]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/nvme/host/rdma.c
Merge tag 'samsung-fixes-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/krzk...
[karo-tx-linux.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <linux/nvme-rdma.h>
32
33 #include "nvme.h"
34 #include "fabrics.h"
35
36
37 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
38
39 #define NVME_RDMA_MAX_SEGMENT_SIZE      0xffffff        /* 24-bit SGL field */
40
41 #define NVME_RDMA_MAX_SEGMENTS          256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
44
45 /*
46  * We handle AEN commands ourselves and don't even let the
47  * block layer know about them.
48  */
49 #define NVME_RDMA_NR_AEN_COMMANDS      1
50 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
51         (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
52
53 struct nvme_rdma_device {
54         struct ib_device       *dev;
55         struct ib_pd           *pd;
56         struct kref             ref;
57         struct list_head        entry;
58 };
59
60 struct nvme_rdma_qe {
61         struct ib_cqe           cqe;
62         void                    *data;
63         u64                     dma;
64 };
65
66 struct nvme_rdma_queue;
67 struct nvme_rdma_request {
68         struct nvme_request     req;
69         struct ib_mr            *mr;
70         struct nvme_rdma_qe     sqe;
71         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
72         u32                     num_sge;
73         int                     nents;
74         bool                    inline_data;
75         struct ib_reg_wr        reg_wr;
76         struct ib_cqe           reg_cqe;
77         struct nvme_rdma_queue  *queue;
78         struct sg_table         sg_table;
79         struct scatterlist      first_sgl[];
80 };
81
82 enum nvme_rdma_queue_flags {
83         NVME_RDMA_Q_CONNECTED = (1 << 0),
84         NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1),
85         NVME_RDMA_Q_DELETING = (1 << 2),
86         NVME_RDMA_Q_LIVE = (1 << 3),
87 };
88
89 struct nvme_rdma_queue {
90         struct nvme_rdma_qe     *rsp_ring;
91         u8                      sig_count;
92         int                     queue_size;
93         size_t                  cmnd_capsule_len;
94         struct nvme_rdma_ctrl   *ctrl;
95         struct nvme_rdma_device *device;
96         struct ib_cq            *ib_cq;
97         struct ib_qp            *qp;
98
99         unsigned long           flags;
100         struct rdma_cm_id       *cm_id;
101         int                     cm_error;
102         struct completion       cm_done;
103 };
104
105 struct nvme_rdma_ctrl {
106         /* read and written in the hot path */
107         spinlock_t              lock;
108
109         /* read only in the hot path */
110         struct nvme_rdma_queue  *queues;
111         u32                     queue_count;
112
113         /* other member variables */
114         struct blk_mq_tag_set   tag_set;
115         struct work_struct      delete_work;
116         struct work_struct      reset_work;
117         struct work_struct      err_work;
118
119         struct nvme_rdma_qe     async_event_sqe;
120
121         struct delayed_work     reconnect_work;
122
123         struct list_head        list;
124
125         struct blk_mq_tag_set   admin_tag_set;
126         struct nvme_rdma_device *device;
127
128         u64                     cap;
129         u32                     max_fr_pages;
130
131         struct sockaddr_storage addr;
132         struct sockaddr_storage src_addr;
133
134         struct nvme_ctrl        ctrl;
135 };
136
137 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
138 {
139         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
140 }
141
142 static LIST_HEAD(device_list);
143 static DEFINE_MUTEX(device_list_mutex);
144
145 static LIST_HEAD(nvme_rdma_ctrl_list);
146 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
147
148 static struct workqueue_struct *nvme_rdma_wq;
149
150 /*
151  * Disabling this option makes small I/O goes faster, but is fundamentally
152  * unsafe.  With it turned off we will have to register a global rkey that
153  * allows read and write access to all physical memory.
154  */
155 static bool register_always = true;
156 module_param(register_always, bool, 0444);
157 MODULE_PARM_DESC(register_always,
158          "Use memory registration even for contiguous memory regions");
159
160 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
161                 struct rdma_cm_event *event);
162 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
163
164 /* XXX: really should move to a generic header sooner or later.. */
165 static inline void put_unaligned_le24(u32 val, u8 *p)
166 {
167         *p++ = val;
168         *p++ = val >> 8;
169         *p++ = val >> 16;
170 }
171
172 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
173 {
174         return queue - queue->ctrl->queues;
175 }
176
177 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
178 {
179         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
180 }
181
182 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
183                 size_t capsule_size, enum dma_data_direction dir)
184 {
185         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
186         kfree(qe->data);
187 }
188
189 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
190                 size_t capsule_size, enum dma_data_direction dir)
191 {
192         qe->data = kzalloc(capsule_size, GFP_KERNEL);
193         if (!qe->data)
194                 return -ENOMEM;
195
196         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
197         if (ib_dma_mapping_error(ibdev, qe->dma)) {
198                 kfree(qe->data);
199                 return -ENOMEM;
200         }
201
202         return 0;
203 }
204
205 static void nvme_rdma_free_ring(struct ib_device *ibdev,
206                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
207                 size_t capsule_size, enum dma_data_direction dir)
208 {
209         int i;
210
211         for (i = 0; i < ib_queue_size; i++)
212                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
213         kfree(ring);
214 }
215
216 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
217                 size_t ib_queue_size, size_t capsule_size,
218                 enum dma_data_direction dir)
219 {
220         struct nvme_rdma_qe *ring;
221         int i;
222
223         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
224         if (!ring)
225                 return NULL;
226
227         for (i = 0; i < ib_queue_size; i++) {
228                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229                         goto out_free_ring;
230         }
231
232         return ring;
233
234 out_free_ring:
235         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236         return NULL;
237 }
238
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241         pr_debug("QP event %s (%d)\n",
242                  ib_event_msg(event->event), event->event);
243
244 }
245
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248         wait_for_completion_interruptible_timeout(&queue->cm_done,
249                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
250         return queue->cm_error;
251 }
252
253 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
254 {
255         struct nvme_rdma_device *dev = queue->device;
256         struct ib_qp_init_attr init_attr;
257         int ret;
258
259         memset(&init_attr, 0, sizeof(init_attr));
260         init_attr.event_handler = nvme_rdma_qp_event;
261         /* +1 for drain */
262         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
