]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvme/host/core.c
nvme-fabrics: add a generic NVMe over Fabrics library
[karo-tx-linux.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS             (1U << MINORBITS)
35
36 unsigned char admin_timeout = 60;
37 module_param(admin_timeout, byte, 0644);
38 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39 EXPORT_SYMBOL_GPL(admin_timeout);
40
41 unsigned char nvme_io_timeout = 30;
42 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
43 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44 EXPORT_SYMBOL_GPL(nvme_io_timeout);
45
46 unsigned char shutdown_timeout = 5;
47 module_param(shutdown_timeout, byte, 0644);
48 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
49
50 static int nvme_major;
51 module_param(nvme_major, int, 0);
52
53 static int nvme_char_major;
54 module_param(nvme_char_major, int, 0);
55
56 static LIST_HEAD(nvme_ctrl_list);
57 static DEFINE_SPINLOCK(dev_list_lock);
58
59 static struct class *nvme_class;
60
61 void nvme_cancel_request(struct request *req, void *data, bool reserved)
62 {
63         int status;
64
65         if (!blk_mq_request_started(req))
66                 return;
67
68         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
69                                 "Cancelling I/O %d", req->tag);
70
71         status = NVME_SC_ABORT_REQ;
72         if (blk_queue_dying(req->q))
73                 status |= NVME_SC_DNR;
74         blk_mq_complete_request(req, status);
75 }
76 EXPORT_SYMBOL_GPL(nvme_cancel_request);
77
78 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
79                 enum nvme_ctrl_state new_state)
80 {
81         enum nvme_ctrl_state old_state = ctrl->state;
82         bool changed = false;
83
84         spin_lock_irq(&ctrl->lock);
85         switch (new_state) {
86         case NVME_CTRL_LIVE:
87                 switch (old_state) {
88                 case NVME_CTRL_NEW:
89                 case NVME_CTRL_RESETTING:
90                         changed = true;
91                         /* FALLTHRU */
92                 default:
93                         break;
94                 }
95                 break;
96         case NVME_CTRL_RESETTING:
97                 switch (old_state) {
98                 case NVME_CTRL_NEW:
99                 case NVME_CTRL_LIVE:
100                         changed = true;
101                         /* FALLTHRU */
102                 default:
103                         break;
104                 }
105                 break;
106         case NVME_CTRL_DELETING:
107                 switch (old_state) {
108                 case NVME_CTRL_LIVE:
109                 case NVME_CTRL_RESETTING:
110                         changed = true;
111                         /* FALLTHRU */
112                 default:
113                         break;
114                 }
115                 break;
116         case NVME_CTRL_DEAD:
117                 switch (old_state) {
118                 case NVME_CTRL_DELETING:
119                         changed = true;
120                         /* FALLTHRU */
121                 default:
122                         break;
123                 }
124                 break;
125         default:
126                 break;
127         }
128         spin_unlock_irq(&ctrl->lock);
129
130         if (changed)
131                 ctrl->state = new_state;
132
133         return changed;
134 }
135 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
136
137 static void nvme_free_ns(struct kref *kref)
138 {
139         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
140
141         if (ns->type == NVME_NS_LIGHTNVM)
142                 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
143
144         spin_lock(&dev_list_lock);
145         ns->disk->private_data = NULL;
146         spin_unlock(&dev_list_lock);
147
148         put_disk(ns->disk);
149         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
150         nvme_put_ctrl(ns->ctrl);
151         kfree(ns);
152 }
153
154 static void nvme_put_ns(struct nvme_ns *ns)
155 {
156         kref_put(&ns->kref, nvme_free_ns);
157 }
158
159 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
160 {
161         struct nvme_ns *ns;
162
163         spin_lock(&dev_list_lock);
164         ns = disk->private_data;
165         if (ns) {
166                 if (!kref_get_unless_zero(&ns->kref))
167                         goto fail;
168                 if (!try_module_get(ns->ctrl->ops->module))
169                         goto fail_put_ns;
170         }
171         spin_unlock(&dev_list_lock);
172
173         return ns;
174
175 fail_put_ns:
176         kref_put(&ns->kref, nvme_free_ns);
177 fail:
178         spin_unlock(&dev_list_lock);
179         return NULL;
180 }
181
182 void nvme_requeue_req(struct request *req)
183 {
184         unsigned long flags;
185
186         blk_mq_requeue_request(req);
187         spin_lock_irqsave(req->q->queue_lock, flags);
188         if (!blk_queue_stopped(req->q))
189                 blk_mq_kick_requeue_list(req->q);
190         spin_unlock_irqrestore(req->q->queue_lock, flags);
191 }
192 EXPORT_SYMBOL_GPL(nvme_requeue_req);
193
194 struct request *nvme_alloc_request(struct request_queue *q,
195                 struct nvme_command *cmd, unsigned int flags, int qid)
196 {
197         struct request *req;
198
199         if (qid == NVME_QID_ANY) {
200                 req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
201         } else {
202                 req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
203                                 qid ? qid - 1 : 0);
204         }
205         if (IS_ERR(req))
206                 return req;
207
208         req->cmd_type = REQ_TYPE_DRV_PRIV;
209         req->cmd_flags |= REQ_FAILFAST_DRIVER;
210         req->__data_len = 0;
211         req->__sector = (sector_t) -1;
212         req->bio = req->biotail = NULL;
213
214         req->cmd = (unsigned char *)cmd;
215         req->cmd_len = sizeof(struct nvme_command);
216
217         return req;
218 }
219 EXPORT_SYMBOL_GPL(nvme_alloc_request);
220
221 static inline void nvme_setup_flush(struct nvme_ns *ns,
222                 struct nvme_command *cmnd)
223 {
224         memset(cmnd, 0, sizeof(*cmnd));
225         cmnd->common.opcode = nvme_cmd_flush;
226         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
227 }
228
229 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
230                 struct nvme_command *cmnd)
231 {
232         struct nvme_dsm_range *range;
233         struct page *page;
234         int offset;
235         unsigned int nr_bytes = blk_rq_bytes(req);
236
237         range = kmalloc(sizeof(*range), GFP_ATOMIC);
238         if (!range)
239                 return BLK_MQ_RQ_QUEUE_BUSY;
240
241         range->cattr = cpu_to_le32(0);
242         range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
243         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
244
245         memset(cmnd, 0, sizeof(*cmnd));
246         cmnd->dsm.opcode = nvme_cmd_dsm;
247         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
248         cmnd->dsm.nr = 0;
249         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
250
251         req->completion_data = range;
252         page = virt_to_page(range);
253         offset = offset_in_page(range);
254         blk_add_request_payload(req, page, offset, sizeof(*range));
255
256         /*
257          * we set __data_len back to the size of the area to be discarded
258          * on disk. This allows us to report completion on the full amount
259          * of blocks described by the request.
