]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Link tuning handlers
35  */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39                 return;
40
41         /*
42          * Reset link information.
43          * Both the currently active vgc level as well as
44          * the link tuner counter should be reset. Resetting
45          * the counter is important for devices where the
46          * device should only perform link tuning during the
47          * first minute after being enabled.
48          */
49         rt2x00dev->link.count = 0;
50         rt2x00dev->link.vgc_level = 0;
51
52         /*
53          * Reset the link tuner.
54          */
55         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60         /*
61          * Clear all (possibly) pre-existing quality statistics.
62          */
63         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65         /*
66          * The RX and TX percentage should start at 50%
67          * this will assure we will get at least get some
68          * decent value when the link tuner starts.
69          * The value will be dropped and overwritten with
70          * the correct (measured )value anyway during the
71          * first run of the link tuner.
72          */
73         rt2x00dev->link.qual.rx_percentage = 50;
74         rt2x00dev->link.qual.tx_percentage = 50;
75
76         rt2x00lib_reset_link_tuner(rt2x00dev);
77
78         queue_delayed_work(rt2x00dev->hw->workqueue,
79                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84         cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88  * Radio control handlers.
89  */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92         int status;
93
94         /*
95          * Don't enable the radio twice.
96          * And check if the hardware button has been disabled.
97          */
98         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100                 return 0;
101
102         /*
103          * Initialize all data queues.
104          */
105         rt2x00queue_init_rx(rt2x00dev);
106         rt2x00queue_init_tx(rt2x00dev);
107
108         /*
109          * Enable radio.
110          */
111         status =
112             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
113         if (status)
114                 return status;
115
116         rt2x00leds_led_radio(rt2x00dev, true);
117
118         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119
120         /*
121          * Enable RX.
122          */
123         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124
125         /*
126          * Start the TX queues.
127          */
128         ieee80211_start_queues(rt2x00dev->hw);
129
130         return 0;
131 }
132
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
134 {
135         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136                 return;
137
138         /*
139          * Stop all scheduled work.
140          */
141         if (work_pending(&rt2x00dev->intf_work))
142                 cancel_work_sync(&rt2x00dev->intf_work);
143         if (work_pending(&rt2x00dev->filter_work))
144                 cancel_work_sync(&rt2x00dev->filter_work);
145
146         /*
147          * Stop the TX queues.
148          */
149         ieee80211_stop_queues(rt2x00dev->hw);
150
151         /*
152          * Disable RX.
153          */
154         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
155
156         /*
157          * Disable radio.
158          */
159         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160         rt2x00leds_led_radio(rt2x00dev, false);
161 }
162
163 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
164 {
165         /*
166          * When we are disabling the RX, we should also stop the link tuner.
167          */
168         if (state == STATE_RADIO_RX_OFF)
169                 rt2x00lib_stop_link_tuner(rt2x00dev);
170
171         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
172
173         /*
174          * When we are enabling the RX, we should also start the link tuner.
175          */
176         if (state == STATE_RADIO_RX_ON &&
177             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
178                 rt2x00lib_start_link_tuner(rt2x00dev);
179 }
180
181 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
182 {
183         enum antenna rx = rt2x00dev->link.ant.active.rx;
184         enum antenna tx = rt2x00dev->link.ant.active.tx;
185         int sample_a =
186             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
187         int sample_b =
188             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
189
190         /*
191          * We are done sampling. Now we should evaluate the results.
192          */
193         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
194
195         /*
196          * During the last period we have sampled the RSSI
197          * from both antenna's. It now is time to determine
198          * which antenna demonstrated the best performance.
199          * When we are already on the antenna with the best
200          * performance, then there really is nothing for us
201          * left to do.
202          */
203         if (sample_a == sample_b)
204                 return;
205
206         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
207                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
210                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
211
212         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
213 }
214
215 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
216 {
217         enum antenna rx = rt2x00dev->link.ant.active.rx;
218         enum antenna tx = rt2x00dev->link.ant.active.tx;
219         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
220         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
221
222         /*
223          * Legacy driver indicates that we should swap antenna's
224          * when the difference in RSSI is greater that 5. This
225          * also should be done when the RSSI was actually better
226          * then the previous sample.
