]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvme/host/pci.c
Merge remote-tracking branches 'spi/topic/ti-qspi' and 'spi/topic/topcliff-pch' into...
[karo-tx-linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include "nvme.h"
48
49 #define NVME_Q_DEPTH            1024
50 #define NVME_AQ_DEPTH           256
51 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
53
54 /*
55  * We handle AEN commands ourselves and don't even let the
56  * block layer know about them.
57  */
58 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80         struct nvme_queue **queues;
81         struct blk_mq_tag_set tagset;
82         struct blk_mq_tag_set admin_tagset;
83         u32 __iomem *dbs;
84         struct device *dev;
85         struct dma_pool *prp_page_pool;
86         struct dma_pool *prp_small_pool;
87         unsigned queue_count;
88         unsigned online_queues;
89         unsigned max_qid;
90         int q_depth;
91         u32 db_stride;
92         void __iomem *bar;
93         struct work_struct reset_work;
94         struct work_struct remove_work;
95         struct timer_list watchdog_timer;
96         struct mutex shutdown_lock;
97         bool subsystem;
98         void __iomem *cmb;
99         dma_addr_t cmb_dma_addr;
100         u64 cmb_size;
101         u32 cmbsz;
102         u32 cmbloc;
103         struct nvme_ctrl ctrl;
104         struct completion ioq_wait;
105 };
106
107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108 {
109         return container_of(ctrl, struct nvme_dev, ctrl);
110 }
111
112 /*
113  * An NVM Express queue.  Each device has at least two (one for admin
114  * commands and one for I/O commands).
115  */
116 struct nvme_queue {
117         struct device *q_dmadev;
118         struct nvme_dev *dev;
119         char irqname[24];       /* nvme4294967295-65535\0 */
120         spinlock_t q_lock;
121         struct nvme_command *sq_cmds;
122         struct nvme_command __iomem *sq_cmds_io;
123         volatile struct nvme_completion *cqes;
124         struct blk_mq_tags **tags;
125         dma_addr_t sq_dma_addr;
126         dma_addr_t cq_dma_addr;
127         u32 __iomem *q_db;
128         u16 q_depth;
129         s16 cq_vector;
130         u16 sq_tail;
131         u16 cq_head;
132         u16 qid;
133         u8 cq_phase;
134         u8 cqe_seen;
135 };
136
137 /*
138  * The nvme_iod describes the data in an I/O, including the list of PRP
139  * entries.  You can't see it in this data structure because C doesn't let
140  * me express that.  Use nvme_init_iod to ensure there's enough space
141  * allocated to store the PRP list.
142  */
143 struct nvme_iod {
144         struct nvme_request req;
145         struct nvme_queue *nvmeq;
146         int aborted;
147         int npages;             /* In the PRP list. 0 means small pool in use */
148         int nents;              /* Used in scatterlist */
149         int length;             /* Of data, in bytes */
150         dma_addr_t first_dma;
151         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
152         struct scatterlist *sg;
153         struct scatterlist inline_sg[0];
154 };
155
156 /*
157  * Check we didin't inadvertently grow the command struct
158  */
159 static inline void _nvme_check_size(void)
160 {
161         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
162         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
163         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
164         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
165         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
166         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
167         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
168         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
169         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
170         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
171         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
172         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
173 }
174
175 /*
176  * Max size of iod being embedded in the request payload
177  */
178 #define NVME_INT_PAGES          2
179 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
180
181 /*
182  * Will slightly overestimate the number of pages needed.  This is OK
183  * as it only leads to a small amount of wasted memory for the lifetime of
184  * the I/O.
185  */
186 static int nvme_npages(unsigned size, struct nvme_dev *dev)
187 {
188         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
189                                       dev->ctrl.page_size);
190         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
191 }
192
193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
194                 unsigned int size, unsigned int nseg)
195 {
196         return sizeof(__le64 *) * nvme_npages(size, dev) +
197                         sizeof(struct scatterlist) * nseg;
198 }
199
200 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
201 {
202         return sizeof(struct nvme_iod) +
203                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
204 }
205
206 static int nvmeq_irq(struct nvme_queue *nvmeq)
207 {
208         return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
209 }
210
211 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212                                 unsigned int hctx_idx)
213 {
214         struct nvme_dev *dev = data;
215         struct nvme_queue *nvmeq = dev->queues[0];
216
217         WARN_ON(hctx_idx != 0);
218         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
219         WARN_ON(nvmeq->tags);
220
221         hctx->driver_data = nvmeq;
222         nvmeq->tags = &dev->admin_tagset.tags[0];
223         return 0;
224 }
225
226 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
227 {
228         struct nvme_queue *nvmeq = hctx->driver_data;
229
230         nvmeq->tags = NULL;
231 }
232
233 static int nvme_admin_init_request(void *data, struct request *req,
234                                 unsigned int hctx_idx, unsigned int rq_idx,
235                                 unsigned int numa_node)
236 {
237         struct nvme_dev *dev = data;
238         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
239         struct nvme_queue *nvmeq = dev->queues[0];
240
241         BUG_ON(!nvmeq);
242         iod->nvmeq = nvmeq;
243         return 0;
244 }
245
246 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
247                           unsigned int hctx_idx)
248 {
249         struct nvme_dev *dev = data;
250         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
251
252         if (!nvmeq->tags)
253                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
254
255         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
256         hctx->driver_data = nvmeq;
257         return 0;
258 }
259
260 static int nvme_init_request(void *data, struct request *req,
261                                 unsigned int hctx_idx, unsigned int rq_idx,
262                                 unsigned int numa_node)
263 {
264         struct nvme_dev *dev = data;
265         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
266         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268         BUG_ON(!nvmeq);
269         iod->nvmeq = nvmeq;
270         return 0;
271 }
272
273 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
274 {
275         struct nvme_dev *dev = set->driver_data;
276
277         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
278 }
279
280 /**
281  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
282  * @nvmeq: The queue to use
283  * @cmd: The command to send
284  *
285  * Safe to use from interrupt context
286  */
287 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
288                                                 struct nvme_command *cmd)
289 {
290         u16 tail = nvmeq->sq_tail;
291
292         if (nvmeq->sq_cmds_io)
293                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
294         else
295                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
296
297         if (++tail == nvmeq->q_depth)
298                 tail = 0;
299         writel(tail, nvmeq->q_db);
300         nvmeq->sq_tail = tail;
301 }
302
303 static __le64 **iod_list(struct request *req)
304 {
305         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
306         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
307 }
308
309 static int nvme_init_iod(struct request *rq, unsigned size,
310                 struct nvme_dev *dev)
311 {
312         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
313         int nseg = blk_rq_nr_phys_segments(rq);
314
315         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
316                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
317                 if (!iod->sg)
318                         return BLK_MQ_RQ_QUEUE_BUSY;
319         } else {
320                 iod->sg = iod->inline_sg;
321         }
322
323         iod->aborted = 0;
324         iod->npages = -1;
325         iod->nents = 0;
326         iod->length = size;
327
328         if (!(rq->rq_flags & RQF_DONTPREP)) {
329                 rq->retries = 0;
330                 rq->rq_flags |= RQF_DONTPREP;
331         }
332         return BLK_MQ_RQ_QUEUE_OK;
333 }
334
335 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
336 {
337         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
338         const int last_prp = dev->ctrl.page_size / 8 - 1;
339         int i;
340         __le64 **list = iod_list(req);
341         dma_addr_t prp_dma = iod->first_dma;
342
343         if (iod->npages == 0)
344                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345         for (i = 0; i < iod->npages; i++) {
346                 __le64 *prp_list = list[i];
347                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349                 prp_dma = next_prp_dma;
350         }
351
352         if (iod->sg != iod->inline_sg)
353                 kfree(iod->sg);
354 }
355
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358 {
359         if (be32_to_cpu(pi->ref_tag) == v)
360                 pi->ref_tag = cpu_to_be32(p);
361 }
362
363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364 {
365         if (be32_to_cpu(pi->ref_tag) == p)
366                 pi->ref_tag = cpu_to_be32(v);
367 }
368
369 /**
370  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371  *
372  * The virtual start sector is the one that was originally submitted by the
373  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
374  * start sector may be different. Remap protection information to match the
375  * physical LBA on writes, and back to the original seed on reads.
