]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / net / wireless / intel / iwlwifi / iwl-nvm-parse.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *****************************************************************************/
66 #include <linux/types.h>
67 #include <linux/slab.h>
68 #include <linux/export.h>
69 #include <linux/etherdevice.h>
70 #include <linux/pci.h>
71 #include <linux/acpi.h>
72 #include "iwl-drv.h"
73 #include "iwl-modparams.h"
74 #include "iwl-nvm-parse.h"
75 #include "iwl-prph.h"
76 #include "iwl-io.h"
77 #include "iwl-csr.h"
78
79 /* NVM offsets (in words) definitions */
80 enum wkp_nvm_offsets {
81         /* NVM HW-Section offset (in words) definitions */
82         HW_ADDR = 0x15,
83
84         /* NVM SW-Section offset (in words) definitions */
85         NVM_SW_SECTION = 0x1C0,
86         NVM_VERSION = 0,
87         RADIO_CFG = 1,
88         SKU = 2,
89         N_HW_ADDRS = 3,
90         NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
91
92         /* NVM calibration section offset (in words) definitions */
93         NVM_CALIB_SECTION = 0x2B8,
94         XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
95 };
96
97 enum ext_nvm_offsets {
98         /* NVM HW-Section offset (in words) definitions */
99         MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
100
101         /* NVM SW-Section offset (in words) definitions */
102         NVM_VERSION_EXT_NVM = 0,
103         RADIO_CFG_FAMILY_EXT_NVM = 0,
104         SKU_FAMILY_8000 = 2,
105         N_HW_ADDRS_FAMILY_8000 = 3,
106
107         /* NVM REGULATORY -Section offset (in words) definitions */
108         NVM_CHANNELS_EXTENDED = 0,
109         NVM_LAR_OFFSET_OLD = 0x4C7,
110         NVM_LAR_OFFSET = 0x507,
111         NVM_LAR_ENABLED = 0x7,
112 };
113
114 /* SKU Capabilities (actual values from NVM definition) */
115 enum nvm_sku_bits {
116         NVM_SKU_CAP_BAND_24GHZ          = BIT(0),
117         NVM_SKU_CAP_BAND_52GHZ          = BIT(1),
118         NVM_SKU_CAP_11N_ENABLE          = BIT(2),
119         NVM_SKU_CAP_11AC_ENABLE         = BIT(3),
120         NVM_SKU_CAP_MIMO_DISABLE        = BIT(5),
121 };
122
123 /*
124  * These are the channel numbers in the order that they are stored in the NVM
125  */
126 static const u8 iwl_nvm_channels[] = {
127         /* 2.4 GHz */
128         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
129         /* 5 GHz */
130         36, 40, 44 , 48, 52, 56, 60, 64,
131         100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
132         149, 153, 157, 161, 165
133 };
134
135 static const u8 iwl_ext_nvm_channels[] = {
136         /* 2.4 GHz */
137         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
138         /* 5 GHz */
139         36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
140         96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
141         149, 153, 157, 161, 165, 169, 173, 177, 181
142 };
143
144 #define IWL_NUM_CHANNELS                ARRAY_SIZE(iwl_nvm_channels)
145 #define IWL_NUM_CHANNELS_EXT    ARRAY_SIZE(iwl_ext_nvm_channels)
146 #define NUM_2GHZ_CHANNELS               14
147 #define NUM_2GHZ_CHANNELS_EXT   14
148 #define FIRST_2GHZ_HT_MINUS             5
149 #define LAST_2GHZ_HT_PLUS               9
150 #define LAST_5GHZ_HT                    165
151 #define LAST_5GHZ_HT_FAMILY_8000        181
152 #define N_HW_ADDR_MASK                  0xF
153
154 /* rate data (static) */
155 static struct ieee80211_rate iwl_cfg80211_rates[] = {
156         { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
157         { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
158           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
159         { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
160           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
161         { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
162           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
163         { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
164         { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
165         { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
166         { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
167         { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
168         { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
169         { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
170         { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
171 };
172 #define RATES_24_OFFS   0
173 #define N_RATES_24      ARRAY_SIZE(iwl_cfg80211_rates)
174 #define RATES_52_OFFS   4
175 #define N_RATES_52      (N_RATES_24 - RATES_52_OFFS)
176
177 /**
178  * enum iwl_nvm_channel_flags - channel flags in NVM
179  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
180  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
181  * @NVM_CHANNEL_ACTIVE: active scanning allowed
182  * @NVM_CHANNEL_RADAR: radar detection required
183  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
