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4008
4009                         /* Disable LPLU if both link partners support 100BaseT
4010                          * EEE and 100Full is advertised on both ends of the
4011                          * link.
4012                          */
4013                         if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4014                             (dev_spec->eee_lp_ability &
4015                              I217_EEE_100_SUPPORTED) &&
4016                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4017                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4018                                               E1000_PHY_CTRL_NOND0A_LPLU);
4019                 }
4020
4021                 /* For i217 Intel Rapid Start Technology support,
4022                  * when the system is going into Sx and no manageability engine
4023                  * is present, the driver must configure proxy to reset only on
4024                  * power good.  LPI (Low Power Idle) state must also reset only
4025                  * on power good, as well as the MTA (Multicast table array).
4026                  * The SMBus release must also be disabled on LCD reset.
4027                  */
4028                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4029
4030                         /* Enable proxy to reset only on power good. */
4031                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4032                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4033                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4034
4035                         /* Set bit enable LPI (EEE) to reset only on
4036                          * power good.
4037                          */
4038                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4039                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4040                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4041
4042                         /* Disable the SMB release on LCD reset. */
4043                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4044                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4045                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4046                 }
4047
4048                 /* Enable MTA to reset for Intel Rapid Start Technology
4049                  * Support
4050                  */
4051                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4052                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4053                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4054
4055 release:
4056                 hw->phy.ops.release(hw);
4057         }
4058 out:
4059         ew32(PHY_CTRL, phy_ctrl);
4060
4061         if (hw->mac.type == e1000_ich8lan)
4062                 e1000e_gig_downshift_workaround_ich8lan(hw);
4063
4064         if (hw->mac.type >= e1000_pchlan) {
4065                 e1000_oem_bits_config_ich8lan(hw, false);
4066
4067                 /* Reset PHY to activate OEM bits on 82577/8 */
4068                 if (hw->mac.type == e1000_pchlan)
4069                         e1000e_phy_hw_reset_generic(hw);
4070
4071                 ret_val = hw->phy.ops.acquire(hw);
4072                 if (ret_val)
4073                         return;
4074                 e1000_write_smbus_addr(hw);
4075                 hw->phy.ops.release(hw);
4076         }
4077 }
4078
4079 /**
4080  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4081  *  @hw: pointer to the HW structure
4082  *
4083  *  During Sx to S0 transitions on non-managed devices or managed devices
4084  *  on which PHY resets are not blocked, if the PHY registers cannot be
4085  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4086  *  the PHY.
4087  *  On i217, setup Intel Rapid Start Technology.
4088  **/
4089 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4090 {
4091         s32 ret_val;
4092
4093         if (hw->mac.type < e1000_pch2lan)
4094                 return;
4095
4096         ret_val = e1000_init_phy_workarounds_pchlan(hw);
4097         if (ret_val) {
4098                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4099                 return;
4100         }
4101
4102         /* For i217 Intel Rapid Start Technology support when the system
4103          * is transitioning from Sx and no manageability engine is present
4104          * configure SMBus to restore on reset, disable proxy, and enable
4105          * the reset on MTA (Multicast table array).
4106          */
4107         if (hw->phy.type == e1000_phy_i217) {
4108                 u16 phy_reg;
4109
4110                 ret_val = hw->phy.ops.acquire(hw);
4111                 if (ret_val) {
4112                         e_dbg("Failed to setup iRST\n");
4113                         return;
4114                 }
4115
4116                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4117                         /* Restore clear on SMB if no manageability engine
4118                          * is present
4119                          */
4120                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4121                         if (ret_val)
4122                                 goto release;
4123                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4124                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4125
4126                         /* Disable Proxy */
4127                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4128                 }
4129                 /* Enable reset on MTA */
4130                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4131                 if (ret_val)
4132                         goto release;
4133                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4134                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4135 release:
4136                 if (ret_val)
4137                         e_dbg("Error %d in resume workarounds\n", ret_val);
4138                 hw->phy.ops.release(hw);
4139         }
4140 }
4141
4142 /**
4143  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4144  *  @hw: pointer to the HW structure
4145  *
4146  *  Return the LED back to the default configuration.
4147  **/
4148 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4149 {
4150         if (hw->phy.type == e1000_phy_ife)
4151                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4152
4153         ew32(LEDCTL, hw->mac.ledctl_default);
4154         return 0;
4155 }
4156
4157 /**
4158  *  e1000_led_on_ich8lan - Turn LEDs on
4159  *  @hw: pointer to the HW structure
4160  *
4161  *  Turn on the LEDs.