376  *
377  * Type 0 and 3 do not have a ref tag, so no remapping required.
378  */
379 static void nvme_dif_remap(struct request *req,
380                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381 {
382         struct nvme_ns *ns = req->rq_disk->private_data;
383         struct bio_integrity_payload *bip;
384         struct t10_pi_tuple *pi;
385         void *p, *pmap;
386         u32 i, nlb, ts, phys, virt;
387
388         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389                 return;
390
391         bip = bio_integrity(req->bio);
392         if (!bip)
393                 return;
394
395         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
396
397         p = pmap;
398         virt = bip_get_seed(bip);
399         phys = nvme_block_nr(ns, blk_rq_pos(req));
400         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
401         ts = ns->disk->queue->integrity.tuple_size;
402
403         for (i = 0; i < nlb; i++, virt++, phys++) {
404                 pi = (struct t10_pi_tuple *)p;
405                 dif_swap(phys, virt, pi);
406                 p += ts;
407         }
408         kunmap_atomic(pmap);
409 }
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request *req,
412                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413 {
414 }
415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419 {
420 }
421 #endif
422
423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
424                 int total_len)
425 {
426         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427         struct dma_pool *pool;
428         int length = total_len;
429         struct scatterlist *sg = iod->sg;
430         int dma_len = sg_dma_len(sg);
431         u64 dma_addr = sg_dma_address(sg);
432         u32 page_size = dev->ctrl.page_size;
433         int offset = dma_addr & (page_size - 1);
434         __le64 *prp_list;
435         __le64 **list = iod_list(req);
436         dma_addr_t prp_dma;
437         int nprps, i;
438
439         length -= (page_size - offset);
440         if (length <= 0)
441                 return true;
442
443         dma_len -= (page_size - offset);
444         if (dma_len) {
445                 dma_addr += (page_size - offset);
446         } else {
447                 sg = sg_next(sg);
448                 dma_addr = sg_dma_address(sg);
449                 dma_len = sg_dma_len(sg);
450         }
451
452         if (length <= page_size) {
453                 iod->first_dma = dma_addr;
454                 return true;
455         }
456
457         nprps = DIV_ROUND_UP(length, page_size);
458         if (nprps <= (256 / 8)) {
459                 pool = dev->prp_small_pool;
460                 iod->npages = 0;
461         } else {
462                 pool = dev->prp_page_pool;
463                 iod->npages = 1;
464         }
465
466         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
467         if (!prp_list) {
468                 iod->first_dma = dma_addr;
469                 iod->npages = -1;
470                 return false;
471         }
472         list[0] = prp_list;
473         iod->first_dma = prp_dma;
474         i = 0;
475         for (;;) {
476                 if (i == page_size >> 3) {
477                         __le64 *old_prp_list = prp_list;
478                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
479                         if (!prp_list)
480                                 return false;
481                         list[iod->npages++] = prp_list;
482                         prp_list[0] = old_prp_list[i - 1];
483                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
484                         i = 1;
485                 }
486                 prp_list[i++] = cpu_to_le64(dma_addr);
487                 dma_len -= page_size;
488                 dma_addr += page_size;
489                 length -= page_size;
490                 if (length <= 0)
491                         break;
492                 if (dma_len > 0)
493                         continue;
494                 BUG_ON(dma_len < 0);
495                 sg = sg_next(sg);
496                 dma_addr = sg_dma_address(sg);
497                 dma_len = sg_dma_len(sg);
498         }
499
500         return true;
501 }
502
503 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
504                 unsigned size, struct nvme_command *cmnd)
505 {
506         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
507         struct request_queue *q = req->q;
508         enum dma_data_direction dma_dir = rq_data_dir(req) ?
509                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
510         int ret = BLK_MQ_RQ_QUEUE_ERROR;
511
512         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
513         iod->nents = blk_rq_map_sg(q, req, iod->sg);
514         if (!iod->nents)
515                 goto out;
516
517         ret = BLK_MQ_RQ_QUEUE_BUSY;
518         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
519                                 DMA_ATTR_NO_WARN))
520                 goto out;
521
522         if (!nvme_setup_prps(dev, req, size))
523                 goto out_unmap;
524
525         ret = BLK_MQ_RQ_QUEUE_ERROR;
526         if (blk_integrity_rq(req)) {
527                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
528                         goto out_unmap;
529
530                 sg_init_table(&iod->meta_sg, 1);
531                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
532                         goto out_unmap;
533
534                 if (rq_data_dir(req))
535                         nvme_dif_remap(req, nvme_dif_prep);
536
537                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
538                         goto out_unmap;
539         }
540
541         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
542         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
543         if (blk_integrity_rq(req))
544                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
545         return BLK_MQ_RQ_QUEUE_OK;
546
547 out_unmap:
548         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
549 out:
550         return ret;
551 }
552
553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
554 {
555         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
556         enum dma_data_direction dma_dir = rq_data_dir(req) ?
557                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
558
559         if (iod->nents) {
560                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
561                 if (blk_integrity_rq(req)) {
562                         if (!rq_data_dir(req))
563                                 nvme_dif_remap(req, nvme_dif_complete);
564                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
565                 }
566         }
567
568         nvme_cleanup_cmd(req);
569         nvme_free_iod(dev, req);
570 }
571
572 /*
573  * NOTE: ns is NULL when called on the admin queue.
574  */
575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576                          const struct blk_mq_queue_data *bd)
577 {
578         struct nvme_ns *ns = hctx->queue->queuedata;
579         struct nvme_queue *nvmeq = hctx->driver_data;
580         struct nvme_dev *dev = nvmeq->dev;
581         struct request *req = bd->rq;
582         struct nvme_command cmnd;
583         unsigned map_len;
584         int ret = BLK_MQ_RQ_QUEUE_OK;
585
586         /*
587          * If formated with metadata, require the block layer provide a buffer
588          * unless this namespace is formated such that the metadata can be
589          * stripped/generated by the controller with PRACT=1.