263         /* +1 for drain */
264         init_attr.cap.max_recv_wr = queue->queue_size + 1;
265         init_attr.cap.max_recv_sge = 1;
266         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
267         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
268         init_attr.qp_type = IB_QPT_RC;
269         init_attr.send_cq = queue->ib_cq;
270         init_attr.recv_cq = queue->ib_cq;
271
272         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
273
274         queue->qp = queue->cm_id->qp;
275         return ret;
276 }
277
278 static int nvme_rdma_reinit_request(void *data, struct request *rq)
279 {
280         struct nvme_rdma_ctrl *ctrl = data;
281         struct nvme_rdma_device *dev = ctrl->device;
282         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283         int ret = 0;
284
285         if (!req->mr->need_inval)
286                 goto out;
287
288         ib_dereg_mr(req->mr);
289
290         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
291                         ctrl->max_fr_pages);
292         if (IS_ERR(req->mr)) {
293                 ret = PTR_ERR(req->mr);
294                 req->mr = NULL;
295                 goto out;
296         }
297
298         req->mr->need_inval = false;
299
300 out:
301         return ret;
302 }
303
304 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
305                 struct request *rq, unsigned int queue_idx)
306 {
307         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
308         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
309         struct nvme_rdma_device *dev = queue->device;
310
311         if (req->mr)
312                 ib_dereg_mr(req->mr);
313
314         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
315                         DMA_TO_DEVICE);
316 }
317
318 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
319                 struct request *rq, unsigned int hctx_idx)
320 {
321         return __nvme_rdma_exit_request(set->driver_data, rq, hctx_idx + 1);
322 }
323
324 static void nvme_rdma_exit_admin_request(struct blk_mq_tag_set *set,
325                 struct request *rq, unsigned int hctx_idx)
326 {
327         return __nvme_rdma_exit_request(set->driver_data, rq, 0);
328 }
329
330 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
331                 struct request *rq, unsigned int queue_idx)
332 {
333         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
334         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
335         struct nvme_rdma_device *dev = queue->device;
336         struct ib_device *ibdev = dev->dev;
337         int ret;
338
339         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
340                         DMA_TO_DEVICE);
341         if (ret)
342                 return ret;
343
344         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
345                         ctrl->max_fr_pages);
346         if (IS_ERR(req->mr)) {
347                 ret = PTR_ERR(req->mr);
348                 goto out_free_qe;
349         }
350
351         req->queue = queue;
352
353         return 0;
354
355 out_free_qe:
356         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
357                         DMA_TO_DEVICE);
358         return -ENOMEM;
359 }
360
361 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
362                 struct request *rq, unsigned int hctx_idx,
363                 unsigned int numa_node)
364 {
365         return __nvme_rdma_init_request(set->driver_data, rq, hctx_idx + 1);
366 }
367
368 static int nvme_rdma_init_admin_request(struct blk_mq_tag_set *set,
369                 struct request *rq, unsigned int hctx_idx,
370                 unsigned int numa_node)
371 {
372         return __nvme_rdma_init_request(set->driver_data, rq, 0);
373 }
374
375 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
376                 unsigned int hctx_idx)
377 {
378         struct nvme_rdma_ctrl *ctrl = data;
379         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
380
381         BUG_ON(hctx_idx >= ctrl->queue_count);
382
383         hctx->driver_data = queue;
384         return 0;
385 }
386
387 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
388                 unsigned int hctx_idx)
389 {
390         struct nvme_rdma_ctrl *ctrl = data;
391         struct nvme_rdma_queue *queue = &ctrl->queues[0];
392
393         BUG_ON(hctx_idx != 0);
394
395         hctx->driver_data = queue;
396         return 0;
397 }
398
399 static void nvme_rdma_free_dev(struct kref *ref)
400 {
401         struct nvme_rdma_device *ndev =
402                 container_of(ref, struct nvme_rdma_device, ref);
403
404         mutex_lock(&device_list_mutex);
405         list_del(&ndev->entry);
406         mutex_unlock(&device_list_mutex);
407
408         ib_dealloc_pd(ndev->pd);
409         kfree(ndev);
410 }
411
412 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
413 {
414         kref_put(&dev->ref, nvme_rdma_free_dev);
415 }
416
417 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
418 {
419         return kref_get_unless_zero(&dev->ref);
420 }
421
422 static struct nvme_rdma_device *
423 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
424 {
425         struct nvme_rdma_device *ndev;
426
427         mutex_lock(&device_list_mutex);
428         list_for_each_entry(ndev, &device_list, entry) {
429                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
430                     nvme_rdma_dev_get(ndev))
431                         goto out_unlock;
432         }
433
434         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
435         if (!ndev)
436                 goto out_err;
437
438         ndev->dev = cm_id->device;
439         kref_init(&ndev->ref);
440
441         ndev->pd = ib_alloc_pd(ndev->dev,
442                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
443         if (IS_ERR(ndev->pd))
444                 goto out_free_dev;
445
446         if (!(ndev->dev->attrs.device_cap_flags &
447               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
448                 dev_err(&ndev->dev->dev,
449                         "Memory registrations not supported.\n");
450                 goto out_free_pd;
451         }
452
453         list_add(&ndev->entry, &device_list);
454 out_unlock:
455         mutex_unlock(&device_list_mutex);
456         return ndev;
457
458 out_free_pd:
459         ib_dealloc_pd(ndev->pd);
460 out_free_dev:
461         kfree(ndev);
462 out_err:
463         mutex_unlock(&device_list_mutex);
464         return NULL;
465 }
466
467 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
468 {
469         struct nvme_rdma_device *dev;
470         struct ib_device *ibdev;
471
472         if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
473                 return;
474
475         dev = queue->device;
476         ibdev = dev->dev;
477         rdma_destroy_qp(queue->cm_id);
478         ib_free_cq(queue->ib_cq);
479
480         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
481                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
482
483         nvme_rdma_dev_put(dev);
484 }
485
486 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
487                 struct nvme_rdma_device *dev)
488 {
489         struct ib_device *ibdev = dev->dev;
490         const int send_wr_factor = 3;                   /* MR, SEND, INV */
491         const int cq_factor = send_wr_factor + 1;       /* + RECV */
492         int comp_vector, idx = nvme_rdma_queue_idx(queue);
493
494         int ret;
495
496         queue->device = dev;
497
498         /*
499          * The admin queue is barely used once the controller is live, so don't
500          * bother to spread it out.
