]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/qlogic/qede/qede_main.c
thermal: add the note for set_trip_temp
[karo-tx-linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #ifdef CONFIG_QEDE_VXLAN
28 #include <net/vxlan.h>
29 #endif
30 #ifdef CONFIG_QEDE_GENEVE
31 #include <net/geneve.h>
32 #endif
33 #include <linux/ip.h>
34 #include <net/ipv6.h>
35 #include <net/tcp.h>
36 #include <linux/if_ether.h>
37 #include <linux/if_vlan.h>
38 #include <linux/pkt_sched.h>
39 #include <linux/ethtool.h>
40 #include <linux/in.h>
41 #include <linux/random.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/bitops.h>
44
45 #include "qede.h"
46
47 static char version[] =
48         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
49
50 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_MODULE_VERSION);
53
54 static uint debug;
55 module_param(debug, uint, 0);
56 MODULE_PARM_DESC(debug, " Default debug msglevel");
57
58 static const struct qed_eth_ops *qed_ops;
59
60 #define CHIP_NUM_57980S_40              0x1634
61 #define CHIP_NUM_57980S_10              0x1666
62 #define CHIP_NUM_57980S_MF              0x1636
63 #define CHIP_NUM_57980S_100             0x1644
64 #define CHIP_NUM_57980S_50              0x1654
65 #define CHIP_NUM_57980S_25              0x1656
66 #define CHIP_NUM_57980S_IOV             0x1664
67
68 #ifndef PCI_DEVICE_ID_NX2_57980E
69 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
70 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
71 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
72 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
73 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
74 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
75 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
76 #endif
77
78 enum qede_pci_private {
79         QEDE_PRIVATE_PF,
80         QEDE_PRIVATE_VF
81 };
82
83 static const struct pci_device_id qede_pci_tbl[] = {
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
91         { 0 }
92 };
93
94 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
95
96 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
97
98 #define TX_TIMEOUT              (5 * HZ)
99
100 static void qede_remove(struct pci_dev *pdev);
101 static int qede_alloc_rx_buffer(struct qede_dev *edev,
102                                 struct qede_rx_queue *rxq);
103 static void qede_link_update(void *dev, struct qed_link_output *link);
104
105 #ifdef CONFIG_QED_SRIOV
106 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
107 {
108         struct qede_dev *edev = netdev_priv(ndev);
109
110         if (vlan > 4095) {
111                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
112                 return -EINVAL;
113         }
114
115         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
116                    vlan, vf);
117
118         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
119 }
120
121 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
122 {
123         struct qede_dev *edev = netdev_priv(ndev);
124
125         DP_VERBOSE(edev, QED_MSG_IOV,
126                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
127                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
128
129         if (!is_valid_ether_addr(mac)) {
130                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
131                 return -EINVAL;
132         }
133
134         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
135 }
136
137 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
138 {
139         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
140         struct qed_dev_info *qed_info = &edev->dev_info.common;
141         int rc;
142
143         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
144
145         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
146
147         /* Enable/Disable Tx switching for PF */
148         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
149             qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
150                 struct qed_update_vport_params params;
151
152                 memset(&params, 0, sizeof(params));
153                 params.vport_id = 0;
154                 params.update_tx_switching_flg = 1;
155                 params.tx_switching_flg = num_vfs_param ? 1 : 0;
156                 edev->ops->vport_update(edev->cdev, &params);
157         }
158
159         return rc;
160 }
161 #endif
162
163 static struct pci_driver qede_pci_driver = {
164         .name = "qede",
165         .id_table = qede_pci_tbl,
166         .probe = qede_probe,
167         .remove = qede_remove,
168 #ifdef CONFIG_QED_SRIOV
169         .sriov_configure = qede_sriov_configure,
170 #endif
171 };
172
173 static void qede_force_mac(void *dev, u8 *mac)
174 {
175         struct qede_dev *edev = dev;
176
177         ether_addr_copy(edev->ndev->dev_addr, mac);
178         ether_addr_copy(edev->primary_mac, mac);
179 }
180
181 static struct qed_eth_cb_ops qede_ll_ops = {
182         {
183                 .link_update = qede_link_update,
184         },
185         .force_mac = qede_force_mac,
186 };
187
188 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
189                              void *ptr)
190 {
191         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
192         struct ethtool_drvinfo drvinfo;
193         struct qede_dev *edev;
194
195         /* Currently only support name change */
196         if (event != NETDEV_CHANGENAME)
197                 goto done;
198
199         /* Check whether this is a qede device */
200         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
201                 goto done;
202
203         memset(&drvinfo, 0, sizeof(drvinfo));
204         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
205         if (strcmp(drvinfo.driver, "qede"))
206                 goto done;
207         edev = netdev_priv(ndev);
208
209         /* Notify qed of the name change */
210         if (!edev->ops || !edev->ops->common)
211                 goto done;
212         edev->ops->common->set_id(edev->cdev, edev->ndev->name,
213                                   "qede");
214
215 done:
216         return NOTIFY_DONE;
217 }
218
219 static struct notifier_block qede_netdev_notifier = {
220         .notifier_call = qede_netdev_event,
221 };
222
223 static
224 int __init qede_init(void)
225 {
226         int ret;
227
228         pr_notice("qede_init: %s\n", version);
229
230         qed_ops = qed_get_eth_ops();
231         if (!qed_ops) {
232                 pr_notice("Failed to get qed ethtool operations\n");
233                 return -EINVAL;
234         }
235
236         /* Must register notifier before pci ops, since we might miss
237          * interface rename after pci probe and netdev registeration.
238          */
239         ret = register_netdevice_notifier(&qede_netdev_notifier);
240         if (ret) {
241                 pr_notice("Failed to register netdevice_notifier\n");
242                 qed_put_eth_ops();
243                 return -EINVAL;
244         }
245
246         ret = pci_register_driver(&qede_pci_driver);
247         if (ret) {
248                 pr_notice("Failed to register driver\n");
249                 unregister_netdevice_notifier(&qede_netdev_notifier);
250                 qed_put_eth_ops();
251                 return -EINVAL;
252         }
253
254         return 0;
255 }
256
257 static void __exit qede_cleanup(void)
258 {
259         pr_notice("qede_cleanup called\n");
260
261         unregister_netdevice_notifier(&qede_netdev_notifier);
262         pci_unregister_driver(&qede_pci_driver);
263         qed_put_eth_ops();
264 }
265
266 module_init(qede_init);
267 module_exit(qede_cleanup);
268
269 /* -------------------------------------------------------------------------
270  * START OF FAST-PATH
271  * -------------------------------------------------------------------------
272  */
273
274 /* Unmap the data and free skb */
275 static int qede_free_tx_pkt(struct qede_dev *edev,
276                             struct qede_tx_queue *txq,
277                             int *len)
278 {
279         u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
280         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
281         struct eth_tx_1st_bd *first_bd;
282         struct eth_tx_bd *tx_data_bd;
283         int bds_consumed = 0;
284         int nbds;
285         bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
286         int i, split_bd_len = 0;
287
288         if (unlikely(!skb)) {
289                 DP_ERR(edev,
290                        "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
291                        idx, txq->sw_tx_cons, txq->sw_tx_prod);
292                 return -1;
293         }
294
295         *len = skb->len;
296
297         first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
298
299         bds_consumed++;
300
301         nbds = first_bd->data.nbds;
302
303         if (data_split) {
304                 struct eth_tx_bd *split = (struct eth_tx_bd *)
305                         qed_chain_consume(&txq->tx_pbl);
306                 split_bd_len = BD_UNMAP_LEN(split);
307                 bds_consumed++;
308         }
309         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
310                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
311
312         /* Unmap the data of the skb frags */
313         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
314                 tx_data_bd = (struct eth_tx_bd *)
315                         qed_chain_consume(&txq->tx_pbl);
316                 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
317                                BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
318         }
319
320         while (bds_consumed++ < nbds)
321                 qed_chain_consume(&txq->tx_pbl);
322
323         /* Free skb */
324         dev_kfree_skb_any(skb);
325         txq->sw_tx_ring[idx].skb = NULL;
326         txq->sw_tx_ring[idx].flags = 0;
327
328         return 0;
329 }
330
331 /* Unmap the data and free skb when mapping failed during start_xmit */
332 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
333                                     struct qede_tx_queue *txq,
334                                     struct eth_tx_1st_bd *first_bd,
335                                     int nbd,
336                                     bool data_split)
337 {
338         u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
339         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
340         struct eth_tx_bd *tx_data_bd;
341         int i, split_bd_len = 0;
342
343         /* Return prod to its position before this skb was handled */
344         qed_chain_set_prod(&txq->tx_pbl,
345                            le16_to_cpu(txq->tx_db.data.bd_prod),
346                            first_bd);
347
348         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
349
350         if (data_split) {
351                 struct eth_tx_bd *split = (struct eth_tx_bd *)
352                                           qed_chain_produce(&txq->tx_pbl);
353                 split_bd_len = BD_UNMAP_LEN(split);
354                 nbd--;
355         }
356
357         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
358                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
359
360         /* Unmap the data of the skb frags */
361         for (i = 0; i < nbd; i++) {
362                 tx_data_bd = (struct eth_tx_bd *)
363                         qed_chain_produce(&txq->tx_pbl);
364                 if (tx_data_bd->nbytes)
365                         dma_unmap_page(&edev->pdev->dev,
366                                        BD_UNMAP_ADDR(tx_data_bd),
367                                        BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
368         }
369
370         /* Return again prod to its position before this skb was handled */
371         qed_chain_set_prod(&txq->tx_pbl,
372                            le16_to_cpu(txq->tx_db.data.bd_prod),
373                            first_bd);
374
375         /* Free skb */
376         dev_kfree_skb_any(skb);
377         txq->sw_tx_ring[idx].skb = NULL;
378         txq->sw_tx_ring[idx].flags = 0;
379 }
380
381 static u32 qede_xmit_type(struct qede_dev *edev,
382                           struct sk_buff *skb,
383                           int *ipv6_ext)
384 {
385         u32 rc = XMIT_L4_CSUM;
386         __be16 l3_proto;
387
388         if (skb->ip_summed != CHECKSUM_PARTIAL)
389                 return XMIT_PLAIN;
390
391         l3_proto = vlan_get_protocol(skb);
392         if (l3_proto == htons(ETH_P_IPV6) &&
393             (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
394                 *ipv6_ext = 1;
395
396         if (skb->encapsulation)
397                 rc |= XMIT_ENC;
398
399         if (skb_is_gso(skb))
400                 rc |= XMIT_LSO;
401
402         return rc;
403 }
404
405 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
406                                          struct eth_tx_2nd_bd *second_bd,
407                                          struct eth_tx_3rd_bd *third_bd)
408 {
409         u8 l4_proto;
410         u16 bd2_bits1 = 0, bd2_bits2 = 0;
411
412         bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
413
414         bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
415                      ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
416                     << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
417
418         bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
419                       ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
420
421         if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
422                 l4_proto = ipv6_hdr(skb)->nexthdr;
423         else
424                 l4_proto = ip_hdr(skb)->protocol;
425
426         if (l4_proto == IPPROTO_UDP)
427                 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
428
429         if (third_bd)
430                 third_bd->data.bitfields |=
431                         cpu_to_le16(((tcp_hdrlen(skb) / 4) &
432                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
433                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
434
435         second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
436         second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
437 }
438
439 static int map_frag_to_bd(struct qede_dev *edev,
440                           skb_frag_t *frag,
441                           struct eth_tx_bd *bd)
442 {
443         dma_addr_t mapping;
444
445         /* Map skb non-linear frag data for DMA */
446         mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
447                                    skb_frag_size(frag),
448                                    DMA_TO_DEVICE);
449         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
450                 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
451                 return -ENOMEM;
452         }
453
454         /* Setup the data pointer of the frag data */
455         BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
456
457         return 0;
458 }
459
460 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
461 {
462         if (is_encap_pkt)
463                 return (skb_inner_transport_header(skb) +
464                         inner_tcp_hdrlen(skb) - skb->data);
465         else
466                 return (skb_transport_header(skb) +
467                         tcp_hdrlen(skb) - skb->data);
468 }
469
470 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
471 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
472 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
473                              u8 xmit_type)
474 {
475         int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
476
477         if (xmit_type & XMIT_LSO) {
478                 int hlen;
479
480                 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
481
482                 /* linear payload would require its own BD */
483                 if (skb_headlen(skb) > hlen)
484                         allowed_frags--;
485         }
486
487         return (skb_shinfo(skb)->nr_frags > allowed_frags);
488 }
489 #endif
490
491 /* Main transmit function */
492 static
493 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
494                             struct net_device *ndev)
495 {
496         struct qede_dev *edev = netdev_priv(ndev);
497         struct netdev_queue *netdev_txq;
498         struct qede_tx_queue *txq;
499         struct eth_tx_1st_bd *first_bd;
500         struct eth_tx_2nd_bd *second_bd = NULL;
501         struct eth_tx_3rd_bd *third_bd = NULL;
502         struct eth_tx_bd *tx_data_bd = NULL;
503         u16 txq_index;
504         u8 nbd = 0;
505         dma_addr_t mapping;
506         int rc, frag_idx = 0, ipv6_ext = 0;
507         u8 xmit_type;
508         u16 idx;
509         u16 hlen;
510         bool data_split = false;
511
512         /* Get tx-queue context and netdev index */
513         txq_index = skb_get_queue_mapping(skb);
514         WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
515         txq = QEDE_TX_QUEUE(edev, txq_index);
516         netdev_txq = netdev_get_tx_queue(ndev, txq_index);
517
518         WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
519                                (MAX_SKB_FRAGS + 1));
520
521         xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
522
523 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
524         if (qede_pkt_req_lin(edev, skb, xmit_type)) {
525                 if (skb_linearize(skb)) {
526                         DP_NOTICE(edev,
527                                   "SKB linearization failed - silently dropping this SKB\n");
528                         dev_kfree_skb_any(skb);
529                         return NETDEV_TX_OK;
530                 }
531         }
532 #endif
533
534         /* Fill the entry in the SW ring and the BDs in the FW ring */
535         idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
536         txq->sw_tx_ring[idx].skb = skb;
537         first_bd = (struct eth_tx_1st_bd *)
538                    qed_chain_produce(&txq->tx_pbl);
539         memset(first_bd, 0, sizeof(*first_bd));
540         first_bd->data.bd_flags.bitfields =
541                 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
542
543         /* Map skb linear data for DMA and set in the first BD */
544         mapping = dma_map_single(&edev->pdev->dev, skb->data,
545                                  skb_headlen(skb), DMA_TO_DEVICE);
546         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
547                 DP_NOTICE(edev, "SKB mapping failed\n");
548                 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
549                 return NETDEV_TX_OK;
550         }
551         nbd++;
552         BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
553
554         /* In case there is IPv6 with extension headers or LSO we need 2nd and
555          * 3rd BDs.
