]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/rtc/rtc-mxc.c
ARM: delete struct sys_timer
[karo-tx-linux.git] / drivers / rtc / rtc-mxc.c
1 /*
2  * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3  *
4  * The code contained herein is licensed under the GNU General Public
5  * License. You may obtain a copy of the GNU General Public License
6  * Version 2 or later at the following locations:
7  *
8  * http://www.opensource.org/licenses/gpl-license.html
9  * http://www.gnu.org/copyleft/gpl.html
10  */
11
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19
20 #define RTC_INPUT_CLK_32768HZ   (0x00 << 5)
21 #define RTC_INPUT_CLK_32000HZ   (0x01 << 5)
22 #define RTC_INPUT_CLK_38400HZ   (0x02 << 5)
23
24 #define RTC_SW_BIT      (1 << 0)
25 #define RTC_ALM_BIT     (1 << 2)
26 #define RTC_1HZ_BIT     (1 << 4)
27 #define RTC_2HZ_BIT     (1 << 7)
28 #define RTC_SAM0_BIT    (1 << 8)
29 #define RTC_SAM1_BIT    (1 << 9)
30 #define RTC_SAM2_BIT    (1 << 10)
31 #define RTC_SAM3_BIT    (1 << 11)
32 #define RTC_SAM4_BIT    (1 << 12)
33 #define RTC_SAM5_BIT    (1 << 13)
34 #define RTC_SAM6_BIT    (1 << 14)
35 #define RTC_SAM7_BIT    (1 << 15)
36 #define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
37                          RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
38                          RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
39
40 #define RTC_ENABLE_BIT  (1 << 7)
41
42 #define MAX_PIE_NUM     9
43 #define MAX_PIE_FREQ    512
44 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
45         { 2,            RTC_2HZ_BIT },
46         { 4,            RTC_SAM0_BIT },
47         { 8,            RTC_SAM1_BIT },
48         { 16,           RTC_SAM2_BIT },
49         { 32,           RTC_SAM3_BIT },
50         { 64,           RTC_SAM4_BIT },
51         { 128,          RTC_SAM5_BIT },
52         { 256,          RTC_SAM6_BIT },
53         { MAX_PIE_FREQ, RTC_SAM7_BIT },
54 };
55
56 #define MXC_RTC_TIME    0
57 #define MXC_RTC_ALARM   1
58
59 #define RTC_HOURMIN     0x00    /*  32bit rtc hour/min counter reg */
60 #define RTC_SECOND      0x04    /*  32bit rtc seconds counter reg */
61 #define RTC_ALRM_HM     0x08    /*  32bit rtc alarm hour/min reg */
62 #define RTC_ALRM_SEC    0x0C    /*  32bit rtc alarm seconds reg */
63 #define RTC_RTCCTL      0x10    /*  32bit rtc control reg */
64 #define RTC_RTCISR      0x14    /*  32bit rtc interrupt status reg */
65 #define RTC_RTCIENR     0x18    /*  32bit rtc interrupt enable reg */
66 #define RTC_STPWCH      0x1C    /*  32bit rtc stopwatch min reg */
67 #define RTC_DAYR        0x20    /*  32bit rtc days counter reg */
68 #define RTC_DAYALARM    0x24    /*  32bit rtc day alarm reg */
69 #define RTC_TEST1       0x28    /*  32bit rtc test reg 1 */
70 #define RTC_TEST2       0x2C    /*  32bit rtc test reg 2 */
71 #define RTC_TEST3       0x30    /*  32bit rtc test reg 3 */
72
73 enum imx_rtc_type {
74         IMX1_RTC,
75         IMX21_RTC,
76 };
77
78 struct rtc_plat_data {
79         struct rtc_device *rtc;
80         void __iomem *ioaddr;
81         int irq;
82         struct clk *clk;
83         struct rtc_time g_rtc_alarm;
84         enum imx_rtc_type devtype;
85 };
86
87 static struct platform_device_id imx_rtc_devtype[] = {
88         {
89                 .name = "imx1-rtc",
90                 .driver_data = IMX1_RTC,
91         }, {
92                 .name = "imx21-rtc",
93                 .driver_data = IMX21_RTC,
94         }, {
95                 /* sentinel */
96         }
97 };
98 MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
99
100 static inline int is_imx1_rtc(struct rtc_plat_data *data)
101 {
102         return data->devtype == IMX1_RTC;
103 }
104
105 /*
106  * This function is used to obtain the RTC time or the alarm value in
107  * second.