501          */
502         if (idx == 0)
503                 comp_vector = 0;
504         else
505                 comp_vector = idx % ibdev->num_comp_vectors;
506
507
508         /* +1 for ib_stop_cq */
509         queue->ib_cq = ib_alloc_cq(dev->dev, queue,
510                                 cq_factor * queue->queue_size + 1, comp_vector,
511                                 IB_POLL_SOFTIRQ);
512         if (IS_ERR(queue->ib_cq)) {
513                 ret = PTR_ERR(queue->ib_cq);
514                 goto out;
515         }
516
517         ret = nvme_rdma_create_qp(queue, send_wr_factor);
518         if (ret)
519                 goto out_destroy_ib_cq;
520
521         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
522                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
523         if (!queue->rsp_ring) {
524                 ret = -ENOMEM;
525                 goto out_destroy_qp;
526         }
527         set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
528
529         return 0;
530
531 out_destroy_qp:
532         ib_destroy_qp(queue->qp);
533 out_destroy_ib_cq:
534         ib_free_cq(queue->ib_cq);
535 out:
536         return ret;
537 }
538
539 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
540                 int idx, size_t queue_size)
541 {
542         struct nvme_rdma_queue *queue;
543         struct sockaddr *src_addr = NULL;
544         int ret;
545
546         queue = &ctrl->queues[idx];
547         queue->ctrl = ctrl;
548         init_completion(&queue->cm_done);
549
550         if (idx > 0)
551                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
552         else
553                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
554
555         queue->queue_size = queue_size;
556
557         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
558                         RDMA_PS_TCP, IB_QPT_RC);
559         if (IS_ERR(queue->cm_id)) {
560                 dev_info(ctrl->ctrl.device,
561                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
562                 return PTR_ERR(queue->cm_id);
563         }
564
565         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
566                 src_addr = (struct sockaddr *)&ctrl->src_addr;
567
568         queue->cm_error = -ETIMEDOUT;
569         ret = rdma_resolve_addr(queue->cm_id, src_addr,
570                         (struct sockaddr *)&ctrl->addr,
571                         NVME_RDMA_CONNECT_TIMEOUT_MS);
572         if (ret) {
573                 dev_info(ctrl->ctrl.device,
574                         "rdma_resolve_addr failed (%d).\n", ret);
575                 goto out_destroy_cm_id;
576         }
577
578         ret = nvme_rdma_wait_for_cm(queue);
579         if (ret) {
580                 dev_info(ctrl->ctrl.device,
581                         "rdma_resolve_addr wait failed (%d).\n", ret);
582                 goto out_destroy_cm_id;
583         }
584
585         clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
586         set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
587
588         return 0;
589
590 out_destroy_cm_id:
591         nvme_rdma_destroy_queue_ib(queue);
592         rdma_destroy_id(queue->cm_id);
593         return ret;
594 }
595
596 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
597 {
598         rdma_disconnect(queue->cm_id);
599         ib_drain_qp(queue->qp);
600 }
601
602 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
603 {
604         nvme_rdma_destroy_queue_ib(queue);
605         rdma_destroy_id(queue->cm_id);
606 }
607
608 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
609 {
610         if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
611                 return;
612         nvme_rdma_stop_queue(queue);
613         nvme_rdma_free_queue(queue);
614 }
615
616 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
617 {
618         int i;
619
620         for (i = 1; i < ctrl->queue_count; i++)
621                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
622 }
623
624 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
625 {
626         int i, ret = 0;
627
628         for (i = 1; i < ctrl->queue_count; i++) {
629                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
630                 if (ret) {
631                         dev_info(ctrl->ctrl.device,
632                                 "failed to connect i/o queue: %d\n", ret);
633                         goto out_free_queues;
634                 }
635                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
636         }
637
638         return 0;
639
640 out_free_queues:
641         nvme_rdma_free_io_queues(ctrl);
642         return ret;
643 }
644
645 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
646 {
647         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
648         unsigned int nr_io_queues;
649         int i, ret;
650
651         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
652         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
653         if (ret)
654                 return ret;
655
656         ctrl->queue_count = nr_io_queues + 1;
657         if (ctrl->queue_count < 2)
658                 return 0;
659
660         dev_info(ctrl->ctrl.device,
661                 "creating %d I/O queues.\n", nr_io_queues);
662
663         for (i = 1; i < ctrl->queue_count; i++) {
664                 ret = nvme_rdma_init_queue(ctrl, i,
665                                            ctrl->ctrl.opts->queue_size);
666                 if (ret) {
667                         dev_info(ctrl->ctrl.device,
668                                 "failed to initialize i/o queue: %d\n", ret);
669                         goto out_free_queues;
670                 }
671         }
672
673         return 0;
674
675 out_free_queues:
676         for (i--; i >= 1; i--)
677                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
678
679         return ret;
680 }
681
682 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
683 {
684         nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
685                         sizeof(struct nvme_command), DMA_TO_DEVICE);
686         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
687         blk_cleanup_queue(ctrl->ctrl.admin_q);
688         blk_mq_free_tag_set(&ctrl->admin_tag_set);
689         nvme_rdma_dev_put(ctrl->device);
690 }
691
692 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
693 {
694         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
695
696         if (list_empty(&ctrl->list))
697                 goto free_ctrl;
698
699         mutex_lock(&nvme_rdma_ctrl_mutex);
700         list_del(&ctrl->list);
701         mutex_unlock(&nvme_rdma_ctrl_mutex);
702
703         kfree(ctrl->queues);
704         nvmf_free_options(nctrl->opts);
705 free_ctrl:
706         kfree(ctrl);
707 }
708
709 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
710 {
711         /* If we are resetting/deleting then do nothing */
712         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
713                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
714                         ctrl->ctrl.state == NVME_CTRL_LIVE);
715                 return;
716         }
717
718         if (nvmf_should_reconnect(&ctrl->ctrl)) {
719                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
720                         ctrl->ctrl.opts->reconnect_delay);
721                 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
722                                 ctrl->ctrl.opts->reconnect_delay * HZ);
723         } else {
724                 dev_info(ctrl->ctrl.device, "Removing controller...\n");
725                 queue_work(nvme_rdma_wq, &ctrl->delete_work);
726         }
727 }
728
729 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
730 {
731         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
732                         struct nvme_rdma_ctrl, reconnect_work);
733         bool changed;
734         int ret;
735
736         ++ctrl->ctrl.opts->nr_reconnects;
737
738         if (ctrl->queue_count > 1) {
739                 nvme_rdma_free_io_queues(ctrl);
740
741                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
742                 if (ret)
743                         goto requeue;
744         }
745
746         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
747
748         ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
749         if (ret)
750                 goto requeue;
751
752         ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
753         if (ret)
754                 goto requeue;
755
756         blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
757
758         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
759         if (ret)
760                 goto stop_admin_q;
761
762         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
763
764         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
765         if (ret)
766                 goto stop_admin_q;
767
768         nvme_start_keep_alive(&ctrl->ctrl);
769
770         if (ctrl->queue_count > 1) {
771                 ret = nvme_rdma_init_io_queues(ctrl);
772                 if (ret)
773                         goto stop_admin_q;
774
775                 ret = nvme_rdma_connect_io_queues(ctrl);
776                 if (ret)
777                         goto stop_admin_q;
778         }
779
780         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
781         WARN_ON_ONCE(!changed);
782         ctrl->ctrl.opts->nr_reconnects = 0;
783
784         if (ctrl->queue_count > 1) {
785                 nvme_start_queues(&ctrl->ctrl);
786                 nvme_queue_scan(&ctrl->ctrl);
787                 nvme_queue_async_events(&ctrl->ctrl);
788         }
789
790         dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
791
792         return;
793
794 stop_admin_q:
795         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
796 requeue:
797         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
798                         ctrl->ctrl.opts->nr_reconnects);
799         nvme_rdma_reconnect_or_remove(ctrl);
800 }
801
802 static void nvme_rdma_error_recovery_work(struct work_struct *work)
803 {
804         struct nvme_rdma_ctrl *ctrl = container_of(work,
805                         struct nvme_rdma_ctrl, err_work);
806         int i;
807
808         nvme_stop_keep_alive(&ctrl->ctrl);
809
810         for (i = 0; i < ctrl->queue_count; i++) {