590          */
591         if (ns && ns->ms && !blk_integrity_rq(req)) {
592                 if (!(ns->pi_type && ns->ms == 8) &&
593                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
594                         blk_mq_end_request(req, -EFAULT);
595                         return BLK_MQ_RQ_QUEUE_OK;
596                 }
597         }
598
599         ret = nvme_setup_cmd(ns, req, &cmnd);
600         if (ret != BLK_MQ_RQ_QUEUE_OK)
601                 return ret;
602
603         map_len = nvme_map_len(req);
604         ret = nvme_init_iod(req, map_len, dev);
605         if (ret != BLK_MQ_RQ_QUEUE_OK)
606                 goto out_free_cmd;
607
608         if (blk_rq_nr_phys_segments(req))
609                 ret = nvme_map_data(dev, req, map_len, &cmnd);
610
611         if (ret != BLK_MQ_RQ_QUEUE_OK)
612                 goto out_cleanup_iod;
613
614         blk_mq_start_request(req);
615
616         spin_lock_irq(&nvmeq->q_lock);
617         if (unlikely(nvmeq->cq_vector < 0)) {
618                 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
619                         ret = BLK_MQ_RQ_QUEUE_BUSY;
620                 else
621                         ret = BLK_MQ_RQ_QUEUE_ERROR;
622                 spin_unlock_irq(&nvmeq->q_lock);
623                 goto out_cleanup_iod;
624         }
625         __nvme_submit_cmd(nvmeq, &cmnd);
626         nvme_process_cq(nvmeq);
627         spin_unlock_irq(&nvmeq->q_lock);
628         return BLK_MQ_RQ_QUEUE_OK;
629 out_cleanup_iod:
630         nvme_free_iod(dev, req);
631 out_free_cmd:
632         nvme_cleanup_cmd(req);
633         return ret;
634 }
635
636 static void nvme_complete_rq(struct request *req)
637 {
638         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
639         struct nvme_dev *dev = iod->nvmeq->dev;
640         int error = 0;
641
642         nvme_unmap_data(dev, req);
643
644         if (unlikely(req->errors)) {
645                 if (nvme_req_needs_retry(req, req->errors)) {
646                         req->retries++;
647                         nvme_requeue_req(req);
648                         return;
649                 }
650
651                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
652                         error = req->errors;
653                 else
654                         error = nvme_error_status(req->errors);
655         }
656
657         if (unlikely(iod->aborted)) {
658                 dev_warn(dev->ctrl.device,
659                         "completing aborted command with status: %04x\n",
660                         req->errors);
661         }
662
663         blk_mq_end_request(req, error);
664 }
665
666 /* We read the CQE phase first to check if the rest of the entry is valid */
667 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
668                 u16 phase)
669 {
670         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
671 }
672
673 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
674 {
675         u16 head, phase;
676
677         head = nvmeq->cq_head;
678         phase = nvmeq->cq_phase;
679
680         while (nvme_cqe_valid(nvmeq, head, phase)) {
681                 struct nvme_completion cqe = nvmeq->cqes[head];
682                 struct request *req;
683
684                 if (++head == nvmeq->q_depth) {
685                         head = 0;
686                         phase = !phase;
687                 }
688
689                 if (tag && *tag == cqe.command_id)
690                         *tag = -1;
691
692                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
693                         dev_warn(nvmeq->dev->ctrl.device,
694                                 "invalid id %d completed on queue %d\n",
695                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
696                         continue;
697                 }
698
699                 /*
700                  * AEN requests are special as they don't time out and can
701                  * survive any kind of queue freeze and often don't respond to
702                  * aborts.  We don't even bother to allocate a struct request
703                  * for them but rather special case them here.
704                  */
705                 if (unlikely(nvmeq->qid == 0 &&
706                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
707                         nvme_complete_async_event(&nvmeq->dev->ctrl,
708                                         cqe.status, &cqe.result);
709                         continue;
710                 }
711
712                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
713                 nvme_req(req)->result = cqe.result;
714                 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
715
716         }
717
718         /* If the controller ignores the cq head doorbell and continuously
719          * writes to the queue, it is theoretically possible to wrap around
720          * the queue twice and mistakenly return IRQ_NONE.  Linux only
721          * requires that 0.1% of your interrupts are handled, so this isn't
722          * a big problem.
723          */
724         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
725                 return;
726
727         if (likely(nvmeq->cq_vector >= 0))
728                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
729         nvmeq->cq_head = head;
730         nvmeq->cq_phase = phase;
731
732         nvmeq->cqe_seen = 1;
733 }
734
735 static void nvme_process_cq(struct nvme_queue *nvmeq)
736 {
737         __nvme_process_cq(nvmeq, NULL);
738 }
739
740 static irqreturn_t nvme_irq(int irq, void *data)
741 {
742         irqreturn_t result;
743         struct nvme_queue *nvmeq = data;
744         spin_lock(&nvmeq->q_lock);
745         nvme_process_cq(nvmeq);
746         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
747         nvmeq->cqe_seen = 0;
748         spin_unlock(&nvmeq->q_lock);
749         return result;
750 }
751
752 static irqreturn_t nvme_irq_check(int irq, void *data)
753 {
754         struct nvme_queue *nvmeq = data;
755         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
756                 return IRQ_WAKE_THREAD;
757         return IRQ_NONE;
758 }
759
760 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
761 {
762         struct nvme_queue *nvmeq = hctx->driver_data;
763
764         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
765                 spin_lock_irq(&nvmeq->q_lock);
766                 __nvme_process_cq(nvmeq, &tag);
767                 spin_unlock_irq(&nvmeq->q_lock);
768
769                 if (tag == -1)
770                         return 1;
771         }
772
773         return 0;
774 }
775
776 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
777 {
778         struct nvme_dev *dev = to_nvme_dev(ctrl);
779         struct nvme_queue *nvmeq = dev->queues[0];
780         struct nvme_command c;
781
782         memset(&c, 0, sizeof(c));
783         c.common.opcode = nvme_admin_async_event;
784         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
785
786         spin_lock_irq(&nvmeq->q_lock);
787         __nvme_submit_cmd(nvmeq, &c);
788         spin_unlock_irq(&nvmeq->q_lock);
789 }
790
791 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
792 {
793         struct nvme_command c;
794
795         memset(&c, 0, sizeof(c));
796         c.delete_queue.opcode = opcode;
797         c.delete_queue.qid = cpu_to_le16(id);
798
799         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
800 }
801
802 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
803                                                 struct nvme_queue *nvmeq)
804 {
805         struct nvme_command c;
806         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
807
808         /*
809          * Note: we (ab)use the fact the the prp fields survive if no data
810          * is attached to the request.
811          */
812         memset(&c, 0, sizeof(c));
813         c.create_cq.opcode = nvme_admin_create_cq;
814         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
815         c.create_cq.cqid = cpu_to_le16(qid);
816         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
817         c.create_cq.cq_flags = cpu_to_le16(flags);
818         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
819
820         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
821 }
822
823 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
824                                                 struct nvme_queue *nvmeq)
825 {
826         struct nvme_command c;
827         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
828
829         /*
830          * Note: we (ab)use the fact the the prp fields survive if no data
831          * is attached to the request.
832          */
833         memset(&c, 0, sizeof(c));
834         c.create_sq.opcode = nvme_admin_create_sq;
835         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
836         c.create_sq.sqid = cpu_to_le16(qid);
837         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
838         c.create_sq.sq_flags = cpu_to_le16(flags);
839         c.create_sq.cqid = cpu_to_le16(qid);
840
841         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
842 }
843
844 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
845 {
846         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
847 }
848
849 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
850 {
851         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
852 }
853
854 static void abort_endio(struct request *req, int error)
855 {
856         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
857         struct nvme_queue *nvmeq = iod->nvmeq;
858         u16 status = req->errors;
859
860         dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
861         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
862         blk_mq_free_request(req);
863 }
864
865 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
866 {
867         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
868         struct nvme_queue *nvmeq = iod->nvmeq;
869         struct nvme_dev *dev = nvmeq->dev;
870         struct request *abort_req;
871         struct nvme_command cmd;
872
873         /*
874          * Shutdown immediately if controller times out while starting. The
875          * reset work will see the pci device disabled when it gets the forced
876          * cancellation error. All outstanding requests are completed on
877          * shutdown, so we return BLK_EH_HANDLED.