260          */
261         req->__data_len = nr_bytes;
262
263         return 0;
264 }
265
266 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
267                 struct nvme_command *cmnd)
268 {
269         u16 control = 0;
270         u32 dsmgmt = 0;
271
272         if (req->cmd_flags & REQ_FUA)
273                 control |= NVME_RW_FUA;
274         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
275                 control |= NVME_RW_LR;
276
277         if (req->cmd_flags & REQ_RAHEAD)
278                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
279
280         memset(cmnd, 0, sizeof(*cmnd));
281         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
282         cmnd->rw.command_id = req->tag;
283         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
284         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
285         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
286
287         if (ns->ms) {
288                 switch (ns->pi_type) {
289                 case NVME_NS_DPS_PI_TYPE3:
290                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
291                         break;
292                 case NVME_NS_DPS_PI_TYPE1:
293                 case NVME_NS_DPS_PI_TYPE2:
294                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
295                                         NVME_RW_PRINFO_PRCHK_REF;
296                         cmnd->rw.reftag = cpu_to_le32(
297                                         nvme_block_nr(ns, blk_rq_pos(req)));
298                         break;
299                 }
300                 if (!blk_integrity_rq(req))
301                         control |= NVME_RW_PRINFO_PRACT;
302         }
303
304         cmnd->rw.control = cpu_to_le16(control);
305         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
306 }
307
308 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
309                 struct nvme_command *cmd)
310 {
311         int ret = 0;
312
313         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
314                 memcpy(cmd, req->cmd, sizeof(*cmd));
315         else if (req_op(req) == REQ_OP_FLUSH)
316                 nvme_setup_flush(ns, cmd);
317         else if (req_op(req) == REQ_OP_DISCARD)
318                 ret = nvme_setup_discard(ns, req, cmd);
319         else
320                 nvme_setup_rw(ns, req, cmd);
321
322         return ret;
323 }
324 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
325
326 /*
327  * Returns 0 on success.  If the result is negative, it's a Linux error code;
328  * if the result is positive, it's an NVM Express status code
329  */
330 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
331                 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
332                 unsigned timeout, int qid, int at_head, int flags)
333 {
334         struct request *req;
335         int ret;
336
337         req = nvme_alloc_request(q, cmd, flags, qid);
338         if (IS_ERR(req))
339                 return PTR_ERR(req);
340
341         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
342         req->special = cqe;
343
344         if (buffer && bufflen) {
345                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
346                 if (ret)
347                         goto out;
348         }
349
350         blk_execute_rq(req->q, NULL, req, at_head);
351         ret = req->errors;
352  out:
353         blk_mq_free_request(req);
354         return ret;
355 }
356 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
357
358 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
359                 void *buffer, unsigned bufflen)
360 {
361         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
362                         NVME_QID_ANY, 0, 0);
363 }
364 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
365
366 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
367                 void __user *ubuffer, unsigned bufflen,
368                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
369                 u32 *result, unsigned timeout)
370 {
371         bool write = nvme_is_write(cmd);
372         struct nvme_completion cqe;
373         struct nvme_ns *ns = q->queuedata;
374         struct gendisk *disk = ns ? ns->disk : NULL;
375         struct request *req;
376         struct bio *bio = NULL;
377         void *meta = NULL;
378         int ret;
379
380         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
381         if (IS_ERR(req))
382                 return PTR_ERR(req);
383
384         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
385         req->special = &cqe;
386
387         if (ubuffer && bufflen) {
388                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
389                                 GFP_KERNEL);
390                 if (ret)
391                         goto out;
392                 bio = req->bio;
393
394                 if (!disk)
395                         goto submit;
396                 bio->bi_bdev = bdget_disk(disk, 0);
397                 if (!bio->bi_bdev) {
398                         ret = -ENODEV;
399                         goto out_unmap;
400                 }
401
402                 if (meta_buffer && meta_len) {
403                         struct bio_integrity_payload *bip;
404
405                         meta = kmalloc(meta_len, GFP_KERNEL);
406                         if (!meta) {
407                                 ret = -ENOMEM;
408                                 goto out_unmap;
409                         }
410
411                         if (write) {
412                                 if (copy_from_user(meta, meta_buffer,
413                                                 meta_len)) {
414                                         ret = -EFAULT;
415                                         goto out_free_meta;
416                                 }
417                         }
418
419                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
420                         if (IS_ERR(bip)) {
421                                 ret = PTR_ERR(bip);
422                                 goto out_free_meta;
423                         }
424
425                         bip->bip_iter.bi_size = meta_len;
426                         bip->bip_iter.bi_sector = meta_seed;
427
428                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
429                                         meta_len, offset_in_page(meta));
430                         if (ret != meta_len) {
431                                 ret = -ENOMEM;
432                                 goto out_free_meta;
433                         }
434                 }
435         }
436  submit:
437         blk_execute_rq(req->q, disk, req, 0);
438         ret = req->errors;
439         if (result)
440                 *result = le32_to_cpu(cqe.result);
441         if (meta && !ret && !write) {
442                 if (copy_to_user(meta_buffer, meta, meta_len))
443                         ret = -EFAULT;
444         }
445  out_free_meta:
446         kfree(meta);
447  out_unmap:
448         if (bio) {
449                 if (disk && bio->bi_bdev)
450                         bdput(bio->bi_bdev);
451                 blk_rq_unmap_user(bio);
452         }
453  out:
454         blk_mq_free_request(req);
455         return ret;
456 }
457
458 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
459                 void __user *ubuffer, unsigned bufflen, u32 *result,
460                 unsigned timeout)
461 {
462         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
463                         result, timeout);
464 }
465
466 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
467 {
468         struct nvme_command c = { };
469         int error;
470
471         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
472         c.identify.opcode = nvme_admin_identify;
473         c.identify.cns = cpu_to_le32(1);
474
475         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
476         if (!*id)
477                 return -ENOMEM;
478
479         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
480                         sizeof(struct nvme_id_ctrl));
481         if (error)
482                 kfree(*id);
483         return error;
484 }
485
486 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
487 {
488         struct nvme_command c = { };
489
490         c.identify.opcode = nvme_admin_identify;
491         c.identify.cns = cpu_to_le32(2);
492         c.identify.nsid = cpu_to_le32(nsid);
493         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
494 }
495
496 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
497                 struct nvme_id_ns **id)
498 {
499         struct nvme_command c = { };
500         int error;
501
502         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
503         c.identify.opcode = nvme_admin_identify,
504         c.identify.nsid = cpu_to_le32(nsid),
505
506         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
507         if (!*id)
508                 return -ENOMEM;
509
510         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
511                         sizeof(struct nvme_id_ns));
512         if (error)
513                 kfree(*id);
514         return error;
515 }
516
517 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
518                                         dma_addr_t dma_addr, u32 *result)
519 {
520         struct nvme_command c;
521         struct nvme_completion cqe;
522         int ret;
523
524         memset(&c, 0, sizeof(c));
525         c.features.opcode = nvme_admin_get_features;
526         c.features.nsid = cpu_to_le32(nsid);
527         c.features.dptr.prp1 = cpu_to_le64(dma_addr);
528         c.features.fid = cpu_to_le32(fid);
529
530         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
531                         NVME_QID_ANY, 0, 0);
532         if (ret >= 0)
533                 *result = le32_to_cpu(cqe.result);
534         return ret;
535 }
536
537 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
538                                         dma_addr_t dma_addr, u32 *result)
539 {
540         struct nvme_command c;
541         struct nvme_completion cqe;
542         int ret;
543
544         memset(&c, 0, sizeof(c));
545         c.features.opcode = nvme_admin_set_features;
546         c.features.dptr.prp1 = cpu_to_le64(dma_addr);
547         c.features.fid = cpu_to_le32(fid);
548         c.features.dword11 = cpu_to_le32(dword11);
549
550         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
551                         NVME_QID_ANY, 0, 0);
552         if (ret >= 0)
553                 *result = le32_to_cpu(cqe.result);
554         return ret;
555 }
556
557 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
558 {
559         struct nvme_command c = { };
560         int error;
561
562         c.common.opcode = nvme_admin_get_log_page,
563         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
564         c.common.cdw10[0] = cpu_to_le32(
565                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
566                          NVME_LOG_SMART),
567
568         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
569         if (!*log)
570                 return -ENOMEM;
571
572         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
573                         sizeof(struct nvme_smart_log));
574         if (error)
575                 kfree(*log);
576         return error;
577 }
578
579 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
580 {
581         u32 q_count = (*count - 1) | ((*count - 1) << 16);
582         u32 result;
583         int status, nr_io_queues;
584
585         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
586                         &result);
587         if (status < 0)
588                 return status;
589
590         /*
591          * Degraded controllers might return an error when setting the queue
592          * count.  We still want to be able to bring them online and offer
593          * access to the admin queue, as that might be only way to fix them up.
