]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
[SCSI] hpsa: move device attributes to avoid forward declarations
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80         "Use 'simple mode' rather than 'performant mode'");
81
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
100                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101         {0,}
102 };
103
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111         {0x3241103C, "Smart Array P212", &SA5_access},
112         {0x3243103C, "Smart Array P410", &SA5_access},
113         {0x3245103C, "Smart Array P410i", &SA5_access},
114         {0x3247103C, "Smart Array P411", &SA5_access},
115         {0x3249103C, "Smart Array P812", &SA5_access},
116         {0x324a103C, "Smart Array P712m", &SA5_access},
117         {0x324b103C, "Smart Array P711m", &SA5_access},
118         {0x3350103C, "Smart Array", &SA5_access},
119         {0x3351103C, "Smart Array", &SA5_access},
120         {0x3352103C, "Smart Array", &SA5_access},
121         {0x3353103C, "Smart Array", &SA5_access},
122         {0x3354103C, "Smart Array", &SA5_access},
123         {0x3355103C, "Smart Array", &SA5_access},
124         {0x3356103C, "Smart Array", &SA5_access},
125         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127
128 static int number_of_controllers;
129
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145         int cmd_type);
146
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150         unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152         int qdepth, int reason);
153
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160         struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162         struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165         int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170         u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172         unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175         void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181         unsigned long *priv = shost_priv(sdev->host);
182         return (struct ctlr_info *) *priv;
183 }
184
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187         unsigned long *priv = shost_priv(sh);
188         return (struct ctlr_info *) *priv;
189 }
190
191 static int check_for_unit_attention(struct ctlr_info *h,
192         struct CommandList *c)
193 {
194         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195                 return 0;
196
197         switch (c->err_info->SenseInfo[12]) {
198         case STATE_CHANGED:
199                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200                         "detected, command retried\n", h->ctlr);
201                 break;
202         case LUN_FAILED:
203                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204                         "detected, action required\n", h->ctlr);
205                 break;
206         case REPORT_LUNS_CHANGED:
207                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208                         "changed, action required\n", h->ctlr);
209         /*
210          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211          */
212                 break;
213         case POWER_OR_RESET:
214                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215                         "or device reset detected\n", h->ctlr);
216                 break;
217         case UNIT_ATTENTION_CLEARED:
218                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219                     "cleared by another initiator\n", h->ctlr);
220                 break;
221         default:
222                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223                         "unit attention detected\n", h->ctlr);
224                 break;
225         }
226         return 1;
227 }
228
229 static ssize_t host_store_rescan(struct device *dev,
230                                  struct device_attribute *attr,
231                                  const char *buf, size_t count)
232 {
233         struct ctlr_info *h;
234         struct Scsi_Host *shost = class_to_shost(dev);
235         h = shost_to_hba(shost);
236         hpsa_scan_start(h->scsi_host);
237         return count;
238 }
239
240 static ssize_t host_show_firmware_revision(struct device *dev,
241              struct device_attribute *attr, char *buf)
242 {
243         struct ctlr_info *h;
244         struct Scsi_Host *shost = class_to_shost(dev);
245         unsigned char *fwrev;
246
247         h = shost_to_hba(shost);
248         if (!h->hba_inquiry_data)
249                 return 0;
250         fwrev = &h->hba_inquiry_data[32];
251         return snprintf(buf, 20, "%c%c%c%c\n",
252                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256              struct device_attribute *attr, char *buf)
257 {
258         struct Scsi_Host *shost = class_to_shost(dev);
259         struct ctlr_info *h = shost_to_hba(shost);
260
261         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263
264 static ssize_t host_show_transport_mode(struct device *dev,
265         struct device_attribute *attr, char *buf)
266 {
267         struct ctlr_info *h;
268         struct Scsi_Host *shost = class_to_shost(dev);
269
270         h = shost_to_hba(shost);
271         return snprintf(buf, 20, "%s\n",
272                 h->transMethod & CFGTBL_Trans_Performant ?
273                         "performant" : "simple");
274 }
275
276 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
277 {
278         return (scsi3addr[3] & 0xC0) == 0x40;
279 }
280
281 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
282         "UNKNOWN"
283 };
284 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
285
286 static ssize_t raid_level_show(struct device *dev,
287              struct device_attribute *attr, char *buf)
288 {
289         ssize_t l = 0;
290         unsigned char rlevel;
291         struct ctlr_info *h;
292         struct scsi_device *sdev;
293         struct hpsa_scsi_dev_t *hdev;
294         unsigned long flags;
295
296         sdev = to_scsi_device(dev);
297         h = sdev_to_hba(sdev);
298         spin_lock_irqsave(&h->lock, flags);
299         hdev = sdev->hostdata;
300         if (!hdev) {
301                 spin_unlock_irqrestore(&h->lock, flags);
302                 return -ENODEV;
303         }
304
305         /* Is this even a logical drive? */
306         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
307                 spin_unlock_irqrestore(&h->lock, flags);
308                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
309                 return l;
310         }
311
312         rlevel = hdev->raid_level;
313         spin_unlock_irqrestore(&h->lock, flags);
314         if (rlevel > RAID_UNKNOWN)
315                 rlevel = RAID_UNKNOWN;
316         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
317         return l;
318 }
319
320 static ssize_t lunid_show(struct device *dev,
321              struct device_attribute *attr, char *buf)
322 {
323         struct ctlr_info *h;
324         struct scsi_device *sdev;
325         struct hpsa_scsi_dev_t *hdev;
326         unsigned long flags;
327         unsigned char lunid[8];
328
329         sdev = to_scsi_device(dev);
330         h = sdev_to_hba(sdev);
331         spin_lock_irqsave(&h->lock, flags);
332         hdev = sdev->hostdata;
333         if (!hdev) {
334                 spin_unlock_irqrestore(&h->lock, flags);
335                 return -ENODEV;
336         }
337         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
338         spin_unlock_irqrestore(&h->lock, flags);
339         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
340                 lunid[0], lunid[1], lunid[2], lunid[3],
341                 lunid[4], lunid[5], lunid[6], lunid[7]);
342 }
343
344 static ssize_t unique_id_show(struct device *dev,
345              struct device_attribute *attr, char *buf)
346 {
347         struct ctlr_info *h;
348         struct scsi_device *sdev;
349         struct hpsa_scsi_dev_t *hdev;
350         unsigned long flags;
351         unsigned char sn[16];
352
353         sdev = to_scsi_device(dev);
354         h = sdev_to_hba(sdev);
355         spin_lock_irqsave(&h->lock, flags);
356         hdev = sdev->hostdata;
357         if (!hdev) {
358                 spin_unlock_irqrestore(&h->lock, flags);
359                 return -ENODEV;
360         }
361         memcpy(sn, hdev->device_id, sizeof(sn));
362         spin_unlock_irqrestore(&h->lock, flags);
363         return snprintf(buf, 16 * 2 + 2,
364                         "%02X%02X%02X%02X%02X%02X%02X%02X"
365                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
366                         sn[0], sn[1], sn[2], sn[3],
367                         sn[4], sn[5], sn[6], sn[7],
368                         sn[8], sn[9], sn[10], sn[11],
369                         sn[12], sn[13], sn[14], sn[15]);
370 }
371
372 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
373 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
374 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
375 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
376 static DEVICE_ATTR(firmware_revision, S_IRUGO,
377         host_show_firmware_revision, NULL);
378 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
379         host_show_commands_outstanding, NULL);
380 static DEVICE_ATTR(transport_mode, S_IRUGO,
381         host_show_transport_mode, NULL);
382
383 static struct device_attribute *hpsa_sdev_attrs[] = {
384         &dev_attr_raid_level,
385         &dev_attr_lunid,
386         &dev_attr_unique_id,
387         NULL,
388 };
389
390 static struct device_attribute *hpsa_shost_attrs[] = {
391         &dev_attr_rescan,
392         &dev_attr_firmware_revision,
393         &dev_attr_commands_outstanding,
394         &dev_attr_transport_mode,
395         NULL,
396 };
397
398 static struct scsi_host_template hpsa_driver_template = {
399         .module                 = THIS_MODULE,
400         .name                   = "hpsa",
401         .proc_name              = "hpsa",
402         .queuecommand           = hpsa_scsi_queue_command,
403         .scan_start             = hpsa_scan_start,
404         .scan_finished          = hpsa_scan_finished,
405         .change_queue_depth     = hpsa_change_queue_depth,
406         .this_id                = -1,
407         .use_clustering         = ENABLE_CLUSTERING,
408         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
409         .ioctl                  = hpsa_ioctl,
410         .slave_alloc            = hpsa_slave_alloc,
411         .slave_destroy          = hpsa_slave_destroy,
412 #ifdef CONFIG_COMPAT
413         .compat_ioctl           = hpsa_compat_ioctl,
414 #endif
415         .sdev_attrs = hpsa_sdev_attrs,
416         .shost_attrs = hpsa_shost_attrs,
417 };
418
419
420 /* Enqueuing and dequeuing functions for cmdlists. */
421 static inline void addQ(struct list_head *list, struct CommandList *c)
422 {
423         list_add_tail(&c->list, list);
424 }
425
426 static inline u32 next_command(struct ctlr_info *h)
427 {
428         u32 a;
429
430         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
431                 return h->access.command_completed(h);
432
433         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
434                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
435                 (h->reply_pool_head)++;
436                 h->commands_outstanding--;
437         } else {
438                 a = FIFO_EMPTY;
439         }
440         /* Check for wraparound */
441         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
442                 h->reply_pool_head = h->reply_pool;
443                 h->reply_pool_wraparound ^= 1;
444         }
445         return a;
446 }
447
448 /* set_performant_mode: Modify the tag for cciss performant
449  * set bit 0 for pull model, bits 3-1 for block fetch
450  * register number
451  */
452 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
453 {
454         if (likely(h->transMethod & CFGTBL_Trans_Performant))
455                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
456 }
457
458 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
459         struct CommandList *c)
460 {
461         unsigned long flags;
462
463         set_performant_mode(h, c);
464         spin_lock_irqsave(&h->lock, flags);
465         addQ(&h->reqQ, c);
466         h->Qdepth++;
467         start_io(h);
468         spin_unlock_irqrestore(&h->lock, flags);
469 }
470
471 static inline void removeQ(struct CommandList *c)
472 {
473         if (WARN_ON(list_empty(&c->list)))
474                 return;
475         list_del_init(&c->list);
476 }
477
478 static inline int is_hba_lunid(unsigned char scsi3addr[])
479 {
480         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
481 }
482
483 static inline int is_scsi_rev_5(struct ctlr_info *h)
484 {
485         if (!h->hba_inquiry_data)
486                 return 0;
487         if ((h->hba_inquiry_data[2] & 0x07) == 5)
488                 return 1;
489         return 0;
490 }
491
492 static int hpsa_find_target_lun(struct ctlr_info *h,
493         unsigned char scsi3addr[], int bus, int *target, int *lun)
494 {
495         /* finds an unused bus, target, lun for a new physical device
496          * assumes h->devlock is held
497          */
498         int i, found = 0;
499         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
500
501         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
502
503         for (i = 0; i < h->ndevices; i++) {
504                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
505                         set_bit(h->dev[i]->target, lun_taken);
506         }
507
508         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
509                 if (!test_bit(i, lun_taken)) {
510                         /* *bus = 1; */
511                         *target = i;
512                         *lun = 0;
513                         found = 1;
514                         break;
515                 }
516         }
517         return !found;
518 }
519
520 /* Add an entry into h->dev[] array. */
521 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
522                 struct hpsa_scsi_dev_t *device,
523                 struct hpsa_scsi_dev_t *added[], int *nadded)
524 {
525         /* assumes h->devlock is held */
526         int n = h->ndevices;
527         int i;
528         unsigned char addr1[8], addr2[8];
529         struct hpsa_scsi_dev_t *sd;
530
531         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
532                 dev_err(&h->pdev->dev, "too many devices, some will be "
533                         "inaccessible.\n");
534                 return -1;
535         }
536
537         /* physical devices do not have lun or target assigned until now. */
538         if (device->lun != -1)
539                 /* Logical device, lun is already assigned. */
540                 goto lun_assigned;
541
542         /* If this device a non-zero lun of a multi-lun device
543          * byte 4 of the 8-byte LUN addr will contain the logical
544          * unit no, zero otherise.
545          */
546         if (device->scsi3addr[4] == 0) {
547                 /* This is not a non-zero lun of a multi-lun device */
548                 if (hpsa_find_target_lun(h, device->scsi3addr,
549                         device->bus, &device->target, &device->lun) != 0)
550                         return -1;
551                 goto lun_assigned;
552         }
553
554         /* This is a non-zero lun of a multi-lun device.
555          * Search through our list and find the device which
556          * has the same 8 byte LUN address, excepting byte 4.
557          * Assign the same bus and target for this new LUN.
558          * Use the logical unit number from the firmware.
559          */
560         memcpy(addr1, device->scsi3addr, 8);
561         addr1[4] = 0;
562         for (i = 0; i < n; i++) {
563                 sd = h->dev[i];
564                 memcpy(addr2, sd->scsi3addr, 8);
565                 addr2[4] = 0;
566                 /* differ only in byte 4? */
567                 if (memcmp(addr1, addr2, 8) == 0) {
568                         device->bus = sd->bus;
569                         device->target = sd->target;
570                         device->lun = device->scsi3addr[4];
571                         break;
572                 }
573         }
574         if (device->lun == -1) {
575                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
576                         " suspect firmware bug or unsupported hardware "
577                         "configuration.\n");
578                         return -1;
579         }
580
581 lun_assigned:
582
583         h->dev[n] = device;
584         h->ndevices++;
585         added[*nadded] = device;
586         (*nadded)++;
587
588         /* initially, (before registering with scsi layer) we don't
589          * know our hostno and we don't want to print anything first
590          * time anyway (the scsi layer's inquiries will show that info)
591          */
592         /* if (hostno != -1) */
593                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
594                         scsi_device_type(device->devtype), hostno,
595                         device->bus, device->target, device->lun);
596         return 0;
597 }
598
599 /* Replace an entry from h->dev[] array. */
600 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
601         int entry, struct hpsa_scsi_dev_t *new_entry,
602         struct hpsa_scsi_dev_t *added[], int *nadded,
603         struct hpsa_scsi_dev_t *removed[], int *nremoved)
604 {
605         /* assumes h->devlock is held */
606         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
607         removed[*nremoved] = h->dev[entry];
608         (*nremoved)++;
609         h->dev[entry] = new_entry;
610         added[*nadded] = new_entry;
611         (*nadded)++;
612         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
613                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
614                         new_entry->target, new_entry->lun);
615 }
616
617 /* Remove an entry from h->dev[] array. */
618 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
619         struct hpsa_scsi_dev_t *removed[], int *nremoved)
620 {
621         /* assumes h->devlock is held */
622         int i;
623         struct hpsa_scsi_dev_t *sd;
624
625         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
626
627         sd = h->dev[entry];
628         removed[*nremoved] = h->dev[entry];
629         (*nremoved)++;
630
631         for (i = entry; i < h->ndevices-1; i++)
632                 h->dev[i] = h->dev[i+1];
633         h->ndevices--;
634         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
635                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
636                 sd->lun);
637 }
638
639 #define SCSI3ADDR_EQ(a, b) ( \
640         (a)[7] == (b)[7] && \
641         (a)[6] == (b)[6] && \
642         (a)[5] == (b)[5] && \
643         (a)[4] == (b)[4] && \
644         (a)[3] == (b)[3] && \
645         (a)[2] == (b)[2] && \
646         (a)[1] == (b)[1] && \
647         (a)[0] == (b)[0])
648
649 static void fixup_botched_add(struct ctlr_info *h,
650         struct hpsa_scsi_dev_t *added)
651 {
652         /* called when scsi_add_device fails in order to re-adjust
653          * h->dev[] to match the mid layer's view.
