]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/perf/arm_pmu.c
e984653b93aa8f77b0a2450f0118b4cc3bef2144
[karo-tx-linux.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/of_device.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/sched/clock.h>
24 #include <linux/spinlock.h>
25 #include <linux/irq.h>
26 #include <linux/irqdesc.h>
27
28 #include <asm/cputype.h>
29 #include <asm/irq_regs.h>
30
31 static int
32 armpmu_map_cache_event(const unsigned (*cache_map)
33                                       [PERF_COUNT_HW_CACHE_MAX]
34                                       [PERF_COUNT_HW_CACHE_OP_MAX]
35                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
36                        u64 config)
37 {
38         unsigned int cache_type, cache_op, cache_result, ret;
39
40         cache_type = (config >>  0) & 0xff;
41         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
42                 return -EINVAL;
43
44         cache_op = (config >>  8) & 0xff;
45         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
46                 return -EINVAL;
47
48         cache_result = (config >> 16) & 0xff;
49         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
50                 return -EINVAL;
51
52         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
53
54         if (ret == CACHE_OP_UNSUPPORTED)
55                 return -ENOENT;
56
57         return ret;
58 }
59
60 static int
61 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
62 {
63         int mapping;
64
65         if (config >= PERF_COUNT_HW_MAX)
66                 return -EINVAL;
67
68         mapping = (*event_map)[config];
69         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
70 }
71
72 static int
73 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
74 {
75         return (int)(config & raw_event_mask);
76 }
77
78 int
79 armpmu_map_event(struct perf_event *event,
80                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
81                  const unsigned (*cache_map)
82                                 [PERF_COUNT_HW_CACHE_MAX]
83                                 [PERF_COUNT_HW_CACHE_OP_MAX]
84                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
85                  u32 raw_event_mask)
86 {
87         u64 config = event->attr.config;
88         int type = event->attr.type;
89
90         if (type == event->pmu->type)
91                 return armpmu_map_raw_event(raw_event_mask, config);
92
93         switch (type) {
94         case PERF_TYPE_HARDWARE:
95                 return armpmu_map_hw_event(event_map, config);
96         case PERF_TYPE_HW_CACHE:
97                 return armpmu_map_cache_event(cache_map, config);
98         case PERF_TYPE_RAW:
99                 return armpmu_map_raw_event(raw_event_mask, config);
100         }
101
102         return -ENOENT;
103 }
104
105 int armpmu_event_set_period(struct perf_event *event)
106 {
107         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
108         struct hw_perf_event *hwc = &event->hw;
109         s64 left = local64_read(&hwc->period_left);
110         s64 period = hwc->sample_period;
111         int ret = 0;
112
113         if (unlikely(left <= -period)) {
114                 left = period;
115                 local64_set(&hwc->period_left, left);
116                 hwc->last_period = period;
117                 ret = 1;
118         }
119
120         if (unlikely(left <= 0)) {
121                 left += period;
122                 local64_set(&hwc->period_left, left);
123                 hwc->last_period = period;
124                 ret = 1;
125         }
126
127         /*
128          * Limit the maximum period to prevent the counter value
129          * from overtaking the one we are about to program. In
130          * effect we are reducing max_period to account for
131          * interrupt latency (and we are being very conservative).
132          */
133         if (left > (armpmu->max_period >> 1))
134                 left = armpmu->max_period >> 1;
135
136         local64_set(&hwc->prev_count, (u64)-left);
137
138         armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
139
140         perf_event_update_userpage(event);
141
142         return ret;
143 }
144
145 u64 armpmu_event_update(struct perf_event *event)
146 {
147         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148         struct hw_perf_event *hwc = &event->hw;
149         u64 delta, prev_raw_count, new_raw_count;
150
151 again:
152         prev_raw_count = local64_read(&hwc->prev_count);
153         new_raw_count = armpmu->read_counter(event);
154
155         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
156                              new_raw_count) != prev_raw_count)
157                 goto again;
158
159         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
160
161         local64_add(delta, &event->count);
162         local64_sub(delta, &hwc->period_left);
163
164         return new_raw_count;
165 }
166
167 static void
168 armpmu_read(struct perf_event *event)
169 {
170         armpmu_event_update(event);
171 }
172
173 static void
174 armpmu_stop(struct perf_event *event, int flags)
175 {
176         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
177         struct hw_perf_event *hwc = &event->hw;
178
179         /*
180          * ARM pmu always has to update the counter, so ignore
181          * PERF_EF_UPDATE, see comments in armpmu_start().