594          */
595         if (status > 0) {
596                 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
597                 *count = 0;
598         } else {
599                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
600                 *count = min(*count, nr_io_queues);
601         }
602
603         return 0;
604 }
605 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
606
607 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
608 {
609         struct nvme_user_io io;
610         struct nvme_command c;
611         unsigned length, meta_len;
612         void __user *metadata;
613
614         if (copy_from_user(&io, uio, sizeof(io)))
615                 return -EFAULT;
616         if (io.flags)
617                 return -EINVAL;
618
619         switch (io.opcode) {
620         case nvme_cmd_write:
621         case nvme_cmd_read:
622         case nvme_cmd_compare:
623                 break;
624         default:
625                 return -EINVAL;
626         }
627
628         length = (io.nblocks + 1) << ns->lba_shift;
629         meta_len = (io.nblocks + 1) * ns->ms;
630         metadata = (void __user *)(uintptr_t)io.metadata;
631
632         if (ns->ext) {
633                 length += meta_len;
634                 meta_len = 0;
635         } else if (meta_len) {
636                 if ((io.metadata & 3) || !io.metadata)
637                         return -EINVAL;
638         }
639
640         memset(&c, 0, sizeof(c));
641         c.rw.opcode = io.opcode;
642         c.rw.flags = io.flags;
643         c.rw.nsid = cpu_to_le32(ns->ns_id);
644         c.rw.slba = cpu_to_le64(io.slba);
645         c.rw.length = cpu_to_le16(io.nblocks);
646         c.rw.control = cpu_to_le16(io.control);
647         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
648         c.rw.reftag = cpu_to_le32(io.reftag);
649         c.rw.apptag = cpu_to_le16(io.apptag);
650         c.rw.appmask = cpu_to_le16(io.appmask);
651
652         return __nvme_submit_user_cmd(ns->queue, &c,
653                         (void __user *)(uintptr_t)io.addr, length,
654                         metadata, meta_len, io.slba, NULL, 0);
655 }
656
657 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
658                         struct nvme_passthru_cmd __user *ucmd)
659 {
660         struct nvme_passthru_cmd cmd;
661         struct nvme_command c;
662         unsigned timeout = 0;
663         int status;
664
665         if (!capable(CAP_SYS_ADMIN))
666                 return -EACCES;
667         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
668                 return -EFAULT;
669         if (cmd.flags)
670                 return -EINVAL;
671
672         memset(&c, 0, sizeof(c));
673         c.common.opcode = cmd.opcode;
674         c.common.flags = cmd.flags;
675         c.common.nsid = cpu_to_le32(cmd.nsid);
676         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
677         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
678         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
679         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
680         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
681         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
682         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
683         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
684
685         if (cmd.timeout_ms)
686                 timeout = msecs_to_jiffies(cmd.timeout_ms);
687
688         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
689                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
690                         &cmd.result, timeout);
691         if (status >= 0) {
692                 if (put_user(cmd.result, &ucmd->result))
693                         return -EFAULT;
694         }
695
696         return status;
697 }
698
699 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
700                 unsigned int cmd, unsigned long arg)
701 {
702         struct nvme_ns *ns = bdev->bd_disk->private_data;
703
704         switch (cmd) {
705         case NVME_IOCTL_ID:
706                 force_successful_syscall_return();
707                 return ns->ns_id;
708         case NVME_IOCTL_ADMIN_CMD:
709                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
710         case NVME_IOCTL_IO_CMD:
711                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
712         case NVME_IOCTL_SUBMIT_IO:
713                 return nvme_submit_io(ns, (void __user *)arg);
714 #ifdef CONFIG_BLK_DEV_NVME_SCSI
715         case SG_GET_VERSION_NUM:
716                 return nvme_sg_get_version_num((void __user *)arg);
717         case SG_IO:
718                 return nvme_sg_io(ns, (void __user *)arg);
719 #endif
720         default:
721                 return -ENOTTY;
722         }
723 }
724
725 #ifdef CONFIG_COMPAT
726 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
727                         unsigned int cmd, unsigned long arg)
728 {
729         switch (cmd) {
730         case SG_IO:
731                 return -ENOIOCTLCMD;
732         }
733         return nvme_ioctl(bdev, mode, cmd, arg);
734 }
735 #else
736 #define nvme_compat_ioctl       NULL
737 #endif
738
739 static int nvme_open(struct block_device *bdev, fmode_t mode)
740 {
741         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
742 }
743
744 static void nvme_release(struct gendisk *disk, fmode_t mode)
745 {
746         struct nvme_ns *ns = disk->private_data;
747
748         module_put(ns->ctrl->ops->module);
749         nvme_put_ns(ns);
750 }
751
752 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
753 {
754         /* some standard values */
755         geo->heads = 1 << 6;
756         geo->sectors = 1 << 5;
757         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
758         return 0;
759 }
760
761 #ifdef CONFIG_BLK_DEV_INTEGRITY
762 static void nvme_init_integrity(struct nvme_ns *ns)
763 {
764         struct blk_integrity integrity;
765
766         switch (ns->pi_type) {
767         case NVME_NS_DPS_PI_TYPE3:
768                 integrity.profile = &t10_pi_type3_crc;
769                 integrity.tag_size = sizeof(u16) + sizeof(u32);
770                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
771                 break;
772         case NVME_NS_DPS_PI_TYPE1:
773         case NVME_NS_DPS_PI_TYPE2:
774                 integrity.profile = &t10_pi_type1_crc;
775                 integrity.tag_size = sizeof(u16);
776                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
777                 break;
778         default:
779                 integrity.profile = NULL;
780                 break;
781         }
782         integrity.tuple_size = ns->ms;
783         blk_integrity_register(ns->disk, &integrity);
784         blk_queue_max_integrity_segments(ns->queue, 1);
785 }
786 #else
787 static void nvme_init_integrity(struct nvme_ns *ns)
788 {
789 }
790 #endif /* CONFIG_BLK_DEV_INTEGRITY */
791
792 static void nvme_config_discard(struct nvme_ns *ns)
793 {
794         struct nvme_ctrl *ctrl = ns->ctrl;
795         u32 logical_block_size = queue_logical_block_size(ns->queue);
796
797         if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
798                 ns->queue->limits.discard_zeroes_data = 1;
799         else
800                 ns->queue->limits.discard_zeroes_data = 0;
801
802         ns->queue->limits.discard_alignment = logical_block_size;
803         ns->queue->limits.discard_granularity = logical_block_size;
804         blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
805         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
806 }
807
808 static int nvme_revalidate_disk(struct gendisk *disk)
809 {
810         struct nvme_ns *ns = disk->private_data;
811         struct nvme_id_ns *id;
812         u8 lbaf, pi_type;
813         u16 old_ms;
814         unsigned short bs;
815
816         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
817                 set_capacity(disk, 0);
818                 return -ENODEV;
819         }
820         if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
821                 dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
822                                 __func__);
823                 return -ENODEV;
824         }
825         if (id->ncap == 0) {
826                 kfree(id);
827                 return -ENODEV;
828         }
829
830         if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
831                 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
832                         dev_warn(disk_to_dev(ns->disk),
833                                 "%s: LightNVM init failure\n", __func__);
834                         kfree(id);
835                         return -ENODEV;
836                 }
837                 ns->type = NVME_NS_LIGHTNVM;
838         }
839
840         if (ns->ctrl->vs >= NVME_VS(1, 1))
841                 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
842         if (ns->ctrl->vs >= NVME_VS(1, 2))
843                 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
844
845         old_ms = ns->ms;
846         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
847         ns->lba_shift = id->lbaf[lbaf].ds;
848         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
849         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
850
851         /*
852          * If identify namespace failed, use default 512 byte block size so
853          * block layer can use before failing read/write for 0 capacity.