556          */
557         if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
558                 second_bd = (struct eth_tx_2nd_bd *)
559                         qed_chain_produce(&txq->tx_pbl);
560                 memset(second_bd, 0, sizeof(*second_bd));
561
562                 nbd++;
563                 third_bd = (struct eth_tx_3rd_bd *)
564                         qed_chain_produce(&txq->tx_pbl);
565                 memset(third_bd, 0, sizeof(*third_bd));
566
567                 nbd++;
568                 /* We need to fill in additional data in second_bd... */
569                 tx_data_bd = (struct eth_tx_bd *)second_bd;
570         }
571
572         if (skb_vlan_tag_present(skb)) {
573                 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
574                 first_bd->data.bd_flags.bitfields |=
575                         1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
576         }
577
578         /* Fill the parsing flags & params according to the requested offload */
579         if (xmit_type & XMIT_L4_CSUM) {
580                 u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
581
582                 /* We don't re-calculate IP checksum as it is already done by
583                  * the upper stack
584                  */
585                 first_bd->data.bd_flags.bitfields |=
586                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
587
588                 if (xmit_type & XMIT_ENC) {
589                         first_bd->data.bd_flags.bitfields |=
590                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
591                 } else {
592                         /* In cases when OS doesn't indicate for inner offloads
593                          * when packet is tunnelled, we need to override the HW
594                          * tunnel configuration so that packets are treated as
595                          * regular non tunnelled packets and no inner offloads
596                          * are done by the hardware.
597                          */
598                         first_bd->data.bitfields |= cpu_to_le16(temp);
599                 }
600
601                 /* If the packet is IPv6 with extension header, indicate that
602                  * to FW and pass few params, since the device cracker doesn't
603                  * support parsing IPv6 with extension header/s.
604                  */
605                 if (unlikely(ipv6_ext))
606                         qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
607         }
608
609         if (xmit_type & XMIT_LSO) {
610                 first_bd->data.bd_flags.bitfields |=
611                         (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
612                 third_bd->data.lso_mss =
613                         cpu_to_le16(skb_shinfo(skb)->gso_size);
614
615                 if (unlikely(xmit_type & XMIT_ENC)) {
616                         first_bd->data.bd_flags.bitfields |=
617                                 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
618                         hlen = qede_get_skb_hlen(skb, true);
619                 } else {
620                         first_bd->data.bd_flags.bitfields |=
621                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
622                         hlen = qede_get_skb_hlen(skb, false);
623                 }
624
625                 /* @@@TBD - if will not be removed need to check */
626                 third_bd->data.bitfields |=
627                         cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
628
629                 /* Make life easier for FW guys who can't deal with header and
630                  * data on same BD. If we need to split, use the second bd...
631                  */
632                 if (unlikely(skb_headlen(skb) > hlen)) {
633                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
634                                    "TSO split header size is %d (%x:%x)\n",
635                                    first_bd->nbytes, first_bd->addr.hi,
636                                    first_bd->addr.lo);
637
638                         mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
639                                            le32_to_cpu(first_bd->addr.lo)) +
640                                            hlen;
641
642                         BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
643                                               le16_to_cpu(first_bd->nbytes) -
644                                               hlen);
645
646                         /* this marks the BD as one that has no
647                          * individual mapping
648                          */
649                         txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
650
651                         first_bd->nbytes = cpu_to_le16(hlen);
652
653                         tx_data_bd = (struct eth_tx_bd *)third_bd;
654                         data_split = true;
655                 }
656         }
657
658         /* Handle fragmented skb */
659         /* special handle for frags inside 2nd and 3rd bds.. */
660         while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
661                 rc = map_frag_to_bd(edev,
662                                     &skb_shinfo(skb)->frags[frag_idx],
663                                     tx_data_bd);
664                 if (rc) {
665                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
666                                                 data_split);
667                         return NETDEV_TX_OK;
668                 }
669
670                 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
671                         tx_data_bd = (struct eth_tx_bd *)third_bd;
672                 else
673                         tx_data_bd = NULL;
674
675                 frag_idx++;
676         }
677
678         /* map last frags into 4th, 5th .... */
679         for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
680                 tx_data_bd = (struct eth_tx_bd *)
681                              qed_chain_produce(&txq->tx_pbl);
682
683                 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
684
685                 rc = map_frag_to_bd(edev,
686                                     &skb_shinfo(skb)->frags[frag_idx],
687                                     tx_data_bd);
688                 if (rc) {
689                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
690                                                 data_split);
691                         return NETDEV_TX_OK;
692                 }
693         }
694
695         /* update the first BD with the actual num BDs */
696         first_bd->data.nbds = nbd;
697
698         netdev_tx_sent_queue(netdev_txq, skb->len);
699
700         skb_tx_timestamp(skb);
701
702         /* Advance packet producer only before sending the packet since mapping
703          * of pages may fail.
704          */
705         txq->sw_tx_prod++;
706
707         /* 'next page' entries are counted in the producer value */
708         txq->tx_db.data.bd_prod =
709                 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
710
711         /* wmb makes sure that the BDs data is updated before updating the
712          * producer, otherwise FW may read old data from the BDs.
713          */
714         wmb();
715         barrier();
716         writel(txq->tx_db.raw, txq->doorbell_addr);
717
718         /* mmiowb is needed to synchronize doorbell writes from more than one
719          * processor. It guarantees that the write arrives to the device before
720          * the queue lock is released and another start_xmit is called (possibly
721          * on another CPU). Without this barrier, the next doorbell can bypass
722          * this doorbell. This is applicable to IA64/Altix systems.
723          */
724         mmiowb();
725
726         if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
727                       < (MAX_SKB_FRAGS + 1))) {
728                 netif_tx_stop_queue(netdev_txq);
729                 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
730                            "Stop queue was called\n");
731                 /* paired memory barrier is in qede_tx_int(), we have to keep
732                  * ordering of set_bit() in netif_tx_stop_queue() and read of
733                  * fp->bd_tx_cons
734                  */
735                 smp_mb();
736
737                 if (qed_chain_get_elem_left(&txq->tx_pbl)
738                      >= (MAX_SKB_FRAGS + 1) &&
739                     (edev->state == QEDE_STATE_OPEN)) {
740                         netif_tx_wake_queue(netdev_txq);
741                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
742                                    "Wake queue was called\n");
743                 }
744         }
745
746         return NETDEV_TX_OK;
747 }
748
749 int qede_txq_has_work(struct qede_tx_queue *txq)
750 {
751         u16 hw_bd_cons;
752
753         /* Tell compiler that consumer and producer can change */
754         barrier();
755         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
756         if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
757                 return 0;
758
759         return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
760 }
761
762 static int qede_tx_int(struct qede_dev *edev,
763                        struct qede_tx_queue *txq)
764 {
765         struct netdev_queue *netdev_txq;
766         u16 hw_bd_cons;
767         unsigned int pkts_compl = 0, bytes_compl = 0;
768         int rc;
769
770         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
771
772         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
773         barrier();
774
775         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
776                 int len = 0;
777
778                 rc = qede_free_tx_pkt(edev, txq, &len);
779                 if (rc) {
780                         DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
781                                   hw_bd_cons,
782                                   qed_chain_get_cons_idx(&txq->tx_pbl));
783                         break;
784                 }
785
786                 bytes_compl += len;
787                 pkts_compl++;
788                 txq->sw_tx_cons++;
789         }
790
791         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
792
793         /* Need to make the tx_bd_cons update visible to start_xmit()
794          * before checking for netif_tx_queue_stopped().  Without the
795          * memory barrier, there is a small possibility that
796          * start_xmit() will miss it and cause the queue to be stopped
797          * forever.
798          * On the other hand we need an rmb() here to ensure the proper
799          * ordering of bit testing in the following
800          * netif_tx_queue_stopped(txq) call.
801          */
802         smp_mb();
803
804         if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
805                 /* Taking tx_lock is needed to prevent reenabling the queue
806                  * while it's empty. This could have happen if rx_action() gets
807                  * suspended in qede_tx_int() after the condition before
808                  * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
809                  *
810                  * stops the queue->sees fresh tx_bd_cons->releases the queue->
811                  * sends some packets consuming the whole queue again->
812                  * stops the queue
813                  */
814
815                 __netif_tx_lock(netdev_txq, smp_processor_id());
816
817                 if ((netif_tx_queue_stopped(netdev_txq)) &&
818                     (edev->state == QEDE_STATE_OPEN) &&
819                     (qed_chain_get_elem_left(&txq->tx_pbl)
820                       >= (MAX_SKB_FRAGS + 1))) {
821                         netif_tx_wake_queue(netdev_txq);
822                         DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
823                                    "Wake queue was called\n");
824                 }
825
826                 __netif_tx_unlock(netdev_txq);
827         }
828
829         return 0;
830 }
831
832 bool qede_has_rx_work(struct qede_rx_queue *rxq)
833 {
834         u16 hw_comp_cons, sw_comp_cons;
835
836         /* Tell compiler that status block fields can change */
837         barrier();
838
839         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
840         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
841
842         return hw_comp_cons != sw_comp_cons;
843 }
844
845 static bool qede_has_tx_work(struct qede_fastpath *fp)
846 {
847         u8 tc;
848
849         for (tc = 0; tc < fp->edev->num_tc; tc++)
850                 if (qede_txq_has_work(&fp->txqs[tc]))
851                         return true;
852         return false;
853 }
854
855 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
856 {
857         qed_chain_consume(&rxq->rx_bd_ring);
858         rxq->sw_rx_cons++;
859 }
860
861 /* This function reuses the buffer(from an offset) from
862  * consumer index to producer index in the bd ring
863  */
864 static inline void qede_reuse_page(struct qede_dev *edev,
865                                    struct qede_rx_queue *rxq,
866                                    struct sw_rx_data *curr_cons)
867 {
868         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
869         struct sw_rx_data *curr_prod;
870         dma_addr_t new_mapping;
871
872         curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
873         *curr_prod = *curr_cons;
874
875         new_mapping = curr_prod->mapping + curr_prod->page_offset;
876
877         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
878         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
879
880         rxq->sw_rx_prod++;
881         curr_cons->data = NULL;
882 }
883
884 /* In case of allocation failures reuse buffers
885  * from consumer index to produce buffers for firmware
886  */
887 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
888                              struct qede_dev *edev, u8 count)
889 {
890         struct sw_rx_data *curr_cons;
891
892         for (; count > 0; count--) {
893                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
894                 qede_reuse_page(edev, rxq, curr_cons);
895                 qede_rx_bd_ring_consume(rxq);
896         }
897 }
898
899 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
900                                          struct qede_rx_queue *rxq,
901                                          struct sw_rx_data *curr_cons)
902 {
903         /* Move to the next segment in the page */
904         curr_cons->page_offset += rxq->rx_buf_seg_size;
905
906         if (curr_cons->page_offset == PAGE_SIZE) {
907                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
908                         /* Since we failed to allocate new buffer
909                          * current buffer can be used again.
910                          */
911                         curr_cons->page_offset -= rxq->rx_buf_seg_size;
912
913                         return -ENOMEM;
914                 }
915
916                 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
917                                PAGE_SIZE, DMA_FROM_DEVICE);
918         } else {
919                 /* Increment refcount of the page as we don't want
920                  * network stack to take the ownership of the page
921                  * which can be recycled multiple times by the driver.
922                  */
923                 page_ref_inc(curr_cons->data);
924                 qede_reuse_page(edev, rxq, curr_cons);
925         }
926
927         return 0;
928 }
929
930 static inline void qede_update_rx_prod(struct qede_dev *edev,
931                                        struct qede_rx_queue *rxq)
932 {
933         u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
934         u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
935         struct eth_rx_prod_data rx_prods = {0};
936
937         /* Update producers */
938         rx_prods.bd_prod = cpu_to_le16(bd_prod);
939         rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
940
941         /* Make sure that the BD and SGE data is updated before updating the
942          * producers since FW might read the BD/SGE right after the producer
943          * is updated.
944          */
945         wmb();
946
947         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
948                         (u32 *)&rx_prods);
949
950         /* mmiowb is needed to synchronize doorbell writes from more than one
951          * processor. It guarantees that the write arrives to the device before
952          * the napi lock is released and another qede_poll is called (possibly
953          * on another CPU). Without this barrier, the next doorbell can bypass
954          * this doorbell. This is applicable to IA64/Altix systems.
955          */
956         mmiowb();
957 }
958
959 static u32 qede_get_rxhash(struct qede_dev *edev,
960                            u8 bitfields,
961                            __le32 rss_hash,
962                            enum pkt_hash_types *rxhash_type)
963 {
964         enum rss_hash_type htype;
965
966         htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
967
968         if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
969                 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
970                                 (htype == RSS_HASH_TYPE_IPV6)) ?
971                                 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
972                 return le32_to_cpu(rss_hash);
973         }
974         *rxhash_type = PKT_HASH_TYPE_NONE;
975         return 0;
976 }
977
978 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
979 {
980         skb_checksum_none_assert(skb);
981
982         if (csum_flag & QEDE_CSUM_UNNECESSARY)
983                 skb->ip_summed = CHECKSUM_UNNECESSARY;
984
985         if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
986                 skb->csum_level = 1;
987 }
988
989 static inline void qede_skb_receive(struct qede_dev *edev,
990                                     struct qede_fastpath *fp,
991                                     struct sk_buff *skb,
992                                     u16 vlan_tag)
993 {
994         if (vlan_tag)
995                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
996                                        vlan_tag);
997
998         napi_gro_receive(&fp->napi, skb);
999 }
1000
1001 static void qede_set_gro_params(struct qede_dev *edev,
1002                                 struct sk_buff *skb,
1003                                 struct eth_fast_path_rx_tpa_start_cqe *cqe)
1004 {
1005         u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1006
1007         if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1008             PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1009                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1010         else
1011                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1012
1013         skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1014                                         cqe->header_len;
1015 }
1016
1017 static int qede_fill_frag_skb(struct qede_dev *edev,
1018                               struct qede_rx_queue *rxq,
1019                               u8 tpa_agg_index,
1020                               u16 len_on_bd)
1021 {
1022         struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1023                                                          NUM_RX_BDS_MAX];
1024         struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1025         struct sk_buff *skb = tpa_info->skb;
1026
1027         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1028                 goto out;
1029
1030         /* Add one frag and update the appropriate fields in the skb */
1031         skb_fill_page_desc(skb, tpa_info->frag_id++,
1032                            current_bd->data, current_bd->page_offset,
1033                            len_on_bd);
1034
1035         if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1036                 /* Incr page ref count to reuse on allocation failure
1037                  * so that it doesn't get freed while freeing SKB.
