]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvme/host/pci.c
Merge branch 'for-joerg/arm-smmu/updates' of git://git.kernel.org/pub/scm/linux/kerne...
[karo-tx-linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include "nvme.h"
48
49 #define NVME_Q_DEPTH            1024
50 #define NVME_AQ_DEPTH           256
51 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
53
54 /*
55  * We handle AEN commands ourselves and don't even let the
56  * block layer know about them.
57  */
58 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80         struct nvme_queue **queues;
81         struct blk_mq_tag_set tagset;
82         struct blk_mq_tag_set admin_tagset;
83         u32 __iomem *dbs;
84         struct device *dev;
85         struct dma_pool *prp_page_pool;
86         struct dma_pool *prp_small_pool;
87         unsigned queue_count;
88         unsigned online_queues;
89         unsigned max_qid;
90         int q_depth;
91         u32 db_stride;
92         void __iomem *bar;
93         struct work_struct reset_work;
94         struct work_struct remove_work;
95         struct timer_list watchdog_timer;
96         struct mutex shutdown_lock;
97         bool subsystem;
98         void __iomem *cmb;
99         dma_addr_t cmb_dma_addr;
100         u64 cmb_size;
101         u32 cmbsz;
102         u32 cmbloc;
103         struct nvme_ctrl ctrl;
104         struct completion ioq_wait;
105 };
106
107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108 {
109         return container_of(ctrl, struct nvme_dev, ctrl);
110 }
111
112 /*
113  * An NVM Express queue.  Each device has at least two (one for admin
114  * commands and one for I/O commands).
115  */
116 struct nvme_queue {
117         struct device *q_dmadev;
118         struct nvme_dev *dev;
119         char irqname[24];       /* nvme4294967295-65535\0 */
120         spinlock_t q_lock;
121         struct nvme_command *sq_cmds;
122         struct nvme_command __iomem *sq_cmds_io;
123         volatile struct nvme_completion *cqes;
124         struct blk_mq_tags **tags;
125         dma_addr_t sq_dma_addr;
126         dma_addr_t cq_dma_addr;
127         u32 __iomem *q_db;
128         u16 q_depth;
129         s16 cq_vector;
130         u16 sq_tail;
131         u16 cq_head;
132         u16 qid;
133         u8 cq_phase;
134         u8 cqe_seen;
135 };
136
137 /*
138  * The nvme_iod describes the data in an I/O, including the list of PRP
139  * entries.  You can't see it in this data structure because C doesn't let
140  * me express that.  Use nvme_init_iod to ensure there's enough space
141  * allocated to store the PRP list.
142  */
143 struct nvme_iod {
144         struct nvme_request req;
145         struct nvme_queue *nvmeq;
146         int aborted;
147         int npages;             /* In the PRP list. 0 means small pool in use */
148         int nents;              /* Used in scatterlist */
149         int length;             /* Of data, in bytes */
150         dma_addr_t first_dma;
151         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
152         struct scatterlist *sg;
153         struct scatterlist inline_sg[0];
154 };
155
156 /*
157  * Check we didin't inadvertently grow the command struct
158  */
159 static inline void _nvme_check_size(void)
160 {
161         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
162         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
163         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
164         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
165         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
166         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
167         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
168         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
169         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
170         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
171         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
172         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
173 }
174
175 /*
176  * Max size of iod being embedded in the request payload
177  */
178 #define NVME_INT_PAGES          2
179 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
180
181 /*
182  * Will slightly overestimate the number of pages needed.  This is OK
183  * as it only leads to a small amount of wasted memory for the lifetime of
184  * the I/O.
185  */
186 static int nvme_npages(unsigned size, struct nvme_dev *dev)
187 {
188         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
189                                       dev->ctrl.page_size);
190         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
191 }
192
193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
194                 unsigned int size, unsigned int nseg)
195 {
196         return sizeof(__le64 *) * nvme_npages(size, dev) +
197                         sizeof(struct scatterlist) * nseg;
198 }
199
200 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
201 {
202         return sizeof(struct nvme_iod) +
203                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
204 }
205
206 static int nvmeq_irq(struct nvme_queue *nvmeq)
207 {
208         return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
209 }
210
211 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212                                 unsigned int hctx_idx)
213 {
214         struct nvme_dev *dev = data;
215         struct nvme_queue *nvmeq = dev->queues[0];
216
217         WARN_ON(hctx_idx != 0);
218         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
219         WARN_ON(nvmeq->tags);
220
221         hctx->driver_data = nvmeq;
222         nvmeq->tags = &dev->admin_tagset.tags[0];
223         return 0;
224 }
225
226 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
227 {
228         struct nvme_queue *nvmeq = hctx->driver_data;
229
230         nvmeq->tags = NULL;
231 }
232
233 static int nvme_admin_init_request(void *data, struct request *req,
234                                 unsigned int hctx_idx, unsigned int rq_idx,
235                                 unsigned int numa_node)
236 {
237         struct nvme_dev *dev = data;
238         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
239         struct nvme_queue *nvmeq = dev->queues[0];
240
241         BUG_ON(!nvmeq);
242         iod->nvmeq = nvmeq;
243         return 0;
244 }
245
246 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
247                           unsigned int hctx_idx)
248 {
249         struct nvme_dev *dev = data;
250         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
251
252         if (!nvmeq->tags)
253                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
254
255         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
256         hctx->driver_data = nvmeq;
257         return 0;
258 }
259
260 static int nvme_init_request(void *data, struct request *req,
261                                 unsigned int hctx_idx, unsigned int rq_idx,
262                                 unsigned int numa_node)
263 {
264         struct nvme_dev *dev = data;
265         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
266         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268         BUG_ON(!nvmeq);
269         iod->nvmeq = nvmeq;
270         return 0;
271 }
272
273 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
274 {
275         struct nvme_dev *dev = set->driver_data;
276
277         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
278 }
279
280 /**
281  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
282  * @nvmeq: The queue to use
283  * @cmd: The command to send
284  *
285  * Safe to use from interrupt context
286  */
287 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
288                                                 struct nvme_command *cmd)
289 {
290         u16 tail = nvmeq->sq_tail;
291
292         if (nvmeq->sq_cmds_io)
293                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
294         else
295                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
296
297         if (++tail == nvmeq->q_depth)
298                 tail = 0;
299         writel(tail, nvmeq->q_db);
300         nvmeq->sq_tail = tail;
301 }
302
303 static __le64 **iod_list(struct request *req)
304 {
305         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
306         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
307 }
308
309 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
310 {
311         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
312         int nseg = blk_rq_nr_phys_segments(rq);
313         unsigned int size = blk_rq_payload_bytes(rq);
314
315         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
316                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
317                 if (!iod->sg)
318                         return BLK_MQ_RQ_QUEUE_BUSY;
319         } else {
320                 iod->sg = iod->inline_sg;
321         }
322
323         iod->aborted = 0;
324         iod->npages = -1;
325         iod->nents = 0;
326         iod->length = size;
327
328         if (!(rq->rq_flags & RQF_DONTPREP)) {
329                 rq->retries = 0;
330                 rq->rq_flags |= RQF_DONTPREP;
331         }
332         return BLK_MQ_RQ_QUEUE_OK;
333 }
334
335 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
336 {
337         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
338         const int last_prp = dev->ctrl.page_size / 8 - 1;
339         int i;
340         __le64 **list = iod_list(req);
341         dma_addr_t prp_dma = iod->first_dma;
342
343         if (iod->npages == 0)
344                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345         for (i = 0; i < iod->npages; i++) {
346                 __le64 *prp_list = list[i];
347                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349                 prp_dma = next_prp_dma;
350         }
351
352         if (iod->sg != iod->inline_sg)
353                 kfree(iod->sg);
354 }
355
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358 {
359         if (be32_to_cpu(pi->ref_tag) == v)
360                 pi->ref_tag = cpu_to_be32(p);
361 }
362
363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364 {
365         if (be32_to_cpu(pi->ref_tag) == p)
366                 pi->ref_tag = cpu_to_be32(v);
367 }
368
369 /**
370  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371  *
372  * The virtual start sector is the one that was originally submitted by the
373  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
374  * start sector may be different. Remap protection information to match the
375  * physical LBA on writes, and back to the original seed on reads.
