]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvme/host/pci.c
nvme-pci: open-code polling logic in nvme_poll
[karo-tx-linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define NVME_Q_DEPTH            1024
39 #define NVME_AQ_DEPTH           256
40 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
41 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
42
43 /*
44  * We handle AEN commands ourselves and don't even let the
45  * block layer know about them.
46  */
47 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
48
49 static int use_threaded_interrupts;
50 module_param(use_threaded_interrupts, int, 0);
51
52 static bool use_cmb_sqes = true;
53 module_param(use_cmb_sqes, bool, 0644);
54 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55
56 static unsigned int max_host_mem_size_mb = 128;
57 module_param(max_host_mem_size_mb, uint, 0444);
58 MODULE_PARM_DESC(max_host_mem_size_mb,
59         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60
61 struct nvme_dev;
62 struct nvme_queue;
63
64 static void nvme_process_cq(struct nvme_queue *nvmeq);
65 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
66
67 /*
68  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
69  */
70 struct nvme_dev {
71         struct nvme_queue **queues;
72         struct blk_mq_tag_set tagset;
73         struct blk_mq_tag_set admin_tagset;
74         u32 __iomem *dbs;
75         struct device *dev;
76         struct dma_pool *prp_page_pool;
77         struct dma_pool *prp_small_pool;
78         unsigned queue_count;
79         unsigned online_queues;
80         unsigned max_qid;
81         int q_depth;
82         u32 db_stride;
83         void __iomem *bar;
84         unsigned long bar_mapped_size;
85         struct work_struct remove_work;
86         struct mutex shutdown_lock;
87         bool subsystem;
88         void __iomem *cmb;
89         dma_addr_t cmb_dma_addr;
90         u64 cmb_size;
91         u32 cmbsz;
92         u32 cmbloc;
93         struct nvme_ctrl ctrl;
94         struct completion ioq_wait;
95
96         /* shadow doorbell buffer support: */
97         u32 *dbbuf_dbs;
98         dma_addr_t dbbuf_dbs_dma_addr;
99         u32 *dbbuf_eis;
100         dma_addr_t dbbuf_eis_dma_addr;
101
102         /* host memory buffer support: */
103         u64 host_mem_size;
104         u32 nr_host_mem_descs;
105         struct nvme_host_mem_buf_desc *host_mem_descs;
106         void **host_mem_desc_bufs;
107 };
108
109 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
110 {
111         return qid * 2 * stride;
112 }
113
114 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
115 {
116         return (qid * 2 + 1) * stride;
117 }
118
119 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
120 {
121         return container_of(ctrl, struct nvme_dev, ctrl);
122 }
123
124 /*
125  * An NVM Express queue.  Each device has at least two (one for admin
126  * commands and one for I/O commands).
127  */
128 struct nvme_queue {
129         struct device *q_dmadev;
130         struct nvme_dev *dev;
131         spinlock_t q_lock;
132         struct nvme_command *sq_cmds;
133         struct nvme_command __iomem *sq_cmds_io;
134         volatile struct nvme_completion *cqes;
135         struct blk_mq_tags **tags;
136         dma_addr_t sq_dma_addr;
137         dma_addr_t cq_dma_addr;
138         u32 __iomem *q_db;
139         u16 q_depth;
140         s16 cq_vector;
141         u16 sq_tail;
142         u16 cq_head;
143         u16 qid;
144         u8 cq_phase;
145         u8 cqe_seen;
146         u32 *dbbuf_sq_db;
147         u32 *dbbuf_cq_db;
148         u32 *dbbuf_sq_ei;
149         u32 *dbbuf_cq_ei;
150 };
151
152 /*
153  * The nvme_iod describes the data in an I/O, including the list of PRP
154  * entries.  You can't see it in this data structure because C doesn't let
155  * me express that.  Use nvme_init_iod to ensure there's enough space
156  * allocated to store the PRP list.
157  */
158 struct nvme_iod {
159         struct nvme_request req;
160         struct nvme_queue *nvmeq;
161         int aborted;
162         int npages;             /* In the PRP list. 0 means small pool in use */
163         int nents;              /* Used in scatterlist */
164         int length;             /* Of data, in bytes */
165         dma_addr_t first_dma;
166         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
167         struct scatterlist *sg;
168         struct scatterlist inline_sg[0];
169 };
170
171 /*
172  * Check we didin't inadvertently grow the command struct
173  */
174 static inline void _nvme_check_size(void)
175 {
176         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
177         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
178         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
179         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
180         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
181         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
182         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
183         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
184         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
185         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
186         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
187         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
188         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
189 }
190
191 static inline unsigned int nvme_dbbuf_size(u32 stride)
192 {
193         return ((num_possible_cpus() + 1) * 8 * stride);
194 }
195
196 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
197 {
198         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
199
200         if (dev->dbbuf_dbs)
201                 return 0;
202
203         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
204                                             &dev->dbbuf_dbs_dma_addr,
205                                             GFP_KERNEL);
206         if (!dev->dbbuf_dbs)
207                 return -ENOMEM;
208         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
209                                             &dev->dbbuf_eis_dma_addr,
210                                             GFP_KERNEL);
211         if (!dev->dbbuf_eis) {
212                 dma_free_coherent(dev->dev, mem_size,
213                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
214                 dev->dbbuf_dbs = NULL;
215                 return -ENOMEM;
216         }
217
218         return 0;
219 }
220
221 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
222 {
223         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
224
225         if (dev->dbbuf_dbs) {
226                 dma_free_coherent(dev->dev, mem_size,
227                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
228                 dev->dbbuf_dbs = NULL;
229         }
230         if (dev->dbbuf_eis) {
231                 dma_free_coherent(dev->dev, mem_size,
232                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
233                 dev->dbbuf_eis = NULL;
234         }
235 }
236
237 static void nvme_dbbuf_init(struct nvme_dev *dev,
238                             struct nvme_queue *nvmeq, int qid)
239 {
240         if (!dev->dbbuf_dbs || !qid)
241                 return;
242
243         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
244         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
245         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
246         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
247 }
248
249 static void nvme_dbbuf_set(struct nvme_dev *dev)
250 {
251         struct nvme_command c;
252
253         if (!dev->dbbuf_dbs)
254                 return;
255
256         memset(&c, 0, sizeof(c));
257         c.dbbuf.opcode = nvme_admin_dbbuf;
258         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
259         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
260
261         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
262                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
263                 /* Free memory and continue on */
264                 nvme_dbbuf_dma_free(dev);
265         }
266 }
267
268 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
269 {
270         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
271 }
272
273 /* Update dbbuf and return true if an MMIO is required */
274 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
275                                               volatile u32 *dbbuf_ei)
276 {
277         if (dbbuf_db) {
278                 u16 old_value;
279
280                 /*
281                  * Ensure that the queue is written before updating
282                  * the doorbell in memory
283                  */
284                 wmb();
285
286                 old_value = *dbbuf_db;
287                 *dbbuf_db = value;
288
289                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
290                         return false;
291         }
292
293         return true;
294 }
295
296 /*
297  * Max size of iod being embedded in the request payload
298  */
299 #define NVME_INT_PAGES          2
300 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
301
302 /*
303  * Will slightly overestimate the number of pages needed.  This is OK
304  * as it only leads to a small amount of wasted memory for the lifetime of
305  * the I/O.