227          * When the difference exceeds the threshold we should
228          * sample the rssi from the other antenna to make a valid
229          * comparison between the 2 antennas.
230          */
231         if (abs(rssi_curr - rssi_old) < 5)
232                 return;
233
234         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
235
236         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
237                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
240                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
241
242         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
243 }
244
245 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
246 {
247         /*
248          * Determine if software diversity is enabled for
249          * either the TX or RX antenna (or both).
250          * Always perform this check since within the link
251          * tuner interval the configuration might have changed.
252          */
253         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
254         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
255
256         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
257             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
258                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
259         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
260             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
261                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
262
263         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
264             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
265                 rt2x00dev->link.ant.flags = 0;
266                 return;
267         }
268
269         /*
270          * If we have only sampled the data over the last period
271          * we should now harvest the data. Otherwise just evaluate
272          * the data. The latter should only be performed once
273          * every 2 seconds.
274          */
275         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
276                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
277         else if (rt2x00dev->link.count & 1)
278                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
279 }
280
281 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
282 {
283         int avg_rssi = rssi;
284
285         /*
286          * Update global RSSI
287          */
288         if (link->qual.avg_rssi)
289                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
290         link->qual.avg_rssi = avg_rssi;
291
292         /*
293          * Update antenna RSSI
294          */
295         if (link->ant.rssi_ant)
296                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
297         link->ant.rssi_ant = rssi;
298 }
299
300 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
301 {
302         if (qual->rx_failed || qual->rx_success)
303                 qual->rx_percentage =
304                     (qual->rx_success * 100) /
305                     (qual->rx_failed + qual->rx_success);
306         else
307                 qual->rx_percentage = 50;
308
309         if (qual->tx_failed || qual->tx_success)
310                 qual->tx_percentage =
311                     (qual->tx_success * 100) /
312                     (qual->tx_failed + qual->tx_success);
313         else
314                 qual->tx_percentage = 50;
315
316         qual->rx_success = 0;
317         qual->rx_failed = 0;
318         qual->tx_success = 0;
319         qual->tx_failed = 0;
320 }
321
322 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
323                                            int rssi)
324 {
325         int rssi_percentage = 0;
326         int signal;
327
328         /*
329          * We need a positive value for the RSSI.
330          */
331         if (rssi < 0)
332                 rssi += rt2x00dev->rssi_offset;
333
334         /*
335          * Calculate the different percentages,
336          * which will be used for the signal.
337          */
338         if (rt2x00dev->rssi_offset)
339                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
340
341         /*
342          * Add the individual percentages and use the WEIGHT
343          * defines to calculate the current link signal.
344          */
345         signal = ((WEIGHT_RSSI * rssi_percentage) +
346                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
347                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
348
349         return (signal > 100) ? 100 : signal;
350 }
351
352 static void rt2x00lib_link_tuner(struct work_struct *work)
353 {
354         struct rt2x00_dev *rt2x00dev =
355             container_of(work, struct rt2x00_dev, link.work.work);
356
357         /*
358          * When the radio is shutting down we should
359          * immediately cease all link tuning.
360          */
361         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
362                 return;
363
364         /*
365          * Update statistics.
366          */
367         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
368         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
369             rt2x00dev->link.qual.rx_failed;
370
371         /*
372          * Only perform the link tuning when Link tuning
373          * has been enabled (This could have been disabled from the EEPROM).
374          */
375         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
376                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
377
378         /*
379          * Precalculate a portion of the link signal which is
380          * in based on the tx/rx success/failure counters.
381          */
382         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
383
384         /*
385          * Send a signal to the led to update the led signal strength.
386          */
387         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
388
389         /*
390          * Evaluate antenna setup, make this the last step since this could
391          * possibly reset some statistics.
392          */
393         rt2x00lib_evaluate_antenna(rt2x00dev);
394
395         /*
396          * Increase tuner counter, and reschedule the next link tuner run.