654          */
655         unsigned long flags;
656         int i, j;
657
658         spin_lock_irqsave(&h->lock, flags);
659         for (i = 0; i < h->ndevices; i++) {
660                 if (h->dev[i] == added) {
661                         for (j = i; j < h->ndevices-1; j++)
662                                 h->dev[j] = h->dev[j+1];
663                         h->ndevices--;
664                         break;
665                 }
666         }
667         spin_unlock_irqrestore(&h->lock, flags);
668         kfree(added);
669 }
670
671 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
672         struct hpsa_scsi_dev_t *dev2)
673 {
674         /* we compare everything except lun and target as these
675          * are not yet assigned.  Compare parts likely
676          * to differ first
677          */
678         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
679                 sizeof(dev1->scsi3addr)) != 0)
680                 return 0;
681         if (memcmp(dev1->device_id, dev2->device_id,
682                 sizeof(dev1->device_id)) != 0)
683                 return 0;
684         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
685                 return 0;
686         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
687                 return 0;
688         if (dev1->devtype != dev2->devtype)
689                 return 0;
690         if (dev1->bus != dev2->bus)
691                 return 0;
692         return 1;
693 }
694
695 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
696  * and return needle location in *index.  If scsi3addr matches, but not
697  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
698  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
699  */
700 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
701         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
702         int *index)
703 {
704         int i;
705 #define DEVICE_NOT_FOUND 0
706 #define DEVICE_CHANGED 1
707 #define DEVICE_SAME 2
708         for (i = 0; i < haystack_size; i++) {
709                 if (haystack[i] == NULL) /* previously removed. */
710                         continue;
711                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
712                         *index = i;
713                         if (device_is_the_same(needle, haystack[i]))
714                                 return DEVICE_SAME;
715                         else
716                                 return DEVICE_CHANGED;
717                 }
718         }
719         *index = -1;
720         return DEVICE_NOT_FOUND;
721 }
722
723 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
724         struct hpsa_scsi_dev_t *sd[], int nsds)
725 {
726         /* sd contains scsi3 addresses and devtypes, and inquiry
727          * data.  This function takes what's in sd to be the current
728          * reality and updates h->dev[] to reflect that reality.
729          */
730         int i, entry, device_change, changes = 0;
731         struct hpsa_scsi_dev_t *csd;
732         unsigned long flags;
733         struct hpsa_scsi_dev_t **added, **removed;
734         int nadded, nremoved;
735         struct Scsi_Host *sh = NULL;
736
737         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
738                 GFP_KERNEL);
739         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
740                 GFP_KERNEL);
741
742         if (!added || !removed) {
743                 dev_warn(&h->pdev->dev, "out of memory in "
744                         "adjust_hpsa_scsi_table\n");
745                 goto free_and_out;
746         }
747
748         spin_lock_irqsave(&h->devlock, flags);
749
750         /* find any devices in h->dev[] that are not in
751          * sd[] and remove them from h->dev[], and for any
752          * devices which have changed, remove the old device
753          * info and add the new device info.
754          */
755         i = 0;
756         nremoved = 0;
757         nadded = 0;
758         while (i < h->ndevices) {
759                 csd = h->dev[i];
760                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
761                 if (device_change == DEVICE_NOT_FOUND) {
762                         changes++;
763                         hpsa_scsi_remove_entry(h, hostno, i,
764                                 removed, &nremoved);
765                         continue; /* remove ^^^, hence i not incremented */
766                 } else if (device_change == DEVICE_CHANGED) {
767                         changes++;
768                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
769                                 added, &nadded, removed, &nremoved);
770                         /* Set it to NULL to prevent it from being freed
771                          * at the bottom of hpsa_update_scsi_devices()
772                          */
773                         sd[entry] = NULL;
774                 }
775                 i++;
776         }
777
778         /* Now, make sure every device listed in sd[] is also
779          * listed in h->dev[], adding them if they aren't found
780          */
781
782         for (i = 0; i < nsds; i++) {
783                 if (!sd[i]) /* if already added above. */
784                         continue;
785                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
786                                         h->ndevices, &entry);
787                 if (device_change == DEVICE_NOT_FOUND) {
788                         changes++;
789                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
790                                 added, &nadded) != 0)
791                                 break;
792                         sd[i] = NULL; /* prevent from being freed later. */
793                 } else if (device_change == DEVICE_CHANGED) {
794                         /* should never happen... */
795                         changes++;
796                         dev_warn(&h->pdev->dev,
797                                 "device unexpectedly changed.\n");
798                         /* but if it does happen, we just ignore that device */
799                 }
800         }
801         spin_unlock_irqrestore(&h->devlock, flags);
802
803         /* Don't notify scsi mid layer of any changes the first time through
804          * (or if there are no changes) scsi_scan_host will do it later the
805          * first time through.
806          */
807         if (hostno == -1 || !changes)
808                 goto free_and_out;
809
810         sh = h->scsi_host;
811         /* Notify scsi mid layer of any removed devices */
812         for (i = 0; i < nremoved; i++) {
813                 struct scsi_device *sdev =
814                         scsi_device_lookup(sh, removed[i]->bus,
815                                 removed[i]->target, removed[i]->lun);
816                 if (sdev != NULL) {
817                         scsi_remove_device(sdev);
818                         scsi_device_put(sdev);
819                 } else {
820                         /* We don't expect to get here.
821                          * future cmds to this device will get selection
822                          * timeout as if the device was gone.
823                          */
824                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
825                                 " for removal.", hostno, removed[i]->bus,
826                                 removed[i]->target, removed[i]->lun);
827                 }
828                 kfree(removed[i]);
829                 removed[i] = NULL;
830         }
831
832         /* Notify scsi mid layer of any added devices */
833         for (i = 0; i < nadded; i++) {
834                 if (scsi_add_device(sh, added[i]->bus,
835                         added[i]->target, added[i]->lun) == 0)
836                         continue;
837                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
838                         "device not added.\n", hostno, added[i]->bus,
839                         added[i]->target, added[i]->lun);
840                 /* now we have to remove it from h->dev,
841                  * since it didn't get added to scsi mid layer
842                  */
843                 fixup_botched_add(h, added[i]);
844         }
845
846 free_and_out:
847         kfree(added);
848         kfree(removed);
849 }
850
851 /*
852  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
853  * Assume's h->devlock is held.
854  */
855 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
856         int bus, int target, int lun)
857 {
858         int i;
859         struct hpsa_scsi_dev_t *sd;
860
861         for (i = 0; i < h->ndevices; i++) {
862                 sd = h->dev[i];
863                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
864                         return sd;
865         }
866         return NULL;
867 }
868
869 /* link sdev->hostdata to our per-device structure. */
870 static int hpsa_slave_alloc(struct scsi_device *sdev)
871 {
872         struct hpsa_scsi_dev_t *sd;
873         unsigned long flags;
874         struct ctlr_info *h;
875
876         h = sdev_to_hba(sdev);
877         spin_lock_irqsave(&h->devlock, flags);
878         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
879                 sdev_id(sdev), sdev->lun);
880         if (sd != NULL)
881                 sdev->hostdata = sd;
882         spin_unlock_irqrestore(&h->devlock, flags);
883         return 0;
884 }
885
886 static void hpsa_slave_destroy(struct scsi_device *sdev)
887 {
888         /* nothing to do. */
889 }
890
891 static void hpsa_scsi_setup(struct ctlr_info *h)
892 {
893         h->ndevices = 0;
894         h->scsi_host = NULL;
895         spin_lock_init(&h->devlock);
896 }
897
898 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
899 {
900         int i;
901
902         if (!h->cmd_sg_list)
903                 return;
904         for (i = 0; i < h->nr_cmds; i++) {
905                 kfree(h->cmd_sg_list[i]);
906                 h->cmd_sg_list[i] = NULL;
907         }
908         kfree(h->cmd_sg_list);
909         h->cmd_sg_list = NULL;
910 }
911
912 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
913 {
914         int i;
915
916         if (h->chainsize <= 0)
917                 return 0;
918
919         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
920                                 GFP_KERNEL);
921         if (!h->cmd_sg_list)
922                 return -ENOMEM;
923         for (i = 0; i < h->nr_cmds; i++) {
924                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
925                                                 h->chainsize, GFP_KERNEL);
926                 if (!h->cmd_sg_list[i])
927                         goto clean;
928         }
929         return 0;
930
931 clean:
932         hpsa_free_sg_chain_blocks(h);
933         return -ENOMEM;
934 }
935
936 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
937         struct CommandList *c)
938 {
939         struct SGDescriptor *chain_sg, *chain_block;
940         u64 temp64;
941
942         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
943         chain_block = h->cmd_sg_list[c->cmdindex];
944         chain_sg->Ext = HPSA_SG_CHAIN;
945         chain_sg->Len = sizeof(*chain_sg) *
946                 (c->Header.SGTotal - h->max_cmd_sg_entries);
947         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
948                                 PCI_DMA_TODEVICE);
949         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
950         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
951 }
952
953 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
954         struct CommandList *c)
955 {
956         struct SGDescriptor *chain_sg;
957         union u64bit temp64;
958
959         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
960                 return;
961
962         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
963         temp64.val32.lower = chain_sg->Addr.lower;
964         temp64.val32.upper = chain_sg->Addr.upper;
965         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
966 }
967
968 static void complete_scsi_command(struct CommandList *cp,
969         int timeout, u32 tag)
970 {
971         struct scsi_cmnd *cmd;
972         struct ctlr_info *h;
973         struct ErrorInfo *ei;
974
975         unsigned char sense_key;
976         unsigned char asc;      /* additional sense code */
977         unsigned char ascq;     /* additional sense code qualifier */
978
979         ei = cp->err_info;
980         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
981         h = cp->h;
982
983         scsi_dma_unmap(cmd); /* undo the DMA mappings */
984         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
985                 hpsa_unmap_sg_chain_block(h, cp);
986
987         cmd->result = (DID_OK << 16);           /* host byte */
988         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
989         cmd->result |= ei->ScsiStatus;
990
991         /* copy the sense data whether we need to or not. */
992         memcpy(cmd->sense_buffer, ei->SenseInfo,
993                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
994                         SCSI_SENSE_BUFFERSIZE :
995                         ei->SenseLen);
996         scsi_set_resid(cmd, ei->ResidualCnt);
997
998         if (ei->CommandStatus == 0) {
999                 cmd->scsi_done(cmd);
1000                 cmd_free(h, cp);
1001                 return;
1002         }
1003
1004         /* an error has occurred */
1005         switch (ei->CommandStatus) {
1006
1007         case CMD_TARGET_STATUS:
1008                 if (ei->ScsiStatus) {
1009                         /* Get sense key */
1010                         sense_key = 0xf & ei->SenseInfo[2];
1011                         /* Get additional sense code */
1012                         asc = ei->SenseInfo[12];
1013                         /* Get addition sense code qualifier */
1014                         ascq = ei->SenseInfo[13];
1015                 }
1016
1017                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1018                         if (check_for_unit_attention(h, cp)) {
1019                                 cmd->result = DID_SOFT_ERROR << 16;
1020                                 break;
1021                         }
1022                         if (sense_key == ILLEGAL_REQUEST) {
1023                                 /*
1024                                  * SCSI REPORT_LUNS is commonly unsupported on
1025                                  * Smart Array.  Suppress noisy complaint.
1026                                  */
1027                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1028                                         break;
1029
1030                                 /* If ASC/ASCQ indicate Logical Unit
1031                                  * Not Supported condition,
1032                                  */
1033                                 if ((asc == 0x25) && (ascq == 0x0)) {
1034                                         dev_warn(&h->pdev->dev, "cp %p "
1035                                                 "has check condition\n", cp);
1036                                         break;
1037                                 }
1038                         }
1039
1040                         if (sense_key == NOT_READY) {
1041                                 /* If Sense is Not Ready, Logical Unit
1042                                  * Not ready, Manual Intervention
1043                                  * required
1044                                  */
1045                                 if ((asc == 0x04) && (ascq == 0x03)) {
1046                                         dev_warn(&h->pdev->dev, "cp %p "
1047                                                 "has check condition: unit "
1048                                                 "not ready, manual "
1049                                                 "intervention required\n", cp);
1050                                         break;
1051                                 }
1052                         }
1053                         if (sense_key == ABORTED_COMMAND) {
1054                                 /* Aborted command is retryable */
1055                                 dev_warn(&h->pdev->dev, "cp %p "
1056                                         "has check condition: aborted command: "
1057                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1058                                         cp, asc, ascq);
1059                                 cmd->result = DID_SOFT_ERROR << 16;
1060                                 break;
1061                         }
1062                         /* Must be some other type of check condition */
1063                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1064                                         "unknown type: "
1065                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1066                                         "Returning result: 0x%x, "
1067                                         "cmd=[%02x %02x %02x %02x %02x "
1068                                         "%02x %02x %02x %02x %02x %02x "
1069                                         "%02x %02x %02x %02x %02x]\n",
1070                                         cp, sense_key, asc, ascq,
1071                                         cmd->result,
1072                                         cmd->cmnd[0], cmd->cmnd[1],
1073                                         cmd->cmnd[2], cmd->cmnd[3],
1074                                         cmd->cmnd[4], cmd->cmnd[5],
1075                                         cmd->cmnd[6], cmd->cmnd[7],
1076                                         cmd->cmnd[8], cmd->cmnd[9],
1077                                         cmd->cmnd[10], cmd->cmnd[11],
1078                                         cmd->cmnd[12], cmd->cmnd[13],
1079                                         cmd->cmnd[14], cmd->cmnd[15]);
1080                         break;
1081                 }
1082
1083
1084                 /* Problem was not a check condition
1085                  * Pass it up to the upper layers...
1086                  */
1087                 if (ei->ScsiStatus) {
1088                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1089                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1090                                 "Returning result: 0x%x\n",
1091                                 cp, ei->ScsiStatus,
1092                                 sense_key, asc, ascq,
1093                                 cmd->result);
1094                 } else {  /* scsi status is zero??? How??? */
1095                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1096                                 "Returning no connection.\n", cp),
1097
1098                         /* Ordinarily, this case should never happen,
1099                          * but there is a bug in some released firmware
1100                          * revisions that allows it to happen if, for
1101                          * example, a 4100 backplane loses power and
1102                          * the tape drive is in it.  We assume that
1103                          * it's a fatal error of some kind because we
1104                          * can't show that it wasn't. We will make it
1105                          * look like selection timeout since that is
1106                          * the most common reason for this to occur,
1107                          * and it's severe enough.
1108                          */
1109
1110                         cmd->result = DID_NO_CONNECT << 16;
1111                 }
1112                 break;
1113
1114         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1115                 break;
1116         case CMD_DATA_OVERRUN:
1117                 dev_warn(&h->pdev->dev, "cp %p has"
1118                         " completed with data overrun "
1119                         "reported\n", cp);
1120                 break;
1121         case CMD_INVALID: {
1122                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1123                 print_cmd(cp); */
1124                 /* We get CMD_INVALID if you address a non-existent device
1125                  * instead of a selection timeout (no response).  You will
1126                  * see this if you yank out a drive, then try to access it.
