]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/rtc/rtc-cmos.c
Merge tag 'platform-drivers-x86-v4.10-2' of git://git.infradead.org/users/dvhart...
[karo-tx-linux.git] / drivers / rtc / rtc-cmos.c
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44
45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46 #include <linux/mc146818rtc.h>
47
48 struct cmos_rtc {
49         struct rtc_device       *rtc;
50         struct device           *dev;
51         int                     irq;
52         struct resource         *iomem;
53         time64_t                alarm_expires;
54
55         void                    (*wake_on)(struct device *);
56         void                    (*wake_off)(struct device *);
57
58         u8                      enabled_wake;
59         u8                      suspend_ctrl;
60
61         /* newer hardware extends the original register set */
62         u8                      day_alrm;
63         u8                      mon_alrm;
64         u8                      century;
65
66         struct rtc_wkalrm       saved_wkalrm;
67 };
68
69 /* both platform and pnp busses use negative numbers for invalid irqs */
70 #define is_valid_irq(n)         ((n) > 0)
71
72 static const char driver_name[] = "rtc_cmos";
73
74 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
75  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
76  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
77  */
78 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
79
80 static inline int is_intr(u8 rtc_intr)
81 {
82         if (!(rtc_intr & RTC_IRQF))
83                 return 0;
84         return rtc_intr & RTC_IRQMASK;
85 }
86
87 /*----------------------------------------------------------------*/
88
89 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
90  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
91  * used in a broken "legacy replacement" mode.  The breakage includes
92  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
93  * other (better) use.
94  *
95  * When that broken mode is in use, platform glue provides a partial
96  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
97  * want to use HPET for anything except those IRQs though...
98  */
99 #ifdef CONFIG_HPET_EMULATE_RTC
100 #include <asm/hpet.h>
101 #else
102
103 static inline int is_hpet_enabled(void)
104 {
105         return 0;
106 }
107
108 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
109 {
110         return 0;
111 }
112
113 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
114 {
115         return 0;
116 }
117
118 static inline int
119 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
120 {
121         return 0;
122 }
123
124 static inline int hpet_set_periodic_freq(unsigned long freq)
125 {
126         return 0;
127 }
128
129 static inline int hpet_rtc_dropped_irq(void)
130 {
131         return 0;
132 }
133
134 static inline int hpet_rtc_timer_init(void)
135 {
136         return 0;
137 }
138
139 extern irq_handler_t hpet_rtc_interrupt;
140
141 static inline int hpet_register_irq_handler(irq_handler_t handler)
142 {
143         return 0;
144 }
145
146 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
147 {
148         return 0;
149 }
150
151 #endif
152
153 /*----------------------------------------------------------------*/
154
155 #ifdef RTC_PORT
156
157 /* Most newer x86 systems have two register banks, the first used
158  * for RTC and NVRAM and the second only for NVRAM.  Caller must
159  * own rtc_lock ... and we won't worry about access during NMI.
160  */
161 #define can_bank2       true
162
163 static inline unsigned char cmos_read_bank2(unsigned char addr)
164 {
165         outb(addr, RTC_PORT(2));
166         return inb(RTC_PORT(3));
167 }
168
169 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
170 {
171         outb(addr, RTC_PORT(2));
172         outb(val, RTC_PORT(3));
173 }
174
175 #else
176
177 #define can_bank2       false
178
179 static inline unsigned char cmos_read_bank2(unsigned char addr)
180 {
181         return 0;
182 }
183
184 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
185 {
186 }
187
188 #endif
189
190 /*----------------------------------------------------------------*/
191
192 static int cmos_read_time(struct device *dev, struct rtc_time *t)
193 {
194         /*
195          * If pm_trace abused the RTC for storage, set the timespec to 0,
196          * which tells the caller that this RTC value is unusable.
197          */
198         if (!pm_trace_rtc_valid())
199                 return -EIO;
200
201         /* REVISIT:  if the clock has a "century" register, use
202          * that instead of the heuristic in mc146818_get_time().
203          * That'll make Y3K compatility (year > 2070) easy!
204          */
205         mc146818_get_time(t);
206         return 0;
207 }
208
209 static int cmos_set_time(struct device *dev, struct rtc_time *t)
210 {
211         /* REVISIT:  set the "century" register if available
212          *
213          * NOTE: this ignores the issue whereby updating the seconds
214          * takes effect exactly 500ms after we write the register.
215          * (Also queueing and other delays before we get this far.)
216          */
217         return mc146818_set_time(t);
218 }
219
220 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
221 {
222         struct cmos_rtc *cmos = dev_get_drvdata(dev);
223         unsigned char   rtc_control;
224
225         if (!is_valid_irq(cmos->irq))
226                 return -EIO;
227
228         /* Basic alarms only support hour, minute, and seconds fields.
229          * Some also support day and month, for alarms up to a year in
230          * the future.