878          */
879         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
880                 dev_warn(dev->ctrl.device,
881                          "I/O %d QID %d timeout, disable controller\n",
882                          req->tag, nvmeq->qid);
883                 nvme_dev_disable(dev, false);
884                 req->errors = NVME_SC_CANCELLED;
885                 return BLK_EH_HANDLED;
886         }
887
888         /*
889          * Shutdown the controller immediately and schedule a reset if the
890          * command was already aborted once before and still hasn't been
891          * returned to the driver, or if this is the admin queue.
892          */
893         if (!nvmeq->qid || iod->aborted) {
894                 dev_warn(dev->ctrl.device,
895                          "I/O %d QID %d timeout, reset controller\n",
896                          req->tag, nvmeq->qid);
897                 nvme_dev_disable(dev, false);
898                 nvme_reset(dev);
899
900                 /*
901                  * Mark the request as handled, since the inline shutdown
902                  * forces all outstanding requests to complete.
903                  */
904                 req->errors = NVME_SC_CANCELLED;
905                 return BLK_EH_HANDLED;
906         }
907
908         iod->aborted = 1;
909
910         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
911                 atomic_inc(&dev->ctrl.abort_limit);
912                 return BLK_EH_RESET_TIMER;
913         }
914
915         memset(&cmd, 0, sizeof(cmd));
916         cmd.abort.opcode = nvme_admin_abort_cmd;
917         cmd.abort.cid = req->tag;
918         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
919
920         dev_warn(nvmeq->dev->ctrl.device,
921                 "I/O %d QID %d timeout, aborting\n",
922                  req->tag, nvmeq->qid);
923
924         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
925                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
926         if (IS_ERR(abort_req)) {
927                 atomic_inc(&dev->ctrl.abort_limit);
928                 return BLK_EH_RESET_TIMER;
929         }
930
931         abort_req->timeout = ADMIN_TIMEOUT;
932         abort_req->end_io_data = NULL;
933         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
934
935         /*
936          * The aborted req will be completed on receiving the abort req.
937          * We enable the timer again. If hit twice, it'll cause a device reset,
938          * as the device then is in a faulty state.
939          */
940         return BLK_EH_RESET_TIMER;
941 }
942
943 static void nvme_free_queue(struct nvme_queue *nvmeq)
944 {
945         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
946                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
947         if (nvmeq->sq_cmds)
948                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
949                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
950         kfree(nvmeq);
951 }
952
953 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
954 {
955         int i;
956
957         for (i = dev->queue_count - 1; i >= lowest; i--) {
958                 struct nvme_queue *nvmeq = dev->queues[i];
959                 dev->queue_count--;
960                 dev->queues[i] = NULL;
961                 nvme_free_queue(nvmeq);
962         }
963 }
964
965 /**
966  * nvme_suspend_queue - put queue into suspended state
967  * @nvmeq - queue to suspend
968  */
969 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
970 {
971         int vector;
972
973         spin_lock_irq(&nvmeq->q_lock);
974         if (nvmeq->cq_vector == -1) {
975                 spin_unlock_irq(&nvmeq->q_lock);
976                 return 1;
977         }
978         vector = nvmeq_irq(nvmeq);
979         nvmeq->dev->online_queues--;
980         nvmeq->cq_vector = -1;
981         spin_unlock_irq(&nvmeq->q_lock);
982
983         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
984                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
985
986         free_irq(vector, nvmeq);
987
988         return 0;
989 }
990
991 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
992 {
993         struct nvme_queue *nvmeq = dev->queues[0];
994
995         if (!nvmeq)
996                 return;
997         if (nvme_suspend_queue(nvmeq))
998                 return;
999
1000         if (shutdown)
1001                 nvme_shutdown_ctrl(&dev->ctrl);
1002         else
1003                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1004                                                 dev->bar + NVME_REG_CAP));
1005
1006         spin_lock_irq(&nvmeq->q_lock);
1007         nvme_process_cq(nvmeq);
1008         spin_unlock_irq(&nvmeq->q_lock);
1009 }
1010
1011 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1012                                 int entry_size)
1013 {
1014         int q_depth = dev->q_depth;
1015         unsigned q_size_aligned = roundup(q_depth * entry_size,
1016                                           dev->ctrl.page_size);
1017
1018         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1019                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1020                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1021                 q_depth = div_u64(mem_per_q, entry_size);
1022
1023                 /*
1024                  * Ensure the reduced q_depth is above some threshold where it
1025                  * would be better to map queues in system memory with the
1026                  * original depth
1027                  */
1028                 if (q_depth < 64)
1029                         return -ENOMEM;
1030         }
1031
1032         return q_depth;
1033 }
1034
1035 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1036                                 int qid, int depth)
1037 {
1038         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1039                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1040                                                       dev->ctrl.page_size);
1041                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1042                 nvmeq->sq_cmds_io = dev->cmb + offset;
1043         } else {
1044                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1045                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1046                 if (!nvmeq->sq_cmds)
1047                         return -ENOMEM;
1048         }
1049
1050         return 0;
1051 }
1052
1053 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1054                                                         int depth)
1055 {
1056         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1057         if (!nvmeq)
1058                 return NULL;
1059
1060         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1061                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1062         if (!nvmeq->cqes)
1063                 goto free_nvmeq;
1064
1065         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1066                 goto free_cqdma;
1067
1068         nvmeq->q_dmadev = dev->dev;
1069         nvmeq->dev = dev;
1070         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1071                         dev->ctrl.instance, qid);
1072         spin_lock_init(&nvmeq->q_lock);
1073         nvmeq->cq_head = 0;
1074         nvmeq->cq_phase = 1;
1075         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1076         nvmeq->q_depth = depth;
1077         nvmeq->qid = qid;
1078         nvmeq->cq_vector = -1;
1079         dev->queues[qid] = nvmeq;
1080         dev->queue_count++;
1081
1082         return nvmeq;
1083
1084  free_cqdma:
1085         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1086                                                         nvmeq->cq_dma_addr);
1087  free_nvmeq:
1088         kfree(nvmeq);
1089         return NULL;
1090 }
1091
1092 static int queue_request_irq(struct nvme_queue *nvmeq)
1093 {
1094         if (use_threaded_interrupts)
1095                 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1096                                 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1097         else
1098                 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1099                                 nvmeq->irqname, nvmeq);
1100 }
1101
1102 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1103 {
1104         struct nvme_dev *dev = nvmeq->dev;
1105
1106         spin_lock_irq(&nvmeq->q_lock);
1107         nvmeq->sq_tail = 0;
1108         nvmeq->cq_head = 0;
1109         nvmeq->cq_phase = 1;
1110         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1111         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1112         dev->online_queues++;
1113         spin_unlock_irq(&nvmeq->q_lock);
1114 }
1115
1116 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1117 {
1118         struct nvme_dev *dev = nvmeq->dev;
1119         int result;
1120
1121         nvmeq->cq_vector = qid - 1;
1122         result = adapter_alloc_cq(dev, qid, nvmeq);
1123         if (result < 0)
1124                 return result;
1125
1126         result = adapter_alloc_sq(dev, qid, nvmeq);
1127         if (result < 0)
1128                 goto release_cq;
1129
1130         result = queue_request_irq(nvmeq);
1131         if (result < 0)
1132                 goto release_sq;
1133
1134         nvme_init_queue(nvmeq, qid);
1135         return result;
1136
1137  release_sq:
1138         adapter_delete_sq(dev, qid);
1139  release_cq:
1140         adapter_delete_cq(dev, qid);
1141         return result;
1142 }
1143
1144 static struct blk_mq_ops nvme_mq_admin_ops = {
1145         .queue_rq       = nvme_queue_rq,
1146         .complete       = nvme_complete_rq,
1147         .init_hctx      = nvme_admin_init_hctx,
1148         .exit_hctx      = nvme_admin_exit_hctx,
1149         .init_request   = nvme_admin_init_request,
1150         .timeout        = nvme_timeout,
1151 };
1152
1153 static struct blk_mq_ops nvme_mq_ops = {
1154         .queue_rq       = nvme_queue_rq,
1155         .complete       = nvme_complete_rq,
1156         .init_hctx      = nvme_init_hctx,
1157         .init_request   = nvme_init_request,
1158         .map_queues     = nvme_pci_map_queues,
1159         .timeout        = nvme_timeout,
1160         .poll           = nvme_poll,
1161 };
1162
1163 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1164 {
1165         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1166                 /*
1167                  * If the controller was reset during removal, it's possible
1168                  * user requests may be waiting on a stopped queue. Start the
1169                  * queue to flush these to completion.