306  */
307 static int nvme_npages(unsigned size, struct nvme_dev *dev)
308 {
309         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
310                                       dev->ctrl.page_size);
311         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
312 }
313
314 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
315                 unsigned int size, unsigned int nseg)
316 {
317         return sizeof(__le64 *) * nvme_npages(size, dev) +
318                         sizeof(struct scatterlist) * nseg;
319 }
320
321 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
322 {
323         return sizeof(struct nvme_iod) +
324                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
325 }
326
327 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
328                                 unsigned int hctx_idx)
329 {
330         struct nvme_dev *dev = data;
331         struct nvme_queue *nvmeq = dev->queues[0];
332
333         WARN_ON(hctx_idx != 0);
334         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
335         WARN_ON(nvmeq->tags);
336
337         hctx->driver_data = nvmeq;
338         nvmeq->tags = &dev->admin_tagset.tags[0];
339         return 0;
340 }
341
342 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
343 {
344         struct nvme_queue *nvmeq = hctx->driver_data;
345
346         nvmeq->tags = NULL;
347 }
348
349 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
350                           unsigned int hctx_idx)
351 {
352         struct nvme_dev *dev = data;
353         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
354
355         if (!nvmeq->tags)
356                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
357
358         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
359         hctx->driver_data = nvmeq;
360         return 0;
361 }
362
363 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
364                 unsigned int hctx_idx, unsigned int numa_node)
365 {
366         struct nvme_dev *dev = set->driver_data;
367         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
368         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
369         struct nvme_queue *nvmeq = dev->queues[queue_idx];
370
371         BUG_ON(!nvmeq);
372         iod->nvmeq = nvmeq;
373         return 0;
374 }
375
376 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
377 {
378         struct nvme_dev *dev = set->driver_data;
379
380         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
381 }
382
383 /**
384  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
385  * @nvmeq: The queue to use
386  * @cmd: The command to send
387  *
388  * Safe to use from interrupt context
389  */
390 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
391                                                 struct nvme_command *cmd)
392 {
393         u16 tail = nvmeq->sq_tail;
394
395         if (nvmeq->sq_cmds_io)
396                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
397         else
398                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
399
400         if (++tail == nvmeq->q_depth)
401                 tail = 0;
402         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
403                                               nvmeq->dbbuf_sq_ei))
404                 writel(tail, nvmeq->q_db);
405         nvmeq->sq_tail = tail;
406 }
407
408 static __le64 **iod_list(struct request *req)
409 {
410         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
411         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
412 }
413
414 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
415 {
416         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
417         int nseg = blk_rq_nr_phys_segments(rq);
418         unsigned int size = blk_rq_payload_bytes(rq);
419
420         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
421                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
422                 if (!iod->sg)
423                         return BLK_STS_RESOURCE;
424         } else {
425                 iod->sg = iod->inline_sg;
426         }
427
428         iod->aborted = 0;
429         iod->npages = -1;
430         iod->nents = 0;
431         iod->length = size;
432
433         return BLK_STS_OK;
434 }
435
436 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
437 {
438         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
439         const int last_prp = dev->ctrl.page_size / 8 - 1;
440         int i;
441         __le64 **list = iod_list(req);
442         dma_addr_t prp_dma = iod->first_dma;
443
444         if (iod->npages == 0)
445                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
446         for (i = 0; i < iod->npages; i++) {
447                 __le64 *prp_list = list[i];
448                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
449                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
450                 prp_dma = next_prp_dma;
451         }
452
453         if (iod->sg != iod->inline_sg)
454                 kfree(iod->sg);
455 }
456
457 #ifdef CONFIG_BLK_DEV_INTEGRITY
458 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
459 {
460         if (be32_to_cpu(pi->ref_tag) == v)
461                 pi->ref_tag = cpu_to_be32(p);
462 }
463
464 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
465 {
466         if (be32_to_cpu(pi->ref_tag) == p)
467                 pi->ref_tag = cpu_to_be32(v);
468 }
469
470 /**
471  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
472  *
473  * The virtual start sector is the one that was originally submitted by the
474  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
475  * start sector may be different. Remap protection information to match the
476  * physical LBA on writes, and back to the original seed on reads.
477  *
478  * Type 0 and 3 do not have a ref tag, so no remapping required.
479  */
480 static void nvme_dif_remap(struct request *req,
481                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
482 {
483         struct nvme_ns *ns = req->rq_disk->private_data;
484         struct bio_integrity_payload *bip;
485         struct t10_pi_tuple *pi;
486         void *p, *pmap;
487         u32 i, nlb, ts, phys, virt;
488
489         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
490                 return;
491
492         bip = bio_integrity(req->bio);
493         if (!bip)
494                 return;
495
496         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
497
498         p = pmap;
499         virt = bip_get_seed(bip);
500         phys = nvme_block_nr(ns, blk_rq_pos(req));
501         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
502         ts = ns->disk->queue->integrity.tuple_size;
503
504         for (i = 0; i < nlb; i++, virt++, phys++) {
505                 pi = (struct t10_pi_tuple *)p;
506                 dif_swap(phys, virt, pi);
507                 p += ts;
508         }
509         kunmap_atomic(pmap);
510 }
511 #else /* CONFIG_BLK_DEV_INTEGRITY */
512 static void nvme_dif_remap(struct request *req,
513                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
514 {
515 }
516 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
517 {
518 }
519 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
520 {
521 }
522 #endif
523
524 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
525 {
526         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527         struct dma_pool *pool;
528         int length = blk_rq_payload_bytes(req);
529         struct scatterlist *sg = iod->sg;
530         int dma_len = sg_dma_len(sg);
531         u64 dma_addr = sg_dma_address(sg);
532         u32 page_size = dev->ctrl.page_size;
533         int offset = dma_addr & (page_size - 1);
534         __le64 *prp_list;
535         __le64 **list = iod_list(req);
536         dma_addr_t prp_dma;
537         int nprps, i;
538
539         length -= (page_size - offset);
540         if (length <= 0)
541                 return true;
542
543         dma_len -= (page_size - offset);
544         if (dma_len) {
545                 dma_addr += (page_size - offset);
546         } else {
547                 sg = sg_next(sg);
548                 dma_addr = sg_dma_address(sg);
549                 dma_len = sg_dma_len(sg);
550         }
551
552         if (length <= page_size) {
553                 iod->first_dma = dma_addr;
554                 return true;
555         }
556
557         nprps = DIV_ROUND_UP(length, page_size);
558         if (nprps <= (256 / 8)) {
559                 pool = dev->prp_small_pool;
560                 iod->npages = 0;
561         } else {
562                 pool = dev->prp_page_pool;
563                 iod->npages = 1;
564         }
565
566         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
567         if (!prp_list) {
568                 iod->first_dma = dma_addr;
569                 iod->npages = -1;
570                 return false;
571         }
572         list[0] = prp_list;
573         iod->first_dma = prp_dma;
574         i = 0;
575         for (;;) {
576                 if (i == page_size >> 3) {
577                         __le64 *old_prp_list = prp_list;
578                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
579                         if (!prp_list)
580                                 return false;
581                         list[iod->npages++] = prp_list;
582                         prp_list[0] = old_prp_list[i - 1];
583                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
584                         i = 1;
585                 }
586                 prp_list[i++] = cpu_to_le64(dma_addr);
587                 dma_len -= page_size;
588                 dma_addr += page_size;
589                 length -= page_size;
590                 if (length <= 0)
591                         break;
592                 if (dma_len > 0)
593                         continue;
594                 BUG_ON(dma_len < 0);
595                 sg = sg_next(sg);
596                 dma_addr = sg_dma_address(sg);
597                 dma_len = sg_dma_len(sg);
598         }
599
600         return true;
601 }
602
603 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
604                 struct nvme_command *cmnd)
605 {
606         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
607         struct request_queue *q = req->q;
608         enum dma_data_direction dma_dir = rq_data_dir(req) ?
609                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
610         blk_status_t ret = BLK_STS_IOERR;
611
612         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
613         iod->nents = blk_rq_map_sg(q, req, iod->sg);
614         if (!iod->nents)
615                 goto out;
616
617         ret = BLK_STS_RESOURCE;
618         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
619                                 DMA_ATTR_NO_WARN))
620                 goto out;
621
622         if (!nvme_setup_prps(dev, req))
623                 goto out_unmap;
624
625         ret = BLK_STS_IOERR;
626         if (blk_integrity_rq(req)) {
627                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
628                         goto out_unmap;
629
630                 sg_init_table(&iod->meta_sg, 1);
631                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
632                         goto out_unmap;
633
634                 if (rq_data_dir(req))
635                         nvme_dif_remap(req, nvme_dif_prep);
636
637                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
638                         goto out_unmap;
639         }
640
641         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
642         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
643         if (blk_integrity_rq(req))
644                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
645         return BLK_STS_OK;
646
647 out_unmap:
648         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
649 out:
650         return ret;
651 }
652
653 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
654 {
655         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
656         enum dma_data_direction dma_dir = rq_data_dir(req) ?
657                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
658
659         if (iod->nents) {
660                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
661                 if (blk_integrity_rq(req)) {
662                         if (!rq_data_dir(req))
663                                 nvme_dif_remap(req, nvme_dif_complete);
664                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
665                 }
666         }
667
668         nvme_cleanup_cmd(req);
669         nvme_free_iod(dev, req);
670 }
671
672 /*
673  * NOTE: ns is NULL when called on the admin queue.