182          */
183         if (!(hwc->state & PERF_HES_STOPPED)) {
184                 armpmu->disable(event);
185                 armpmu_event_update(event);
186                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
187         }
188 }
189
190 static void armpmu_start(struct perf_event *event, int flags)
191 {
192         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
193         struct hw_perf_event *hwc = &event->hw;
194
195         /*
196          * ARM pmu always has to reprogram the period, so ignore
197          * PERF_EF_RELOAD, see the comment below.
198          */
199         if (flags & PERF_EF_RELOAD)
200                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
201
202         hwc->state = 0;
203         /*
204          * Set the period again. Some counters can't be stopped, so when we
205          * were stopped we simply disabled the IRQ source and the counter
206          * may have been left counting. If we don't do this step then we may
207          * get an interrupt too soon or *way* too late if the overflow has
208          * happened since disabling.
209          */
210         armpmu_event_set_period(event);
211         armpmu->enable(event);
212 }
213
214 static void
215 armpmu_del(struct perf_event *event, int flags)
216 {
217         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
218         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
219         struct hw_perf_event *hwc = &event->hw;
220         int idx = hwc->idx;
221
222         armpmu_stop(event, PERF_EF_UPDATE);
223         hw_events->events[idx] = NULL;
224         clear_bit(idx, hw_events->used_mask);
225         if (armpmu->clear_event_idx)
226                 armpmu->clear_event_idx(hw_events, event);
227
228         perf_event_update_userpage(event);
229 }
230
231 static int
232 armpmu_add(struct perf_event *event, int flags)
233 {
234         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
235         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236         struct hw_perf_event *hwc = &event->hw;
237         int idx;
238         int err = 0;
239
240         /* An event following a process won't be stopped earlier */
241         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
242                 return -ENOENT;
243
244         perf_pmu_disable(event->pmu);
245
246         /* If we don't have a space for the counter then finish early. */
247         idx = armpmu->get_event_idx(hw_events, event);
248         if (idx < 0) {
249                 err = idx;
250                 goto out;
251         }
252
253         /*
254          * If there is an event in the counter we are going to use then make
255          * sure it is disabled.
256          */
257         event->hw.idx = idx;
258         armpmu->disable(event);
259         hw_events->events[idx] = event;
260
261         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
262         if (flags & PERF_EF_START)
263                 armpmu_start(event, PERF_EF_RELOAD);
264
265         /* Propagate our changes to the userspace mapping. */
266         perf_event_update_userpage(event);
267
268 out:
269         perf_pmu_enable(event->pmu);
270         return err;
271 }
272
273 static int
274 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
275                                struct perf_event *event)
276 {
277         struct arm_pmu *armpmu;
278
279         if (is_software_event(event))
280                 return 1;
281
282         /*
283          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
284          * core perf code won't check that the pmu->ctx == leader->ctx
285          * until after pmu->event_init(event).
286          */
287         if (event->pmu != pmu)
288                 return 0;
289
290         if (event->state < PERF_EVENT_STATE_OFF)
291                 return 1;
292
293         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
294                 return 1;
295
296         armpmu = to_arm_pmu(event->pmu);
297         return armpmu->get_event_idx(hw_events, event) >= 0;
298 }
299
300 static int
301 validate_group(struct perf_event *event)
302 {
303         struct perf_event *sibling, *leader = event->group_leader;
304         struct pmu_hw_events fake_pmu;
305
306         /*
307          * Initialise the fake PMU. We only need to populate the
308          * used_mask for the purposes of validation.