854          */
855         if (ns->lba_shift == 0)
856                 ns->lba_shift = 9;
857         bs = 1 << ns->lba_shift;
858         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
859         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
860                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
861
862         blk_mq_freeze_queue(disk->queue);
863         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
864                                 ns->ms != old_ms ||
865                                 bs != queue_logical_block_size(disk->queue) ||
866                                 (ns->ms && ns->ext)))
867                 blk_integrity_unregister(disk);
868
869         ns->pi_type = pi_type;
870         blk_queue_logical_block_size(ns->queue, bs);
871
872         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
873                 nvme_init_integrity(ns);
874         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
875                 set_capacity(disk, 0);
876         else
877                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
878
879         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
880                 nvme_config_discard(ns);
881         blk_mq_unfreeze_queue(disk->queue);
882
883         kfree(id);
884         return 0;
885 }
886
887 static char nvme_pr_type(enum pr_type type)
888 {
889         switch (type) {
890         case PR_WRITE_EXCLUSIVE:
891                 return 1;
892         case PR_EXCLUSIVE_ACCESS:
893                 return 2;
894         case PR_WRITE_EXCLUSIVE_REG_ONLY:
895                 return 3;
896         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
897                 return 4;
898         case PR_WRITE_EXCLUSIVE_ALL_REGS:
899                 return 5;
900         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
901                 return 6;
902         default:
903                 return 0;
904         }
905 };
906
907 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
908                                 u64 key, u64 sa_key, u8 op)
909 {
910         struct nvme_ns *ns = bdev->bd_disk->private_data;
911         struct nvme_command c;
912         u8 data[16] = { 0, };
913
914         put_unaligned_le64(key, &data[0]);
915         put_unaligned_le64(sa_key, &data[8]);
916
917         memset(&c, 0, sizeof(c));
918         c.common.opcode = op;
919         c.common.nsid = cpu_to_le32(ns->ns_id);
920         c.common.cdw10[0] = cpu_to_le32(cdw10);
921
922         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
923 }
924
925 static int nvme_pr_register(struct block_device *bdev, u64 old,
926                 u64 new, unsigned flags)
927 {
928         u32 cdw10;
929
930         if (flags & ~PR_FL_IGNORE_KEY)
931                 return -EOPNOTSUPP;
932
933         cdw10 = old ? 2 : 0;
934         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
935         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
936         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
937 }
938
939 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
940                 enum pr_type type, unsigned flags)
941 {
942         u32 cdw10;
943
944         if (flags & ~PR_FL_IGNORE_KEY)
945                 return -EOPNOTSUPP;
946
947         cdw10 = nvme_pr_type(type) << 8;
948         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
949         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
950 }
951
952 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
953                 enum pr_type type, bool abort)
954 {
955         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
956         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
957 }
958
959 static int nvme_pr_clear(struct block_device *bdev, u64 key)
960 {
961         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
962         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
963 }
964
965 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
966 {
967         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
968         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
969 }
970
971 static const struct pr_ops nvme_pr_ops = {
972         .pr_register    = nvme_pr_register,
973         .pr_reserve     = nvme_pr_reserve,
974         .pr_release     = nvme_pr_release,
975         .pr_preempt     = nvme_pr_preempt,
976         .pr_clear       = nvme_pr_clear,
977 };
978
979 static const struct block_device_operations nvme_fops = {
980         .owner          = THIS_MODULE,
981         .ioctl          = nvme_ioctl,
982         .compat_ioctl   = nvme_compat_ioctl,
983         .open           = nvme_open,
984         .release        = nvme_release,
985         .getgeo         = nvme_getgeo,
986         .revalidate_disk= nvme_revalidate_disk,
987         .pr_ops         = &nvme_pr_ops,
988 };
989
990 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
991 {
992         unsigned long timeout =
993                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
994         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
995         int ret;
996
997         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
998                 if ((csts & NVME_CSTS_RDY) == bit)
999                         break;
1000
1001                 msleep(100);
1002                 if (fatal_signal_pending(current))
1003                         return -EINTR;
1004                 if (time_after(jiffies, timeout)) {
1005                         dev_err(ctrl->device,
1006                                 "Device not ready; aborting %s\n", enabled ?
1007                                                 "initialisation" : "reset");
1008                         return -ENODEV;
1009                 }
1010         }
1011
1012         return ret;
1013 }
1014
1015 /*
1016  * If the device has been passed off to us in an enabled state, just clear
1017  * the enabled bit.  The spec says we should set the 'shutdown notification
1018  * bits', but doing so may cause the device to complete commands to the
1019  * admin queue ... and we don't know what memory that might be pointing at!
1020  */
1021 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1022 {
1023         int ret;
1024
1025         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1026         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1027
1028         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1029         if (ret)
1030                 return ret;
1031         return nvme_wait_ready(ctrl, cap, false);
1032 }
1033 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1034
1035 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1036 {
1037         /*
1038          * Default to a 4K page size, with the intention to update this
1039          * path in the future to accomodate architectures with differing
1040          * kernel and IO page sizes.