811                 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
812                 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
813         }
814
815         if (ctrl->queue_count > 1)
816                 nvme_stop_queues(&ctrl->ctrl);
817         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
818
819         /* We must take care of fastfail/requeue all our inflight requests */
820         if (ctrl->queue_count > 1)
821                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
822                                         nvme_cancel_request, &ctrl->ctrl);
823         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
824                                 nvme_cancel_request, &ctrl->ctrl);
825
826         nvme_rdma_reconnect_or_remove(ctrl);
827 }
828
829 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
830 {
831         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
832                 return;
833
834         queue_work(nvme_rdma_wq, &ctrl->err_work);
835 }
836
837 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
838                 const char *op)
839 {
840         struct nvme_rdma_queue *queue = cq->cq_context;
841         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
842
843         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
844                 dev_info(ctrl->ctrl.device,
845                              "%s for CQE 0x%p failed with status %s (%d)\n",
846                              op, wc->wr_cqe,
847                              ib_wc_status_msg(wc->status), wc->status);
848         nvme_rdma_error_recovery(ctrl);
849 }
850
851 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
852 {
853         if (unlikely(wc->status != IB_WC_SUCCESS))
854                 nvme_rdma_wr_error(cq, wc, "MEMREG");
855 }
856
857 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
858 {
859         if (unlikely(wc->status != IB_WC_SUCCESS))
860                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
861 }
862
863 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
864                 struct nvme_rdma_request *req)
865 {
866         struct ib_send_wr *bad_wr;
867         struct ib_send_wr wr = {
868                 .opcode             = IB_WR_LOCAL_INV,
869                 .next               = NULL,
870                 .num_sge            = 0,
871                 .send_flags         = 0,
872                 .ex.invalidate_rkey = req->mr->rkey,
873         };
874
875         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
876         wr.wr_cqe = &req->reg_cqe;
877
878         return ib_post_send(queue->qp, &wr, &bad_wr);
879 }
880
881 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
882                 struct request *rq)
883 {
884         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
885         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
886         struct nvme_rdma_device *dev = queue->device;
887         struct ib_device *ibdev = dev->dev;
888         int res;
889
890         if (!blk_rq_bytes(rq))
891                 return;
892
893         if (req->mr->need_inval) {
894                 res = nvme_rdma_inv_rkey(queue, req);
895                 if (res < 0) {
896                         dev_err(ctrl->ctrl.device,
897                                 "Queueing INV WR for rkey %#x failed (%d)\n",
898                                 req->mr->rkey, res);
899                         nvme_rdma_error_recovery(queue->ctrl);
900                 }
901         }
902
903         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
904                         req->nents, rq_data_dir(rq) ==
905                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
906
907         nvme_cleanup_cmd(rq);
908         sg_free_table_chained(&req->sg_table, true);
909 }
910
911 static int nvme_rdma_set_sg_null(struct nvme_command *c)
912 {
913         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
914
915         sg->addr = 0;
916         put_unaligned_le24(0, sg->length);
917         put_unaligned_le32(0, sg->key);
918         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
919         return 0;
920 }
921
922 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
923                 struct nvme_rdma_request *req, struct nvme_command *c)
924 {
925         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
926
927         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
928         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
929         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
930
931         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
932         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
933         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
934
935         req->inline_data = true;
936         req->num_sge++;
937         return 0;
938 }
939
940 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
941                 struct nvme_rdma_request *req, struct nvme_command *c)
942 {
943         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
944
945         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
946         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
947         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
948         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
949         return 0;
950 }
951
952 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
953                 struct nvme_rdma_request *req, struct nvme_command *c,
954                 int count)
955 {
956         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
957         int nr;
958
959         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
960         if (nr < count) {
961                 if (nr < 0)
962                         return nr;
963                 return -EINVAL;
964         }
965
966         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
967
968         req->reg_cqe.done = nvme_rdma_memreg_done;
969         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
970         req->reg_wr.wr.opcode = IB_WR_REG_MR;
971         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
972         req->reg_wr.wr.num_sge = 0;
973         req->reg_wr.mr = req->mr;
974         req->reg_wr.key = req->mr->rkey;
975         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
976                              IB_ACCESS_REMOTE_READ |
977                              IB_ACCESS_REMOTE_WRITE;
978
979         req->mr->need_inval = true;
980
981         sg->addr = cpu_to_le64(req->mr->iova);
982         put_unaligned_le24(req->mr->length, sg->length);
983         put_unaligned_le32(req->mr->rkey, sg->key);
984         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
985                         NVME_SGL_FMT_INVALIDATE;
986
987         return 0;
988 }
989
990 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
991                 struct request *rq, struct nvme_command *c)
992 {
993         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
994         struct nvme_rdma_device *dev = queue->device;
995         struct ib_device *ibdev = dev->dev;
996         int count, ret;
997
998         req->num_sge = 1;
999         req->inline_data = false;
1000         req->mr->need_inval = false;
1001
1002         c->common.flags |= NVME_CMD_SGL_METABUF;
1003
1004         if (!blk_rq_bytes(rq))
1005                 return nvme_rdma_set_sg_null(c);
1006
1007         req->sg_table.sgl = req->first_sgl;
1008         ret = sg_alloc_table_chained(&req->sg_table,
1009                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1010         if (ret)
1011                 return -ENOMEM;
1012
1013         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1014
1015         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1016                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1017         if (unlikely(count <= 0)) {
1018                 sg_free_table_chained(&req->sg_table, true);
1019                 return -EIO;
1020         }
1021
1022         if (count == 1) {
1023                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1024                     blk_rq_payload_bytes(rq) <=
1025                                 nvme_rdma_inline_data_size(queue))
1026                         return nvme_rdma_map_sg_inline(queue, req, c);
1027
1028                 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1029                         return nvme_rdma_map_sg_single(queue, req, c);
1030         }
1031
1032         return nvme_rdma_map_sg_fr(queue, req, c, count);
1033 }
1034
1035 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1036 {
1037         if (unlikely(wc->status != IB_WC_SUCCESS))
1038                 nvme_rdma_wr_error(cq, wc, "SEND");
1039 }
1040
1041 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1042                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1043                 struct ib_send_wr *first, bool flush)
1044 {
1045         struct ib_send_wr wr, *bad_wr;
1046         int ret;
1047
1048         sge->addr   = qe->dma;
1049         sge->length = sizeof(struct nvme_command),
1050         sge->lkey   = queue->device->pd->local_dma_lkey;
1051
1052         qe->cqe.done = nvme_rdma_send_done;
1053
1054         wr.next       = NULL;
1055         wr.wr_cqe     = &qe->cqe;
1056         wr.sg_list    = sge;
1057         wr.num_sge    = num_sge;
1058         wr.opcode     = IB_WR_SEND;
1059         wr.send_flags = 0;
1060
1061         /*
1062          * Unsignalled send completions are another giant desaster in the
1063          * IB Verbs spec:  If we don't regularly post signalled sends
1064          * the send queue will fill up and only a QP reset will rescue us.
1065          * Would have been way to obvious to handle this in hardware or
1066          * at least the RDMA stack..
1067          *
1068          * This messy and racy code sniplet is copy and pasted from the iSER
1069          * initiator, and the magic '32' comes from there as well.
1070          *
1071          * Always signal the flushes. The magic request used for the flush
1072          * sequencer is not allocated in our driver's tagset and it's
1073          * triggered to be freed by blk_cleanup_queue(). So we need to
1074          * always mark it as signaled to ensure that the "wr_cqe", which is
1075          * embedded in request's payload, is not freed when __ib_process_cq()
1076          * calls wr_cqe->done().