376  *
377  * Type 0 and 3 do not have a ref tag, so no remapping required.
378  */
379 static void nvme_dif_remap(struct request *req,
380                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381 {
382         struct nvme_ns *ns = req->rq_disk->private_data;
383         struct bio_integrity_payload *bip;
384         struct t10_pi_tuple *pi;
385         void *p, *pmap;
386         u32 i, nlb, ts, phys, virt;
387
388         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389                 return;
390
391         bip = bio_integrity(req->bio);
392         if (!bip)
393                 return;
394
395         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
396
397         p = pmap;
398         virt = bip_get_seed(bip);
399         phys = nvme_block_nr(ns, blk_rq_pos(req));
400         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
401         ts = ns->disk->queue->integrity.tuple_size;
402
403         for (i = 0; i < nlb; i++, virt++, phys++) {
404                 pi = (struct t10_pi_tuple *)p;
405                 dif_swap(phys, virt, pi);
406                 p += ts;
407         }
408         kunmap_atomic(pmap);
409 }
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request *req,
412                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413 {
414 }
415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419 {
420 }
421 #endif
422
423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
424 {
425         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426         struct dma_pool *pool;
427         int length = blk_rq_payload_bytes(req);
428         struct scatterlist *sg = iod->sg;
429         int dma_len = sg_dma_len(sg);
430         u64 dma_addr = sg_dma_address(sg);
431         u32 page_size = dev->ctrl.page_size;
432         int offset = dma_addr & (page_size - 1);
433         __le64 *prp_list;
434         __le64 **list = iod_list(req);
435         dma_addr_t prp_dma;
436         int nprps, i;
437
438         length -= (page_size - offset);
439         if (length <= 0)
440                 return true;
441
442         dma_len -= (page_size - offset);
443         if (dma_len) {
444                 dma_addr += (page_size - offset);
445         } else {
446                 sg = sg_next(sg);
447                 dma_addr = sg_dma_address(sg);
448                 dma_len = sg_dma_len(sg);
449         }
450
451         if (length <= page_size) {
452                 iod->first_dma = dma_addr;
453                 return true;
454         }
455
456         nprps = DIV_ROUND_UP(length, page_size);
457         if (nprps <= (256 / 8)) {
458                 pool = dev->prp_small_pool;
459                 iod->npages = 0;
460         } else {
461                 pool = dev->prp_page_pool;
462                 iod->npages = 1;
463         }
464
465         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
466         if (!prp_list) {
467                 iod->first_dma = dma_addr;
468                 iod->npages = -1;
469                 return false;
470         }
471         list[0] = prp_list;
472         iod->first_dma = prp_dma;
473         i = 0;
474         for (;;) {
475                 if (i == page_size >> 3) {
476                         __le64 *old_prp_list = prp_list;
477                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
478                         if (!prp_list)
479                                 return false;
480                         list[iod->npages++] = prp_list;
481                         prp_list[0] = old_prp_list[i - 1];
482                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
483                         i = 1;
484                 }
485                 prp_list[i++] = cpu_to_le64(dma_addr);
486                 dma_len -= page_size;
487                 dma_addr += page_size;
488                 length -= page_size;
489                 if (length <= 0)
490                         break;
491                 if (dma_len > 0)
492                         continue;
493                 BUG_ON(dma_len < 0);
494                 sg = sg_next(sg);
495                 dma_addr = sg_dma_address(sg);
496                 dma_len = sg_dma_len(sg);
497         }
498
499         return true;
500 }
501
502 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
503                 struct nvme_command *cmnd)
504 {
505         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
506         struct request_queue *q = req->q;
507         enum dma_data_direction dma_dir = rq_data_dir(req) ?
508                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
509         int ret = BLK_MQ_RQ_QUEUE_ERROR;
510
511         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
512         iod->nents = blk_rq_map_sg(q, req, iod->sg);
513         if (!iod->nents)
514                 goto out;
515
516         ret = BLK_MQ_RQ_QUEUE_BUSY;
517         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
518                                 DMA_ATTR_NO_WARN))
519                 goto out;
520
521         if (!nvme_setup_prps(dev, req))
522                 goto out_unmap;
523
524         ret = BLK_MQ_RQ_QUEUE_ERROR;
525         if (blk_integrity_rq(req)) {
526                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
527                         goto out_unmap;
528
529                 sg_init_table(&iod->meta_sg, 1);
530                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
531                         goto out_unmap;
532
533                 if (rq_data_dir(req))
534                         nvme_dif_remap(req, nvme_dif_prep);
535
536                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
537                         goto out_unmap;
538         }
539
540         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
541         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
542         if (blk_integrity_rq(req))
543                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
544         return BLK_MQ_RQ_QUEUE_OK;
545
546 out_unmap:
547         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
548 out:
549         return ret;
550 }
551
552 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
553 {
554         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
555         enum dma_data_direction dma_dir = rq_data_dir(req) ?
556                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
557
558         if (iod->nents) {
559                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
560                 if (blk_integrity_rq(req)) {
561                         if (!rq_data_dir(req))
562                                 nvme_dif_remap(req, nvme_dif_complete);
563                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
564                 }
565         }
566
567         nvme_cleanup_cmd(req);
568         nvme_free_iod(dev, req);
569 }
570
571 /*
572  * NOTE: ns is NULL when called on the admin queue.
573  */
574 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
575                          const struct blk_mq_queue_data *bd)
576 {
577         struct nvme_ns *ns = hctx->queue->queuedata;
578         struct nvme_queue *nvmeq = hctx->driver_data;
579         struct nvme_dev *dev = nvmeq->dev;
580         struct request *req = bd->rq;
581         struct nvme_command cmnd;
582         int ret = BLK_MQ_RQ_QUEUE_OK;
583
584         /*
585          * If formated with metadata, require the block layer provide a buffer
586          * unless this namespace is formated such that the metadata can be
587          * stripped/generated by the controller with PRACT=1.