309          */
310         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
311
312         if (!validate_event(event->pmu, &fake_pmu, leader))
313                 return -EINVAL;
314
315         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
316                 if (!validate_event(event->pmu, &fake_pmu, sibling))
317                         return -EINVAL;
318         }
319
320         if (!validate_event(event->pmu, &fake_pmu, event))
321                 return -EINVAL;
322
323         return 0;
324 }
325
326 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
327 {
328         struct arm_pmu *armpmu;
329         struct platform_device *plat_device;
330         struct arm_pmu_platdata *plat;
331         int ret;
332         u64 start_clock, finish_clock;
333
334         /*
335          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
336          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
337          * do any necessary shifting, we just need to perform the first
338          * dereference.
339          */
340         armpmu = *(void **)dev;
341         plat_device = armpmu->plat_device;
342         plat = dev_get_platdata(&plat_device->dev);
343
344         start_clock = sched_clock();
345         if (plat && plat->handle_irq)
346                 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
347         else
348                 ret = armpmu->handle_irq(irq, armpmu);
349         finish_clock = sched_clock();
350
351         perf_sample_event_took(finish_clock - start_clock);
352         return ret;
353 }
354
355 static void
356 armpmu_release_hardware(struct arm_pmu *armpmu)
357 {
358         armpmu->free_irq(armpmu);
359 }
360
361 static int
362 armpmu_reserve_hardware(struct arm_pmu *armpmu)
363 {
364         int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
365         if (err) {
366                 armpmu_release_hardware(armpmu);
367                 return err;
368         }
369
370         return 0;
371 }
372
373 static void
374 hw_perf_event_destroy(struct perf_event *event)
375 {
376         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
377         atomic_t *active_events  = &armpmu->active_events;
378         struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
379
380         if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
381                 armpmu_release_hardware(armpmu);
382                 mutex_unlock(pmu_reserve_mutex);
383         }
384 }
385
386 static int
387 event_requires_mode_exclusion(struct perf_event_attr *attr)
388 {
389         return attr->exclude_idle || attr->exclude_user ||
390                attr->exclude_kernel || attr->exclude_hv;
391 }
392
393 static int
394 __hw_perf_event_init(struct perf_event *event)
395 {
396         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
397         struct hw_perf_event *hwc = &event->hw;
398         int mapping;
399
400         mapping = armpmu->map_event(event);
401
402         if (mapping < 0) {
403                 pr_debug("event %x:%llx not supported\n", event->attr.type,
404                          event->attr.config);
405                 return mapping;
406         }
407
408         /*
409          * We don't assign an index until we actually place the event onto
410          * hardware. Use -1 to signify that we haven't decided where to put it
411          * yet. For SMP systems, each core has it's own PMU so we can't do any
412          * clever allocation or constraints checking at this point.
413          */
414         hwc->idx                = -1;
415         hwc->config_base        = 0;
416         hwc->config             = 0;
417         hwc->event_base         = 0;
418
419         /*
420          * Check whether we need to exclude the counter from certain modes.
421          */
422         if ((!armpmu->set_event_filter ||
423              armpmu->set_event_filter(hwc, &event->attr)) &&
424              event_requires_mode_exclusion(&event->attr)) {
425                 pr_debug("ARM performance counters do not support "
426                          "mode exclusion\n");
427                 return -EOPNOTSUPP;
428         }
429
430         /*
431          * Store the event encoding into the config_base field.
432          */
433         hwc->config_base            |= (unsigned long)mapping;
434
435         if (!is_sampling_event(event)) {
436                 /*
437                  * For non-sampling runs, limit the sample_period to half
438                  * of the counter width. That way, the new counter value
439                  * is far less likely to overtake the previous one unless
440                  * you have some serious IRQ latency issues.