1170                  */
1171                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1172                 blk_cleanup_queue(dev->ctrl.admin_q);
1173                 blk_mq_free_tag_set(&dev->admin_tagset);
1174         }
1175 }
1176
1177 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1178 {
1179         if (!dev->ctrl.admin_q) {
1180                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1181                 dev->admin_tagset.nr_hw_queues = 1;
1182
1183                 /*
1184                  * Subtract one to leave an empty queue entry for 'Full Queue'
1185                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1186                  */
1187                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1188                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1189                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1190                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1191                 dev->admin_tagset.driver_data = dev;
1192
1193                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1194                         return -ENOMEM;
1195
1196                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1197                 if (IS_ERR(dev->ctrl.admin_q)) {
1198                         blk_mq_free_tag_set(&dev->admin_tagset);
1199                         return -ENOMEM;
1200                 }
1201                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1202                         nvme_dev_remove_admin(dev);
1203                         dev->ctrl.admin_q = NULL;
1204                         return -ENODEV;
1205                 }
1206         } else
1207                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1208
1209         return 0;
1210 }
1211
1212 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1213 {
1214         int result;
1215         u32 aqa;
1216         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1217         struct nvme_queue *nvmeq;
1218
1219         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1220                                                 NVME_CAP_NSSRC(cap) : 0;
1221
1222         if (dev->subsystem &&
1223             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1224                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1225
1226         result = nvme_disable_ctrl(&dev->ctrl, cap);
1227         if (result < 0)
1228                 return result;
1229
1230         nvmeq = dev->queues[0];
1231         if (!nvmeq) {
1232                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1233                 if (!nvmeq)
1234                         return -ENOMEM;
1235         }
1236
1237         aqa = nvmeq->q_depth - 1;
1238         aqa |= aqa << 16;
1239
1240         writel(aqa, dev->bar + NVME_REG_AQA);
1241         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1242         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1243
1244         result = nvme_enable_ctrl(&dev->ctrl, cap);
1245         if (result)
1246                 return result;
1247
1248         nvmeq->cq_vector = 0;
1249         result = queue_request_irq(nvmeq);
1250         if (result) {
1251                 nvmeq->cq_vector = -1;
1252                 return result;
1253         }
1254
1255         return result;
1256 }
1257
1258 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1259 {
1260
1261         /* If true, indicates loss of adapter communication, possibly by a
1262          * NVMe Subsystem reset.
1263          */
1264         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1265
1266         /* If there is a reset ongoing, we shouldn't reset again. */
1267         if (work_busy(&dev->reset_work))
1268                 return false;
1269
1270         /* We shouldn't reset unless the controller is on fatal error state
1271          * _or_ if we lost the communication with it.
1272          */
1273         if (!(csts & NVME_CSTS_CFS) && !nssro)
1274                 return false;
1275
1276         /* If PCI error recovery process is happening, we cannot reset or
1277          * the recovery mechanism will surely fail.
1278          */
1279         if (pci_channel_offline(to_pci_dev(dev->dev)))
1280                 return false;
1281
1282         return true;
1283 }
1284
1285 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1286 {
1287         /* Read a config register to help see what died. */
1288         u16 pci_status;
1289         int result;
1290
1291         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1292                                       &pci_status);
1293         if (result == PCIBIOS_SUCCESSFUL)
1294                 dev_warn(dev->dev,
1295                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1296                          csts, pci_status);
1297         else
1298                 dev_warn(dev->dev,
1299                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1300                          csts, result);
1301 }
1302
1303 static void nvme_watchdog_timer(unsigned long data)
1304 {
1305         struct nvme_dev *dev = (struct nvme_dev *)data;
1306         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1307
1308         /* Skip controllers under certain specific conditions. */
1309         if (nvme_should_reset(dev, csts)) {
1310                 if (!nvme_reset(dev))
1311                         nvme_warn_reset(dev, csts);
1312                 return;
1313         }
1314
1315         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1316 }
1317
1318 static int nvme_create_io_queues(struct nvme_dev *dev)
1319 {
1320         unsigned i, max;
1321         int ret = 0;
1322
1323         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1324                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1325                         ret = -ENOMEM;
1326                         break;
1327                 }
1328         }
1329
1330         max = min(dev->max_qid, dev->queue_count - 1);
1331         for (i = dev->online_queues; i <= max; i++) {
1332                 ret = nvme_create_queue(dev->queues[i], i);
1333                 if (ret)
1334                         break;
1335         }
1336
1337         /*
1338          * Ignore failing Create SQ/CQ commands, we can continue with less
1339          * than the desired aount of queues, and even a controller without
1340          * I/O queues an still be used to issue admin commands.  This might
1341          * be useful to upgrade a buggy firmware for example.
1342          */
1343         return ret >= 0 ? 0 : ret;
1344 }
1345
1346 static ssize_t nvme_cmb_show(struct device *dev,
1347                              struct device_attribute *attr,
1348                              char *buf)
1349 {
1350         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1351
1352         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1353                        ndev->cmbloc, ndev->cmbsz);
1354 }
1355 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1356
1357 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1358 {
1359         u64 szu, size, offset;
1360         resource_size_t bar_size;
1361         struct pci_dev *pdev = to_pci_dev(dev->dev);
1362         void __iomem *cmb;
1363         dma_addr_t dma_addr;
1364
1365         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1366         if (!(NVME_CMB_SZ(dev->cmbsz)))
1367                 return NULL;
1368         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1369
1370         if (!use_cmb_sqes)
1371                 return NULL;
1372
1373         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1374         size = szu * NVME_CMB_SZ(dev->cmbsz);
1375         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1376         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1377
1378         if (offset > bar_size)
1379                 return NULL;
1380
1381         /*
1382          * Controllers may support a CMB size larger than their BAR,
1383          * for example, due to being behind a bridge. Reduce the CMB to
1384          * the reported size of the BAR
1385          */
1386         if (size > bar_size - offset)
1387                 size = bar_size - offset;
1388
1389         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1390         cmb = ioremap_wc(dma_addr, size);
1391         if (!cmb)
1392                 return NULL;
1393
1394         dev->cmb_dma_addr = dma_addr;
1395         dev->cmb_size = size;
1396         return cmb;
1397 }
1398
1399 static inline void nvme_release_cmb(struct nvme_dev *dev)
1400 {
1401         if (dev->cmb) {
1402                 iounmap(dev->cmb);
1403                 dev->cmb = NULL;
1404         }
1405 }
1406
1407 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1408 {
1409         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1410 }
1411
1412 static int nvme_setup_io_queues(struct nvme_dev *dev)
1413 {
1414         struct nvme_queue *adminq = dev->queues[0];
1415         struct pci_dev *pdev = to_pci_dev(dev->dev);
1416         int result, nr_io_queues, size;
1417
1418         nr_io_queues = num_online_cpus();
1419         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1420         if (result < 0)
1421                 return result;
1422
1423         if (nr_io_queues == 0)
1424                 return 0;
1425
1426         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1427                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1428                                 sizeof(struct nvme_command));
1429                 if (result > 0)
1430                         dev->q_depth = result;
1431                 else
1432                         nvme_release_cmb(dev);
1433         }
1434
1435         size = db_bar_size(dev, nr_io_queues);
1436         if (size > 8192) {
1437                 iounmap(dev->bar);
1438                 do {
1439                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1440                         if (dev->bar)
1441                                 break;
1442                         if (!--nr_io_queues)
1443                                 return -ENOMEM;
1444                         size = db_bar_size(dev, nr_io_queues);
1445                 } while (1);
1446                 dev->dbs = dev->bar + 4096;
1447                 adminq->q_db = dev->dbs;
1448         }
1449
1450         /* Deregister the admin queue's interrupt */
1451         free_irq(pci_irq_vector(pdev, 0), adminq);
1452
1453         /*
1454          * If we enable msix early due to not intx, disable it again before
1455          * setting up the full range we need.