231          */
232
233         spin_lock_irq(&rtc_lock);
234         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
235         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
236         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
237
238         if (cmos->day_alrm) {
239                 /* ignore upper bits on readback per ACPI spec */
240                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
241                 if (!t->time.tm_mday)
242                         t->time.tm_mday = -1;
243
244                 if (cmos->mon_alrm) {
245                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
246                         if (!t->time.tm_mon)
247                                 t->time.tm_mon = -1;
248                 }
249         }
250
251         rtc_control = CMOS_READ(RTC_CONTROL);
252         spin_unlock_irq(&rtc_lock);
253
254         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
255                 if (((unsigned)t->time.tm_sec) < 0x60)
256                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
257                 else
258                         t->time.tm_sec = -1;
259                 if (((unsigned)t->time.tm_min) < 0x60)
260                         t->time.tm_min = bcd2bin(t->time.tm_min);
261                 else
262                         t->time.tm_min = -1;
263                 if (((unsigned)t->time.tm_hour) < 0x24)
264                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
265                 else
266                         t->time.tm_hour = -1;
267
268                 if (cmos->day_alrm) {
269                         if (((unsigned)t->time.tm_mday) <= 0x31)
270                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
271                         else
272                                 t->time.tm_mday = -1;
273
274                         if (cmos->mon_alrm) {
275                                 if (((unsigned)t->time.tm_mon) <= 0x12)
276                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
277                                 else
278                                         t->time.tm_mon = -1;
279                         }
280                 }
281         }
282
283         t->enabled = !!(rtc_control & RTC_AIE);
284         t->pending = 0;
285
286         return 0;
287 }
288
289 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
290 {
291         unsigned char   rtc_intr;
292
293         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
294          * allegedly some older rtcs need that to handle irqs properly
295          */
296         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
297
298         if (is_hpet_enabled())
299                 return;
300
301         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
302         if (is_intr(rtc_intr))
303                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
304 }
305
306 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
307 {
308         unsigned char   rtc_control;
309
310         /* flush any pending IRQ status, notably for update irqs,
311          * before we enable new IRQs
312          */
313         rtc_control = CMOS_READ(RTC_CONTROL);
314         cmos_checkintr(cmos, rtc_control);
315
316         rtc_control |= mask;
317         CMOS_WRITE(rtc_control, RTC_CONTROL);
318         hpet_set_rtc_irq_bit(mask);
319
320         cmos_checkintr(cmos, rtc_control);
321 }
322
323 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
324 {
325         unsigned char   rtc_control;
326
327         rtc_control = CMOS_READ(RTC_CONTROL);
328         rtc_control &= ~mask;
329         CMOS_WRITE(rtc_control, RTC_CONTROL);
330         hpet_mask_rtc_irq_bit(mask);
331
332         cmos_checkintr(cmos, rtc_control);
333 }
334
335 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
336 {
337         struct cmos_rtc *cmos = dev_get_drvdata(dev);
338         unsigned char mon, mday, hrs, min, sec, rtc_control;
339
340         if (!is_valid_irq(cmos->irq))
341                 return -EIO;
342
343         mon = t->time.tm_mon + 1;
344         mday = t->time.tm_mday;
345         hrs = t->time.tm_hour;
346         min = t->time.tm_min;
347         sec = t->time.tm_sec;
348
349         rtc_control = CMOS_READ(RTC_CONTROL);
350         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
351                 /* Writing 0xff means "don't care" or "match all".  */
352                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
353                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
354                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
355                 min = (min < 60) ? bin2bcd(min) : 0xff;
356                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
357         }
358
359         spin_lock_irq(&rtc_lock);
360
361         /* next rtc irq must not be from previous alarm setting */
362         cmos_irq_disable(cmos, RTC_AIE);
363
364         /* update alarm */
365         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
366         CMOS_WRITE(min, RTC_MINUTES_ALARM);
367         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
368
369         /* the system may support an "enhanced" alarm */
370         if (cmos->day_alrm) {
371                 CMOS_WRITE(mday, cmos->day_alrm);
372                 if (cmos->mon_alrm)
373                         CMOS_WRITE(mon, cmos->mon_alrm);
374         }
375
376         /* FIXME the HPET alarm glue currently ignores day_alrm
377          * and mon_alrm ...
378          */
379         hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
380
381         if (t->enabled)
382                 cmos_irq_enable(cmos, RTC_AIE);
383
384         spin_unlock_irq(&rtc_lock);
385
386         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
387
388         return 0;
389 }
390
391 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
392 {
393         struct cmos_rtc *cmos = dev_get_drvdata(dev);
394         unsigned long   flags;
395
396         if (!is_valid_irq(cmos->irq))
397                 return -EINVAL;
398
399         spin_lock_irqsave(&rtc_lock, flags);
400
401         if (enabled)
402                 cmos_irq_enable(cmos, RTC_AIE);
403         else
404                 cmos_irq_disable(cmos, RTC_AIE);
405
406         spin_unlock_irqrestore(&rtc_lock, flags);
407         return 0;
408 }
409
410 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
411
412 static int cmos_procfs(struct device *dev, struct seq_file *seq)
413 {
414         struct cmos_rtc *cmos = dev_get_drvdata(dev);
415         unsigned char   rtc_control, valid;
416
417         spin_lock_irq(&rtc_lock);
418         rtc_control = CMOS_READ(RTC_CONTROL);
419         valid = CMOS_READ(RTC_VALID);
420         spin_unlock_irq(&rtc_lock);
421
422         /* NOTE:  at least ICH6 reports battery status using a different
423          * (non-RTC) bit; and SQWE is ignored on many current systems.
