]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/qlogic/qed/qed_int.c
qed: Encapsulate interrupt counters in struct
[karo-tx-linux.git] / drivers / net / ethernet / qlogic / qed / qed_int.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/bitops.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/kernel.h>
42 #include <linux/pci.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include "qed.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_int.h"
50 #include "qed_mcp.h"
51 #include "qed_reg_addr.h"
52 #include "qed_sp.h"
53 #include "qed_sriov.h"
54 #include "qed_vf.h"
55
56 struct qed_pi_info {
57         qed_int_comp_cb_t       comp_cb;
58         void                    *cookie;
59 };
60
61 struct qed_sb_sp_info {
62         struct qed_sb_info      sb_info;
63
64         /* per protocol index data */
65         struct qed_pi_info      pi_info_arr[PIS_PER_SB];
66 };
67
68 enum qed_attention_type {
69         QED_ATTN_TYPE_ATTN,
70         QED_ATTN_TYPE_PARITY,
71 };
72
73 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75
76 struct aeu_invert_reg_bit {
77         char bit_name[30];
78
79 #define ATTENTION_PARITY                (1 << 0)
80
81 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
82 #define ATTENTION_LENGTH_SHIFT          (4)
83 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
84                                          ATTENTION_LENGTH_SHIFT)
85 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
86 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
87 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
88                                          ATTENTION_PARITY)
89
90 /* Multiple bits start with this offset */
91 #define ATTENTION_OFFSET_MASK           (0x000ff000)
92 #define ATTENTION_OFFSET_SHIFT          (12)
93
94 #define ATTENTION_BB_MASK               (0x00700000)
95 #define ATTENTION_BB_SHIFT              (20)
96 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
97 #define ATTENTION_BB_DIFFERENT          BIT(23)
98
99         unsigned int flags;
100
101         /* Callback to call if attention will be triggered */
102         int (*cb)(struct qed_hwfn *p_hwfn);
103
104         enum block_id block_index;
105 };
106
107 struct aeu_invert_reg {
108         struct aeu_invert_reg_bit bits[32];
109 };
110
111 #define MAX_ATTN_GRPS           (8)
112 #define NUM_ATTN_REGS           (9)
113
114 /* Specific HW attention callbacks */
115 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116 {
117         u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118
119         /* This might occur on certain instances; Log it once then mask it */
120         DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121                 tmp);
122         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123                0xffffffff);
124
125         return 0;
126 }
127
128 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS           (0x1)
129 #define ATTENTION_INCORRECT_ACCESS_WR_MASK              (0x1)
130 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT             (0)
131 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK          (0xf)
132 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT         (1)
133 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK        (0x1)
134 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT       (5)
135 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK           (0xff)
136 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT          (6)
137 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK           (0xf)
138 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT          (14)
139 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK         (0xff)
140 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT        (18)
141 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142 {
143         u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144                          PSWHST_REG_INCORRECT_ACCESS_VALID);
145
146         if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147                 u32 addr, data, length;
148
149                 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150                               PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151                 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152                               PSWHST_REG_INCORRECT_ACCESS_DATA);
153                 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154                                 PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155
156                 DP_INFO(p_hwfn->cdev,
157                         "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158                         addr, length,
159                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161                         (u8) GET_FIELD(data,
162                                        ATTENTION_INCORRECT_ACCESS_VF_VALID),
163                         (u8) GET_FIELD(data,
164                                        ATTENTION_INCORRECT_ACCESS_CLIENT),
165                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166                         (u8) GET_FIELD(data,
167                                        ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168                         data);
169         }
170
171         return 0;
172 }
173
174 #define QED_GRC_ATTENTION_VALID_BIT     (1 << 0)
175 #define QED_GRC_ATTENTION_ADDRESS_MASK  (0x7fffff)
176 #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
177 #define QED_GRC_ATTENTION_RDWR_BIT      (1 << 23)
178 #define QED_GRC_ATTENTION_MASTER_MASK   (0xf)
179 #define QED_GRC_ATTENTION_MASTER_SHIFT  (24)
180 #define QED_GRC_ATTENTION_PF_MASK       (0xf)
181 #define QED_GRC_ATTENTION_PF_SHIFT      (0)
182 #define QED_GRC_ATTENTION_VF_MASK       (0xff)
183 #define QED_GRC_ATTENTION_VF_SHIFT      (4)
184 #define QED_GRC_ATTENTION_PRIV_MASK     (0x3)
185 #define QED_GRC_ATTENTION_PRIV_SHIFT    (14)
186 #define QED_GRC_ATTENTION_PRIV_VF       (0)
187 static const char *attn_master_to_str(u8 master)
188 {
189         switch (master) {
190         case 1: return "PXP";
191         case 2: return "MCP";
192         case 3: return "MSDM";
193         case 4: return "PSDM";
194         case 5: return "YSDM";
195         case 6: return "USDM";
196         case 7: return "TSDM";
197         case 8: return "XSDM";
198         case 9: return "DBU";
199         case 10: return "DMAE";
200         default:
201                 return "Unknown";
202         }
203 }
204
205 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206 {
207         u32 tmp, tmp2;
208
209         /* We've already cleared the timeout interrupt register, so we learn
210          * of interrupts via the validity register
211          */
212         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213                      GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214         if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215                 goto out;
216
217         /* Read the GRC timeout information */
218         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219                      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220         tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221                       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222
223         DP_INFO(p_hwfn->cdev,
224                 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225                 tmp2, tmp,
226                 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227                 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228                 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229                 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230                 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231                  QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Ireelevant)",
232                 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233
234 out:
235         /* Regardles of anything else, clean the validity bit */
236         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237                GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238         return 0;
239 }
240
241 #define PGLUE_ATTENTION_VALID                   (1 << 29)
242 #define PGLUE_ATTENTION_RD_VALID                (1 << 26)
243 #define PGLUE_ATTENTION_DETAILS_PFID_MASK       (0xf)
244 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT      (20)
245 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK   (0x1)
246 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT  (19)
247 #define PGLUE_ATTENTION_DETAILS_VFID_MASK       (0xff)
248 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT      (24)
249 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK   (0x1)
250 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT  (21)
251 #define PGLUE_ATTENTION_DETAILS2_BME_MASK       (0x1)
252 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT      (22)
253 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK    (0x1)
254 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT   (23)
255 #define PGLUE_ATTENTION_ICPL_VALID              (1 << 23)
256 #define PGLUE_ATTENTION_ZLR_VALID               (1 << 25)
257 #define PGLUE_ATTENTION_ILT_VALID               (1 << 23)
258 static int qed_pglub_rbc_attn_cb(struct qed_hwfn *p_hwfn)
259 {
260         u32 tmp;
261
262         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
263                      PGLUE_B_REG_TX_ERR_WR_DETAILS2);
264         if (tmp & PGLUE_ATTENTION_VALID) {
265                 u32 addr_lo, addr_hi, details;
266
267                 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268                                  PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
269                 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
270                                  PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
271                 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
272                                  PGLUE_B_REG_TX_ERR_WR_DETAILS);
273
274                 DP_INFO(p_hwfn,
275                         "Illegal write by chip to [%08x:%08x] blocked.\n"
276                         "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
277                         "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
278                         addr_hi, addr_lo, details,
279                         (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
280                         (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
281                         GET_FIELD(details,
282                                   PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
283                         tmp,
284                         GET_FIELD(tmp,
285                                   PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
286                         GET_FIELD(tmp,
287                                   PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
288                         GET_FIELD(tmp,
289                                   PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
290         }
291
292         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
293                      PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294         if (tmp & PGLUE_ATTENTION_RD_VALID) {
295                 u32 addr_lo, addr_hi, details;
296
297                 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
298                                  PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299                 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
300                                  PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301                 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
302                                  PGLUE_B_REG_TX_ERR_RD_DETAILS);
303
304                 DP_INFO(p_hwfn,
305                         "Illegal read by chip from [%08x:%08x] blocked.\n"
306                         " Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307                         " Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308                         addr_hi, addr_lo, details,
309                         (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310                         (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311                         GET_FIELD(details,