1077          */
1078         if ((++queue->sig_count % 32) == 0 || flush)
1079                 wr.send_flags |= IB_SEND_SIGNALED;
1080
1081         if (first)
1082                 first->next = &wr;
1083         else
1084                 first = &wr;
1085
1086         ret = ib_post_send(queue->qp, first, &bad_wr);
1087         if (ret) {
1088                 dev_err(queue->ctrl->ctrl.device,
1089                              "%s failed with error code %d\n", __func__, ret);
1090         }
1091         return ret;
1092 }
1093
1094 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1095                 struct nvme_rdma_qe *qe)
1096 {
1097         struct ib_recv_wr wr, *bad_wr;
1098         struct ib_sge list;
1099         int ret;
1100
1101         list.addr   = qe->dma;
1102         list.length = sizeof(struct nvme_completion);
1103         list.lkey   = queue->device->pd->local_dma_lkey;
1104
1105         qe->cqe.done = nvme_rdma_recv_done;
1106
1107         wr.next     = NULL;
1108         wr.wr_cqe   = &qe->cqe;
1109         wr.sg_list  = &list;
1110         wr.num_sge  = 1;
1111
1112         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1113         if (ret) {
1114                 dev_err(queue->ctrl->ctrl.device,
1115                         "%s failed with error code %d\n", __func__, ret);
1116         }
1117         return ret;
1118 }
1119
1120 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1121 {
1122         u32 queue_idx = nvme_rdma_queue_idx(queue);
1123
1124         if (queue_idx == 0)
1125                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1126         return queue->ctrl->tag_set.tags[queue_idx - 1];
1127 }
1128
1129 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1130 {
1131         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1132         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1133         struct ib_device *dev = queue->device->dev;
1134         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1135         struct nvme_command *cmd = sqe->data;
1136         struct ib_sge sge;
1137         int ret;
1138
1139         if (WARN_ON_ONCE(aer_idx != 0))
1140                 return;
1141
1142         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1143
1144         memset(cmd, 0, sizeof(*cmd));
1145         cmd->common.opcode = nvme_admin_async_event;
1146         cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1147         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1148         nvme_rdma_set_sg_null(cmd);
1149
1150         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1151                         DMA_TO_DEVICE);
1152
1153         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1154         WARN_ON_ONCE(ret);
1155 }
1156
1157 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1158                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1159 {
1160         struct request *rq;
1161         struct nvme_rdma_request *req;
1162         int ret = 0;
1163
1164         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1165         if (!rq) {
1166                 dev_err(queue->ctrl->ctrl.device,
1167                         "tag 0x%x on QP %#x not found\n",
1168                         cqe->command_id, queue->qp->qp_num);
1169                 nvme_rdma_error_recovery(queue->ctrl);
1170                 return ret;
1171         }
1172         req = blk_mq_rq_to_pdu(rq);
1173
1174         if (rq->tag == tag)
1175                 ret = 1;
1176
1177         if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1178             wc->ex.invalidate_rkey == req->mr->rkey)
1179                 req->mr->need_inval = false;
1180
1181         nvme_end_request(rq, cqe->status, cqe->result);
1182         return ret;
1183 }
1184
1185 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1186 {
1187         struct nvme_rdma_qe *qe =
1188                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1189         struct nvme_rdma_queue *queue = cq->cq_context;
1190         struct ib_device *ibdev = queue->device->dev;
1191         struct nvme_completion *cqe = qe->data;
1192         const size_t len = sizeof(struct nvme_completion);
1193         int ret = 0;
1194
1195         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1196                 nvme_rdma_wr_error(cq, wc, "RECV");
1197                 return 0;
1198         }
1199
1200         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1201         /*
1202          * AEN requests are special as they don't time out and can
1203          * survive any kind of queue freeze and often don't respond to
1204          * aborts.  We don't even bother to allocate a struct request
1205          * for them but rather special case them here.
1206          */
1207         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1208                         cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1209                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1210                                 &cqe->result);
1211         else
1212                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1213         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1214
1215         nvme_rdma_post_recv(queue, qe);
1216         return ret;
1217 }
1218
1219 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1220 {
1221         __nvme_rdma_recv_done(cq, wc, -1);
1222 }
1223
1224 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1225 {
1226         int ret, i;
1227
1228         for (i = 0; i < queue->queue_size; i++) {
1229                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1230                 if (ret)
1231                         goto out_destroy_queue_ib;
1232         }
1233
1234         return 0;
1235
1236 out_destroy_queue_ib:
1237         nvme_rdma_destroy_queue_ib(queue);
1238         return ret;
1239 }
1240
1241 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1242                 struct rdma_cm_event *ev)
1243 {
1244         struct rdma_cm_id *cm_id = queue->cm_id;
1245         int status = ev->status;
1246         const char *rej_msg;
1247         const struct nvme_rdma_cm_rej *rej_data;
1248         u8 rej_data_len;
1249
1250         rej_msg = rdma_reject_msg(cm_id, status);
1251         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1252
1253         if (rej_data && rej_data_len >= sizeof(u16)) {
1254                 u16 sts = le16_to_cpu(rej_data->sts);
1255
1256                 dev_err(queue->ctrl->ctrl.device,
1257                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1258                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1259         } else {
1260                 dev_err(queue->ctrl->ctrl.device,
1261                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1262         }
1263
1264         return -ECONNRESET;
1265 }
1266
1267 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1268 {
1269         struct nvme_rdma_device *dev;
1270         int ret;
1271
1272         dev = nvme_rdma_find_get_device(queue->cm_id);
1273         if (!dev) {
1274                 dev_err(queue->cm_id->device->dev.parent,
1275                         "no client data found!\n");
1276                 return -ECONNREFUSED;
1277         }
1278
1279         ret = nvme_rdma_create_queue_ib(queue, dev);
1280         if (ret) {
1281                 nvme_rdma_dev_put(dev);
1282                 goto out;
1283         }
1284
1285         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1286         if (ret) {
1287                 dev_err(queue->ctrl->ctrl.device,
1288                         "rdma_resolve_route failed (%d).\n",
1289                         queue->cm_error);
1290                 goto out_destroy_queue;
1291         }
1292
1293         return 0;
1294
1295 out_destroy_queue:
1296         nvme_rdma_destroy_queue_ib(queue);
1297 out:
1298         return ret;
1299 }
1300
1301 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1302 {
1303         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1304         struct rdma_conn_param param = { };
1305         struct nvme_rdma_cm_req priv = { };
1306         int ret;
1307
1308         param.qp_num = queue->qp->qp_num;
1309         param.flow_control = 1;
1310
1311         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1312         /* maximum retry count */
1313         param.retry_count = 7;
1314         param.rnr_retry_count = 7;
1315         param.private_data = &priv;
1316         param.private_data_len = sizeof(priv);
1317
1318         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1319         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1320         /*
1321          * set the admin queue depth to the minimum size
1322          * specified by the Fabrics standard.
1323          */
1324         if (priv.qid == 0) {
1325                 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1326                 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1327         } else {
1328                 /*
1329                  * current interpretation of the fabrics spec
1330                  * is at minimum you make hrqsize sqsize+1, or a
1331                  * 1's based representation of sqsize.