1456          */
1457         pci_free_irq_vectors(pdev);
1458         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1459                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1460         if (nr_io_queues <= 0)
1461                 return -EIO;
1462         dev->max_qid = nr_io_queues;
1463
1464         /*
1465          * Should investigate if there's a performance win from allocating
1466          * more queues than interrupt vectors; it might allow the submission
1467          * path to scale better, even if the receive path is limited by the
1468          * number of interrupts.
1469          */
1470
1471         result = queue_request_irq(adminq);
1472         if (result) {
1473                 adminq->cq_vector = -1;
1474                 return result;
1475         }
1476         return nvme_create_io_queues(dev);
1477 }
1478
1479 static void nvme_del_queue_end(struct request *req, int error)
1480 {
1481         struct nvme_queue *nvmeq = req->end_io_data;
1482
1483         blk_mq_free_request(req);
1484         complete(&nvmeq->dev->ioq_wait);
1485 }
1486
1487 static void nvme_del_cq_end(struct request *req, int error)
1488 {
1489         struct nvme_queue *nvmeq = req->end_io_data;
1490
1491         if (!error) {
1492                 unsigned long flags;
1493
1494                 /*
1495                  * We might be called with the AQ q_lock held
1496                  * and the I/O queue q_lock should always
1497                  * nest inside the AQ one.
1498                  */
1499                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1500                                         SINGLE_DEPTH_NESTING);
1501                 nvme_process_cq(nvmeq);
1502                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1503         }
1504
1505         nvme_del_queue_end(req, error);
1506 }
1507
1508 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1509 {
1510         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1511         struct request *req;
1512         struct nvme_command cmd;
1513
1514         memset(&cmd, 0, sizeof(cmd));
1515         cmd.delete_queue.opcode = opcode;
1516         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1517
1518         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1519         if (IS_ERR(req))
1520                 return PTR_ERR(req);
1521
1522         req->timeout = ADMIN_TIMEOUT;
1523         req->end_io_data = nvmeq;
1524
1525         blk_execute_rq_nowait(q, NULL, req, false,
1526                         opcode == nvme_admin_delete_cq ?
1527                                 nvme_del_cq_end : nvme_del_queue_end);
1528         return 0;
1529 }
1530
1531 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1532 {
1533         int pass;
1534         unsigned long timeout;
1535         u8 opcode = nvme_admin_delete_sq;
1536
1537         for (pass = 0; pass < 2; pass++) {
1538                 int sent = 0, i = queues;
1539
1540                 reinit_completion(&dev->ioq_wait);
1541  retry:
1542                 timeout = ADMIN_TIMEOUT;
1543                 for (; i > 0; i--, sent++)
1544                         if (nvme_delete_queue(dev->queues[i], opcode))
1545                                 break;
1546
1547                 while (sent--) {
1548                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1549                         if (timeout == 0)
1550                                 return;
1551                         if (i)
1552                                 goto retry;
1553                 }
1554                 opcode = nvme_admin_delete_cq;
1555         }
1556 }
1557
1558 /*
1559  * Return: error value if an error occurred setting up the queues or calling
1560  * Identify Device.  0 if these succeeded, even if adding some of the
1561  * namespaces failed.  At the moment, these failures are silent.  TBD which
1562  * failures should be reported.
1563  */
1564 static int nvme_dev_add(struct nvme_dev *dev)
1565 {
1566         if (!dev->ctrl.tagset) {
1567                 dev->tagset.ops = &nvme_mq_ops;
1568                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1569                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1570                 dev->tagset.numa_node = dev_to_node(dev->dev);
1571                 dev->tagset.queue_depth =
1572                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1573                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1574                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1575                 dev->tagset.driver_data = dev;
1576
1577                 if (blk_mq_alloc_tag_set(&dev->tagset))
1578                         return 0;
1579                 dev->ctrl.tagset = &dev->tagset;
1580         } else {
1581                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1582
1583                 /* Free previously allocated queues that are no longer usable */
1584                 nvme_free_queues(dev, dev->online_queues);
1585         }
1586
1587         return 0;
1588 }
1589
1590 static int nvme_pci_enable(struct nvme_dev *dev)
1591 {
1592         u64 cap;
1593         int result = -ENOMEM;
1594         struct pci_dev *pdev = to_pci_dev(dev->dev);
1595
1596         if (pci_enable_device_mem(pdev))
1597                 return result;
1598
1599         pci_set_master(pdev);
1600
1601         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1602             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1603                 goto disable;
1604
1605         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1606                 result = -ENODEV;
1607                 goto disable;
1608         }
1609
1610         /*
1611          * Some devices and/or platforms don't advertise or work with INTx
1612          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1613          * adjust this later.
1614          */
1615         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1616         if (result < 0)
1617                 return result;
1618
1619         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1620
1621         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1622         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1623         dev->dbs = dev->bar + 4096;
1624
1625         /*
1626          * Temporary fix for the Apple controller found in the MacBook8,1 and
1627          * some MacBook7,1 to avoid controller resets and data loss.
1628          */
1629         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1630                 dev->q_depth = 2;
1631                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1632                         "queue depth=%u to work around controller resets\n",
1633                         dev->q_depth);
1634         }
1635
1636         /*
1637          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1638          * populate sysfs if a CMB is implemented. Note that we add the
1639          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1640          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1641          * NULL as final argument to sysfs_add_file_to_group.