312                                   PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313                         tmp,
314                         GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
315                                                                          : 0,
316                         GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
317                         GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
318                                                                         : 0);
319         }
320
321         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
322                      PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323         if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324                 DP_INFO(p_hwfn, "ICPL eror - %08x\n", tmp);
325
326         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
327                      PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
328         if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
329                 u32 addr_hi, addr_lo;
330
331                 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
332                                  PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
333                 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
334                                  PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
335
336                 DP_INFO(p_hwfn, "ZLR eror - %08x [Address %08x:%08x]\n",
337                         tmp, addr_hi, addr_lo);
338         }
339
340         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
341                      PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
342         if (tmp & PGLUE_ATTENTION_ILT_VALID) {
343                 u32 addr_hi, addr_lo, details;
344
345                 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
346                                  PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
347                 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
348                                  PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
349                 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
350                                  PGLUE_B_REG_VF_ILT_ERR_DETAILS);
351
352                 DP_INFO(p_hwfn,
353                         "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
354                         details, tmp, addr_hi, addr_lo);
355         }
356
357         /* Clear the indications */
358         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
359                PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
360
361         return 0;
362 }
363
364 #define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
365 #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
366 #define QED_DORQ_ATTENTION_SIZE_MASK    (0x7f)
367 #define QED_DORQ_ATTENTION_SIZE_SHIFT   (16)
368 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
369 {
370         u32 reason;
371
372         reason = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
373                         QED_DORQ_ATTENTION_REASON_MASK;
374         if (reason) {
375                 u32 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
376                                      DORQ_REG_DB_DROP_DETAILS);
377
378                 DP_INFO(p_hwfn->cdev,
379                         "DORQ db_drop: address 0x%08x Opaque FID 0x%04x Size [bytes] 0x%08x Reason: 0x%08x\n",
380                         qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
381                                DORQ_REG_DB_DROP_DETAILS_ADDRESS),
382                         (u16)(details & QED_DORQ_ATTENTION_OPAQUE_MASK),
383                         GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
384                         reason);
385         }
386
387         return -EINVAL;
388 }
389
390 /* Instead of major changes to the data-structure, we have a some 'special'
391  * identifiers for sources that changed meaning between adapters.
392  */
393 enum aeu_invert_reg_special_type {
394         AEU_INVERT_REG_SPECIAL_CNIG_0,
395         AEU_INVERT_REG_SPECIAL_CNIG_1,
396         AEU_INVERT_REG_SPECIAL_CNIG_2,
397         AEU_INVERT_REG_SPECIAL_CNIG_3,
398         AEU_INVERT_REG_SPECIAL_MAX,
399 };
400
401 static struct aeu_invert_reg_bit
402 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
403         {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
404         {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
405         {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
406         {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
407 };
408
409 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
410 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
411         {
412                 {       /* After Invert 1 */
413                         {"GPIO0 function%d",
414                          (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
415                 }
416         },
417
418         {
419                 {       /* After Invert 2 */
420                         {"PGLUE config_space", ATTENTION_SINGLE,
421                          NULL, MAX_BLOCK_ID},
422                         {"PGLUE misc_flr", ATTENTION_SINGLE,
423                          NULL, MAX_BLOCK_ID},
424                         {"PGLUE B RBC", ATTENTION_PAR_INT,
425                          qed_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
426                         {"PGLUE misc_mctp", ATTENTION_SINGLE,
427                          NULL, MAX_BLOCK_ID},
428                         {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
429                         {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
430                         {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
431                         {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
432                                           (1 << ATTENTION_OFFSET_SHIFT),
433                          NULL, MAX_BLOCK_ID},
434                         {"PCIE glue/PXP VPD %d",
435                          (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
436                 }
437         },
438
439         {
440                 {       /* After Invert 3 */
441                         {"General Attention %d",
442                          (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
443                 }
444         },
445
446         {
447                 {       /* After Invert 4 */
448                         {"General Attention 32", ATTENTION_SINGLE,
449                          NULL, MAX_BLOCK_ID},
450                         {"General Attention %d",
451                          (2 << ATTENTION_LENGTH_SHIFT) |
452                          (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
453                         {"General Attention 35", ATTENTION_SINGLE,
454                          NULL, MAX_BLOCK_ID},
455                         {"NWS Parity",
456                          ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
457                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
458                          NULL, BLOCK_NWS},
459                         {"NWS Interrupt",
460                          ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
461                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
462                          NULL, BLOCK_NWS},
463                         {"NWM Parity",
464                          ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
465                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
466                          NULL, BLOCK_NWM},
467                         {"NWM Interrupt",
468                          ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
469                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
470                          NULL, BLOCK_NWM},
471                         {"MCP CPU", ATTENTION_SINGLE,
472                          qed_mcp_attn_cb, MAX_BLOCK_ID},
473                         {"MCP Watchdog timer", ATTENTION_SINGLE,
474                          NULL, MAX_BLOCK_ID},
475                         {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
476                         {"AVS stop status ready", ATTENTION_SINGLE,
477                          NULL, MAX_BLOCK_ID},
478                         {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
479                         {"MSTAT per-path", ATTENTION_PAR_INT,
480                          NULL, MAX_BLOCK_ID},
481                         {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
482                          NULL, MAX_BLOCK_ID},
483                         {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
484                         {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
485                         {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
486                         {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
487                         {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
488                 }
489         },
490
491         {
492                 {       /* After Invert 5 */
493                         {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
494                         {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
495                         {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
496                         {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
497                         {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
498                         {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
499                         {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
500                         {"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
501                         {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
502                         {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
503                         {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
504                         {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
505                         {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
506                         {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
507                         {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
508                         {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
509                 }
510         },
511
512         {
513                 {       /* After Invert 6 */
514                         {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
515                         {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
516                         {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
517                         {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
518                         {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
519                         {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
520                         {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
521                         {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
522                         {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
523                         {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
524                         {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
525                         {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
526                         {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
527                         {"DORQ", ATTENTION_PAR_INT,
528                          qed_dorq_attn_cb, BLOCK_DORQ},
529                         {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
530                         {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
531                 }
532         },
533
534         {
535                 {       /* After Invert 7 */
536                         {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
537                         {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
538                         {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
539                         {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
540                         {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