1038                  */
1039                 page_ref_inc(current_bd->data);
1040                 goto out;
1041         }
1042
1043         qed_chain_consume(&rxq->rx_bd_ring);
1044         rxq->sw_rx_cons++;
1045
1046         skb->data_len += len_on_bd;
1047         skb->truesize += rxq->rx_buf_seg_size;
1048         skb->len += len_on_bd;
1049
1050         return 0;
1051
1052 out:
1053         tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1054         qede_recycle_rx_bd_ring(rxq, edev, 1);
1055         return -ENOMEM;
1056 }
1057
1058 static void qede_tpa_start(struct qede_dev *edev,
1059                            struct qede_rx_queue *rxq,
1060                            struct eth_fast_path_rx_tpa_start_cqe *cqe)
1061 {
1062         struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1063         struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1064         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1065         struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1066         dma_addr_t mapping = tpa_info->replace_buf_mapping;
1067         struct sw_rx_data *sw_rx_data_cons;
1068         struct sw_rx_data *sw_rx_data_prod;
1069         enum pkt_hash_types rxhash_type;
1070         u32 rxhash;
1071
1072         sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1073         sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1074
1075         /* Use pre-allocated replacement buffer - we can't release the agg.
1076          * start until its over and we don't want to risk allocation failing
1077          * here, so re-allocate when aggregation will be over.
1078          */
1079         sw_rx_data_prod->mapping = replace_buf->mapping;
1080
1081         sw_rx_data_prod->data = replace_buf->data;
1082         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1083         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1084         sw_rx_data_prod->page_offset = replace_buf->page_offset;
1085
1086         rxq->sw_rx_prod++;
1087
1088         /* move partial skb from cons to pool (don't unmap yet)
1089          * save mapping, incase we drop the packet later on.
1090          */
1091         tpa_info->start_buf = *sw_rx_data_cons;
1092         mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1093                            le32_to_cpu(rx_bd_cons->addr.lo));
1094
1095         tpa_info->start_buf_mapping = mapping;
1096         rxq->sw_rx_cons++;
1097
1098         /* set tpa state to start only if we are able to allocate skb
1099          * for this aggregation, otherwise mark as error and aggregation will
1100          * be dropped
1101          */
1102         tpa_info->skb = netdev_alloc_skb(edev->ndev,
1103                                          le16_to_cpu(cqe->len_on_first_bd));
1104         if (unlikely(!tpa_info->skb)) {
1105                 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1106                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1107                 goto cons_buf;
1108         }
1109
1110         skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1111         memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1112
1113         /* Start filling in the aggregation info */
1114         tpa_info->frag_id = 0;
1115         tpa_info->agg_state = QEDE_AGG_STATE_START;
1116
1117         rxhash = qede_get_rxhash(edev, cqe->bitfields,
1118                                  cqe->rss_hash, &rxhash_type);
1119         skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1120         if ((le16_to_cpu(cqe->pars_flags.flags) >>
1121              PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1122                     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1123                 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1124         else
1125                 tpa_info->vlan_tag = 0;
1126
1127         /* This is needed in order to enable forwarding support */
1128         qede_set_gro_params(edev, tpa_info->skb, cqe);
1129
1130 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1131         if (likely(cqe->ext_bd_len_list[0]))
1132                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1133                                    le16_to_cpu(cqe->ext_bd_len_list[0]));
1134
1135         if (unlikely(cqe->ext_bd_len_list[1])) {
1136                 DP_ERR(edev,
1137                        "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1138                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1139         }
1140 }
1141
1142 #ifdef CONFIG_INET
1143 static void qede_gro_ip_csum(struct sk_buff *skb)
1144 {
1145         const struct iphdr *iph = ip_hdr(skb);
1146         struct tcphdr *th;
1147
1148         skb_set_transport_header(skb, sizeof(struct iphdr));
1149         th = tcp_hdr(skb);
1150
1151         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1152                                   iph->saddr, iph->daddr, 0);
1153
1154         tcp_gro_complete(skb);
1155 }
1156
1157 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1158 {
1159         struct ipv6hdr *iph = ipv6_hdr(skb);
1160         struct tcphdr *th;
1161
1162         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1163         th = tcp_hdr(skb);
1164
1165         th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1166                                   &iph->saddr, &iph->daddr, 0);
1167         tcp_gro_complete(skb);
1168 }
1169 #endif
1170
1171 static void qede_gro_receive(struct qede_dev *edev,
1172                              struct qede_fastpath *fp,
1173                              struct sk_buff *skb,
1174                              u16 vlan_tag)
1175 {
1176         /* FW can send a single MTU sized packet from gro flow
1177          * due to aggregation timeout/last segment etc. which
1178          * is not expected to be a gro packet. If a skb has zero
1179          * frags then simply push it in the stack as non gso skb.
1180          */
1181         if (unlikely(!skb->data_len)) {
1182                 skb_shinfo(skb)->gso_type = 0;
1183                 skb_shinfo(skb)->gso_size = 0;
1184                 goto send_skb;
1185         }
1186
1187 #ifdef CONFIG_INET
1188         if (skb_shinfo(skb)->gso_size) {
1189                 skb_set_network_header(skb, 0);
1190
1191                 switch (skb->protocol) {
1192                 case htons(ETH_P_IP):
1193                         qede_gro_ip_csum(skb);
1194                         break;
1195                 case htons(ETH_P_IPV6):
1196                         qede_gro_ipv6_csum(skb);
1197                         break;
1198                 default:
1199                         DP_ERR(edev,
1200                                "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1201                                ntohs(skb->protocol));
1202                 }
1203         }
1204 #endif
1205
1206 send_skb:
1207         skb_record_rx_queue(skb, fp->rss_id);
1208         qede_skb_receive(edev, fp, skb, vlan_tag);
1209 }
1210
1211 static inline void qede_tpa_cont(struct qede_dev *edev,
1212                                  struct qede_rx_queue *rxq,
1213                                  struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1214 {
1215         int i;
1216
1217         for (i = 0; cqe->len_list[i]; i++)
1218                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1219                                    le16_to_cpu(cqe->len_list[i]));
1220
1221         if (unlikely(i > 1))
1222                 DP_ERR(edev,
1223                        "Strange - TPA cont with more than a single len_list entry\n");
1224 }
1225
1226 static void qede_tpa_end(struct qede_dev *edev,
1227                          struct qede_fastpath *fp,
1228                          struct eth_fast_path_rx_tpa_end_cqe *cqe)
1229 {
1230         struct qede_rx_queue *rxq = fp->rxq;
1231         struct qede_agg_info *tpa_info;
1232         struct sk_buff *skb;
1233         int i;
1234
1235         tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1236         skb = tpa_info->skb;
1237
1238         for (i = 0; cqe->len_list[i]; i++)
1239                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1240                                    le16_to_cpu(cqe->len_list[i]));
1241         if (unlikely(i > 1))
1242                 DP_ERR(edev,
1243                        "Strange - TPA emd with more than a single len_list entry\n");
1244
1245         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1246                 goto err;
1247
1248         /* Sanity */
1249         if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1250                 DP_ERR(edev,
1251                        "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1252                        cqe->num_of_bds, tpa_info->frag_id);
1253         if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1254                 DP_ERR(edev,
1255                        "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1256                        le16_to_cpu(cqe->total_packet_len), skb->len);
1257
1258         memcpy(skb->data,
1259                page_address(tpa_info->start_buf.data) +
1260                 tpa_info->start_cqe.placement_offset +
1261                 tpa_info->start_buf.page_offset,
1262                le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1263
1264         /* Recycle [mapped] start buffer for the next replacement */
1265         tpa_info->replace_buf = tpa_info->start_buf;
1266         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1267
1268         /* Finalize the SKB */
1269         skb->protocol = eth_type_trans(skb, edev->ndev);
1270         skb->ip_summed = CHECKSUM_UNNECESSARY;
1271
1272         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1273          * to skb_shinfo(skb)->gso_segs
1274          */
1275         NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1276
1277         qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1278
1279         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1280
1281         return;
1282 err:
1283         /* The BD starting the aggregation is still mapped; Re-use it for
1284          * future aggregations [as replacement buffer]
1285          */
1286         memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1287                sizeof(struct sw_rx_data));
1288         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1289         tpa_info->start_buf.data = NULL;
1290         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1291         dev_kfree_skb_any(tpa_info->skb);
1292         tpa_info->skb = NULL;
1293 }
1294
1295 static bool qede_tunn_exist(u16 flag)
1296 {
1297         return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1298                           PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1299 }
1300
1301 static u8 qede_check_tunn_csum(u16 flag)
1302 {
1303         u16 csum_flag = 0;
1304         u8 tcsum = 0;
1305
1306         if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1307                     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1308                 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1309                              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1310
1311         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1312                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1313                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1314                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1315                 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1316         }
1317
1318         csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1319                      PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1320                      PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1321                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1322
1323         if (csum_flag & flag)
1324                 return QEDE_CSUM_ERROR;
1325
1326         return QEDE_CSUM_UNNECESSARY | tcsum;
1327 }
1328
1329 static u8 qede_check_notunn_csum(u16 flag)
1330 {
1331         u16 csum_flag = 0;
1332         u8 csum = 0;
1333
1334         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1335                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1336                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1337                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1338                 csum = QEDE_CSUM_UNNECESSARY;
1339         }
1340
1341         csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1342                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1343
1344         if (csum_flag & flag)
1345                 return QEDE_CSUM_ERROR;
1346
1347         return csum;
1348 }
1349
1350 static u8 qede_check_csum(u16 flag)
1351 {
1352         if (!qede_tunn_exist(flag))
1353                 return qede_check_notunn_csum(flag);
1354         else
1355                 return qede_check_tunn_csum(flag);
1356 }
1357
1358 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1359 {
1360         struct qede_dev *edev = fp->edev;
1361         struct qede_rx_queue *rxq = fp->rxq;
1362
1363         u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1364         int rx_pkt = 0;
1365         u8 csum_flag;
1366
1367         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1368         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1369
1370         /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1371          * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1372          * read before it is written by FW, then FW writes CQE and SB, and then
1373          * the CPU reads the hw_comp_cons, it will use an old CQE.
1374          */
1375         rmb();
1376
1377         /* Loop to complete all indicated BDs */
1378         while (sw_comp_cons != hw_comp_cons) {
1379                 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1380                 enum pkt_hash_types rxhash_type;
1381                 enum eth_rx_cqe_type cqe_type;
1382                 struct sw_rx_data *sw_rx_data;
1383                 union eth_rx_cqe *cqe;
1384                 struct sk_buff *skb;
1385                 struct page *data;
1386                 __le16 flags;
1387                 u16 len, pad;
1388                 u32 rx_hash;
1389
1390                 /* Get the CQE from the completion ring */
1391                 cqe = (union eth_rx_cqe *)
1392                         qed_chain_consume(&rxq->rx_comp_ring);
1393                 cqe_type = cqe->fast_path_regular.type;
1394
1395                 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1396                         edev->ops->eth_cqe_completion(
1397                                         edev->cdev, fp->rss_id,
1398                                         (struct eth_slow_path_rx_cqe *)cqe);
1399                         goto next_cqe;
1400                 }
1401
1402                 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1403                         switch (cqe_type) {
1404                         case ETH_RX_CQE_TYPE_TPA_START:
1405                                 qede_tpa_start(edev, rxq,
1406                                                &cqe->fast_path_tpa_start);
1407                                 goto next_cqe;
1408                         case ETH_RX_CQE_TYPE_TPA_CONT:
1409                                 qede_tpa_cont(edev, rxq,
1410                                               &cqe->fast_path_tpa_cont);
1411                                 goto next_cqe;
1412                         case ETH_RX_CQE_TYPE_TPA_END:
1413                                 qede_tpa_end(edev, fp,
1414                                              &cqe->fast_path_tpa_end);
1415                                 goto next_rx_only;
1416                         default:
1417                                 break;
1418                         }
1419                 }
1420
1421                 /* Get the data from the SW ring */
1422                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1423                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1424                 data = sw_rx_data->data;
1425
1426                 fp_cqe = &cqe->fast_path_regular;
1427                 len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1428                 pad = fp_cqe->placement_offset;
1429                 flags = cqe->fast_path_regular.pars_flags.flags;
1430
1431                 /* If this is an error packet then drop it */
1432                 parse_flag = le16_to_cpu(flags);
1433
1434                 csum_flag = qede_check_csum(parse_flag);
1435                 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1436                         DP_NOTICE(edev,
1437                                   "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1438                                   sw_comp_cons, parse_flag);
1439                         rxq->rx_hw_errors++;
1440                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1441                         goto next_cqe;
1442                 }
1443
1444                 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1445                 if (unlikely(!skb)) {
1446                         DP_NOTICE(edev,
1447                                   "Build_skb failed, dropping incoming packet\n");
1448                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1449                         rxq->rx_alloc_errors++;
1450                         goto next_cqe;
1451                 }
1452
1453                 /* Copy data into SKB */
1454                 if (len + pad <= QEDE_RX_HDR_SIZE) {
1455                         memcpy(skb_put(skb, len),
1456                                page_address(data) + pad +
1457                                 sw_rx_data->page_offset, len);
1458                         qede_reuse_page(edev, rxq, sw_rx_data);
1459                 } else {
1460                         struct skb_frag_struct *frag;
1461                         unsigned int pull_len;
1462                         unsigned char *va;
1463
1464                         frag = &skb_shinfo(skb)->frags[0];
1465
1466                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1467                                         pad + sw_rx_data->page_offset,
1468                                         len, rxq->rx_buf_seg_size);
1469
1470                         va = skb_frag_address(frag);
1471                         pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1472
1473                         /* Align the pull_len to optimize memcpy */
1474                         memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1475
1476                         skb_frag_size_sub(frag, pull_len);
1477                         frag->page_offset += pull_len;
1478                         skb->data_len -= pull_len;
1479                         skb->tail += pull_len;
1480
1481                         if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1482                                                             sw_rx_data))) {
1483                                 DP_ERR(edev, "Failed to allocate rx buffer\n");
1484                                 /* Incr page ref count to reuse on allocation
1485                                  * failure so that it doesn't get freed while
1486                                  * freeing SKB.