441                  */
442                 hwc->sample_period  = armpmu->max_period >> 1;
443                 hwc->last_period    = hwc->sample_period;
444                 local64_set(&hwc->period_left, hwc->sample_period);
445         }
446
447         if (event->group_leader != event) {
448                 if (validate_group(event) != 0)
449                         return -EINVAL;
450         }
451
452         return 0;
453 }
454
455 static int armpmu_event_init(struct perf_event *event)
456 {
457         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
458         int err = 0;
459         atomic_t *active_events = &armpmu->active_events;
460
461         /*
462          * Reject CPU-affine events for CPUs that are of a different class to
463          * that which this PMU handles. Process-following events (where
464          * event->cpu == -1) can be migrated between CPUs, and thus we have to
465          * reject them later (in armpmu_add) if they're scheduled on a
466          * different class of CPU.
467          */
468         if (event->cpu != -1 &&
469                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
470                 return -ENOENT;
471
472         /* does not support taken branch sampling */
473         if (has_branch_stack(event))
474                 return -EOPNOTSUPP;
475
476         if (armpmu->map_event(event) == -ENOENT)
477                 return -ENOENT;
478
479         event->destroy = hw_perf_event_destroy;
480
481         if (!atomic_inc_not_zero(active_events)) {
482                 mutex_lock(&armpmu->reserve_mutex);
483                 if (atomic_read(active_events) == 0)
484                         err = armpmu_reserve_hardware(armpmu);
485
486                 if (!err)
487                         atomic_inc(active_events);
488                 mutex_unlock(&armpmu->reserve_mutex);
489         }
490
491         if (err)
492                 return err;
493
494         err = __hw_perf_event_init(event);
495         if (err)
496                 hw_perf_event_destroy(event);
497
498         return err;
499 }
500
501 static void armpmu_enable(struct pmu *pmu)
502 {
503         struct arm_pmu *armpmu = to_arm_pmu(pmu);
504         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
505         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
506
507         /* For task-bound events we may be called on other CPUs */
508         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
509                 return;
510
511         if (enabled)
512                 armpmu->start(armpmu);
513 }
514
515 static void armpmu_disable(struct pmu *pmu)
516 {
517         struct arm_pmu *armpmu = to_arm_pmu(pmu);
518
519         /* For task-bound events we may be called on other CPUs */
520         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
521                 return;
522
523         armpmu->stop(armpmu);
524 }
525
526 /*
527  * In heterogeneous systems, events are specific to a particular
528  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
529  * the same microarchitecture.
530  */
531 static int armpmu_filter_match(struct perf_event *event)
532 {
533         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
534         unsigned int cpu = smp_processor_id();
535         return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
536 }
537
538 static ssize_t armpmu_cpumask_show(struct device *dev,
539                                    struct device_attribute *attr, char *buf)
540 {
541         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
542         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
543 }
544
545 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
546
547 static struct attribute *armpmu_common_attrs[] = {
548         &dev_attr_cpus.attr,
549         NULL,
550 };
551
552 static struct attribute_group armpmu_common_attr_group = {
553         .attrs = armpmu_common_attrs,
554 };
555
556 static void armpmu_init(struct arm_pmu *armpmu)
557 {
558         atomic_set(&armpmu->active_events, 0);
559         mutex_init(&armpmu->reserve_mutex);
560
561         armpmu->pmu = (struct pmu) {
562                 .pmu_enable     = armpmu_enable,
563                 .pmu_disable    = armpmu_disable,
564                 .event_init     = armpmu_event_init,
565                 .add            = armpmu_add,
566                 .del            = armpmu_del,
567                 .start          = armpmu_start,
568                 .stop           = armpmu_stop,
569                 .read           = armpmu_read,
570                 .filter_match   = armpmu_filter_match,
571                 .attr_groups    = armpmu->attr_groups,
572         };
573         armpmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
574                 &armpmu_common_attr_group;
575 }
576
577 /* Set at runtime when we know what CPU type we are. */
578 static struct arm_pmu *__oprofile_cpu_pmu;
579
580 /*
581  * Despite the names, these two functions are CPU-specific and are used
582  * by the OProfile/perf code.