424          */
425         seq_printf(seq,
426                    "periodic_IRQ\t: %s\n"
427                    "update_IRQ\t: %s\n"
428                    "HPET_emulated\t: %s\n"
429                    // "square_wave\t: %s\n"
430                    "BCD\t\t: %s\n"
431                    "DST_enable\t: %s\n"
432                    "periodic_freq\t: %d\n"
433                    "batt_status\t: %s\n",
434                    (rtc_control & RTC_PIE) ? "yes" : "no",
435                    (rtc_control & RTC_UIE) ? "yes" : "no",
436                    is_hpet_enabled() ? "yes" : "no",
437                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
438                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
439                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
440                    cmos->rtc->irq_freq,
441                    (valid & RTC_VRT) ? "okay" : "dead");
442
443         return 0;
444 }
445
446 #else
447 #define cmos_procfs     NULL
448 #endif
449
450 static const struct rtc_class_ops cmos_rtc_ops = {
451         .read_time              = cmos_read_time,
452         .set_time               = cmos_set_time,
453         .read_alarm             = cmos_read_alarm,
454         .set_alarm              = cmos_set_alarm,
455         .proc                   = cmos_procfs,
456         .alarm_irq_enable       = cmos_alarm_irq_enable,
457 };
458
459 /*----------------------------------------------------------------*/
460
461 /*
462  * All these chips have at least 64 bytes of address space, shared by
463  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
464  * by boot firmware.  Modern chips have 128 or 256 bytes.
465  */
466
467 #define NVRAM_OFFSET    (RTC_REG_D + 1)
468
469 static ssize_t
470 cmos_nvram_read(struct file *filp, struct kobject *kobj,
471                 struct bin_attribute *attr,
472                 char *buf, loff_t off, size_t count)
473 {
474         int     retval;
475
476         off += NVRAM_OFFSET;
477         spin_lock_irq(&rtc_lock);
478         for (retval = 0; count; count--, off++, retval++) {
479                 if (off < 128)
480                         *buf++ = CMOS_READ(off);
481                 else if (can_bank2)
482                         *buf++ = cmos_read_bank2(off);
483                 else
484                         break;
485         }
486         spin_unlock_irq(&rtc_lock);
487
488         return retval;
489 }
490
491 static ssize_t
492 cmos_nvram_write(struct file *filp, struct kobject *kobj,
493                 struct bin_attribute *attr,
494                 char *buf, loff_t off, size_t count)
495 {
496         struct cmos_rtc *cmos;
497         int             retval;
498
499         cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
500
501         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
502          * checksum on part of the NVRAM data.  That's currently ignored
503          * here.  If userspace is smart enough to know what fields of
504          * NVRAM to update, updating checksums is also part of its job.
505          */
506         off += NVRAM_OFFSET;
507         spin_lock_irq(&rtc_lock);
508         for (retval = 0; count; count--, off++, retval++) {
509                 /* don't trash RTC registers */
510                 if (off == cmos->day_alrm
511                                 || off == cmos->mon_alrm
512                                 || off == cmos->century)
513                         buf++;
514                 else if (off < 128)
515                         CMOS_WRITE(*buf++, off);
516                 else if (can_bank2)
517                         cmos_write_bank2(*buf++, off);
518                 else
519                         break;
520         }
521         spin_unlock_irq(&rtc_lock);
522
523         return retval;
524 }
525
526 static struct bin_attribute nvram = {
527         .attr = {
528                 .name   = "nvram",
529                 .mode   = S_IRUGO | S_IWUSR,
530         },
531
532         .read   = cmos_nvram_read,
533         .write  = cmos_nvram_write,
534         /* size gets set up later */
535 };
536
537 /*----------------------------------------------------------------*/
538
539 static struct cmos_rtc  cmos_rtc;
540
541 static irqreturn_t cmos_interrupt(int irq, void *p)
542 {
543         u8              irqstat;
544         u8              rtc_control;
545
546         spin_lock(&rtc_lock);
547
548         /* When the HPET interrupt handler calls us, the interrupt
549          * status is passed as arg1 instead of the irq number.  But
550          * always clear irq status, even when HPET is in the way.
551          *
552          * Note that HPET and RTC are almost certainly out of phase,
553          * giving different IRQ status ...