1487                                  */
1488
1489                                 page_ref_inc(sw_rx_data->data);
1490                                 rxq->rx_alloc_errors++;
1491                                 qede_recycle_rx_bd_ring(rxq, edev,
1492                                                         fp_cqe->bd_num);
1493                                 dev_kfree_skb_any(skb);
1494                                 goto next_cqe;
1495                         }
1496                 }
1497
1498                 qede_rx_bd_ring_consume(rxq);
1499
1500                 if (fp_cqe->bd_num != 1) {
1501                         u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1502                         u8 num_frags;
1503
1504                         pkt_len -= len;
1505
1506                         for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1507                              num_frags--) {
1508                                 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1509                                                 rxq->rx_buf_size : pkt_len;
1510                                 if (unlikely(!cur_size)) {
1511                                         DP_ERR(edev,
1512                                                "Still got %d BDs for mapping jumbo, but length became 0\n",
1513                                                num_frags);
1514                                         qede_recycle_rx_bd_ring(rxq, edev,
1515                                                                 num_frags);
1516                                         dev_kfree_skb_any(skb);
1517                                         goto next_cqe;
1518                                 }
1519
1520                                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1521                                         qede_recycle_rx_bd_ring(rxq, edev,
1522                                                                 num_frags);
1523                                         dev_kfree_skb_any(skb);
1524                                         goto next_cqe;
1525                                 }
1526
1527                                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1528                                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1529                                 qede_rx_bd_ring_consume(rxq);
1530
1531                                 dma_unmap_page(&edev->pdev->dev,
1532                                                sw_rx_data->mapping,
1533                                                PAGE_SIZE, DMA_FROM_DEVICE);
1534
1535                                 skb_fill_page_desc(skb,
1536                                                    skb_shinfo(skb)->nr_frags++,
1537                                                    sw_rx_data->data, 0,
1538                                                    cur_size);
1539
1540                                 skb->truesize += PAGE_SIZE;
1541                                 skb->data_len += cur_size;
1542                                 skb->len += cur_size;
1543                                 pkt_len -= cur_size;
1544                         }
1545
1546                         if (unlikely(pkt_len))
1547                                 DP_ERR(edev,
1548                                        "Mapped all BDs of jumbo, but still have %d bytes\n",
1549                                        pkt_len);
1550                 }
1551
1552                 skb->protocol = eth_type_trans(skb, edev->ndev);
1553
1554                 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1555                                           fp_cqe->rss_hash,
1556                                           &rxhash_type);
1557
1558                 skb_set_hash(skb, rx_hash, rxhash_type);
1559
1560                 qede_set_skb_csum(skb, csum_flag);
1561
1562                 skb_record_rx_queue(skb, fp->rss_id);
1563
1564                 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1565 next_rx_only:
1566                 rx_pkt++;
1567
1568 next_cqe: /* don't consume bd rx buffer */
1569                 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1570                 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1571                 /* CR TPA - revisit how to handle budget in TPA perhaps
1572                  * increase on "end"
1573                  */
1574                 if (rx_pkt == budget)
1575                         break;
1576         } /* repeat while sw_comp_cons != hw_comp_cons... */
1577
1578         /* Update producers */
1579         qede_update_rx_prod(edev, rxq);
1580
1581         return rx_pkt;
1582 }
1583
1584 static int qede_poll(struct napi_struct *napi, int budget)
1585 {
1586         int work_done = 0;
1587         struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1588                                                  napi);
1589         struct qede_dev *edev = fp->edev;
1590
1591         while (1) {
1592                 u8 tc;
1593
1594                 for (tc = 0; tc < edev->num_tc; tc++)
1595                         if (qede_txq_has_work(&fp->txqs[tc]))
1596                                 qede_tx_int(edev, &fp->txqs[tc]);
1597
1598                 if (qede_has_rx_work(fp->rxq)) {
1599                         work_done += qede_rx_int(fp, budget - work_done);
1600
1601                         /* must not complete if we consumed full budget */
1602                         if (work_done >= budget)
1603                                 break;
1604                 }
1605
1606                 /* Fall out from the NAPI loop if needed */
1607                 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1608                         qed_sb_update_sb_idx(fp->sb_info);
1609                         /* *_has_*_work() reads the status block,
1610                          * thus we need to ensure that status block indices
1611                          * have been actually read (qed_sb_update_sb_idx)
1612                          * prior to this check (*_has_*_work) so that
1613                          * we won't write the "newer" value of the status block
1614                          * to HW (if there was a DMA right after
1615                          * qede_has_rx_work and if there is no rmb, the memory
1616                          * reading (qed_sb_update_sb_idx) may be postponed
1617                          * to right before *_ack_sb). In this case there
1618                          * will never be another interrupt until there is
1619                          * another update of the status block, while there
1620                          * is still unhandled work.
1621                          */
1622                         rmb();
1623
1624                         if (!(qede_has_rx_work(fp->rxq) ||
1625                               qede_has_tx_work(fp))) {
1626                                 napi_complete(napi);
1627                                 /* Update and reenable interrupts */
1628                                 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1629                                            1 /*update*/);
1630                                 break;
1631                         }
1632                 }
1633         }
1634
1635         return work_done;
1636 }
1637
1638 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1639 {
1640         struct qede_fastpath *fp = fp_cookie;
1641
1642         qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1643
1644         napi_schedule_irqoff(&fp->napi);
1645         return IRQ_HANDLED;
1646 }
1647
1648 /* -------------------------------------------------------------------------
1649  * END OF FAST-PATH
1650  * -------------------------------------------------------------------------
1651  */
1652
1653 static int qede_open(struct net_device *ndev);
1654 static int qede_close(struct net_device *ndev);
1655 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1656 static void qede_set_rx_mode(struct net_device *ndev);
1657 static void qede_config_rx_mode(struct net_device *ndev);
1658
1659 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1660                                  enum qed_filter_xcast_params_type opcode,
1661                                  unsigned char mac[ETH_ALEN])
1662 {
1663         struct qed_filter_params filter_cmd;
1664
1665         memset(&filter_cmd, 0, sizeof(filter_cmd));
1666         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1667         filter_cmd.filter.ucast.type = opcode;
1668         filter_cmd.filter.ucast.mac_valid = 1;
1669         ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1670
1671         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1672 }
1673
1674 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1675                                   enum qed_filter_xcast_params_type opcode,
1676                                   u16 vid)
1677 {
1678         struct qed_filter_params filter_cmd;
1679
1680         memset(&filter_cmd, 0, sizeof(filter_cmd));
1681         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1682         filter_cmd.filter.ucast.type = opcode;
1683         filter_cmd.filter.ucast.vlan_valid = 1;
1684         filter_cmd.filter.ucast.vlan = vid;
1685
1686         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1687 }
1688
1689 void qede_fill_by_demand_stats(struct qede_dev *edev)
1690 {
1691         struct qed_eth_stats stats;
1692
1693         edev->ops->get_vport_stats(edev->cdev, &stats);
1694         edev->stats.no_buff_discards = stats.no_buff_discards;
1695         edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1696         edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1697         edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1698         edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1699         edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1700         edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1701         edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1702         edev->stats.mac_filter_discards = stats.mac_filter_discards;
1703
1704         edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1705         edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1706         edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1707         edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1708         edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1709         edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1710         edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1711         edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1712         edev->stats.coalesced_events = stats.tpa_coalesced_events;
1713         edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1714         edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1715         edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1716
1717         edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1718         edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1719         edev->stats.rx_128_to_255_byte_packets =
1720                                 stats.rx_128_to_255_byte_packets;
1721         edev->stats.rx_256_to_511_byte_packets =
1722                                 stats.rx_256_to_511_byte_packets;
1723         edev->stats.rx_512_to_1023_byte_packets =
1724                                 stats.rx_512_to_1023_byte_packets;
1725         edev->stats.rx_1024_to_1518_byte_packets =
1726                                 stats.rx_1024_to_1518_byte_packets;
1727         edev->stats.rx_1519_to_1522_byte_packets =
1728                                 stats.rx_1519_to_1522_byte_packets;
1729         edev->stats.rx_1519_to_2047_byte_packets =
1730                                 stats.rx_1519_to_2047_byte_packets;
1731         edev->stats.rx_2048_to_4095_byte_packets =
1732                                 stats.rx_2048_to_4095_byte_packets;
1733         edev->stats.rx_4096_to_9216_byte_packets =
1734                                 stats.rx_4096_to_9216_byte_packets;
1735         edev->stats.rx_9217_to_16383_byte_packets =
1736                                 stats.rx_9217_to_16383_byte_packets;
1737         edev->stats.rx_crc_errors = stats.rx_crc_errors;
1738         edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1739         edev->stats.rx_pause_frames = stats.rx_pause_frames;
1740         edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1741         edev->stats.rx_align_errors = stats.rx_align_errors;
1742         edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1743         edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1744         edev->stats.rx_jabbers = stats.rx_jabbers;
1745         edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1746         edev->stats.rx_fragments = stats.rx_fragments;
1747         edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1748         edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1749         edev->stats.tx_128_to_255_byte_packets =
1750                                 stats.tx_128_to_255_byte_packets;
1751         edev->stats.tx_256_to_511_byte_packets =
1752                                 stats.tx_256_to_511_byte_packets;
1753         edev->stats.tx_512_to_1023_byte_packets =
1754                                 stats.tx_512_to_1023_byte_packets;
1755         edev->stats.tx_1024_to_1518_byte_packets =
1756                                 stats.tx_1024_to_1518_byte_packets;
1757         edev->stats.tx_1519_to_2047_byte_packets =
1758                                 stats.tx_1519_to_2047_byte_packets;
1759         edev->stats.tx_2048_to_4095_byte_packets =
1760                                 stats.tx_2048_to_4095_byte_packets;
1761         edev->stats.tx_4096_to_9216_byte_packets =
1762                                 stats.tx_4096_to_9216_byte_packets;
1763         edev->stats.tx_9217_to_16383_byte_packets =
1764                                 stats.tx_9217_to_16383_byte_packets;
1765         edev->stats.tx_pause_frames = stats.tx_pause_frames;
1766         edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1767         edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1768         edev->stats.tx_total_collisions = stats.tx_total_collisions;
1769         edev->stats.brb_truncates = stats.brb_truncates;
1770         edev->stats.brb_discards = stats.brb_discards;
1771         edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1772 }
1773
1774 static struct rtnl_link_stats64 *qede_get_stats64(
1775                             struct net_device *dev,
1776                             struct rtnl_link_stats64 *stats)
1777 {
1778         struct qede_dev *edev = netdev_priv(dev);
1779
1780         qede_fill_by_demand_stats(edev);
1781
1782         stats->rx_packets = edev->stats.rx_ucast_pkts +
1783                             edev->stats.rx_mcast_pkts +
1784                             edev->stats.rx_bcast_pkts;
1785         stats->tx_packets = edev->stats.tx_ucast_pkts +
1786                             edev->stats.tx_mcast_pkts +
1787                             edev->stats.tx_bcast_pkts;
1788
1789         stats->rx_bytes = edev->stats.rx_ucast_bytes +
1790                           edev->stats.rx_mcast_bytes +
1791                           edev->stats.rx_bcast_bytes;
1792
1793         stats->tx_bytes = edev->stats.tx_ucast_bytes +
1794                           edev->stats.tx_mcast_bytes +
1795                           edev->stats.tx_bcast_bytes;
1796
1797         stats->tx_errors = edev->stats.tx_err_drop_pkts;
1798         stats->multicast = edev->stats.rx_mcast_pkts +
1799                            edev->stats.rx_bcast_pkts;
1800
1801         stats->rx_fifo_errors = edev->stats.no_buff_discards;
1802
1803         stats->collisions = edev->stats.tx_total_collisions;
1804         stats->rx_crc_errors = edev->stats.rx_crc_errors;
1805         stats->rx_frame_errors = edev->stats.rx_align_errors;
1806
1807         return stats;
1808 }
1809
1810 #ifdef CONFIG_QED_SRIOV
1811 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1812                               struct ifla_vf_info *ivi)
1813 {
1814         struct qede_dev *edev = netdev_priv(dev);
1815
1816         if (!edev->ops)
1817                 return -EINVAL;
1818
1819         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1820 }
1821
1822 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1823                             int min_tx_rate, int max_tx_rate)
1824 {
1825         struct qede_dev *edev = netdev_priv(dev);
1826
1827         return edev->ops->iov->set_rate(edev->cdev, vfidx, max_tx_rate,
1828                                         max_tx_rate);
1829 }
1830
1831 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1832 {
1833         struct qede_dev *edev = netdev_priv(dev);
1834
1835         if (!edev->ops)
1836                 return -EINVAL;
1837
1838         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1839 }
1840
1841 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1842                                   int link_state)
1843 {
1844         struct qede_dev *edev = netdev_priv(dev);
1845
1846         if (!edev->ops)
1847                 return -EINVAL;
1848
1849         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1850 }
1851 #endif
1852
1853 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1854 {
1855         struct qed_update_vport_params params;
1856         int rc;
1857
1858         /* Proceed only if action actually needs to be performed */
1859         if (edev->accept_any_vlan == action)
1860                 return;
1861
1862         memset(&params, 0, sizeof(params));
1863
1864         params.vport_id = 0;
1865         params.accept_any_vlan = action;
1866         params.update_accept_any_vlan_flg = 1;
1867
1868         rc = edev->ops->vport_update(edev->cdev, &params);
1869         if (rc) {
1870                 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1871                        action ? "enable" : "disable");
1872         } else {
1873                 DP_INFO(edev, "%s accept-any-vlan\n",
1874                         action ? "enabled" : "disabled");
1875                 edev->accept_any_vlan = action;
1876         }
1877 }
1878
1879 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1880 {
1881         struct qede_dev *edev = netdev_priv(dev);
1882         struct qede_vlan *vlan, *tmp;
1883         int rc;
1884
1885         DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1886
1887         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1888         if (!vlan) {
1889                 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1890                 return -ENOMEM;
1891         }
1892         INIT_LIST_HEAD(&vlan->list);
1893         vlan->vid = vid;
1894         vlan->configured = false;
1895
1896         /* Verify vlan isn't already configured */
1897         list_for_each_entry(tmp, &edev->vlan_list, list) {
1898                 if (tmp->vid == vlan->vid) {
1899                         DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1900                                    "vlan already configured\n");
1901                         kfree(vlan);
1902                         return -EEXIST;
1903                 }
1904         }
1905
1906         /* If interface is down, cache this VLAN ID and return */
1907         if (edev->state != QEDE_STATE_OPEN) {
1908                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1909                            "Interface is down, VLAN %d will be configured when interface is up\n",
1910                            vid);
1911                 if (vid != 0)
1912                         edev->non_configured_vlans++;
1913                 list_add(&vlan->list, &edev->vlan_list);
1914
1915                 return 0;
1916         }
1917
1918         /* Check for the filter limit.