1332                  */
1333                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1334                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1335         }
1336
1337         ret = rdma_connect(queue->cm_id, &param);
1338         if (ret) {
1339                 dev_err(ctrl->ctrl.device,
1340                         "rdma_connect failed (%d).\n", ret);
1341                 goto out_destroy_queue_ib;
1342         }
1343
1344         return 0;
1345
1346 out_destroy_queue_ib:
1347         nvme_rdma_destroy_queue_ib(queue);
1348         return ret;
1349 }
1350
1351 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1352                 struct rdma_cm_event *ev)
1353 {
1354         struct nvme_rdma_queue *queue = cm_id->context;
1355         int cm_error = 0;
1356
1357         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1358                 rdma_event_msg(ev->event), ev->event,
1359                 ev->status, cm_id);
1360
1361         switch (ev->event) {
1362         case RDMA_CM_EVENT_ADDR_RESOLVED:
1363                 cm_error = nvme_rdma_addr_resolved(queue);
1364                 break;
1365         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1366                 cm_error = nvme_rdma_route_resolved(queue);
1367                 break;
1368         case RDMA_CM_EVENT_ESTABLISHED:
1369                 queue->cm_error = nvme_rdma_conn_established(queue);
1370                 /* complete cm_done regardless of success/failure */
1371                 complete(&queue->cm_done);
1372                 return 0;
1373         case RDMA_CM_EVENT_REJECTED:
1374                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1375                 break;
1376         case RDMA_CM_EVENT_ADDR_ERROR:
1377         case RDMA_CM_EVENT_ROUTE_ERROR:
1378         case RDMA_CM_EVENT_CONNECT_ERROR:
1379         case RDMA_CM_EVENT_UNREACHABLE:
1380                 dev_dbg(queue->ctrl->ctrl.device,
1381                         "CM error event %d\n", ev->event);
1382                 cm_error = -ECONNRESET;
1383                 break;
1384         case RDMA_CM_EVENT_DISCONNECTED:
1385         case RDMA_CM_EVENT_ADDR_CHANGE:
1386         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1387                 dev_dbg(queue->ctrl->ctrl.device,
1388                         "disconnect received - connection closed\n");
1389                 nvme_rdma_error_recovery(queue->ctrl);
1390                 break;
1391         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1392                 /* device removal is handled via the ib_client API */
1393                 break;
1394         default:
1395                 dev_err(queue->ctrl->ctrl.device,
1396                         "Unexpected RDMA CM event (%d)\n", ev->event);
1397                 nvme_rdma_error_recovery(queue->ctrl);
1398                 break;
1399         }
1400
1401         if (cm_error) {
1402                 queue->cm_error = cm_error;
1403                 complete(&queue->cm_done);
1404         }
1405
1406         return 0;
1407 }
1408
1409 static enum blk_eh_timer_return
1410 nvme_rdma_timeout(struct request *rq, bool reserved)
1411 {
1412         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1413
1414         /* queue error recovery */
1415         nvme_rdma_error_recovery(req->queue->ctrl);
1416
1417         /* fail with DNR on cmd timeout */
1418         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1419
1420         return BLK_EH_HANDLED;
1421 }
1422
1423 /*
1424  * We cannot accept any other command until the Connect command has completed.
1425  */
1426 static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue,
1427                 struct request *rq)
1428 {
1429         if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1430                 struct nvme_command *cmd = nvme_req(rq)->cmd;
1431
1432                 if (!blk_rq_is_passthrough(rq) ||
1433                     cmd->common.opcode != nvme_fabrics_command ||
1434                     cmd->fabrics.fctype != nvme_fabrics_type_connect)
1435                         return false;
1436         }
1437
1438         return true;
1439 }
1440
1441 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1442                 const struct blk_mq_queue_data *bd)
1443 {
1444         struct nvme_ns *ns = hctx->queue->queuedata;
1445         struct nvme_rdma_queue *queue = hctx->driver_data;
1446         struct request *rq = bd->rq;
1447         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1448         struct nvme_rdma_qe *sqe = &req->sqe;
1449         struct nvme_command *c = sqe->data;
1450         bool flush = false;
1451         struct ib_device *dev;
1452         int ret;
1453
1454         WARN_ON_ONCE(rq->tag < 0);
1455
1456         if (!nvme_rdma_queue_is_ready(queue, rq))
1457                 return BLK_MQ_RQ_QUEUE_BUSY;
1458
1459         dev = queue->device->dev;
1460         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1461                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1462
1463         ret = nvme_setup_cmd(ns, rq, c);
1464         if (ret != BLK_MQ_RQ_QUEUE_OK)
1465                 return ret;
1466
1467         blk_mq_start_request(rq);
1468
1469         ret = nvme_rdma_map_data(queue, rq, c);
1470         if (ret < 0) {
1471                 dev_err(queue->ctrl->ctrl.device,
1472                              "Failed to map data (%d)\n", ret);
1473                 nvme_cleanup_cmd(rq);
1474                 goto err;
1475         }
1476
1477         ib_dma_sync_single_for_device(dev, sqe->dma,
1478                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1479
1480         if (req_op(rq) == REQ_OP_FLUSH)
1481                 flush = true;
1482         ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1483                         req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1484         if (ret) {
1485                 nvme_rdma_unmap_data(queue, rq);
1486                 goto err;
1487         }
1488
1489         return BLK_MQ_RQ_QUEUE_OK;
1490 err:
1491         return (ret == -ENOMEM || ret == -EAGAIN) ?
1492                 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1493 }
1494
1495 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1496 {
1497         struct nvme_rdma_queue *queue = hctx->driver_data;
1498         struct ib_cq *cq = queue->ib_cq;
1499         struct ib_wc wc;
1500         int found = 0;
1501
1502         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1503         while (ib_poll_cq(cq, 1, &wc) > 0) {
1504                 struct ib_cqe *cqe = wc.wr_cqe;
1505
1506                 if (cqe) {
1507                         if (cqe->done == nvme_rdma_recv_done)
1508                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1509                         else
1510                                 cqe->done(cq, &wc);
1511                 }
1512         }
1513
1514         return found;
1515 }
1516
1517 static void nvme_rdma_complete_rq(struct request *rq)
1518 {
1519         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1520
1521         nvme_rdma_unmap_data(req->queue, rq);
1522         nvme_complete_rq(rq);
1523 }
1524
1525 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1526         .queue_rq       = nvme_rdma_queue_rq,
1527         .complete       = nvme_rdma_complete_rq,
1528         .init_request   = nvme_rdma_init_request,
1529         .exit_request   = nvme_rdma_exit_request,
1530         .reinit_request = nvme_rdma_reinit_request,
1531         .init_hctx      = nvme_rdma_init_hctx,
1532         .poll           = nvme_rdma_poll,
1533         .timeout        = nvme_rdma_timeout,
1534 };
1535
1536 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1537         .queue_rq       = nvme_rdma_queue_rq,
1538         .complete       = nvme_rdma_complete_rq,
1539         .init_request   = nvme_rdma_init_admin_request,
1540         .exit_request   = nvme_rdma_exit_admin_request,
1541         .reinit_request = nvme_rdma_reinit_request,
1542         .init_hctx      = nvme_rdma_init_admin_hctx,
1543         .timeout        = nvme_rdma_timeout,
1544 };
1545
1546 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1547 {
1548         int error;
1549
1550         error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1551         if (error)
1552                 return error;
1553
1554         ctrl->device = ctrl->queues[0].device;
1555
1556         /*
1557          * We need a reference on the device as long as the tag_set is alive,
1558          * as the MRs in the request structures need a valid ib_device.