583  */
584 const char *perf_pmu_name(void)
585 {
586         if (!__oprofile_cpu_pmu)
587                 return NULL;
588
589         return __oprofile_cpu_pmu->name;
590 }
591 EXPORT_SYMBOL_GPL(perf_pmu_name);
592
593 int perf_num_counters(void)
594 {
595         int max_events = 0;
596
597         if (__oprofile_cpu_pmu != NULL)
598                 max_events = __oprofile_cpu_pmu->num_events;
599
600         return max_events;
601 }
602 EXPORT_SYMBOL_GPL(perf_num_counters);
603
604 static void cpu_pmu_enable_percpu_irq(void *data)
605 {
606         int irq = *(int *)data;
607
608         enable_percpu_irq(irq, IRQ_TYPE_NONE);
609 }
610
611 static void cpu_pmu_disable_percpu_irq(void *data)
612 {
613         int irq = *(int *)data;
614
615         disable_percpu_irq(irq);
616 }
617
618 static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
619 {
620         int cpu;
621         struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
622
623         for_each_cpu(cpu, &cpu_pmu->supported_cpus) {
624                 int irq = per_cpu(hw_events->irq, cpu);
625                 if (!irq)
626                         continue;
627
628                 if (irq_is_percpu(irq)) {
629                         on_each_cpu_mask(&cpu_pmu->supported_cpus,
630                                          cpu_pmu_disable_percpu_irq, &irq, 1);
631                         free_percpu_irq(irq, &hw_events->percpu_pmu);
632
633                         break;
634                 }
635
636                 if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
637                         continue;
638
639                 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
640         }
641 }
642
643 static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
644 {
645         int cpu, err;
646         struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
647
648         for_each_cpu(cpu, &cpu_pmu->supported_cpus) {
649                 int irq = per_cpu(hw_events->irq, cpu);
650                 if (!irq)
651                         continue;
652
653                 if (irq_is_percpu(irq)) {
654                         err = request_percpu_irq(irq, handler, "arm-pmu",
655                                                  &hw_events->percpu_pmu);
656                         if (err) {
657                                 pr_err("unable to request IRQ%d for ARM PMU counters\n",
658                                         irq);
659                                 return err;
660                         }
661
662                         on_each_cpu_mask(&cpu_pmu->supported_cpus,
663                                          cpu_pmu_enable_percpu_irq, &irq, 1);
664
665                         break;
666                 }
667
668                 /*
669                  * If we have a single PMU interrupt that we can't shift,
670                  * assume that we're running on a uniprocessor machine and
671                  * continue. Otherwise, continue without this interrupt.
672                  */
673                 if (irq_set_affinity(irq, cpumask_of(cpu)) &&
674                     num_possible_cpus() > 1) {
675                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
676                                 irq, cpu);
677                         continue;
678                 }
679
680                 err = request_irq(irq, handler,
681                                   IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
682                                   per_cpu_ptr(&hw_events->percpu_pmu, cpu));
683                 if (err) {
684                         pr_err("unable to request IRQ%d for ARM PMU counters\n",
685                                 irq);
686                         return err;
687                 }
688
689                 cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
690         }
691
692         return 0;
693 }
694
695 /*
696  * PMU hardware loses all context when a CPU goes offline.
697  * When a CPU is hotplugged back in, since some hardware registers are
698  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
699  * junk values out of them.
700  */
701 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
702 {
703         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
704
705         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
706                 return 0;
707         if (pmu->reset)
708                 pmu->reset(pmu);
709         return 0;
710 }
711
712 #ifdef CONFIG_CPU_PM
713 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
714 {
715         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
716         struct perf_event *event;
717         int idx;
718
719         for (idx = 0; idx < armpmu->num_events; idx++) {
720                 /*
721                  * If the counter is not used skip it, there is no
722                  * need of stopping/restarting it.