184  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
185  *      on same channel on 2.4 or same UNII band on 5.2
186  * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
187  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
188  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
189  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
190  */
191 enum iwl_nvm_channel_flags {
192         NVM_CHANNEL_VALID = BIT(0),
193         NVM_CHANNEL_IBSS = BIT(1),
194         NVM_CHANNEL_ACTIVE = BIT(3),
195         NVM_CHANNEL_RADAR = BIT(4),
196         NVM_CHANNEL_INDOOR_ONLY = BIT(5),
197         NVM_CHANNEL_GO_CONCURRENT = BIT(6),
198         NVM_CHANNEL_WIDE = BIT(8),
199         NVM_CHANNEL_40MHZ = BIT(9),
200         NVM_CHANNEL_80MHZ = BIT(10),
201         NVM_CHANNEL_160MHZ = BIT(11),
202 };
203
204 #define CHECK_AND_PRINT_I(x)    \
205         ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
206
207 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
208                                  u16 nvm_flags, const struct iwl_cfg *cfg)
209 {
210         u32 flags = IEEE80211_CHAN_NO_HT40;
211         u32 last_5ghz_ht = LAST_5GHZ_HT;
212
213         if (cfg->ext_nvm)
214                 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
215
216         if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
217                 if (ch_num <= LAST_2GHZ_HT_PLUS)
218                         flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
219                 if (ch_num >= FIRST_2GHZ_HT_MINUS)
220                         flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
221         } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
222                 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
223                         flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
224                 else
225                         flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
226         }
227         if (!(nvm_flags & NVM_CHANNEL_80MHZ))
228                 flags |= IEEE80211_CHAN_NO_80MHZ;
229         if (!(nvm_flags & NVM_CHANNEL_160MHZ))
230                 flags |= IEEE80211_CHAN_NO_160MHZ;
231
232         if (!(nvm_flags & NVM_CHANNEL_IBSS))
233                 flags |= IEEE80211_CHAN_NO_IR;
234
235         if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
236                 flags |= IEEE80211_CHAN_NO_IR;
237
238         if (nvm_flags & NVM_CHANNEL_RADAR)
239                 flags |= IEEE80211_CHAN_RADAR;
240
241         if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
242                 flags |= IEEE80211_CHAN_INDOOR_ONLY;
243
244         /* Set the GO concurrent flag only in case that NO_IR is set.
245          * Otherwise it is meaningless
246          */
247         if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
248             (flags & IEEE80211_CHAN_NO_IR))
249                 flags |= IEEE80211_CHAN_IR_CONCURRENT;
250
251         return flags;
252 }
253
254 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
255                                 struct iwl_nvm_data *data,
256                                 const __le16 * const nvm_ch_flags,
257                                 bool lar_supported)
258 {
259         int ch_idx;
260         int n_channels = 0;
261         struct ieee80211_channel *channel;
262         u16 ch_flags;
263         bool is_5ghz;
264         int num_of_ch, num_2ghz_channels;
265         const u8 *nvm_chan;
266
267         if (!cfg->ext_nvm) {
268                 num_of_ch = IWL_NUM_CHANNELS;
269                 nvm_chan = &iwl_nvm_channels[0];
270                 num_2ghz_channels = NUM_2GHZ_CHANNELS;
271         } else {
272                 num_of_ch = IWL_NUM_CHANNELS_EXT;
273                 nvm_chan = &iwl_ext_nvm_channels[0];
274                 num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
275         }
276
277         for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
278                 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
279
280                 if (ch_idx >= num_2ghz_channels &&
281                     !data->sku_cap_band_52GHz_enable)
282                         continue;
283
284                 if (ch_flags & NVM_CHANNEL_160MHZ)
285                         data->vht160_supported = true;
286
287                 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
288                         /*
289                          * Channels might become valid later if lar is
290                          * supported, hence we still want to add them to
291                          * the list of supported channels to cfg80211.
292                          */
293                         IWL_DEBUG_EEPROM(dev,
294                                          "Ch. %d Flags %x [%sGHz] - No traffic\n",
295                                          nvm_chan[ch_idx],
296                                          ch_flags,
297                                          (ch_idx >= num_2ghz_channels) ?