554          */
555         irqstat = CMOS_READ(RTC_INTR_FLAGS);
556         rtc_control = CMOS_READ(RTC_CONTROL);
557         if (is_hpet_enabled())
558                 irqstat = (unsigned long)irq & 0xF0;
559
560         /* If we were suspended, RTC_CONTROL may not be accurate since the
561          * bios may have cleared it.
562          */
563         if (!cmos_rtc.suspend_ctrl)
564                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
565         else
566                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
567
568         /* All Linux RTC alarms should be treated as if they were oneshot.
569          * Similar code may be needed in system wakeup paths, in case the
570          * alarm woke the system.
571          */
572         if (irqstat & RTC_AIE) {
573                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
574                 rtc_control &= ~RTC_AIE;
575                 CMOS_WRITE(rtc_control, RTC_CONTROL);
576                 hpet_mask_rtc_irq_bit(RTC_AIE);
577                 CMOS_READ(RTC_INTR_FLAGS);
578         }
579         spin_unlock(&rtc_lock);
580
581         if (is_intr(irqstat)) {
582                 rtc_update_irq(p, 1, irqstat);
583                 return IRQ_HANDLED;
584         } else
585                 return IRQ_NONE;
586 }
587
588 #ifdef  CONFIG_PNP
589 #define INITSECTION
590
591 #else
592 #define INITSECTION     __init
593 #endif
594
595 static int INITSECTION
596 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
597 {
598         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
599         int                             retval = 0;
600         unsigned char                   rtc_control;
601         unsigned                        address_space;
602         u32                             flags = 0;
603
604         /* there can be only one ... */
605         if (cmos_rtc.dev)
606                 return -EBUSY;
607
608         if (!ports)
609                 return -ENODEV;
610
611         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
612          *
613          * REVISIT non-x86 systems may instead use memory space resources
614          * (needing ioremap etc), not i/o space resources like this ...
615          */
616         if (RTC_IOMAPPED)
617                 ports = request_region(ports->start, resource_size(ports),
618                                        driver_name);
619         else
620                 ports = request_mem_region(ports->start, resource_size(ports),
621                                            driver_name);
622         if (!ports) {
623                 dev_dbg(dev, "i/o registers already in use\n");
624                 return -EBUSY;
625         }
626
627         cmos_rtc.irq = rtc_irq;
628         cmos_rtc.iomem = ports;
629
630         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
631          * driver did, but don't reject unknown configs.   Old hardware
632          * won't address 128 bytes.  Newer chips have multiple banks,
633          * though they may not be listed in one I/O resource.
634          */
635 #if     defined(CONFIG_ATARI)
636         address_space = 64;
637 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
638                         || defined(__sparc__) || defined(__mips__) \
639                         || defined(__powerpc__) || defined(CONFIG_MN10300)
640         address_space = 128;
641 #else
642 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
643         address_space = 128;
644 #endif
645         if (can_bank2 && ports->end > (ports->start + 1))
646                 address_space = 256;
647
648         /* For ACPI systems extension info comes from the FADT.  On others,
649          * board specific setup provides it as appropriate.  Systems where
650          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
651          * some almost-clones) can provide hooks to make that behave.
652          *
653          * Note that ACPI doesn't preclude putting these registers into
654          * "extended" areas of the chip, including some that we won't yet
655          * expect CMOS_READ and friends to handle.
656          */
657         if (info) {
658                 if (info->flags)
659                         flags = info->flags;
660                 if (info->address_space)
661                         address_space = info->address_space;
662
663                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
664                         cmos_rtc.day_alrm = info->rtc_day_alarm;
665                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
666                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
667                 if (info->rtc_century && info->rtc_century < 128)
668                         cmos_rtc.century = info->rtc_century;
669
670                 if (info->wake_on && info->wake_off) {
671                         cmos_rtc.wake_on = info->wake_on;
672                         cmos_rtc.wake_off = info->wake_off;
673                 }
674         }
675
676         cmos_rtc.dev = dev;
677         dev_set_drvdata(dev, &cmos_rtc);
678
679         cmos_rtc.rtc = rtc_device_register(driver_name, dev,
680                                 &cmos_rtc_ops, THIS_MODULE);
681         if (IS_ERR(cmos_rtc.rtc)) {
682                 retval = PTR_ERR(cmos_rtc.rtc);
683                 goto cleanup0;
684         }
685
686         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
687
688         spin_lock_irq(&rtc_lock);
689
690         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
691                 /* force periodic irq to CMOS reset default of 1024Hz;
692                  *
693                  * REVISIT it's been reported that at least one x86_64 ALI
694                  * mobo doesn't use 32KHz here ... for portability we might
695                  * need to do something about other clock frequencies.
696                  */
697                 cmos_rtc.rtc->irq_freq = 1024;
698                 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
699                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
700         }
701
702         /* disable irqs */
703         if (is_valid_irq(rtc_irq))
704                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
705
706         rtc_control = CMOS_READ(RTC_CONTROL);
707
708         spin_unlock_irq(&rtc_lock);
709
710         /* FIXME:
711          * <asm-generic/rtc.h> doesn't know 12-hour mode either.