723                  */
724                 if (!test_bit(idx, hw_events->used_mask))
725                         continue;
726
727                 event = hw_events->events[idx];
728
729                 switch (cmd) {
730                 case CPU_PM_ENTER:
731                         /*
732                          * Stop and update the counter
733                          */
734                         armpmu_stop(event, PERF_EF_UPDATE);
735                         break;
736                 case CPU_PM_EXIT:
737                 case CPU_PM_ENTER_FAILED:
738                          /*
739                           * Restore and enable the counter.
740                           * armpmu_start() indirectly calls
741                           *
742                           * perf_event_update_userpage()
743                           *
744                           * that requires RCU read locking to be functional,
745                           * wrap the call within RCU_NONIDLE to make the
746                           * RCU subsystem aware this cpu is not idle from
747                           * an RCU perspective for the armpmu_start() call
748                           * duration.
749                           */
750                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
751                         break;
752                 default:
753                         break;
754                 }
755         }
756 }
757
758 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
759                              void *v)
760 {
761         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
762         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
763         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
764
765         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
766                 return NOTIFY_DONE;
767
768         /*
769          * Always reset the PMU registers on power-up even if
770          * there are no events running.
771          */
772         if (cmd == CPU_PM_EXIT && armpmu->reset)
773                 armpmu->reset(armpmu);
774
775         if (!enabled)
776                 return NOTIFY_OK;
777
778         switch (cmd) {
779         case CPU_PM_ENTER:
780                 armpmu->stop(armpmu);
781                 cpu_pm_pmu_setup(armpmu, cmd);
782                 break;
783         case CPU_PM_EXIT:
784                 cpu_pm_pmu_setup(armpmu, cmd);
785         case CPU_PM_ENTER_FAILED:
786                 armpmu->start(armpmu);
787                 break;
788         default:
789                 return NOTIFY_DONE;
790         }
791
792         return NOTIFY_OK;
793 }
794
795 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
796 {
797         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
798         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
799 }
800
801 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
802 {
803         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
804 }
805 #else
806 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
807 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
808 #endif
809
810 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
811 {
812         int err;
813
814         err = cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
815                                                &cpu_pmu->node);
816         if (err)
817                 goto out;
818
819         err = cpu_pm_pmu_register(cpu_pmu);
820         if (err)
821                 goto out_unregister;
822
823         cpu_pmu->request_irq    = cpu_pmu_request_irq;
824         cpu_pmu->free_irq       = cpu_pmu_free_irq;
825
826         /* Ensure the PMU has sane values out of reset. */
827         if (cpu_pmu->reset)
828                 on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
829                          cpu_pmu, 1);
830
831         /*
832          * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
833          * big.LITTLE). This is not an uncore PMU, and we have taken ctx
834          * sharing into account (e.g. with our pmu::filter_match callback and
835          * pmu::event_init group validation).
836          */
837         cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
838
839         return 0;
840
841 out_unregister:
842         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
843                                             &cpu_pmu->node);
844 out:
845         return err;
846 }
847
848 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
849 {
850         cpu_pm_pmu_unregister(cpu_pmu);
851         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
852                                             &cpu_pmu->node);
853 }
854
855 /*
856  * CPU PMU identification and probing.