588          */
589         if (ns && ns->ms && !blk_integrity_rq(req)) {
590                 if (!(ns->pi_type && ns->ms == 8) &&
591                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
592                         blk_mq_end_request(req, -EFAULT);
593                         return BLK_MQ_RQ_QUEUE_OK;
594                 }
595         }
596
597         ret = nvme_setup_cmd(ns, req, &cmnd);
598         if (ret != BLK_MQ_RQ_QUEUE_OK)
599                 return ret;
600
601         ret = nvme_init_iod(req, dev);
602         if (ret != BLK_MQ_RQ_QUEUE_OK)
603                 goto out_free_cmd;
604
605         if (blk_rq_nr_phys_segments(req))
606                 ret = nvme_map_data(dev, req, &cmnd);
607
608         if (ret != BLK_MQ_RQ_QUEUE_OK)
609                 goto out_cleanup_iod;
610
611         blk_mq_start_request(req);
612
613         spin_lock_irq(&nvmeq->q_lock);
614         if (unlikely(nvmeq->cq_vector < 0)) {
615                 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
616                         ret = BLK_MQ_RQ_QUEUE_BUSY;
617                 else
618                         ret = BLK_MQ_RQ_QUEUE_ERROR;
619                 spin_unlock_irq(&nvmeq->q_lock);
620                 goto out_cleanup_iod;
621         }
622         __nvme_submit_cmd(nvmeq, &cmnd);
623         nvme_process_cq(nvmeq);
624         spin_unlock_irq(&nvmeq->q_lock);
625         return BLK_MQ_RQ_QUEUE_OK;
626 out_cleanup_iod:
627         nvme_free_iod(dev, req);
628 out_free_cmd:
629         nvme_cleanup_cmd(req);
630         return ret;
631 }
632
633 static void nvme_complete_rq(struct request *req)
634 {
635         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
636         struct nvme_dev *dev = iod->nvmeq->dev;
637         int error = 0;
638
639         nvme_unmap_data(dev, req);
640
641         if (unlikely(req->errors)) {
642                 if (nvme_req_needs_retry(req, req->errors)) {
643                         req->retries++;
644                         nvme_requeue_req(req);
645                         return;
646                 }
647
648                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
649                         error = req->errors;
650                 else
651                         error = nvme_error_status(req->errors);
652         }
653
654         if (unlikely(iod->aborted)) {
655                 dev_warn(dev->ctrl.device,
656                         "completing aborted command with status: %04x\n",
657                         req->errors);
658         }
659
660         blk_mq_end_request(req, error);
661 }
662
663 /* We read the CQE phase first to check if the rest of the entry is valid */
664 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
665                 u16 phase)
666 {
667         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
668 }
669
670 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
671 {
672         u16 head, phase;
673
674         head = nvmeq->cq_head;
675         phase = nvmeq->cq_phase;
676
677         while (nvme_cqe_valid(nvmeq, head, phase)) {
678                 struct nvme_completion cqe = nvmeq->cqes[head];
679                 struct request *req;
680
681                 if (++head == nvmeq->q_depth) {
682                         head = 0;
683                         phase = !phase;
684                 }
685
686                 if (tag && *tag == cqe.command_id)
687                         *tag = -1;
688
689                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
690                         dev_warn(nvmeq->dev->ctrl.device,
691                                 "invalid id %d completed on queue %d\n",
692                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
693                         continue;
694                 }
695
696                 /*
697                  * AEN requests are special as they don't time out and can
698                  * survive any kind of queue freeze and often don't respond to
699                  * aborts.  We don't even bother to allocate a struct request
700                  * for them but rather special case them here.
701                  */
702                 if (unlikely(nvmeq->qid == 0 &&
703                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
704                         nvme_complete_async_event(&nvmeq->dev->ctrl,
705                                         cqe.status, &cqe.result);
706                         continue;
707                 }
708
709                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
710                 nvme_req(req)->result = cqe.result;
711                 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
712         }
713
714         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
715                 return;
716
717         if (likely(nvmeq->cq_vector >= 0))
718                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
719         nvmeq->cq_head = head;
720         nvmeq->cq_phase = phase;
721
722         nvmeq->cqe_seen = 1;
723 }
724
725 static void nvme_process_cq(struct nvme_queue *nvmeq)
726 {
727         __nvme_process_cq(nvmeq, NULL);
728 }
729
730 static irqreturn_t nvme_irq(int irq, void *data)
731 {
732         irqreturn_t result;
733         struct nvme_queue *nvmeq = data;
734         spin_lock(&nvmeq->q_lock);
735         nvme_process_cq(nvmeq);
736         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
737         nvmeq->cqe_seen = 0;
738         spin_unlock(&nvmeq->q_lock);
739         return result;
740 }
741
742 static irqreturn_t nvme_irq_check(int irq, void *data)
743 {
744         struct nvme_queue *nvmeq = data;
745         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
746                 return IRQ_WAKE_THREAD;
747         return IRQ_NONE;
748 }
749
750 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
751 {
752         struct nvme_queue *nvmeq = hctx->driver_data;
753
754         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
755                 spin_lock_irq(&nvmeq->q_lock);
756                 __nvme_process_cq(nvmeq, &tag);
757                 spin_unlock_irq(&nvmeq->q_lock);
758
759                 if (tag == -1)
760                         return 1;
761         }
762
763         return 0;
764 }
765
766 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
767 {
768         struct nvme_dev *dev = to_nvme_dev(ctrl);
769         struct nvme_queue *nvmeq = dev->queues[0];
770         struct nvme_command c;
771
772         memset(&c, 0, sizeof(c));
773         c.common.opcode = nvme_admin_async_event;
774         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
775
776         spin_lock_irq(&nvmeq->q_lock);
777         __nvme_submit_cmd(nvmeq, &c);
778         spin_unlock_irq(&nvmeq->q_lock);
779 }
780
781 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
782 {
783         struct nvme_command c;
784
785         memset(&c, 0, sizeof(c));
786         c.delete_queue.opcode = opcode;
787         c.delete_queue.qid = cpu_to_le16(id);
788
789         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
790 }
791
792 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
793                                                 struct nvme_queue *nvmeq)
794 {
795         struct nvme_command c;
796         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
797
798         /*
799          * Note: we (ab)use the fact the the prp fields survive if no data
800          * is attached to the request.
801          */
802         memset(&c, 0, sizeof(c));
803         c.create_cq.opcode = nvme_admin_create_cq;
804         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
805         c.create_cq.cqid = cpu_to_le16(qid);
806         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
807         c.create_cq.cq_flags = cpu_to_le16(flags);
808         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
809
810         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
811 }
812
813 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
814                                                 struct nvme_queue *nvmeq)
815 {
816         struct nvme_command c;
817         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
818
819         /*
820          * Note: we (ab)use the fact the the prp fields survive if no data
821          * is attached to the request.
822          */
823         memset(&c, 0, sizeof(c));
824         c.create_sq.opcode = nvme_admin_create_sq;
825         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
826         c.create_sq.sqid = cpu_to_le16(qid);
827         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
828         c.create_sq.sq_flags = cpu_to_le16(flags);
829         c.create_sq.cqid = cpu_to_le16(qid);
830
831         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
832 }
833
834 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
835 {
836         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
837 }
838
839 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
840 {
841         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
842 }
843
844 static void abort_endio(struct request *req, int error)
845 {
846         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847         struct nvme_queue *nvmeq = iod->nvmeq;
848         u16 status = req->errors;
849
850         dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
851         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
852         blk_mq_free_request(req);
853 }
854
855 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
856 {
857         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
858         struct nvme_queue *nvmeq = iod->nvmeq;
859         struct nvme_dev *dev = nvmeq->dev;
860         struct request *abort_req;
861         struct nvme_command cmd;
862
863         /*
864          * Shutdown immediately if controller times out while starting. The
865          * reset work will see the pci device disabled when it gets the forced
866          * cancellation error. All outstanding requests are completed on
867          * shutdown, so we return BLK_EH_HANDLED.
868          */
869         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
870                 dev_warn(dev->ctrl.device,
871                          "I/O %d QID %d timeout, disable controller\n",
872                          req->tag, nvmeq->qid);
873                 nvme_dev_disable(dev, false);
874                 req->errors = NVME_SC_CANCELLED;
875                 return BLK_EH_HANDLED;
876         }
877
878         /*
879          * Shutdown the controller immediately and schedule a reset if the
880          * command was already aborted once before and still hasn't been
881          * returned to the driver, or if this is the admin queue.