1041          */
1042         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1043         int ret;
1044
1045         if (page_shift < dev_page_min) {
1046                 dev_err(ctrl->device,
1047                         "Minimum device page size %u too large for host (%u)\n",
1048                         1 << dev_page_min, 1 << page_shift);
1049                 return -ENODEV;
1050         }
1051
1052         ctrl->page_size = 1 << page_shift;
1053
1054         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1055         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1056         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1057         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1058         ctrl->ctrl_config |= NVME_CC_ENABLE;
1059
1060         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1061         if (ret)
1062                 return ret;
1063         return nvme_wait_ready(ctrl, cap, true);
1064 }
1065 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1066
1067 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1068 {
1069         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1070         u32 csts;
1071         int ret;
1072
1073         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1074         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1075
1076         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1077         if (ret)
1078                 return ret;
1079
1080         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1081                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1082                         break;
1083
1084                 msleep(100);
1085                 if (fatal_signal_pending(current))
1086                         return -EINTR;
1087                 if (time_after(jiffies, timeout)) {
1088                         dev_err(ctrl->device,
1089                                 "Device shutdown incomplete; abort shutdown\n");
1090                         return -ENODEV;
1091                 }
1092         }
1093
1094         return ret;
1095 }
1096 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1097
1098 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1099                 struct request_queue *q)
1100 {
1101         bool vwc = false;
1102
1103         if (ctrl->max_hw_sectors) {
1104                 u32 max_segments =
1105                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1106
1107                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1108                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1109         }
1110         if (ctrl->stripe_size)
1111                 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1112         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1113         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1114                 vwc = true;
1115         blk_queue_write_cache(q, vwc, vwc);
1116 }
1117
1118 /*
1119  * Initialize the cached copies of the Identify data and various controller
1120  * register in our nvme_ctrl structure.  This should be called as soon as
1121  * the admin queue is fully up and running.
1122  */
1123 int nvme_init_identify(struct nvme_ctrl *ctrl)
1124 {
1125         struct nvme_id_ctrl *id;
1126         u64 cap;
1127         int ret, page_shift;
1128         u32 max_hw_sectors;
1129
1130         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1131         if (ret) {
1132                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1133                 return ret;
1134         }
1135
1136         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1137         if (ret) {
1138                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1139                 return ret;
1140         }
1141         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1142
1143         if (ctrl->vs >= NVME_VS(1, 1))
1144                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1145
1146         ret = nvme_identify_ctrl(ctrl, &id);
1147         if (ret) {
1148                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1149                 return -EIO;
1150         }
1151
1152         ctrl->vid = le16_to_cpu(id->vid);
1153         ctrl->oncs = le16_to_cpup(&id->oncs);
1154         atomic_set(&ctrl->abort_limit, id->acl + 1);
1155         ctrl->vwc = id->vwc;
1156         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1157         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1158         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1159         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1160         if (id->mdts)
1161                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1162         else
1163                 max_hw_sectors = UINT_MAX;
1164         ctrl->max_hw_sectors =
1165                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1166
1167         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1168                 unsigned int max_hw_sectors;
1169
1170                 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1171                 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1172                 if (ctrl->max_hw_sectors) {
1173                         ctrl->max_hw_sectors = min(max_hw_sectors,
1174                                                         ctrl->max_hw_sectors);
1175                 } else {
1176                         ctrl->max_hw_sectors = max_hw_sectors;
1177                 }
1178         }
1179
1180         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1181         ctrl->sgls = le32_to_cpu(id->sgls);
1182
1183         if (ctrl->ops->is_fabrics) {
1184                 ctrl->icdoff = le16_to_cpu(id->icdoff);
1185                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1186                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1187                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1188
1189                 /*
1190                  * In fabrics we need to verify the cntlid matches the
1191                  * admin connect
1192                  */
1193                 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1194                         ret = -EINVAL;
1195         } else {
1196                 ctrl->cntlid = le16_to_cpu(id->cntlid);
1197         }
1198
1199         kfree(id);
1200         return ret;
1201 }
1202 EXPORT_SYMBOL_GPL(nvme_init_identify);
1203
1204 static int nvme_dev_open(struct inode *inode, struct file *file)
1205 {
1206         struct nvme_ctrl *ctrl;
1207         int instance = iminor(inode);
1208         int ret = -ENODEV;
1209
1210         spin_lock(&dev_list_lock);
1211         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1212                 if (ctrl->instance != instance)
1213                         continue;
1214
1215                 if (!ctrl->admin_q) {
1216                         ret = -EWOULDBLOCK;
1217                         break;
1218                 }
1219                 if (!kref_get_unless_zero(&ctrl->kref))
1220                         break;
1221                 file->private_data = ctrl;
1222                 ret = 0;
1223                 break;
1224         }
1225         spin_unlock(&dev_list_lock);
1226
1227         return ret;
1228 }
1229
1230 static int nvme_dev_release(struct inode *inode, struct file *file)
1231 {
1232         nvme_put_ctrl(file->private_data);
1233         return 0;
1234 }
1235
1236 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1237 {
1238         struct nvme_ns *ns;
1239         int ret;
1240
1241         mutex_lock(&ctrl->namespaces_mutex);
1242         if (list_empty(&ctrl->namespaces)) {
1243                 ret = -ENOTTY;
1244                 goto out_unlock;
1245         }
1246
1247         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1248         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1249                 dev_warn(ctrl->device,
1250                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1251                 ret = -EINVAL;
1252                 goto out_unlock;
1253         }
1254
1255         dev_warn(ctrl->device,
1256                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1257         kref_get(&ns->kref);
1258         mutex_unlock(&ctrl->namespaces_mutex);
1259
1260         ret = nvme_user_cmd(ctrl, ns, argp);
1261         nvme_put_ns(ns);
1262         return ret;
1263
1264 out_unlock:
1265         mutex_unlock(&ctrl->namespaces_mutex);
1266         return ret;
1267 }
1268
1269 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1270                 unsigned long arg)
1271 {
1272         struct nvme_ctrl *ctrl = file->private_data;
1273         void __user *argp = (void __user *)arg;
1274
1275         switch (cmd) {
1276         case NVME_IOCTL_ADMIN_CMD:
1277                 return nvme_user_cmd(ctrl, NULL, argp);
1278         case NVME_IOCTL_IO_CMD:
1279                 return nvme_dev_user_cmd(ctrl, argp);
1280         case NVME_IOCTL_RESET:
1281                 dev_warn(ctrl->device, "resetting controller\n");
1282                 return ctrl->ops->reset_ctrl(ctrl);
1283         case NVME_IOCTL_SUBSYS_RESET:
1284                 return nvme_reset_subsystem(ctrl);
1285         case NVME_IOCTL_RESCAN:
1286                 nvme_queue_scan(ctrl);
1287                 return 0;
1288         default:
1289                 return -ENOTTY;
1290         }
1291 }
1292
1293 static const struct file_operations nvme_dev_fops = {
1294         .owner          = THIS_MODULE,
1295         .open           = nvme_dev_open,
1296         .release        = nvme_dev_release,
1297         .unlocked_ioctl = nvme_dev_ioctl,
1298         .compat_ioctl   = nvme_dev_ioctl,
1299 };
1300
1301 static ssize_t nvme_sysfs_reset(struct device *dev,
1302                                 struct device_attribute *attr, const char *buf,
1303                                 size_t count)
1304 {
1305         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1306         int ret;
1307
1308         ret = ctrl->ops->reset_ctrl(ctrl);
1309         if (ret < 0)
1310                 return ret;
1311         return count;
1312 }
1313 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1314
1315 static ssize_t nvme_sysfs_rescan(struct device *dev,
1316                                 struct device_attribute *attr, const char *buf,
1317                                 size_t count)
1318 {
1319         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1320
1321         nvme_queue_scan(ctrl);
1322         return count;
1323 }
1324 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1325
1326 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1327                                                                 char *buf)
1328 {
1329         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1330         struct nvme_ctrl *ctrl = ns->ctrl;
1331         int serial_len = sizeof(ctrl->serial);
1332         int model_len = sizeof(ctrl->model);
1333
1334         if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1335                 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1336
1337         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1338                 return sprintf(buf, "eui.%8phN\n", ns->eui);
1339
1340         while (ctrl->serial[serial_len - 1] == ' ')
1341                 serial_len--;
1342         while (ctrl->model[model_len - 1] == ' ')
1343                 model_len--;
1344
1345         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1346                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1347 }
1348 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1349
1350 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1351                                                                 char *buf)
1352 {
1353         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1354         return sprintf(buf, "%pU\n", ns->uuid);
1355 }
1356 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1357
1358 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1359                                                                 char *buf)
1360 {
1361         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1362         return sprintf(buf, "%8phd\n", ns->eui);
1363 }
1364 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1365
1366 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1367                                                                 char *buf)
1368 {
1369         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1370         return sprintf(buf, "%d\n", ns->ns_id);
1371 }
1372 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1373
1374 static struct attribute *nvme_ns_attrs[] = {
1375         &dev_attr_wwid.attr,
1376         &dev_attr_uuid.attr,
1377         &dev_attr_eui.attr,
1378         &dev_attr_nsid.attr,
1379         NULL,
1380 };
1381
1382 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1383                 struct attribute *a, int n)
1384 {
1385         struct device *dev = container_of(kobj, struct device, kobj);
1386         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1387
1388         if (a == &dev_attr_uuid.attr) {
1389                 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1390                         return 0;
1391         }
1392         if (a == &dev_attr_eui.attr) {
1393                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1394                         return 0;
1395         }
1396         return a->mode;
1397 }
1398
1399 static const struct attribute_group nvme_ns_attr_group = {
1400         .attrs          = nvme_ns_attrs,
1401         .is_visible     = nvme_ns_attrs_are_visible,
1402 };
1403
1404 #define nvme_show_str_function(field)                                           \
1405 static ssize_t  field##_show(struct device *dev,                                \
1406                             struct device_attribute *attr, char *buf)           \
1407 {                                                                               \
1408         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1409         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1410 }                                                                               \
1411 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1412
1413 #define nvme_show_int_function(field)                                           \
1414 static ssize_t  field##_show(struct device *dev,                                \
1415                             struct device_attribute *attr, char *buf)           \
1416 {                                                                               \
1417         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1418         return sprintf(buf, "%d\n", ctrl->field);       \
1419 }                                                                               \
1420 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1421
1422 nvme_show_str_function(model);
1423 nvme_show_str_function(serial);
1424 nvme_show_str_function(firmware_rev);
1425 nvme_show_int_function(cntlid);
1426
1427 static ssize_t nvme_sysfs_delete(struct device *dev,
1428                                 struct device_attribute *attr, const char *buf,
1429                                 size_t count)
1430 {
1431         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1432
1433         if (device_remove_file_self(dev, attr))
1434                 ctrl->ops->delete_ctrl(ctrl);
1435         return count;
1436 }
1437 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1438
1439 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1440                                          struct device_attribute *attr,
1441                                          char *buf)
1442 {
1443         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1444
1445         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1446 }
1447 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1448
1449 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1450                                          struct device_attribute *attr,
1451                                          char *buf)
1452 {
1453         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1454
1455         return snprintf(buf, PAGE_SIZE, "%s\n",
1456                         ctrl->ops->get_subsysnqn(ctrl));
1457 }
1458 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1459
1460 static ssize_t nvme_sysfs_show_address(struct device *dev,
1461                                          struct device_attribute *attr,
1462                                          char *buf)
1463 {
1464         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1465
1466         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1467 }
1468 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1469
1470 static struct attribute *nvme_dev_attrs[] = {
1471         &dev_attr_reset_controller.attr,
1472         &dev_attr_rescan_controller.attr,
1473         &dev_attr_model.attr,
1474         &dev_attr_serial.attr,
1475         &dev_attr_firmware_rev.attr,
1476         &dev_attr_cntlid.attr,
1477         &dev_attr_delete_controller.attr,
1478         &dev_attr_transport.attr,
1479         &dev_attr_subsysnqn.attr,
1480         &dev_attr_address.attr,
1481         NULL
1482 };
1483
1484 #define CHECK_ATTR(ctrl, a, name)               \
1485         if ((a) == &dev_attr_##name.attr &&     \
1486             !(ctrl)->ops->get_##name)           \
1487                 return 0
1488
1489 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1490                 struct attribute *a, int n)