674  */
675 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
676                          const struct blk_mq_queue_data *bd)
677 {
678         struct nvme_ns *ns = hctx->queue->queuedata;
679         struct nvme_queue *nvmeq = hctx->driver_data;
680         struct nvme_dev *dev = nvmeq->dev;
681         struct request *req = bd->rq;
682         struct nvme_command cmnd;
683         blk_status_t ret;
684
685         ret = nvme_setup_cmd(ns, req, &cmnd);
686         if (ret)
687                 return ret;
688
689         ret = nvme_init_iod(req, dev);
690         if (ret)
691                 goto out_free_cmd;
692
693         if (blk_rq_nr_phys_segments(req)) {
694                 ret = nvme_map_data(dev, req, &cmnd);
695                 if (ret)
696                         goto out_cleanup_iod;
697         }
698
699         blk_mq_start_request(req);
700
701         spin_lock_irq(&nvmeq->q_lock);
702         if (unlikely(nvmeq->cq_vector < 0)) {
703                 ret = BLK_STS_IOERR;
704                 spin_unlock_irq(&nvmeq->q_lock);
705                 goto out_cleanup_iod;
706         }
707         __nvme_submit_cmd(nvmeq, &cmnd);
708         nvme_process_cq(nvmeq);
709         spin_unlock_irq(&nvmeq->q_lock);
710         return BLK_STS_OK;
711 out_cleanup_iod:
712         nvme_free_iod(dev, req);
713 out_free_cmd:
714         nvme_cleanup_cmd(req);
715         return ret;
716 }
717
718 static void nvme_pci_complete_rq(struct request *req)
719 {
720         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
721
722         nvme_unmap_data(iod->nvmeq->dev, req);
723         nvme_complete_rq(req);
724 }
725
726 /* We read the CQE phase first to check if the rest of the entry is valid */
727 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
728                 u16 phase)
729 {
730         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
731 }
732
733 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
734 {
735         u16 head = nvmeq->cq_head;
736
737         if (likely(nvmeq->cq_vector >= 0)) {
738                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
739                                                       nvmeq->dbbuf_cq_ei))
740                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
741         }
742 }
743
744 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
745                 struct nvme_completion *cqe)
746 {
747         struct request *req;
748
749         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
750                 dev_warn(nvmeq->dev->ctrl.device,
751                         "invalid id %d completed on queue %d\n",
752                         cqe->command_id, le16_to_cpu(cqe->sq_id));
753                 return;
754         }
755
756         /*
757          * AEN requests are special as they don't time out and can
758          * survive any kind of queue freeze and often don't respond to
759          * aborts.  We don't even bother to allocate a struct request
760          * for them but rather special case them here.
761          */
762         if (unlikely(nvmeq->qid == 0 &&
763                         cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
764                 nvme_complete_async_event(&nvmeq->dev->ctrl,
765                                 cqe->status, &cqe->result);
766                 return;
767         }
768
769         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
770         nvme_end_request(req, cqe->status, cqe->result);
771 }
772
773 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
774                 struct nvme_completion *cqe)
775 {
776         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
777                 *cqe = nvmeq->cqes[nvmeq->cq_head];
778
779                 if (++nvmeq->cq_head == nvmeq->q_depth) {
780                         nvmeq->cq_head = 0;
781                         nvmeq->cq_phase = !nvmeq->cq_phase;
782                 }
783                 return true;
784         }
785         return false;
786 }
787
788 static void nvme_process_cq(struct nvme_queue *nvmeq)
789 {
790         struct nvme_completion cqe;
791         int consumed = 0;
792
793         while (nvme_read_cqe(nvmeq, &cqe)) {
794                 nvme_handle_cqe(nvmeq, &cqe);
795                 consumed++;
796         }
797
798         if (consumed) {
799                 nvme_ring_cq_doorbell(nvmeq);
800                 nvmeq->cqe_seen = 1;
801         }
802 }
803
804 static irqreturn_t nvme_irq(int irq, void *data)
805 {
806         irqreturn_t result;
807         struct nvme_queue *nvmeq = data;
808         spin_lock(&nvmeq->q_lock);
809         nvme_process_cq(nvmeq);
810         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
811         nvmeq->cqe_seen = 0;
812         spin_unlock(&nvmeq->q_lock);
813         return result;
814 }
815
816 static irqreturn_t nvme_irq_check(int irq, void *data)
817 {
818         struct nvme_queue *nvmeq = data;
819         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
820                 return IRQ_WAKE_THREAD;
821         return IRQ_NONE;
822 }
823
824 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
825 {
826         struct nvme_completion cqe;
827         int found = 0, consumed = 0;
828
829         if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
830                 return 0;
831
832         spin_lock_irq(&nvmeq->q_lock);
833         while (nvme_read_cqe(nvmeq, &cqe)) {
834                 nvme_handle_cqe(nvmeq, &cqe);
835                 consumed++;
836
837                 if (tag == cqe.command_id) {
838                         found = 1;
839                         break;
840                 }
841        }
842
843         if (consumed)
844                 nvme_ring_cq_doorbell(nvmeq);
845         spin_unlock_irq(&nvmeq->q_lock);
846
847         return found;
848 }
849
850 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
851 {
852         struct nvme_queue *nvmeq = hctx->driver_data;
853
854         return __nvme_poll(nvmeq, tag);
855 }
856
857 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
858 {
859         struct nvme_dev *dev = to_nvme_dev(ctrl);
860         struct nvme_queue *nvmeq = dev->queues[0];
861         struct nvme_command c;
862
863         memset(&c, 0, sizeof(c));
864         c.common.opcode = nvme_admin_async_event;
865         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
866
867         spin_lock_irq(&nvmeq->q_lock);
868         __nvme_submit_cmd(nvmeq, &c);
869         spin_unlock_irq(&nvmeq->q_lock);
870 }
871
872 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
873 {
874         struct nvme_command c;
875
876         memset(&c, 0, sizeof(c));
877         c.delete_queue.opcode = opcode;
878         c.delete_queue.qid = cpu_to_le16(id);
879
880         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
881 }
882
883 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
884                                                 struct nvme_queue *nvmeq)
885 {
886         struct nvme_command c;
887         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
888
889         /*
890          * Note: we (ab)use the fact the the prp fields survive if no data
891          * is attached to the request.
892          */
893         memset(&c, 0, sizeof(c));
894         c.create_cq.opcode = nvme_admin_create_cq;
895         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
896         c.create_cq.cqid = cpu_to_le16(qid);
897         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
898         c.create_cq.cq_flags = cpu_to_le16(flags);
899         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
900
901         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
902 }
903
904 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
905                                                 struct nvme_queue *nvmeq)
906 {
907         struct nvme_command c;
908         int flags = NVME_QUEUE_PHYS_CONTIG;
909
910         /*
911          * Note: we (ab)use the fact the the prp fields survive if no data
912          * is attached to the request.
913          */
914         memset(&c, 0, sizeof(c));
915         c.create_sq.opcode = nvme_admin_create_sq;
916         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
917         c.create_sq.sqid = cpu_to_le16(qid);
918         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
919         c.create_sq.sq_flags = cpu_to_le16(flags);
920         c.create_sq.cqid = cpu_to_le16(qid);
921
922         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
923 }
924
925 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
926 {
927         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
928 }
929
930 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
931 {
932         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
933 }
934
935 static void abort_endio(struct request *req, blk_status_t error)
936 {
937         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
938         struct nvme_queue *nvmeq = iod->nvmeq;
939
940         dev_warn(nvmeq->dev->ctrl.device,
941                  "Abort status: 0x%x", nvme_req(req)->status);
942         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
943         blk_mq_free_request(req);
944 }
945
946 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
947 {
948
949         /* If true, indicates loss of adapter communication, possibly by a
950          * NVMe Subsystem reset.
951          */
952         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
953
954         /* If there is a reset ongoing, we shouldn't reset again. */
955         if (dev->ctrl.state == NVME_CTRL_RESETTING)
956                 return false;
957
958         /* We shouldn't reset unless the controller is on fatal error state
959          * _or_ if we lost the communication with it.
960          */
961         if (!(csts & NVME_CSTS_CFS) && !nssro)
962                 return false;
963
964         /* If PCI error recovery process is happening, we cannot reset or
965          * the recovery mechanism will surely fail.
966          */
967         if (pci_channel_offline(to_pci_dev(dev->dev)))
968                 return false;
969
970         return true;
971 }
972
973 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
974 {
975         /* Read a config register to help see what died. */
976         u16 pci_status;
977         int result;
978
979         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
980                                       &pci_status);
981         if (result == PCIBIOS_SUCCESSFUL)
982                 dev_warn(dev->ctrl.device,
983                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
984                          csts, pci_status);
985         else
986                 dev_warn(dev->ctrl.device,
987                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
988                          csts, result);
989 }
990
991 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
992 {
993         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
994         struct nvme_queue *nvmeq = iod->nvmeq;
995         struct nvme_dev *dev = nvmeq->dev;
996         struct request *abort_req;
997         struct nvme_command cmd;
998         u32 csts = readl(dev->bar + NVME_REG_CSTS);
999
1000         /*
1001          * Reset immediately if the controller is failed
1002          */
1003         if (nvme_should_reset(dev, csts)) {
1004                 nvme_warn_reset(dev, csts);
1005                 nvme_dev_disable(dev, false);
1006                 nvme_reset_ctrl(&dev->ctrl);
1007                 return BLK_EH_HANDLED;
1008         }
1009
1010         /*
1011          * Did we miss an interrupt?