397          */
398         rt2x00dev->link.count++;
399         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
400                            LINK_TUNE_INTERVAL);
401 }
402
403 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
404 {
405         struct rt2x00_dev *rt2x00dev =
406             container_of(work, struct rt2x00_dev, filter_work);
407
408         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
409 }
410
411 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
412                                           struct ieee80211_vif *vif)
413 {
414         struct rt2x00_dev *rt2x00dev = data;
415         struct rt2x00_intf *intf = vif_to_intf(vif);
416         struct sk_buff *skb;
417         struct ieee80211_tx_control control;
418         struct ieee80211_bss_conf conf;
419         int delayed_flags;
420
421         /*
422          * Copy all data we need during this action under the protection
423          * of a spinlock. Otherwise race conditions might occur which results
424          * into an invalid configuration.
425          */
426         spin_lock(&intf->lock);
427
428         memcpy(&conf, &intf->conf, sizeof(conf));
429         delayed_flags = intf->delayed_flags;
430         intf->delayed_flags = 0;
431
432         spin_unlock(&intf->lock);
433
434         if (delayed_flags & DELAYED_UPDATE_BEACON) {
435                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
436                 if (skb) {
437                         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
438                                                           &control);
439                         dev_kfree_skb(skb);
440                 }
441         }
442
443         if (delayed_flags & DELAYED_CONFIG_ERP)
444                 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
445
446         if (delayed_flags & DELAYED_LED_ASSOC)
447                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
448 }
449
450 static void rt2x00lib_intf_scheduled(struct work_struct *work)
451 {
452         struct rt2x00_dev *rt2x00dev =
453             container_of(work, struct rt2x00_dev, intf_work);
454
455         /*
456          * Iterate over each interface and perform the
457          * requested configurations.
458          */
459         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
460                                             rt2x00lib_intf_scheduled_iter,
461                                             rt2x00dev);
462 }
463
464 /*
465  * Interrupt context handlers.
466  */
467 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
468                                       struct ieee80211_vif *vif)
469 {
470         struct rt2x00_intf *intf = vif_to_intf(vif);
471
472         if (vif->type != IEEE80211_IF_TYPE_AP &&
473             vif->type != IEEE80211_IF_TYPE_IBSS)
474                 return;
475
476         spin_lock(&intf->lock);
477         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
478         spin_unlock(&intf->lock);
479 }
480
481 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
482 {
483         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
484                 return;
485
486         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
487                                             rt2x00lib_beacondone_iter,
488                                             rt2x00dev);
489
490         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
491 }
492 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
493
494 void rt2x00lib_txdone(struct queue_entry *entry,
495                       struct txdone_entry_desc *txdesc)
496 {
497         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
498         struct skb_frame_desc *skbdesc;
499         struct ieee80211_tx_status tx_status;
500         int success = !!(txdesc->status == TX_SUCCESS ||
501                          txdesc->status == TX_SUCCESS_RETRY);
502         int fail = !!(txdesc->status == TX_FAIL_RETRY ||
503                       txdesc->status == TX_FAIL_INVALID ||
504                       txdesc->status == TX_FAIL_OTHER);
505
506         /*
507          * Update TX statistics.
508          */
509         rt2x00dev->link.qual.tx_success += success;
510         rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
511
512         /*
513          * Initialize TX status
514          */
515         tx_status.flags = 0;
516         tx_status.ack_signal = 0;
517         tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
518         tx_status.retry_count = txdesc->retry;
519         memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
520
521         if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
522                 if (success)
523                         tx_status.flags |= IEEE80211_TX_STATUS_ACK;
524                 else
525                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
526         }
527
528         tx_status.queue_length = entry->queue->limit;
529         tx_status.queue_number = tx_status.control.queue;
530
531         if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
532                 if (success)
533                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
534                 else
535                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
536         }
537
538         /*
539          * Send the tx_status to debugfs. Only send the status report
540          * to mac80211 when the frame originated from there. If this was
541          * a extra frame coming through a mac80211 library call (RTS/CTS)
542          * then we should not send the status report back.
543          * If send to mac80211, mac80211 will clean up the skb structure,
544          * otherwise we have to do it ourself.