1127                  * This is kind of a shame because it means that any other
1128                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1129                  * missing target. */
1130                 cmd->result = DID_NO_CONNECT << 16;
1131         }
1132                 break;
1133         case CMD_PROTOCOL_ERR:
1134                 dev_warn(&h->pdev->dev, "cp %p has "
1135                         "protocol error \n", cp);
1136                 break;
1137         case CMD_HARDWARE_ERR:
1138                 cmd->result = DID_ERROR << 16;
1139                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1140                 break;
1141         case CMD_CONNECTION_LOST:
1142                 cmd->result = DID_ERROR << 16;
1143                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1144                 break;
1145         case CMD_ABORTED:
1146                 cmd->result = DID_ABORT << 16;
1147                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1148                                 cp, ei->ScsiStatus);
1149                 break;
1150         case CMD_ABORT_FAILED:
1151                 cmd->result = DID_ERROR << 16;
1152                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1153                 break;
1154         case CMD_UNSOLICITED_ABORT:
1155                 cmd->result = DID_RESET << 16;
1156                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1157                         "abort\n", cp);
1158                 break;
1159         case CMD_TIMEOUT:
1160                 cmd->result = DID_TIME_OUT << 16;
1161                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1162                 break;
1163         case CMD_UNABORTABLE:
1164                 cmd->result = DID_ERROR << 16;
1165                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1166                 break;
1167         default:
1168                 cmd->result = DID_ERROR << 16;
1169                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1170                                 cp, ei->CommandStatus);
1171         }
1172         cmd->scsi_done(cmd);
1173         cmd_free(h, cp);
1174 }
1175
1176 static int hpsa_scsi_detect(struct ctlr_info *h)
1177 {
1178         struct Scsi_Host *sh;
1179         int error;
1180
1181         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1182         if (sh == NULL)
1183                 goto fail;
1184
1185         sh->io_port = 0;
1186         sh->n_io_port = 0;
1187         sh->this_id = -1;
1188         sh->max_channel = 3;
1189         sh->max_cmd_len = MAX_COMMAND_SIZE;
1190         sh->max_lun = HPSA_MAX_LUN;
1191         sh->max_id = HPSA_MAX_LUN;
1192         sh->can_queue = h->nr_cmds;
1193         sh->cmd_per_lun = h->nr_cmds;
1194         sh->sg_tablesize = h->maxsgentries;
1195         h->scsi_host = sh;
1196         sh->hostdata[0] = (unsigned long) h;
1197         sh->irq = h->intr[h->intr_mode];
1198         sh->unique_id = sh->irq;
1199         error = scsi_add_host(sh, &h->pdev->dev);
1200         if (error)
1201                 goto fail_host_put;
1202         scsi_scan_host(sh);
1203         return 0;
1204
1205  fail_host_put:
1206         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1207                 " failed for controller %d\n", h->ctlr);
1208         scsi_host_put(sh);
1209         return error;
1210  fail:
1211         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1212                 " failed for controller %d\n", h->ctlr);
1213         return -ENOMEM;
1214 }
1215
1216 static void hpsa_pci_unmap(struct pci_dev *pdev,
1217         struct CommandList *c, int sg_used, int data_direction)
1218 {
1219         int i;
1220         union u64bit addr64;
1221
1222         for (i = 0; i < sg_used; i++) {
1223                 addr64.val32.lower = c->SG[i].Addr.lower;
1224                 addr64.val32.upper = c->SG[i].Addr.upper;
1225                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1226                         data_direction);
1227         }
1228 }
1229
1230 static void hpsa_map_one(struct pci_dev *pdev,
1231                 struct CommandList *cp,
1232                 unsigned char *buf,
1233                 size_t buflen,
1234                 int data_direction)
1235 {
1236         u64 addr64;
1237
1238         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1239                 cp->Header.SGList = 0;
1240                 cp->Header.SGTotal = 0;
1241                 return;
1242         }
1243
1244         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1245         cp->SG[0].Addr.lower =
1246           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1247         cp->SG[0].Addr.upper =
1248           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1249         cp->SG[0].Len = buflen;
1250         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1251         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1252 }
1253
1254 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1255         struct CommandList *c)
1256 {
1257         DECLARE_COMPLETION_ONSTACK(wait);
1258
1259         c->waiting = &wait;
1260         enqueue_cmd_and_start_io(h, c);
1261         wait_for_completion(&wait);
1262 }
1263
1264 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1265         struct CommandList *c, int data_direction)
1266 {
1267         int retry_count = 0;
1268
1269         do {
1270                 memset(c->err_info, 0, sizeof(c->err_info));
1271                 hpsa_scsi_do_simple_cmd_core(h, c);
1272                 retry_count++;
1273         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1274         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1275 }
1276
1277 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1278 {
1279         struct ErrorInfo *ei;
1280         struct device *d = &cp->h->pdev->dev;
1281
1282         ei = cp->err_info;
1283         switch (ei->CommandStatus) {
1284         case CMD_TARGET_STATUS:
1285                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1286                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1287                                 ei->ScsiStatus);
1288                 if (ei->ScsiStatus == 0)
1289                         dev_warn(d, "SCSI status is abnormally zero.  "
1290                         "(probably indicates selection timeout "
1291                         "reported incorrectly due to a known "
1292                         "firmware bug, circa July, 2001.)\n");
1293                 break;
1294         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1295                         dev_info(d, "UNDERRUN\n");
1296                 break;
1297         case CMD_DATA_OVERRUN:
1298                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1299                 break;
1300         case CMD_INVALID: {
1301                 /* controller unfortunately reports SCSI passthru's
1302                  * to non-existent targets as invalid commands.
1303                  */
1304                 dev_warn(d, "cp %p is reported invalid (probably means "
1305                         "target device no longer present)\n", cp);
1306                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1307                 print_cmd(cp);  */
1308                 }
1309                 break;
1310         case CMD_PROTOCOL_ERR:
1311                 dev_warn(d, "cp %p has protocol error \n", cp);
1312                 break;
1313         case CMD_HARDWARE_ERR:
1314                 /* cmd->result = DID_ERROR << 16; */
1315                 dev_warn(d, "cp %p had hardware error\n", cp);
1316                 break;
1317         case CMD_CONNECTION_LOST:
1318                 dev_warn(d, "cp %p had connection lost\n", cp);
1319                 break;
1320         case CMD_ABORTED:
1321                 dev_warn(d, "cp %p was aborted\n", cp);
1322                 break;
1323         case CMD_ABORT_FAILED:
1324                 dev_warn(d, "cp %p reports abort failed\n", cp);
1325                 break;
1326         case CMD_UNSOLICITED_ABORT:
1327                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1328                 break;
1329         case CMD_TIMEOUT:
1330                 dev_warn(d, "cp %p timed out\n", cp);
1331                 break;
1332         case CMD_UNABORTABLE:
1333                 dev_warn(d, "Command unabortable\n");
1334                 break;
1335         default:
1336                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1337                                 ei->CommandStatus);
1338         }
1339 }
1340
1341 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1342                         unsigned char page, unsigned char *buf,
1343                         unsigned char bufsize)
1344 {
1345         int rc = IO_OK;
1346         struct CommandList *c;
1347         struct ErrorInfo *ei;
1348
1349         c = cmd_special_alloc(h);
1350
1351         if (c == NULL) {                        /* trouble... */
1352                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1353                 return -ENOMEM;
1354         }
1355
1356         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1357         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1358         ei = c->err_info;
1359         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1360                 hpsa_scsi_interpret_error(c);
1361                 rc = -1;
1362         }
1363         cmd_special_free(h, c);
1364         return rc;
1365 }
1366
1367 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1368 {
1369         int rc = IO_OK;
1370         struct CommandList *c;
1371         struct ErrorInfo *ei;
1372
1373         c = cmd_special_alloc(h);
1374
1375         if (c == NULL) {                        /* trouble... */
1376                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1377                 return -ENOMEM;
1378         }
1379
1380         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1381         hpsa_scsi_do_simple_cmd_core(h, c);
1382         /* no unmap needed here because no data xfer. */
1383
1384         ei = c->err_info;
1385         if (ei->CommandStatus != 0) {
1386                 hpsa_scsi_interpret_error(c);
1387                 rc = -1;
1388         }
1389         cmd_special_free(h, c);
1390         return rc;
1391 }
1392
1393 static void hpsa_get_raid_level(struct ctlr_info *h,
1394         unsigned char *scsi3addr, unsigned char *raid_level)
1395 {
1396         int rc;
1397         unsigned char *buf;
1398
1399         *raid_level = RAID_UNKNOWN;
1400         buf = kzalloc(64, GFP_KERNEL);
1401         if (!buf)
1402                 return;
1403         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1404         if (rc == 0)
1405                 *raid_level = buf[8];
1406         if (*raid_level > RAID_UNKNOWN)
1407                 *raid_level = RAID_UNKNOWN;
1408         kfree(buf);
1409         return;
1410 }
1411
1412 /* Get the device id from inquiry page 0x83 */
1413 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1414         unsigned char *device_id, int buflen)
1415 {
1416         int rc;
1417         unsigned char *buf;
1418
1419         if (buflen > 16)
1420                 buflen = 16;
1421         buf = kzalloc(64, GFP_KERNEL);
1422         if (!buf)
1423                 return -1;
1424         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1425         if (rc == 0)
1426                 memcpy(device_id, &buf[8], buflen);
1427         kfree(buf);
1428         return rc != 0;
1429 }
1430
1431 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1432                 struct ReportLUNdata *buf, int bufsize,
1433                 int extended_response)
1434 {
1435         int rc = IO_OK;
1436         struct CommandList *c;
1437         unsigned char scsi3addr[8];
1438         struct ErrorInfo *ei;
1439
1440         c = cmd_special_alloc(h);
1441         if (c == NULL) {                        /* trouble... */
1442                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1443                 return -1;
1444         }
1445         /* address the controller */
1446         memset(scsi3addr, 0, sizeof(scsi3addr));
1447         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1448                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1449         if (extended_response)
1450                 c->Request.CDB[1] = extended_response;
1451         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1452         ei = c->err_info;
1453         if (ei->CommandStatus != 0 &&
1454             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1455                 hpsa_scsi_interpret_error(c);
1456                 rc = -1;
1457         }
1458         cmd_special_free(h, c);
1459         return rc;
1460 }
1461
1462 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1463                 struct ReportLUNdata *buf,
1464                 int bufsize, int extended_response)
1465 {
1466         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1467 }
1468
1469 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1470                 struct ReportLUNdata *buf, int bufsize)
1471 {
1472         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1473 }
1474
1475 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1476         int bus, int target, int lun)
1477 {
1478         device->bus = bus;
1479         device->target = target;
1480         device->lun = lun;
1481 }
1482
1483 static int hpsa_update_device_info(struct ctlr_info *h,
1484         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1485 {
1486 #define OBDR_TAPE_INQ_SIZE 49
1487         unsigned char *inq_buff;
1488
1489         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1490         if (!inq_buff)
1491                 goto bail_out;
1492
1493         /* Do an inquiry to the device to see what it is. */
1494         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1495                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1496                 /* Inquiry failed (msg printed already) */
1497                 dev_err(&h->pdev->dev,
1498                         "hpsa_update_device_info: inquiry failed\n");
1499                 goto bail_out;
1500         }
1501
1502         this_device->devtype = (inq_buff[0] & 0x1f);
1503         memcpy(this_device->scsi3addr, scsi3addr, 8);
1504         memcpy(this_device->vendor, &inq_buff[8],
1505                 sizeof(this_device->vendor));
1506         memcpy(this_device->model, &inq_buff[16],
1507                 sizeof(this_device->model));
1508         memset(this_device->device_id, 0,
1509                 sizeof(this_device->device_id));
1510         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1511                 sizeof(this_device->device_id));
1512
1513         if (this_device->devtype == TYPE_DISK &&
1514                 is_logical_dev_addr_mode(scsi3addr))
1515                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1516         else
1517                 this_device->raid_level = RAID_UNKNOWN;
1518
1519         kfree(inq_buff);
1520         return 0;
1521
1522 bail_out:
1523         kfree(inq_buff);
1524         return 1;
1525 }
1526
1527 static unsigned char *msa2xxx_model[] = {
1528         "MSA2012",
1529         "MSA2024",
1530         "MSA2312",
1531         "MSA2324",
1532         NULL,
1533 };
1534
1535 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1536 {
1537         int i;
1538
1539         for (i = 0; msa2xxx_model[i]; i++)
1540                 if (strncmp(device->model, msa2xxx_model[i],
1541                         strlen(msa2xxx_model[i])) == 0)
1542                         return 1;
1543         return 0;
1544 }
1545
1546 /* Helper function to assign bus, target, lun mapping of devices.
1547  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1548  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1549  * Logical drive target and lun are assigned at this time, but
1550  * physical device lun and target assignment are deferred (assigned
1551  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1552  */
1553 static void figure_bus_target_lun(struct ctlr_info *h,
1554         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1555         struct hpsa_scsi_dev_t *device)
1556 {
1557         u32 lunid;
1558
1559         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1560                 /* logical device */
1561                 if (unlikely(is_scsi_rev_5(h))) {
1562                         /* p1210m, logical drives lun assignments
1563                          * match SCSI REPORT LUNS data.
1564                          */
1565                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1566                         *bus = 0;
1567                         *target = 0;
1568                         *lun = (lunid & 0x3fff) + 1;
1569                 } else {
1570                         /* not p1210m... */
1571                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1572                         if (is_msa2xxx(h, device)) {
1573                                 /* msa2xxx way, put logicals on bus 1
1574                                  * and match target/lun numbers box
1575                                  * reports.
1576                                  */
1577                                 *bus = 1;
1578                                 *target = (lunid >> 16) & 0x3fff;
1579                                 *lun = lunid & 0x00ff;
1580                         } else {
1581                                 /* Traditional smart array way. */
1582                                 *bus = 0;
1583                                 *lun = 0;
1584                                 *target = lunid & 0x3fff;
1585                         }
1586                 }
1587         } else {
1588                 /* physical device */
1589                 if (is_hba_lunid(lunaddrbytes))
1590                         if (unlikely(is_scsi_rev_5(h))) {
1591                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1592                                 *target = 0;
1593                                 *lun = 0;
1594                                 return;
1595                         } else
1596                                 *bus = 3; /* traditional smartarray */
1597                 else
1598                         *bus = 2; /* physical disk */
1599                 *target = -1;
1600                 *lun = -1; /* we will fill these in later. */
1601         }
1602 }
1603
1604 /*
1605  * If there is no lun 0 on a target, linux won't find any devices.
1606  * For the MSA2xxx boxes, we have to manually detect the enclosure
1607  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1608  * it for some reason.  *tmpdevice is the target we're adding,
1609  * this_device is a pointer into the current element of currentsd[]
1610  * that we're building up in update_scsi_devices(), below.
1611  * lunzerobits is a bitmap that tracks which targets already have a
1612  * lun 0 assigned.
1613  * Returns 1 if an enclosure was added, 0 if not.
1614  */
1615 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1616         struct hpsa_scsi_dev_t *tmpdevice,
1617         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1618         int bus, int target, int lun, unsigned long lunzerobits[],
1619         int *nmsa2xxx_enclosures)
1620 {
1621         unsigned char scsi3addr[8];
1622
1623         if (test_bit(target, lunzerobits))
1624                 return 0; /* There is already a lun 0 on this target. */
1625
1626         if (!is_logical_dev_addr_mode(lunaddrbytes))
1627                 return 0; /* It's the logical targets that may lack lun 0. */
1628
1629         if (!is_msa2xxx(h, tmpdevice))
1630                 return 0; /* It's only the MSA2xxx that have this problem. */
1631
1632         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1633                 return 0;
1634
1635         memset(scsi3addr, 0, 8);
1636         scsi3addr[3] = target;
1637         if (is_hba_lunid(scsi3addr))
1638                 return 0; /* Don't add the RAID controller here. */
1639
1640         if (is_scsi_rev_5(h))
1641                 return 0; /* p1210m doesn't need to do this. */
1642
1643 #define MAX_MSA2XXX_ENCLOSURES 32
1644         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1645                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1646                         "enclosures exceeded.  Check your hardware "
1647                         "configuration.");
1648                 return 0;
1649         }
1650
1651         if (hpsa_update_device_info(h, scsi3addr, this_device))
1652                 return 0;
1653         (*nmsa2xxx_enclosures)++;
1654         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1655         set_bit(target, lunzerobits);
1656         return 1;
1657 }
1658
1659 /*
1660  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1661  * logdev.  The number of luns in physdev and logdev are returned in
1662  * *nphysicals and *nlogicals, respectively.