1012          */
1013         if (__nvme_poll(nvmeq, req->tag)) {
1014                 dev_warn(dev->ctrl.device,
1015                          "I/O %d QID %d timeout, completion polled\n",
1016                          req->tag, nvmeq->qid);
1017                 return BLK_EH_HANDLED;
1018         }
1019
1020         /*
1021          * Shutdown immediately if controller times out while starting. The
1022          * reset work will see the pci device disabled when it gets the forced
1023          * cancellation error. All outstanding requests are completed on
1024          * shutdown, so we return BLK_EH_HANDLED.
1025          */
1026         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1027                 dev_warn(dev->ctrl.device,
1028                          "I/O %d QID %d timeout, disable controller\n",
1029                          req->tag, nvmeq->qid);
1030                 nvme_dev_disable(dev, false);
1031                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1032                 return BLK_EH_HANDLED;
1033         }
1034
1035         /*
1036          * Shutdown the controller immediately and schedule a reset if the
1037          * command was already aborted once before and still hasn't been
1038          * returned to the driver, or if this is the admin queue.
1039          */
1040         if (!nvmeq->qid || iod->aborted) {
1041                 dev_warn(dev->ctrl.device,
1042                          "I/O %d QID %d timeout, reset controller\n",
1043                          req->tag, nvmeq->qid);
1044                 nvme_dev_disable(dev, false);
1045                 nvme_reset_ctrl(&dev->ctrl);
1046
1047                 /*
1048                  * Mark the request as handled, since the inline shutdown
1049                  * forces all outstanding requests to complete.
1050                  */
1051                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1052                 return BLK_EH_HANDLED;
1053         }
1054
1055         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1056                 atomic_inc(&dev->ctrl.abort_limit);
1057                 return BLK_EH_RESET_TIMER;
1058         }
1059         iod->aborted = 1;
1060
1061         memset(&cmd, 0, sizeof(cmd));
1062         cmd.abort.opcode = nvme_admin_abort_cmd;
1063         cmd.abort.cid = req->tag;
1064         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1065
1066         dev_warn(nvmeq->dev->ctrl.device,
1067                 "I/O %d QID %d timeout, aborting\n",
1068                  req->tag, nvmeq->qid);
1069
1070         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1071                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1072         if (IS_ERR(abort_req)) {
1073                 atomic_inc(&dev->ctrl.abort_limit);
1074                 return BLK_EH_RESET_TIMER;
1075         }
1076
1077         abort_req->timeout = ADMIN_TIMEOUT;
1078         abort_req->end_io_data = NULL;
1079         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1080
1081         /*
1082          * The aborted req will be completed on receiving the abort req.
1083          * We enable the timer again. If hit twice, it'll cause a device reset,
1084          * as the device then is in a faulty state.
1085          */
1086         return BLK_EH_RESET_TIMER;
1087 }
1088
1089 static void nvme_free_queue(struct nvme_queue *nvmeq)
1090 {
1091         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1092                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1093         if (nvmeq->sq_cmds)
1094                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1095                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1096         kfree(nvmeq);
1097 }
1098
1099 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1100 {
1101         int i;
1102
1103         for (i = dev->queue_count - 1; i >= lowest; i--) {
1104                 struct nvme_queue *nvmeq = dev->queues[i];
1105                 dev->queue_count--;
1106                 dev->queues[i] = NULL;
1107                 nvme_free_queue(nvmeq);
1108         }
1109 }
1110
1111 /**
1112  * nvme_suspend_queue - put queue into suspended state
1113  * @nvmeq - queue to suspend
1114  */
1115 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1116 {
1117         int vector;
1118
1119         spin_lock_irq(&nvmeq->q_lock);
1120         if (nvmeq->cq_vector == -1) {
1121                 spin_unlock_irq(&nvmeq->q_lock);
1122                 return 1;
1123         }
1124         vector = nvmeq->cq_vector;
1125         nvmeq->dev->online_queues--;
1126         nvmeq->cq_vector = -1;
1127         spin_unlock_irq(&nvmeq->q_lock);
1128
1129         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1130                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1131
1132         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1133
1134         return 0;
1135 }
1136
1137 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1138 {
1139         struct nvme_queue *nvmeq = dev->queues[0];
1140
1141         if (!nvmeq)
1142                 return;
1143         if (nvme_suspend_queue(nvmeq))
1144                 return;
1145
1146         if (shutdown)
1147                 nvme_shutdown_ctrl(&dev->ctrl);
1148         else
1149                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1150                                                 dev->bar + NVME_REG_CAP));
1151
1152         spin_lock_irq(&nvmeq->q_lock);
1153         nvme_process_cq(nvmeq);
1154         spin_unlock_irq(&nvmeq->q_lock);
1155 }
1156
1157 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1158                                 int entry_size)
1159 {
1160         int q_depth = dev->q_depth;
1161         unsigned q_size_aligned = roundup(q_depth * entry_size,
1162                                           dev->ctrl.page_size);
1163
1164         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1165                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1166                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1167                 q_depth = div_u64(mem_per_q, entry_size);
1168
1169                 /*
1170                  * Ensure the reduced q_depth is above some threshold where it
1171                  * would be better to map queues in system memory with the
1172                  * original depth
1173                  */
1174                 if (q_depth < 64)
1175                         return -ENOMEM;
1176         }
1177
1178         return q_depth;
1179 }
1180
1181 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1182                                 int qid, int depth)
1183 {
1184         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1185                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1186                                                       dev->ctrl.page_size);
1187                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1188                 nvmeq->sq_cmds_io = dev->cmb + offset;
1189         } else {
1190                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1191                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1192                 if (!nvmeq->sq_cmds)
1193                         return -ENOMEM;
1194         }
1195
1196         return 0;
1197 }
1198
1199 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1200                                                         int depth, int node)
1201 {
1202         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1203                                                         node);
1204         if (!nvmeq)
1205                 return NULL;
1206
1207         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1208                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1209         if (!nvmeq->cqes)
1210                 goto free_nvmeq;
1211
1212         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1213                 goto free_cqdma;
1214
1215         nvmeq->q_dmadev = dev->dev;
1216         nvmeq->dev = dev;
1217         spin_lock_init(&nvmeq->q_lock);
1218         nvmeq->cq_head = 0;
1219         nvmeq->cq_phase = 1;
1220         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1221         nvmeq->q_depth = depth;
1222         nvmeq->qid = qid;
1223         nvmeq->cq_vector = -1;
1224         dev->queues[qid] = nvmeq;
1225         dev->queue_count++;
1226
1227         return nvmeq;
1228
1229  free_cqdma:
1230         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1231                                                         nvmeq->cq_dma_addr);
1232  free_nvmeq:
1233         kfree(nvmeq);
1234         return NULL;
1235 }
1236
1237 static int queue_request_irq(struct nvme_queue *nvmeq)
1238 {
1239         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1240         int nr = nvmeq->dev->ctrl.instance;
1241
1242         if (use_threaded_interrupts) {
1243                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1244                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1245         } else {
1246                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1247                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1248         }
1249 }
1250
1251 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1252 {
1253         struct nvme_dev *dev = nvmeq->dev;
1254
1255         spin_lock_irq(&nvmeq->q_lock);
1256         nvmeq->sq_tail = 0;
1257         nvmeq->cq_head = 0;
1258         nvmeq->cq_phase = 1;
1259         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1260         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1261         nvme_dbbuf_init(dev, nvmeq, qid);
1262         dev->online_queues++;
1263         spin_unlock_irq(&nvmeq->q_lock);
1264 }
1265
1266 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1267 {
1268         struct nvme_dev *dev = nvmeq->dev;
1269         int result;
1270
1271         nvmeq->cq_vector = qid - 1;
1272         result = adapter_alloc_cq(dev, qid, nvmeq);
1273         if (result < 0)
1274                 return result;
1275
1276         result = adapter_alloc_sq(dev, qid, nvmeq);
1277         if (result < 0)
1278                 goto release_cq;
1279
1280         result = queue_request_irq(nvmeq);
1281         if (result < 0)
1282                 goto release_sq;
1283
1284         nvme_init_queue(nvmeq, qid);
1285         return result;
1286
1287  release_sq:
1288         adapter_delete_sq(dev, qid);
1289  release_cq:
1290         adapter_delete_cq(dev, qid);
1291         return result;
1292 }
1293
1294 static const struct blk_mq_ops nvme_mq_admin_ops = {
1295         .queue_rq       = nvme_queue_rq,
1296         .complete       = nvme_pci_complete_rq,
1297         .init_hctx      = nvme_admin_init_hctx,
1298         .exit_hctx      = nvme_admin_exit_hctx,
1299         .init_request   = nvme_init_request,
1300         .timeout        = nvme_timeout,
1301 };
1302
1303 static const struct blk_mq_ops nvme_mq_ops = {
1304         .queue_rq       = nvme_queue_rq,
1305         .complete       = nvme_pci_complete_rq,
1306         .init_hctx      = nvme_init_hctx,
1307         .init_request   = nvme_init_request,
1308         .map_queues     = nvme_pci_map_queues,
1309         .timeout        = nvme_timeout,
1310         .poll           = nvme_poll,
1311 };
1312
1313 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1314 {
1315         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1316                 /*
1317                  * If the controller was reset during removal, it's possible
1318                  * user requests may be waiting on a stopped queue. Start the
1319                  * queue to flush these to completion.