545          */
546         skbdesc = get_skb_frame_desc(entry->skb);
547         skbdesc->frame_type = DUMP_FRAME_TXDONE;
548
549         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
550
551         if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
552                 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
553                                             entry->skb, &tx_status);
554         else
555                 dev_kfree_skb(entry->skb);
556         entry->skb = NULL;
557 }
558 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
559
560 void rt2x00lib_rxdone(struct queue_entry *entry,
561                       struct rxdone_entry_desc *rxdesc)
562 {
563         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
564         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
565         struct ieee80211_supported_band *sband;
566         struct ieee80211_hdr *hdr;
567         const struct rt2x00_rate *rate;
568         unsigned int i;
569         int idx = -1;
570         u16 fc;
571
572         /*
573          * Update RX statistics.
574          */
575         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
576         for (i = 0; i < sband->n_bitrates; i++) {
577                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
578
579                 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
580                      (rate->plcp == rxdesc->signal)) ||
581                     (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
582                       (rate->bitrate == rxdesc->signal))) {
583                         idx = i;
584                         break;
585                 }
586         }
587
588         if (idx < 0) {
589                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
590                         "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
591                         !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
592                 idx = 0;
593         }
594
595         /*
596          * Only update link status if this is a beacon frame carrying our bssid.
597          */
598         hdr = (struct ieee80211_hdr *)entry->skb->data;
599         fc = le16_to_cpu(hdr->frame_control);
600         if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
601                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
602
603         rt2x00dev->link.qual.rx_success++;
604
605         rx_status->rate_idx = idx;
606         rx_status->signal =
607             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
608         rx_status->ssi = rxdesc->rssi;
609         rx_status->flag = rxdesc->flags;
610         rx_status->antenna = rt2x00dev->link.ant.active.rx;
611
612         /*
613          * Send frame to mac80211 & debugfs.
614          * mac80211 will clean up the skb structure.
615          */
616         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
617         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
618         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
619         entry->skb = NULL;
620 }
621 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
622
623 /*
624  * TX descriptor initializer
625  */
626 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
627                              struct sk_buff *skb,
628                              struct ieee80211_tx_control *control)
629 {
630         struct txentry_desc txdesc;
631         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
632         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
633         const struct rt2x00_rate *rate;
634         int tx_rate;
635         int length;
636         int duration;
637         int residual;
638         u16 frame_control;
639         u16 seq_ctrl;
640
641         memset(&txdesc, 0, sizeof(txdesc));
642
643         txdesc.queue = skbdesc->entry->queue->qid;
644         txdesc.cw_min = skbdesc->entry->queue->cw_min;
645         txdesc.cw_max = skbdesc->entry->queue->cw_max;
646         txdesc.aifs = skbdesc->entry->queue->aifs;
647
648         /*
649          * Read required fields from ieee80211 header.
650          */
651         frame_control = le16_to_cpu(hdr->frame_control);
652         seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
653
654         tx_rate = control->tx_rate->hw_value;
655
656         /*
657          * Check whether this frame is to be acked
658          */
659         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
660                 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
661
662         /*
663          * Check if this is a RTS/CTS frame
664          */
665         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
666                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
667                 if (is_rts_frame(frame_control)) {
668                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
669                         __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
670                 } else
671                         __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
672                 if (control->rts_cts_rate)
673                         tx_rate = control->rts_cts_rate->hw_value;
674         }
675
676         rate = rt2x00_get_rate(tx_rate);
677
678         /*
679          * Check if more fragments are pending
680          */
681         if (ieee80211_get_morefrag(hdr)) {
682                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
683                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
684         }
685
686         /*
687          * Beacons and probe responses require the tsf timestamp
688          * to be inserted into the frame.
689          */
690         if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
691             is_probe_resp(frame_control))
692                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
693
694         /*
695          * Determine with what IFS priority this frame should be send.
696          * Set ifs to IFS_SIFS when the this is not the first fragment,
697          * or this fragment came after RTS/CTS.
698          */
699         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
700             test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
701                 txdesc.ifs = IFS_SIFS;
702         else
703                 txdesc.ifs = IFS_BACKOFF;
704
705         /*
706          * PLCP setup
707          * Length calculation depends on OFDM/CCK rate.