1663  * Returns 0 on success, -1 otherwise.
1664  */
1665 static int hpsa_gather_lun_info(struct ctlr_info *h,
1666         int reportlunsize,
1667         struct ReportLUNdata *physdev, u32 *nphysicals,
1668         struct ReportLUNdata *logdev, u32 *nlogicals)
1669 {
1670         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1671                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1672                 return -1;
1673         }
1674         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1675         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1676                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1677                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1678                         *nphysicals - HPSA_MAX_PHYS_LUN);
1679                 *nphysicals = HPSA_MAX_PHYS_LUN;
1680         }
1681         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1682                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1683                 return -1;
1684         }
1685         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1686         /* Reject Logicals in excess of our max capability. */
1687         if (*nlogicals > HPSA_MAX_LUN) {
1688                 dev_warn(&h->pdev->dev,
1689                         "maximum logical LUNs (%d) exceeded.  "
1690                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1691                         *nlogicals - HPSA_MAX_LUN);
1692                         *nlogicals = HPSA_MAX_LUN;
1693         }
1694         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1695                 dev_warn(&h->pdev->dev,
1696                         "maximum logical + physical LUNs (%d) exceeded. "
1697                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1698                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1699                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1700         }
1701         return 0;
1702 }
1703
1704 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1705         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1706         struct ReportLUNdata *logdev_list)
1707 {
1708         /* Helper function, figure out where the LUN ID info is coming from
1709          * given index i, lists of physical and logical devices, where in
1710          * the list the raid controller is supposed to appear (first or last)
1711          */
1712
1713         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1714         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1715
1716         if (i == raid_ctlr_position)
1717                 return RAID_CTLR_LUNID;
1718
1719         if (i < logicals_start)
1720                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1721
1722         if (i < last_device)
1723                 return &logdev_list->LUN[i - nphysicals -
1724                         (raid_ctlr_position == 0)][0];
1725         BUG();
1726         return NULL;
1727 }
1728
1729 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1730 {
1731         /* the idea here is we could get notified
1732          * that some devices have changed, so we do a report
1733          * physical luns and report logical luns cmd, and adjust
1734          * our list of devices accordingly.
1735          *
1736          * The scsi3addr's of devices won't change so long as the
1737          * adapter is not reset.  That means we can rescan and
1738          * tell which devices we already know about, vs. new
1739          * devices, vs.  disappearing devices.
1740          */
1741         struct ReportLUNdata *physdev_list = NULL;
1742         struct ReportLUNdata *logdev_list = NULL;
1743         unsigned char *inq_buff = NULL;
1744         u32 nphysicals = 0;
1745         u32 nlogicals = 0;
1746         u32 ndev_allocated = 0;
1747         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1748         int ncurrent = 0;
1749         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1750         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1751         int bus, target, lun;
1752         int raid_ctlr_position;
1753         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1754
1755         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1756                 GFP_KERNEL);
1757         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1758         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1759         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1760         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1761
1762         if (!currentsd || !physdev_list || !logdev_list ||
1763                 !inq_buff || !tmpdevice) {
1764                 dev_err(&h->pdev->dev, "out of memory\n");
1765                 goto out;
1766         }
1767         memset(lunzerobits, 0, sizeof(lunzerobits));
1768
1769         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1770                         logdev_list, &nlogicals))
1771                 goto out;
1772
1773         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1774          * but each of them 4 times through different paths.  The plus 1
1775          * is for the RAID controller.
1776          */
1777         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1778
1779         /* Allocate the per device structures */
1780         for (i = 0; i < ndevs_to_allocate; i++) {
1781                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1782                 if (!currentsd[i]) {
1783                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1784                                 __FILE__, __LINE__);
1785                         goto out;
1786                 }
1787                 ndev_allocated++;
1788         }
1789
1790         if (unlikely(is_scsi_rev_5(h)))
1791                 raid_ctlr_position = 0;
1792         else
1793                 raid_ctlr_position = nphysicals + nlogicals;
1794
1795         /* adjust our table of devices */
1796         nmsa2xxx_enclosures = 0;
1797         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1798                 u8 *lunaddrbytes;
1799
1800                 /* Figure out where the LUN ID info is coming from */
1801                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1802                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1803                 /* skip masked physical devices. */
1804                 if (lunaddrbytes[3] & 0xC0 &&
1805                         i < nphysicals + (raid_ctlr_position == 0))
1806                         continue;
1807
1808                 /* Get device type, vendor, model, device id */
1809                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1810                         continue; /* skip it if we can't talk to it. */
1811                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1812                         tmpdevice);
1813                 this_device = currentsd[ncurrent];
1814
1815                 /*
1816                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1817                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1818                  * is nonetheless an enclosure device there.  We have to
1819                  * present that otherwise linux won't find anything if
1820                  * there is no lun 0.
1821                  */
1822                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1823                                 lunaddrbytes, bus, target, lun, lunzerobits,
1824                                 &nmsa2xxx_enclosures)) {
1825                         ncurrent++;
1826                         this_device = currentsd[ncurrent];
1827                 }
1828
1829                 *this_device = *tmpdevice;
1830                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1831
1832                 switch (this_device->devtype) {
1833                 case TYPE_ROM: {
1834                         /* We don't *really* support actual CD-ROM devices,
1835                          * just "One Button Disaster Recovery" tape drive
1836                          * which temporarily pretends to be a CD-ROM drive.
1837                          * So we check that the device is really an OBDR tape
1838                          * device by checking for "$DR-10" in bytes 43-48 of
1839                          * the inquiry data.
1840                          */
1841                                 char obdr_sig[7];
1842 #define OBDR_TAPE_SIG "$DR-10"
1843                                 strncpy(obdr_sig, &inq_buff[43], 6);
1844                                 obdr_sig[6] = '\0';
1845                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1846                                         /* Not OBDR device, ignore it. */
1847                                         break;
1848                         }
1849                         ncurrent++;
1850                         break;
1851                 case TYPE_DISK:
1852                         if (i < nphysicals)
1853                                 break;
1854                         ncurrent++;
1855                         break;
1856                 case TYPE_TAPE:
1857                 case TYPE_MEDIUM_CHANGER:
1858                         ncurrent++;
1859                         break;
1860                 case TYPE_RAID:
1861                         /* Only present the Smartarray HBA as a RAID controller.
1862                          * If it's a RAID controller other than the HBA itself
1863                          * (an external RAID controller, MSA500 or similar)
1864                          * don't present it.
1865                          */
1866                         if (!is_hba_lunid(lunaddrbytes))
1867                                 break;
1868                         ncurrent++;
1869                         break;
1870                 default:
1871                         break;
1872                 }
1873                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1874                         break;
1875         }
1876         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1877 out:
1878         kfree(tmpdevice);
1879         for (i = 0; i < ndev_allocated; i++)
1880                 kfree(currentsd[i]);
1881         kfree(currentsd);
1882         kfree(inq_buff);
1883         kfree(physdev_list);
1884         kfree(logdev_list);
1885 }
1886
1887 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1888  * dma mapping  and fills in the scatter gather entries of the
1889  * hpsa command, cp.
1890  */
1891 static int hpsa_scatter_gather(struct ctlr_info *h,
1892                 struct CommandList *cp,
1893                 struct scsi_cmnd *cmd)
1894 {
1895         unsigned int len;
1896         struct scatterlist *sg;
1897         u64 addr64;
1898         int use_sg, i, sg_index, chained;
1899         struct SGDescriptor *curr_sg;
1900
1901         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1902
1903         use_sg = scsi_dma_map(cmd);
1904         if (use_sg < 0)
1905                 return use_sg;
1906
1907         if (!use_sg)
1908                 goto sglist_finished;
1909
1910         curr_sg = cp->SG;
1911         chained = 0;
1912         sg_index = 0;
1913         scsi_for_each_sg(cmd, sg, use_sg, i) {
1914                 if (i == h->max_cmd_sg_entries - 1 &&
1915                         use_sg > h->max_cmd_sg_entries) {
1916                         chained = 1;
1917                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1918                         sg_index = 0;
1919                 }
1920                 addr64 = (u64) sg_dma_address(sg);
1921                 len  = sg_dma_len(sg);
1922                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1923                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1924                 curr_sg->Len = len;
1925                 curr_sg->Ext = 0;  /* we are not chaining */
1926                 curr_sg++;
1927         }
1928
1929         if (use_sg + chained > h->maxSG)
1930                 h->maxSG = use_sg + chained;
1931
1932         if (chained) {
1933                 cp->Header.SGList = h->max_cmd_sg_entries;
1934                 cp->Header.SGTotal = (u16) (use_sg + 1);
1935                 hpsa_map_sg_chain_block(h, cp);
1936                 return 0;
1937         }
1938
1939 sglist_finished:
1940
1941         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1942         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1943         return 0;
1944 }
1945
1946
1947 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1948         void (*done)(struct scsi_cmnd *))
1949 {
1950         struct ctlr_info *h;
1951         struct hpsa_scsi_dev_t *dev;
1952         unsigned char scsi3addr[8];
1953         struct CommandList *c;
1954         unsigned long flags;
1955
1956         /* Get the ptr to our adapter structure out of cmd->host. */
1957         h = sdev_to_hba(cmd->device);
1958         dev = cmd->device->hostdata;
1959         if (!dev) {
1960                 cmd->result = DID_NO_CONNECT << 16;
1961                 done(cmd);
1962                 return 0;
1963         }
1964         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1965
1966         /* Need a lock as this is being allocated from the pool */
1967         spin_lock_irqsave(&h->lock, flags);
1968         c = cmd_alloc(h);
1969         spin_unlock_irqrestore(&h->lock, flags);
1970         if (c == NULL) {                        /* trouble... */
1971                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1972                 return SCSI_MLQUEUE_HOST_BUSY;
1973         }
1974
1975         /* Fill in the command list header */
1976
1977         cmd->scsi_done = done;    /* save this for use by completion code */
1978
1979         /* save c in case we have to abort it  */
1980         cmd->host_scribble = (unsigned char *) c;
1981
1982         c->cmd_type = CMD_SCSI;
1983         c->scsi_cmd = cmd;
1984         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1985         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1986         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1987         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1988
1989         /* Fill in the request block... */
1990
1991         c->Request.Timeout = 0;
1992         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1993         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1994         c->Request.CDBLen = cmd->cmd_len;
1995         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1996         c->Request.Type.Type = TYPE_CMD;
1997         c->Request.Type.Attribute = ATTR_SIMPLE;
1998         switch (cmd->sc_data_direction) {
1999         case DMA_TO_DEVICE:
2000                 c->Request.Type.Direction = XFER_WRITE;
2001                 break;
2002         case DMA_FROM_DEVICE:
2003                 c->Request.Type.Direction = XFER_READ;
2004                 break;
2005         case DMA_NONE:
2006                 c->Request.Type.Direction = XFER_NONE;
2007                 break;
2008         case DMA_BIDIRECTIONAL:
2009                 /* This can happen if a buggy application does a scsi passthru
2010                  * and sets both inlen and outlen to non-zero. ( see
2011                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2012                  */
2013
2014                 c->Request.Type.Direction = XFER_RSVD;
2015                 /* This is technically wrong, and hpsa controllers should
2016                  * reject it with CMD_INVALID, which is the most correct
2017                  * response, but non-fibre backends appear to let it
2018                  * slide by, and give the same results as if this field
2019                  * were set correctly.  Either way is acceptable for
2020                  * our purposes here.
2021                  */
2022
2023                 break;
2024
2025         default:
2026                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2027                         cmd->sc_data_direction);
2028                 BUG();
2029                 break;
2030         }
2031
2032         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2033                 cmd_free(h, c);
2034                 return SCSI_MLQUEUE_HOST_BUSY;
2035         }
2036         enqueue_cmd_and_start_io(h, c);
2037         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2038         return 0;
2039 }
2040
2041 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2042
2043 static void hpsa_scan_start(struct Scsi_Host *sh)
2044 {
2045         struct ctlr_info *h = shost_to_hba(sh);
2046         unsigned long flags;
2047
2048         /* wait until any scan already in progress is finished. */
2049         while (1) {
2050                 spin_lock_irqsave(&h->scan_lock, flags);
2051                 if (h->scan_finished)
2052                         break;
2053                 spin_unlock_irqrestore(&h->scan_lock, flags);
2054                 wait_event(h->scan_wait_queue, h->scan_finished);
2055                 /* Note: We don't need to worry about a race between this
2056                  * thread and driver unload because the midlayer will
2057                  * have incremented the reference count, so unload won't
2058                  * happen if we're in here.
2059                  */
2060         }
2061         h->scan_finished = 0; /* mark scan as in progress */
2062         spin_unlock_irqrestore(&h->scan_lock, flags);
2063
2064         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2065
2066         spin_lock_irqsave(&h->scan_lock, flags);
2067         h->scan_finished = 1; /* mark scan as finished. */
2068         wake_up_all(&h->scan_wait_queue);
2069         spin_unlock_irqrestore(&h->scan_lock, flags);
2070 }
2071
2072 static int hpsa_scan_finished(struct Scsi_Host *sh,
2073         unsigned long elapsed_time)
2074 {
2075         struct ctlr_info *h = shost_to_hba(sh);
2076         unsigned long flags;
2077         int finished;
2078
2079         spin_lock_irqsave(&h->scan_lock, flags);
2080         finished = h->scan_finished;
2081         spin_unlock_irqrestore(&h->scan_lock, flags);
2082         return finished;
2083 }
2084
2085 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2086         int qdepth, int reason)
2087 {
2088         struct ctlr_info *h = sdev_to_hba(sdev);
2089
2090         if (reason != SCSI_QDEPTH_DEFAULT)
2091                 return -ENOTSUPP;
2092
2093         if (qdepth < 1)
2094                 qdepth = 1;
2095         else
2096                 if (qdepth > h->nr_cmds)
2097                         qdepth = h->nr_cmds;
2098         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2099         return sdev->queue_depth;
2100 }
2101
2102 static void hpsa_unregister_scsi(struct ctlr_info *h)
2103 {
2104         /* we are being forcibly unloaded, and may not refuse. */
2105         scsi_remove_host(h->scsi_host);
2106         scsi_host_put(h->scsi_host);
2107         h->scsi_host = NULL;
2108 }
2109
2110 static int hpsa_register_scsi(struct ctlr_info *h)
2111 {
2112         int rc;
2113
2114         rc = hpsa_scsi_detect(h);
2115         if (rc != 0)
2116                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2117                         " hpsa_scsi_detect(), rc is %d\n", rc);
2118         return rc;
2119 }
2120
2121 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2122         unsigned char lunaddr[])
2123 {
2124         int rc = 0;
2125         int count = 0;
2126         int waittime = 1; /* seconds */
2127         struct CommandList *c;
2128
2129         c = cmd_special_alloc(h);
2130         if (!c) {
2131                 dev_warn(&h->pdev->dev, "out of memory in "
2132                         "wait_for_device_to_become_ready.\n");
2133                 return IO_ERROR;
2134         }
2135
2136         /* Send test unit ready until device ready, or give up. */
2137         while (count < HPSA_TUR_RETRY_LIMIT) {
2138
2139                 /* Wait for a bit.  do this first, because if we send
2140                  * the TUR right away, the reset will just abort it.