1919          * Note - vlan0 has a reserved filter and can be added without
1920          * worrying about quota
1921          */
1922         if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1923             (vlan->vid == 0)) {
1924                 rc = qede_set_ucast_rx_vlan(edev,
1925                                             QED_FILTER_XCAST_TYPE_ADD,
1926                                             vlan->vid);
1927                 if (rc) {
1928                         DP_ERR(edev, "Failed to configure VLAN %d\n",
1929                                vlan->vid);
1930                         kfree(vlan);
1931                         return -EINVAL;
1932                 }
1933                 vlan->configured = true;
1934
1935                 /* vlan0 filter isn't consuming out of our quota */
1936                 if (vlan->vid != 0)
1937                         edev->configured_vlans++;
1938         } else {
1939                 /* Out of quota; Activate accept-any-VLAN mode */
1940                 if (!edev->non_configured_vlans)
1941                         qede_config_accept_any_vlan(edev, true);
1942
1943                 edev->non_configured_vlans++;
1944         }
1945
1946         list_add(&vlan->list, &edev->vlan_list);
1947
1948         return 0;
1949 }
1950
1951 static void qede_del_vlan_from_list(struct qede_dev *edev,
1952                                     struct qede_vlan *vlan)
1953 {
1954         /* vlan0 filter isn't consuming out of our quota */
1955         if (vlan->vid != 0) {
1956                 if (vlan->configured)
1957                         edev->configured_vlans--;
1958                 else
1959                         edev->non_configured_vlans--;
1960         }
1961
1962         list_del(&vlan->list);
1963         kfree(vlan);
1964 }
1965
1966 static int qede_configure_vlan_filters(struct qede_dev *edev)
1967 {
1968         int rc = 0, real_rc = 0, accept_any_vlan = 0;
1969         struct qed_dev_eth_info *dev_info;
1970         struct qede_vlan *vlan = NULL;
1971
1972         if (list_empty(&edev->vlan_list))
1973                 return 0;
1974
1975         dev_info = &edev->dev_info;
1976
1977         /* Configure non-configured vlans */
1978         list_for_each_entry(vlan, &edev->vlan_list, list) {
1979                 if (vlan->configured)
1980                         continue;
1981
1982                 /* We have used all our credits, now enable accept_any_vlan */
1983                 if ((vlan->vid != 0) &&
1984                     (edev->configured_vlans == dev_info->num_vlan_filters)) {
1985                         accept_any_vlan = 1;
1986                         continue;
1987                 }
1988
1989                 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1990
1991                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1992                                             vlan->vid);
1993                 if (rc) {
1994                         DP_ERR(edev, "Failed to configure VLAN %u\n",
1995                                vlan->vid);
1996                         real_rc = rc;
1997                         continue;
1998                 }
1999
2000                 vlan->configured = true;
2001                 /* vlan0 filter doesn't consume our VLAN filter's quota */
2002                 if (vlan->vid != 0) {
2003                         edev->non_configured_vlans--;
2004                         edev->configured_vlans++;
2005                 }
2006         }
2007
2008         /* enable accept_any_vlan mode if we have more VLANs than credits,
2009          * or remove accept_any_vlan mode if we've actually removed
2010          * a non-configured vlan, and all remaining vlans are truly configured.
2011          */
2012
2013         if (accept_any_vlan)
2014                 qede_config_accept_any_vlan(edev, true);
2015         else if (!edev->non_configured_vlans)
2016                 qede_config_accept_any_vlan(edev, false);
2017
2018         return real_rc;
2019 }
2020
2021 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2022 {
2023         struct qede_dev *edev = netdev_priv(dev);
2024         struct qede_vlan *vlan = NULL;
2025         int rc;
2026
2027         DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2028
2029         /* Find whether entry exists */
2030         list_for_each_entry(vlan, &edev->vlan_list, list)
2031                 if (vlan->vid == vid)
2032                         break;
2033
2034         if (!vlan || (vlan->vid != vid)) {
2035                 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2036                            "Vlan isn't configured\n");
2037                 return 0;
2038         }
2039
2040         if (edev->state != QEDE_STATE_OPEN) {
2041                 /* As interface is already down, we don't have a VPORT
2042                  * instance to remove vlan filter. So just update vlan list
2043                  */
2044                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2045                            "Interface is down, removing VLAN from list only\n");
2046                 qede_del_vlan_from_list(edev, vlan);
2047                 return 0;
2048         }
2049
2050         /* Remove vlan */
2051         rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
2052         if (rc) {
2053                 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2054                 return -EINVAL;
2055         }
2056
2057         qede_del_vlan_from_list(edev, vlan);
2058
2059         /* We have removed a VLAN - try to see if we can
2060          * configure non-configured VLAN from the list.
2061          */
2062         rc = qede_configure_vlan_filters(edev);
2063
2064         return rc;
2065 }
2066
2067 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2068 {
2069         struct qede_vlan *vlan = NULL;
2070
2071         if (list_empty(&edev->vlan_list))
2072                 return;
2073
2074         list_for_each_entry(vlan, &edev->vlan_list, list) {
2075                 if (!vlan->configured)
2076                         continue;
2077
2078                 vlan->configured = false;
2079
2080                 /* vlan0 filter isn't consuming out of our quota */
2081                 if (vlan->vid != 0) {
2082                         edev->non_configured_vlans++;
2083                         edev->configured_vlans--;
2084                 }
2085
2086                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2087                            "marked vlan %d as non-configured\n",
2088                            vlan->vid);
2089         }
2090
2091         edev->accept_any_vlan = false;
2092 }
2093
2094 #ifdef CONFIG_QEDE_VXLAN
2095 static void qede_add_vxlan_port(struct net_device *dev,
2096                                 sa_family_t sa_family, __be16 port)
2097 {
2098         struct qede_dev *edev = netdev_priv(dev);
2099         u16 t_port = ntohs(port);
2100
2101         if (edev->vxlan_dst_port)
2102                 return;
2103
2104         edev->vxlan_dst_port = t_port;
2105
2106         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d", t_port);
2107
2108         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2109         schedule_delayed_work(&edev->sp_task, 0);
2110 }
2111
2112 static void qede_del_vxlan_port(struct net_device *dev,
2113                                 sa_family_t sa_family, __be16 port)
2114 {
2115         struct qede_dev *edev = netdev_priv(dev);
2116         u16 t_port = ntohs(port);
2117
2118         if (t_port != edev->vxlan_dst_port)
2119                 return;
2120
2121         edev->vxlan_dst_port = 0;
2122
2123         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d", t_port);
2124
2125         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2126         schedule_delayed_work(&edev->sp_task, 0);
2127 }
2128 #endif
2129
2130 #ifdef CONFIG_QEDE_GENEVE
2131 static void qede_add_geneve_port(struct net_device *dev,
2132                                  sa_family_t sa_family, __be16 port)
2133 {
2134         struct qede_dev *edev = netdev_priv(dev);
2135         u16 t_port = ntohs(port);
2136
2137         if (edev->geneve_dst_port)
2138                 return;
2139
2140         edev->geneve_dst_port = t_port;
2141
2142         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d", t_port);
2143         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2144         schedule_delayed_work(&edev->sp_task, 0);
2145 }
2146
2147 static void qede_del_geneve_port(struct net_device *dev,
2148                                  sa_family_t sa_family, __be16 port)
2149 {
2150         struct qede_dev *edev = netdev_priv(dev);
2151         u16 t_port = ntohs(port);
2152
2153         if (t_port != edev->geneve_dst_port)
2154                 return;
2155
2156         edev->geneve_dst_port = 0;
2157
2158         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d", t_port);
2159         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2160         schedule_delayed_work(&edev->sp_task, 0);
2161 }
2162 #endif
2163
2164 static const struct net_device_ops qede_netdev_ops = {
2165         .ndo_open = qede_open,
2166         .ndo_stop = qede_close,
2167         .ndo_start_xmit = qede_start_xmit,
2168         .ndo_set_rx_mode = qede_set_rx_mode,
2169         .ndo_set_mac_address = qede_set_mac_addr,
2170         .ndo_validate_addr = eth_validate_addr,
2171         .ndo_change_mtu = qede_change_mtu,
2172 #ifdef CONFIG_QED_SRIOV
2173         .ndo_set_vf_mac = qede_set_vf_mac,
2174         .ndo_set_vf_vlan = qede_set_vf_vlan,
2175 #endif
2176         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2177         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2178         .ndo_get_stats64 = qede_get_stats64,
2179 #ifdef CONFIG_QED_SRIOV
2180         .ndo_set_vf_link_state = qede_set_vf_link_state,
2181         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2182         .ndo_get_vf_config = qede_get_vf_config,
2183         .ndo_set_vf_rate = qede_set_vf_rate,
2184 #endif
2185 #ifdef CONFIG_QEDE_VXLAN
2186         .ndo_add_vxlan_port = qede_add_vxlan_port,
2187         .ndo_del_vxlan_port = qede_del_vxlan_port,
2188 #endif
2189 #ifdef CONFIG_QEDE_GENEVE
2190         .ndo_add_geneve_port = qede_add_geneve_port,
2191         .ndo_del_geneve_port = qede_del_geneve_port,
2192 #endif
2193 };
2194
2195 /* -------------------------------------------------------------------------
2196  * START OF PROBE / REMOVE
2197  * -------------------------------------------------------------------------
2198  */
2199
2200 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2201                                             struct pci_dev *pdev,
2202                                             struct qed_dev_eth_info *info,
2203                                             u32 dp_module,
2204                                             u8 dp_level)
2205 {
2206         struct net_device *ndev;
2207         struct qede_dev *edev;
2208
2209         ndev = alloc_etherdev_mqs(sizeof(*edev),
2210                                   info->num_queues,
2211                                   info->num_queues);
2212         if (!ndev) {
2213                 pr_err("etherdev allocation failed\n");
2214                 return NULL;
2215         }
2216
2217         edev = netdev_priv(ndev);
2218         edev->ndev = ndev;
2219         edev->cdev = cdev;
2220         edev->pdev = pdev;
2221         edev->dp_module = dp_module;
2222         edev->dp_level = dp_level;
2223         edev->ops = qed_ops;
2224         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2225         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2226
2227         SET_NETDEV_DEV(ndev, &pdev->dev);
2228
2229         memset(&edev->stats, 0, sizeof(edev->stats));
2230         memcpy(&edev->dev_info, info, sizeof(*info));
2231
2232         edev->num_tc = edev->dev_info.num_tc;
2233
2234         INIT_LIST_HEAD(&edev->vlan_list);
2235
2236         return edev;
2237 }
2238
2239 static void qede_init_ndev(struct qede_dev *edev)
2240 {
2241         struct net_device *ndev = edev->ndev;
2242         struct pci_dev *pdev = edev->pdev;
2243         u32 hw_features;
2244
2245         pci_set_drvdata(pdev, ndev);
2246
2247         ndev->mem_start = edev->dev_info.common.pci_mem_start;
2248         ndev->base_addr = ndev->mem_start;
2249         ndev->mem_end = edev->dev_info.common.pci_mem_end;
2250         ndev->irq = edev->dev_info.common.pci_irq;
2251
2252         ndev->watchdog_timeo = TX_TIMEOUT;
2253
2254         ndev->netdev_ops = &qede_netdev_ops;
2255
2256         qede_set_ethtool_ops(ndev);
2257
2258         /* user-changeble features */
2259         hw_features = NETIF_F_GRO | NETIF_F_SG |
2260                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2261                       NETIF_F_TSO | NETIF_F_TSO6;
2262
2263         /* Encap features*/
2264         hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2265                        NETIF_F_TSO_ECN;
2266         ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2267                                 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2268                                 NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2269                                 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2270
2271         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2272                               NETIF_F_HIGHDMA;
2273         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2274                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2275                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2276
2277         ndev->hw_features = hw_features;
2278
2279         /* Set network device HW mac */
2280         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2281 }
2282
2283 /* This function converts from 32b param to two params of level and module
2284  * Input 32b decoding:
2285  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2286  * 'happy' flow, e.g. memory allocation failed.
2287  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2288  * and provide important parameters.
2289  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2290  * module. VERBOSE prints are for tracking the specific flow in low level.
2291  *
2292  * Notice that the level should be that of the lowest required logs.