1642          */
1643
1644         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1645                 dev->cmb = nvme_map_cmb(dev);
1646
1647                 if (dev->cmbsz) {
1648                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1649                                                     &dev_attr_cmb.attr, NULL))
1650                                 dev_warn(dev->dev,
1651                                          "failed to add sysfs attribute for CMB\n");
1652                 }
1653         }
1654
1655         pci_enable_pcie_error_reporting(pdev);
1656         pci_save_state(pdev);
1657         return 0;
1658
1659  disable:
1660         pci_disable_device(pdev);
1661         return result;
1662 }
1663
1664 static void nvme_dev_unmap(struct nvme_dev *dev)
1665 {
1666         if (dev->bar)
1667                 iounmap(dev->bar);
1668         pci_release_mem_regions(to_pci_dev(dev->dev));
1669 }
1670
1671 static void nvme_pci_disable(struct nvme_dev *dev)
1672 {
1673         struct pci_dev *pdev = to_pci_dev(dev->dev);
1674
1675         pci_free_irq_vectors(pdev);
1676
1677         if (pci_is_enabled(pdev)) {
1678                 pci_disable_pcie_error_reporting(pdev);
1679                 pci_disable_device(pdev);
1680         }
1681 }
1682
1683 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1684 {
1685         int i, queues;
1686         u32 csts = -1;
1687
1688         del_timer_sync(&dev->watchdog_timer);
1689
1690         mutex_lock(&dev->shutdown_lock);
1691         if (pci_is_enabled(to_pci_dev(dev->dev))) {
1692                 nvme_stop_queues(&dev->ctrl);
1693                 csts = readl(dev->bar + NVME_REG_CSTS);
1694         }
1695
1696         queues = dev->online_queues - 1;
1697         for (i = dev->queue_count - 1; i > 0; i--)
1698                 nvme_suspend_queue(dev->queues[i]);
1699
1700         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1701                 /* A device might become IO incapable very soon during
1702                  * probe, before the admin queue is configured. Thus,
1703                  * queue_count can be 0 here.
1704                  */
1705                 if (dev->queue_count)
1706                         nvme_suspend_queue(dev->queues[0]);
1707         } else {
1708                 nvme_disable_io_queues(dev, queues);
1709                 nvme_disable_admin_queue(dev, shutdown);
1710         }
1711         nvme_pci_disable(dev);
1712
1713         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1714         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1715         mutex_unlock(&dev->shutdown_lock);
1716 }
1717
1718 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1719 {
1720         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1721                                                 PAGE_SIZE, PAGE_SIZE, 0);
1722         if (!dev->prp_page_pool)
1723                 return -ENOMEM;
1724
1725         /* Optimisation for I/Os between 4k and 128k */
1726         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1727                                                 256, 256, 0);
1728         if (!dev->prp_small_pool) {
1729                 dma_pool_destroy(dev->prp_page_pool);
1730                 return -ENOMEM;
1731         }
1732         return 0;
1733 }
1734
1735 static void nvme_release_prp_pools(struct nvme_dev *dev)
1736 {
1737         dma_pool_destroy(dev->prp_page_pool);
1738         dma_pool_destroy(dev->prp_small_pool);
1739 }
1740
1741 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1742 {
1743         struct nvme_dev *dev = to_nvme_dev(ctrl);
1744
1745         put_device(dev->dev);
1746         if (dev->tagset.tags)
1747                 blk_mq_free_tag_set(&dev->tagset);
1748         if (dev->ctrl.admin_q)
1749                 blk_put_queue(dev->ctrl.admin_q);
1750         kfree(dev->queues);
1751         kfree(dev);
1752 }
1753
1754 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1755 {
1756         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1757
1758         kref_get(&dev->ctrl.kref);
1759         nvme_dev_disable(dev, false);
1760         if (!schedule_work(&dev->remove_work))
1761                 nvme_put_ctrl(&dev->ctrl);
1762 }
1763
1764 static void nvme_reset_work(struct work_struct *work)
1765 {
1766         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1767         int result = -ENODEV;
1768
1769         if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1770                 goto out;
1771
1772         /*
1773          * If we're called to reset a live controller first shut it down before
1774          * moving on.
1775          */
1776         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1777                 nvme_dev_disable(dev, false);
1778
1779         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1780                 goto out;
1781
1782         result = nvme_pci_enable(dev);
1783         if (result)
1784                 goto out;
1785
1786         result = nvme_configure_admin_queue(dev);
1787         if (result)
1788                 goto out;
1789
1790         nvme_init_queue(dev->queues[0], 0);
1791         result = nvme_alloc_admin_tags(dev);
1792         if (result)
1793                 goto out;
1794
1795         result = nvme_init_identify(&dev->ctrl);
1796         if (result)
1797                 goto out;
1798
1799         result = nvme_setup_io_queues(dev);
1800         if (result)
1801                 goto out;
1802
1803         /*
1804          * A controller that can not execute IO typically requires user
1805          * intervention to correct. For such degraded controllers, the driver
1806          * should not submit commands the user did not request, so skip
1807          * registering for asynchronous event notification on this condition.
1808          */
1809         if (dev->online_queues > 1)
1810                 nvme_queue_async_events(&dev->ctrl);
1811
1812         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1813
1814         /*
1815          * Keep the controller around but remove all namespaces if we don't have
1816          * any working I/O queue.
1817          */
1818         if (dev->online_queues < 2) {
1819                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1820                 nvme_kill_queues(&dev->ctrl);
1821                 nvme_remove_namespaces(&dev->ctrl);
1822         } else {
1823                 nvme_start_queues(&dev->ctrl);
1824                 nvme_dev_add(dev);
1825         }
1826
1827         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1828                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1829                 goto out;
1830         }
1831
1832         if (dev->online_queues > 1)
1833                 nvme_queue_scan(&dev->ctrl);
1834         return;
1835
1836  out:
1837         nvme_remove_dead_ctrl(dev, result);
1838 }
1839
1840 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1841 {
1842         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1843         struct pci_dev *pdev = to_pci_dev(dev->dev);
1844
1845         nvme_kill_queues(&dev->ctrl);
1846         if (pci_get_drvdata(pdev))
1847                 device_release_driver(&pdev->dev);
1848         nvme_put_ctrl(&dev->ctrl);
1849 }
1850
1851 static int nvme_reset(struct nvme_dev *dev)
1852 {
1853         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1854                 return -ENODEV;
1855         if (work_busy(&dev->reset_work))
1856                 return -ENODEV;
1857         if (!queue_work(nvme_workq, &dev->reset_work))
1858                 return -EBUSY;
1859         return 0;
1860 }
1861
1862 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1863 {
1864         *val = readl(to_nvme_dev(ctrl)->bar + off);
1865         return 0;
1866 }
1867
1868 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1869 {
1870         writel(val, to_nvme_dev(ctrl)->bar + off);
1871         return 0;
1872 }
1873
1874 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1875 {
1876         *val = readq(to_nvme_dev(ctrl)->bar + off);
1877         return 0;
1878 }
1879
1880 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1881 {
1882         struct nvme_dev *dev = to_nvme_dev(ctrl);
1883         int ret = nvme_reset(dev);
1884
1885         if (!ret)
1886                 flush_work(&dev->reset_work);
1887         return ret;
1888 }
1889
1890 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1891         .name                   = "pcie",
1892         .module                 = THIS_MODULE,
1893         .reg_read32             = nvme_pci_reg_read32,
1894         .reg_write32            = nvme_pci_reg_write32,
1895         .reg_read64             = nvme_pci_reg_read64,
1896         .reset_ctrl             = nvme_pci_reset_ctrl,
1897         .free_ctrl              = nvme_pci_free_ctrl,
1898         .submit_async_event     = nvme_pci_submit_async_event,
1899 };
1900
1901 static int nvme_dev_map(struct nvme_dev *dev)
1902 {
1903         struct pci_dev *pdev = to_pci_dev(dev->dev);
1904
1905         if (pci_request_mem_regions(pdev, "nvme"))
1906                 return -ENODEV;
1907
1908         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1909         if (!dev->bar)
1910                 goto release;
1911
1912        return 0;
1913   release:
1914        pci_release_mem_regions(pdev);
1915        return -ENODEV;
1916 }
1917
1918 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1919 {
1920         int node, result = -ENOMEM;
1921         struct nvme_dev *dev;
1922
1923         node = dev_to_node(&pdev->dev);
1924         if (node == NUMA_NO_NODE)
1925                 set_dev_node(&pdev->dev, first_memory_node);
1926
1927         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1928         if (!dev)
1929                 return -ENOMEM;
1930         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1931                                                         GFP_KERNEL, node);
1932         if (!dev->queues)
1933                 goto free;
1934
1935         dev->dev = get_device(&pdev->dev);
1936         pci_set_drvdata(pdev, dev);
1937
1938         result = nvme_dev_map(dev);
1939         if (result)
1940                 goto free;
1941
1942         INIT_WORK(&dev->reset_work, nvme_reset_work);
1943         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1944         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1945                 (unsigned long)dev);
1946         mutex_init(&dev->shutdown_lock);
1947         init_completion(&dev->ioq_wait);
1948
1949         result = nvme_setup_prp_pools(dev);
1950         if (result)
1951                 goto put_pci;
1952
1953         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1954                         id->driver_data);
1955         if (result)
1956                 goto release_pools;
1957
1958         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1959
1960         queue_work(nvme_workq, &dev->reset_work);
1961         return 0;
1962
1963  release_pools:
1964         nvme_release_prp_pools(dev);
1965  put_pci:
1966         put_device(dev->dev);
1967         nvme_dev_unmap(dev);
1968  free:
1969         kfree(dev->queues);
1970         kfree(dev);
1971         return result;
1972 }
1973
1974 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1975 {
1976         struct nvme_dev *dev = pci_get_drvdata(pdev);
1977
1978         if (prepare)
1979                 nvme_dev_disable(dev, false);
1980         else
1981                 nvme_reset(dev);
1982 }
1983
1984 static void nvme_shutdown(struct pci_dev *pdev)
1985 {
1986         struct nvme_dev *dev = pci_get_drvdata(pdev);
1987         nvme_dev_disable(dev, true);
1988 }
1989
1990 /*
1991  * The driver's remove may be called on a device in a partially initialized
1992  * state. This function must not have any dependencies on the device state in
1993  * order to proceed.