541                         {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
542                         {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
543                         {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
544                         {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
545                         {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
546                         {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
547                         {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
548                         {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
549                         {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
550                         {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
551                         {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
552                         {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
553                 }
554         },
555
556         {
557                 {       /* After Invert 8 */
558                         {"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
559                          NULL, BLOCK_PSWRQ2},
560                         {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
561                         {"PSWWR (pci_clk)", ATTENTION_PAR_INT,
562                          NULL, BLOCK_PSWWR2},
563                         {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
564                         {"PSWRD (pci_clk)", ATTENTION_PAR_INT,
565                          NULL, BLOCK_PSWRD2},
566                         {"PSWHST", ATTENTION_PAR_INT,
567                          qed_pswhst_attn_cb, BLOCK_PSWHST},
568                         {"PSWHST (pci_clk)", ATTENTION_PAR_INT,
569                          NULL, BLOCK_PSWHST2},
570                         {"GRC", ATTENTION_PAR_INT,
571                          qed_grc_attn_cb, BLOCK_GRC},
572                         {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
573                         {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
574                         {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
575                         {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
576                         {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
577                         {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
578                         {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
579                         {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
580                         {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
581                         {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
582                          NULL, BLOCK_PGLCS},
583                         {"PERST_B assertion", ATTENTION_SINGLE,
584                          NULL, MAX_BLOCK_ID},
585                         {"PERST_B deassertion", ATTENTION_SINGLE,
586                          NULL, MAX_BLOCK_ID},
587                         {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
588                          NULL, MAX_BLOCK_ID},
589                 }
590         },
591
592         {
593                 {       /* After Invert 9 */
594                         {"MCP Latched memory", ATTENTION_PAR,
595                          NULL, MAX_BLOCK_ID},
596                         {"MCP Latched scratchpad cache", ATTENTION_SINGLE,
597                          NULL, MAX_BLOCK_ID},
598                         {"MCP Latched ump_tx", ATTENTION_PAR,
599                          NULL, MAX_BLOCK_ID},
600                         {"MCP Latched scratchpad", ATTENTION_PAR,
601                          NULL, MAX_BLOCK_ID},
602                         {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
603                          NULL, MAX_BLOCK_ID},
604                 }
605         },
606 };
607
608 static struct aeu_invert_reg_bit *
609 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
610                       struct aeu_invert_reg_bit *p_bit)
611 {
612         if (!QED_IS_BB(p_hwfn->cdev))
613                 return p_bit;
614
615         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
616                 return p_bit;
617
618         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
619                                   ATTENTION_BB_SHIFT];
620 }
621
622 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
623                                    struct aeu_invert_reg_bit *p_bit)
624 {
625         return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
626                    ATTENTION_PARITY);
627 }
628
629 #define ATTN_STATE_BITS         (0xfff)
630 #define ATTN_BITS_MASKABLE      (0x3ff)
631 struct qed_sb_attn_info {
632         /* Virtual & Physical address of the SB */
633         struct atten_status_block       *sb_attn;
634         dma_addr_t                      sb_phys;
635
636         /* Last seen running index */
637         u16                             index;
638
639         /* A mask of the AEU bits resulting in a parity error */
640         u32                             parity_mask[NUM_ATTN_REGS];
641
642         /* A pointer to the attention description structure */
643         struct aeu_invert_reg           *p_aeu_desc;
644
645         /* Previously asserted attentions, which are still unasserted */
646         u16                             known_attn;
647
648         /* Cleanup address for the link's general hw attention */
649         u32                             mfw_attn_addr;
650 };
651
652 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
653                                       struct qed_sb_attn_info *p_sb_desc)
654 {
655         u16 rc = 0, index;
656
657         /* Make certain HW write took affect */
658         mmiowb();
659
660         index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
661         if (p_sb_desc->index != index) {
662                 p_sb_desc->index        = index;
663                 rc                    = QED_SB_ATT_IDX;
664         }
665
666         /* Make certain we got a consistent view with HW */
667         mmiowb();
668
669         return rc;
670 }
671
672 /**
673  *  @brief qed_int_assertion - handles asserted attention bits
674  *
675  *  @param p_hwfn
676  *  @param asserted_bits newly asserted bits
677  *  @return int
678  */
679 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
680 {
681         struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
682         u32 igu_mask;
683
684         /* Mask the source of the attention in the IGU */
685         igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
686         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
687                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
688         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
689         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
690
691         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
692                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
693                    sb_attn_sw->known_attn,
694                    sb_attn_sw->known_attn | asserted_bits);
695         sb_attn_sw->known_attn |= asserted_bits;
696
697         /* Handle MCP events */
698         if (asserted_bits & 0x100) {
699                 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
700                 /* Clean the MCP attention */
701                 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
702                        sb_attn_sw->mfw_attn_addr, 0);
703         }
704
705         DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
706                       GTT_BAR0_MAP_REG_IGU_CMD +
707                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
708                         IGU_CMD_INT_ACK_BASE) << 3),
709                       (u32)asserted_bits);
710
711         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
712                    asserted_bits);
713
714         return 0;
715 }
716
717 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
718                                enum block_id id,
719                                enum dbg_attn_type type, bool b_clear)
720 {
721         struct dbg_attn_block_result attn_results;
722         enum dbg_status status;
723
724         memset(&attn_results, 0, sizeof(attn_results));
725
726         status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
727                                    b_clear, &attn_results);
728         if (status != DBG_STATUS_OK)
729                 DP_NOTICE(p_hwfn,
730                           "Failed to parse attention information [status: %s]\n",
731                           qed_dbg_get_status_str(status));
732         else
733                 qed_dbg_parse_attn(p_hwfn, &attn_results);
734 }
735
736 /**
737  * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
738  * cause of the attention
739  *
740  * @param p_hwfn
741  * @param p_aeu - descriptor of an AEU bit which caused the attention
742  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
743  *  this bit to this group.
744  * @param bit_index - index of this bit in the aeu_en_reg
745  *
746  * @return int
747  */
748 static int
749 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
750                             struct aeu_invert_reg_bit *p_aeu,
751                             u32 aeu_en_reg,
752                             const char *p_bit_name, u32 bitmask)
753 {
754         bool b_fatal = false;
755         int rc = -EINVAL;
756         u32 val;
757
758         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
759                 p_bit_name, bitmask);
760
761         /* Call callback before clearing the interrupt status */
762         if (p_aeu->cb) {
763                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
764                         p_bit_name);
765                 rc = p_aeu->cb(p_hwfn);
766         }
767
768         if (rc)
769                 b_fatal = true;
770
771         /* Print HW block interrupt registers */
772         if (p_aeu->block_index != MAX_BLOCK_ID)
773                 qed_int_attn_print(p_hwfn, p_aeu->block_index,
774                                    ATTN_TYPE_INTERRUPT, !b_fatal);
775
776
777         /* If the attention is benign, no need to prevent it */
778         if (!rc)
779                 goto out;
780
781         /* Prevent this Attention from being asserted in the future */
782         val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
783         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
784         DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
785                 p_bit_name);
786
787 out:
788         return rc;
789 }
790
791 /**
792  * @brief qed_int_deassertion_parity - handle a single parity AEU source
793  *
794  * @param p_hwfn
795  * @param p_aeu - descriptor of an AEU bit which caused the parity
796  * @param aeu_en_reg - address of the AEU enable register
797  * @param bit_index
798  */
799 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
800                                        struct aeu_invert_reg_bit *p_aeu,
801                                        u32 aeu_en_reg, u8 bit_index)
802 {
803         u32 block_id = p_aeu->block_index, mask, val;
804
805         DP_NOTICE(p_hwfn->cdev,
806                   "%s parity attention is set [address 0x%08x, bit %d]\n",
807                   p_aeu->bit_name, aeu_en_reg, bit_index);
808
809         if (block_id != MAX_BLOCK_ID) {
810                 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
811
812                 /* In BB, there's a single parity bit for several blocks */
813                 if (block_id == BLOCK_BTB) {
814                         qed_int_attn_print(p_hwfn, BLOCK_OPTE,
815                                            ATTN_TYPE_PARITY, false);
816                         qed_int_attn_print(p_hwfn, BLOCK_MCP,
817                                            ATTN_TYPE_PARITY, false);
818                 }
819         }
820
821         /* Prevent this parity error from being re-asserted */
822         mask = ~BIT(bit_index);
823         val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
824         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
825         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
826                 p_aeu->bit_name);
827 }
828
829 /**
830  * @brief - handles deassertion of previously asserted attentions.