2293  */
2294 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2295 {
2296         *p_dp_level = QED_LEVEL_NOTICE;
2297         *p_dp_module = 0;
2298
2299         if (debug & QED_LOG_VERBOSE_MASK) {
2300                 *p_dp_level = QED_LEVEL_VERBOSE;
2301                 *p_dp_module = (debug & 0x3FFFFFFF);
2302         } else if (debug & QED_LOG_INFO_MASK) {
2303                 *p_dp_level = QED_LEVEL_INFO;
2304         } else if (debug & QED_LOG_NOTICE_MASK) {
2305                 *p_dp_level = QED_LEVEL_NOTICE;
2306         }
2307 }
2308
2309 static void qede_free_fp_array(struct qede_dev *edev)
2310 {
2311         if (edev->fp_array) {
2312                 struct qede_fastpath *fp;
2313                 int i;
2314
2315                 for_each_rss(i) {
2316                         fp = &edev->fp_array[i];
2317
2318                         kfree(fp->sb_info);
2319                         kfree(fp->rxq);
2320                         kfree(fp->txqs);
2321                 }
2322                 kfree(edev->fp_array);
2323         }
2324         edev->num_rss = 0;
2325 }
2326
2327 static int qede_alloc_fp_array(struct qede_dev *edev)
2328 {
2329         struct qede_fastpath *fp;
2330         int i;
2331
2332         edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2333                                  sizeof(*edev->fp_array), GFP_KERNEL);
2334         if (!edev->fp_array) {
2335                 DP_NOTICE(edev, "fp array allocation failed\n");
2336                 goto err;
2337         }
2338
2339         for_each_rss(i) {
2340                 fp = &edev->fp_array[i];
2341
2342                 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2343                 if (!fp->sb_info) {
2344                         DP_NOTICE(edev, "sb info struct allocation failed\n");
2345                         goto err;
2346                 }
2347
2348                 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2349                 if (!fp->rxq) {
2350                         DP_NOTICE(edev, "RXQ struct allocation failed\n");
2351                         goto err;
2352                 }
2353
2354                 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2355                 if (!fp->txqs) {
2356                         DP_NOTICE(edev, "TXQ array allocation failed\n");
2357                         goto err;
2358                 }
2359         }
2360
2361         return 0;
2362 err:
2363         qede_free_fp_array(edev);
2364         return -ENOMEM;
2365 }
2366
2367 static void qede_sp_task(struct work_struct *work)
2368 {
2369         struct qede_dev *edev = container_of(work, struct qede_dev,
2370                                              sp_task.work);
2371         struct qed_dev *cdev = edev->cdev;
2372
2373         mutex_lock(&edev->qede_lock);
2374
2375         if (edev->state == QEDE_STATE_OPEN) {
2376                 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2377                         qede_config_rx_mode(edev->ndev);
2378         }
2379
2380         if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2381                 struct qed_tunn_params tunn_params;
2382
2383                 memset(&tunn_params, 0, sizeof(tunn_params));
2384                 tunn_params.update_vxlan_port = 1;
2385                 tunn_params.vxlan_port = edev->vxlan_dst_port;
2386                 qed_ops->tunn_config(cdev, &tunn_params);
2387         }
2388
2389         if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2390                 struct qed_tunn_params tunn_params;
2391
2392                 memset(&tunn_params, 0, sizeof(tunn_params));
2393                 tunn_params.update_geneve_port = 1;
2394                 tunn_params.geneve_port = edev->geneve_dst_port;
2395                 qed_ops->tunn_config(cdev, &tunn_params);
2396         }
2397
2398         mutex_unlock(&edev->qede_lock);
2399 }
2400
2401 static void qede_update_pf_params(struct qed_dev *cdev)
2402 {
2403         struct qed_pf_params pf_params;
2404
2405         /* 64 rx + 64 tx */
2406         memset(&pf_params, 0, sizeof(struct qed_pf_params));
2407         pf_params.eth_pf_params.num_cons = 128;
2408         qed_ops->common->update_pf_params(cdev, &pf_params);
2409 }
2410
2411 enum qede_probe_mode {
2412         QEDE_PROBE_NORMAL,
2413 };
2414
2415 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2416                         bool is_vf, enum qede_probe_mode mode)
2417 {
2418         struct qed_probe_params probe_params;
2419         struct qed_slowpath_params params;
2420         struct qed_dev_eth_info dev_info;
2421         struct qede_dev *edev;
2422         struct qed_dev *cdev;
2423         int rc;
2424
2425         if (unlikely(dp_level & QED_LEVEL_INFO))
2426                 pr_notice("Starting qede probe\n");
2427
2428         memset(&probe_params, 0, sizeof(probe_params));
2429         probe_params.protocol = QED_PROTOCOL_ETH;
2430         probe_params.dp_module = dp_module;
2431         probe_params.dp_level = dp_level;
2432         probe_params.is_vf = is_vf;
2433         cdev = qed_ops->common->probe(pdev, &probe_params);
2434         if (!cdev) {
2435                 rc = -ENODEV;
2436                 goto err0;
2437         }
2438
2439         qede_update_pf_params(cdev);
2440
2441         /* Start the Slowpath-process */
2442         memset(&params, 0, sizeof(struct qed_slowpath_params));
2443         params.int_mode = QED_INT_MODE_MSIX;
2444         params.drv_major = QEDE_MAJOR_VERSION;
2445         params.drv_minor = QEDE_MINOR_VERSION;
2446         params.drv_rev = QEDE_REVISION_VERSION;
2447         params.drv_eng = QEDE_ENGINEERING_VERSION;
2448         strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2449         rc = qed_ops->common->slowpath_start(cdev, &params);
2450         if (rc) {
2451                 pr_notice("Cannot start slowpath\n");
2452                 goto err1;
2453         }
2454
2455         /* Learn information crucial for qede to progress */
2456         rc = qed_ops->fill_dev_info(cdev, &dev_info);
2457         if (rc)
2458                 goto err2;
2459
2460         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2461                                    dp_level);
2462         if (!edev) {
2463                 rc = -ENOMEM;
2464                 goto err2;
2465         }
2466
2467         if (is_vf)
2468                 edev->flags |= QEDE_FLAG_IS_VF;
2469
2470         qede_init_ndev(edev);
2471
2472         rc = register_netdev(edev->ndev);
2473         if (rc) {
2474                 DP_NOTICE(edev, "Cannot register net-device\n");
2475                 goto err3;
2476         }
2477
2478         edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2479
2480         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2481
2482         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2483         mutex_init(&edev->qede_lock);
2484
2485         DP_INFO(edev, "Ending successfully qede probe\n");
2486
2487         return 0;
2488
2489 err3:
2490         free_netdev(edev->ndev);
2491 err2:
2492         qed_ops->common->slowpath_stop(cdev);
2493 err1:
2494         qed_ops->common->remove(cdev);
2495 err0:
2496         return rc;
2497 }
2498
2499 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2500 {
2501         bool is_vf = false;
2502         u32 dp_module = 0;
2503         u8 dp_level = 0;
2504
2505         switch ((enum qede_pci_private)id->driver_data) {
2506         case QEDE_PRIVATE_VF:
2507                 if (debug & QED_LOG_VERBOSE_MASK)
2508                         dev_err(&pdev->dev, "Probing a VF\n");
2509                 is_vf = true;
2510                 break;
2511         default:
2512                 if (debug & QED_LOG_VERBOSE_MASK)
2513                         dev_err(&pdev->dev, "Probing a PF\n");
2514         }
2515
2516         qede_config_debug(debug, &dp_module, &dp_level);
2517
2518         return __qede_probe(pdev, dp_module, dp_level, is_vf,
2519                             QEDE_PROBE_NORMAL);
2520 }
2521
2522 enum qede_remove_mode {
2523         QEDE_REMOVE_NORMAL,
2524 };
2525
2526 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2527 {
2528         struct net_device *ndev = pci_get_drvdata(pdev);
2529         struct qede_dev *edev = netdev_priv(ndev);
2530         struct qed_dev *cdev = edev->cdev;
2531
2532         DP_INFO(edev, "Starting qede_remove\n");
2533
2534         cancel_delayed_work_sync(&edev->sp_task);
2535         unregister_netdev(ndev);
2536
2537         edev->ops->common->set_power_state(cdev, PCI_D0);
2538
2539         pci_set_drvdata(pdev, NULL);
2540
2541         free_netdev(ndev);
2542
2543         /* Use global ops since we've freed edev */
2544         qed_ops->common->slowpath_stop(cdev);
2545         qed_ops->common->remove(cdev);
2546
2547         pr_notice("Ending successfully qede_remove\n");
2548 }
2549
2550 static void qede_remove(struct pci_dev *pdev)
2551 {
2552         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2553 }
2554
2555 /* -------------------------------------------------------------------------
2556  * START OF LOAD / UNLOAD
2557  * -------------------------------------------------------------------------
2558  */
2559
2560 static int qede_set_num_queues(struct qede_dev *edev)
2561 {
2562         int rc;
2563         u16 rss_num;
2564
2565         /* Setup queues according to possible resources*/
2566         if (edev->req_rss)
2567                 rss_num = edev->req_rss;
2568         else
2569                 rss_num = netif_get_num_default_rss_queues() *
2570                           edev->dev_info.common.num_hwfns;
2571
2572         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2573
2574         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2575         if (rc > 0) {
2576                 /* Managed to request interrupts for our queues */
2577                 edev->num_rss = rc;
2578                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2579                         QEDE_RSS_CNT(edev), rss_num);
2580                 rc = 0;
2581         }
2582         return rc;
2583 }
2584
2585 static void qede_free_mem_sb(struct qede_dev *edev,
2586                              struct qed_sb_info *sb_info)
2587 {
2588         if (sb_info->sb_virt)
2589                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2590                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
2591 }
2592
2593 /* This function allocates fast-path status block memory */
2594 static int qede_alloc_mem_sb(struct qede_dev *edev,
2595                              struct qed_sb_info *sb_info,
2596                              u16 sb_id)
2597 {
2598         struct status_block *sb_virt;
2599         dma_addr_t sb_phys;
2600         int rc;
2601
2602         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2603                                      sizeof(*sb_virt),
2604                                      &sb_phys, GFP_KERNEL);
2605         if (!sb_virt) {
2606                 DP_ERR(edev, "Status block allocation failed\n");
2607                 return -ENOMEM;
2608         }
2609
2610         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2611                                         sb_virt, sb_phys, sb_id,
2612                                         QED_SB_TYPE_L2_QUEUE);
2613         if (rc) {
2614                 DP_ERR(edev, "Status block initialization failed\n");
2615                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2616                                   sb_virt, sb_phys);
2617                 return rc;
2618         }
2619
2620         return 0;
2621 }
2622
2623 static void qede_free_rx_buffers(struct qede_dev *edev,
2624                                  struct qede_rx_queue *rxq)
2625 {
2626         u16 i;
2627
2628         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2629                 struct sw_rx_data *rx_buf;
2630                 struct page *data;
2631
2632                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2633                 data = rx_buf->data;
2634
2635                 dma_unmap_page(&edev->pdev->dev,
2636                                rx_buf->mapping,
2637                                PAGE_SIZE, DMA_FROM_DEVICE);
2638
2639                 rx_buf->data = NULL;
2640                 __free_page(data);
2641         }
2642 }
2643
2644 static void qede_free_sge_mem(struct qede_dev *edev,
2645                               struct qede_rx_queue *rxq) {
2646         int i;
2647
2648         if (edev->gro_disable)
2649                 return;
2650
2651         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2652                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2653                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2654
2655                 if (replace_buf->data) {
2656                         dma_unmap_page(&edev->pdev->dev,
2657                                        replace_buf->mapping,
2658                                        PAGE_SIZE, DMA_FROM_DEVICE);
2659                         __free_page(replace_buf->data);
2660                 }
2661         }
2662 }
2663
2664 static void qede_free_mem_rxq(struct qede_dev *edev,
2665                               struct qede_rx_queue *rxq)
2666 {
2667         qede_free_sge_mem(edev, rxq);
2668
2669         /* Free rx buffers */
2670         qede_free_rx_buffers(edev, rxq);
2671
2672         /* Free the parallel SW ring */
2673         kfree(rxq->sw_rx_ring);
2674
2675         /* Free the real RQ ring used by FW */
2676         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2677         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2678 }
2679
2680 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2681                                 struct qede_rx_queue *rxq)
2682 {
2683         struct sw_rx_data *sw_rx_data;
2684         struct eth_rx_bd *rx_bd;
2685         dma_addr_t mapping;
2686         struct page *data;
2687         u16 rx_buf_size;
2688
2689         rx_buf_size = rxq->rx_buf_size;
2690
2691         data = alloc_pages(GFP_ATOMIC, 0);
2692         if (unlikely(!data)) {
2693                 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2694                 return -ENOMEM;
2695         }
2696
2697         /* Map the entire page as it would be used
2698          * for multiple RX buffer segment size mapping.
2699          */
2700         mapping = dma_map_page(&edev->pdev->dev, data, 0,
2701                                PAGE_SIZE, DMA_FROM_DEVICE);
2702         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2703                 __free_page(data);
2704                 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2705                 return -ENOMEM;
2706         }
2707
2708         sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2709         sw_rx_data->page_offset = 0;
2710         sw_rx_data->data = data;
2711         sw_rx_data->mapping = mapping;
2712
2713         /* Advance PROD and get BD pointer */
2714         rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2715         WARN_ON(!rx_bd);
2716         rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2717         rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2718
2719         rxq->sw_rx_prod++;
2720
2721         return 0;
2722 }
2723
2724 static int qede_alloc_sge_mem(struct qede_dev *edev,
2725                               struct qede_rx_queue *rxq)
2726 {
2727         dma_addr_t mapping;
2728         int i;
2729
2730         if (edev->gro_disable)
2731                 return 0;
2732
2733         if (edev->ndev->mtu > PAGE_SIZE) {
2734                 edev->gro_disable = 1;
2735                 return 0;
2736         }
2737
2738         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2739                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2740                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2741
2742                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2743                 if (unlikely(!replace_buf->data)) {
2744                         DP_NOTICE(edev,
2745                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
2746                         goto err;
2747                 }
2748
2749                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2750                                        rxq->rx_buf_size, DMA_FROM_DEVICE);
2751                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2752                         DP_NOTICE(edev,
2753                                   "Failed to map TPA replacement buffer\n");
2754                         goto err;
2755                 }
2756
2757                 replace_buf->mapping = mapping;
2758                 tpa_info->replace_buf.page_offset = 0;
2759
2760                 tpa_info->replace_buf_mapping = mapping;
2761                 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2762         }
2763
2764         return 0;
2765 err:
2766         qede_free_sge_mem(edev, rxq);
2767         edev->gro_disable = 1;
2768         return -ENOMEM;
2769 }
2770
2771 /* This function allocates all memory needed per Rx queue */
2772 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2773                               struct qede_rx_queue *rxq)
2774 {
2775         int i, rc, size;
2776
2777         rxq->num_rx_buffers = edev->q_num_rx_buffers;
2778
2779         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2780                            edev->ndev->mtu;
2781         if (rxq->rx_buf_size > PAGE_SIZE)
2782                 rxq->rx_buf_size = PAGE_SIZE;
2783
2784         /* Segment size to spilt a page in multiple equal parts */
2785         rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2786
2787         /* Allocate the parallel driver ring for Rx buffers */
2788         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2789         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2790         if (!rxq->sw_rx_ring) {
2791                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2792                 rc = -ENOMEM;
2793                 goto err;
2794         }
2795
2796         /* Allocate FW Rx ring  */
2797         rc = edev->ops->common->chain_alloc(edev->cdev,
2798                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2799                                             QED_CHAIN_MODE_NEXT_PTR,
2800                                             RX_RING_SIZE,
2801                                             sizeof(struct eth_rx_bd),
2802                                             &rxq->rx_bd_ring);
2803
2804         if (rc)
2805                 goto err;
2806
2807         /* Allocate FW completion ring */
2808         rc = edev->ops->common->chain_alloc(edev->cdev,
2809                                             QED_CHAIN_USE_TO_CONSUME,
2810                                             QED_CHAIN_MODE_PBL,
2811                                             RX_RING_SIZE,
2812                                             sizeof(union eth_rx_cqe),
2813                                             &rxq->rx_comp_ring);
2814         if (rc)
2815                 goto err;
2816
2817         /* Allocate buffers for the Rx ring */
2818         for (i = 0; i < rxq->num_rx_buffers; i++) {
2819                 rc = qede_alloc_rx_buffer(edev, rxq);
2820                 if (rc) {
2821                         DP_ERR(edev,
2822                                "Rx buffers allocation failed at index %d\n", i);
2823                         goto err;
2824                 }
2825         }
2826
2827         rc = qede_alloc_sge_mem(edev, rxq);
2828 err:
2829         return rc;
2830 }
2831
2832 static void qede_free_mem_txq(struct qede_dev *edev,
2833                               struct qede_tx_queue *txq)
2834 {
2835         /* Free the parallel SW ring */
2836         kfree(txq->sw_tx_ring);
2837
2838         /* Free the real RQ ring used by FW */
2839         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2840 }
2841
2842 /* This function allocates all memory needed per Tx queue */
2843 static int qede_alloc_mem_txq(struct qede_dev *edev,
2844                               struct qede_tx_queue *txq)
2845 {
2846         int size, rc;
2847         union eth_tx_bd_types *p_virt;
2848
2849         txq->num_tx_buffers = edev->q_num_tx_buffers;
2850
2851         /* Allocate the parallel driver ring for Tx buffers */
2852         size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2853         txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2854         if (!txq->sw_tx_ring) {
2855                 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2856                 goto err;
2857         }
2858
2859         rc = edev->ops->common->chain_alloc(edev->cdev,
2860                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2861                                             QED_CHAIN_MODE_PBL,
2862                                             NUM_TX_BDS_MAX,
2863                                             sizeof(*p_virt),
2864                                             &txq->tx_pbl);
2865         if (rc)
2866                 goto err;
2867
2868         return 0;
2869
2870 err:
2871         qede_free_mem_txq(edev, txq);
2872         return -ENOMEM;
2873 }
2874
2875 /* This function frees all memory of a single fp */
2876 static void qede_free_mem_fp(struct qede_dev *edev,
2877                              struct qede_fastpath *fp)
2878 {
2879         int tc;
2880
2881         qede_free_mem_sb(edev, fp->sb_info);
2882
2883         qede_free_mem_rxq(edev, fp->rxq);
2884
2885         for (tc = 0; tc < edev->num_tc; tc++)
2886                 qede_free_mem_txq(edev, &fp->txqs[tc]);
2887 }
2888
2889 /* This function allocates all memory needed for a single fp (i.e. an entity
2890  * which contains status block, one rx queue and multiple per-TC tx queues.