1559          */
1560         error = -EINVAL;
1561         if (!nvme_rdma_dev_get(ctrl->device))
1562                 goto out_free_queue;
1563
1564         ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1565                 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1566
1567         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1568         ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1569         ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1570         ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1571         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1572         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1573                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1574         ctrl->admin_tag_set.driver_data = ctrl;
1575         ctrl->admin_tag_set.nr_hw_queues = 1;
1576         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1577
1578         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1579         if (error)
1580                 goto out_put_dev;
1581
1582         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1583         if (IS_ERR(ctrl->ctrl.admin_q)) {
1584                 error = PTR_ERR(ctrl->ctrl.admin_q);
1585                 goto out_free_tagset;
1586         }
1587
1588         error = nvmf_connect_admin_queue(&ctrl->ctrl);
1589         if (error)
1590                 goto out_cleanup_queue;
1591
1592         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
1593
1594         error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1595         if (error) {
1596                 dev_err(ctrl->ctrl.device,
1597                         "prop_get NVME_REG_CAP failed\n");
1598                 goto out_cleanup_queue;
1599         }
1600
1601         ctrl->ctrl.sqsize =
1602                 min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->ctrl.sqsize);
1603
1604         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1605         if (error)
1606                 goto out_cleanup_queue;
1607
1608         ctrl->ctrl.max_hw_sectors =
1609                 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1610
1611         error = nvme_init_identify(&ctrl->ctrl);
1612         if (error)
1613                 goto out_cleanup_queue;
1614
1615         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1616                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
1617                         DMA_TO_DEVICE);
1618         if (error)
1619                 goto out_cleanup_queue;
1620
1621         nvme_start_keep_alive(&ctrl->ctrl);
1622
1623         return 0;
1624
1625 out_cleanup_queue:
1626         blk_cleanup_queue(ctrl->ctrl.admin_q);
1627 out_free_tagset:
1628         /* disconnect and drain the queue before freeing the tagset */
1629         nvme_rdma_stop_queue(&ctrl->queues[0]);
1630         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1631 out_put_dev:
1632         nvme_rdma_dev_put(ctrl->device);
1633 out_free_queue:
1634         nvme_rdma_free_queue(&ctrl->queues[0]);
1635         return error;
1636 }
1637
1638 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1639 {
1640         nvme_stop_keep_alive(&ctrl->ctrl);
1641         cancel_work_sync(&ctrl->err_work);
1642         cancel_delayed_work_sync(&ctrl->reconnect_work);
1643
1644         if (ctrl->queue_count > 1) {
1645                 nvme_stop_queues(&ctrl->ctrl);
1646                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1647                                         nvme_cancel_request, &ctrl->ctrl);
1648                 nvme_rdma_free_io_queues(ctrl);
1649         }
1650
1651         if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1652                 nvme_shutdown_ctrl(&ctrl->ctrl);
1653
1654         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1655         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1656                                 nvme_cancel_request, &ctrl->ctrl);
1657         nvme_rdma_destroy_admin_queue(ctrl);
1658 }
1659
1660 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1661 {
1662         nvme_uninit_ctrl(&ctrl->ctrl);
1663         if (shutdown)
1664                 nvme_rdma_shutdown_ctrl(ctrl);
1665
1666         if (ctrl->ctrl.tagset) {
1667                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1668                 blk_mq_free_tag_set(&ctrl->tag_set);
1669                 nvme_rdma_dev_put(ctrl->device);
1670         }
1671
1672         nvme_put_ctrl(&ctrl->ctrl);
1673 }
1674
1675 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1676 {
1677         struct nvme_rdma_ctrl *ctrl = container_of(work,
1678                                 struct nvme_rdma_ctrl, delete_work);
1679
1680         __nvme_rdma_remove_ctrl(ctrl, true);
1681 }
1682
1683 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1684 {
1685         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1686                 return -EBUSY;
1687
1688         if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1689                 return -EBUSY;
1690
1691         return 0;
1692 }
1693
1694 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1695 {
1696         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1697         int ret = 0;
1698
1699         /*
1700          * Keep a reference until all work is flushed since
1701          * __nvme_rdma_del_ctrl can free the ctrl mem
1702          */
1703         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1704                 return -EBUSY;
1705         ret = __nvme_rdma_del_ctrl(ctrl);
1706         if (!ret)
1707                 flush_work(&ctrl->delete_work);
1708         nvme_put_ctrl(&ctrl->ctrl);
1709         return ret;
1710 }
1711
1712 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1713 {
1714         struct nvme_rdma_ctrl *ctrl = container_of(work,
1715                                 struct nvme_rdma_ctrl, delete_work);
1716
1717         __nvme_rdma_remove_ctrl(ctrl, false);
1718 }
1719
1720 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1721 {
1722         struct nvme_rdma_ctrl *ctrl = container_of(work,
1723                                         struct nvme_rdma_ctrl, reset_work);
1724         int ret;
1725         bool changed;
1726
1727         nvme_rdma_shutdown_ctrl(ctrl);
1728
1729         ret = nvme_rdma_configure_admin_queue(ctrl);
1730         if (ret) {
1731                 /* ctrl is already shutdown, just remove the ctrl */
1732                 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1733                 goto del_dead_ctrl;
1734         }
1735
1736         if (ctrl->queue_count > 1) {
1737                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1738                 if (ret)
1739                         goto del_dead_ctrl;
1740
1741                 ret = nvme_rdma_init_io_queues(ctrl);
1742                 if (ret)
1743                         goto del_dead_ctrl;
1744
1745                 ret = nvme_rdma_connect_io_queues(ctrl);
1746                 if (ret)
1747                         goto del_dead_ctrl;
1748         }
1749
1750         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1751         WARN_ON_ONCE(!changed);
1752
1753         if (ctrl->queue_count > 1) {
1754                 nvme_start_queues(&ctrl->ctrl);
1755                 nvme_queue_scan(&ctrl->ctrl);
1756                 nvme_queue_async_events(&ctrl->ctrl);
1757         }
1758
1759         return;
1760
1761 del_dead_ctrl:
1762         /* Deleting this dead controller... */
1763         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1764         WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1765 }
1766
1767 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1768 {
1769         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1770
1771         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1772                 return -EBUSY;
1773
1774         if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1775                 return -EBUSY;
1776
1777         flush_work(&ctrl->reset_work);
1778
1779         return 0;
1780 }
1781
1782 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1783         .name                   = "rdma",
1784         .module                 = THIS_MODULE,
1785         .is_fabrics             = true,
1786         .reg_read32             = nvmf_reg_read32,
1787         .reg_read64             = nvmf_reg_read64,
1788         .reg_write32            = nvmf_reg_write32,
1789         .reset_ctrl             = nvme_rdma_reset_ctrl,
1790         .free_ctrl              = nvme_rdma_free_ctrl,
1791         .submit_async_event     = nvme_rdma_submit_async_event,
1792         .delete_ctrl            = nvme_rdma_del_ctrl,
1793         .get_subsysnqn          = nvmf_get_subsysnqn,
1794         .get_address            = nvmf_get_address,
1795 };
1796
1797 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1798 {
1799         int ret;
1800
1801         ret = nvme_rdma_init_io_queues(ctrl);
1802         if (ret)
1803                 return ret;
1804
1805         /*
1806          * We need a reference on the device as long as the tag_set is alive,
1807          * as the MRs in the request structures need a valid ib_device.