882          */
883         if (!nvmeq->qid || iod->aborted) {
884                 dev_warn(dev->ctrl.device,
885                          "I/O %d QID %d timeout, reset controller\n",
886                          req->tag, nvmeq->qid);
887                 nvme_dev_disable(dev, false);
888                 nvme_reset(dev);
889
890                 /*
891                  * Mark the request as handled, since the inline shutdown
892                  * forces all outstanding requests to complete.
893                  */
894                 req->errors = NVME_SC_CANCELLED;
895                 return BLK_EH_HANDLED;
896         }
897
898         iod->aborted = 1;
899
900         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
901                 atomic_inc(&dev->ctrl.abort_limit);
902                 return BLK_EH_RESET_TIMER;
903         }
904
905         memset(&cmd, 0, sizeof(cmd));
906         cmd.abort.opcode = nvme_admin_abort_cmd;
907         cmd.abort.cid = req->tag;
908         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
909
910         dev_warn(nvmeq->dev->ctrl.device,
911                 "I/O %d QID %d timeout, aborting\n",
912                  req->tag, nvmeq->qid);
913
914         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
915                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
916         if (IS_ERR(abort_req)) {
917                 atomic_inc(&dev->ctrl.abort_limit);
918                 return BLK_EH_RESET_TIMER;
919         }
920
921         abort_req->timeout = ADMIN_TIMEOUT;
922         abort_req->end_io_data = NULL;
923         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
924
925         /*
926          * The aborted req will be completed on receiving the abort req.
927          * We enable the timer again. If hit twice, it'll cause a device reset,
928          * as the device then is in a faulty state.
929          */
930         return BLK_EH_RESET_TIMER;
931 }
932
933 static void nvme_free_queue(struct nvme_queue *nvmeq)
934 {
935         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
936                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
937         if (nvmeq->sq_cmds)
938                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
939                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
940         kfree(nvmeq);
941 }
942
943 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
944 {
945         int i;
946
947         for (i = dev->queue_count - 1; i >= lowest; i--) {
948                 struct nvme_queue *nvmeq = dev->queues[i];
949                 dev->queue_count--;
950                 dev->queues[i] = NULL;
951                 nvme_free_queue(nvmeq);
952         }
953 }
954
955 /**
956  * nvme_suspend_queue - put queue into suspended state
957  * @nvmeq - queue to suspend
958  */
959 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
960 {
961         int vector;
962
963         spin_lock_irq(&nvmeq->q_lock);
964         if (nvmeq->cq_vector == -1) {
965                 spin_unlock_irq(&nvmeq->q_lock);
966                 return 1;
967         }
968         vector = nvmeq_irq(nvmeq);
969         nvmeq->dev->online_queues--;
970         nvmeq->cq_vector = -1;
971         spin_unlock_irq(&nvmeq->q_lock);
972
973         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
974                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
975
976         free_irq(vector, nvmeq);
977
978         return 0;
979 }
980
981 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
982 {
983         struct nvme_queue *nvmeq = dev->queues[0];
984
985         if (!nvmeq)
986                 return;
987         if (nvme_suspend_queue(nvmeq))
988                 return;
989
990         if (shutdown)
991                 nvme_shutdown_ctrl(&dev->ctrl);
992         else
993                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
994                                                 dev->bar + NVME_REG_CAP));
995
996         spin_lock_irq(&nvmeq->q_lock);
997         nvme_process_cq(nvmeq);
998         spin_unlock_irq(&nvmeq->q_lock);
999 }
1000
1001 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1002                                 int entry_size)
1003 {
1004         int q_depth = dev->q_depth;
1005         unsigned q_size_aligned = roundup(q_depth * entry_size,
1006                                           dev->ctrl.page_size);
1007
1008         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1009                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1010                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1011                 q_depth = div_u64(mem_per_q, entry_size);
1012
1013                 /*
1014                  * Ensure the reduced q_depth is above some threshold where it
1015                  * would be better to map queues in system memory with the
1016                  * original depth
1017                  */
1018                 if (q_depth < 64)
1019                         return -ENOMEM;
1020         }
1021
1022         return q_depth;
1023 }
1024
1025 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1026                                 int qid, int depth)
1027 {
1028         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1029                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1030                                                       dev->ctrl.page_size);
1031                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1032                 nvmeq->sq_cmds_io = dev->cmb + offset;
1033         } else {
1034                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1035                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1036                 if (!nvmeq->sq_cmds)
1037                         return -ENOMEM;
1038         }
1039
1040         return 0;
1041 }
1042
1043 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1044                                                         int depth)
1045 {
1046         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1047         if (!nvmeq)
1048                 return NULL;
1049
1050         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1051                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1052         if (!nvmeq->cqes)
1053                 goto free_nvmeq;
1054
1055         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1056                 goto free_cqdma;
1057
1058         nvmeq->q_dmadev = dev->dev;
1059         nvmeq->dev = dev;
1060         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1061                         dev->ctrl.instance, qid);
1062         spin_lock_init(&nvmeq->q_lock);
1063         nvmeq->cq_head = 0;
1064         nvmeq->cq_phase = 1;
1065         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1066         nvmeq->q_depth = depth;
1067         nvmeq->qid = qid;
1068         nvmeq->cq_vector = -1;
1069         dev->queues[qid] = nvmeq;
1070         dev->queue_count++;
1071
1072         return nvmeq;
1073
1074  free_cqdma:
1075         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1076                                                         nvmeq->cq_dma_addr);
1077  free_nvmeq:
1078         kfree(nvmeq);
1079         return NULL;
1080 }
1081
1082 static int queue_request_irq(struct nvme_queue *nvmeq)
1083 {
1084         if (use_threaded_interrupts)
1085                 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1086                                 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1087         else
1088                 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1089                                 nvmeq->irqname, nvmeq);
1090 }
1091
1092 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1093 {
1094         struct nvme_dev *dev = nvmeq->dev;
1095
1096         spin_lock_irq(&nvmeq->q_lock);
1097         nvmeq->sq_tail = 0;
1098         nvmeq->cq_head = 0;
1099         nvmeq->cq_phase = 1;
1100         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1101         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1102         dev->online_queues++;
1103         spin_unlock_irq(&nvmeq->q_lock);
1104 }
1105
1106 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1107 {
1108         struct nvme_dev *dev = nvmeq->dev;
1109         int result;
1110
1111         nvmeq->cq_vector = qid - 1;
1112         result = adapter_alloc_cq(dev, qid, nvmeq);
1113         if (result < 0)
1114                 return result;
1115
1116         result = adapter_alloc_sq(dev, qid, nvmeq);
1117         if (result < 0)
1118                 goto release_cq;
1119
1120         result = queue_request_irq(nvmeq);
1121         if (result < 0)
1122                 goto release_sq;
1123
1124         nvme_init_queue(nvmeq, qid);
1125         return result;
1126
1127  release_sq:
1128         adapter_delete_sq(dev, qid);
1129  release_cq:
1130         adapter_delete_cq(dev, qid);
1131         return result;
1132 }
1133
1134 static struct blk_mq_ops nvme_mq_admin_ops = {
1135         .queue_rq       = nvme_queue_rq,
1136         .complete       = nvme_complete_rq,
1137         .init_hctx      = nvme_admin_init_hctx,
1138         .exit_hctx      = nvme_admin_exit_hctx,
1139         .init_request   = nvme_admin_init_request,
1140         .timeout        = nvme_timeout,
1141 };
1142
1143 static struct blk_mq_ops nvme_mq_ops = {
1144         .queue_rq       = nvme_queue_rq,
1145         .complete       = nvme_complete_rq,
1146         .init_hctx      = nvme_init_hctx,
1147         .init_request   = nvme_init_request,
1148         .map_queues     = nvme_pci_map_queues,
1149         .timeout        = nvme_timeout,
1150         .poll           = nvme_poll,
1151 };
1152
1153 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1154 {
1155         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1156                 /*
1157                  * If the controller was reset during removal, it's possible
1158                  * user requests may be waiting on a stopped queue. Start the
1159                  * queue to flush these to completion.