708          */
709         txdesc.signal = rate->plcp;
710         txdesc.service = 0x04;
711
712         length = skbdesc->data_len + FCS_LEN;
713         if (rate->flags & DEV_RATE_OFDM) {
714                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
715
716                 txdesc.length_high = (length >> 6) & 0x3f;
717                 txdesc.length_low = length & 0x3f;
718         } else {
719                 /*
720                  * Convert length to microseconds.
721                  */
722                 residual = get_duration_res(length, rate->bitrate);
723                 duration = get_duration(length, rate->bitrate);
724
725                 if (residual != 0) {
726                         duration++;
727
728                         /*
729                          * Check if we need to set the Length Extension
730                          */
731                         if (rate->bitrate == 110 && residual <= 30)
732                                 txdesc.service |= 0x80;
733                 }
734
735                 txdesc.length_high = (duration >> 8) & 0xff;
736                 txdesc.length_low = duration & 0xff;
737
738                 /*
739                  * When preamble is enabled we should set the
740                  * preamble bit for the signal.
741                  */
742                 if (rt2x00_get_rate_preamble(tx_rate))
743                         txdesc.signal |= 0x08;
744         }
745
746         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
747
748         /*
749          * Update queue entry.
750          */
751         skbdesc->entry->skb = skb;
752
753         /*
754          * The frame has been completely initialized and ready
755          * for sending to the device. The caller will push the
756          * frame to the device, but we are going to push the
757          * frame to debugfs here.
758          */
759         skbdesc->frame_type = DUMP_FRAME_TX;
760         rt2x00debug_dump_frame(rt2x00dev, skb);
761 }
762 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
763
764 /*
765  * Driver initialization handlers.
766  */
767 const struct rt2x00_rate rt2x00_supported_rates[12] = {
768         {
769                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
770                 .bitrate = 10,
771                 .ratemask = BIT(0),
772                 .plcp = 0x00,
773         },
774         {
775                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
776                 .bitrate = 20,
777                 .ratemask = BIT(1),
778                 .plcp = 0x01,
779         },
780         {
781                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
782                 .bitrate = 55,
783                 .ratemask = BIT(2),
784                 .plcp = 0x02,
785         },
786         {
787                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
788                 .bitrate = 110,
789                 .ratemask = BIT(3),
790                 .plcp = 0x03,
791         },
792         {
793                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
794                 .bitrate = 60,
795                 .ratemask = BIT(4),
796                 .plcp = 0x0b,
797         },
798         {
799                 .flags = DEV_RATE_OFDM,
800                 .bitrate = 90,
801                 .ratemask = BIT(5),
802                 .plcp = 0x0f,
803         },
804         {
805                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
806                 .bitrate = 120,
807                 .ratemask = BIT(6),
808                 .plcp = 0x0a,
809         },
810         {
811                 .flags = DEV_RATE_OFDM,
812                 .bitrate = 180,
813                 .ratemask = BIT(7),
814                 .plcp = 0x0e,
815         },
816         {
817                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
818                 .bitrate = 240,
819                 .ratemask = BIT(8),
820                 .plcp = 0x09,
821         },
822         {
823                 .flags = DEV_RATE_OFDM,
824                 .bitrate = 360,
825                 .ratemask = BIT(9),
826                 .plcp = 0x0d,
827         },
828         {
829                 .flags = DEV_RATE_OFDM,
830                 .bitrate = 480,
831                 .ratemask = BIT(10),
832                 .plcp = 0x08,
833         },
834         {
835                 .flags = DEV_RATE_OFDM,
836                 .bitrate = 540,
837                 .ratemask = BIT(11),
838                 .plcp = 0x0c,
839         },
840 };
841
842 static void rt2x00lib_channel(struct ieee80211_channel *entry,
843                               const int channel, const int tx_power,
844                               const int value)
845 {
846         entry->center_freq = ieee80211_channel_to_frequency(channel);
847         entry->hw_value = value;
848         entry->max_power = tx_power;
849         entry->max_antenna_gain = 0xff;
850 }
851
852 static void rt2x00lib_rate(struct ieee80211_rate *entry,
853                            const u16 index, const struct rt2x00_rate *rate)
854 {
855         entry->flags = 0;
856         entry->bitrate = rate->bitrate;
857         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
858         entry->hw_value_short = entry->hw_value;
859
860         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
861                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
862                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
863         }
864 }
865
866 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
867                                     struct hw_mode_spec *spec)
868 {
869         struct ieee80211_hw *hw = rt2x00dev->hw;
870         struct ieee80211_channel *channels;
871         struct ieee80211_rate *rates;
872         unsigned int num_rates;
873         unsigned int i;
874         unsigned char tx_power;
875
876         num_rates = 0;
877         if (spec->supported_rates & SUPPORT_RATE_CCK)
878                 num_rates += 4;
879         if (spec->supported_rates & SUPPORT_RATE_OFDM)
880                 num_rates += 8;
881
882         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
883         if (!channels)
884                 return -ENOMEM;
885
886         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
887         if (!rates)
888                 goto exit_free_channels;
889
890         /*
891          * Initialize Rate list.