298                                          "5.2" : "2.4");
299                         continue;
300                 }
301
302                 channel = &data->channels[n_channels];
303                 n_channels++;
304
305                 channel->hw_value = nvm_chan[ch_idx];
306                 channel->band = (ch_idx < num_2ghz_channels) ?
307                                 NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
308                 channel->center_freq =
309                         ieee80211_channel_to_frequency(
310                                 channel->hw_value, channel->band);
311
312                 /* Initialize regulatory-based run-time data */
313
314                 /*
315                  * Default value - highest tx power value.  max_power
316                  * is not used in mvm, and is used for backwards compatibility
317                  */
318                 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
319                 is_5ghz = channel->band == NL80211_BAND_5GHZ;
320
321                 /* don't put limitations in case we're using LAR */
322                 if (!lar_supported)
323                         channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
324                                                                ch_idx, is_5ghz,
325                                                                ch_flags, cfg);
326                 else
327                         channel->flags = 0;
328
329                 IWL_DEBUG_EEPROM(dev,
330                                  "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n",
331                                  channel->hw_value,
332                                  is_5ghz ? "5.2" : "2.4",
333                                  ch_flags,
334                                  CHECK_AND_PRINT_I(VALID),
335                                  CHECK_AND_PRINT_I(IBSS),
336                                  CHECK_AND_PRINT_I(ACTIVE),
337                                  CHECK_AND_PRINT_I(RADAR),
338                                  CHECK_AND_PRINT_I(INDOOR_ONLY),
339                                  CHECK_AND_PRINT_I(GO_CONCURRENT),
340                                  CHECK_AND_PRINT_I(WIDE),
341                                  CHECK_AND_PRINT_I(40MHZ),
342                                  CHECK_AND_PRINT_I(80MHZ),
343                                  CHECK_AND_PRINT_I(160MHZ),
344                                  channel->max_power,
345                                  ((ch_flags & NVM_CHANNEL_IBSS) &&
346                                   !(ch_flags & NVM_CHANNEL_RADAR))
347                                         ? "" : "not ");
348         }
349
350         return n_channels;
351 }
352
353 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
354                                   struct iwl_nvm_data *data,
355                                   struct ieee80211_sta_vht_cap *vht_cap,
356                                   u8 tx_chains, u8 rx_chains)
357 {
358         int num_rx_ants = num_of_ant(rx_chains);
359         int num_tx_ants = num_of_ant(tx_chains);
360         unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
361                                            IEEE80211_VHT_MAX_AMPDU_1024K);
362
363         vht_cap->vht_supported = true;
364
365         vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
366                        IEEE80211_VHT_CAP_RXSTBC_1 |
367                        IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
368                        3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
369                        max_ampdu_exponent <<
370                        IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
371
372         if (data->vht160_supported)
373                 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
374                                 IEEE80211_VHT_CAP_SHORT_GI_160;
375
376         if (cfg->vht_mu_mimo_supported)
377                 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
378
379         if (cfg->ht_params->ldpc)
380                 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
381
382         if (data->sku_cap_mimo_disabled) {
383                 num_rx_ants = 1;
384                 num_tx_ants = 1;
385         }
386
387         if (num_tx_ants > 1)
388                 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
389         else
390                 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
391
392         switch (iwlwifi_mod_params.amsdu_size) {
393         case IWL_AMSDU_DEF:
394                 if (cfg->mq_rx_supported)
395                         vht_cap->cap |=
396                                 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
397                 else
398                         vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
399                 break;
400         case IWL_AMSDU_4K:
401                 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
402                 break;
403         case IWL_AMSDU_8K:
404                 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
405                 break;
406         case IWL_AMSDU_12K:
407                 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
408                 break;
409         default:
410                 break;
411         }
412
413         vht_cap->vht_mcs.rx_mcs_map =
414                 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
415                             IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
416                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
417                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
418                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
419                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
420                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
421                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
422
423         if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
424                 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
425                 /* this works because NOT_SUPPORTED == 3 */
426                 vht_cap->vht_mcs.rx_mcs_map |=
427                         cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
428         }
429
430         vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
431 }
432