2141                  */
2142                 msleep(1000 * waittime);
2143                 count++;
2144
2145                 /* Increase wait time with each try, up to a point. */
2146                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2147                         waittime = waittime * 2;
2148
2149                 /* Send the Test Unit Ready */
2150                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2151                 hpsa_scsi_do_simple_cmd_core(h, c);
2152                 /* no unmap needed here because no data xfer. */
2153
2154                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2155                         break;
2156
2157                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2158                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2159                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2160                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2161                         break;
2162
2163                 dev_warn(&h->pdev->dev, "waiting %d secs "
2164                         "for device to become ready.\n", waittime);
2165                 rc = 1; /* device not ready. */
2166         }
2167
2168         if (rc)
2169                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2170         else
2171                 dev_warn(&h->pdev->dev, "device is ready.\n");
2172
2173         cmd_special_free(h, c);
2174         return rc;
2175 }
2176
2177 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2178  * complaining.  Doing a host- or bus-reset can't do anything good here.
2179  */
2180 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2181 {
2182         int rc;
2183         struct ctlr_info *h;
2184         struct hpsa_scsi_dev_t *dev;
2185
2186         /* find the controller to which the command to be aborted was sent */
2187         h = sdev_to_hba(scsicmd->device);
2188         if (h == NULL) /* paranoia */
2189                 return FAILED;
2190         dev = scsicmd->device->hostdata;
2191         if (!dev) {
2192                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2193                         "device lookup failed.\n");
2194                 return FAILED;
2195         }
2196         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2197                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2198         /* send a reset to the SCSI LUN which the command was sent to */
2199         rc = hpsa_send_reset(h, dev->scsi3addr);
2200         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2201                 return SUCCESS;
2202
2203         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2204         return FAILED;
2205 }
2206
2207 /*
2208  * For operations that cannot sleep, a command block is allocated at init,
2209  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2210  * which ones are free or in use.  Lock must be held when calling this.
2211  * cmd_free() is the complement.
2212  */
2213 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2214 {
2215         struct CommandList *c;
2216         int i;
2217         union u64bit temp64;
2218         dma_addr_t cmd_dma_handle, err_dma_handle;
2219
2220         do {
2221                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2222                 if (i == h->nr_cmds)
2223                         return NULL;
2224         } while (test_and_set_bit
2225                  (i & (BITS_PER_LONG - 1),
2226                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2227         c = h->cmd_pool + i;
2228         memset(c, 0, sizeof(*c));
2229         cmd_dma_handle = h->cmd_pool_dhandle
2230             + i * sizeof(*c);
2231         c->err_info = h->errinfo_pool + i;
2232         memset(c->err_info, 0, sizeof(*c->err_info));
2233         err_dma_handle = h->errinfo_pool_dhandle
2234             + i * sizeof(*c->err_info);
2235         h->nr_allocs++;
2236
2237         c->cmdindex = i;
2238
2239         INIT_LIST_HEAD(&c->list);
2240         c->busaddr = (u32) cmd_dma_handle;
2241         temp64.val = (u64) err_dma_handle;
2242         c->ErrDesc.Addr.lower = temp64.val32.lower;
2243         c->ErrDesc.Addr.upper = temp64.val32.upper;
2244         c->ErrDesc.Len = sizeof(*c->err_info);
2245
2246         c->h = h;
2247         return c;
2248 }
2249
2250 /* For operations that can wait for kmalloc to possibly sleep,
2251  * this routine can be called. Lock need not be held to call
2252  * cmd_special_alloc. cmd_special_free() is the complement.
2253  */
2254 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2255 {
2256         struct CommandList *c;
2257         union u64bit temp64;
2258         dma_addr_t cmd_dma_handle, err_dma_handle;
2259
2260         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2261         if (c == NULL)
2262                 return NULL;
2263         memset(c, 0, sizeof(*c));
2264
2265         c->cmdindex = -1;
2266
2267         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2268                     &err_dma_handle);
2269
2270         if (c->err_info == NULL) {
2271                 pci_free_consistent(h->pdev,
2272                         sizeof(*c), c, cmd_dma_handle);
2273                 return NULL;
2274         }
2275         memset(c->err_info, 0, sizeof(*c->err_info));
2276
2277         INIT_LIST_HEAD(&c->list);
2278         c->busaddr = (u32) cmd_dma_handle;
2279         temp64.val = (u64) err_dma_handle;
2280         c->ErrDesc.Addr.lower = temp64.val32.lower;
2281         c->ErrDesc.Addr.upper = temp64.val32.upper;
2282         c->ErrDesc.Len = sizeof(*c->err_info);
2283
2284         c->h = h;
2285         return c;
2286 }
2287
2288 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2289 {
2290         int i;
2291
2292         i = c - h->cmd_pool;
2293         clear_bit(i & (BITS_PER_LONG - 1),
2294                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2295         h->nr_frees++;
2296 }
2297
2298 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2299 {
2300         union u64bit temp64;
2301
2302         temp64.val32.lower = c->ErrDesc.Addr.lower;
2303         temp64.val32.upper = c->ErrDesc.Addr.upper;
2304         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2305                             c->err_info, (dma_addr_t) temp64.val);
2306         pci_free_consistent(h->pdev, sizeof(*c),
2307                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2308 }
2309
2310 #ifdef CONFIG_COMPAT
2311
2312 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2313 {
2314         IOCTL32_Command_struct __user *arg32 =
2315             (IOCTL32_Command_struct __user *) arg;
2316         IOCTL_Command_struct arg64;
2317         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2318         int err;
2319         u32 cp;
2320
2321         memset(&arg64, 0, sizeof(arg64));
2322         err = 0;
2323         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2324                            sizeof(arg64.LUN_info));
2325         err |= copy_from_user(&arg64.Request, &arg32->Request,
2326                            sizeof(arg64.Request));
2327         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2328                            sizeof(arg64.error_info));
2329         err |= get_user(arg64.buf_size, &arg32->buf_size);
2330         err |= get_user(cp, &arg32->buf);
2331         arg64.buf = compat_ptr(cp);
2332         err |= copy_to_user(p, &arg64, sizeof(arg64));
2333
2334         if (err)
2335                 return -EFAULT;
2336
2337         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2338         if (err)
2339                 return err;
2340         err |= copy_in_user(&arg32->error_info, &p->error_info,
2341                          sizeof(arg32->error_info));
2342         if (err)
2343                 return -EFAULT;
2344         return err;
2345 }
2346
2347 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2348         int cmd, void *arg)
2349 {
2350         BIG_IOCTL32_Command_struct __user *arg32 =
2351             (BIG_IOCTL32_Command_struct __user *) arg;
2352         BIG_IOCTL_Command_struct arg64;
2353         BIG_IOCTL_Command_struct __user *p =
2354             compat_alloc_user_space(sizeof(arg64));
2355         int err;
2356         u32 cp;
2357
2358         memset(&arg64, 0, sizeof(arg64));
2359         err = 0;
2360         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2361                            sizeof(arg64.LUN_info));
2362         err |= copy_from_user(&arg64.Request, &arg32->Request,
2363                            sizeof(arg64.Request));
2364         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2365                            sizeof(arg64.error_info));
2366         err |= get_user(arg64.buf_size, &arg32->buf_size);
2367         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2368         err |= get_user(cp, &arg32->buf);
2369         arg64.buf = compat_ptr(cp);
2370         err |= copy_to_user(p, &arg64, sizeof(arg64));
2371
2372         if (err)
2373                 return -EFAULT;
2374
2375         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2376         if (err)
2377                 return err;
2378         err |= copy_in_user(&arg32->error_info, &p->error_info,
2379                          sizeof(arg32->error_info));
2380         if (err)
2381                 return -EFAULT;
2382         return err;
2383 }
2384
2385 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2386 {
2387         switch (cmd) {
2388         case CCISS_GETPCIINFO:
2389         case CCISS_GETINTINFO:
2390         case CCISS_SETINTINFO:
2391         case CCISS_GETNODENAME:
2392         case CCISS_SETNODENAME:
2393         case CCISS_GETHEARTBEAT:
2394         case CCISS_GETBUSTYPES:
2395         case CCISS_GETFIRMVER:
2396         case CCISS_GETDRIVVER:
2397         case CCISS_REVALIDVOLS:
2398         case CCISS_DEREGDISK:
2399         case CCISS_REGNEWDISK:
2400         case CCISS_REGNEWD:
2401         case CCISS_RESCANDISK:
2402         case CCISS_GETLUNINFO:
2403                 return hpsa_ioctl(dev, cmd, arg);
2404
2405         case CCISS_PASSTHRU32:
2406                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2407         case CCISS_BIG_PASSTHRU32:
2408                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2409
2410         default:
2411                 return -ENOIOCTLCMD;
2412         }
2413 }
2414 #endif
2415
2416 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2417 {
2418         struct hpsa_pci_info pciinfo;
2419
2420         if (!argp)
2421                 return -EINVAL;
2422         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2423         pciinfo.bus = h->pdev->bus->number;
2424         pciinfo.dev_fn = h->pdev->devfn;
2425         pciinfo.board_id = h->board_id;
2426         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2427                 return -EFAULT;
2428         return 0;
2429 }
2430
2431 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2432 {
2433         DriverVer_type DriverVer;
2434         unsigned char vmaj, vmin, vsubmin;
2435         int rc;
2436
2437         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2438                 &vmaj, &vmin, &vsubmin);
2439         if (rc != 3) {
2440                 dev_info(&h->pdev->dev, "driver version string '%s' "
2441                         "unrecognized.", HPSA_DRIVER_VERSION);
2442                 vmaj = 0;
2443                 vmin = 0;
2444                 vsubmin = 0;
2445         }
2446         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2447         if (!argp)
2448                 return -EINVAL;
2449         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2450                 return -EFAULT;
2451         return 0;
2452 }
2453
2454 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2455 {
2456         IOCTL_Command_struct iocommand;
2457         struct CommandList *c;
2458         char *buff = NULL;
2459         union u64bit temp64;
2460
2461         if (!argp)
2462                 return -EINVAL;
2463         if (!capable(CAP_SYS_RAWIO))
2464                 return -EPERM;
2465         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2466                 return -EFAULT;
2467         if ((iocommand.buf_size < 1) &&
2468             (iocommand.Request.Type.Direction != XFER_NONE)) {
2469                 return -EINVAL;
2470         }
2471         if (iocommand.buf_size > 0) {
2472                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2473                 if (buff == NULL)
2474                         return -EFAULT;
2475                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2476                         /* Copy the data into the buffer we created */
2477                         if (copy_from_user(buff, iocommand.buf,
2478                                 iocommand.buf_size)) {
2479                                 kfree(buff);
2480                                 return -EFAULT;
2481                         }
2482                 } else {
2483                         memset(buff, 0, iocommand.buf_size);
2484                 }
2485         }
2486         c = cmd_special_alloc(h);
2487         if (c == NULL) {
2488                 kfree(buff);
2489                 return -ENOMEM;
2490         }
2491         /* Fill in the command type */
2492         c->cmd_type = CMD_IOCTL_PEND;
2493         /* Fill in Command Header */
2494         c->Header.ReplyQueue = 0; /* unused in simple mode */
2495         if (iocommand.buf_size > 0) {   /* buffer to fill */
2496                 c->Header.SGList = 1;
2497                 c->Header.SGTotal = 1;
2498         } else  { /* no buffers to fill */
2499                 c->Header.SGList = 0;
2500                 c->Header.SGTotal = 0;
2501         }
2502         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2503         /* use the kernel address the cmd block for tag */
2504         c->Header.Tag.lower = c->busaddr;
2505
2506         /* Fill in Request block */
2507         memcpy(&c->Request, &iocommand.Request,
2508                 sizeof(c->Request));
2509
2510         /* Fill in the scatter gather information */
2511         if (iocommand.buf_size > 0) {
2512                 temp64.val = pci_map_single(h->pdev, buff,
2513                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2514                 c->SG[0].Addr.lower = temp64.val32.lower;
2515                 c->SG[0].Addr.upper = temp64.val32.upper;
2516                 c->SG[0].Len = iocommand.buf_size;
2517                 c->SG[0].Ext = 0; /* we are not chaining*/
2518         }
2519         hpsa_scsi_do_simple_cmd_core(h, c);
2520         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2521         check_ioctl_unit_attention(h, c);
2522
2523         /* Copy the error information out */
2524         memcpy(&iocommand.error_info, c->err_info,
2525                 sizeof(iocommand.error_info));
2526         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2527                 kfree(buff);
2528                 cmd_special_free(h, c);
2529                 return -EFAULT;
2530         }
2531         if (iocommand.Request.Type.Direction == XFER_READ &&
2532                 iocommand.buf_size > 0) {
2533                 /* Copy the data out of the buffer we created */
2534                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2535                         kfree(buff);
2536                         cmd_special_free(h, c);
2537                         return -EFAULT;
2538                 }
2539         }
2540         kfree(buff);
2541         cmd_special_free(h, c);
2542         return 0;
2543 }
2544
2545 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2546 {
2547         BIG_IOCTL_Command_struct *ioc;
2548         struct CommandList *c;
2549         unsigned char **buff = NULL;
2550         int *buff_size = NULL;
2551         union u64bit temp64;
2552         BYTE sg_used = 0;
2553         int status = 0;
2554         int i;
2555         u32 left;
2556         u32 sz;
2557         BYTE __user *data_ptr;
2558
2559         if (!argp)
2560                 return -EINVAL;
2561         if (!capable(CAP_SYS_RAWIO))
2562                 return -EPERM;
2563         ioc = (BIG_IOCTL_Command_struct *)
2564             kmalloc(sizeof(*ioc), GFP_KERNEL);
2565         if (!ioc) {
2566                 status = -ENOMEM;
2567                 goto cleanup1;
2568         }
2569         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2570                 status = -EFAULT;
2571                 goto cleanup1;
2572         }
2573         if ((ioc->buf_size < 1) &&
2574             (ioc->Request.Type.Direction != XFER_NONE)) {
2575                 status = -EINVAL;
2576                 goto cleanup1;
2577         }
2578         /* Check kmalloc limits  using all SGs */
2579         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2580                 status = -EINVAL;
2581                 goto cleanup1;
2582         }
2583         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2584                 status = -EINVAL;
2585                 goto cleanup1;
2586         }
2587         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2588         if (!buff) {
2589                 status = -ENOMEM;
2590                 goto cleanup1;
2591         }
2592         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2593         if (!buff_size) {
2594                 status = -ENOMEM;
2595                 goto cleanup1;
2596         }
2597         left = ioc->buf_size;
2598         data_ptr = ioc->buf;
2599         while (left) {
2600                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2601                 buff_size[sg_used] = sz;
2602                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2603                 if (buff[sg_used] == NULL) {
2604                         status = -ENOMEM;
2605                         goto cleanup1;
2606                 }
2607                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2608                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2609                                 status = -ENOMEM;
2610                                 goto cleanup1;
2611                         }
2612                 } else
2613                         memset(buff[sg_used], 0, sz);
2614                 left -= sz;
2615                 data_ptr += sz;
2616                 sg_used++;
2617         }
2618         c = cmd_special_alloc(h);
2619         if (c == NULL) {
2620                 status = -ENOMEM;
2621                 goto cleanup1;
2622         }
2623         c->cmd_type = CMD_IOCTL_PEND;
2624         c->Header.ReplyQueue = 0;
2625         c->Header.SGList = c->Header.SGTotal = sg_used;
2626         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2627         c->Header.Tag.lower = c->busaddr;
2628         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2629         if (ioc->buf_size > 0) {
2630                 int i;
2631                 for (i = 0; i < sg_used; i++) {
2632                         temp64.val = pci_map_single(h->pdev, buff[i],
2633                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2634                         c->SG[i].Addr.lower = temp64.val32.lower;
2635                         c->SG[i].Addr.upper = temp64.val32.upper;
2636                         c->SG[i].Len = buff_size[i];
2637                         /* we are not chaining */
2638                         c->SG[i].Ext = 0;
2639                 }
2640         }
2641         hpsa_scsi_do_simple_cmd_core(h, c);
2642         if (sg_used)
2643                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2644         check_ioctl_unit_attention(h, c);
2645         /* Copy the error information out */
2646         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2647         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2648                 cmd_special_free(h, c);
2649                 status = -EFAULT;
2650                 goto cleanup1;
2651         }
2652         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2653                 /* Copy the data out of the buffer we created */
2654                 BYTE __user *ptr = ioc->buf;
2655                 for (i = 0; i < sg_used; i++) {
2656                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2657                                 cmd_special_free(h, c);
2658                                 status = -EFAULT;
2659                                 goto cleanup1;
2660                         }
2661                         ptr += buff_size[i];
2662                 }
2663         }
2664         cmd_special_free(h, c);
2665         status = 0;
2666 cleanup1:
2667         if (buff) {
2668                 for (i = 0; i < sg_used; i++)
2669                         kfree(buff[i]);
2670                 kfree(buff);
2671         }
2672         kfree(buff_size);
2673         kfree(ioc);
2674         return status;
2675 }
2676
2677 static void check_ioctl_unit_attention(struct ctlr_info *h,
2678         struct CommandList *c)
2679 {
2680         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2681                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2682                 (void) check_for_unit_attention(h, c);
2683 }
2684 /*
2685  * ioctl
2686  */
2687 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2688 {
2689         struct ctlr_info *h;
2690         void __user *argp = (void __user *)arg;
2691
2692         h = sdev_to_hba(dev);
2693
2694         switch (cmd) {
2695         case CCISS_DEREGDISK:
2696         case CCISS_REGNEWDISK:
2697         case CCISS_REGNEWD:
2698                 hpsa_scan_start(h->scsi_host);
2699                 return 0;
2700         case CCISS_GETPCIINFO:
2701                 return hpsa_getpciinfo_ioctl(h, argp);
2702         case CCISS_GETDRIVVER:
2703                 return hpsa_getdrivver_ioctl(h, argp);
2704         case CCISS_PASSTHRU:
2705                 return hpsa_passthru_ioctl(h, argp);
2706         case CCISS_BIG_PASSTHRU:
2707                 return hpsa_big_passthru_ioctl(h, argp);
2708         default:
2709                 return -ENOTTY;
2710         }
2711 }
2712
2713 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2714         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2715         int cmd_type)
2716 {
2717         int pci_dir = XFER_NONE;
2718
2719         c->cmd_type = CMD_IOCTL_PEND;
2720         c->Header.ReplyQueue = 0;
2721         if (buff != NULL && size > 0) {
2722                 c->Header.SGList = 1;
2723                 c->Header.SGTotal = 1;
2724         } else {
2725                 c->Header.SGList = 0;
2726                 c->Header.SGTotal = 0;
2727         }
2728         c->Header.Tag.lower = c->busaddr;
2729         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2730
2731         c->Request.Type.Type = cmd_type;
2732         if (cmd_type == TYPE_CMD) {
2733                 switch (cmd) {
2734                 case HPSA_INQUIRY:
2735                         /* are we trying to read a vital product page */
2736                         if (page_code != 0) {
2737                                 c->Request.CDB[1] = 0x01;
2738                                 c->Request.CDB[2] = page_code;
2739                         }
2740                         c->Request.CDBLen = 6;
2741                         c->Request.Type.Attribute = ATTR_SIMPLE;
2742                         c->Request.Type.Direction = XFER_READ;
2743                         c->Request.Timeout = 0;
2744                         c->Request.CDB[0] = HPSA_INQUIRY;
2745                         c->Request.CDB[4] = size & 0xFF;
2746                         break;
2747                 case HPSA_REPORT_LOG:
2748                 case HPSA_REPORT_PHYS:
2749                         /* Talking to controller so It's a physical command
2750                            mode = 00 target = 0.  Nothing to write.