712          */
713         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
714                 dev_warn(dev, "only 24-hr supported\n");
715                 retval = -ENXIO;
716                 goto cleanup1;
717         }
718
719         hpet_rtc_timer_init();
720
721         if (is_valid_irq(rtc_irq)) {
722                 irq_handler_t rtc_cmos_int_handler;
723
724                 if (is_hpet_enabled()) {
725                         rtc_cmos_int_handler = hpet_rtc_interrupt;
726                         retval = hpet_register_irq_handler(cmos_interrupt);
727                         if (retval) {
728                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
729                                 dev_warn(dev, "hpet_register_irq_handler "
730                                                 " failed in rtc_init().");
731                                 goto cleanup1;
732                         }
733                 } else
734                         rtc_cmos_int_handler = cmos_interrupt;
735
736                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
737                                 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
738                                 cmos_rtc.rtc);
739                 if (retval < 0) {
740                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
741                         goto cleanup1;
742                 }
743         }
744
745         /* export at least the first block of NVRAM */
746         nvram.size = address_space - NVRAM_OFFSET;
747         retval = sysfs_create_bin_file(&dev->kobj, &nvram);
748         if (retval < 0) {
749                 dev_dbg(dev, "can't create nvram file? %d\n", retval);
750                 goto cleanup2;
751         }
752
753         dev_info(dev, "%s%s, %zd bytes nvram%s\n",
754                 !is_valid_irq(rtc_irq) ? "no alarms" :
755                         cmos_rtc.mon_alrm ? "alarms up to one year" :
756                         cmos_rtc.day_alrm ? "alarms up to one month" :
757                         "alarms up to one day",
758                 cmos_rtc.century ? ", y3k" : "",
759                 nvram.size,
760                 is_hpet_enabled() ? ", hpet irqs" : "");
761
762         return 0;
763
764 cleanup2:
765         if (is_valid_irq(rtc_irq))
766                 free_irq(rtc_irq, cmos_rtc.rtc);
767 cleanup1:
768         cmos_rtc.dev = NULL;
769         rtc_device_unregister(cmos_rtc.rtc);
770 cleanup0:
771         if (RTC_IOMAPPED)
772                 release_region(ports->start, resource_size(ports));
773         else
774                 release_mem_region(ports->start, resource_size(ports));
775         return retval;
776 }
777
778 static void cmos_do_shutdown(int rtc_irq)
779 {
780         spin_lock_irq(&rtc_lock);
781         if (is_valid_irq(rtc_irq))
782                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
783         spin_unlock_irq(&rtc_lock);
784 }
785
786 static void cmos_do_remove(struct device *dev)
787 {
788         struct cmos_rtc *cmos = dev_get_drvdata(dev);
789         struct resource *ports;
790
791         cmos_do_shutdown(cmos->irq);
792
793         sysfs_remove_bin_file(&dev->kobj, &nvram);
794
795         if (is_valid_irq(cmos->irq)) {
796                 free_irq(cmos->irq, cmos->rtc);
797                 hpet_unregister_irq_handler(cmos_interrupt);
798         }
799
800         rtc_device_unregister(cmos->rtc);
801         cmos->rtc = NULL;
802
803         ports = cmos->iomem;
804         if (RTC_IOMAPPED)
805                 release_region(ports->start, resource_size(ports));
806         else
807                 release_mem_region(ports->start, resource_size(ports));
808         cmos->iomem = NULL;
809
810         cmos->dev = NULL;
811 }
812
813 static int cmos_aie_poweroff(struct device *dev)
814 {
815         struct cmos_rtc *cmos = dev_get_drvdata(dev);
816         struct rtc_time now;
817         time64_t t_now;
818         int retval = 0;
819         unsigned char rtc_control;
820
821         if (!cmos->alarm_expires)
822                 return -EINVAL;
823
824         spin_lock_irq(&rtc_lock);
825         rtc_control = CMOS_READ(RTC_CONTROL);
826         spin_unlock_irq(&rtc_lock);
827
828         /* We only care about the situation where AIE is disabled. */
829         if (rtc_control & RTC_AIE)
830                 return -EBUSY;
831
832         cmos_read_time(dev, &now);
833         t_now = rtc_tm_to_time64(&now);
834
835         /*
836          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
837          * automatically right after shutdown on some buggy boxes.
838          * This automatic rebooting issue won't happen when the alarm
839          * time is larger than now+1 seconds.
840          *
841          * If the alarm time is equal to now+1 seconds, the issue can be
842          * prevented by cancelling the alarm.