857  */
858 static int probe_current_pmu(struct arm_pmu *pmu,
859                              const struct pmu_probe_info *info)
860 {
861         int cpu = get_cpu();
862         unsigned int cpuid = read_cpuid_id();
863         int ret = -ENODEV;
864
865         pr_info("probing PMU on CPU %d\n", cpu);
866
867         for (; info->init != NULL; info++) {
868                 if ((cpuid & info->mask) != info->cpuid)
869                         continue;
870                 ret = info->init(pmu);
871                 break;
872         }
873
874         put_cpu();
875         return ret;
876 }
877
878 static int pmu_parse_percpu_irq(struct arm_pmu *pmu, int irq)
879 {
880         int cpu, ret;
881         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
882
883         ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
884         if (ret)
885                 return ret;
886
887         for_each_cpu(cpu, &pmu->supported_cpus)
888                 per_cpu(hw_events->irq, cpu) = irq;
889
890         return 0;
891 }
892
893 static bool pmu_has_irq_affinity(struct device_node *node)
894 {
895         return !!of_find_property(node, "interrupt-affinity", NULL);
896 }
897
898 static int pmu_parse_irq_affinity(struct device_node *node, int i)
899 {
900         struct device_node *dn;
901         int cpu;
902
903         /*
904          * If we don't have an interrupt-affinity property, we guess irq
905          * affinity matches our logical CPU order, as we used to assume.
906          * This is fragile, so we'll warn in pmu_parse_irqs().
907          */
908         if (!pmu_has_irq_affinity(node))
909                 return i;
910
911         dn = of_parse_phandle(node, "interrupt-affinity", i);
912         if (!dn) {
913                 pr_warn("failed to parse interrupt-affinity[%d] for %s\n",
914                         i, node->name);
915                 return -EINVAL;
916         }
917
918         /* Now look up the logical CPU number */
919         for_each_possible_cpu(cpu) {
920                 struct device_node *cpu_dn;
921
922                 cpu_dn = of_cpu_device_node_get(cpu);
923                 of_node_put(cpu_dn);
924
925                 if (dn == cpu_dn)
926                         break;
927         }
928
929         if (cpu >= nr_cpu_ids) {
930                 pr_warn("failed to find logical CPU for %s\n", dn->name);
931         }
932
933         of_node_put(dn);
934
935         return cpu;
936 }
937
938 static int pmu_parse_irqs(struct arm_pmu *pmu)
939 {
940         int i = 0, irqs;
941         struct platform_device *pdev = pmu->plat_device;
942         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
943
944         irqs = platform_irq_count(pdev);
945         if (irqs < 0) {
946                 pr_err("unable to count PMU IRQs\n");
947                 return irqs;
948         }
949
950         /*
951          * In this case we have no idea which CPUs are covered by the PMU.
952          * To match our prior behaviour, we assume all CPUs in this case.
953          */
954         if (irqs == 0) {
955                 pr_warn("no irqs for PMU, sampling events not supported\n");
956                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
957                 cpumask_setall(&pmu->supported_cpus);
958                 return 0;
959         }
960
961         if (irqs == 1) {
962                 int irq = platform_get_irq(pdev, 0);
963                 if (irq && irq_is_percpu(irq))
964                         return pmu_parse_percpu_irq(pmu, irq);
965         }
966
967         if (!pmu_has_irq_affinity(pdev->dev.of_node)) {
968                 pr_warn("no interrupt-affinity property for %s, guessing.\n",
969                         of_node_full_name(pdev->dev.of_node));
970         }
971
972         /*
973          * Some platforms have all PMU IRQs OR'd into a single IRQ, with a
974          * special platdata function that attempts to demux them.