2751                          */
2752                         c->Request.CDBLen = 12;
2753                         c->Request.Type.Attribute = ATTR_SIMPLE;
2754                         c->Request.Type.Direction = XFER_READ;
2755                         c->Request.Timeout = 0;
2756                         c->Request.CDB[0] = cmd;
2757                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2758                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2759                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2760                         c->Request.CDB[9] = size & 0xFF;
2761                         break;
2762                 case HPSA_CACHE_FLUSH:
2763                         c->Request.CDBLen = 12;
2764                         c->Request.Type.Attribute = ATTR_SIMPLE;
2765                         c->Request.Type.Direction = XFER_WRITE;
2766                         c->Request.Timeout = 0;
2767                         c->Request.CDB[0] = BMIC_WRITE;
2768                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2769                         break;
2770                 case TEST_UNIT_READY:
2771                         c->Request.CDBLen = 6;
2772                         c->Request.Type.Attribute = ATTR_SIMPLE;
2773                         c->Request.Type.Direction = XFER_NONE;
2774                         c->Request.Timeout = 0;
2775                         break;
2776                 default:
2777                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2778                         BUG();
2779                         return;
2780                 }
2781         } else if (cmd_type == TYPE_MSG) {
2782                 switch (cmd) {
2783
2784                 case  HPSA_DEVICE_RESET_MSG:
2785                         c->Request.CDBLen = 16;
2786                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2787                         c->Request.Type.Attribute = ATTR_SIMPLE;
2788                         c->Request.Type.Direction = XFER_NONE;
2789                         c->Request.Timeout = 0; /* Don't time out */
2790                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2791                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2792                         /* If bytes 4-7 are zero, it means reset the */
2793                         /* LunID device */
2794                         c->Request.CDB[4] = 0x00;
2795                         c->Request.CDB[5] = 0x00;
2796                         c->Request.CDB[6] = 0x00;
2797                         c->Request.CDB[7] = 0x00;
2798                 break;
2799
2800                 default:
2801                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2802                                 cmd);
2803                         BUG();
2804                 }
2805         } else {
2806                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2807                 BUG();
2808         }
2809
2810         switch (c->Request.Type.Direction) {
2811         case XFER_READ:
2812                 pci_dir = PCI_DMA_FROMDEVICE;
2813                 break;
2814         case XFER_WRITE:
2815                 pci_dir = PCI_DMA_TODEVICE;
2816                 break;
2817         case XFER_NONE:
2818                 pci_dir = PCI_DMA_NONE;
2819                 break;
2820         default:
2821                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2822         }
2823
2824         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2825
2826         return;
2827 }
2828
2829 /*
2830  * Map (physical) PCI mem into (virtual) kernel space
2831  */
2832 static void __iomem *remap_pci_mem(ulong base, ulong size)
2833 {
2834         ulong page_base = ((ulong) base) & PAGE_MASK;
2835         ulong page_offs = ((ulong) base) - page_base;
2836         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2837
2838         return page_remapped ? (page_remapped + page_offs) : NULL;
2839 }
2840
2841 /* Takes cmds off the submission queue and sends them to the hardware,
2842  * then puts them on the queue of cmds waiting for completion.
2843  */
2844 static void start_io(struct ctlr_info *h)
2845 {
2846         struct CommandList *c;
2847
2848         while (!list_empty(&h->reqQ)) {
2849                 c = list_entry(h->reqQ.next, struct CommandList, list);
2850                 /* can't do anything if fifo is full */
2851                 if ((h->access.fifo_full(h))) {
2852                         dev_warn(&h->pdev->dev, "fifo full\n");
2853                         break;
2854                 }
2855
2856                 /* Get the first entry from the Request Q */
2857                 removeQ(c);
2858                 h->Qdepth--;
2859
2860                 /* Tell the controller execute command */
2861                 h->access.submit_command(h, c);
2862
2863                 /* Put job onto the completed Q */
2864                 addQ(&h->cmpQ, c);
2865         }
2866 }
2867
2868 static inline unsigned long get_next_completion(struct ctlr_info *h)
2869 {
2870         return h->access.command_completed(h);
2871 }
2872
2873 static inline bool interrupt_pending(struct ctlr_info *h)
2874 {
2875         return h->access.intr_pending(h);
2876 }
2877
2878 static inline long interrupt_not_for_us(struct ctlr_info *h)
2879 {
2880         return (h->access.intr_pending(h) == 0) ||
2881                 (h->interrupts_enabled == 0);
2882 }
2883
2884 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2885         u32 raw_tag)
2886 {
2887         if (unlikely(tag_index >= h->nr_cmds)) {
2888                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2889                 return 1;
2890         }
2891         return 0;
2892 }
2893
2894 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2895 {
2896         removeQ(c);
2897         if (likely(c->cmd_type == CMD_SCSI))
2898                 complete_scsi_command(c, 0, raw_tag);
2899         else if (c->cmd_type == CMD_IOCTL_PEND)
2900                 complete(c->waiting);
2901 }
2902
2903 static inline u32 hpsa_tag_contains_index(u32 tag)
2904 {
2905         return tag & DIRECT_LOOKUP_BIT;
2906 }
2907
2908 static inline u32 hpsa_tag_to_index(u32 tag)
2909 {
2910         return tag >> DIRECT_LOOKUP_SHIFT;
2911 }
2912
2913
2914 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2915 {
2916 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
2917 #define HPSA_SIMPLE_ERROR_BITS 0x03
2918         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
2919                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
2920         return tag & ~HPSA_PERF_ERROR_BITS;
2921 }
2922
2923 /* process completion of an indexed ("direct lookup") command */
2924 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2925         u32 raw_tag)
2926 {
2927         u32 tag_index;
2928         struct CommandList *c;
2929
2930         tag_index = hpsa_tag_to_index(raw_tag);
2931         if (bad_tag(h, tag_index, raw_tag))
2932                 return next_command(h);
2933         c = h->cmd_pool + tag_index;
2934         finish_cmd(c, raw_tag);
2935         return next_command(h);
2936 }
2937
2938 /* process completion of a non-indexed command */
2939 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2940         u32 raw_tag)
2941 {
2942         u32 tag;
2943         struct CommandList *c = NULL;
2944
2945         tag = hpsa_tag_discard_error_bits(h, raw_tag);
2946         list_for_each_entry(c, &h->cmpQ, list) {
2947                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2948                         finish_cmd(c, raw_tag);
2949                         return next_command(h);
2950                 }
2951         }
2952         bad_tag(h, h->nr_cmds + 1, raw_tag);
2953         return next_command(h);
2954 }
2955
2956 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2957 {
2958         struct ctlr_info *h = dev_id;
2959         unsigned long flags;
2960         u32 raw_tag;
2961
2962         if (interrupt_not_for_us(h))
2963                 return IRQ_NONE;
2964         spin_lock_irqsave(&h->lock, flags);
2965         while (interrupt_pending(h)) {
2966                 raw_tag = get_next_completion(h);
2967                 while (raw_tag != FIFO_EMPTY) {
2968                         if (hpsa_tag_contains_index(raw_tag))
2969                                 raw_tag = process_indexed_cmd(h, raw_tag);
2970                         else
2971                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
2972                 }
2973         }
2974         spin_unlock_irqrestore(&h->lock, flags);
2975         return IRQ_HANDLED;
2976 }
2977
2978 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2979 {
2980         struct ctlr_info *h = dev_id;
2981         unsigned long flags;
2982         u32 raw_tag;
2983
2984         spin_lock_irqsave(&h->lock, flags);
2985         raw_tag = get_next_completion(h);
2986         while (raw_tag != FIFO_EMPTY) {
2987                 if (hpsa_tag_contains_index(raw_tag))
2988                         raw_tag = process_indexed_cmd(h, raw_tag);
2989                 else
2990                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2991         }
2992         spin_unlock_irqrestore(&h->lock, flags);
2993         return IRQ_HANDLED;
2994 }
2995
2996 /* Send a message CDB to the firmware. Careful, this only works
2997  * in simple mode, not performant mode due to the tag lookup.
2998  * We only ever use this immediately after a controller reset.
2999  */
3000 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3001                                                 unsigned char type)
3002 {
3003         struct Command {
3004                 struct CommandListHeader CommandHeader;
3005                 struct RequestBlock Request;
3006                 struct ErrDescriptor ErrorDescriptor;
3007         };
3008         struct Command *cmd;
3009         static const size_t cmd_sz = sizeof(*cmd) +
3010                                         sizeof(cmd->ErrorDescriptor);
3011         dma_addr_t paddr64;
3012         uint32_t paddr32, tag;
3013         void __iomem *vaddr;
3014         int i, err;
3015
3016         vaddr = pci_ioremap_bar(pdev, 0);
3017         if (vaddr == NULL)
3018                 return -ENOMEM;
3019
3020         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3021          * CCISS commands, so they must be allocated from the lower 4GiB of
3022          * memory.
3023          */
3024         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3025         if (err) {
3026                 iounmap(vaddr);
3027                 return -ENOMEM;
3028         }
3029
3030         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3031         if (cmd == NULL) {
3032                 iounmap(vaddr);
3033                 return -ENOMEM;
3034         }
3035
3036         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3037          * although there's no guarantee, we assume that the address is at
3038          * least 4-byte aligned (most likely, it's page-aligned).
3039          */
3040         paddr32 = paddr64;
3041
3042         cmd->CommandHeader.ReplyQueue = 0;
3043         cmd->CommandHeader.SGList = 0;
3044         cmd->CommandHeader.SGTotal = 0;
3045         cmd->CommandHeader.Tag.lower = paddr32;
3046         cmd->CommandHeader.Tag.upper = 0;
3047         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3048
3049         cmd->Request.CDBLen = 16;
3050         cmd->Request.Type.Type = TYPE_MSG;
3051         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3052         cmd->Request.Type.Direction = XFER_NONE;
3053         cmd->Request.Timeout = 0; /* Don't time out */
3054         cmd->Request.CDB[0] = opcode;
3055         cmd->Request.CDB[1] = type;
3056         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3057         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3058         cmd->ErrorDescriptor.Addr.upper = 0;
3059         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3060
3061         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3062
3063         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3064                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3065                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3066                         break;
3067                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3068         }
3069
3070         iounmap(vaddr);
3071
3072         /* we leak the DMA buffer here ... no choice since the controller could
3073          *  still complete the command.
3074          */
3075         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3076                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3077                         opcode, type);
3078                 return -ETIMEDOUT;
3079         }
3080
3081         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3082
3083         if (tag & HPSA_ERROR_BIT) {
3084                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3085                         opcode, type);
3086                 return -EIO;
3087         }
3088
3089         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3090                 opcode, type);
3091         return 0;
3092 }
3093
3094 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3095 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3096
3097 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3098         void * __iomem vaddr, bool use_doorbell)
3099 {
3100         u16 pmcsr;
3101         int pos;
3102
3103         if (use_doorbell) {
3104                 /* For everything after the P600, the PCI power state method
3105                  * of resetting the controller doesn't work, so we have this
3106                  * other way using the doorbell register.
3107                  */
3108                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3109                 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3110                 msleep(1000);
3111         } else { /* Try to do it the PCI power state way */
3112
3113                 /* Quoting from the Open CISS Specification: "The Power
3114                  * Management Control/Status Register (CSR) controls the power
3115                  * state of the device.  The normal operating state is D0,
3116                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3117                  * the controller, place the interface device in D3 then to D0,
3118                  * this causes a secondary PCI reset which will reset the
3119                  * controller." */
3120
3121                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3122                 if (pos == 0) {
3123                         dev_err(&pdev->dev,
3124                                 "hpsa_reset_controller: "
3125                                 "PCI PM not supported\n");
3126                         return -ENODEV;
3127                 }
3128                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3129                 /* enter the D3hot power management state */
3130                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3131                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3132                 pmcsr |= PCI_D3hot;
3133                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3134
3135                 msleep(500);
3136
3137                 /* enter the D0 power management state */
3138                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3139                 pmcsr |= PCI_D0;
3140                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3141
3142                 msleep(500);
3143         }
3144         return 0;
3145 }
3146
3147 /* This does a hard reset of the controller using PCI power management
3148  * states or the using the doorbell register.