1320                  */
1321                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1322                 blk_cleanup_queue(dev->ctrl.admin_q);
1323                 blk_mq_free_tag_set(&dev->admin_tagset);
1324         }
1325 }
1326
1327 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1328 {
1329         if (!dev->ctrl.admin_q) {
1330                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1331                 dev->admin_tagset.nr_hw_queues = 1;
1332
1333                 /*
1334                  * Subtract one to leave an empty queue entry for 'Full Queue'
1335                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1336                  */
1337                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1338                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1339                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1340                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1341                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1342                 dev->admin_tagset.driver_data = dev;
1343
1344                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1345                         return -ENOMEM;
1346
1347                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1348                 if (IS_ERR(dev->ctrl.admin_q)) {
1349                         blk_mq_free_tag_set(&dev->admin_tagset);
1350                         return -ENOMEM;
1351                 }
1352                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1353                         nvme_dev_remove_admin(dev);
1354                         dev->ctrl.admin_q = NULL;
1355                         return -ENODEV;
1356                 }
1357         } else
1358                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1359
1360         return 0;
1361 }
1362
1363 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1364 {
1365         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1366 }
1367
1368 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1369 {
1370         struct pci_dev *pdev = to_pci_dev(dev->dev);
1371
1372         if (size <= dev->bar_mapped_size)
1373                 return 0;
1374         if (size > pci_resource_len(pdev, 0))
1375                 return -ENOMEM;
1376         if (dev->bar)
1377                 iounmap(dev->bar);
1378         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1379         if (!dev->bar) {
1380                 dev->bar_mapped_size = 0;
1381                 return -ENOMEM;
1382         }
1383         dev->bar_mapped_size = size;
1384         dev->dbs = dev->bar + NVME_REG_DBS;
1385
1386         return 0;
1387 }
1388
1389 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1390 {
1391         int result;
1392         u32 aqa;
1393         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1394         struct nvme_queue *nvmeq;
1395
1396         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1397         if (result < 0)
1398                 return result;
1399
1400         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1401                                                 NVME_CAP_NSSRC(cap) : 0;
1402
1403         if (dev->subsystem &&
1404             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1405                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1406
1407         result = nvme_disable_ctrl(&dev->ctrl, cap);
1408         if (result < 0)
1409                 return result;
1410
1411         nvmeq = dev->queues[0];
1412         if (!nvmeq) {
1413                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1414                                         dev_to_node(dev->dev));
1415                 if (!nvmeq)
1416                         return -ENOMEM;
1417         }
1418
1419         aqa = nvmeq->q_depth - 1;
1420         aqa |= aqa << 16;
1421
1422         writel(aqa, dev->bar + NVME_REG_AQA);
1423         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1424         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1425
1426         result = nvme_enable_ctrl(&dev->ctrl, cap);
1427         if (result)
1428                 return result;
1429
1430         nvmeq->cq_vector = 0;
1431         result = queue_request_irq(nvmeq);
1432         if (result) {
1433                 nvmeq->cq_vector = -1;
1434                 return result;
1435         }
1436
1437         return result;
1438 }
1439
1440 static int nvme_create_io_queues(struct nvme_dev *dev)
1441 {
1442         unsigned i, max;
1443         int ret = 0;
1444
1445         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1446                 /* vector == qid - 1, match nvme_create_queue */
1447                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1448                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1449                         ret = -ENOMEM;
1450                         break;
1451                 }
1452         }
1453
1454         max = min(dev->max_qid, dev->queue_count - 1);
1455         for (i = dev->online_queues; i <= max; i++) {
1456                 ret = nvme_create_queue(dev->queues[i], i);
1457                 if (ret)
1458                         break;
1459         }
1460
1461         /*
1462          * Ignore failing Create SQ/CQ commands, we can continue with less
1463          * than the desired aount of queues, and even a controller without
1464          * I/O queues an still be used to issue admin commands.  This might
1465          * be useful to upgrade a buggy firmware for example.
1466          */
1467         return ret >= 0 ? 0 : ret;
1468 }
1469
1470 static ssize_t nvme_cmb_show(struct device *dev,
1471                              struct device_attribute *attr,
1472                              char *buf)
1473 {
1474         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1475
1476         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1477                        ndev->cmbloc, ndev->cmbsz);
1478 }
1479 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1480
1481 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1482 {
1483         u64 szu, size, offset;
1484         resource_size_t bar_size;
1485         struct pci_dev *pdev = to_pci_dev(dev->dev);
1486         void __iomem *cmb;
1487         dma_addr_t dma_addr;
1488
1489         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1490         if (!(NVME_CMB_SZ(dev->cmbsz)))
1491                 return NULL;
1492         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1493
1494         if (!use_cmb_sqes)
1495                 return NULL;
1496
1497         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1498         size = szu * NVME_CMB_SZ(dev->cmbsz);
1499         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1500         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1501
1502         if (offset > bar_size)
1503                 return NULL;
1504
1505         /*
1506          * Controllers may support a CMB size larger than their BAR,
1507          * for example, due to being behind a bridge. Reduce the CMB to
1508          * the reported size of the BAR
1509          */
1510         if (size > bar_size - offset)
1511                 size = bar_size - offset;
1512
1513         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1514         cmb = ioremap_wc(dma_addr, size);
1515         if (!cmb)
1516                 return NULL;
1517
1518         dev->cmb_dma_addr = dma_addr;
1519         dev->cmb_size = size;
1520         return cmb;
1521 }
1522
1523 static inline void nvme_release_cmb(struct nvme_dev *dev)
1524 {
1525         if (dev->cmb) {
1526                 iounmap(dev->cmb);
1527                 dev->cmb = NULL;
1528                 if (dev->cmbsz) {
1529                         sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1530                                                      &dev_attr_cmb.attr, NULL);
1531                         dev->cmbsz = 0;
1532                 }
1533         }
1534 }
1535
1536 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1537 {
1538         size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1539         struct nvme_command c;
1540         u64 dma_addr;
1541         int ret;
1542
1543         dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1544                         DMA_TO_DEVICE);
1545         if (dma_mapping_error(dev->dev, dma_addr))
1546                 return -ENOMEM;
1547
1548         memset(&c, 0, sizeof(c));
1549         c.features.opcode       = nvme_admin_set_features;
1550         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1551         c.features.dword11      = cpu_to_le32(bits);
1552         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1553                                               ilog2(dev->ctrl.page_size));
1554         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1555         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1556         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1557
1558         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1559         if (ret) {
1560                 dev_warn(dev->ctrl.device,
1561                          "failed to set host mem (err %d, flags %#x).\n",
1562                          ret, bits);
1563         }
1564         dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1565         return ret;
1566 }
1567
1568 static void nvme_free_host_mem(struct nvme_dev *dev)
1569 {
1570         int i;
1571
1572         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1573                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1574                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1575
1576                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1577                                 le64_to_cpu(desc->addr));
1578         }
1579
1580         kfree(dev->host_mem_desc_bufs);
1581         dev->host_mem_desc_bufs = NULL;
1582         kfree(dev->host_mem_descs);
1583         dev->host_mem_descs = NULL;
1584 }
1585
1586 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1587 {
1588         struct nvme_host_mem_buf_desc *descs;
1589         u32 chunk_size, max_entries, i = 0;
1590         void **bufs;
1591         u64 size, tmp;
1592
1593         /* start big and work our way down */
1594         chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1595 retry:
1596         tmp = (preferred + chunk_size - 1);
1597         do_div(tmp, chunk_size);
1598         max_entries = tmp;
1599         descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1600         if (!descs)
1601                 goto out;
1602
1603         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1604         if (!bufs)
1605                 goto out_free_descs;
1606
1607         for (size = 0; size < preferred; size += chunk_size) {
1608                 u32 len = min_t(u64, chunk_size, preferred - size);
1609                 dma_addr_t dma_addr;
1610
1611                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1612                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1613                 if (!bufs[i])
1614                         break;
1615
1616                 descs[i].addr = cpu_to_le64(dma_addr);
1617                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1618                 i++;
1619         }
1620
1621         if (!size || (min && size < min)) {
1622                 dev_warn(dev->ctrl.device,
1623                         "failed to allocate host memory buffer.\n");
1624                 goto out_free_bufs;
1625         }
1626
1627         dev_info(dev->ctrl.device,
1628                 "allocated %lld MiB host memory buffer.\n",
1629                 size >> ilog2(SZ_1M));
1630         dev->nr_host_mem_descs = i;
1631         dev->host_mem_size = size;
1632         dev->host_mem_descs = descs;
1633         dev->host_mem_desc_bufs = bufs;
1634         return 0;
1635
1636 out_free_bufs:
1637         while (--i >= 0) {
1638                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1639
1640                 dma_free_coherent(dev->dev, size, bufs[i],
1641                                 le64_to_cpu(descs[i].addr));
1642         }
1643
1644         kfree(bufs);
1645 out_free_descs:
1646         kfree(descs);
1647 out:
1648         /* try a smaller chunk size if we failed early */
1649         if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1650                 chunk_size /= 2;
1651                 goto retry;
1652         }
1653         dev->host_mem_descs = NULL;
1654         return -ENOMEM;
1655 }
1656
1657 static void nvme_setup_host_mem(struct nvme_dev *dev)
1658 {
1659         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1660         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1661         u64 min = (u64)dev->ctrl.hmmin * 4096;
1662         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1663
1664         preferred = min(preferred, max);
1665         if (min > max) {
1666                 dev_warn(dev->ctrl.device,
1667                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1668                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1669                 nvme_free_host_mem(dev);
1670                 return;
1671         }
1672
1673         /*
1674          * If we already have a buffer allocated check if we can reuse it.