831  *
832  * @param p_hwfn
833  * @param deasserted_bits - newly deasserted bits
834  * @return int
835  *
836  */
837 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
838                                u16 deasserted_bits)
839 {
840         struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
841         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
842         u8 i, j, k, bit_idx;
843         int rc = 0;
844
845         /* Read the attention registers in the AEU */
846         for (i = 0; i < NUM_ATTN_REGS; i++) {
847                 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
848                                         MISC_REG_AEU_AFTER_INVERT_1_IGU +
849                                         i * 0x4);
850                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
851                            "Deasserted bits [%d]: %08x\n",
852                            i, aeu_inv_arr[i]);
853         }
854
855         /* Find parity attentions first */
856         for (i = 0; i < NUM_ATTN_REGS; i++) {
857                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
858                 u32 parities;
859
860                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
861                 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
862
863                 /* Skip register in which no parity bit is currently set */
864                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
865                 if (!parities)
866                         continue;
867
868                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
869                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
870
871                         if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
872                             !!(parities & BIT(bit_idx)))
873                                 qed_int_deassertion_parity(p_hwfn, p_bit,
874                                                            aeu_en, bit_idx);
875
876                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
877                 }
878         }
879
880         /* Find non-parity cause for attention and act */
881         for (k = 0; k < MAX_ATTN_GRPS; k++) {
882                 struct aeu_invert_reg_bit *p_aeu;
883
884                 /* Handle only groups whose attention is currently deasserted */
885                 if (!(deasserted_bits & (1 << k)))
886                         continue;
887
888                 for (i = 0; i < NUM_ATTN_REGS; i++) {
889                         u32 bits;
890
891                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
892                                  i * sizeof(u32) +
893                                  k * sizeof(u32) * NUM_ATTN_REGS;
894
895                         en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
896                         bits = aeu_inv_arr[i] & en;
897
898                         /* Skip if no bit from this group is currently set */
899                         if (!bits)
900                                 continue;
901
902                         /* Find all set bits from current register which belong
903                          * to current group, making them responsible for the
904                          * previous assertion.
905                          */
906                         for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
907                                 long unsigned int bitmask;
908                                 u8 bit, bit_len;
909
910                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
911                                 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
912
913                                 bit = bit_idx;
914                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
915                                 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
916                                         /* Skip Parity */
917                                         bit++;
918                                         bit_len--;
919                                 }
920
921                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
922                                 bitmask >>= bit;
923
924                                 if (bitmask) {
925                                         u32 flags = p_aeu->flags;
926                                         char bit_name[30];
927                                         u8 num;
928
929                                         num = (u8)find_first_bit(&bitmask,
930                                                                  bit_len);
931
932                                         /* Some bits represent more than a
933                                          * a single interrupt. Correctly print
934                                          * their name.
935                                          */
936                                         if (ATTENTION_LENGTH(flags) > 2 ||
937                                             ((flags & ATTENTION_PAR_INT) &&
938                                              ATTENTION_LENGTH(flags) > 1))
939                                                 snprintf(bit_name, 30,
940                                                          p_aeu->bit_name, num);
941                                         else
942                                                 strncpy(bit_name,
943                                                         p_aeu->bit_name, 30);
944
945                                         /* We now need to pass bitmask in its
946                                          * correct position.
947                                          */
948                                         bitmask <<= bit;
949
950                                         /* Handle source of the attention */
951                                         qed_int_deassertion_aeu_bit(p_hwfn,
952                                                                     p_aeu,
953                                                                     aeu_en,
954                                                                     bit_name,
955                                                                     bitmask);
956                                 }
957
958                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
959                         }
960                 }
961         }
962
963         /* Clear IGU indication for the deasserted bits */
964         DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
965                                     GTT_BAR0_MAP_REG_IGU_CMD +
966                                     ((IGU_CMD_ATTN_BIT_CLR_UPPER -
967                                       IGU_CMD_INT_ACK_BASE) << 3),
968                                     ~((u32)deasserted_bits));
969
970         /* Unmask deasserted attentions in IGU */
971         aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
972         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
973         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
974
975         /* Clear deassertion from inner state */
976         sb_attn_sw->known_attn &= ~deasserted_bits;
977
978         return rc;
979 }
980
981 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
982 {
983         struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
984         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
985         u32 attn_bits = 0, attn_acks = 0;
986         u16 asserted_bits, deasserted_bits;
987         __le16 index;
988         int rc = 0;
989
990         /* Read current attention bits/acks - safeguard against attentions
991          * by guaranting work on a synchronized timeframe
992          */
993         do {
994                 index = p_sb_attn->sb_index;
995                 attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
996                 attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
997         } while (index != p_sb_attn->sb_index);
998         p_sb_attn->sb_index = index;
999
1000         /* Attention / Deassertion are meaningful (and in correct state)
1001          * only when they differ and consistent with known state - deassertion
1002          * when previous attention & current ack, and assertion when current
1003          * attention with no previous attention
1004          */
1005         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1006                 ~p_sb_attn_sw->known_attn;
1007         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1008                 p_sb_attn_sw->known_attn;
1009
1010         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1011                 DP_INFO(p_hwfn,
1012                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1013                         index, attn_bits, attn_acks, asserted_bits,
1014                         deasserted_bits, p_sb_attn_sw->known_attn);
1015         } else if (asserted_bits == 0x100) {
1016                 DP_INFO(p_hwfn, "MFW indication via attention\n");
1017         } else {
1018                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1019                            "MFW indication [deassertion]\n");
1020         }
1021
1022         if (asserted_bits) {
1023                 rc = qed_int_assertion(p_hwfn, asserted_bits);
1024                 if (rc)
1025                         return rc;
1026         }
1027
1028         if (deasserted_bits)
1029                 rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1030
1031         return rc;
1032 }
1033
1034 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1035                             void __iomem *igu_addr, u32 ack_cons)
1036 {
1037         struct igu_prod_cons_update igu_ack = { 0 };
1038
1039         igu_ack.sb_id_and_flags =
1040                 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1041                  (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1042                  (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1043                  (IGU_SEG_ACCESS_ATTN <<
1044                   IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1045
1046         DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1047
1048         /* Both segments (interrupts & acks) are written to same place address;
1049          * Need to guarantee all commands will be received (in-order) by HW.