2891  */
2892 static int qede_alloc_mem_fp(struct qede_dev *edev,
2893                              struct qede_fastpath *fp)
2894 {
2895         int rc, tc;
2896
2897         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2898         if (rc)
2899                 goto err;
2900
2901         rc = qede_alloc_mem_rxq(edev, fp->rxq);
2902         if (rc)
2903                 goto err;
2904
2905         for (tc = 0; tc < edev->num_tc; tc++) {
2906                 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2907                 if (rc)
2908                         goto err;
2909         }
2910
2911         return 0;
2912 err:
2913         return rc;
2914 }
2915
2916 static void qede_free_mem_load(struct qede_dev *edev)
2917 {
2918         int i;
2919
2920         for_each_rss(i) {
2921                 struct qede_fastpath *fp = &edev->fp_array[i];
2922
2923                 qede_free_mem_fp(edev, fp);
2924         }
2925 }
2926
2927 /* This function allocates all qede memory at NIC load. */
2928 static int qede_alloc_mem_load(struct qede_dev *edev)
2929 {
2930         int rc = 0, rss_id;
2931
2932         for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2933                 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2934
2935                 rc = qede_alloc_mem_fp(edev, fp);
2936                 if (rc) {
2937                         DP_ERR(edev,
2938                                "Failed to allocate memory for fastpath - rss id = %d\n",
2939                                rss_id);
2940                         qede_free_mem_load(edev);
2941                         return rc;
2942                 }
2943         }
2944
2945         return 0;
2946 }
2947
2948 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2949 static void qede_init_fp(struct qede_dev *edev)
2950 {
2951         int rss_id, txq_index, tc;
2952         struct qede_fastpath *fp;
2953
2954         for_each_rss(rss_id) {
2955                 fp = &edev->fp_array[rss_id];
2956
2957                 fp->edev = edev;
2958                 fp->rss_id = rss_id;
2959
2960                 memset((void *)&fp->napi, 0, sizeof(fp->napi));
2961
2962                 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2963
2964                 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2965                 fp->rxq->rxq_id = rss_id;
2966
2967                 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2968                 for (tc = 0; tc < edev->num_tc; tc++) {
2969                         txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2970                         fp->txqs[tc].index = txq_index;
2971                 }
2972
2973                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2974                          edev->ndev->name, rss_id);
2975         }
2976
2977         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
2978 }
2979
2980 static int qede_set_real_num_queues(struct qede_dev *edev)
2981 {
2982         int rc = 0;
2983
2984         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
2985         if (rc) {
2986                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
2987                 return rc;
2988         }
2989         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
2990         if (rc) {
2991                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
2992                 return rc;
2993         }
2994
2995         return 0;
2996 }
2997
2998 static void qede_napi_disable_remove(struct qede_dev *edev)
2999 {
3000         int i;
3001
3002         for_each_rss(i) {
3003                 napi_disable(&edev->fp_array[i].napi);
3004
3005                 netif_napi_del(&edev->fp_array[i].napi);
3006         }
3007 }
3008
3009 static void qede_napi_add_enable(struct qede_dev *edev)
3010 {
3011         int i;
3012
3013         /* Add NAPI objects */
3014         for_each_rss(i) {
3015                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3016                                qede_poll, NAPI_POLL_WEIGHT);
3017                 napi_enable(&edev->fp_array[i].napi);
3018         }
3019 }
3020
3021 static void qede_sync_free_irqs(struct qede_dev *edev)
3022 {
3023         int i;
3024
3025         for (i = 0; i < edev->int_info.used_cnt; i++) {
3026                 if (edev->int_info.msix_cnt) {
3027                         synchronize_irq(edev->int_info.msix[i].vector);
3028                         free_irq(edev->int_info.msix[i].vector,
3029                                  &edev->fp_array[i]);
3030                 } else {
3031                         edev->ops->common->simd_handler_clean(edev->cdev, i);
3032                 }
3033         }
3034
3035         edev->int_info.used_cnt = 0;
3036 }
3037
3038 static int qede_req_msix_irqs(struct qede_dev *edev)
3039 {
3040         int i, rc;
3041
3042         /* Sanitize number of interrupts == number of prepared RSS queues */
3043         if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
3044                 DP_ERR(edev,
3045                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3046                        QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
3047                 return -EINVAL;
3048         }
3049
3050         for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
3051                 rc = request_irq(edev->int_info.msix[i].vector,
3052                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
3053                                  &edev->fp_array[i]);
3054                 if (rc) {
3055                         DP_ERR(edev, "Request fp %d irq failed\n", i);
3056                         qede_sync_free_irqs(edev);
3057                         return rc;
3058                 }
3059                 DP_VERBOSE(edev, NETIF_MSG_INTR,
3060                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3061                            edev->fp_array[i].name, i,
3062                            &edev->fp_array[i]);
3063                 edev->int_info.used_cnt++;
3064         }
3065
3066         return 0;
3067 }
3068
3069 static void qede_simd_fp_handler(void *cookie)
3070 {
3071         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3072
3073         napi_schedule_irqoff(&fp->napi);
3074 }
3075
3076 static int qede_setup_irqs(struct qede_dev *edev)
3077 {
3078         int i, rc = 0;
3079
3080         /* Learn Interrupt configuration */
3081         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3082         if (rc)
3083                 return rc;
3084
3085         if (edev->int_info.msix_cnt) {
3086                 rc = qede_req_msix_irqs(edev);
3087                 if (rc)
3088                         return rc;
3089                 edev->ndev->irq = edev->int_info.msix[0].vector;
3090         } else {
3091                 const struct qed_common_ops *ops;
3092
3093                 /* qed should learn receive the RSS ids and callbacks */
3094                 ops = edev->ops->common;
3095                 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3096                         ops->simd_handler_config(edev->cdev,
3097                                                  &edev->fp_array[i], i,
3098                                                  qede_simd_fp_handler);
3099                 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3100         }
3101         return 0;
3102 }
3103
3104 static int qede_drain_txq(struct qede_dev *edev,
3105                           struct qede_tx_queue *txq,
3106                           bool allow_drain)
3107 {
3108         int rc, cnt = 1000;
3109
3110         while (txq->sw_tx_cons != txq->sw_tx_prod) {
3111                 if (!cnt) {
3112                         if (allow_drain) {
3113                                 DP_NOTICE(edev,
3114                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
3115                                           txq->index);
3116                                 rc = edev->ops->common->drain(edev->cdev);
3117                                 if (rc)
3118                                         return rc;
3119                                 return qede_drain_txq(edev, txq, false);
3120                         }
3121                         DP_NOTICE(edev,
3122                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3123                                   txq->index, txq->sw_tx_prod,
3124                                   txq->sw_tx_cons);
3125                         return -ENODEV;
3126                 }
3127                 cnt--;
3128                 usleep_range(1000, 2000);
3129                 barrier();
3130         }
3131
3132         /* FW finished processing, wait for HW to transmit all tx packets */
3133         usleep_range(1000, 2000);
3134
3135         return 0;
3136 }
3137
3138 static int qede_stop_queues(struct qede_dev *edev)
3139 {
3140         struct qed_update_vport_params vport_update_params;
3141         struct qed_dev *cdev = edev->cdev;
3142         int rc, tc, i;
3143
3144         /* Disable the vport */
3145         memset(&vport_update_params, 0, sizeof(vport_update_params));
3146         vport_update_params.vport_id = 0;
3147         vport_update_params.update_vport_active_flg = 1;
3148         vport_update_params.vport_active_flg = 0;
3149         vport_update_params.update_rss_flg = 0;
3150
3151         rc = edev->ops->vport_update(cdev, &vport_update_params);
3152         if (rc) {
3153                 DP_ERR(edev, "Failed to update vport\n");
3154                 return rc;
3155         }
3156
3157         /* Flush Tx queues. If needed, request drain from MCP */
3158         for_each_rss(i) {
3159                 struct qede_fastpath *fp = &edev->fp_array[i];
3160
3161                 for (tc = 0; tc < edev->num_tc; tc++) {
3162                         struct qede_tx_queue *txq = &fp->txqs[tc];
3163
3164                         rc = qede_drain_txq(edev, txq, true);
3165                         if (rc)
3166                                 return rc;
3167                 }
3168         }
3169
3170         /* Stop all Queues in reverse order*/
3171         for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3172                 struct qed_stop_rxq_params rx_params;
3173
3174                 /* Stop the Tx Queue(s)*/
3175                 for (tc = 0; tc < edev->num_tc; tc++) {
3176                         struct qed_stop_txq_params tx_params;
3177
3178                         tx_params.rss_id = i;
3179                         tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3180                         rc = edev->ops->q_tx_stop(cdev, &tx_params);
3181                         if (rc) {
3182                                 DP_ERR(edev, "Failed to stop TXQ #%d\n",
3183                                        tx_params.tx_queue_id);
3184                                 return rc;
3185                         }
3186                 }
3187
3188                 /* Stop the Rx Queue*/
3189                 memset(&rx_params, 0, sizeof(rx_params));
3190                 rx_params.rss_id = i;
3191                 rx_params.rx_queue_id = i;
3192
3193                 rc = edev->ops->q_rx_stop(cdev, &rx_params);
3194                 if (rc) {
3195                         DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3196                         return rc;
3197                 }
3198         }
3199
3200         /* Stop the vport */
3201         rc = edev->ops->vport_stop(cdev, 0);
3202         if (rc)
3203                 DP_ERR(edev, "Failed to stop VPORT\n");
3204
3205         return rc;
3206 }
3207
3208 static int qede_start_queues(struct qede_dev *edev)
3209 {
3210         int rc, tc, i;
3211         int vlan_removal_en = 1;
3212         struct qed_dev *cdev = edev->cdev;
3213         struct qed_update_vport_params vport_update_params;
3214         struct qed_queue_start_common_params q_params;
3215         struct qed_dev_info *qed_info = &edev->dev_info.common;
3216         struct qed_start_vport_params start = {0};
3217         bool reset_rss_indir = false;
3218
3219         if (!edev->num_rss) {
3220                 DP_ERR(edev,
3221                        "Cannot update V-VPORT as active as there are no Rx queues\n");
3222                 return -EINVAL;
3223         }
3224
3225         start.gro_enable = !edev->gro_disable;
3226         start.mtu = edev->ndev->mtu;
3227         start.vport_id = 0;
3228         start.drop_ttl0 = true;
3229         start.remove_inner_vlan = vlan_removal_en;
3230
3231         rc = edev->ops->vport_start(cdev, &start);
3232
3233         if (rc) {
3234                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3235                 return rc;
3236         }
3237
3238         DP_VERBOSE(edev, NETIF_MSG_IFUP,
3239                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3240                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3241
3242         for_each_rss(i) {
3243                 struct qede_fastpath *fp = &edev->fp_array[i];
3244                 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3245
3246                 memset(&q_params, 0, sizeof(q_params));
3247                 q_params.rss_id = i;
3248                 q_params.queue_id = i;
3249                 q_params.vport_id = 0;
3250                 q_params.sb = fp->sb_info->igu_sb_id;
3251                 q_params.sb_idx = RX_PI;
3252
3253                 rc = edev->ops->q_rx_start(cdev, &q_params,
3254                                            fp->rxq->rx_buf_size,
3255                                            fp->rxq->rx_bd_ring.p_phys_addr,
3256                                            phys_table,
3257                                            fp->rxq->rx_comp_ring.page_cnt,
3258                                            &fp->rxq->hw_rxq_prod_addr);
3259                 if (rc) {
3260                         DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3261                         return rc;
3262                 }
3263
3264                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3265
3266                 qede_update_rx_prod(edev, fp->rxq);
3267
3268                 for (tc = 0; tc < edev->num_tc; tc++) {
3269                         struct qede_tx_queue *txq = &fp->txqs[tc];
3270                         int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3271
3272                         memset(&q_params, 0, sizeof(q_params));
3273                         q_params.rss_id = i;
3274                         q_params.queue_id = txq_index;
3275                         q_params.vport_id = 0;
3276                         q_params.sb = fp->sb_info->igu_sb_id;
3277                         q_params.sb_idx = TX_PI(tc);
3278
3279                         rc = edev->ops->q_tx_start(cdev, &q_params,
3280                                                    txq->tx_pbl.pbl.p_phys_table,
3281                                                    txq->tx_pbl.page_cnt,
3282                                                    &txq->doorbell_addr);
3283                         if (rc) {
3284                                 DP_ERR(edev, "Start TXQ #%d failed %d\n",
3285                                        txq_index, rc);
3286                                 return rc;
3287                         }
3288
3289                         txq->hw_cons_ptr =
3290                                 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3291                         SET_FIELD(txq->tx_db.data.params,
3292                                   ETH_DB_DATA_DEST, DB_DEST_XCM);
3293                         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3294                                   DB_AGG_CMD_SET);
3295                         SET_FIELD(txq->tx_db.data.params,
3296                                   ETH_DB_DATA_AGG_VAL_SEL,
3297                                   DQ_XCM_ETH_TX_BD_PROD_CMD);
3298
3299                         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3300                 }
3301         }
3302
3303         /* Prepare and send the vport enable */
3304         memset(&vport_update_params, 0, sizeof(vport_update_params));
3305         vport_update_params.vport_id = start.vport_id;
3306         vport_update_params.update_vport_active_flg = 1;
3307         vport_update_params.vport_active_flg = 1;
3308
3309         if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3310             qed_info->tx_switching) {
3311                 vport_update_params.update_tx_switching_flg = 1;
3312                 vport_update_params.tx_switching_flg = 1;
3313         }
3314
3315         /* Fill struct with RSS params */
3316         if (QEDE_RSS_CNT(edev) > 1) {
3317                 vport_update_params.update_rss_flg = 1;
3318
3319                 /* Need to validate current RSS config uses valid entries */