108  */
109 static u32 get_alarm_or_time(struct device *dev, int time_alarm)
110 {
111         struct platform_device *pdev = to_platform_device(dev);
112         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
113         void __iomem *ioaddr = pdata->ioaddr;
114         u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
115
116         switch (time_alarm) {
117         case MXC_RTC_TIME:
118                 day = readw(ioaddr + RTC_DAYR);
119                 hr_min = readw(ioaddr + RTC_HOURMIN);
120                 sec = readw(ioaddr + RTC_SECOND);
121                 break;
122         case MXC_RTC_ALARM:
123                 day = readw(ioaddr + RTC_DAYALARM);
124                 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
125                 sec = readw(ioaddr + RTC_ALRM_SEC);
126                 break;
127         }
128
129         hr = hr_min >> 8;
130         min = hr_min & 0xff;
131
132         return (((day * 24 + hr) * 60) + min) * 60 + sec;
133 }
134
135 /*
136  * This function sets the RTC alarm value or the time value.
137  */
138 static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
139 {
140         u32 day, hr, min, sec, temp;
141         struct platform_device *pdev = to_platform_device(dev);
142         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
143         void __iomem *ioaddr = pdata->ioaddr;
144
145         day = time / 86400;
146         time -= day * 86400;
147
148         /* time is within a day now */
149         hr = time / 3600;
150         time -= hr * 3600;
151
152         /* time is within an hour now */
153         min = time / 60;
154         sec = time - min * 60;
155
156         temp = (hr << 8) + min;
157
158         switch (time_alarm) {
159         case MXC_RTC_TIME:
160                 writew(day, ioaddr + RTC_DAYR);
161                 writew(sec, ioaddr + RTC_SECOND);
162                 writew(temp, ioaddr + RTC_HOURMIN);
163                 break;
164         case MXC_RTC_ALARM:
165                 writew(day, ioaddr + RTC_DAYALARM);
166                 writew(sec, ioaddr + RTC_ALRM_SEC);
167                 writew(temp, ioaddr + RTC_ALRM_HM);
168                 break;
169         }
170 }
171
172 /*
173  * This function updates the RTC alarm registers and then clears all the
174  * interrupt status bits.
175  */
176 static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
177 {
178         struct rtc_time alarm_tm, now_tm;
179         unsigned long now, time;
180         struct platform_device *pdev = to_platform_device(dev);
181         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
182         void __iomem *ioaddr = pdata->ioaddr;
183
184         now = get_alarm_or_time(dev, MXC_RTC_TIME);
185         rtc_time_to_tm(now, &now_tm);
186         alarm_tm.tm_year = now_tm.tm_year;
187         alarm_tm.tm_mon = now_tm.tm_mon;
188         alarm_tm.tm_mday = now_tm.tm_mday;
189         alarm_tm.tm_hour = alrm->tm_hour;
190         alarm_tm.tm_min = alrm->tm_min;
191         alarm_tm.tm_sec = alrm->tm_sec;
192         rtc_tm_to_time(&alarm_tm, &time);
193
194         /* clear all the interrupt status bits */
195         writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
196         set_alarm_or_time(dev, MXC_RTC_ALARM, time);
197
198         return 0;
199 }
200
201 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
202                                 unsigned int enabled)
203 {
204         struct platform_device *pdev = to_platform_device(dev);
205         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206         void __iomem *ioaddr = pdata->ioaddr;
207         u32 reg;
208
209         spin_lock_irq(&pdata->rtc->irq_lock);
210         reg = readw(ioaddr + RTC_RTCIENR);
211
212         if (enabled)
213                 reg |= bit;
214         else
215                 reg &= ~bit;
216
217         writew(reg, ioaddr + RTC_RTCIENR);
218         spin_unlock_irq(&pdata->rtc->irq_lock);
219 }
220
221 /* This function is the RTC interrupt service routine. */