433 void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
434                      struct iwl_nvm_data *data, const __le16 *nvm_ch_flags,
435                      u8 tx_chains, u8 rx_chains, bool lar_supported)
436 {
437         int n_channels;
438         int n_used = 0;
439         struct ieee80211_supported_band *sband;
440
441         n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
442                                           lar_supported);
443         sband = &data->bands[NL80211_BAND_2GHZ];
444         sband->band = NL80211_BAND_2GHZ;
445         sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
446         sband->n_bitrates = N_RATES_24;
447         n_used += iwl_init_sband_channels(data, sband, n_channels,
448                                           NL80211_BAND_2GHZ);
449         iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
450                              tx_chains, rx_chains);
451
452         sband = &data->bands[NL80211_BAND_5GHZ];
453         sband->band = NL80211_BAND_5GHZ;
454         sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
455         sband->n_bitrates = N_RATES_52;
456         n_used += iwl_init_sband_channels(data, sband, n_channels,
457                                           NL80211_BAND_5GHZ);
458         iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
459                              tx_chains, rx_chains);
460         if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
461                 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
462                                       tx_chains, rx_chains);
463
464         if (n_channels != n_used)
465                 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
466                             n_used, n_channels);
467 }
468 IWL_EXPORT_SYMBOL(iwl_init_sbands);
469
470 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
471                        const __le16 *phy_sku)
472 {
473         if (!cfg->ext_nvm)
474                 return le16_to_cpup(nvm_sw + SKU);
475
476         return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
477 }
478
479 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
480 {
481         if (!cfg->ext_nvm)
482                 return le16_to_cpup(nvm_sw + NVM_VERSION);
483         else
484                 return le32_to_cpup((__le32 *)(nvm_sw +
485                                                NVM_VERSION_EXT_NVM));
486 }
487
488 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
489                              const __le16 *phy_sku)
490 {
491         if (!cfg->ext_nvm)
492                 return le16_to_cpup(nvm_sw + RADIO_CFG);
493
494         return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
495
496 }
497
498 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
499 {
500         int n_hw_addr;
501
502         if (!cfg->ext_nvm)
503                 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
504
505         n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
506
507         return n_hw_addr & N_HW_ADDR_MASK;
508 }
509
510 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
511                               struct iwl_nvm_data *data,
512                               u32 radio_cfg)
513 {
514         if (!cfg->ext_nvm) {
515                 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
516                 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
517                 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
518                 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
519                 return;
520         }
521
522         /* set the radio configuration for family 8000 */
523         data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
524         data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
525         data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
526         data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
527         data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
528         data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
529 }
530
531 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
532 {
533         const u8 *hw_addr;
534
535         hw_addr = (const u8 *)&mac_addr0;
536         dest[0] = hw_addr[3];
537         dest[1] = hw_addr[2];
538         dest[2] = hw_addr[1];
539         dest[3] = hw_addr[0];
540
541         hw_addr = (const u8 *)&mac_addr1;
542         dest[4] = hw_addr[1];
543         dest[5] = hw_addr[0];
544 }
545
546 void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
547                                  struct iwl_nvm_data *data)
548 {
549         __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
550         __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
551
552         iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
553         /*
554          * If the OEM fused a valid address, use it instead of the one in the
555          * OTP
556          */
557         if (is_valid_ether_addr(data->hw_addr))
558                 return;
559
560         mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
561         mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
562
563         iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
564 }
565 IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr);
566
567 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
568                                            const struct iwl_cfg *cfg,
569                                            struct iwl_nvm_data *data,
570                                            const __le16 *mac_override,
571                                            const __le16 *nvm_hw)
572 {
573         const u8 *hw_addr;
574
575         if (mac_override) {
576                 static const u8 reserved_mac[] = {
577                         0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
578                 };
579
580                 hw_addr = (const u8 *)(mac_override +
581                                  MAC_ADDRESS_OVERRIDE_EXT_NVM);
582
583                 /*
584                  * Store the MAC address from MAO section.
585                  * No byte swapping is required in MAO section
586                  */
587                 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
588
589                 /*
590                  * Force the use of the OTP MAC address in case of reserved MAC
591                  * address in the NVM, or if address is given but invalid.