1675          */
1676         if (dev->host_mem_descs) {
1677                 if (dev->host_mem_size >= min)
1678                         enable_bits |= NVME_HOST_MEM_RETURN;
1679                 else
1680                         nvme_free_host_mem(dev);
1681         }
1682
1683         if (!dev->host_mem_descs) {
1684                 if (nvme_alloc_host_mem(dev, min, preferred))
1685                         return;
1686         }
1687
1688         if (nvme_set_host_mem(dev, enable_bits))
1689                 nvme_free_host_mem(dev);
1690 }
1691
1692 static int nvme_setup_io_queues(struct nvme_dev *dev)
1693 {
1694         struct nvme_queue *adminq = dev->queues[0];
1695         struct pci_dev *pdev = to_pci_dev(dev->dev);
1696         int result, nr_io_queues;
1697         unsigned long size;
1698
1699         nr_io_queues = num_online_cpus();
1700         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1701         if (result < 0)
1702                 return result;
1703
1704         if (nr_io_queues == 0)
1705                 return 0;
1706
1707         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1708                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1709                                 sizeof(struct nvme_command));
1710                 if (result > 0)
1711                         dev->q_depth = result;
1712                 else
1713                         nvme_release_cmb(dev);
1714         }
1715
1716         do {
1717                 size = db_bar_size(dev, nr_io_queues);
1718                 result = nvme_remap_bar(dev, size);
1719                 if (!result)
1720                         break;
1721                 if (!--nr_io_queues)
1722                         return -ENOMEM;
1723         } while (1);
1724         adminq->q_db = dev->dbs;
1725
1726         /* Deregister the admin queue's interrupt */
1727         pci_free_irq(pdev, 0, adminq);
1728
1729         /*
1730          * If we enable msix early due to not intx, disable it again before
1731          * setting up the full range we need.
1732          */
1733         pci_free_irq_vectors(pdev);
1734         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1735                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1736         if (nr_io_queues <= 0)
1737                 return -EIO;
1738         dev->max_qid = nr_io_queues;
1739
1740         /*
1741          * Should investigate if there's a performance win from allocating
1742          * more queues than interrupt vectors; it might allow the submission
1743          * path to scale better, even if the receive path is limited by the
1744          * number of interrupts.
1745          */
1746
1747         result = queue_request_irq(adminq);
1748         if (result) {
1749                 adminq->cq_vector = -1;
1750                 return result;
1751         }
1752         return nvme_create_io_queues(dev);
1753 }
1754
1755 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1756 {
1757         struct nvme_queue *nvmeq = req->end_io_data;
1758
1759         blk_mq_free_request(req);
1760         complete(&nvmeq->dev->ioq_wait);
1761 }
1762
1763 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1764 {
1765         struct nvme_queue *nvmeq = req->end_io_data;
1766
1767         if (!error) {
1768                 unsigned long flags;
1769
1770                 /*
1771                  * We might be called with the AQ q_lock held
1772                  * and the I/O queue q_lock should always
1773                  * nest inside the AQ one.
1774                  */
1775                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1776                                         SINGLE_DEPTH_NESTING);
1777                 nvme_process_cq(nvmeq);
1778                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1779         }
1780
1781         nvme_del_queue_end(req, error);
1782 }
1783
1784 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1785 {
1786         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1787         struct request *req;
1788         struct nvme_command cmd;
1789
1790         memset(&cmd, 0, sizeof(cmd));
1791         cmd.delete_queue.opcode = opcode;
1792         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1793
1794         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1795         if (IS_ERR(req))
1796                 return PTR_ERR(req);
1797
1798         req->timeout = ADMIN_TIMEOUT;
1799         req->end_io_data = nvmeq;
1800
1801         blk_execute_rq_nowait(q, NULL, req, false,
1802                         opcode == nvme_admin_delete_cq ?
1803                                 nvme_del_cq_end : nvme_del_queue_end);
1804         return 0;
1805 }
1806
1807 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1808 {
1809         int pass;
1810         unsigned long timeout;
1811         u8 opcode = nvme_admin_delete_sq;
1812
1813         for (pass = 0; pass < 2; pass++) {
1814                 int sent = 0, i = queues;
1815
1816                 reinit_completion(&dev->ioq_wait);
1817  retry:
1818                 timeout = ADMIN_TIMEOUT;
1819                 for (; i > 0; i--, sent++)
1820                         if (nvme_delete_queue(dev->queues[i], opcode))
1821                                 break;
1822
1823                 while (sent--) {
1824                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1825                         if (timeout == 0)
1826                                 return;
1827                         if (i)
1828                                 goto retry;
1829                 }
1830                 opcode = nvme_admin_delete_cq;
1831         }
1832 }
1833
1834 /*
1835  * Return: error value if an error occurred setting up the queues or calling
1836  * Identify Device.  0 if these succeeded, even if adding some of the
1837  * namespaces failed.  At the moment, these failures are silent.  TBD which
1838  * failures should be reported.
1839  */
1840 static int nvme_dev_add(struct nvme_dev *dev)
1841 {
1842         if (!dev->ctrl.tagset) {
1843                 dev->tagset.ops = &nvme_mq_ops;
1844                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1845                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1846                 dev->tagset.numa_node = dev_to_node(dev->dev);
1847                 dev->tagset.queue_depth =
1848                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1849                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1850                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1851                 dev->tagset.driver_data = dev;
1852
1853                 if (blk_mq_alloc_tag_set(&dev->tagset))
1854                         return 0;
1855                 dev->ctrl.tagset = &dev->tagset;
1856
1857                 nvme_dbbuf_set(dev);
1858         } else {
1859                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1860
1861                 /* Free previously allocated queues that are no longer usable */
1862                 nvme_free_queues(dev, dev->online_queues);
1863         }
1864
1865         return 0;
1866 }
1867
1868 static int nvme_pci_enable(struct nvme_dev *dev)
1869 {
1870         u64 cap;
1871         int result = -ENOMEM;
1872         struct pci_dev *pdev = to_pci_dev(dev->dev);
1873
1874         if (pci_enable_device_mem(pdev))
1875                 return result;
1876
1877         pci_set_master(pdev);
1878
1879         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1880             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1881                 goto disable;
1882
1883         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1884                 result = -ENODEV;
1885                 goto disable;
1886         }
1887
1888         /*
1889          * Some devices and/or platforms don't advertise or work with INTx
1890          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1891          * adjust this later.
1892          */
1893         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1894         if (result < 0)
1895                 return result;
1896
1897         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1898
1899         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1900         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1901         dev->dbs = dev->bar + 4096;
1902
1903         /*
1904          * Temporary fix for the Apple controller found in the MacBook8,1 and
1905          * some MacBook7,1 to avoid controller resets and data loss.
1906          */
1907         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1908                 dev->q_depth = 2;
1909                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1910                         "set queue depth=%u to work around controller resets\n",
1911                         dev->q_depth);
1912         }
1913
1914         /*
1915          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1916          * populate sysfs if a CMB is implemented. Note that we add the
1917          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1918          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1919          * NULL as final argument to sysfs_add_file_to_group.