1160                  */
1161                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1162                 blk_cleanup_queue(dev->ctrl.admin_q);
1163                 blk_mq_free_tag_set(&dev->admin_tagset);
1164         }
1165 }
1166
1167 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1168 {
1169         if (!dev->ctrl.admin_q) {
1170                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1171                 dev->admin_tagset.nr_hw_queues = 1;
1172
1173                 /*
1174                  * Subtract one to leave an empty queue entry for 'Full Queue'
1175                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1176                  */
1177                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1178                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1179                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1180                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1181                 dev->admin_tagset.driver_data = dev;
1182
1183                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1184                         return -ENOMEM;
1185
1186                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1187                 if (IS_ERR(dev->ctrl.admin_q)) {
1188                         blk_mq_free_tag_set(&dev->admin_tagset);
1189                         return -ENOMEM;
1190                 }
1191                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1192                         nvme_dev_remove_admin(dev);
1193                         dev->ctrl.admin_q = NULL;
1194                         return -ENODEV;
1195                 }
1196         } else
1197                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1198
1199         return 0;
1200 }
1201
1202 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1203 {
1204         int result;
1205         u32 aqa;
1206         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1207         struct nvme_queue *nvmeq;
1208
1209         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1210                                                 NVME_CAP_NSSRC(cap) : 0;
1211
1212         if (dev->subsystem &&
1213             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1214                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1215
1216         result = nvme_disable_ctrl(&dev->ctrl, cap);
1217         if (result < 0)
1218                 return result;
1219
1220         nvmeq = dev->queues[0];
1221         if (!nvmeq) {
1222                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1223                 if (!nvmeq)
1224                         return -ENOMEM;
1225         }
1226
1227         aqa = nvmeq->q_depth - 1;
1228         aqa |= aqa << 16;
1229
1230         writel(aqa, dev->bar + NVME_REG_AQA);
1231         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1232         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1233
1234         result = nvme_enable_ctrl(&dev->ctrl, cap);
1235         if (result)
1236                 return result;
1237
1238         nvmeq->cq_vector = 0;
1239         result = queue_request_irq(nvmeq);
1240         if (result) {
1241                 nvmeq->cq_vector = -1;
1242                 return result;
1243         }
1244
1245         return result;
1246 }
1247
1248 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1249 {
1250
1251         /* If true, indicates loss of adapter communication, possibly by a
1252          * NVMe Subsystem reset.
1253          */
1254         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1255
1256         /* If there is a reset ongoing, we shouldn't reset again. */
1257         if (work_busy(&dev->reset_work))
1258                 return false;
1259
1260         /* We shouldn't reset unless the controller is on fatal error state
1261          * _or_ if we lost the communication with it.
1262          */
1263         if (!(csts & NVME_CSTS_CFS) && !nssro)
1264                 return false;
1265
1266         /* If PCI error recovery process is happening, we cannot reset or
1267          * the recovery mechanism will surely fail.
1268          */
1269         if (pci_channel_offline(to_pci_dev(dev->dev)))
1270                 return false;
1271
1272         return true;
1273 }
1274
1275 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1276 {
1277         /* Read a config register to help see what died. */
1278         u16 pci_status;
1279         int result;
1280
1281         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1282                                       &pci_status);
1283         if (result == PCIBIOS_SUCCESSFUL)
1284                 dev_warn(dev->dev,
1285                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1286                          csts, pci_status);
1287         else
1288                 dev_warn(dev->dev,
1289                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1290                          csts, result);
1291 }
1292
1293 static void nvme_watchdog_timer(unsigned long data)
1294 {
1295         struct nvme_dev *dev = (struct nvme_dev *)data;
1296         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1297
1298         /* Skip controllers under certain specific conditions. */
1299         if (nvme_should_reset(dev, csts)) {
1300                 if (!nvme_reset(dev))
1301                         nvme_warn_reset(dev, csts);
1302                 return;
1303         }
1304
1305         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1306 }
1307
1308 static int nvme_create_io_queues(struct nvme_dev *dev)
1309 {
1310         unsigned i, max;
1311         int ret = 0;
1312
1313         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1314                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1315                         ret = -ENOMEM;
1316                         break;
1317                 }
1318         }
1319
1320         max = min(dev->max_qid, dev->queue_count - 1);
1321         for (i = dev->online_queues; i <= max; i++) {
1322                 ret = nvme_create_queue(dev->queues[i], i);
1323                 if (ret)
1324                         break;
1325         }
1326
1327         /*
1328          * Ignore failing Create SQ/CQ commands, we can continue with less
1329          * than the desired aount of queues, and even a controller without
1330          * I/O queues an still be used to issue admin commands.  This might
1331          * be useful to upgrade a buggy firmware for example.
1332          */
1333         return ret >= 0 ? 0 : ret;
1334 }
1335
1336 static ssize_t nvme_cmb_show(struct device *dev,
1337                              struct device_attribute *attr,
1338                              char *buf)
1339 {
1340         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1341
1342         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1343                        ndev->cmbloc, ndev->cmbsz);
1344 }
1345 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1346
1347 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1348 {
1349         u64 szu, size, offset;
1350         resource_size_t bar_size;
1351         struct pci_dev *pdev = to_pci_dev(dev->dev);
1352         void __iomem *cmb;
1353         dma_addr_t dma_addr;
1354
1355         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1356         if (!(NVME_CMB_SZ(dev->cmbsz)))
1357                 return NULL;
1358         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1359
1360         if (!use_cmb_sqes)
1361                 return NULL;
1362
1363         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1364         size = szu * NVME_CMB_SZ(dev->cmbsz);
1365         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1366         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1367
1368         if (offset > bar_size)
1369                 return NULL;
1370
1371         /*
1372          * Controllers may support a CMB size larger than their BAR,
1373          * for example, due to being behind a bridge. Reduce the CMB to
1374          * the reported size of the BAR
1375          */
1376         if (size > bar_size - offset)
1377                 size = bar_size - offset;
1378
1379         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1380         cmb = ioremap_wc(dma_addr, size);
1381         if (!cmb)
1382                 return NULL;
1383
1384         dev->cmb_dma_addr = dma_addr;
1385         dev->cmb_size = size;
1386         return cmb;
1387 }
1388
1389 static inline void nvme_release_cmb(struct nvme_dev *dev)
1390 {
1391         if (dev->cmb) {
1392                 iounmap(dev->cmb);
1393                 dev->cmb = NULL;
1394         }
1395 }
1396
1397 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1398 {
1399         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1400 }
1401
1402 static int nvme_setup_io_queues(struct nvme_dev *dev)
1403 {
1404         struct nvme_queue *adminq = dev->queues[0];
1405         struct pci_dev *pdev = to_pci_dev(dev->dev);
1406         int result, nr_io_queues, size;
1407
1408         nr_io_queues = num_online_cpus();
1409         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1410         if (result < 0)
1411                 return result;
1412
1413         if (nr_io_queues == 0)
1414                 return 0;
1415
1416         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1417                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1418                                 sizeof(struct nvme_command));
1419                 if (result > 0)
1420                         dev->q_depth = result;
1421                 else
1422                         nvme_release_cmb(dev);
1423         }
1424
1425         size = db_bar_size(dev, nr_io_queues);
1426         if (size > 8192) {
1427                 iounmap(dev->bar);
1428                 do {
1429                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1430                         if (dev->bar)
1431                                 break;
1432                         if (!--nr_io_queues)
1433                                 return -ENOMEM;
1434                         size = db_bar_size(dev, nr_io_queues);
1435                 } while (1);
1436                 dev->dbs = dev->bar + 4096;
1437                 adminq->q_db = dev->dbs;
1438         }
1439
1440         /* Deregister the admin queue's interrupt */
1441         free_irq(pci_irq_vector(pdev, 0), adminq);
1442
1443         /*
1444          * If we enable msix early due to not intx, disable it again before
1445          * setting up the full range we need.