4162  **/
4163 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4164 {
4165         if (hw->phy.type == e1000_phy_ife)
4166                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4167                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4168
4169         ew32(LEDCTL, hw->mac.ledctl_mode2);
4170         return 0;
4171 }
4172
4173 /**
4174  *  e1000_led_off_ich8lan - Turn LEDs off
4175  *  @hw: pointer to the HW structure
4176  *
4177  *  Turn off the LEDs.
4178  **/
4179 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4180 {
4181         if (hw->phy.type == e1000_phy_ife)
4182                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4183                                 (IFE_PSCL_PROBE_MODE |
4184                                  IFE_PSCL_PROBE_LEDS_OFF));
4185
4186         ew32(LEDCTL, hw->mac.ledctl_mode1);
4187         return 0;
4188 }
4189
4190 /**
4191  *  e1000_setup_led_pchlan - Configures SW controllable LED
4192  *  @hw: pointer to the HW structure
4193  *
4194  *  This prepares the SW controllable LED for use.
4195  **/
4196 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4197 {
4198         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4199 }
4200
4201 /**
4202  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4203  *  @hw: pointer to the HW structure
4204  *
4205  *  Return the LED back to the default configuration.
4206  **/
4207 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4208 {
4209         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4210 }
4211
4212 /**
4213  *  e1000_led_on_pchlan - Turn LEDs on
4214  *  @hw: pointer to the HW structure
4215  *
4216  *  Turn on the LEDs.
4217  **/
4218 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4219 {
4220         u16 data = (u16)hw->mac.ledctl_mode2;
4221         u32 i, led;
4222
4223         /* If no link, then turn LED on by setting the invert bit
4224          * for each LED that's mode is "link_up" in ledctl_mode2.
4225          */
4226         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4227                 for (i = 0; i < 3; i++) {
4228                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4229                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4230                             E1000_LEDCTL_MODE_LINK_UP)
4231                                 continue;
4232                         if (led & E1000_PHY_LED0_IVRT)
4233                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4234                         else
4235                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4236                 }
4237         }
4238
4239         return e1e_wphy(hw, HV_LED_CONFIG, data);
4240 }
4241
4242 /**
4243  *  e1000_led_off_pchlan - Turn LEDs off
4244  *  @hw: pointer to the HW structure
4245  *
4246  *  Turn off the LEDs.
4247  **/
4248 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4249 {
4250         u16 data = (u16)hw->mac.ledctl_mode1;
4251         u32 i, led;
4252
4253         /* If no link, then turn LED off by clearing the invert bit
4254          * for each LED that's mode is "link_up" in ledctl_mode1.
4255          */
4256         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4257                 for (i = 0; i < 3; i++) {
4258                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4259                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4260                             E1000_LEDCTL_MODE_LINK_UP)
4261                                 continue;
4262                         if (led & E1000_PHY_LED0_IVRT)
4263                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4264                         else
4265                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4266                 }
4267         }
4268
4269         return e1e_wphy(hw, HV_LED_CONFIG, data);
4270 }
4271
4272 /**
4273  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4274  *  @hw: pointer to the HW structure
4275  *
4276  *  Read appropriate register for the config done bit for completion status
4277  *  and configure the PHY through s/w for EEPROM-less parts.
4278  *
4279  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4280  *  config done bit, so only an error is logged and continues.  If we were
4281  *  to return with error, EEPROM-less silicon would not be able to be reset
4282  *  or change link.
4283  **/
4284 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4285 {
4286         s32 ret_val = 0;
4287         u32 bank = 0;
4288         u32 status;
4289
4290         e1000e_get_cfg_done(hw);
4291
4292         /* Wait for indication from h/w that it has completed basic config */
4293         if (hw->mac.type >= e1000_ich10lan) {
4294                 e1000_lan_init_done_ich8lan(hw);
4295         } else {
4296                 ret_val = e1000e_get_auto_rd_done(hw);
4297                 if (ret_val) {
4298                         /* When auto config read does not complete, do not
4299                          * return with an error. This can happen in situations
4300                          * where there is no eeprom and prevents getting link.
4301                          */
4302                         e_dbg("Auto Read Done did not complete\n");
4303                         ret_val = 0;
4304                 }
4305         }
4306
4307         /* Clear PHY Reset Asserted bit */
4308         status = er32(STATUS);
4309         if (status & E1000_STATUS_PHYRA)
4310                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4311         else
4312                 e_dbg("PHY Reset Asserted not set - needs delay\n");
4313
4314         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4315         if (hw->mac.type <= e1000_ich9lan) {
4316                 if (!(er32(EECD) & E1000_EECD_PRES) &&
4317                     (hw->phy.type == e1000_phy_igp_3)) {
4318                         e1000e_phy_init_script_igp3(hw);
4319                 }
4320         } else {
4321                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4322                         /* Maybe we should do a basic PHY config */
4323                         e_dbg("EEPROM not present\n");
4324                         ret_val = -E1000_ERR_CONFIG;
4325                 }
4326         }
4327
4328         return ret_val;
4329 }
4330
4331 /**
4332  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4333  * @hw: pointer to the HW structure
4334  *
4335  * In the case of a PHY power down to save power, or to turn off link during a
4336  * driver unload, or wake on lan is not enabled, remove the link.