3149  */
3150 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3151 {
3152         u64 cfg_offset;
3153         u32 cfg_base_addr;
3154         u64 cfg_base_addr_index;
3155         void __iomem *vaddr;
3156         unsigned long paddr;
3157         u32 misc_fw_support, active_transport;
3158         int rc;
3159         struct CfgTable __iomem *cfgtable;
3160         bool use_doorbell;
3161         u32 board_id;
3162         u16 command_register;
3163
3164         /* For controllers as old as the P600, this is very nearly
3165          * the same thing as
3166          *
3167          * pci_save_state(pci_dev);
3168          * pci_set_power_state(pci_dev, PCI_D3hot);
3169          * pci_set_power_state(pci_dev, PCI_D0);
3170          * pci_restore_state(pci_dev);
3171          *
3172          * For controllers newer than the P600, the pci power state
3173          * method of resetting doesn't work so we have another way
3174          * using the doorbell register.
3175          */
3176
3177         /* Exclude 640x boards.  These are two pci devices in one slot
3178          * which share a battery backed cache module.  One controls the
3179          * cache, the other accesses the cache through the one that controls
3180          * it.  If we reset the one controlling the cache, the other will
3181          * likely not be happy.  Just forbid resetting this conjoined mess.
3182          * The 640x isn't really supported by hpsa anyway.
3183          */
3184         rc = hpsa_lookup_board_id(pdev, &board_id);
3185         if (rc < 0) {
3186                 dev_warn(&pdev->dev, "Not resetting device.\n");
3187                 return -ENODEV;
3188         }
3189         if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3190                 return -ENOTSUPP;
3191
3192         /* Save the PCI command register */
3193         pci_read_config_word(pdev, 4, &command_register);
3194         /* Turn the board off.  This is so that later pci_restore_state()
3195          * won't turn the board on before the rest of config space is ready.
3196          */
3197         pci_disable_device(pdev);
3198         pci_save_state(pdev);
3199
3200         /* find the first memory BAR, so we can find the cfg table */
3201         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3202         if (rc)
3203                 return rc;
3204         vaddr = remap_pci_mem(paddr, 0x250);
3205         if (!vaddr)
3206                 return -ENOMEM;
3207
3208         /* find cfgtable in order to check if reset via doorbell is supported */
3209         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3210                                         &cfg_base_addr_index, &cfg_offset);
3211         if (rc)
3212                 goto unmap_vaddr;
3213         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3214                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3215         if (!cfgtable) {
3216                 rc = -ENOMEM;
3217                 goto unmap_vaddr;
3218         }
3219
3220         /* If reset via doorbell register is supported, use that. */
3221         misc_fw_support = readl(&cfgtable->misc_fw_support);
3222         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3223
3224         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3225         if (rc)
3226                 goto unmap_cfgtable;
3227
3228         pci_restore_state(pdev);
3229         rc = pci_enable_device(pdev);
3230         if (rc) {
3231                 dev_warn(&pdev->dev, "failed to enable device.\n");
3232                 goto unmap_cfgtable;
3233         }
3234         pci_write_config_word(pdev, 4, command_register);
3235
3236         /* Some devices (notably the HP Smart Array 5i Controller)
3237            need a little pause here */
3238         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3239
3240         /* Wait for board to become not ready, then ready. */
3241         dev_info(&pdev->dev, "Waiting for board to become ready.\n");
3242         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3243         if (rc)
3244                 dev_warn(&pdev->dev,
3245                         "failed waiting for board to become not ready\n");
3246         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3247         if (rc) {
3248                 dev_warn(&pdev->dev,
3249                         "failed waiting for board to become ready\n");
3250                 goto unmap_cfgtable;
3251         }
3252         dev_info(&pdev->dev, "board ready.\n");
3253
3254         /* Controller should be in simple mode at this point.  If it's not,
3255          * It means we're on one of those controllers which doesn't support
3256          * the doorbell reset method and on which the PCI power management reset
3257          * method doesn't work (P800, for example.)
3258          * In those cases, don't try to proceed, as it generally doesn't work.
3259          */
3260         active_transport = readl(&cfgtable->TransportActive);
3261         if (active_transport & PERFORMANT_MODE) {
3262                 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3263                         " Ignoring controller.\n");
3264                 rc = -ENODEV;
3265         }
3266
3267 unmap_cfgtable:
3268         iounmap(cfgtable);
3269
3270 unmap_vaddr:
3271         iounmap(vaddr);
3272         return rc;
3273 }
3274
3275 /*
3276  *  We cannot read the structure directly, for portability we must use
3277  *   the io functions.
3278  *   This is for debug only.
3279  */
3280 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3281 {
3282 #ifdef HPSA_DEBUG
3283         int i;
3284         char temp_name[17];
3285
3286         dev_info(dev, "Controller Configuration information\n");
3287         dev_info(dev, "------------------------------------\n");
3288         for (i = 0; i < 4; i++)
3289                 temp_name[i] = readb(&(tb->Signature[i]));
3290         temp_name[4] = '\0';
3291         dev_info(dev, "   Signature = %s\n", temp_name);
3292         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3293         dev_info(dev, "   Transport methods supported = 0x%x\n",
3294                readl(&(tb->TransportSupport)));
3295         dev_info(dev, "   Transport methods active = 0x%x\n",
3296                readl(&(tb->TransportActive)));
3297         dev_info(dev, "   Requested transport Method = 0x%x\n",
3298                readl(&(tb->HostWrite.TransportRequest)));
3299         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3300                readl(&(tb->HostWrite.CoalIntDelay)));
3301         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3302                readl(&(tb->HostWrite.CoalIntCount)));
3303         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3304                readl(&(tb->CmdsOutMax)));
3305         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3306         for (i = 0; i < 16; i++)
3307                 temp_name[i] = readb(&(tb->ServerName[i]));
3308         temp_name[16] = '\0';
3309         dev_info(dev, "   Server Name = %s\n", temp_name);
3310         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3311                 readl(&(tb->HeartBeat)));
3312 #endif                          /* HPSA_DEBUG */
3313 }
3314
3315 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3316 {
3317         int i, offset, mem_type, bar_type;
3318
3319         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3320                 return 0;
3321         offset = 0;
3322         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3323                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3324                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3325                         offset += 4;
3326                 else {
3327                         mem_type = pci_resource_flags(pdev, i) &
3328                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3329                         switch (mem_type) {
3330                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3331                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3332                                 offset += 4;    /* 32 bit */
3333                                 break;
3334                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3335                                 offset += 8;
3336                                 break;
3337                         default:        /* reserved in PCI 2.2 */
3338                                 dev_warn(&pdev->dev,
3339                                        "base address is invalid\n");
3340                                 return -1;
3341                                 break;
3342                         }
3343                 }
3344                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3345                         return i + 1;
3346         }
3347         return -1;
3348 }
3349
3350 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3351  * controllers that are capable. If not, we use IO-APIC mode.
3352  */
3353
3354 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3355 {
3356 #ifdef CONFIG_PCI_MSI
3357         int err;
3358         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3359         {0, 2}, {0, 3}
3360         };
3361
3362         /* Some boards advertise MSI but don't really support it */
3363         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3364             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3365                 goto default_int_mode;
3366         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3367                 dev_info(&h->pdev->dev, "MSIX\n");
3368                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3369                 if (!err) {
3370                         h->intr[0] = hpsa_msix_entries[0].vector;
3371                         h->intr[1] = hpsa_msix_entries[1].vector;
3372                         h->intr[2] = hpsa_msix_entries[2].vector;
3373                         h->intr[3] = hpsa_msix_entries[3].vector;
3374                         h->msix_vector = 1;
3375                         return;
3376                 }
3377                 if (err > 0) {
3378                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3379                                "available\n", err);
3380                         goto default_int_mode;
3381                 } else {
3382                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3383                                err);
3384                         goto default_int_mode;
3385                 }
3386         }
3387         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3388                 dev_info(&h->pdev->dev, "MSI\n");
3389                 if (!pci_enable_msi(h->pdev))
3390                         h->msi_vector = 1;
3391                 else
3392                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3393         }
3394 default_int_mode:
3395 #endif                          /* CONFIG_PCI_MSI */
3396         /* if we get here we're going to use the default interrupt mode */
3397         h->intr[h->intr_mode] = h->pdev->irq;
3398 }
3399
3400 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3401 {
3402         int i;
3403         u32 subsystem_vendor_id, subsystem_device_id;
3404
3405         subsystem_vendor_id = pdev->subsystem_vendor;
3406         subsystem_device_id = pdev->subsystem_device;
3407         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3408                     subsystem_vendor_id;
3409
3410         for (i = 0; i < ARRAY_SIZE(products); i++)
3411                 if (*board_id == products[i].board_id)
3412                         return i;
3413
3414         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3415                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3416                 !hpsa_allow_any) {
3417                 dev_warn(&pdev->dev, "unrecognized board ID: "
3418                         "0x%08x, ignoring.\n", *board_id);
3419                         return -ENODEV;
3420         }
3421         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3422 }
3423
3424 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3425 {
3426         u16 command;
3427
3428         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3429         return ((command & PCI_COMMAND_MEMORY) == 0);
3430 }
3431
3432 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3433         unsigned long *memory_bar)
3434 {
3435         int i;
3436
3437         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3438                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3439                         /* addressing mode bits already removed */
3440                         *memory_bar = pci_resource_start(pdev, i);
3441                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3442                                 *memory_bar);
3443                         return 0;
3444                 }
3445         dev_warn(&pdev->dev, "no memory BAR found\n");
3446         return -ENODEV;
3447 }
3448
3449 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3450         void __iomem *vaddr, int wait_for_ready)
3451 {
3452         int i, iterations;
3453         u32 scratchpad;
3454         if (wait_for_ready)
3455                 iterations = HPSA_BOARD_READY_ITERATIONS;
3456         else
3457                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3458
3459         for (i = 0; i < iterations; i++) {
3460                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3461                 if (wait_for_ready) {
3462                         if (scratchpad == HPSA_FIRMWARE_READY)
3463                                 return 0;
3464                 } else {
3465                         if (scratchpad != HPSA_FIRMWARE_READY)
3466                                 return 0;
3467                 }
3468                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3469         }
3470         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3471         return -ENODEV;
3472 }
3473
3474 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3475         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3476         u64 *cfg_offset)
3477 {
3478         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3479         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3480         *cfg_base_addr &= (u32) 0x0000ffff;
3481         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3482         if (*cfg_base_addr_index == -1) {
3483                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3484                 return -ENODEV;
3485         }
3486         return 0;
3487 }
3488
3489 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3490 {
3491         u64 cfg_offset;
3492         u32 cfg_base_addr;
3493         u64 cfg_base_addr_index;
3494         u32 trans_offset;
3495         int rc;
3496
3497         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3498                 &cfg_base_addr_index, &cfg_offset);
3499         if (rc)
3500                 return rc;
3501         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3502                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3503         if (!h->cfgtable)
3504                 return -ENOMEM;
3505         /* Find performant mode table. */
3506         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3507         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3508                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3509                                 sizeof(*h->transtable));
3510         if (!h->transtable)
3511                 return -ENOMEM;
3512         return 0;
3513 }
3514
3515 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3516 {
3517         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3518
3519         /* Limit commands in memory limited kdump scenario. */
3520         if (reset_devices && h->max_commands > 32)
3521                 h->max_commands = 32;
3522
3523         if (h->max_commands < 16) {
3524                 dev_warn(&h->pdev->dev, "Controller reports "
3525                         "max supported commands of %d, an obvious lie. "
3526                         "Using 16.  Ensure that firmware is up to date.\n",
3527                         h->max_commands);
3528                 h->max_commands = 16;
3529         }
3530 }
3531
3532 /* Interrogate the hardware for some limits:
3533  * max commands, max SG elements without chaining, and with chaining,
3534  * SG chain block size, etc.
3535  */
3536 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3537 {
3538         hpsa_get_max_perf_mode_cmds(h);
3539         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3540         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3541         /*
3542          * Limit in-command s/g elements to 32 save dma'able memory.
3543          * Howvever spec says if 0, use 31
3544          */
3545         h->max_cmd_sg_entries = 31;
3546         if (h->maxsgentries > 512) {
3547                 h->max_cmd_sg_entries = 32;
3548                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3549                 h->maxsgentries--; /* save one for chain pointer */
3550         } else {
3551                 h->maxsgentries = 31; /* default to traditional values */
3552                 h->chainsize = 0;
3553         }
3554 }
3555
3556 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3557 {
3558         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3559             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3560             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3561             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3562                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3563                 return false;
3564         }
3565         return true;
3566 }
3567
3568 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3569 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3570 {
3571 #ifdef CONFIG_X86
3572         u32 prefetch;
3573
3574         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3575         prefetch |= 0x100;
3576         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3577 #endif
3578 }
3579
3580 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3581  * in a prefetch beyond physical memory.
3582  */
3583 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3584 {
3585         u32 dma_prefetch;
3586
3587         if (h->board_id != 0x3225103C)
3588                 return;
3589         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3590         dma_prefetch |= 0x8000;
3591         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3592 }
3593
3594 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3595 {
3596         int i;
3597         u32 doorbell_value;
3598         unsigned long flags;
3599
3600         /* under certain very rare conditions, this can take awhile.
3601          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3602          * as we enter this code.)
3603          */
3604         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3605                 spin_lock_irqsave(&h->lock, flags);
3606                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3607                 spin_unlock_irqrestore(&h->lock, flags);
3608                 if (!(doorbell_value & CFGTBL_ChangeReq))
3609                         break;
3610                 /* delay and try again */
3611                 usleep_range(10000, 20000);
3612         }
3613 }
3614
3615 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3616 {
3617         u32 trans_support;
3618
3619         trans_support = readl(&(h->cfgtable->TransportSupport));
3620         if (!(trans_support & SIMPLE_MODE))
3621                 return -ENOTSUPP;
3622
3623         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3624         /* Update the field, and then ring the doorbell */
3625         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3626         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3627         hpsa_wait_for_mode_change_ack(h);
3628         print_cfg_table(&h->pdev->dev, h->cfgtable);
3629         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3630                 dev_warn(&h->pdev->dev,
3631                         "unable to get board into simple mode\n");
3632                 return -ENODEV;
3633         }
3634         h->transMethod = CFGTBL_Trans_Simple;
3635         return 0;
3636 }
3637
3638 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3639 {
3640         int prod_index, err;
3641
3642         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3643         if (prod_index < 0)
3644                 return -ENODEV;
3645         h->product_name = products[prod_index].product_name;
3646         h->access = *(products[prod_index].access);
3647
3648         if (hpsa_board_disabled(h->pdev)) {
3649                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3650                 return -ENODEV;
3651         }
3652         err = pci_enable_device(h->pdev);
3653         if (err) {
3654                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3655                 return err;
3656         }
3657
3658         err = pci_request_regions(h->pdev, "hpsa");
3659         if (err) {
3660                 dev_err(&h->pdev->dev,
3661                         "cannot obtain PCI resources, aborting\n");
3662                 return err;
3663         }
3664         hpsa_interrupt_mode(h);
3665         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3666         if (err)
3667                 goto err_out_free_res;
3668         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3669         if (!h->vaddr) {
3670                 err = -ENOMEM;
3671                 goto err_out_free_res;
3672         }
3673         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3674         if (err)
3675                 goto err_out_free_res;
3676         err = hpsa_find_cfgtables(h);
3677         if (err)
3678                 goto err_out_free_res;
3679         hpsa_find_board_params(h);
3680
3681         if (!hpsa_CISS_signature_present(h)) {
3682                 err = -ENODEV;
3683                 goto err_out_free_res;
3684         }
3685         hpsa_enable_scsi_prefetch(h);
3686         hpsa_p600_dma_prefetch_quirk(h);
3687         err = hpsa_enter_simple_mode(h);
3688         if (err)
3689                 goto err_out_free_res;
3690         return 0;
3691
3692 err_out_free_res:
3693         if (h->transtable)
3694                 iounmap(h->transtable);
3695         if (h->cfgtable)
3696                 iounmap(h->cfgtable);
3697         if (h->vaddr)
3698                 iounmap(h->vaddr);
3699         /*
3700          * Deliberately omit pci_disable_device(): it does something nasty to
3701          * Smart Array controllers that pci_enable_device does not undo
3702          */
3703         pci_release_regions(h->pdev);
3704         return err;
3705 }
3706
3707 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3708 {
3709         int rc;
3710
3711 #define HBA_INQUIRY_BYTE_COUNT 64
3712         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3713         if (!h->hba_inquiry_data)
3714                 return;
3715         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3716                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3717         if (rc != 0) {
3718                 kfree(h->hba_inquiry_data);
3719                 h->hba_inquiry_data = NULL;
3720         }
3721 }
3722
3723 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3724 {
3725         int rc, i;
3726
3727         if (!reset_devices)
3728                 return 0;
3729
3730         /* Reset the controller with a PCI power-cycle or via doorbell */
3731         rc = hpsa_kdump_hard_reset_controller(pdev);
3732
3733         /* -ENOTSUPP here means we cannot reset the controller
3734          * but it's already (and still) up and running in
3735          * "performant mode".  Or, it might be 640x, which can't reset
3736          * due to concerns about shared bbwc between 6402/6404 pair.