1446          */
1447         pci_free_irq_vectors(pdev);
1448         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1449                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1450         if (nr_io_queues <= 0)
1451                 return -EIO;
1452         dev->max_qid = nr_io_queues;
1453
1454         /*
1455          * Should investigate if there's a performance win from allocating
1456          * more queues than interrupt vectors; it might allow the submission
1457          * path to scale better, even if the receive path is limited by the
1458          * number of interrupts.
1459          */
1460
1461         result = queue_request_irq(adminq);
1462         if (result) {
1463                 adminq->cq_vector = -1;
1464                 return result;
1465         }
1466         return nvme_create_io_queues(dev);
1467 }
1468
1469 static void nvme_del_queue_end(struct request *req, int error)
1470 {
1471         struct nvme_queue *nvmeq = req->end_io_data;
1472
1473         blk_mq_free_request(req);
1474         complete(&nvmeq->dev->ioq_wait);
1475 }
1476
1477 static void nvme_del_cq_end(struct request *req, int error)
1478 {
1479         struct nvme_queue *nvmeq = req->end_io_data;
1480
1481         if (!error) {
1482                 unsigned long flags;
1483
1484                 /*
1485                  * We might be called with the AQ q_lock held
1486                  * and the I/O queue q_lock should always
1487                  * nest inside the AQ one.
1488                  */
1489                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1490                                         SINGLE_DEPTH_NESTING);
1491                 nvme_process_cq(nvmeq);
1492                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1493         }
1494
1495         nvme_del_queue_end(req, error);
1496 }
1497
1498 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1499 {
1500         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1501         struct request *req;
1502         struct nvme_command cmd;
1503
1504         memset(&cmd, 0, sizeof(cmd));
1505         cmd.delete_queue.opcode = opcode;
1506         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1507
1508         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1509         if (IS_ERR(req))
1510                 return PTR_ERR(req);
1511
1512         req->timeout = ADMIN_TIMEOUT;
1513         req->end_io_data = nvmeq;
1514
1515         blk_execute_rq_nowait(q, NULL, req, false,
1516                         opcode == nvme_admin_delete_cq ?
1517                                 nvme_del_cq_end : nvme_del_queue_end);
1518         return 0;
1519 }
1520
1521 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1522 {
1523         int pass;
1524         unsigned long timeout;
1525         u8 opcode = nvme_admin_delete_sq;
1526
1527         for (pass = 0; pass < 2; pass++) {
1528                 int sent = 0, i = queues;
1529
1530                 reinit_completion(&dev->ioq_wait);
1531  retry:
1532                 timeout = ADMIN_TIMEOUT;
1533                 for (; i > 0; i--, sent++)
1534                         if (nvme_delete_queue(dev->queues[i], opcode))
1535                                 break;
1536
1537                 while (sent--) {
1538                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1539                         if (timeout == 0)
1540                                 return;
1541                         if (i)
1542                                 goto retry;
1543                 }
1544                 opcode = nvme_admin_delete_cq;
1545         }
1546 }
1547
1548 /*
1549  * Return: error value if an error occurred setting up the queues or calling
1550  * Identify Device.  0 if these succeeded, even if adding some of the
1551  * namespaces failed.  At the moment, these failures are silent.  TBD which
1552  * failures should be reported.
1553  */
1554 static int nvme_dev_add(struct nvme_dev *dev)
1555 {
1556         if (!dev->ctrl.tagset) {
1557                 dev->tagset.ops = &nvme_mq_ops;
1558                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1559                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1560                 dev->tagset.numa_node = dev_to_node(dev->dev);
1561                 dev->tagset.queue_depth =
1562                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1563                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1564                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1565                 dev->tagset.driver_data = dev;
1566
1567                 if (blk_mq_alloc_tag_set(&dev->tagset))
1568                         return 0;
1569                 dev->ctrl.tagset = &dev->tagset;
1570         } else {
1571                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1572
1573                 /* Free previously allocated queues that are no longer usable */
1574                 nvme_free_queues(dev, dev->online_queues);
1575         }
1576
1577         return 0;
1578 }
1579
1580 static int nvme_pci_enable(struct nvme_dev *dev)
1581 {
1582         u64 cap;
1583         int result = -ENOMEM;
1584         struct pci_dev *pdev = to_pci_dev(dev->dev);
1585
1586         if (pci_enable_device_mem(pdev))
1587                 return result;
1588
1589         pci_set_master(pdev);
1590
1591         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1592             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1593                 goto disable;
1594
1595         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1596                 result = -ENODEV;
1597                 goto disable;
1598         }
1599
1600         /*
1601          * Some devices and/or platforms don't advertise or work with INTx
1602          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1603          * adjust this later.
1604          */
1605         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1606         if (result < 0)
1607                 return result;
1608
1609         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1610
1611         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1612         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1613         dev->dbs = dev->bar + 4096;
1614
1615         /*
1616          * Temporary fix for the Apple controller found in the MacBook8,1 and
1617          * some MacBook7,1 to avoid controller resets and data loss.
1618          */
1619         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1620                 dev->q_depth = 2;
1621                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1622                         "queue depth=%u to work around controller resets\n",
1623                         dev->q_depth);
1624         }
1625
1626         /*
1627          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1628          * populate sysfs if a CMB is implemented. Note that we add the
1629          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1630          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1631          * NULL as final argument to sysfs_add_file_to_group.
1632          */
1633
1634         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1635                 dev->cmb = nvme_map_cmb(dev);
1636
1637                 if (dev->cmbsz) {
1638                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1639                                                     &dev_attr_cmb.attr, NULL))
1640                                 dev_warn(dev->dev,
1641                                          "failed to add sysfs attribute for CMB\n");
1642                 }
1643         }
1644
1645         pci_enable_pcie_error_reporting(pdev);
1646         pci_save_state(pdev);
1647         return 0;
1648
1649  disable:
1650         pci_disable_device(pdev);
1651         return result;
1652 }
1653
1654 static void nvme_dev_unmap(struct nvme_dev *dev)
1655 {
1656         if (dev->bar)
1657                 iounmap(dev->bar);
1658         pci_release_mem_regions(to_pci_dev(dev->dev));
1659 }
1660
1661 static void nvme_pci_disable(struct nvme_dev *dev)
1662 {
1663         struct pci_dev *pdev = to_pci_dev(dev->dev);
1664
1665         pci_free_irq_vectors(pdev);
1666
1667         if (pci_is_enabled(pdev)) {
1668                 pci_disable_pcie_error_reporting(pdev);
1669                 pci_disable_device(pdev);
1670         }
1671 }
1672
1673 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1674 {
1675         int i, queues;
1676         u32 csts = -1;
1677
1678         del_timer_sync(&dev->watchdog_timer);
1679
1680         mutex_lock(&dev->shutdown_lock);
1681         if (pci_is_enabled(to_pci_dev(dev->dev))) {
1682                 nvme_stop_queues(&dev->ctrl);
1683                 csts = readl(dev->bar + NVME_REG_CSTS);
1684         }
1685
1686         queues = dev->online_queues - 1;
1687         for (i = dev->queue_count - 1; i > 0; i--)
1688                 nvme_suspend_queue(dev->queues[i]);
1689
1690         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1691                 /* A device might become IO incapable very soon during
1692                  * probe, before the admin queue is configured. Thus,
1693                  * queue_count can be 0 here.