1491 {
1492         struct device *dev = container_of(kobj, struct device, kobj);
1493         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1494
1495         if (a == &dev_attr_delete_controller.attr) {
1496                 if (!ctrl->ops->delete_ctrl)
1497                         return 0;
1498         }
1499
1500         CHECK_ATTR(ctrl, a, subsysnqn);
1501         CHECK_ATTR(ctrl, a, address);
1502
1503         return a->mode;
1504 }
1505
1506 static struct attribute_group nvme_dev_attrs_group = {
1507         .attrs          = nvme_dev_attrs,
1508         .is_visible     = nvme_dev_attrs_are_visible,
1509 };
1510
1511 static const struct attribute_group *nvme_dev_attr_groups[] = {
1512         &nvme_dev_attrs_group,
1513         NULL,
1514 };
1515
1516 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1517 {
1518         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1519         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1520
1521         return nsa->ns_id - nsb->ns_id;
1522 }
1523
1524 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1525 {
1526         struct nvme_ns *ns;
1527
1528         lockdep_assert_held(&ctrl->namespaces_mutex);
1529
1530         list_for_each_entry(ns, &ctrl->namespaces, list) {
1531                 if (ns->ns_id == nsid)
1532                         return ns;
1533                 if (ns->ns_id > nsid)
1534                         break;
1535         }
1536         return NULL;
1537 }
1538
1539 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1540 {
1541         struct nvme_ns *ns;
1542         struct gendisk *disk;
1543         int node = dev_to_node(ctrl->dev);
1544
1545         lockdep_assert_held(&ctrl->namespaces_mutex);
1546
1547         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1548         if (!ns)
1549                 return;
1550
1551         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1552         if (ns->instance < 0)
1553                 goto out_free_ns;
1554
1555         ns->queue = blk_mq_init_queue(ctrl->tagset);
1556         if (IS_ERR(ns->queue))
1557                 goto out_release_instance;
1558         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1559         ns->queue->queuedata = ns;
1560         ns->ctrl = ctrl;
1561
1562         disk = alloc_disk_node(0, node);
1563         if (!disk)
1564                 goto out_free_queue;
1565
1566         kref_init(&ns->kref);
1567         ns->ns_id = nsid;
1568         ns->disk = disk;
1569         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1570
1571
1572         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1573         nvme_set_queue_limits(ctrl, ns->queue);
1574
1575         disk->major = nvme_major;
1576         disk->first_minor = 0;
1577         disk->fops = &nvme_fops;
1578         disk->private_data = ns;
1579         disk->queue = ns->queue;
1580         disk->driverfs_dev = ctrl->device;
1581         disk->flags = GENHD_FL_EXT_DEVT;
1582         sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1583
1584         if (nvme_revalidate_disk(ns->disk))
1585                 goto out_free_disk;
1586
1587         list_add_tail_rcu(&ns->list, &ctrl->namespaces);
1588         kref_get(&ctrl->kref);
1589         if (ns->type == NVME_NS_LIGHTNVM)
1590                 return;
1591
1592         add_disk(ns->disk);
1593         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1594                                         &nvme_ns_attr_group))
1595                 pr_warn("%s: failed to create sysfs group for identification\n",
1596                         ns->disk->disk_name);
1597         return;
1598  out_free_disk:
1599         kfree(disk);
1600  out_free_queue:
1601         blk_cleanup_queue(ns->queue);
1602  out_release_instance:
1603         ida_simple_remove(&ctrl->ns_ida, ns->instance);
1604  out_free_ns:
1605         kfree(ns);
1606 }
1607
1608 static void nvme_ns_remove(struct nvme_ns *ns)
1609 {
1610         lockdep_assert_held(&ns->ctrl->namespaces_mutex);
1611
1612         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1613                 return;
1614
1615         if (ns->disk->flags & GENHD_FL_UP) {
1616                 if (blk_get_integrity(ns->disk))
1617                         blk_integrity_unregister(ns->disk);
1618                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1619                                         &nvme_ns_attr_group);
1620                 del_gendisk(ns->disk);
1621                 blk_mq_abort_requeue_list(ns->queue);
1622                 blk_cleanup_queue(ns->queue);
1623         }
1624         list_del_init(&ns->list);
1625         synchronize_rcu();
1626         nvme_put_ns(ns);
1627 }
1628
1629 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1630 {
1631         struct nvme_ns *ns;
1632
1633         ns = nvme_find_ns(ctrl, nsid);
1634         if (ns) {
1635                 if (revalidate_disk(ns->disk))
1636                         nvme_ns_remove(ns);
1637         } else
1638                 nvme_alloc_ns(ctrl, nsid);
1639 }
1640
1641 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1642                                         unsigned nsid)
1643 {
1644         struct nvme_ns *ns, *next;
1645
1646         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1647                 if (ns->ns_id > nsid)
1648                         nvme_ns_remove(ns);
1649         }
1650 }
1651
1652 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1653 {
1654         struct nvme_ns *ns;
1655         __le32 *ns_list;
1656         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1657         int ret = 0;
1658
1659         ns_list = kzalloc(0x1000, GFP_KERNEL);
1660         if (!ns_list)
1661                 return -ENOMEM;
1662
1663         for (i = 0; i < num_lists; i++) {
1664                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1665                 if (ret)
1666                         goto free;
1667
1668                 for (j = 0; j < min(nn, 1024U); j++) {
1669                         nsid = le32_to_cpu(ns_list[j]);
1670                         if (!nsid)
1671                                 goto out;
1672
1673                         nvme_validate_ns(ctrl, nsid);
1674
1675                         while (++prev < nsid) {
1676                                 ns = nvme_find_ns(ctrl, prev);
1677                                 if (ns)
1678                                         nvme_ns_remove(ns);
1679                         }
1680                 }
1681                 nn -= j;
1682         }
1683  out:
1684         nvme_remove_invalid_namespaces(ctrl, prev);
1685  free:
1686         kfree(ns_list);
1687         return ret;
1688 }
1689
1690 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1691 {
1692         unsigned i;
1693
1694         lockdep_assert_held(&ctrl->namespaces_mutex);
1695
1696         for (i = 1; i <= nn; i++)
1697                 nvme_validate_ns(ctrl, i);
1698
1699         nvme_remove_invalid_namespaces(ctrl, nn);
1700 }
1701
1702 static void nvme_scan_work(struct work_struct *work)
1703 {
1704         struct nvme_ctrl *ctrl =
1705                 container_of(work, struct nvme_ctrl, scan_work);
1706         struct nvme_id_ctrl *id;
1707         unsigned nn;
1708
1709         if (ctrl->state != NVME_CTRL_LIVE)
1710                 return;
1711
1712         if (nvme_identify_ctrl(ctrl, &id))
1713                 return;
1714
1715         mutex_lock(&ctrl->namespaces_mutex);
1716         nn = le32_to_cpu(id->nn);
1717         if (ctrl->vs >= NVME_VS(1, 1) &&
1718             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1719                 if (!nvme_scan_ns_list(ctrl, nn))
1720                         goto done;
1721         }
1722         nvme_scan_ns_sequential(ctrl, nn);
1723  done:
1724         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1725         mutex_unlock(&ctrl->namespaces_mutex);
1726         kfree(id);
1727
1728         if (ctrl->ops->post_scan)
1729                 ctrl->ops->post_scan(ctrl);
1730 }
1731
1732 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1733 {
1734         /*
1735          * Do not queue new scan work when a controller is reset during
1736          * removal.
1737          */
1738         if (ctrl->state == NVME_CTRL_LIVE)
1739                 schedule_work(&ctrl->scan_work);
1740 }
1741 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1742
1743 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1744 {
1745         struct nvme_ns *ns, *next;
1746
1747         /*
1748          * The dead states indicates the controller was not gracefully
1749          * disconnected. In that case, we won't be able to flush any data while
1750          * removing the namespaces' disks; fail all the queues now to avoid
1751          * potentially having to clean up the failed sync later.