3320                 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3321                         if (edev->rss_params.rss_ind_table[i] >=
3322                             edev->num_rss) {
3323                                 reset_rss_indir = true;
3324                                 break;
3325                         }
3326                 }
3327
3328                 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3329                     reset_rss_indir) {
3330                         u16 val;
3331
3332                         for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3333                                 u16 indir_val;
3334
3335                                 val = QEDE_RSS_CNT(edev);
3336                                 indir_val = ethtool_rxfh_indir_default(i, val);
3337                                 edev->rss_params.rss_ind_table[i] = indir_val;
3338                         }
3339                         edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3340                 }
3341
3342                 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3343                         netdev_rss_key_fill(edev->rss_params.rss_key,
3344                                             sizeof(edev->rss_params.rss_key));
3345                         edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3346                 }
3347
3348                 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3349                         edev->rss_params.rss_caps = QED_RSS_IPV4 |
3350                                                     QED_RSS_IPV6 |
3351                                                     QED_RSS_IPV4_TCP |
3352                                                     QED_RSS_IPV6_TCP;
3353                         edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3354                 }
3355
3356                 memcpy(&vport_update_params.rss_params, &edev->rss_params,
3357                        sizeof(vport_update_params.rss_params));
3358         } else {
3359                 memset(&vport_update_params.rss_params, 0,
3360                        sizeof(vport_update_params.rss_params));
3361         }
3362
3363         rc = edev->ops->vport_update(cdev, &vport_update_params);
3364         if (rc) {
3365                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3366                 return rc;
3367         }
3368
3369         return 0;
3370 }
3371
3372 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3373                                  enum qed_filter_xcast_params_type opcode,
3374                                  unsigned char *mac, int num_macs)
3375 {
3376         struct qed_filter_params filter_cmd;
3377         int i;
3378
3379         memset(&filter_cmd, 0, sizeof(filter_cmd));
3380         filter_cmd.type = QED_FILTER_TYPE_MCAST;
3381         filter_cmd.filter.mcast.type = opcode;
3382         filter_cmd.filter.mcast.num = num_macs;
3383
3384         for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3385                 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3386
3387         return edev->ops->filter_config(edev->cdev, &filter_cmd);
3388 }
3389
3390 enum qede_unload_mode {
3391         QEDE_UNLOAD_NORMAL,
3392 };
3393
3394 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3395 {
3396         struct qed_link_params link_params;
3397         int rc;
3398
3399         DP_INFO(edev, "Starting qede unload\n");
3400
3401         mutex_lock(&edev->qede_lock);
3402         edev->state = QEDE_STATE_CLOSED;
3403
3404         /* Close OS Tx */
3405         netif_tx_disable(edev->ndev);
3406         netif_carrier_off(edev->ndev);
3407
3408         /* Reset the link */
3409         memset(&link_params, 0, sizeof(link_params));
3410         link_params.link_up = false;
3411         edev->ops->common->set_link(edev->cdev, &link_params);
3412         rc = qede_stop_queues(edev);
3413         if (rc) {
3414                 qede_sync_free_irqs(edev);
3415                 goto out;
3416         }
3417
3418         DP_INFO(edev, "Stopped Queues\n");
3419
3420         qede_vlan_mark_nonconfigured(edev);
3421         edev->ops->fastpath_stop(edev->cdev);
3422
3423         /* Release the interrupts */
3424         qede_sync_free_irqs(edev);
3425         edev->ops->common->set_fp_int(edev->cdev, 0);
3426
3427         qede_napi_disable_remove(edev);
3428
3429         qede_free_mem_load(edev);
3430         qede_free_fp_array(edev);
3431
3432 out:
3433         mutex_unlock(&edev->qede_lock);
3434         DP_INFO(edev, "Ending qede unload\n");
3435 }
3436
3437 enum qede_load_mode {
3438         QEDE_LOAD_NORMAL,
3439 };
3440
3441 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3442 {
3443         struct qed_link_params link_params;
3444         struct qed_link_output link_output;
3445         int rc;
3446
3447         DP_INFO(edev, "Starting qede load\n");
3448
3449         rc = qede_set_num_queues(edev);
3450         if (rc)
3451                 goto err0;
3452
3453         rc = qede_alloc_fp_array(edev);
3454         if (rc)
3455                 goto err0;
3456
3457         qede_init_fp(edev);
3458
3459         rc = qede_alloc_mem_load(edev);
3460         if (rc)
3461                 goto err1;
3462         DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3463                 QEDE_RSS_CNT(edev), edev->num_tc);
3464
3465         rc = qede_set_real_num_queues(edev);
3466         if (rc)
3467                 goto err2;
3468
3469         qede_napi_add_enable(edev);
3470         DP_INFO(edev, "Napi added and enabled\n");
3471
3472         rc = qede_setup_irqs(edev);
3473         if (rc)
3474                 goto err3;
3475         DP_INFO(edev, "Setup IRQs succeeded\n");
3476
3477         rc = qede_start_queues(edev);
3478         if (rc)
3479                 goto err4;
3480         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3481
3482         /* Add primary mac and set Rx filters */
3483         ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3484
3485         mutex_lock(&edev->qede_lock);
3486         edev->state = QEDE_STATE_OPEN;
3487         mutex_unlock(&edev->qede_lock);
3488
3489         /* Program un-configured VLANs */
3490         qede_configure_vlan_filters(edev);
3491
3492         /* Ask for link-up using current configuration */
3493         memset(&link_params, 0, sizeof(link_params));
3494         link_params.link_up = true;
3495         edev->ops->common->set_link(edev->cdev, &link_params);
3496
3497         /* Query whether link is already-up */
3498         memset(&link_output, 0, sizeof(link_output));
3499         edev->ops->common->get_link(edev->cdev, &link_output);
3500         qede_link_update(edev, &link_output);
3501
3502         DP_INFO(edev, "Ending successfully qede load\n");
3503
3504         return 0;
3505
3506 err4:
3507         qede_sync_free_irqs(edev);
3508         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3509 err3:
3510         qede_napi_disable_remove(edev);
3511 err2:
3512         qede_free_mem_load(edev);
3513 err1:
3514         edev->ops->common->set_fp_int(edev->cdev, 0);
3515         qede_free_fp_array(edev);
3516         edev->num_rss = 0;
3517 err0:
3518         return rc;
3519 }
3520
3521 void qede_reload(struct qede_dev *edev,
3522                  void (*func)(struct qede_dev *, union qede_reload_args *),
3523                  union qede_reload_args *args)
3524 {
3525         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3526         /* Call function handler to update parameters
3527          * needed for function load.
3528          */
3529         if (func)
3530                 func(edev, args);
3531
3532         qede_load(edev, QEDE_LOAD_NORMAL);
3533
3534         mutex_lock(&edev->qede_lock);
3535         qede_config_rx_mode(edev->ndev);
3536         mutex_unlock(&edev->qede_lock);
3537 }
3538
3539 /* called with rtnl_lock */
3540 static int qede_open(struct net_device *ndev)
3541 {
3542         struct qede_dev *edev = netdev_priv(ndev);
3543         int rc;
3544
3545         netif_carrier_off(ndev);
3546
3547         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3548
3549         rc = qede_load(edev, QEDE_LOAD_NORMAL);
3550
3551         if (rc)
3552                 return rc;
3553
3554 #ifdef CONFIG_QEDE_VXLAN
3555         vxlan_get_rx_port(ndev);
3556 #endif
3557 #ifdef CONFIG_QEDE_GENEVE
3558         geneve_get_rx_port(ndev);
3559 #endif
3560         return 0;
3561 }
3562
3563 static int qede_close(struct net_device *ndev)
3564 {
3565         struct qede_dev *edev = netdev_priv(ndev);
3566
3567         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3568
3569         return 0;
3570 }
3571
3572 static void qede_link_update(void *dev, struct qed_link_output *link)
3573 {
3574         struct qede_dev *edev = dev;
3575
3576         if (!netif_running(edev->ndev)) {
3577                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3578                 return;
3579         }
3580
3581         if (link->link_up) {
3582                 if (!netif_carrier_ok(edev->ndev)) {
3583                         DP_NOTICE(edev, "Link is up\n");
3584                         netif_tx_start_all_queues(edev->ndev);
3585                         netif_carrier_on(edev->ndev);
3586                 }
3587         } else {
3588                 if (netif_carrier_ok(edev->ndev)) {
3589                         DP_NOTICE(edev, "Link is down\n");
3590                         netif_tx_disable(edev->ndev);
3591                         netif_carrier_off(edev->ndev);
3592                 }
3593         }
3594 }
3595
3596 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3597 {
3598         struct qede_dev *edev = netdev_priv(ndev);
3599         struct sockaddr *addr = p;
3600         int rc;
3601
3602         ASSERT_RTNL(); /* @@@TBD To be removed */
3603
3604         DP_INFO(edev, "Set_mac_addr called\n");
3605
3606         if (!is_valid_ether_addr(addr->sa_data)) {
3607                 DP_NOTICE(edev, "The MAC address is not valid\n");
3608                 return -EFAULT;
3609         }
3610
3611         if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3612                 DP_NOTICE(edev, "qed prevents setting MAC\n");
3613                 return -EINVAL;
3614         }
3615
3616         ether_addr_copy(ndev->dev_addr, addr->sa_data);
3617
3618         if (!netif_running(ndev))  {
3619                 DP_NOTICE(edev, "The device is currently down\n");
3620                 return 0;
3621         }
3622
3623         /* Remove the previous primary mac */
3624         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3625                                    edev->primary_mac);
3626         if (rc)
3627                 return rc;
3628
3629         /* Add MAC filter according to the new unicast HW MAC address */
3630         ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3631         return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3632                                       edev->primary_mac);
3633 }
3634
3635 static int
3636 qede_configure_mcast_filtering(struct net_device *ndev,
3637                                enum qed_filter_rx_mode_type *accept_flags)
3638 {
3639         struct qede_dev *edev = netdev_priv(ndev);
3640         unsigned char *mc_macs, *temp;
3641         struct netdev_hw_addr *ha;
3642         int rc = 0, mc_count;
3643         size_t size;
3644
3645         size = 64 * ETH_ALEN;
3646
3647         mc_macs = kzalloc(size, GFP_KERNEL);
3648         if (!mc_macs) {
3649                 DP_NOTICE(edev,
3650                           "Failed to allocate memory for multicast MACs\n");
3651                 rc = -ENOMEM;
3652                 goto exit;
3653         }
3654
3655         temp = mc_macs;
3656
3657         /* Remove all previously configured MAC filters */
3658         rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3659                                    mc_macs, 1);
3660         if (rc)
3661                 goto exit;
3662
3663         netif_addr_lock_bh(ndev);
3664
3665         mc_count = netdev_mc_count(ndev);
3666         if (mc_count < 64) {
3667                 netdev_for_each_mc_addr(ha, ndev) {
3668                         ether_addr_copy(temp, ha->addr);
3669                         temp += ETH_ALEN;
3670                 }
3671         }
3672
3673         netif_addr_unlock_bh(ndev);
3674
3675         /* Check for all multicast @@@TBD resource allocation */
3676         if ((ndev->flags & IFF_ALLMULTI) ||
3677             (mc_count > 64)) {
3678                 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3679                         *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3680         } else {
3681                 /* Add all multicast MAC filters */
3682                 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3683                                            mc_macs, mc_count);
3684         }
3685
3686 exit:
3687         kfree(mc_macs);
3688         return rc;
3689 }
3690
3691 static void qede_set_rx_mode(struct net_device *ndev)
3692 {
3693         struct qede_dev *edev = netdev_priv(ndev);
3694
3695         DP_INFO(edev, "qede_set_rx_mode called\n");
3696
3697         if (edev->state != QEDE_STATE_OPEN) {
3698                 DP_INFO(edev,
3699                         "qede_set_rx_mode called while interface is down\n");
3700         } else {
3701                 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3702                 schedule_delayed_work(&edev->sp_task, 0);
3703         }
3704 }
3705
3706 /* Must be called with qede_lock held */
3707 static void qede_config_rx_mode(struct net_device *ndev)
3708 {
3709         enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3710         struct qede_dev *edev = netdev_priv(ndev);
3711         struct qed_filter_params rx_mode;
3712         unsigned char *uc_macs, *temp;
3713         struct netdev_hw_addr *ha;
3714         int rc, uc_count;
3715         size_t size;
3716
3717         netif_addr_lock_bh(ndev);
3718
3719         uc_count = netdev_uc_count(ndev);
3720         size = uc_count * ETH_ALEN;
3721
3722         uc_macs = kzalloc(size, GFP_ATOMIC);
3723         if (!uc_macs) {
3724                 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3725                 netif_addr_unlock_bh(ndev);
3726                 return;
3727         }
3728
3729         temp = uc_macs;
3730         netdev_for_each_uc_addr(ha, ndev) {
3731                 ether_addr_copy(temp, ha->addr);
3732                 temp += ETH_ALEN;
3733         }
3734
3735         netif_addr_unlock_bh(ndev);
3736
3737         /* Configure the struct for the Rx mode */
3738         memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3739         rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3740
3741         /* Remove all previous unicast secondary macs and multicast macs
3742          * (configrue / leave the primary mac)
3743          */
3744         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3745                                    edev->primary_mac);
3746         if (rc)
3747                 goto out;
3748
3749         /* Check for promiscuous */
3750         if ((ndev->flags & IFF_PROMISC) ||
3751             (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3752                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3753         } else {
3754                 /* Add MAC filters according to the unicast secondary macs */
3755                 int i;
3756
3757                 temp = uc_macs;
3758                 for (i = 0; i < uc_count; i++) {
3759                         rc = qede_set_ucast_rx_mac(edev,
3760                                                    QED_FILTER_XCAST_TYPE_ADD,
3761                                                    temp);
3762                         if (rc)
3763                                 goto out;
3764
3765                         temp += ETH_ALEN;
3766                 }
3767
3768                 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3769                 if (rc)
3770                         goto out;
3771         }
3772
3773         /* take care of VLAN mode */
3774         if (ndev->flags & IFF_PROMISC) {
3775                 qede_config_accept_any_vlan(edev, true);
3776         } else if (!edev->non_configured_vlans) {
3777                 /* It's possible that accept_any_vlan mode is set due to a
3778                  * previous setting of IFF_PROMISC. If vlan credits are
3779                  * sufficient, disable accept_any_vlan.
3780                  */
3781                 qede_config_accept_any_vlan(edev, false);
3782         }
3783
3784         rx_mode.filter.accept_flags = accept_flags;
3785         edev->ops->filter_config(edev->cdev, &rx_mode);
3786 out:
3787         kfree(uc_macs);
3788 }