1808          */
1809         ret = -EINVAL;
1810         if (!nvme_rdma_dev_get(ctrl->device))
1811                 goto out_free_io_queues;
1812
1813         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1814         ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1815         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1816         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1817         ctrl->tag_set.numa_node = NUMA_NO_NODE;
1818         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1819         ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1820                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1821         ctrl->tag_set.driver_data = ctrl;
1822         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1823         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1824
1825         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1826         if (ret)
1827                 goto out_put_dev;
1828         ctrl->ctrl.tagset = &ctrl->tag_set;
1829
1830         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1831         if (IS_ERR(ctrl->ctrl.connect_q)) {
1832                 ret = PTR_ERR(ctrl->ctrl.connect_q);
1833                 goto out_free_tag_set;
1834         }
1835
1836         ret = nvme_rdma_connect_io_queues(ctrl);
1837         if (ret)
1838                 goto out_cleanup_connect_q;
1839
1840         return 0;
1841
1842 out_cleanup_connect_q:
1843         blk_cleanup_queue(ctrl->ctrl.connect_q);
1844 out_free_tag_set:
1845         blk_mq_free_tag_set(&ctrl->tag_set);
1846 out_put_dev:
1847         nvme_rdma_dev_put(ctrl->device);
1848 out_free_io_queues:
1849         nvme_rdma_free_io_queues(ctrl);
1850         return ret;
1851 }
1852
1853 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1854                 struct nvmf_ctrl_options *opts)
1855 {
1856         struct nvme_rdma_ctrl *ctrl;
1857         int ret;
1858         bool changed;
1859         char *port;
1860
1861         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1862         if (!ctrl)
1863                 return ERR_PTR(-ENOMEM);
1864         ctrl->ctrl.opts = opts;
1865         INIT_LIST_HEAD(&ctrl->list);
1866
1867         if (opts->mask & NVMF_OPT_TRSVCID)
1868                 port = opts->trsvcid;
1869         else
1870                 port = __stringify(NVME_RDMA_IP_PORT);
1871
1872         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1873                         opts->traddr, port, &ctrl->addr);
1874         if (ret) {
1875                 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1876                 goto out_free_ctrl;
1877         }
1878
1879         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1880                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1881                         opts->host_traddr, NULL, &ctrl->src_addr);
1882                 if (ret) {
1883                         pr_err("malformed src address passed: %s\n",
1884                                opts->host_traddr);
1885                         goto out_free_ctrl;
1886                 }
1887         }
1888
1889         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1890                                 0 /* no quirks, we're perfect! */);
1891         if (ret)
1892                 goto out_free_ctrl;
1893
1894         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1895                         nvme_rdma_reconnect_ctrl_work);
1896         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1897         INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1898         INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1899         spin_lock_init(&ctrl->lock);
1900
1901         ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1902         ctrl->ctrl.sqsize = opts->queue_size - 1;
1903         ctrl->ctrl.kato = opts->kato;
1904
1905         ret = -ENOMEM;
1906         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1907                                 GFP_KERNEL);
1908         if (!ctrl->queues)
1909                 goto out_uninit_ctrl;
1910
1911         ret = nvme_rdma_configure_admin_queue(ctrl);
1912         if (ret)
1913                 goto out_kfree_queues;
1914
1915         /* sanity check icdoff */
1916         if (ctrl->ctrl.icdoff) {
1917                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1918                 goto out_remove_admin_queue;
1919         }
1920
1921         /* sanity check keyed sgls */
1922         if (!(ctrl->ctrl.sgls & (1 << 20))) {
1923                 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1924                 goto out_remove_admin_queue;
1925         }
1926
1927         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1928                 /* warn if maxcmd is lower than queue_size */
1929                 dev_warn(ctrl->ctrl.device,
1930                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1931                         opts->queue_size, ctrl->ctrl.maxcmd);
1932                 opts->queue_size = ctrl->ctrl.maxcmd;
1933         }
1934
1935         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1936                 /* warn if sqsize is lower than queue_size */
1937                 dev_warn(ctrl->ctrl.device,
1938                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1939                         opts->queue_size, ctrl->ctrl.sqsize + 1);
1940                 opts->queue_size = ctrl->ctrl.sqsize + 1;
1941         }
1942
1943         if (opts->nr_io_queues) {
1944                 ret = nvme_rdma_create_io_queues(ctrl);
1945                 if (ret)
1946                         goto out_remove_admin_queue;
1947         }
1948
1949         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1950         WARN_ON_ONCE(!changed);
1951
1952         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1953                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1954
1955         kref_get(&ctrl->ctrl.kref);
1956
1957         mutex_lock(&nvme_rdma_ctrl_mutex);
1958         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1959         mutex_unlock(&nvme_rdma_ctrl_mutex);
1960
1961         if (opts->nr_io_queues) {
1962                 nvme_queue_scan(&ctrl->ctrl);
1963                 nvme_queue_async_events(&ctrl->ctrl);
1964         }
1965
1966         return &ctrl->ctrl;
1967
1968 out_remove_admin_queue:
1969         nvme_stop_keep_alive(&ctrl->ctrl);
1970         nvme_rdma_destroy_admin_queue(ctrl);
1971 out_kfree_queues:
1972         kfree(ctrl->queues);
1973 out_uninit_ctrl:
1974         nvme_uninit_ctrl(&ctrl->ctrl);
1975         nvme_put_ctrl(&ctrl->ctrl);
1976         if (ret > 0)
1977                 ret = -EIO;
1978         return ERR_PTR(ret);
1979 out_free_ctrl:
1980         kfree(ctrl);
1981         return ERR_PTR(ret);
1982 }
1983
1984 static struct nvmf_transport_ops nvme_rdma_transport = {
1985         .name           = "rdma",
1986         .required_opts  = NVMF_OPT_TRADDR,
1987         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1988                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1989         .create_ctrl    = nvme_rdma_create_ctrl,
1990 };
1991
1992 static void nvme_rdma_add_one(struct ib_device *ib_device)
1993 {
1994 }
1995
1996 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1997 {
1998         struct nvme_rdma_ctrl *ctrl;
1999
2000         /* Delete all controllers using this device */
2001         mutex_lock(&nvme_rdma_ctrl_mutex);
2002         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2003                 if (ctrl->device->dev != ib_device)
2004                         continue;
2005                 dev_info(ctrl->ctrl.device,
2006                         "Removing ctrl: NQN \"%s\", addr %pISp\n",
2007                         ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2008                 __nvme_rdma_del_ctrl(ctrl);
2009         }
2010         mutex_unlock(&nvme_rdma_ctrl_mutex);
2011
2012         flush_workqueue(nvme_rdma_wq);
2013 }
2014
2015 static struct ib_client nvme_rdma_ib_client = {
2016         .name   = "nvme_rdma",
2017         .add = nvme_rdma_add_one,
2018         .remove = nvme_rdma_remove_one
2019 };
2020
2021 static int __init nvme_rdma_init_module(void)
2022 {
2023         int ret;
2024
2025         nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2026         if (!nvme_rdma_wq)
2027                 return -ENOMEM;
2028
2029         ret = ib_register_client(&nvme_rdma_ib_client);
2030         if (ret)
2031                 goto err_destroy_wq;
2032
2033         ret = nvmf_register_transport(&nvme_rdma_transport);
2034         if (ret)
2035                 goto err_unreg_client;
2036
2037         return 0;
2038
2039 err_unreg_client:
2040         ib_unregister_client(&nvme_rdma_ib_client);
2041 err_destroy_wq:
2042         destroy_workqueue(nvme_rdma_wq);
2043         return ret;
2044 }
2045
2046 static void __exit nvme_rdma_cleanup_module(void)
2047 {
2048         nvmf_unregister_transport(&nvme_rdma_transport);
2049         ib_unregister_client(&nvme_rdma_ib_client);
2050         destroy_workqueue(nvme_rdma_wq);
2051 }
2052
2053 module_init(nvme_rdma_init_module);
2054 module_exit(nvme_rdma_cleanup_module);
2055
2056 MODULE_LICENSE("GPL v2");