4337  **/
4338 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4339 {
4340         /* If the management interface is not enabled, then power down */
4341         if (!(hw->mac.ops.check_mng_mode(hw) ||
4342               hw->phy.ops.check_reset_block(hw)))
4343                 e1000_power_down_phy_copper(hw);
4344 }
4345
4346 /**
4347  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4348  *  @hw: pointer to the HW structure
4349  *
4350  *  Clears hardware counters specific to the silicon family and calls
4351  *  clear_hw_cntrs_generic to clear all general purpose counters.
4352  **/
4353 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4354 {
4355         u16 phy_data;
4356         s32 ret_val;
4357
4358         e1000e_clear_hw_cntrs_base(hw);
4359
4360         er32(ALGNERRC);
4361         er32(RXERRC);
4362         er32(TNCRS);
4363         er32(CEXTERR);
4364         er32(TSCTC);
4365         er32(TSCTFC);
4366
4367         er32(MGTPRC);
4368         er32(MGTPDC);
4369         er32(MGTPTC);
4370
4371         er32(IAC);
4372         er32(ICRXOC);
4373
4374         /* Clear PHY statistics registers */
4375         if ((hw->phy.type == e1000_phy_82578) ||
4376             (hw->phy.type == e1000_phy_82579) ||
4377             (hw->phy.type == e1000_phy_i217) ||
4378             (hw->phy.type == e1000_phy_82577)) {
4379                 ret_val = hw->phy.ops.acquire(hw);
4380                 if (ret_val)
4381                         return;
4382                 ret_val = hw->phy.ops.set_page(hw,
4383                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4384                 if (ret_val)
4385                         goto release;
4386                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4387                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4388                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4389                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4390                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4391                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4392                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4393                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4394                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4395                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4396                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4397                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4398                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4399                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4400 release:
4401                 hw->phy.ops.release(hw);
4402         }
4403 }
4404
4405 static const struct e1000_mac_operations ich8_mac_ops = {
4406         /* check_mng_mode dependent on mac type */
4407         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4408         /* cleanup_led dependent on mac type */
4409         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4410         .get_bus_info           = e1000_get_bus_info_ich8lan,
4411         .set_lan_id             = e1000_set_lan_id_single_port,
4412         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4413         /* led_on dependent on mac type */
4414         /* led_off dependent on mac type */
4415         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4416         .reset_hw               = e1000_reset_hw_ich8lan,
4417         .init_hw                = e1000_init_hw_ich8lan,
4418         .setup_link             = e1000_setup_link_ich8lan,
4419         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4420         /* id_led_init dependent on mac type */
4421         .config_collision_dist  = e1000e_config_collision_dist_generic,
4422         .rar_set                = e1000e_rar_set_generic,
4423 };
4424
4425 static const struct e1000_phy_operations ich8_phy_ops = {
4426         .acquire                = e1000_acquire_swflag_ich8lan,
4427         .check_reset_block      = e1000_check_reset_block_ich8lan,
4428         .commit                 = NULL,
4429         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4430         .get_cable_length       = e1000e_get_cable_length_igp_2,
4431         .read_reg               = e1000e_read_phy_reg_igp,
4432         .release                = e1000_release_swflag_ich8lan,
4433         .reset                  = e1000_phy_hw_reset_ich8lan,
4434         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4435         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4436         .write_reg              = e1000e_write_phy_reg_igp,
4437 };
4438
4439 static const struct e1000_nvm_operations ich8_nvm_ops = {
4440         .acquire                = e1000_acquire_nvm_ich8lan,
4441         .read                   = e1000_read_nvm_ich8lan,
4442         .release                = e1000_release_nvm_ich8lan,
4443         .reload                 = e1000e_reload_nvm_generic,
4444         .update                 = e1000_update_nvm_checksum_ich8lan,
4445         .valid_led_default      = e1000_valid_led_default_ich8lan,
4446         .validate               = e1000_validate_nvm_checksum_ich8lan,
4447         .write                  = e1000_write_nvm_ich8lan,
4448 };
4449
4450 const struct e1000_info e1000_ich8_info = {