592                  */
593                 if (is_valid_ether_addr(data->hw_addr) &&
594                     memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
595                         return;
596
597                 IWL_ERR(trans,
598                         "mac address from nvm override section is not valid\n");
599         }
600
601         if (nvm_hw) {
602                 /* read the mac address from WFMP registers */
603                 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
604                                                 WFMP_MAC_ADDR_0));
605                 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
606                                                 WFMP_MAC_ADDR_1));
607
608                 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
609
610                 return;
611         }
612
613         IWL_ERR(trans, "mac address is not found\n");
614 }
615
616 static int iwl_set_hw_address(struct iwl_trans *trans,
617                               const struct iwl_cfg *cfg,
618                               struct iwl_nvm_data *data, const __le16 *nvm_hw,
619                               const __le16 *mac_override)
620 {
621         if (cfg->mac_addr_from_csr) {
622                 iwl_set_hw_address_from_csr(trans, data);
623         } else if (!cfg->ext_nvm) {
624                 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
625
626                 /* The byte order is little endian 16 bit, meaning 214365 */
627                 data->hw_addr[0] = hw_addr[1];
628                 data->hw_addr[1] = hw_addr[0];
629                 data->hw_addr[2] = hw_addr[3];
630                 data->hw_addr[3] = hw_addr[2];
631                 data->hw_addr[4] = hw_addr[5];
632                 data->hw_addr[5] = hw_addr[4];
633         } else {
634                 iwl_set_hw_address_family_8000(trans, cfg, data,
635                                                mac_override, nvm_hw);
636         }
637
638         if (!is_valid_ether_addr(data->hw_addr)) {
639                 IWL_ERR(trans, "no valid mac address was found\n");
640                 return -EINVAL;
641         }
642
643         IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
644
645         return 0;
646 }
647
648 struct iwl_nvm_data *
649 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
650                    const __le16 *nvm_hw, const __le16 *nvm_sw,
651                    const __le16 *nvm_calib, const __le16 *regulatory,
652                    const __le16 *mac_override, const __le16 *phy_sku,
653                    u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
654 {
655         struct device *dev = trans->dev;
656         struct iwl_nvm_data *data;
657         bool lar_enabled;
658         u32 sku, radio_cfg;
659         u16 lar_config;
660         const __le16 *ch_section;
661
662         if (!cfg->ext_nvm)
663                 data = kzalloc(sizeof(*data) +
664                                sizeof(struct ieee80211_channel) *
665                                IWL_NUM_CHANNELS,
666                                GFP_KERNEL);
667         else
668                 data = kzalloc(sizeof(*data) +
669                                sizeof(struct ieee80211_channel) *
670                                IWL_NUM_CHANNELS_EXT,
671                                GFP_KERNEL);
672         if (!data)
673                 return NULL;
674
675         data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
676
677         radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
678         iwl_set_radio_cfg(cfg, data, radio_cfg);
679         if (data->valid_tx_ant)
680                 tx_chains &= data->valid_tx_ant;
681         if (data->valid_rx_ant)
682                 rx_chains &= data->valid_rx_ant;
683
684         sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
685         data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
686         data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
687         data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
688         if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
689                 data->sku_cap_11n_enable = false;
690         data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
691                                     (sku & NVM_SKU_CAP_11AC_ENABLE);
692         data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
693
694         data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
695
696         if (!cfg->ext_nvm) {
697                 /* Checking for required sections */
698                 if (!nvm_calib) {
699                         IWL_ERR(trans,
700                                 "Can't parse empty Calib NVM sections\n");
701                         kfree(data);
702                         return NULL;
703                 }
704                 /* in family 8000 Xtal calibration values moved to OTP */
705                 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
706                 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
707                 lar_enabled = true;
708                 ch_section = &nvm_sw[NVM_CHANNELS];
709         } else {
710                 u16 lar_offset = data->nvm_version < 0xE39 ?