843          */
844         if (cmos->alarm_expires == t_now + 1) {
845                 struct rtc_wkalrm alarm;
846
847                 /* Cancel the AIE timer by configuring the past time. */
848                 rtc_time64_to_tm(t_now - 1, &alarm.time);
849                 alarm.enabled = 0;
850                 retval = cmos_set_alarm(dev, &alarm);
851         } else if (cmos->alarm_expires > t_now + 1) {
852                 retval = -EBUSY;
853         }
854
855         return retval;
856 }
857
858 static int cmos_suspend(struct device *dev)
859 {
860         struct cmos_rtc *cmos = dev_get_drvdata(dev);
861         unsigned char   tmp;
862
863         /* only the alarm might be a wakeup event source */
864         spin_lock_irq(&rtc_lock);
865         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
866         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
867                 unsigned char   mask;
868
869                 if (device_may_wakeup(dev))
870                         mask = RTC_IRQMASK & ~RTC_AIE;
871                 else
872                         mask = RTC_IRQMASK;
873                 tmp &= ~mask;
874                 CMOS_WRITE(tmp, RTC_CONTROL);
875                 hpet_mask_rtc_irq_bit(mask);
876
877                 cmos_checkintr(cmos, tmp);
878         }
879         spin_unlock_irq(&rtc_lock);
880
881         if (tmp & RTC_AIE) {
882                 cmos->enabled_wake = 1;
883                 if (cmos->wake_on)
884                         cmos->wake_on(dev);
885                 else
886                         enable_irq_wake(cmos->irq);
887         }
888
889         cmos_read_alarm(dev, &cmos->saved_wkalrm);
890
891         dev_dbg(dev, "suspend%s, ctrl %02x\n",
892                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
893                         tmp);
894
895         return 0;
896 }
897
898 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
899  * after a detour through G3 "mechanical off", although the ACPI spec
900  * says wakeup should only work from G1/S4 "hibernate".  To most users,
901  * distinctions between S4 and S5 are pointless.  So when the hardware
902  * allows, don't draw that distinction.
903  */
904 static inline int cmos_poweroff(struct device *dev)
905 {
906         if (!IS_ENABLED(CONFIG_PM))
907                 return -ENOSYS;
908
909         return cmos_suspend(dev);
910 }
911
912 static void cmos_check_wkalrm(struct device *dev)
913 {
914         struct cmos_rtc *cmos = dev_get_drvdata(dev);
915         struct rtc_wkalrm current_alarm;
916         time64_t t_current_expires;
917         time64_t t_saved_expires;
918
919         cmos_read_alarm(dev, &current_alarm);
920         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
921         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
922         if (t_current_expires != t_saved_expires ||
923             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
924                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
925         }
926 }
927
928 static void cmos_check_acpi_rtc_status(struct device *dev,
929                                        unsigned char *rtc_control);
930
931 static int __maybe_unused cmos_resume(struct device *dev)
932 {
933         struct cmos_rtc *cmos = dev_get_drvdata(dev);
934         unsigned char tmp;
935
936         if (cmos->enabled_wake) {
937                 if (cmos->wake_off)
938                         cmos->wake_off(dev);
939                 else
940                         disable_irq_wake(cmos->irq);
941                 cmos->enabled_wake = 0;
942         }
943
944         /* The BIOS might have changed the alarm, restore it */
945         cmos_check_wkalrm(dev);
946
947         spin_lock_irq(&rtc_lock);
948         tmp = cmos->suspend_ctrl;
949         cmos->suspend_ctrl = 0;
950         /* re-enable any irqs previously active */
951         if (tmp & RTC_IRQMASK) {
952                 unsigned char   mask;
953
954                 if (device_may_wakeup(dev))
955                         hpet_rtc_timer_init();
956
957                 do {
958                         CMOS_WRITE(tmp, RTC_CONTROL);
959                         hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
960
961                         mask = CMOS_READ(RTC_INTR_FLAGS);
962                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
963                         if (!is_hpet_enabled() || !is_intr(mask))
964                                 break;
965
966                         /* force one-shot behavior if HPET blocked
967                          * the wake alarm's irq
968                          */
969                         rtc_update_irq(cmos->rtc, 1, mask);
970                         tmp &= ~RTC_AIE;
971                         hpet_mask_rtc_irq_bit(RTC_AIE);
972                 } while (mask & RTC_AIE);
973
974                 if (tmp & RTC_AIE)
975                         cmos_check_acpi_rtc_status(dev, &tmp);
976         }
977         spin_unlock_irq(&rtc_lock);
978
979         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
980
981         return 0;
982 }
983
984 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
985
986 /*----------------------------------------------------------------*/
987
988 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
989  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
990  * probably list them in similar PNPBIOS tables; so PNP is more common.
991  *
992  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
993  * predate even PNPBIOS should set up platform_bus devices.