1920          */
1921
1922         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1923                 dev->cmb = nvme_map_cmb(dev);
1924
1925                 if (dev->cmbsz) {
1926                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1927                                                     &dev_attr_cmb.attr, NULL))
1928                                 dev_warn(dev->ctrl.device,
1929                                          "failed to add sysfs attribute for CMB\n");
1930                 }
1931         }
1932
1933         pci_enable_pcie_error_reporting(pdev);
1934         pci_save_state(pdev);
1935         return 0;
1936
1937  disable:
1938         pci_disable_device(pdev);
1939         return result;
1940 }
1941
1942 static void nvme_dev_unmap(struct nvme_dev *dev)
1943 {
1944         if (dev->bar)
1945                 iounmap(dev->bar);
1946         pci_release_mem_regions(to_pci_dev(dev->dev));
1947 }
1948
1949 static void nvme_pci_disable(struct nvme_dev *dev)
1950 {
1951         struct pci_dev *pdev = to_pci_dev(dev->dev);
1952
1953         nvme_release_cmb(dev);
1954         pci_free_irq_vectors(pdev);
1955
1956         if (pci_is_enabled(pdev)) {
1957                 pci_disable_pcie_error_reporting(pdev);
1958                 pci_disable_device(pdev);
1959         }
1960 }
1961
1962 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1963 {
1964         int i, queues;
1965         bool dead = true;
1966         struct pci_dev *pdev = to_pci_dev(dev->dev);
1967
1968         mutex_lock(&dev->shutdown_lock);
1969         if (pci_is_enabled(pdev)) {
1970                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1971
1972                 if (dev->ctrl.state == NVME_CTRL_LIVE)
1973                         nvme_start_freeze(&dev->ctrl);
1974                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1975                         pdev->error_state  != pci_channel_io_normal);
1976         }
1977
1978         /*
1979          * Give the controller a chance to complete all entered requests if
1980          * doing a safe shutdown.
1981          */
1982         if (!dead) {
1983                 if (shutdown)
1984                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1985
1986                 /*
1987                  * If the controller is still alive tell it to stop using the
1988                  * host memory buffer.  In theory the shutdown / reset should
1989                  * make sure that it doesn't access the host memoery anymore,
1990                  * but I'd rather be safe than sorry..
1991                  */
1992                 if (dev->host_mem_descs)
1993                         nvme_set_host_mem(dev, 0);
1994
1995         }
1996         nvme_stop_queues(&dev->ctrl);
1997
1998         queues = dev->online_queues - 1;
1999         for (i = dev->queue_count - 1; i > 0; i--)
2000                 nvme_suspend_queue(dev->queues[i]);
2001
2002         if (dead) {
2003                 /* A device might become IO incapable very soon during
2004                  * probe, before the admin queue is configured. Thus,
2005                  * queue_count can be 0 here.
2006                  */
2007                 if (dev->queue_count)
2008                         nvme_suspend_queue(dev->queues[0]);
2009         } else {
2010                 nvme_disable_io_queues(dev, queues);
2011                 nvme_disable_admin_queue(dev, shutdown);
2012         }
2013         nvme_pci_disable(dev);
2014
2015         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2016         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2017
2018         /*
2019          * The driver will not be starting up queues again if shutting down so
2020          * must flush all entered requests to their failed completion to avoid
2021          * deadlocking blk-mq hot-cpu notifier.
2022          */
2023         if (shutdown)
2024                 nvme_start_queues(&dev->ctrl);
2025         mutex_unlock(&dev->shutdown_lock);
2026 }
2027
2028 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2029 {
2030         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2031                                                 PAGE_SIZE, PAGE_SIZE, 0);
2032         if (!dev->prp_page_pool)
2033                 return -ENOMEM;
2034
2035         /* Optimisation for I/Os between 4k and 128k */
2036         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2037                                                 256, 256, 0);
2038         if (!dev->prp_small_pool) {
2039                 dma_pool_destroy(dev->prp_page_pool);
2040                 return -ENOMEM;
2041         }
2042         return 0;
2043 }
2044
2045 static void nvme_release_prp_pools(struct nvme_dev *dev)
2046 {
2047         dma_pool_destroy(dev->prp_page_pool);
2048         dma_pool_destroy(dev->prp_small_pool);
2049 }
2050
2051 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2052 {
2053         struct nvme_dev *dev = to_nvme_dev(ctrl);
2054
2055         nvme_dbbuf_dma_free(dev);
2056         put_device(dev->dev);
2057         if (dev->tagset.tags)
2058                 blk_mq_free_tag_set(&dev->tagset);
2059         if (dev->ctrl.admin_q)
2060                 blk_put_queue(dev->ctrl.admin_q);
2061         kfree(dev->queues);
2062         free_opal_dev(dev->ctrl.opal_dev);
2063         kfree(dev);
2064 }
2065
2066 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2067 {
2068         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2069
2070         kref_get(&dev->ctrl.kref);
2071         nvme_dev_disable(dev, false);
2072         if (!schedule_work(&dev->remove_work))
2073                 nvme_put_ctrl(&dev->ctrl);
2074 }
2075
2076 static void nvme_reset_work(struct work_struct *work)
2077 {
2078         struct nvme_dev *dev =
2079                 container_of(work, struct nvme_dev, ctrl.reset_work);
2080         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2081         int result = -ENODEV;
2082
2083         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2084                 goto out;
2085
2086         /*
2087          * If we're called to reset a live controller first shut it down before
2088          * moving on.
2089          */
2090         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2091                 nvme_dev_disable(dev, false);
2092
2093         result = nvme_pci_enable(dev);
2094         if (result)
2095                 goto out;
2096
2097         result = nvme_configure_admin_queue(dev);
2098         if (result)
2099                 goto out;
2100
2101         nvme_init_queue(dev->queues[0], 0);
2102         result = nvme_alloc_admin_tags(dev);
2103         if (result)
2104                 goto out;
2105
2106         result = nvme_init_identify(&dev->ctrl);
2107         if (result)
2108                 goto out;
2109
2110         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2111                 if (!dev->ctrl.opal_dev)
2112                         dev->ctrl.opal_dev =
2113                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2114                 else if (was_suspend)
2115                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2116         } else {
2117                 free_opal_dev(dev->ctrl.opal_dev);
2118                 dev->ctrl.opal_dev = NULL;
2119         }
2120
2121         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2122                 result = nvme_dbbuf_dma_alloc(dev);
2123                 if (result)
2124                         dev_warn(dev->dev,
2125                                  "unable to allocate dma for dbbuf\n");
2126         }
2127
2128         if (dev->ctrl.hmpre)
2129                 nvme_setup_host_mem(dev);
2130
2131         result = nvme_setup_io_queues(dev);
2132         if (result)
2133                 goto out;
2134
2135         /*
2136          * A controller that can not execute IO typically requires user
2137          * intervention to correct. For such degraded controllers, the driver
2138          * should not submit commands the user did not request, so skip
2139          * registering for asynchronous event notification on this condition.
2140          */
2141         if (dev->online_queues > 1)
2142                 nvme_queue_async_events(&dev->ctrl);
2143
2144         /*
2145          * Keep the controller around but remove all namespaces if we don't have
2146          * any working I/O queue.
2147          */
2148         if (dev->online_queues < 2) {
2149                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2150                 nvme_kill_queues(&dev->ctrl);
2151                 nvme_remove_namespaces(&dev->ctrl);
2152         } else {
2153                 nvme_start_queues(&dev->ctrl);
2154                 nvme_wait_freeze(&dev->ctrl);
2155                 nvme_dev_add(dev);
2156                 nvme_unfreeze(&dev->ctrl);
2157         }
2158
2159         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2160                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2161                 goto out;
2162         }
2163
2164         if (dev->online_queues > 1)
2165                 nvme_queue_scan(&dev->ctrl);
2166         return;
2167
2168  out:
2169         nvme_remove_dead_ctrl(dev, result);
2170 }
2171
2172 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2173 {
2174         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2175         struct pci_dev *pdev = to_pci_dev(dev->dev);
2176
2177         nvme_kill_queues(&dev->ctrl);
2178         if (pci_get_drvdata(pdev))
2179                 device_release_driver(&pdev->dev);
2180         nvme_put_ctrl(&dev->ctrl);
2181 }
2182
2183 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2184 {
2185         *val = readl(to_nvme_dev(ctrl)->bar + off);
2186         return 0;
2187 }
2188
2189 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2190 {
2191         writel(val, to_nvme_dev(ctrl)->bar + off);
2192         return 0;
2193 }
2194
2195 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2196 {
2197         *val = readq(to_nvme_dev(ctrl)->bar + off);
2198         return 0;
2199 }
2200
2201 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2202         .name                   = "pcie",
2203         .module                 = THIS_MODULE,
2204         .flags                  = NVME_F_METADATA_SUPPORTED,
2205         .reg_read32             = nvme_pci_reg_read32,
2206         .reg_write32            = nvme_pci_reg_write32,
2207         .reg_read64             = nvme_pci_reg_read64,
2208         .free_ctrl              = nvme_pci_free_ctrl,
2209         .submit_async_event     = nvme_pci_submit_async_event,
2210 };
2211
2212 static int nvme_dev_map(struct nvme_dev *dev)
2213 {
2214         struct pci_dev *pdev = to_pci_dev(dev->dev);
2215
2216         if (pci_request_mem_regions(pdev, "nvme"))
2217                 return -ENODEV;
2218
2219         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2220                 goto release;
2221
2222         return 0;
2223   release:
2224         pci_release_mem_regions(pdev);
2225         return -ENODEV;
2226 }
2227
2228 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2229 {
2230         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2231                 /*
2232                  * Several Samsung devices seem to drop off the PCIe bus
2233                  * randomly when APST is on and uses the deepest sleep state.