711                                  NVM_LAR_OFFSET_OLD :
712                                  NVM_LAR_OFFSET;
713
714                 lar_config = le16_to_cpup(regulatory + lar_offset);
715                 data->lar_enabled = !!(lar_config &
716                                        NVM_LAR_ENABLED);
717                 lar_enabled = data->lar_enabled;
718                 ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
719         }
720
721         /* If no valid mac address was found - bail out */
722         if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
723                 kfree(data);
724                 return NULL;
725         }
726
727         iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
728                         lar_fw_supported && lar_enabled);
729         data->calib_version = 255;
730
731         return data;
732 }
733 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
734
735 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
736                                        int ch_idx, u16 nvm_flags,
737                                        const struct iwl_cfg *cfg)
738 {
739         u32 flags = NL80211_RRF_NO_HT40;
740         u32 last_5ghz_ht = LAST_5GHZ_HT;
741
742         if (cfg->ext_nvm)
743                 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
744
745         if (ch_idx < NUM_2GHZ_CHANNELS &&
746             (nvm_flags & NVM_CHANNEL_40MHZ)) {
747                 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
748                         flags &= ~NL80211_RRF_NO_HT40PLUS;
749                 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
750                         flags &= ~NL80211_RRF_NO_HT40MINUS;
751         } else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
752                    (nvm_flags & NVM_CHANNEL_40MHZ)) {
753                 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
754                         flags &= ~NL80211_RRF_NO_HT40PLUS;
755                 else
756                         flags &= ~NL80211_RRF_NO_HT40MINUS;
757         }
758
759         if (!(nvm_flags & NVM_CHANNEL_80MHZ))
760                 flags |= NL80211_RRF_NO_80MHZ;
761         if (!(nvm_flags & NVM_CHANNEL_160MHZ))
762                 flags |= NL80211_RRF_NO_160MHZ;
763
764         if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
765                 flags |= NL80211_RRF_NO_IR;
766
767         if (nvm_flags & NVM_CHANNEL_RADAR)
768                 flags |= NL80211_RRF_DFS;
769
770         if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
771                 flags |= NL80211_RRF_NO_OUTDOOR;
772
773         /* Set the GO concurrent flag only in case that NO_IR is set.
774          * Otherwise it is meaningless
775          */
776         if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
777             (flags & NL80211_RRF_NO_IR))
778                 flags |= NL80211_RRF_GO_CONCURRENT;
779
780         return flags;
781 }
782
783 struct ieee80211_regdomain *
784 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
785                        int num_of_ch, __le32 *channels, u16 fw_mcc)
786 {
787         int ch_idx;
788         u16 ch_flags, prev_ch_flags = 0;
789         const u8 *nvm_chan = cfg->ext_nvm ?
790                              iwl_ext_nvm_channels : iwl_nvm_channels;
791         struct ieee80211_regdomain *regd;
792         int size_of_regd;
793         struct ieee80211_reg_rule *rule;
794         enum nl80211_band band;
795         int center_freq, prev_center_freq = 0;
796         int valid_rules = 0;
797         bool new_rule;
798         int max_num_ch = cfg->ext_nvm ?
799                          IWL_NUM_CHANNELS_EXT : IWL_NUM_CHANNELS;
800
801         if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
802                 return ERR_PTR(-EINVAL);
803
804         if (WARN_ON(num_of_ch > max_num_ch))
805                 num_of_ch = max_num_ch;
806
807         IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
808                       num_of_ch);
809
810         /* build a regdomain rule for every valid channel */
811         size_of_regd =
812                 sizeof(struct ieee80211_regdomain) +
813                 num_of_ch * sizeof(struct ieee80211_reg_rule);
814
815         regd = kzalloc(size_of_regd, GFP_KERNEL);
816         if (!regd)
817                 return ERR_PTR(-ENOMEM);
818
819         for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
820                 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
821                 band = (ch_idx < NUM_2GHZ_CHANNELS) ?
822                        NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
823                 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
824                                                              band);
825                 new_rule = false;
826
827                 if (!(ch_flags & NVM_CHANNEL_VALID)) {
828                         IWL_DEBUG_DEV(dev, IWL_DL_LAR,
829                                       "Ch. %d Flags %x [%sGHz] - No traffic\n",
830                                       nvm_chan[ch_idx],
831                                       ch_flags,
832                                       (ch_idx >= NUM_2GHZ_CHANNELS) ?