222 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
223 {
224         struct platform_device *pdev = dev_id;
225         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
226         void __iomem *ioaddr = pdata->ioaddr;
227         unsigned long flags;
228         u32 status;
229         u32 events = 0;
230
231         spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
232         status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
233         /* clear interrupt sources */
234         writew(status, ioaddr + RTC_RTCISR);
235
236         /* update irq data & counter */
237         if (status & RTC_ALM_BIT) {
238                 events |= (RTC_AF | RTC_IRQF);
239                 /* RTC alarm should be one-shot */
240                 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
241         }
242
243         if (status & RTC_1HZ_BIT)
244                 events |= (RTC_UF | RTC_IRQF);
245
246         if (status & PIT_ALL_ON)
247                 events |= (RTC_PF | RTC_IRQF);
248
249         rtc_update_irq(pdata->rtc, 1, events);
250         spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
251
252         return IRQ_HANDLED;
253 }
254
255 /*
256  * Clear all interrupts and release the IRQ
257  */
258 static void mxc_rtc_release(struct device *dev)
259 {
260         struct platform_device *pdev = to_platform_device(dev);
261         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
262         void __iomem *ioaddr = pdata->ioaddr;
263
264         spin_lock_irq(&pdata->rtc->irq_lock);
265
266         /* Disable all rtc interrupts */
267         writew(0, ioaddr + RTC_RTCIENR);
268
269         /* Clear all interrupt status */
270         writew(0xffffffff, ioaddr + RTC_RTCISR);
271
272         spin_unlock_irq(&pdata->rtc->irq_lock);
273 }
274
275 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
276 {
277         mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
278         return 0;
279 }
280
281 /*
282  * This function reads the current RTC time into tm in Gregorian date.
283  */
284 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
285 {
286         u32 val;
287
288         /* Avoid roll-over from reading the different registers */
289         do {
290                 val = get_alarm_or_time(dev, MXC_RTC_TIME);
291         } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
292
293         rtc_time_to_tm(val, tm);
294
295         return 0;
296 }
297
298 /*
299  * This function sets the internal RTC time based on tm in Gregorian date.
300  */
301 static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
302 {
303         struct platform_device *pdev = to_platform_device(dev);
304         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
305
306         /*
307          * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
308          */
309         if (is_imx1_rtc(pdata)) {
310                 struct rtc_time tm;
311
312                 rtc_time_to_tm(time, &tm);
313                 tm.tm_year = 70;
314                 rtc_tm_to_time(&tm, &time);
315         }
316
317         /* Avoid roll-over from reading the different registers */
318         do {
319                 set_alarm_or_time(dev, MXC_RTC_TIME, time);
320         } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
321
322         return 0;
323 }
324
325 /*
326  * This function reads the current alarm value into the passed in 'alrm'
327  * argument. It updates the alrm's pending field value based on the whether
328  * an alarm interrupt occurs or not.
329  */
330 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
331 {
332         struct platform_device *pdev = to_platform_device(dev);
333         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
334         void __iomem *ioaddr = pdata->ioaddr;
335
336         rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
337         alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
338
339         return 0;
340 }
341
342 /*
343  * This function sets the RTC alarm based on passed in alrm.