1050          */
1051         mmiowb();
1052         barrier();
1053 }
1054
1055 void qed_int_sp_dpc(unsigned long hwfn_cookie)
1056 {
1057         struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1058         struct qed_pi_info *pi_info = NULL;
1059         struct qed_sb_attn_info *sb_attn;
1060         struct qed_sb_info *sb_info;
1061         int arr_size;
1062         u16 rc = 0;
1063
1064         if (!p_hwfn->p_sp_sb) {
1065                 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1066                 return;
1067         }
1068
1069         sb_info = &p_hwfn->p_sp_sb->sb_info;
1070         arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1071         if (!sb_info) {
1072                 DP_ERR(p_hwfn->cdev,
1073                        "Status block is NULL - cannot ack interrupts\n");
1074                 return;
1075         }
1076
1077         if (!p_hwfn->p_sb_attn) {
1078                 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1079                 return;
1080         }
1081         sb_attn = p_hwfn->p_sb_attn;
1082
1083         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1084                    p_hwfn, p_hwfn->my_id);
1085
1086         /* Disable ack for def status block. Required both for msix +
1087          * inta in non-mask mode, in inta does no harm.
1088          */
1089         qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1090
1091         /* Gather Interrupts/Attentions information */
1092         if (!sb_info->sb_virt) {
1093                 DP_ERR(p_hwfn->cdev,
1094                        "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1095         } else {
1096                 u32 tmp_index = sb_info->sb_ack;
1097
1098                 rc = qed_sb_update_sb_idx(sb_info);
1099                 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1100                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1101                            tmp_index, sb_info->sb_ack);
1102         }
1103
1104         if (!sb_attn || !sb_attn->sb_attn) {
1105                 DP_ERR(p_hwfn->cdev,
1106                        "Attentions Status block is NULL - cannot check for new attentions!\n");
1107         } else {
1108                 u16 tmp_index = sb_attn->index;
1109
1110                 rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1111                 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1112                            "Attention indices: 0x%08x --> 0x%08x\n",
1113                            tmp_index, sb_attn->index);
1114         }
1115
1116         /* Check if we expect interrupts at this time. if not just ack them */
1117         if (!(rc & QED_SB_EVENT_MASK)) {
1118                 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1119                 return;
1120         }
1121
1122         /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1123         if (!p_hwfn->p_dpc_ptt) {
1124                 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1125                 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1126                 return;
1127         }
1128
1129         if (rc & QED_SB_ATT_IDX)
1130                 qed_int_attentions(p_hwfn);
1131
1132         if (rc & QED_SB_IDX) {
1133                 int pi;
1134
1135                 /* Look for a free index */
1136                 for (pi = 0; pi < arr_size; pi++) {
1137                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1138                         if (pi_info->comp_cb)
1139                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1140                 }
1141         }
1142
1143         if (sb_attn && (rc & QED_SB_ATT_IDX))
1144                 /* This should be done before the interrupts are enabled,
1145                  * since otherwise a new attention will be generated.
1146                  */
1147                 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1148
1149         qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1150 }
1151
1152 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1153 {
1154         struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1155
1156         if (!p_sb)
1157                 return;
1158
1159         if (p_sb->sb_attn)
1160                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1161                                   SB_ATTN_ALIGNED_SIZE(p_hwfn),
1162                                   p_sb->sb_attn, p_sb->sb_phys);
1163         kfree(p_sb);
1164         p_hwfn->p_sb_attn = NULL;
1165 }
1166
1167 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1168                                   struct qed_ptt *p_ptt)
1169 {
1170         struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1171
1172         memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1173
1174         sb_info->index = 0;
1175         sb_info->known_attn = 0;
1176
1177         /* Configure Attention Status Block in IGU */
1178         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1179                lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1180         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1181                upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1182 }
1183
1184 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1185                                  struct qed_ptt *p_ptt,
1186                                  void *sb_virt_addr, dma_addr_t sb_phy_addr)
1187 {
1188         struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1189         int i, j, k;
1190
1191         sb_info->sb_attn = sb_virt_addr;
1192         sb_info->sb_phys = sb_phy_addr;
1193
1194         /* Set the pointer to the AEU descriptors */
1195         sb_info->p_aeu_desc = aeu_descs;
1196
1197         /* Calculate Parity Masks */
1198         memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1199         for (i = 0; i < NUM_ATTN_REGS; i++) {
1200                 /* j is array index, k is bit index */
1201                 for (j = 0, k = 0; k < 32; j++) {
1202                         struct aeu_invert_reg_bit *p_aeu;
1203
1204                         p_aeu = &aeu_descs[i].bits[j];
1205                         if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1206                                 sb_info->parity_mask[i] |= 1 << k;
1207
1208                         k += ATTENTION_LENGTH(p_aeu->flags);
1209                 }
1210                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1211                            "Attn Mask [Reg %d]: 0x%08x\n",
1212                            i, sb_info->parity_mask[i]);
1213         }
1214
1215         /* Set the address of cleanup for the mcp attention */
1216         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1217                                  MISC_REG_AEU_GENERAL_ATTN_0;
1218
1219         qed_int_sb_attn_setup(p_hwfn, p_ptt);
1220 }
1221
1222 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1223                                  struct qed_ptt *p_ptt)
1224 {
1225         struct qed_dev *cdev = p_hwfn->cdev;
1226         struct qed_sb_attn_info *p_sb;
1227         dma_addr_t p_phys = 0;
1228         void *p_virt;
1229
1230         /* SB struct */
1231         p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1232         if (!p_sb)
1233                 return -ENOMEM;
1234
1235         /* SB ring  */
1236         p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1237                                     SB_ATTN_ALIGNED_SIZE(p_hwfn),
1238                                     &p_phys, GFP_KERNEL);
1239
1240         if (!p_virt) {
1241                 kfree(p_sb);
1242                 return -ENOMEM;
1243         }
1244
1245         /* Attention setup */
1246         p_hwfn->p_sb_attn = p_sb;
1247         qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1248
1249         return 0;
1250 }
1251
1252 /* coalescing timeout = timeset << (timer_res + 1) */
1253 #define QED_CAU_DEF_RX_USECS 24
1254 #define QED_CAU_DEF_TX_USECS 48
1255
1256 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1257                            struct cau_sb_entry *p_sb_entry,
1258                            u8 pf_id, u16 vf_number, u8 vf_valid)
1259 {
1260         struct qed_dev *cdev = p_hwfn->cdev;
1261         u32 cau_state;
1262         u8 timer_res;
1263
1264         memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1265
1266         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1267         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1268         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1269         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1270         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1271
1272         cau_state = CAU_HC_DISABLE_STATE;
1273
1274         if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1275                 cau_state = CAU_HC_ENABLE_STATE;
1276                 if (!cdev->rx_coalesce_usecs)
1277                         cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1278                 if (!cdev->tx_coalesce_usecs)
1279                         cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1280         }
1281
1282         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1283         if (cdev->rx_coalesce_usecs <= 0x7F)
1284                 timer_res = 0;
1285         else if (cdev->rx_coalesce_usecs <= 0xFF)
1286                 timer_res = 1;
1287         else
1288                 timer_res = 2;
1289         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1290
1291         if (cdev->tx_coalesce_usecs <= 0x7F)
1292                 timer_res = 0;
1293         else if (cdev->tx_coalesce_usecs <= 0xFF)
1294                 timer_res = 1;
1295         else
1296                 timer_res = 2;
1297         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1298
1299         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1300         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1301 }
1302
1303 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1304                                 struct qed_ptt *p_ptt,
1305                                 u16 igu_sb_id,
1306                                 u32 pi_index,
1307                                 enum qed_coalescing_fsm coalescing_fsm,
1308                                 u8 timeset)
1309 {
1310         struct cau_pi_entry pi_entry;
1311         u32 sb_offset, pi_offset;
1312
1313         if (IS_VF(p_hwfn->cdev))
1314                 return;
1315
1316         sb_offset = igu_sb_id * PIS_PER_SB;
1317         memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1318
1319         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1320         if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1321                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1322         else
1323                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1324
1325         pi_offset = sb_offset + pi_index;
1326         if (p_hwfn->hw_init_done) {
1327                 qed_wr(p_hwfn, p_ptt,