833                                       "5.2" : "2.4");
834                         continue;
835                 }
836
837                 /* we can't continue the same rule */
838                 if (ch_idx == 0 || prev_ch_flags != ch_flags ||
839                     center_freq - prev_center_freq > 20) {
840                         valid_rules++;
841                         new_rule = true;
842                 }
843
844                 rule = &regd->reg_rules[valid_rules - 1];
845
846                 if (new_rule)
847                         rule->freq_range.start_freq_khz =
848                                                 MHZ_TO_KHZ(center_freq - 10);
849
850                 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
851
852                 /* this doesn't matter - not used by FW */
853                 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
854                 rule->power_rule.max_eirp =
855                         DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
856
857                 rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
858                                                           ch_flags, cfg);
859
860                 /* rely on auto-calculation to merge BW of contiguous chans */
861                 rule->flags |= NL80211_RRF_AUTO_BW;
862                 rule->freq_range.max_bandwidth_khz = 0;
863
864                 prev_ch_flags = ch_flags;
865                 prev_center_freq = center_freq;
866
867                 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
868                               "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
869                               center_freq,
870                               band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
871                               CHECK_AND_PRINT_I(VALID),
872                               CHECK_AND_PRINT_I(ACTIVE),
873                               CHECK_AND_PRINT_I(RADAR),
874                               CHECK_AND_PRINT_I(WIDE),
875                               CHECK_AND_PRINT_I(40MHZ),
876                               CHECK_AND_PRINT_I(80MHZ),
877                               CHECK_AND_PRINT_I(160MHZ),
878                               CHECK_AND_PRINT_I(INDOOR_ONLY),
879                               CHECK_AND_PRINT_I(GO_CONCURRENT),
880                               ch_flags,
881                               ((ch_flags & NVM_CHANNEL_ACTIVE) &&
882                                !(ch_flags & NVM_CHANNEL_RADAR))
883                                          ? "" : "not ");
884         }
885
886         regd->n_reg_rules = valid_rules;
887
888         /* set alpha2 from FW. */
889         regd->alpha2[0] = fw_mcc >> 8;
890         regd->alpha2[1] = fw_mcc & 0xff;
891
892         return regd;
893 }
894 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
895
896 #ifdef CONFIG_ACPI
897 #define WRDD_METHOD             "WRDD"
898 #define WRDD_WIFI               (0x07)
899 #define WRDD_WIGIG              (0x10)
900
901 static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd)
902 {
903         union acpi_object *mcc_pkg, *domain_type, *mcc_value;
904         u32 i;
905
906         if (wrdd->type != ACPI_TYPE_PACKAGE ||
907             wrdd->package.count < 2 ||
908             wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
909             wrdd->package.elements[0].integer.value != 0) {
910                 IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n");
911                 return 0;
912         }
913
914         for (i = 1 ; i < wrdd->package.count ; ++i) {
915                 mcc_pkg = &wrdd->package.elements[i];
916
917                 if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
918                     mcc_pkg->package.count < 2 ||
919                     mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
920                     mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
921                         mcc_pkg = NULL;
922                         continue;
923                 }
924
925                 domain_type = &mcc_pkg->package.elements[0];
926                 if (domain_type->integer.value == WRDD_WIFI)
927                         break;
928
929                 mcc_pkg = NULL;
930         }
931
932         if (mcc_pkg) {
933                 mcc_value = &mcc_pkg->package.elements[1];
934                 return mcc_value->integer.value;
935         }
936
937         return 0;
938 }
939
940 int iwl_get_bios_mcc(struct device *dev, char *mcc)
941 {
942         acpi_handle root_handle;
943         acpi_handle handle;
944         struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
945         acpi_status status;
946         u32 mcc_val;
947
948         root_handle = ACPI_HANDLE(dev);
949         if (!root_handle) {
950                 IWL_DEBUG_EEPROM(dev,
951                                  "Could not retrieve root port ACPI handle\n");
952                 return -ENOENT;
953         }
954
955         /* Get the method's handle */
956         status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD,
957                                  &handle);
958         if (ACPI_FAILURE(status)) {
959                 IWL_DEBUG_EEPROM(dev, "WRD method not found\n");
960                 return -ENOENT;
961         }
962
963         /* Call WRDD with no arguments */
964         status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
965         if (ACPI_FAILURE(status)) {
966                 IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n",
967                                  status);
968                 return -ENOENT;
969         }
970
971         mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer);
972         kfree(wrdd.pointer);
973         if (!mcc_val)
974                 return -ENOENT;
975
976         mcc[0] = (mcc_val >> 8) & 0xff;
977         mcc[1] = mcc_val & 0xff;
978         mcc[2] = '\0';
979         return 0;
980 }
981 IWL_EXPORT_SYMBOL(iwl_get_bios_mcc);
982 #endif