892          */
893         for (i = 0; i < num_rates; i++)
894                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
895
896         /*
897          * Initialize Channel list.
898          */
899         for (i = 0; i < spec->num_channels; i++) {
900                 if (spec->channels[i].channel <= 14) {
901                         if (spec->tx_power_bg)
902                                 tx_power = spec->tx_power_bg[i];
903                         else
904                                 tx_power = spec->tx_power_default;
905                 } else {
906                         if (spec->tx_power_a)
907                                 tx_power = spec->tx_power_a[i];
908                         else
909                                 tx_power = spec->tx_power_default;
910                 }
911
912                 rt2x00lib_channel(&channels[i],
913                                   spec->channels[i].channel, tx_power, i);
914         }
915
916         /*
917          * Intitialize 802.11b, 802.11g
918          * Rates: CCK, OFDM.
919          * Channels: 2.4 GHz
920          */
921         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
922                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
923                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
924                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
925                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
926                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
927                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
928         }
929
930         /*
931          * Intitialize 802.11a
932          * Rates: OFDM.
933          * Channels: OFDM, UNII, HiperLAN2.
934          */
935         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
936                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
937                     spec->num_channels - 14;
938                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
939                     num_rates - 4;
940                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
941                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
942                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
943                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
944         }
945
946         return 0;
947
948  exit_free_channels:
949         kfree(channels);
950         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
951         return -ENOMEM;
952 }
953
954 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
955 {
956         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
957                 ieee80211_unregister_hw(rt2x00dev->hw);
958
959         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
960                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
961                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
962                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
963                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
964         }
965 }
966
967 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
968 {
969         struct hw_mode_spec *spec = &rt2x00dev->spec;
970         int status;
971
972         /*
973          * Initialize HW modes.
974          */
975         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
976         if (status)
977                 return status;
978
979         /*
980          * Register HW.
981          */
982         status = ieee80211_register_hw(rt2x00dev->hw);
983         if (status) {
984                 rt2x00lib_remove_hw(rt2x00dev);
985                 return status;
986         }
987
988         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
989
990         return 0;
991 }
992
993 /*
994  * Initialization/uninitialization handlers.
995  */
996 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
997 {
998         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
999                 return;
1000
1001         /*
1002          * Unregister extra components.
1003          */
1004         rt2x00rfkill_unregister(rt2x00dev);
1005
1006         /*
1007          * Allow the HW to uninitialize.
1008          */
1009         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1010
1011         /*
1012          * Free allocated queue entries.
1013          */
1014         rt2x00queue_uninitialize(rt2x00dev);
1015 }
1016
1017 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1018 {
1019         int status;
1020
1021         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1022                 return 0;
1023
1024         /*
1025          * Allocate all queue entries.
1026          */
1027         status = rt2x00queue_initialize(rt2x00dev);
1028         if (status)
1029                 return status;
1030
1031         /*
1032          * Initialize the device.
1033          */
1034         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1035         if (status)
1036                 goto exit;
1037
1038         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1039
1040         /*
1041          * Register the extra components.
1042          */
1043         rt2x00rfkill_register(rt2x00dev);
1044
1045         return 0;
1046
1047 exit:
1048         rt2x00lib_uninitialize(rt2x00dev);
1049
1050         return status;
1051 }
1052
1053 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1054 {
1055         int retval;
1056
1057         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1058                 return 0;
1059
1060         /*
1061          * If this is the first interface which is added,
1062          * we should load the firmware now.