1752          */
1753         if (ctrl->state == NVME_CTRL_DEAD)
1754                 nvme_kill_queues(ctrl);
1755
1756         mutex_lock(&ctrl->namespaces_mutex);
1757         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1758                 nvme_ns_remove(ns);
1759         mutex_unlock(&ctrl->namespaces_mutex);
1760 }
1761 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1762
1763 static void nvme_async_event_work(struct work_struct *work)
1764 {
1765         struct nvme_ctrl *ctrl =
1766                 container_of(work, struct nvme_ctrl, async_event_work);
1767
1768         spin_lock_irq(&ctrl->lock);
1769         while (ctrl->event_limit > 0) {
1770                 int aer_idx = --ctrl->event_limit;
1771
1772                 spin_unlock_irq(&ctrl->lock);
1773                 ctrl->ops->submit_async_event(ctrl, aer_idx);
1774                 spin_lock_irq(&ctrl->lock);
1775         }
1776         spin_unlock_irq(&ctrl->lock);
1777 }
1778
1779 void nvme_complete_async_event(struct nvme_ctrl *ctrl,
1780                 struct nvme_completion *cqe)
1781 {
1782         u16 status = le16_to_cpu(cqe->status) >> 1;
1783         u32 result = le32_to_cpu(cqe->result);
1784
1785         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
1786                 ++ctrl->event_limit;
1787                 schedule_work(&ctrl->async_event_work);
1788         }
1789
1790         if (status != NVME_SC_SUCCESS)
1791                 return;
1792
1793         switch (result & 0xff07) {
1794         case NVME_AER_NOTICE_NS_CHANGED:
1795                 dev_info(ctrl->device, "rescanning\n");
1796                 nvme_queue_scan(ctrl);
1797                 break;
1798         default:
1799                 dev_warn(ctrl->device, "async event result %08x\n", result);
1800         }
1801 }
1802 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1803
1804 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1805 {
1806         ctrl->event_limit = NVME_NR_AERS;
1807         schedule_work(&ctrl->async_event_work);
1808 }
1809 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1810
1811 static DEFINE_IDA(nvme_instance_ida);
1812
1813 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1814 {
1815         int instance, error;
1816
1817         do {
1818                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1819                         return -ENODEV;
1820
1821                 spin_lock(&dev_list_lock);
1822                 error = ida_get_new(&nvme_instance_ida, &instance);
1823                 spin_unlock(&dev_list_lock);
1824         } while (error == -EAGAIN);
1825
1826         if (error)
1827                 return -ENODEV;
1828
1829         ctrl->instance = instance;
1830         return 0;
1831 }
1832
1833 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1834 {
1835         spin_lock(&dev_list_lock);
1836         ida_remove(&nvme_instance_ida, ctrl->instance);
1837         spin_unlock(&dev_list_lock);
1838 }
1839
1840 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1841 {
1842         flush_work(&ctrl->async_event_work);
1843         flush_work(&ctrl->scan_work);
1844         nvme_remove_namespaces(ctrl);
1845
1846         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1847
1848         spin_lock(&dev_list_lock);
1849         list_del(&ctrl->node);
1850         spin_unlock(&dev_list_lock);
1851 }
1852 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1853
1854 static void nvme_free_ctrl(struct kref *kref)
1855 {
1856         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1857
1858         put_device(ctrl->device);
1859         nvme_release_instance(ctrl);
1860         ida_destroy(&ctrl->ns_ida);
1861
1862         ctrl->ops->free_ctrl(ctrl);
1863 }
1864
1865 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1866 {
1867         kref_put(&ctrl->kref, nvme_free_ctrl);
1868 }
1869 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1870
1871 /*
1872  * Initialize a NVMe controller structures.  This needs to be called during
1873  * earliest initialization so that we have the initialized structured around
1874  * during probing.
1875  */
1876 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1877                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1878 {
1879         int ret;
1880
1881         ctrl->state = NVME_CTRL_NEW;
1882         spin_lock_init(&ctrl->lock);
1883         INIT_LIST_HEAD(&ctrl->namespaces);
1884         mutex_init(&ctrl->namespaces_mutex);
1885         kref_init(&ctrl->kref);
1886         ctrl->dev = dev;
1887         ctrl->ops = ops;
1888         ctrl->quirks = quirks;
1889         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1890         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1891
1892         ret = nvme_set_instance(ctrl);
1893         if (ret)
1894                 goto out;
1895
1896         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1897                                 MKDEV(nvme_char_major, ctrl->instance),
1898                                 ctrl, nvme_dev_attr_groups,
1899                                 "nvme%d", ctrl->instance);
1900         if (IS_ERR(ctrl->device)) {
1901                 ret = PTR_ERR(ctrl->device);
1902                 goto out_release_instance;
1903         }
1904         get_device(ctrl->device);
1905         ida_init(&ctrl->ns_ida);
1906
1907         spin_lock(&dev_list_lock);
1908         list_add_tail(&ctrl->node, &nvme_ctrl_list);
1909         spin_unlock(&dev_list_lock);
1910
1911         return 0;
1912 out_release_instance:
1913         nvme_release_instance(ctrl);
1914 out:
1915         return ret;
1916 }
1917 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1918
1919 /**
1920  * nvme_kill_queues(): Ends all namespace queues
1921  * @ctrl: the dead controller that needs to end
1922  *
1923  * Call this function when the driver determines it is unable to get the
1924  * controller in a state capable of servicing IO.
1925  */
1926 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1927 {
1928         struct nvme_ns *ns;
1929
1930         rcu_read_lock();
1931         list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1932                 if (!kref_get_unless_zero(&ns->kref))
1933                         continue;
1934
1935                 /*
1936                  * Revalidating a dead namespace sets capacity to 0. This will
1937                  * end buffered writers dirtying pages that can't be synced.
1938                  */
1939                 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1940                         revalidate_disk(ns->disk);
1941
1942                 blk_set_queue_dying(ns->queue);
1943                 blk_mq_abort_requeue_list(ns->queue);
1944                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1945
1946                 nvme_put_ns(ns);
1947         }
1948         rcu_read_unlock();
1949 }
1950 EXPORT_SYMBOL_GPL(nvme_kill_queues);
1951
1952 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1953 {
1954         struct nvme_ns *ns;
1955
1956         rcu_read_lock();
1957         list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1958                 spin_lock_irq(ns->queue->queue_lock);
1959                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1960                 spin_unlock_irq(ns->queue->queue_lock);
1961
1962                 blk_mq_cancel_requeue_work(ns->queue);
1963                 blk_mq_stop_hw_queues(ns->queue);
1964         }
1965         rcu_read_unlock();
1966 }
1967 EXPORT_SYMBOL_GPL(nvme_stop_queues);
1968
1969 void nvme_start_queues(struct nvme_ctrl *ctrl)
1970 {
1971         struct nvme_ns *ns;
1972
1973         rcu_read_lock();
1974         list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1975                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1976                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1977                 blk_mq_kick_requeue_list(ns->queue);
1978         }
1979         rcu_read_unlock();
1980 }
1981 EXPORT_SYMBOL_GPL(nvme_start_queues);
1982
1983 int __init nvme_core_init(void)
1984 {
1985         int result;
1986
1987         result = register_blkdev(nvme_major, "nvme");
1988         if (result < 0)
1989                 return result;
1990         else if (result > 0)
1991                 nvme_major = result;
1992
1993         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1994                                                         &nvme_dev_fops);
1995         if (result < 0)
1996                 goto unregister_blkdev;
1997         else if (result > 0)
1998                 nvme_char_major = result;
1999
2000         nvme_class = class_create(THIS_MODULE, "nvme");
2001         if (IS_ERR(nvme_class)) {
2002                 result = PTR_ERR(nvme_class);
2003                 goto unregister_chrdev;
2004         }
2005
2006         return 0;
2007
2008  unregister_chrdev:
2009         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2010  unregister_blkdev:
2011         unregister_blkdev(nvme_major, "nvme");
2012         return result;
2013 }
2014
2015 void nvme_core_exit(void)
2016 {
2017         class_destroy(nvme_class);
2018         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2019         unregister_blkdev(nvme_major, "nvme");
2020 }
2021
2022 MODULE_LICENSE("GPL");
2023 MODULE_VERSION("1.0");
2024 module_init(nvme_core_init);
2025 module_exit(nvme_core_exit);