975          */
976         if (dev_get_platdata(&pdev->dev))
977                 cpumask_setall(&pmu->supported_cpus);
978
979         for (i = 0; i < irqs; i++) {
980                 int cpu, irq;
981
982                 irq = platform_get_irq(pdev, i);
983                 if (WARN_ON(irq <= 0))
984                         continue;
985
986                 if (irq_is_percpu(irq)) {
987                         pr_warn("multiple PPIs or mismatched SPI/PPI detected\n");
988                         return -EINVAL;
989                 }
990
991                 cpu = pmu_parse_irq_affinity(pdev->dev.of_node, i);
992                 if (cpu < 0)
993                         return cpu;
994                 if (cpu >= nr_cpu_ids)
995                         continue;
996
997                 if (per_cpu(hw_events->irq, cpu)) {
998                         pr_warn("multiple PMU IRQs for the same CPU detected\n");
999                         return -EINVAL;
1000                 }
1001
1002                 per_cpu(hw_events->irq, cpu) = irq;
1003                 cpumask_set_cpu(cpu, &pmu->supported_cpus);
1004         }
1005
1006         return 0;
1007 }
1008
1009 static struct arm_pmu *armpmu_alloc(void)
1010 {
1011         struct arm_pmu *pmu;
1012         int cpu;
1013
1014         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
1015         if (!pmu) {
1016                 pr_info("failed to allocate PMU device!\n");
1017                 goto out;
1018         }
1019
1020         pmu->hw_events = alloc_percpu(struct pmu_hw_events);
1021         if (!pmu->hw_events) {
1022                 pr_info("failed to allocate per-cpu PMU data.\n");
1023                 goto out_free_pmu;
1024         }
1025
1026         for_each_possible_cpu(cpu) {
1027                 struct pmu_hw_events *events;
1028
1029                 events = per_cpu_ptr(pmu->hw_events, cpu);
1030                 raw_spin_lock_init(&events->pmu_lock);
1031                 events->percpu_pmu = pmu;
1032         }
1033
1034         return pmu;
1035
1036 out_free_pmu:
1037         kfree(pmu);
1038 out:
1039         return NULL;
1040 }
1041
1042 static void armpmu_free(struct arm_pmu *pmu)
1043 {
1044         free_percpu(pmu->hw_events);
1045         kfree(pmu);
1046 }
1047
1048 int arm_pmu_device_probe(struct platform_device *pdev,
1049                          const struct of_device_id *of_table,
1050                          const struct pmu_probe_info *probe_table)
1051 {
1052         const struct of_device_id *of_id;
1053         const int (*init_fn)(struct arm_pmu *);
1054         struct device_node *node = pdev->dev.of_node;
1055         struct arm_pmu *pmu;
1056         int ret = -ENODEV;
1057
1058         pmu = armpmu_alloc();
1059         if (!pmu)
1060                 return -ENOMEM;
1061
1062         armpmu_init(pmu);
1063
1064         pmu->plat_device = pdev;
1065
1066         ret = pmu_parse_irqs(pmu);
1067         if (ret)
1068                 goto out_free;
1069
1070         if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1071                 init_fn = of_id->data;
1072
1073                 pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1074                                                            "secure-reg-access");
1075
1076                 /* arm64 systems boot only as non-secure */
1077                 if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1078                         pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1079                         pmu->secure_access = false;
1080                 }
1081
1082                 ret = init_fn(pmu);
1083         } else if (probe_table) {
1084                 cpumask_setall(&pmu->supported_cpus);
1085                 ret = probe_current_pmu(pmu, probe_table);
1086         }
1087
1088         if (ret) {
1089                 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1090                 goto out_free;
1091         }
1092
1093
1094         ret = cpu_pmu_init(pmu);
1095         if (ret)
1096                 goto out_free;
1097
1098         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1099         if (ret)
1100                 goto out_destroy;
1101
1102         if (!__oprofile_cpu_pmu)
1103                 __oprofile_cpu_pmu = pmu;
1104
1105         pr_info("enabled with %s PMU driver, %d counters available\n",
1106                         pmu->name, pmu->num_events);
1107
1108         return 0;
1109
1110 out_destroy:
1111         cpu_pmu_destroy(pmu);
1112 out_free:
1113         pr_info("%s: failed to register PMU devices!\n",
1114                 of_node_full_name(node));
1115         armpmu_free(pmu);
1116         return ret;
1117 }
1118
1119 static int arm_pmu_hp_init(void)
1120 {
1121         int ret;
1122
1123         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
1124                                       "perf/arm/pmu:starting",
1125                                       arm_perf_starting_cpu, NULL);
1126         if (ret)
1127                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1128                        ret);
1129         return ret;
1130 }
1131 subsys_initcall(arm_pmu_hp_init);