1063          */
1064         retval = rt2x00lib_load_firmware(rt2x00dev);
1065         if (retval)
1066                 return retval;
1067
1068         /*
1069          * Initialize the device.
1070          */
1071         retval = rt2x00lib_initialize(rt2x00dev);
1072         if (retval)
1073                 return retval;
1074
1075         /*
1076          * Enable radio.
1077          */
1078         retval = rt2x00lib_enable_radio(rt2x00dev);
1079         if (retval) {
1080                 rt2x00lib_uninitialize(rt2x00dev);
1081                 return retval;
1082         }
1083
1084         rt2x00dev->intf_ap_count = 0;
1085         rt2x00dev->intf_sta_count = 0;
1086         rt2x00dev->intf_associated = 0;
1087
1088         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1089
1090         return 0;
1091 }
1092
1093 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1094 {
1095         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1096                 return;
1097
1098         /*
1099          * Perhaps we can add something smarter here,
1100          * but for now just disabling the radio should do.
1101          */
1102         rt2x00lib_disable_radio(rt2x00dev);
1103
1104         rt2x00dev->intf_ap_count = 0;
1105         rt2x00dev->intf_sta_count = 0;
1106         rt2x00dev->intf_associated = 0;
1107
1108         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1109 }
1110
1111 /*
1112  * driver allocation handlers.
1113  */
1114 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1115 {
1116         int retval = -ENOMEM;
1117
1118         /*
1119          * Make room for rt2x00_intf inside the per-interface
1120          * structure ieee80211_vif.
1121          */
1122         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1123
1124         /*
1125          * Let the driver probe the device to detect the capabilities.
1126          */
1127         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1128         if (retval) {
1129                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1130                 goto exit;
1131         }
1132
1133         /*
1134          * Initialize configuration work.
1135          */
1136         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1137         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1138         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1139
1140         /*
1141          * Allocate queue array.
1142          */
1143         retval = rt2x00queue_allocate(rt2x00dev);
1144         if (retval)
1145                 goto exit;
1146
1147         /*
1148          * Initialize ieee80211 structure.
1149          */
1150         retval = rt2x00lib_probe_hw(rt2x00dev);
1151         if (retval) {
1152                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1153                 goto exit;
1154         }
1155
1156         /*
1157          * Register extra components.
1158          */
1159         rt2x00leds_register(rt2x00dev);
1160         rt2x00rfkill_allocate(rt2x00dev);
1161         rt2x00debug_register(rt2x00dev);
1162
1163         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1164
1165         return 0;
1166
1167 exit:
1168         rt2x00lib_remove_dev(rt2x00dev);
1169
1170         return retval;
1171 }
1172 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1173
1174 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1175 {
1176         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1177
1178         /*
1179          * Disable radio.
1180          */
1181         rt2x00lib_disable_radio(rt2x00dev);
1182
1183         /*
1184          * Uninitialize device.
1185          */
1186         rt2x00lib_uninitialize(rt2x00dev);
1187
1188         /*
1189          * Free extra components
1190          */
1191         rt2x00debug_deregister(rt2x00dev);
1192         rt2x00rfkill_free(rt2x00dev);
1193         rt2x00leds_unregister(rt2x00dev);
1194
1195         /*
1196          * Free ieee80211_hw memory.
1197          */
1198         rt2x00lib_remove_hw(rt2x00dev);
1199
1200         /*
1201          * Free firmware image.
1202          */
1203         rt2x00lib_free_firmware(rt2x00dev);
1204
1205         /*
1206          * Free queue structures.
1207          */
1208         rt2x00queue_free(rt2x00dev);
1209 }
1210 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1211
1212 /*
1213  * Device state handlers
1214  */
1215 #ifdef CONFIG_PM
1216 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1217 {
1218         int retval;
1219
1220         NOTICE(rt2x00dev, "Going to sleep.\n");
1221         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1222
1223         /*
1224          * Only continue if mac80211 has open interfaces.