994  */
995
996 #ifdef  CONFIG_ACPI
997
998 #include <linux/acpi.h>
999
1000 static u32 rtc_handler(void *context)
1001 {
1002         struct device *dev = context;
1003         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1004         unsigned char rtc_control = 0;
1005         unsigned char rtc_intr;
1006         unsigned long flags;
1007
1008         spin_lock_irqsave(&rtc_lock, flags);
1009         if (cmos_rtc.suspend_ctrl)
1010                 rtc_control = CMOS_READ(RTC_CONTROL);
1011         if (rtc_control & RTC_AIE) {
1012                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1013                 CMOS_WRITE(rtc_control, RTC_CONTROL);
1014                 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1015                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1016         }
1017         spin_unlock_irqrestore(&rtc_lock, flags);
1018
1019         pm_wakeup_event(dev, 0);
1020         acpi_clear_event(ACPI_EVENT_RTC);
1021         acpi_disable_event(ACPI_EVENT_RTC, 0);
1022         return ACPI_INTERRUPT_HANDLED;
1023 }
1024
1025 static inline void rtc_wake_setup(struct device *dev)
1026 {
1027         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1028         /*
1029          * After the RTC handler is installed, the Fixed_RTC event should
1030          * be disabled. Only when the RTC alarm is set will it be enabled.
1031          */
1032         acpi_clear_event(ACPI_EVENT_RTC);
1033         acpi_disable_event(ACPI_EVENT_RTC, 0);
1034 }
1035
1036 static void rtc_wake_on(struct device *dev)
1037 {
1038         acpi_clear_event(ACPI_EVENT_RTC);
1039         acpi_enable_event(ACPI_EVENT_RTC, 0);
1040 }
1041
1042 static void rtc_wake_off(struct device *dev)
1043 {
1044         acpi_disable_event(ACPI_EVENT_RTC, 0);
1045 }
1046
1047 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1048  * its device node and pass extra config data.  This helps its driver use
1049  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1050  * that this board's RTC is wakeup-capable (per ACPI spec).
1051  */
1052 static struct cmos_rtc_board_info acpi_rtc_info;
1053
1054 static void cmos_wake_setup(struct device *dev)
1055 {
1056         if (acpi_disabled)
1057                 return;
1058
1059         rtc_wake_setup(dev);
1060         acpi_rtc_info.wake_on = rtc_wake_on;
1061         acpi_rtc_info.wake_off = rtc_wake_off;
1062
1063         /* workaround bug in some ACPI tables */
1064         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1065                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1066                         acpi_gbl_FADT.month_alarm);
1067                 acpi_gbl_FADT.month_alarm = 0;
1068         }
1069
1070         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1071         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1072         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1073
1074         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1075         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1076                 dev_info(dev, "RTC can wake from S4\n");
1077
1078         dev->platform_data = &acpi_rtc_info;
1079
1080         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1081         device_init_wakeup(dev, 1);
1082 }
1083
1084 static void cmos_check_acpi_rtc_status(struct device *dev,
1085                                        unsigned char *rtc_control)
1086 {
1087         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1088         acpi_event_status rtc_status;
1089         acpi_status status;
1090
1091         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1092                 return;
1093
1094         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1095         if (ACPI_FAILURE(status)) {
1096                 dev_err(dev, "Could not get RTC status\n");
1097         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1098                 unsigned char mask;
1099                 *rtc_control &= ~RTC_AIE;
1100                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1101                 mask = CMOS_READ(RTC_INTR_FLAGS);
1102                 rtc_update_irq(cmos->rtc, 1, mask);
1103         }
1104 }
1105
1106 #else
1107
1108 static void cmos_wake_setup(struct device *dev)
1109 {
1110 }
1111
1112 static void cmos_check_acpi_rtc_status(struct device *dev,
1113                                        unsigned char *rtc_control)
1114 {
1115 }
1116
1117 #endif
1118
1119 #ifdef  CONFIG_PNP
1120
1121 #include <linux/pnp.h>
1122
1123 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1124 {
1125         cmos_wake_setup(&pnp->dev);
1126
1127         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1128                 /* Some machines contain a PNP entry for the RTC, but
1129                  * don't define the IRQ. It should always be safe to
1130                  * hardcode it in these cases
1131                  */
1132                 return cmos_do_probe(&pnp->dev,
1133                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1134         else
1135                 return cmos_do_probe(&pnp->dev,
1136                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1137                                 pnp_irq(pnp, 0));
1138 }
1139
1140 static void cmos_pnp_remove(struct pnp_dev *pnp)
1141 {
1142         cmos_do_remove(&pnp->dev);
1143 }
1144
1145 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1146 {
1147         struct device *dev = &pnp->dev;
1148         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1149
1150         if (system_state == SYSTEM_POWER_OFF) {
1151                 int retval = cmos_poweroff(dev);