1994  */
1995 static void nvme_remove(struct pci_dev *pdev)
1996 {
1997         struct nvme_dev *dev = pci_get_drvdata(pdev);
1998
1999         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2000
2001         pci_set_drvdata(pdev, NULL);
2002
2003         if (!pci_device_is_present(pdev))
2004                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2005
2006         flush_work(&dev->reset_work);
2007         nvme_uninit_ctrl(&dev->ctrl);
2008         nvme_dev_disable(dev, true);
2009         nvme_dev_remove_admin(dev);
2010         nvme_free_queues(dev, 0);
2011         nvme_release_cmb(dev);
2012         nvme_release_prp_pools(dev);
2013         nvme_dev_unmap(dev);
2014         nvme_put_ctrl(&dev->ctrl);
2015 }
2016
2017 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2018 {
2019         int ret = 0;
2020
2021         if (numvfs == 0) {
2022                 if (pci_vfs_assigned(pdev)) {
2023                         dev_warn(&pdev->dev,
2024                                 "Cannot disable SR-IOV VFs while assigned\n");
2025                         return -EPERM;
2026                 }
2027                 pci_disable_sriov(pdev);
2028                 return 0;
2029         }
2030
2031         ret = pci_enable_sriov(pdev, numvfs);
2032         return ret ? ret : numvfs;
2033 }
2034
2035 #ifdef CONFIG_PM_SLEEP
2036 static int nvme_suspend(struct device *dev)
2037 {
2038         struct pci_dev *pdev = to_pci_dev(dev);
2039         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2040
2041         nvme_dev_disable(ndev, true);
2042         return 0;
2043 }
2044
2045 static int nvme_resume(struct device *dev)
2046 {
2047         struct pci_dev *pdev = to_pci_dev(dev);
2048         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2049
2050         nvme_reset(ndev);
2051         return 0;
2052 }
2053 #endif
2054
2055 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2056
2057 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2058                                                 pci_channel_state_t state)
2059 {
2060         struct nvme_dev *dev = pci_get_drvdata(pdev);
2061
2062         /*
2063          * A frozen channel requires a reset. When detected, this method will
2064          * shutdown the controller to quiesce. The controller will be restarted
2065          * after the slot reset through driver's slot_reset callback.
2066          */
2067         switch (state) {
2068         case pci_channel_io_normal:
2069                 return PCI_ERS_RESULT_CAN_RECOVER;
2070         case pci_channel_io_frozen:
2071                 dev_warn(dev->ctrl.device,
2072                         "frozen state error detected, reset controller\n");
2073                 nvme_dev_disable(dev, false);
2074                 return PCI_ERS_RESULT_NEED_RESET;
2075         case pci_channel_io_perm_failure:
2076                 dev_warn(dev->ctrl.device,
2077                         "failure state error detected, request disconnect\n");
2078                 return PCI_ERS_RESULT_DISCONNECT;
2079         }
2080         return PCI_ERS_RESULT_NEED_RESET;
2081 }
2082
2083 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2084 {
2085         struct nvme_dev *dev = pci_get_drvdata(pdev);
2086
2087         dev_info(dev->ctrl.device, "restart after slot reset\n");
2088         pci_restore_state(pdev);
2089         nvme_reset(dev);
2090         return PCI_ERS_RESULT_RECOVERED;
2091 }
2092
2093 static void nvme_error_resume(struct pci_dev *pdev)
2094 {
2095         pci_cleanup_aer_uncorrect_error_status(pdev);
2096 }
2097
2098 static const struct pci_error_handlers nvme_err_handler = {
2099         .error_detected = nvme_error_detected,
2100         .slot_reset     = nvme_slot_reset,
2101         .resume         = nvme_error_resume,
2102         .reset_notify   = nvme_reset_notify,
2103 };
2104
2105 static const struct pci_device_id nvme_id_table[] = {
2106         { PCI_VDEVICE(INTEL, 0x0953),
2107                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2108                                 NVME_QUIRK_DISCARD_ZEROES, },
2109         { PCI_VDEVICE(INTEL, 0x0a53),
2110                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2111                                 NVME_QUIRK_DISCARD_ZEROES, },
2112         { PCI_VDEVICE(INTEL, 0x0a54),
2113                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2114                                 NVME_QUIRK_DISCARD_ZEROES, },
2115         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2116                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2117         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2118                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2119         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2120                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2121         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2122         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2123         { 0, }
2124 };
2125 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2126
2127 static struct pci_driver nvme_driver = {
2128         .name           = "nvme",
2129         .id_table       = nvme_id_table,
2130         .probe          = nvme_probe,
2131         .remove         = nvme_remove,
2132         .shutdown       = nvme_shutdown,
2133         .driver         = {
2134                 .pm     = &nvme_dev_pm_ops,
2135         },
2136         .sriov_configure = nvme_pci_sriov_configure,
2137         .err_handler    = &nvme_err_handler,
2138 };
2139
2140 static int __init nvme_init(void)
2141 {
2142         int result;
2143
2144         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2145         if (!nvme_workq)
2146                 return -ENOMEM;
2147
2148         result = pci_register_driver(&nvme_driver);
2149         if (result)
2150                 destroy_workqueue(nvme_workq);
2151         return result;
2152 }
2153
2154 static void __exit nvme_exit(void)
2155 {
2156         pci_unregister_driver(&nvme_driver);
2157         destroy_workqueue(nvme_workq);
2158         _nvme_check_size();
2159 }
2160
2161 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2162 MODULE_LICENSE("GPL");
2163 MODULE_VERSION("1.0");
2164 module_init(nvme_init);
2165 module_exit(nvme_exit);