4451         .mac                    = e1000_ich8lan,
4452         .flags                  = FLAG_HAS_WOL
4453                                   | FLAG_IS_ICH
4454                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4455                                   | FLAG_HAS_AMT
4456                                   | FLAG_HAS_FLASH
4457                                   | FLAG_APME_IN_WUC,
4458         .pba                    = 8,
4459         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
4460         .get_variants           = e1000_get_variants_ich8lan,
4461         .mac_ops                = &ich8_mac_ops,
4462         .phy_ops                = &ich8_phy_ops,
4463         .nvm_ops                = &ich8_nvm_ops,
4464 };
4465
4466 const struct e1000_info e1000_ich9_info = {
4467         .mac                    = e1000_ich9lan,
4468         .flags                  = FLAG_HAS_JUMBO_FRAMES
4469                                   | FLAG_IS_ICH
4470                                   | FLAG_HAS_WOL
4471                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4472                                   | FLAG_HAS_AMT
4473                                   | FLAG_HAS_FLASH
4474                                   | FLAG_APME_IN_WUC,
4475         .pba                    = 18,
4476         .max_hw_frame_size      = DEFAULT_JUMBO,
4477         .get_variants           = e1000_get_variants_ich8lan,
4478         .mac_ops                = &ich8_mac_ops,
4479         .phy_ops                = &ich8_phy_ops,
4480         .nvm_ops                = &ich8_nvm_ops,
4481 };
4482
4483 const struct e1000_info e1000_ich10_info = {
4484         .mac                    = e1000_ich10lan,
4485         .flags                  = FLAG_HAS_JUMBO_FRAMES
4486                                   | FLAG_IS_ICH
4487                                   | FLAG_HAS_WOL
4488                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4489                                   | FLAG_HAS_AMT
4490                                   | FLAG_HAS_FLASH
4491                                   | FLAG_APME_IN_WUC,
4492         .pba                    = 18,
4493         .max_hw_frame_size      = DEFAULT_JUMBO,
4494         .get_variants           = e1000_get_variants_ich8lan,
4495         .mac_ops                = &ich8_mac_ops,
4496         .phy_ops                = &ich8_phy_ops,
4497         .nvm_ops                = &ich8_nvm_ops,
4498 };
4499
4500 const struct e1000_info e1000_pch_info = {
4501         .mac                    = e1000_pchlan,
4502         .flags                  = FLAG_IS_ICH
4503                                   | FLAG_HAS_WOL
4504                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4505                                   | FLAG_HAS_AMT
4506                                   | FLAG_HAS_FLASH
4507                                   | FLAG_HAS_JUMBO_FRAMES
4508                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4509                                   | FLAG_APME_IN_WUC,
4510         .flags2                 = FLAG2_HAS_PHY_STATS,
4511         .pba                    = 26,
4512         .max_hw_frame_size      = 4096,
4513         .get_variants           = e1000_get_variants_ich8lan,
4514         .mac_ops                = &ich8_mac_ops,
4515         .phy_ops                = &ich8_phy_ops,
4516         .nvm_ops                = &ich8_nvm_ops,
4517 };
4518
4519 const struct e1000_info e1000_pch2_info = {
4520         .mac                    = e1000_pch2lan,
4521         .flags                  = FLAG_IS_ICH
4522                                   | FLAG_HAS_WOL
4523                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4524                                   | FLAG_HAS_AMT
4525                                   | FLAG_HAS_FLASH
4526                                   | FLAG_HAS_JUMBO_FRAMES
4527                                   | FLAG_APME_IN_WUC,
4528         .flags2                 = FLAG2_HAS_PHY_STATS
4529                                   | FLAG2_HAS_EEE,
4530         .pba                    = 26,
4531         .max_hw_frame_size      = DEFAULT_JUMBO,
4532         .get_variants           = e1000_get_variants_ich8lan,
4533         .mac_ops                = &ich8_mac_ops,
4534         .phy_ops                = &ich8_phy_ops,
4535         .nvm_ops                = &ich8_nvm_ops,
4536 };
4537
4538 const struct e1000_info e1000_pch_lpt_info = {
4539         .mac                    = e1000_pch_lpt,
4540         .flags                  = FLAG_IS_ICH
4541                                   | FLAG_HAS_WOL
4542                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4543                                   | FLAG_HAS_AMT
4544                                   | FLAG_HAS_FLASH
4545                                   | FLAG_HAS_JUMBO_FRAMES
4546                                   | FLAG_APME_IN_WUC,
4547         .flags2                 = FLAG2_HAS_PHY_STATS
4548                                   | FLAG2_HAS_EEE,
4549         .pba                    = 26,
4550         .max_hw_frame_size      = DEFAULT_JUMBO,
4551         .get_variants           = e1000_get_variants_ich8lan,
4552         .mac_ops                = &ich8_mac_ops,
4553         .phy_ops                = &ich8_phy_ops,
4554         .nvm_ops                = &ich8_nvm_ops,
4555 };