2234                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2235                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2236                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2237                  * laptops.
2238                  */
2239                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2240                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2241                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2242                         return NVME_QUIRK_NO_DEEPEST_PS;
2243         }
2244
2245         return 0;
2246 }
2247
2248 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2249 {
2250         int node, result = -ENOMEM;
2251         struct nvme_dev *dev;
2252         unsigned long quirks = id->driver_data;
2253
2254         node = dev_to_node(&pdev->dev);
2255         if (node == NUMA_NO_NODE)
2256                 set_dev_node(&pdev->dev, first_memory_node);
2257
2258         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2259         if (!dev)
2260                 return -ENOMEM;
2261         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2262                                                         GFP_KERNEL, node);
2263         if (!dev->queues)
2264                 goto free;
2265
2266         dev->dev = get_device(&pdev->dev);
2267         pci_set_drvdata(pdev, dev);
2268
2269         result = nvme_dev_map(dev);
2270         if (result)
2271                 goto free;
2272
2273         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2274         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2275         mutex_init(&dev->shutdown_lock);
2276         init_completion(&dev->ioq_wait);
2277
2278         result = nvme_setup_prp_pools(dev);
2279         if (result)
2280                 goto put_pci;
2281
2282         quirks |= check_dell_samsung_bug(pdev);
2283
2284         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2285                         quirks);
2286         if (result)
2287                 goto release_pools;
2288
2289         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2290         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2291
2292         queue_work(nvme_wq, &dev->ctrl.reset_work);
2293         return 0;
2294
2295  release_pools:
2296         nvme_release_prp_pools(dev);
2297  put_pci:
2298         put_device(dev->dev);
2299         nvme_dev_unmap(dev);
2300  free:
2301         kfree(dev->queues);
2302         kfree(dev);
2303         return result;
2304 }
2305
2306 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2307 {
2308         struct nvme_dev *dev = pci_get_drvdata(pdev);
2309
2310         if (prepare)
2311                 nvme_dev_disable(dev, false);
2312         else
2313                 nvme_reset_ctrl(&dev->ctrl);
2314 }
2315
2316 static void nvme_shutdown(struct pci_dev *pdev)
2317 {
2318         struct nvme_dev *dev = pci_get_drvdata(pdev);
2319         nvme_dev_disable(dev, true);
2320 }
2321
2322 /*
2323  * The driver's remove may be called on a device in a partially initialized
2324  * state. This function must not have any dependencies on the device state in
2325  * order to proceed.
2326  */
2327 static void nvme_remove(struct pci_dev *pdev)
2328 {
2329         struct nvme_dev *dev = pci_get_drvdata(pdev);
2330
2331         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2332
2333         cancel_work_sync(&dev->ctrl.reset_work);
2334         pci_set_drvdata(pdev, NULL);
2335
2336         if (!pci_device_is_present(pdev)) {
2337                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2338                 nvme_dev_disable(dev, false);
2339         }
2340
2341         flush_work(&dev->ctrl.reset_work);
2342         nvme_uninit_ctrl(&dev->ctrl);
2343         nvme_dev_disable(dev, true);
2344         nvme_free_host_mem(dev);
2345         nvme_dev_remove_admin(dev);
2346         nvme_free_queues(dev, 0);
2347         nvme_release_prp_pools(dev);
2348         nvme_dev_unmap(dev);
2349         nvme_put_ctrl(&dev->ctrl);
2350 }
2351
2352 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2353 {
2354         int ret = 0;
2355
2356         if (numvfs == 0) {
2357                 if (pci_vfs_assigned(pdev)) {
2358                         dev_warn(&pdev->dev,
2359                                 "Cannot disable SR-IOV VFs while assigned\n");
2360                         return -EPERM;
2361                 }
2362                 pci_disable_sriov(pdev);
2363                 return 0;
2364         }
2365
2366         ret = pci_enable_sriov(pdev, numvfs);
2367         return ret ? ret : numvfs;
2368 }
2369
2370 #ifdef CONFIG_PM_SLEEP
2371 static int nvme_suspend(struct device *dev)
2372 {
2373         struct pci_dev *pdev = to_pci_dev(dev);
2374         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2375
2376         nvme_dev_disable(ndev, true);
2377         return 0;
2378 }
2379
2380 static int nvme_resume(struct device *dev)
2381 {
2382         struct pci_dev *pdev = to_pci_dev(dev);
2383         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2384
2385         nvme_reset_ctrl(&ndev->ctrl);
2386         return 0;
2387 }
2388 #endif
2389
2390 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2391
2392 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2393                                                 pci_channel_state_t state)
2394 {
2395         struct nvme_dev *dev = pci_get_drvdata(pdev);
2396
2397         /*
2398          * A frozen channel requires a reset. When detected, this method will
2399          * shutdown the controller to quiesce. The controller will be restarted
2400          * after the slot reset through driver's slot_reset callback.
2401          */
2402         switch (state) {
2403         case pci_channel_io_normal:
2404                 return PCI_ERS_RESULT_CAN_RECOVER;
2405         case pci_channel_io_frozen:
2406                 dev_warn(dev->ctrl.device,
2407                         "frozen state error detected, reset controller\n");
2408                 nvme_dev_disable(dev, false);
2409                 return PCI_ERS_RESULT_NEED_RESET;
2410         case pci_channel_io_perm_failure:
2411                 dev_warn(dev->ctrl.device,
2412                         "failure state error detected, request disconnect\n");
2413                 return PCI_ERS_RESULT_DISCONNECT;
2414         }
2415         return PCI_ERS_RESULT_NEED_RESET;
2416 }
2417
2418 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2419 {
2420         struct nvme_dev *dev = pci_get_drvdata(pdev);
2421
2422         dev_info(dev->ctrl.device, "restart after slot reset\n");
2423         pci_restore_state(pdev);
2424         nvme_reset_ctrl(&dev->ctrl);
2425         return PCI_ERS_RESULT_RECOVERED;
2426 }
2427
2428 static void nvme_error_resume(struct pci_dev *pdev)
2429 {
2430         pci_cleanup_aer_uncorrect_error_status(pdev);
2431 }
2432
2433 static const struct pci_error_handlers nvme_err_handler = {
2434         .error_detected = nvme_error_detected,
2435         .slot_reset     = nvme_slot_reset,
2436         .resume         = nvme_error_resume,
2437         .reset_notify   = nvme_reset_notify,
2438 };
2439
2440 static const struct pci_device_id nvme_id_table[] = {
2441         { PCI_VDEVICE(INTEL, 0x0953),
2442                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2443                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2444         { PCI_VDEVICE(INTEL, 0x0a53),
2445                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2446                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2447         { PCI_VDEVICE(INTEL, 0x0a54),
2448                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2449                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2450         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2451                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2452         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2453                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2454         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2455                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2456         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2457                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2458         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2459         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2460         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2461         { 0, }
2462 };
2463 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2464
2465 static struct pci_driver nvme_driver = {
2466         .name           = "nvme",
2467         .id_table       = nvme_id_table,
2468         .probe          = nvme_probe,
2469         .remove         = nvme_remove,
2470         .shutdown       = nvme_shutdown,
2471         .driver         = {
2472                 .pm     = &nvme_dev_pm_ops,
2473         },
2474         .sriov_configure = nvme_pci_sriov_configure,
2475         .err_handler    = &nvme_err_handler,
2476 };
2477
2478 static int __init nvme_init(void)
2479 {
2480         return pci_register_driver(&nvme_driver);
2481 }
2482
2483 static void __exit nvme_exit(void)
2484 {
2485         pci_unregister_driver(&nvme_driver);
2486         _nvme_check_size();
2487 }
2488
2489 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2490 MODULE_LICENSE("GPL");
2491 MODULE_VERSION("1.0");
2492 module_init(nvme_init);
2493 module_exit(nvme_exit);