344  */
345 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
346 {
347         struct platform_device *pdev = to_platform_device(dev);
348         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
349         int ret;
350
351         ret = rtc_update_alarm(dev, &alrm->time);
352         if (ret)
353                 return ret;
354
355         memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
356         mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
357
358         return 0;
359 }
360
361 /* RTC layer */
362 static struct rtc_class_ops mxc_rtc_ops = {
363         .release                = mxc_rtc_release,
364         .read_time              = mxc_rtc_read_time,
365         .set_mmss               = mxc_rtc_set_mmss,
366         .read_alarm             = mxc_rtc_read_alarm,
367         .set_alarm              = mxc_rtc_set_alarm,
368         .alarm_irq_enable       = mxc_rtc_alarm_irq_enable,
369 };
370
371 static int __devinit mxc_rtc_probe(struct platform_device *pdev)
372 {
373         struct resource *res;
374         struct rtc_device *rtc;
375         struct rtc_plat_data *pdata = NULL;
376         u32 reg;
377         unsigned long rate;
378         int ret;
379
380         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
381         if (!res)
382                 return -ENODEV;
383
384         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
385         if (!pdata)
386                 return -ENOMEM;
387
388         pdata->devtype = pdev->id_entry->driver_data;
389
390         if (!devm_request_mem_region(&pdev->dev, res->start,
391                                      resource_size(res), pdev->name))
392                 return -EBUSY;
393
394         pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
395                                      resource_size(res));
396
397         pdata->clk = devm_clk_get(&pdev->dev, NULL);
398         if (IS_ERR(pdata->clk)) {
399                 dev_err(&pdev->dev, "unable to get clock!\n");
400                 ret = PTR_ERR(pdata->clk);
401                 goto exit_free_pdata;
402         }
403
404         clk_prepare_enable(pdata->clk);
405         rate = clk_get_rate(pdata->clk);
406
407         if (rate == 32768)
408                 reg = RTC_INPUT_CLK_32768HZ;
409         else if (rate == 32000)
410                 reg = RTC_INPUT_CLK_32000HZ;
411         else if (rate == 38400)
412                 reg = RTC_INPUT_CLK_38400HZ;
413         else {
414                 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
415                 ret = -EINVAL;
416                 goto exit_put_clk;
417         }
418
419         reg |= RTC_ENABLE_BIT;
420         writew(reg, (pdata->ioaddr + RTC_RTCCTL));
421         if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
422                 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
423                 ret = -EIO;
424                 goto exit_put_clk;
425         }
426
427         platform_set_drvdata(pdev, pdata);
428
429         /* Configure and enable the RTC */
430         pdata->irq = platform_get_irq(pdev, 0);
431
432         if (pdata->irq >= 0 &&
433             devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
434                              IRQF_SHARED, pdev->name, pdev) < 0) {
435                 dev_warn(&pdev->dev, "interrupt not available.\n");
436                 pdata->irq = -1;
437         }
438
439         if (pdata->irq >=0)
440                 device_init_wakeup(&pdev->dev, 1);
441
442         rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
443                                   THIS_MODULE);
444         if (IS_ERR(rtc)) {
445                 ret = PTR_ERR(rtc);
446                 goto exit_clr_drvdata;
447         }
448
449         pdata->rtc = rtc;
450
451         return 0;
452
453 exit_clr_drvdata:
454         platform_set_drvdata(pdev, NULL);
455 exit_put_clk:
456         clk_disable_unprepare(pdata->clk);
457
458 exit_free_pdata:
459
460         return ret;
461 }
462
463 static int __devexit mxc_rtc_remove(struct platform_device *pdev)
464 {
465         struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
466
467         rtc_device_unregister(pdata->rtc);
468
469         clk_disable_unprepare(pdata->clk);
470         platform_set_drvdata(pdev, NULL);
471
472         return 0;
473 }
474
475 #ifdef CONFIG_PM
476 static int mxc_rtc_suspend(struct device *dev)
477 {
478         struct rtc_plat_data *pdata = dev_get_drvdata(dev);
479
480         if (device_may_wakeup(dev))
481                 enable_irq_wake(pdata->irq);
482
483         return 0;
484 }
485
486 static int mxc_rtc_resume(struct device *dev)
487 {
488         struct rtc_plat_data *pdata = dev_get_drvdata(dev);
489
490         if (device_may_wakeup(dev))
491                 disable_irq_wake(pdata->irq);
492
493         return 0;
494 }
495
496 static struct dev_pm_ops mxc_rtc_pm_ops = {
497         .suspend        = mxc_rtc_suspend,
498         .resume         = mxc_rtc_resume,
499 };
500 #endif
501
502 static struct platform_driver mxc_rtc_driver = {
503         .driver = {
504                    .name        = "mxc_rtc",
505 #ifdef CONFIG_PM
506                    .pm          = &mxc_rtc_pm_ops,
507 #endif
508                    .owner       = THIS_MODULE,
509         },
510         .id_table = imx_rtc_devtype,
511         .probe = mxc_rtc_probe,
512         .remove = __devexit_p(mxc_rtc_remove),
513 };
514
515 module_platform_driver(mxc_rtc_driver)
516
517 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
518 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
519 MODULE_LICENSE("GPL");
520