1152
1153                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1154                         return;
1155         }
1156
1157         cmos_do_shutdown(cmos->irq);
1158 }
1159
1160 static const struct pnp_device_id rtc_ids[] = {
1161         { .id = "PNP0b00", },
1162         { .id = "PNP0b01", },
1163         { .id = "PNP0b02", },
1164         { },
1165 };
1166 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1167
1168 static struct pnp_driver cmos_pnp_driver = {
1169         .name           = (char *) driver_name,
1170         .id_table       = rtc_ids,
1171         .probe          = cmos_pnp_probe,
1172         .remove         = cmos_pnp_remove,
1173         .shutdown       = cmos_pnp_shutdown,
1174
1175         /* flag ensures resume() gets called, and stops syslog spam */
1176         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1177         .driver         = {
1178                         .pm = &cmos_pm_ops,
1179         },
1180 };
1181
1182 #endif  /* CONFIG_PNP */
1183
1184 #ifdef CONFIG_OF
1185 static const struct of_device_id of_cmos_match[] = {
1186         {
1187                 .compatible = "motorola,mc146818",
1188         },
1189         { },
1190 };
1191 MODULE_DEVICE_TABLE(of, of_cmos_match);
1192
1193 static __init void cmos_of_init(struct platform_device *pdev)
1194 {
1195         struct device_node *node = pdev->dev.of_node;
1196         struct rtc_time time;
1197         int ret;
1198         const __be32 *val;
1199
1200         if (!node)
1201                 return;
1202
1203         val = of_get_property(node, "ctrl-reg", NULL);
1204         if (val)
1205                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1206
1207         val = of_get_property(node, "freq-reg", NULL);
1208         if (val)
1209                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1210
1211         cmos_read_time(&pdev->dev, &time);
1212         ret = rtc_valid_tm(&time);
1213         if (ret) {
1214                 struct rtc_time def_time = {
1215                         .tm_year = 1,
1216                         .tm_mday = 1,
1217                 };
1218                 cmos_set_time(&pdev->dev, &def_time);
1219         }
1220 }
1221 #else
1222 static inline void cmos_of_init(struct platform_device *pdev) {}
1223 #endif
1224 /*----------------------------------------------------------------*/
1225
1226 /* Platform setup should have set up an RTC device, when PNP is
1227  * unavailable ... this could happen even on (older) PCs.
1228  */
1229
1230 static int __init cmos_platform_probe(struct platform_device *pdev)
1231 {
1232         struct resource *resource;
1233         int irq;
1234
1235         cmos_of_init(pdev);
1236         cmos_wake_setup(&pdev->dev);
1237
1238         if (RTC_IOMAPPED)
1239                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1240         else
1241                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1242         irq = platform_get_irq(pdev, 0);
1243         if (irq < 0)
1244                 irq = -1;
1245
1246         return cmos_do_probe(&pdev->dev, resource, irq);
1247 }
1248
1249 static int cmos_platform_remove(struct platform_device *pdev)
1250 {
1251         cmos_do_remove(&pdev->dev);
1252         return 0;
1253 }
1254
1255 static void cmos_platform_shutdown(struct platform_device *pdev)
1256 {
1257         struct device *dev = &pdev->dev;
1258         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1259
1260         if (system_state == SYSTEM_POWER_OFF) {
1261                 int retval = cmos_poweroff(dev);
1262
1263                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1264                         return;
1265         }
1266
1267         cmos_do_shutdown(cmos->irq);
1268 }
1269
1270 /* work with hotplug and coldplug */
1271 MODULE_ALIAS("platform:rtc_cmos");
1272
1273 static struct platform_driver cmos_platform_driver = {
1274         .remove         = cmos_platform_remove,
1275         .shutdown       = cmos_platform_shutdown,
1276         .driver = {
1277                 .name           = driver_name,
1278                 .pm             = &cmos_pm_ops,
1279                 .of_match_table = of_match_ptr(of_cmos_match),
1280         }
1281 };
1282
1283 #ifdef CONFIG_PNP
1284 static bool pnp_driver_registered;
1285 #endif
1286 static bool platform_driver_registered;
1287
1288 static int __init cmos_init(void)
1289 {
1290         int retval = 0;
1291
1292 #ifdef  CONFIG_PNP
1293         retval = pnp_register_driver(&cmos_pnp_driver);
1294         if (retval == 0)
1295                 pnp_driver_registered = true;
1296 #endif
1297
1298         if (!cmos_rtc.dev) {
1299                 retval = platform_driver_probe(&cmos_platform_driver,
1300                                                cmos_platform_probe);
1301                 if (retval == 0)
1302                         platform_driver_registered = true;
1303         }
1304
1305         if (retval == 0)
1306                 return 0;
1307
1308 #ifdef  CONFIG_PNP
1309         if (pnp_driver_registered)
1310                 pnp_unregister_driver(&cmos_pnp_driver);
1311 #endif
1312         return retval;
1313 }
1314 module_init(cmos_init);
1315
1316 static void __exit cmos_exit(void)
1317 {
1318 #ifdef  CONFIG_PNP
1319         if (pnp_driver_registered)
1320                 pnp_unregister_driver(&cmos_pnp_driver);
1321 #endif
1322         if (platform_driver_registered)
1323                 platform_driver_unregister(&cmos_platform_driver);
1324 }
1325 module_exit(cmos_exit);
1326
1327
1328 MODULE_AUTHOR("David Brownell");
1329 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1330 MODULE_LICENSE("GPL");