1225          */
1226         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1227                 goto exit;
1228         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1229
1230         /*
1231          * Disable radio.
1232          */
1233         rt2x00lib_stop(rt2x00dev);
1234         rt2x00lib_uninitialize(rt2x00dev);
1235
1236         /*
1237          * Suspend/disable extra components.
1238          */
1239         rt2x00leds_suspend(rt2x00dev);
1240         rt2x00rfkill_suspend(rt2x00dev);
1241         rt2x00debug_deregister(rt2x00dev);
1242
1243 exit:
1244         /*
1245          * Set device mode to sleep for power management,
1246          * on some hardware this call seems to consistently fail.
1247          * From the specifications it is hard to tell why it fails,
1248          * and if this is a "bad thing".
1249          * Overall it is safe to just ignore the failure and
1250          * continue suspending. The only downside is that the
1251          * device will not be in optimal power save mode, but with
1252          * the radio and the other components already disabled the
1253          * device is as good as disabled.
1254          */
1255         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1256         if (retval)
1257                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1258                         "continue suspending.\n");
1259
1260         return 0;
1261 }
1262 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1263
1264 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1265                                   struct ieee80211_vif *vif)
1266 {
1267         struct rt2x00_dev *rt2x00dev = data;
1268         struct rt2x00_intf *intf = vif_to_intf(vif);
1269
1270         spin_lock(&intf->lock);
1271
1272         rt2x00lib_config_intf(rt2x00dev, intf,
1273                               vif->type, intf->mac, intf->bssid);
1274
1275
1276         /*
1277          * Master or Ad-hoc mode require a new beacon update.
1278          */
1279         if (vif->type == IEEE80211_IF_TYPE_AP ||
1280             vif->type == IEEE80211_IF_TYPE_IBSS)
1281                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1282
1283         spin_unlock(&intf->lock);
1284 }
1285
1286 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1287 {
1288         int retval;
1289
1290         NOTICE(rt2x00dev, "Waking up.\n");
1291
1292         /*
1293          * Restore/enable extra components.
1294          */
1295         rt2x00debug_register(rt2x00dev);
1296         rt2x00rfkill_resume(rt2x00dev);
1297         rt2x00leds_resume(rt2x00dev);
1298
1299         /*
1300          * Only continue if mac80211 had open interfaces.
1301          */
1302         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1303                 return 0;
1304
1305         /*
1306          * Reinitialize device and all active interfaces.
1307          */
1308         retval = rt2x00lib_start(rt2x00dev);
1309         if (retval)
1310                 goto exit;
1311
1312         /*
1313          * Reconfigure device.
1314          */
1315         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1316         if (!rt2x00dev->hw->conf.radio_enabled)
1317                 rt2x00lib_disable_radio(rt2x00dev);
1318
1319         /*
1320          * Iterator over each active interface to
1321          * reconfigure the hardware.
1322          */
1323         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1324                                             rt2x00lib_resume_intf, rt2x00dev);
1325
1326         /*
1327          * We are ready again to receive requests from mac80211.
1328          */
1329         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1330
1331         /*
1332          * It is possible that during that mac80211 has attempted
1333          * to send frames while we were suspending or resuming.
1334          * In that case we have disabled the TX queue and should
1335          * now enable it again
1336          */
1337         ieee80211_start_queues(rt2x00dev->hw);
1338
1339         /*
1340          * During interface iteration we might have changed the
1341          * delayed_flags, time to handles the event by calling
1342          * the work handler directly.
1343          */
1344         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1345
1346         return 0;
1347
1348 exit:
1349         rt2x00lib_disable_radio(rt2x00dev);
1350         rt2x00lib_uninitialize(rt2x00dev);
1351         rt2x00debug_deregister(rt2x00dev);
1352
1353         return retval;
1354 }
1355 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1356 #endif /* CONFIG_PM */
1357
1358 /*
1359  * rt2x00lib module information.
1360  */
1361 MODULE_AUTHOR(DRV_PROJECT);
1362 MODULE_VERSION(DRV_VERSION);
1363 MODULE_DESCRIPTION("rt2x00 library");
1364 MODULE_LICENSE("GPL");