1328                        CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1329                        *((u32 *)&(pi_entry)));
1330         } else {
1331                 STORE_RT_REG(p_hwfn,
1332                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1333                              *((u32 *)&(pi_entry)));
1334         }
1335 }
1336
1337 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1338                          struct qed_ptt *p_ptt,
1339                          dma_addr_t sb_phys,
1340                          u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1341 {
1342         struct cau_sb_entry sb_entry;
1343
1344         qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1345                               vf_number, vf_valid);
1346
1347         if (p_hwfn->hw_init_done) {
1348                 /* Wide-bus, initialize via DMAE */
1349                 u64 phys_addr = (u64)sb_phys;
1350
1351                 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1352                                   CAU_REG_SB_ADDR_MEMORY +
1353                                   igu_sb_id * sizeof(u64), 2, 0);
1354                 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1355                                   CAU_REG_SB_VAR_MEMORY +
1356                                   igu_sb_id * sizeof(u64), 2, 0);
1357         } else {
1358                 /* Initialize Status Block Address */
1359                 STORE_RT_REG_AGG(p_hwfn,
1360                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1361                                  igu_sb_id * 2,
1362                                  sb_phys);
1363
1364                 STORE_RT_REG_AGG(p_hwfn,
1365                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1366                                  igu_sb_id * 2,
1367                                  sb_entry);
1368         }
1369
1370         /* Configure pi coalescing if set */
1371         if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1372                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1373                 u8 timeset, timer_res;
1374                 u8 i;
1375
1376                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1377                 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1378                         timer_res = 0;
1379                 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1380                         timer_res = 1;
1381                 else
1382                         timer_res = 2;
1383                 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1384                 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1385                                     QED_COAL_RX_STATE_MACHINE, timeset);
1386
1387                 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1388                         timer_res = 0;
1389                 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1390                         timer_res = 1;
1391                 else
1392                         timer_res = 2;
1393                 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1394                 for (i = 0; i < num_tc; i++) {
1395                         qed_int_cau_conf_pi(p_hwfn, p_ptt,
1396                                             igu_sb_id, TX_PI(i),
1397                                             QED_COAL_TX_STATE_MACHINE,
1398                                             timeset);
1399                 }
1400         }
1401 }
1402
1403 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1404                       struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1405 {
1406         /* zero status block and ack counter */
1407         sb_info->sb_ack = 0;
1408         memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1409
1410         if (IS_PF(p_hwfn->cdev))
1411                 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1412                                     sb_info->igu_sb_id, 0, 0);
1413 }
1414
1415 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1416 {
1417         struct qed_igu_block *p_block;
1418         u16 igu_id;
1419
1420         for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1421              igu_id++) {
1422                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1423
1424                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1425                     !p_block->is_pf ||
1426                     p_block->vector_number != vector_id)
1427                         continue;
1428
1429                 return igu_id;
1430         }
1431
1432         return QED_SB_INVALID_IDX;
1433 }
1434
1435 static u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1436 {
1437         u16 igu_sb_id;
1438
1439         /* Assuming continuous set of IGU SBs dedicated for given PF */
1440         if (sb_id == QED_SP_SB_ID)
1441                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1442         else if (IS_PF(p_hwfn->cdev))
1443                 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1444         else
1445                 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1446
1447         if (sb_id == QED_SP_SB_ID)
1448                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1449                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1450         else
1451                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1452                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1453
1454         return igu_sb_id;
1455 }
1456
1457 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1458                     struct qed_ptt *p_ptt,
1459                     struct qed_sb_info *sb_info,
1460                     void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1461 {
1462         sb_info->sb_virt = sb_virt_addr;
1463         sb_info->sb_phys = sb_phy_addr;
1464
1465         sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1466
1467         if (sb_id != QED_SP_SB_ID) {
1468                 p_hwfn->sbs_info[sb_id] = sb_info;
1469                 p_hwfn->num_sbs++;
1470         }
1471
1472         sb_info->cdev = p_hwfn->cdev;
1473
1474         /* The igu address will hold the absolute address that needs to be
1475          * written to for a specific status block
1476          */
1477         if (IS_PF(p_hwfn->cdev)) {
1478                 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1479                                                   GTT_BAR0_MAP_REG_IGU_CMD +
1480                                                   (sb_info->igu_sb_id << 3);
1481         } else {
1482                 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1483                                                   PXP_VF_BAR0_START_IGU +
1484                                                   ((IGU_CMD_INT_ACK_BASE +
1485                                                     sb_info->igu_sb_id) << 3);
1486         }
1487
1488         sb_info->flags |= QED_SB_INFO_INIT;
1489
1490         qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1491
1492         return 0;
1493 }
1494
1495 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1496                        struct qed_sb_info *sb_info, u16 sb_id)
1497 {
1498         if (sb_id == QED_SP_SB_ID) {
1499                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1500                 return -EINVAL;
1501         }
1502
1503         /* zero status block and ack counter */
1504         sb_info->sb_ack = 0;
1505         memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1506
1507         if (p_hwfn->sbs_info[sb_id] != NULL) {
1508                 p_hwfn->sbs_info[sb_id] = NULL;
1509                 p_hwfn->num_sbs--;
1510         }
1511
1512         return 0;
1513 }
1514
1515 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1516 {
1517         struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1518
1519         if (!p_sb)
1520                 return;
1521
1522         if (p_sb->sb_info.sb_virt)
1523                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1524                                   SB_ALIGNED_SIZE(p_hwfn),
1525                                   p_sb->sb_info.sb_virt,
1526                                   p_sb->sb_info.sb_phys);
1527         kfree(p_sb);
1528         p_hwfn->p_sp_sb = NULL;
1529 }
1530
1531 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1532 {
1533         struct qed_sb_sp_info *p_sb;
1534         dma_addr_t p_phys = 0;
1535         void *p_virt;
1536
1537         /* SB struct */
1538         p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1539         if (!p_sb)
1540                 return -ENOMEM;
1541
1542         /* SB ring  */
1543         p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1544                                     SB_ALIGNED_SIZE(p_hwfn),
1545                                     &p_phys, GFP_KERNEL);
1546         if (!p_virt) {
1547                 kfree(p_sb);
1548                 return -ENOMEM;
1549         }
1550
1551         /* Status Block setup */
1552         p_hwfn->p_sp_sb = p_sb;
1553         qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1554                         p_phys, QED_SP_SB_ID);
1555
1556         memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1557
1558         return 0;
1559 }
1560
1561 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1562                         qed_int_comp_cb_t comp_cb,
1563                         void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1564 {
1565         struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1566         int rc = -ENOMEM;
1567         u8 pi;
1568
1569         /* Look for a free index */
1570         for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1571                 if (p_sp_sb->pi_info_arr[pi].comp_cb)
1572                         continue;
1573
1574                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1575                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1576                 *sb_idx = pi;
1577                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1578                 rc = 0;
1579                 break;
1580         }
1581
1582         return rc;
1583 }
1584
1585 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1586 {
1587         struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1588
1589         if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1590                 return -ENOMEM;
1591
1592         p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1593         p_sp_sb->pi_info_arr[pi].cookie = NULL;
1594
1595         return 0;
1596 }
1597
1598 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1599 {
1600         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1601 }
1602
1603 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1604                             struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1605 {
1606         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1607
1608         p_hwfn->cdev->int_mode = int_mode;