1694                  */
1695                 if (dev->queue_count)
1696                         nvme_suspend_queue(dev->queues[0]);
1697         } else {
1698                 nvme_disable_io_queues(dev, queues);
1699                 nvme_disable_admin_queue(dev, shutdown);
1700         }
1701         nvme_pci_disable(dev);
1702
1703         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1704         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1705         mutex_unlock(&dev->shutdown_lock);
1706 }
1707
1708 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1709 {
1710         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1711                                                 PAGE_SIZE, PAGE_SIZE, 0);
1712         if (!dev->prp_page_pool)
1713                 return -ENOMEM;
1714
1715         /* Optimisation for I/Os between 4k and 128k */
1716         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1717                                                 256, 256, 0);
1718         if (!dev->prp_small_pool) {
1719                 dma_pool_destroy(dev->prp_page_pool);
1720                 return -ENOMEM;
1721         }
1722         return 0;
1723 }
1724
1725 static void nvme_release_prp_pools(struct nvme_dev *dev)
1726 {
1727         dma_pool_destroy(dev->prp_page_pool);
1728         dma_pool_destroy(dev->prp_small_pool);
1729 }
1730
1731 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1732 {
1733         struct nvme_dev *dev = to_nvme_dev(ctrl);
1734
1735         put_device(dev->dev);
1736         if (dev->tagset.tags)
1737                 blk_mq_free_tag_set(&dev->tagset);
1738         if (dev->ctrl.admin_q)
1739                 blk_put_queue(dev->ctrl.admin_q);
1740         kfree(dev->queues);
1741         kfree(dev);
1742 }
1743
1744 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1745 {
1746         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1747
1748         kref_get(&dev->ctrl.kref);
1749         nvme_dev_disable(dev, false);
1750         if (!schedule_work(&dev->remove_work))
1751                 nvme_put_ctrl(&dev->ctrl);
1752 }
1753
1754 static void nvme_reset_work(struct work_struct *work)
1755 {
1756         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1757         int result = -ENODEV;
1758
1759         if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1760                 goto out;
1761
1762         /*
1763          * If we're called to reset a live controller first shut it down before
1764          * moving on.
1765          */
1766         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1767                 nvme_dev_disable(dev, false);
1768
1769         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1770                 goto out;
1771
1772         result = nvme_pci_enable(dev);
1773         if (result)
1774                 goto out;
1775
1776         result = nvme_configure_admin_queue(dev);
1777         if (result)
1778                 goto out;
1779
1780         nvme_init_queue(dev->queues[0], 0);
1781         result = nvme_alloc_admin_tags(dev);
1782         if (result)
1783                 goto out;
1784
1785         result = nvme_init_identify(&dev->ctrl);
1786         if (result)
1787                 goto out;
1788
1789         result = nvme_setup_io_queues(dev);
1790         if (result)
1791                 goto out;
1792
1793         /*
1794          * A controller that can not execute IO typically requires user
1795          * intervention to correct. For such degraded controllers, the driver
1796          * should not submit commands the user did not request, so skip
1797          * registering for asynchronous event notification on this condition.
1798          */
1799         if (dev->online_queues > 1)
1800                 nvme_queue_async_events(&dev->ctrl);
1801
1802         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1803
1804         /*
1805          * Keep the controller around but remove all namespaces if we don't have
1806          * any working I/O queue.
1807          */
1808         if (dev->online_queues < 2) {
1809                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1810                 nvme_kill_queues(&dev->ctrl);
1811                 nvme_remove_namespaces(&dev->ctrl);
1812         } else {
1813                 nvme_start_queues(&dev->ctrl);
1814                 nvme_dev_add(dev);
1815         }
1816
1817         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1818                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1819                 goto out;
1820         }
1821
1822         if (dev->online_queues > 1)
1823                 nvme_queue_scan(&dev->ctrl);
1824         return;
1825
1826  out:
1827         nvme_remove_dead_ctrl(dev, result);
1828 }
1829
1830 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1831 {
1832         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1833         struct pci_dev *pdev = to_pci_dev(dev->dev);
1834
1835         nvme_kill_queues(&dev->ctrl);
1836         if (pci_get_drvdata(pdev))
1837                 device_release_driver(&pdev->dev);
1838         nvme_put_ctrl(&dev->ctrl);
1839 }
1840
1841 static int nvme_reset(struct nvme_dev *dev)
1842 {
1843         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1844                 return -ENODEV;
1845         if (work_busy(&dev->reset_work))
1846                 return -ENODEV;
1847         if (!queue_work(nvme_workq, &dev->reset_work))
1848                 return -EBUSY;
1849         return 0;
1850 }
1851
1852 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1853 {
1854         *val = readl(to_nvme_dev(ctrl)->bar + off);
1855         return 0;
1856 }
1857
1858 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1859 {
1860         writel(val, to_nvme_dev(ctrl)->bar + off);
1861         return 0;
1862 }
1863
1864 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1865 {
1866         *val = readq(to_nvme_dev(ctrl)->bar + off);
1867         return 0;
1868 }
1869
1870 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1871 {
1872         struct nvme_dev *dev = to_nvme_dev(ctrl);
1873         int ret = nvme_reset(dev);
1874
1875         if (!ret)
1876                 flush_work(&dev->reset_work);
1877         return ret;
1878 }
1879
1880 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1881         .name                   = "pcie",
1882         .module                 = THIS_MODULE,
1883         .reg_read32             = nvme_pci_reg_read32,
1884         .reg_write32            = nvme_pci_reg_write32,
1885         .reg_read64             = nvme_pci_reg_read64,
1886         .reset_ctrl             = nvme_pci_reset_ctrl,
1887         .free_ctrl              = nvme_pci_free_ctrl,
1888         .submit_async_event     = nvme_pci_submit_async_event,
1889 };
1890
1891 static int nvme_dev_map(struct nvme_dev *dev)
1892 {
1893         struct pci_dev *pdev = to_pci_dev(dev->dev);
1894
1895         if (pci_request_mem_regions(pdev, "nvme"))
1896                 return -ENODEV;
1897
1898         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1899         if (!dev->bar)
1900                 goto release;
1901
1902         return 0;
1903   release:
1904         pci_release_mem_regions(pdev);
1905         return -ENODEV;
1906 }
1907
1908 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1909 {
1910         int node, result = -ENOMEM;
1911         struct nvme_dev *dev;
1912
1913         node = dev_to_node(&pdev->dev);
1914         if (node == NUMA_NO_NODE)
1915                 set_dev_node(&pdev->dev, first_memory_node);
1916
1917         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1918         if (!dev)
1919                 return -ENOMEM;
1920         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1921                                                         GFP_KERNEL, node);
1922         if (!dev->queues)
1923                 goto free;
1924
1925         dev->dev = get_device(&pdev->dev);
1926         pci_set_drvdata(pdev, dev);
1927
1928         result = nvme_dev_map(dev);
1929         if (result)
1930                 goto free;
1931
1932         INIT_WORK(&dev->reset_work, nvme_reset_work);
1933         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1934         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1935                 (unsigned long)dev);
1936         mutex_init(&dev->shutdown_lock);
1937         init_completion(&dev->ioq_wait);
1938
1939         result = nvme_setup_prp_pools(dev);
1940         if (result)
1941                 goto put_pci;
1942
1943         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1944                         id->driver_data);
1945         if (result)
1946                 goto release_pools;
1947
1948         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1949
1950         queue_work(nvme_workq, &dev->reset_work);
1951         return 0;
1952
1953  release_pools:
1954         nvme_release_prp_pools(dev);
1955  put_pci:
1956         put_device(dev->dev);
1957         nvme_dev_unmap(dev);
1958  free:
1959         kfree(dev->queues);
1960         kfree(dev);
1961         return result;
1962 }
1963
1964 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1965 {
1966         struct nvme_dev *dev = pci_get_drvdata(pdev);
1967
1968         if (prepare)
1969                 nvme_dev_disable(dev, false);
1970         else
1971                 nvme_reset(dev);
1972 }
1973
1974 static void nvme_shutdown(struct pci_dev *pdev)
1975 {
1976         struct nvme_dev *dev = pci_get_drvdata(pdev);
1977         nvme_dev_disable(dev, true);
1978 }
1979
1980 /*
1981  * The driver's remove may be called on a device in a partially initialized
1982  * state. This function must not have any dependencies on the device state in
1983  * order to proceed.