1609         switch (p_hwfn->cdev->int_mode) {
1610         case QED_INT_MODE_INTA:
1611                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1612                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1613                 break;
1614
1615         case QED_INT_MODE_MSI:
1616                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1617                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1618                 break;
1619
1620         case QED_INT_MODE_MSIX:
1621                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1622                 break;
1623         case QED_INT_MODE_POLL:
1624                 break;
1625         }
1626
1627         qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1628 }
1629
1630 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1631                                     struct qed_ptt *p_ptt)
1632 {
1633
1634         /* Configure AEU signal change to produce attentions */
1635         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1636         qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1637         qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1638         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1639
1640         /* Flush the writes to IGU */
1641         mmiowb();
1642
1643         /* Unmask AEU signals toward IGU */
1644         qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1645 }
1646
1647 int
1648 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1649                    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1650 {
1651         int rc = 0;
1652
1653         qed_int_igu_enable_attn(p_hwfn, p_ptt);
1654
1655         if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1656                 rc = qed_slowpath_irq_req(p_hwfn);
1657                 if (rc) {
1658                         DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1659                         return -EINVAL;
1660                 }
1661                 p_hwfn->b_int_requested = true;
1662         }
1663         /* Enable interrupt Generation */
1664         qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1665         p_hwfn->b_int_enabled = 1;
1666
1667         return rc;
1668 }
1669
1670 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1671 {
1672         p_hwfn->b_int_enabled = 0;
1673
1674         if (IS_VF(p_hwfn->cdev))
1675                 return;
1676
1677         qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1678 }
1679
1680 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1681 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1682                                    struct qed_ptt *p_ptt,
1683                                    u16 igu_sb_id,
1684                                    bool cleanup_set, u16 opaque_fid)
1685 {
1686         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1687         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1688         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1689
1690         /* Set the data field */
1691         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1692         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1693         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1694
1695         /* Set the control register */
1696         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1697         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1698         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1699
1700         qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1701
1702         barrier();
1703
1704         qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1705
1706         /* Flush the write to IGU */
1707         mmiowb();
1708
1709         /* calculate where to read the status bit from */
1710         sb_bit = 1 << (igu_sb_id % 32);
1711         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1712
1713         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1714
1715         /* Now wait for the command to complete */
1716         do {
1717                 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1718
1719                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1720                         break;
1721
1722                 usleep_range(5000, 10000);
1723         } while (--sleep_cnt);
1724
1725         if (!sleep_cnt)
1726                 DP_NOTICE(p_hwfn,
1727                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1728                           val, igu_sb_id);
1729 }
1730
1731 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1732                                      struct qed_ptt *p_ptt,
1733                                      u16 igu_sb_id, u16 opaque, bool b_set)
1734 {
1735         int pi, i;
1736
1737         /* Set */
1738         if (b_set)
1739                 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1740
1741         /* Clear */
1742         qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1743
1744         /* Wait for the IGU SB to cleanup */
1745         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1746                 u32 val;
1747
1748                 val = qed_rd(p_hwfn, p_ptt,
1749                              IGU_REG_WRITE_DONE_PENDING +
1750                              ((igu_sb_id / 32) * 4));
1751                 if (val & BIT((igu_sb_id % 32)))
1752                         usleep_range(10, 20);
1753                 else
1754                         break;
1755         }
1756         if (i == IGU_CLEANUP_SLEEP_LENGTH)
1757                 DP_NOTICE(p_hwfn,
1758                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1759                           igu_sb_id);
1760
1761         /* Clear the CAU for the SB */
1762         for (pi = 0; pi < 12; pi++)
1763                 qed_wr(p_hwfn, p_ptt,
1764                        CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1765 }
1766
1767 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1768                               struct qed_ptt *p_ptt,
1769                               bool b_set, bool b_slowpath)
1770 {
1771         u32 igu_base_sb = p_hwfn->hw_info.p_igu_info->igu_base_sb;
1772         u32 igu_sb_cnt = p_hwfn->hw_info.p_igu_info->usage.cnt;
1773         u32 igu_sb_id = 0, val = 0;
1774
1775         val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1776         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1777         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1778         qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1779
1780         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1781                    "IGU cleaning SBs [%d,...,%d]\n",
1782                    igu_base_sb, igu_base_sb + igu_sb_cnt - 1);
1783
1784         for (igu_sb_id = igu_base_sb; igu_sb_id < igu_base_sb + igu_sb_cnt;
1785              igu_sb_id++)
1786                 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1787                                                 p_hwfn->hw_info.opaque_fid,
1788                                                 b_set);
1789
1790         if (!b_slowpath)
1791                 return;
1792
1793         igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1794         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1795                    "IGU cleaning slowpath SB [%d]\n", igu_sb_id);
1796         qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1797                                         p_hwfn->hw_info.opaque_fid, b_set);
1798 }
1799
1800 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
1801                                        struct qed_ptt *p_ptt, u16 igu_sb_id)
1802 {
1803         u32 val = qed_rd(p_hwfn, p_ptt,
1804                          IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
1805         struct qed_igu_block *p_block;
1806
1807         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1808
1809         /* Fill the block information */
1810         p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
1811         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
1812         p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
1813 }
1814
1815 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1816 {
1817         struct qed_igu_info *p_igu_info;
1818         struct qed_igu_block *p_block;
1819         u32 min_vf = 0, max_vf = 0;
1820         u16 igu_sb_id;
1821
1822         p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
1823         if (!p_hwfn->hw_info.p_igu_info)
1824                 return -ENOMEM;
1825
1826         p_igu_info = p_hwfn->hw_info.p_igu_info;
1827
1828        /* Initialize base sb / sb cnt for PFs and VFs */
1829         p_igu_info->igu_base_sb = 0xffff;
1830         p_igu_info->igu_base_sb_iov = 0xffff;
1831
1832         /* Distinguish between existent and non-existent default SB */
1833         p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
1834
1835         /* Find the range of VF ids whose SB belong to this PF */
1836         if (p_hwfn->cdev->p_iov_info) {
1837                 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
1838
1839                 min_vf  = p_iov->first_vf_in_pf;
1840                 max_vf  = p_iov->first_vf_in_pf + p_iov->total_vfs;
1841         }
1842
1843         for (igu_sb_id = 0;
1844              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1845                 /* Read current entry; Notice it might not belong to this PF */
1846                 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
1847                 p_block = &p_igu_info->entry[igu_sb_id];
1848
1849                 if ((p_block->is_pf) &&
1850                     (p_block->function_id == p_hwfn->rel_pf_id)) {
1851                         p_block->status = QED_IGU_STATUS_PF |
1852                                           QED_IGU_STATUS_VALID |
1853                                           QED_IGU_STATUS_FREE;
1854
1855                         if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) {
1856                                 if (p_igu_info->igu_base_sb == 0xffff)
1857                                         p_igu_info->igu_base_sb = igu_sb_id;
1858                                 p_igu_info->usage.cnt++;
1859                         }
1860                 } else if (!(p_block->is_pf) &&
1861                            (p_block->function_id >= min_vf) &&
1862                            (p_block->function_id < max_vf)) {
1863                         /* Available for VFs of this PF */
1864                         p_block->status = QED_IGU_STATUS_VALID |
1865                                           QED_IGU_STATUS_FREE;
1866
1867                         if (p_igu_info->igu_base_sb_iov == 0xffff)
1868                                 p_igu_info->igu_base_sb_iov = igu_sb_id;
1869                         p_igu_info->usage.iov_cnt++;
1870                 }
1871
1872                 /* Mark the First entry belonging to the PF or its VFs
1873                  * as the default SB.
1874                  */
1875                 if ((p_block->status & QED_IGU_STATUS_VALID) &&
1876                     (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
1877                         p_igu_info->igu_dsb_id = igu_sb_id;
1878                         p_block->status |= QED_IGU_STATUS_DSB;
1879                 }
1880
1881                 /* limit number of prints by having each PF print only its
1882                  * entries with the exception of PF0 which would print
1883                  * everything.
1884                  */
1885                 if ((p_block->status & QED_IGU_STATUS_VALID) ||
1886                     (p_hwfn->abs_pf_id == 0)) {
1887                         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1888                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
1889                                    igu_sb_id, p_block->function_id,
1890                                    p_block->is_pf, p_block->vector_number);
1891                 }
1892         }
1893
1894         if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
1895                 DP_NOTICE(p_hwfn,
1896                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
1897                           p_igu_info->igu_dsb_id);
1898                 return -EINVAL;
1899         }
1900
1901         /* All non default SB are considered free at this point */
1902         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
1903         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
1904
1905         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1906                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x\n",
1907                    p_igu_info->igu_dsb_id,
1908                    p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
1909
1910         return 0;
1911 }
1912
1913 /**
1914  * @brief Initialize igu runtime registers
1915  *
1916  * @param p_hwfn
1917  */
1918 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
1919 {
1920         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
1921
1922         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
1923 }
1924
1925 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
1926 {
1927         u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
1928                                IGU_CMD_INT_ACK_BASE;
1929         u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
1930                                IGU_CMD_INT_ACK_BASE;
1931         u32 intr_status_hi = 0, intr_status_lo = 0;
1932         u64 intr_status = 0;
1933
1934         intr_status_lo = REG_RD(p_hwfn,
1935                                 GTT_BAR0_MAP_REG_IGU_CMD +
1936                                 lsb_igu_cmd_addr * 8);
1937         intr_status_hi = REG_RD(p_hwfn,
1938                                 GTT_BAR0_MAP_REG_IGU_CMD +
1939                                 msb_igu_cmd_addr * 8);
1940         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
1941
1942         return intr_status;
1943 }
1944
1945 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
1946 {
1947         tasklet_init(p_hwfn->sp_dpc,
1948                      qed_int_sp_dpc, (unsigned long)p_hwfn);
1949         p_hwfn->b_sp_dpc_enabled = true;
1950 }
1951
1952 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
1953 {
1954         p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
1955         if (!p_hwfn->sp_dpc)
1956                 return -ENOMEM;
1957
1958         return 0;
1959 }
1960
1961 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
1962 {
1963         kfree(p_hwfn->sp_dpc);
1964         p_hwfn->sp_dpc = NULL;
1965 }
1966
1967 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1968 {
1969         int rc = 0;
1970
1971         rc = qed_int_sp_dpc_alloc(p_hwfn);
1972         if (rc)
1973                 return rc;
1974
1975         rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
1976         if (rc)
1977                 return rc;
1978
1979         rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
1980
1981         return rc;
1982 }
1983
1984 void qed_int_free(struct qed_hwfn *p_hwfn)
1985 {
1986         qed_int_sp_sb_free(p_hwfn);
1987         qed_int_sb_attn_free(p_hwfn);
1988         qed_int_sp_dpc_free(p_hwfn);
1989 }
1990
1991 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1992 {
1993         qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
1994         qed_int_sb_attn_setup(p_hwfn, p_ptt);
1995         qed_int_sp_dpc_setup(p_hwfn);
1996 }
1997
1998 void qed_int_get_num_sbs(struct qed_hwfn        *p_hwfn,
1999                          struct qed_sb_cnt_info *p_sb_cnt_info)
2000 {
2001         struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2002
2003         if (!info || !p_sb_cnt_info)
2004                 return;
2005
2006         memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2007 }
2008
2009 u16 qed_int_queue_id_from_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
2010 {
2011         struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2012
2013         /* Determine origin of SB id */
2014         if ((sb_id >= p_info->igu_base_sb) &&
2015             (sb_id < p_info->igu_base_sb + p_info->usage.cnt)) {
2016                 return sb_id - p_info->igu_base_sb;
2017         } else if ((sb_id >= p_info->igu_base_sb_iov) &&
2018                    (sb_id < p_info->igu_base_sb_iov + p_info->usage.iov_cnt)) {
2019                 /* We want the first VF queue to be adjacent to the
2020                  * last PF queue. Since L2 queues can be partial to
2021                  * SBs, we'll use the feature instead.
2022                  */
2023                 return sb_id - p_info->igu_base_sb_iov +
2024                        FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
2025         } else {
2026                 DP_NOTICE(p_hwfn, "SB %d not in range for function\n", sb_id);
2027                 return 0;
2028         }
2029 }
2030
2031 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2032 {
2033         int i;
2034
2035         for_each_hwfn(cdev, i)
2036                 cdev->hwfns[i].b_int_requested = false;
2037 }
2038
2039 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2040                           u8 timer_res, u16 sb_id, bool tx)
2041 {
2042         struct cau_sb_entry sb_entry;
2043         int rc;
2044
2045         if (!p_hwfn->hw_init_done) {
2046                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2047                 return -EINVAL;
2048         }
2049
2050         rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2051                                sb_id * sizeof(u64),
2052                                (u64)(uintptr_t)&sb_entry, 2, 0);
2053         if (rc) {
2054                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2055                 return rc;
2056         }
2057
2058         if (tx)
2059                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2060         else
2061                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2062
2063         rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2064                                (u64)(uintptr_t)&sb_entry,
2065                                CAU_REG_SB_VAR_MEMORY +
2066                                sb_id * sizeof(u64), 2, 0);
2067         if (rc) {
2068                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2069                 return rc;
2070         }
2071
2072         return rc;
2073 }