1984  */
1985 static void nvme_remove(struct pci_dev *pdev)
1986 {
1987         struct nvme_dev *dev = pci_get_drvdata(pdev);
1988
1989         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1990
1991         pci_set_drvdata(pdev, NULL);
1992
1993         if (!pci_device_is_present(pdev))
1994                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1995
1996         flush_work(&dev->reset_work);
1997         nvme_uninit_ctrl(&dev->ctrl);
1998         nvme_dev_disable(dev, true);
1999         nvme_dev_remove_admin(dev);
2000         nvme_free_queues(dev, 0);
2001         nvme_release_cmb(dev);
2002         nvme_release_prp_pools(dev);
2003         nvme_dev_unmap(dev);
2004         nvme_put_ctrl(&dev->ctrl);
2005 }
2006
2007 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2008 {
2009         int ret = 0;
2010
2011         if (numvfs == 0) {
2012                 if (pci_vfs_assigned(pdev)) {
2013                         dev_warn(&pdev->dev,
2014                                 "Cannot disable SR-IOV VFs while assigned\n");
2015                         return -EPERM;
2016                 }
2017                 pci_disable_sriov(pdev);
2018                 return 0;
2019         }
2020
2021         ret = pci_enable_sriov(pdev, numvfs);
2022         return ret ? ret : numvfs;
2023 }
2024
2025 #ifdef CONFIG_PM_SLEEP
2026 static int nvme_suspend(struct device *dev)
2027 {
2028         struct pci_dev *pdev = to_pci_dev(dev);
2029         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2030
2031         nvme_dev_disable(ndev, true);
2032         return 0;
2033 }
2034
2035 static int nvme_resume(struct device *dev)
2036 {
2037         struct pci_dev *pdev = to_pci_dev(dev);
2038         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2039
2040         nvme_reset(ndev);
2041         return 0;
2042 }
2043 #endif
2044
2045 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2046
2047 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2048                                                 pci_channel_state_t state)
2049 {
2050         struct nvme_dev *dev = pci_get_drvdata(pdev);
2051
2052         /*
2053          * A frozen channel requires a reset. When detected, this method will
2054          * shutdown the controller to quiesce. The controller will be restarted
2055          * after the slot reset through driver's slot_reset callback.
2056          */
2057         switch (state) {
2058         case pci_channel_io_normal:
2059                 return PCI_ERS_RESULT_CAN_RECOVER;
2060         case pci_channel_io_frozen:
2061                 dev_warn(dev->ctrl.device,
2062                         "frozen state error detected, reset controller\n");
2063                 nvme_dev_disable(dev, false);
2064                 return PCI_ERS_RESULT_NEED_RESET;
2065         case pci_channel_io_perm_failure:
2066                 dev_warn(dev->ctrl.device,
2067                         "failure state error detected, request disconnect\n");
2068                 return PCI_ERS_RESULT_DISCONNECT;
2069         }
2070         return PCI_ERS_RESULT_NEED_RESET;
2071 }
2072
2073 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2074 {
2075         struct nvme_dev *dev = pci_get_drvdata(pdev);
2076
2077         dev_info(dev->ctrl.device, "restart after slot reset\n");
2078         pci_restore_state(pdev);
2079         nvme_reset(dev);
2080         return PCI_ERS_RESULT_RECOVERED;
2081 }
2082
2083 static void nvme_error_resume(struct pci_dev *pdev)
2084 {
2085         pci_cleanup_aer_uncorrect_error_status(pdev);
2086 }
2087
2088 static const struct pci_error_handlers nvme_err_handler = {
2089         .error_detected = nvme_error_detected,
2090         .slot_reset     = nvme_slot_reset,
2091         .resume         = nvme_error_resume,
2092         .reset_notify   = nvme_reset_notify,
2093 };
2094
2095 static const struct pci_device_id nvme_id_table[] = {
2096         { PCI_VDEVICE(INTEL, 0x0953),
2097                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2098                                 NVME_QUIRK_DISCARD_ZEROES, },
2099         { PCI_VDEVICE(INTEL, 0x0a53),
2100                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2101                                 NVME_QUIRK_DISCARD_ZEROES, },
2102         { PCI_VDEVICE(INTEL, 0x0a54),
2103                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2104                                 NVME_QUIRK_DISCARD_ZEROES, },
2105         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2106                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2107         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2108                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2109         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2110                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2111         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2112         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2113         { 0, }
2114 };
2115 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2116
2117 static struct pci_driver nvme_driver = {
2118         .name           = "nvme",
2119         .id_table       = nvme_id_table,
2120         .probe          = nvme_probe,
2121         .remove         = nvme_remove,
2122         .shutdown       = nvme_shutdown,
2123         .driver         = {
2124                 .pm     = &nvme_dev_pm_ops,
2125         },
2126         .sriov_configure = nvme_pci_sriov_configure,
2127         .err_handler    = &nvme_err_handler,
2128 };
2129
2130 static int __init nvme_init(void)
2131 {
2132         int result;
2133
2134         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2135         if (!nvme_workq)
2136                 return -ENOMEM;
2137
2138         result = pci_register_driver(&nvme_driver);
2139         if (result)
2140                 destroy_workqueue(nvme_workq);
2141         return result;
2142 }
2143
2144 static void __exit nvme_exit(void)
2145 {
2146         pci_unregister_driver(&nvme_driver);
2147         destroy_workqueue(nvme_workq);
2148         _nvme_check_size();
2149 }
2150
2151 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2152 MODULE_LICENSE("GPL");
2153 MODULE_VERSION("1.0");
2154 module_init(nvme_init);
2155 module_exit(nvme_exit);