3737          */
3738         if (rc == -ENOTSUPP)
3739                 return 0; /* just try to do the kdump anyhow. */
3740         if (rc)
3741                 return -ENODEV;
3742
3743         /* Now try to get the controller to respond to a no-op */
3744         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3745                 if (hpsa_noop(pdev) == 0)
3746                         break;
3747                 else
3748                         dev_warn(&pdev->dev, "no-op failed%s\n",
3749                                         (i < 11 ? "; re-trying" : ""));
3750         }
3751         return 0;
3752 }
3753
3754 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3755                                     const struct pci_device_id *ent)
3756 {
3757         int dac, rc;
3758         struct ctlr_info *h;
3759
3760         if (number_of_controllers == 0)
3761                 printk(KERN_INFO DRIVER_NAME "\n");
3762
3763         rc = hpsa_init_reset_devices(pdev);
3764         if (rc)
3765                 return rc;
3766
3767         /* Command structures must be aligned on a 32-byte boundary because
3768          * the 5 lower bits of the address are used by the hardware. and by
3769          * the driver.  See comments in hpsa.h for more info.
3770          */
3771 #define COMMANDLIST_ALIGNMENT 32
3772         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3773         h = kzalloc(sizeof(*h), GFP_KERNEL);
3774         if (!h)
3775                 return -ENOMEM;
3776
3777         h->pdev = pdev;
3778         h->busy_initializing = 1;
3779         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
3780         INIT_LIST_HEAD(&h->cmpQ);
3781         INIT_LIST_HEAD(&h->reqQ);
3782         spin_lock_init(&h->lock);
3783         spin_lock_init(&h->scan_lock);
3784         rc = hpsa_pci_init(h);
3785         if (rc != 0)
3786                 goto clean1;
3787
3788         sprintf(h->devname, "hpsa%d", number_of_controllers);
3789         h->ctlr = number_of_controllers;
3790         number_of_controllers++;
3791
3792         /* configure PCI DMA stuff */
3793         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3794         if (rc == 0) {
3795                 dac = 1;
3796         } else {
3797                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3798                 if (rc == 0) {
3799                         dac = 0;
3800                 } else {
3801                         dev_err(&pdev->dev, "no suitable DMA available\n");
3802                         goto clean1;
3803                 }
3804         }
3805
3806         /* make sure the board interrupts are off */
3807         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3808
3809         if (h->msix_vector || h->msi_vector)
3810                 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_msi,
3811                                 IRQF_DISABLED, h->devname, h);
3812         else
3813                 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_intx,
3814                                 IRQF_DISABLED, h->devname, h);
3815         if (rc) {
3816                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3817                        h->intr[h->intr_mode], h->devname);
3818                 goto clean2;
3819         }
3820
3821         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3822                h->devname, pdev->device,
3823                h->intr[h->intr_mode], dac ? "" : " not");
3824
3825         h->cmd_pool_bits =
3826             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3827                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3828         h->cmd_pool = pci_alloc_consistent(h->pdev,
3829                     h->nr_cmds * sizeof(*h->cmd_pool),
3830                     &(h->cmd_pool_dhandle));
3831         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3832                     h->nr_cmds * sizeof(*h->errinfo_pool),
3833                     &(h->errinfo_pool_dhandle));
3834         if ((h->cmd_pool_bits == NULL)
3835             || (h->cmd_pool == NULL)
3836             || (h->errinfo_pool == NULL)) {
3837                 dev_err(&pdev->dev, "out of memory");
3838                 rc = -ENOMEM;
3839                 goto clean4;
3840         }
3841         if (hpsa_allocate_sg_chain_blocks(h))
3842                 goto clean4;
3843         init_waitqueue_head(&h->scan_wait_queue);
3844         h->scan_finished = 1; /* no scan currently in progress */
3845
3846         pci_set_drvdata(pdev, h);
3847         memset(h->cmd_pool_bits, 0,
3848                ((h->nr_cmds + BITS_PER_LONG -
3849                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3850
3851         hpsa_scsi_setup(h);
3852
3853         /* Turn the interrupts on so we can service requests */
3854         h->access.set_intr_mask(h, HPSA_INTR_ON);
3855
3856         hpsa_put_ctlr_into_performant_mode(h);
3857         hpsa_hba_inquiry(h);
3858         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3859         h->busy_initializing = 0;
3860         return 1;
3861
3862 clean4:
3863         hpsa_free_sg_chain_blocks(h);
3864         kfree(h->cmd_pool_bits);
3865         if (h->cmd_pool)
3866                 pci_free_consistent(h->pdev,
3867                             h->nr_cmds * sizeof(struct CommandList),
3868                             h->cmd_pool, h->cmd_pool_dhandle);
3869         if (h->errinfo_pool)
3870                 pci_free_consistent(h->pdev,
3871                             h->nr_cmds * sizeof(struct ErrorInfo),
3872                             h->errinfo_pool,
3873                             h->errinfo_pool_dhandle);
3874         free_irq(h->intr[h->intr_mode], h);
3875 clean2:
3876 clean1:
3877         h->busy_initializing = 0;
3878         kfree(h);
3879         return rc;
3880 }
3881
3882 static void hpsa_flush_cache(struct ctlr_info *h)
3883 {
3884         char *flush_buf;
3885         struct CommandList *c;
3886
3887         flush_buf = kzalloc(4, GFP_KERNEL);
3888         if (!flush_buf)
3889                 return;
3890
3891         c = cmd_special_alloc(h);
3892         if (!c) {
3893                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3894                 goto out_of_memory;
3895         }
3896         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3897                 RAID_CTLR_LUNID, TYPE_CMD);
3898         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3899         if (c->err_info->CommandStatus != 0)
3900                 dev_warn(&h->pdev->dev,
3901                         "error flushing cache on controller\n");
3902         cmd_special_free(h, c);
3903 out_of_memory:
3904         kfree(flush_buf);
3905 }
3906
3907 static void hpsa_shutdown(struct pci_dev *pdev)
3908 {
3909         struct ctlr_info *h;
3910
3911         h = pci_get_drvdata(pdev);
3912         /* Turn board interrupts off  and send the flush cache command
3913          * sendcmd will turn off interrupt, and send the flush...
3914          * To write all data in the battery backed cache to disks
3915          */
3916         hpsa_flush_cache(h);
3917         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3918         free_irq(h->intr[h->intr_mode], h);
3919 #ifdef CONFIG_PCI_MSI
3920         if (h->msix_vector)
3921                 pci_disable_msix(h->pdev);
3922         else if (h->msi_vector)
3923                 pci_disable_msi(h->pdev);
3924 #endif                          /* CONFIG_PCI_MSI */
3925 }
3926
3927 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3928 {
3929         struct ctlr_info *h;
3930
3931         if (pci_get_drvdata(pdev) == NULL) {
3932                 dev_err(&pdev->dev, "unable to remove device \n");
3933                 return;
3934         }
3935         h = pci_get_drvdata(pdev);
3936         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3937         hpsa_shutdown(pdev);
3938         iounmap(h->vaddr);
3939         iounmap(h->transtable);
3940         iounmap(h->cfgtable);
3941         hpsa_free_sg_chain_blocks(h);
3942         pci_free_consistent(h->pdev,
3943                 h->nr_cmds * sizeof(struct CommandList),
3944                 h->cmd_pool, h->cmd_pool_dhandle);
3945         pci_free_consistent(h->pdev,
3946                 h->nr_cmds * sizeof(struct ErrorInfo),
3947                 h->errinfo_pool, h->errinfo_pool_dhandle);
3948         pci_free_consistent(h->pdev, h->reply_pool_size,
3949                 h->reply_pool, h->reply_pool_dhandle);
3950         kfree(h->cmd_pool_bits);
3951         kfree(h->blockFetchTable);
3952         kfree(h->hba_inquiry_data);
3953         /*
3954          * Deliberately omit pci_disable_device(): it does something nasty to
3955          * Smart Array controllers that pci_enable_device does not undo
3956          */
3957         pci_release_regions(pdev);
3958         pci_set_drvdata(pdev, NULL);
3959         kfree(h);
3960 }
3961
3962 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3963         __attribute__((unused)) pm_message_t state)
3964 {
3965         return -ENOSYS;
3966 }
3967
3968 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3969 {
3970         return -ENOSYS;
3971 }
3972
3973 static struct pci_driver hpsa_pci_driver = {
3974         .name = "hpsa",
3975         .probe = hpsa_init_one,
3976         .remove = __devexit_p(hpsa_remove_one),
3977         .id_table = hpsa_pci_device_id, /* id_table */
3978         .shutdown = hpsa_shutdown,
3979         .suspend = hpsa_suspend,
3980         .resume = hpsa_resume,
3981 };
3982
3983 /* Fill in bucket_map[], given nsgs (the max number of
3984  * scatter gather elements supported) and bucket[],
3985  * which is an array of 8 integers.  The bucket[] array
3986  * contains 8 different DMA transfer sizes (in 16
3987  * byte increments) which the controller uses to fetch
3988  * commands.  This function fills in bucket_map[], which
3989  * maps a given number of scatter gather elements to one of
3990  * the 8 DMA transfer sizes.  The point of it is to allow the
3991  * controller to only do as much DMA as needed to fetch the
3992  * command, with the DMA transfer size encoded in the lower
3993  * bits of the command address.
3994  */
3995 static void  calc_bucket_map(int bucket[], int num_buckets,
3996         int nsgs, int *bucket_map)
3997 {
3998         int i, j, b, size;
3999
4000         /* even a command with 0 SGs requires 4 blocks */
4001 #define MINIMUM_TRANSFER_BLOCKS 4
4002 #define NUM_BUCKETS 8
4003         /* Note, bucket_map must have nsgs+1 entries. */
4004         for (i = 0; i <= nsgs; i++) {
4005                 /* Compute size of a command with i SG entries */
4006                 size = i + MINIMUM_TRANSFER_BLOCKS;
4007                 b = num_buckets; /* Assume the biggest bucket */
4008                 /* Find the bucket that is just big enough */
4009                 for (j = 0; j < 8; j++) {
4010                         if (bucket[j] >= size) {
4011                                 b = j;
4012                                 break;
4013                         }
4014                 }
4015                 /* for a command with i SG entries, use bucket b. */
4016                 bucket_map[i] = b;
4017         }
4018 }
4019
4020 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4021         u32 use_short_tags)
4022 {
4023         int i;
4024         unsigned long register_value;
4025
4026         /* This is a bit complicated.  There are 8 registers on
4027          * the controller which we write to to tell it 8 different
4028          * sizes of commands which there may be.  It's a way of
4029          * reducing the DMA done to fetch each command.  Encoded into
4030          * each command's tag are 3 bits which communicate to the controller
4031          * which of the eight sizes that command fits within.  The size of
4032          * each command depends on how many scatter gather entries there are.
4033          * Each SG entry requires 16 bytes.  The eight registers are programmed
4034          * with the number of 16-byte blocks a command of that size requires.
4035          * The smallest command possible requires 5 such 16 byte blocks.
4036          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4037          * blocks.  Note, this only extends to the SG entries contained
4038          * within the command block, and does not extend to chained blocks
4039          * of SG elements.   bft[] contains the eight values we write to
4040          * the registers.  They are not evenly distributed, but have more
4041          * sizes for small commands, and fewer sizes for larger commands.
4042          */
4043         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4044         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4045         /*  5 = 1 s/g entry or 4k
4046          *  6 = 2 s/g entry or 8k
4047          *  8 = 4 s/g entry or 16k
4048          * 10 = 6 s/g entry or 24k
4049          */
4050
4051         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4052
4053         /* Controller spec: zero out this buffer. */
4054         memset(h->reply_pool, 0, h->reply_pool_size);
4055         h->reply_pool_head = h->reply_pool;
4056
4057         bft[7] = h->max_sg_entries + 4;
4058         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4059         for (i = 0; i < 8; i++)
4060                 writel(bft[i], &h->transtable->BlockFetch[i]);
4061
4062         /* size of controller ring buffer */
4063         writel(h->max_commands, &h->transtable->RepQSize);
4064         writel(1, &h->transtable->RepQCount);
4065         writel(0, &h->transtable->RepQCtrAddrLow32);
4066         writel(0, &h->transtable->RepQCtrAddrHigh32);
4067         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4068         writel(0, &h->transtable->RepQAddr0High32);
4069         writel(CFGTBL_Trans_Performant | use_short_tags,
4070                 &(h->cfgtable->HostWrite.TransportRequest));
4071         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4072         hpsa_wait_for_mode_change_ack(h);
4073         register_value = readl(&(h->cfgtable->TransportActive));
4074         if (!(register_value & CFGTBL_Trans_Performant)) {
4075                 dev_warn(&h->pdev->dev, "unable to get board into"
4076                                         " performant mode\n");
4077                 return;
4078         }
4079         /* Change the access methods to the performant access methods */
4080         h->access = SA5_performant_access;
4081         h->transMethod = CFGTBL_Trans_Performant;
4082 }
4083
4084 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4085 {
4086         u32 trans_support;
4087
4088         if (hpsa_simple_mode)
4089                 return;
4090
4091         trans_support = readl(&(h->cfgtable->TransportSupport));
4092         if (!(trans_support & PERFORMANT_MODE))
4093                 return;
4094
4095         hpsa_get_max_perf_mode_cmds(h);
4096         h->max_sg_entries = 32;
4097         /* Performant mode ring buffer and supporting data structures */
4098         h->reply_pool_size = h->max_commands * sizeof(u64);
4099         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4100                                 &(h->reply_pool_dhandle));
4101
4102         /* Need a block fetch table for performant mode */
4103         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4104                                 sizeof(u32)), GFP_KERNEL);
4105
4106         if ((h->reply_pool == NULL)
4107                 || (h->blockFetchTable == NULL))
4108                 goto clean_up;
4109
4110         hpsa_enter_performant_mode(h,
4111                 trans_support & CFGTBL_Trans_use_short_tags);
4112
4113         return;
4114
4115 clean_up:
4116         if (h->reply_pool)
4117                 pci_free_consistent(h->pdev, h->reply_pool_size,
4118                         h->reply_pool, h->reply_pool_dhandle);
4119         kfree(h->blockFetchTable);
4120 }
4121
4122 /*
4123  *  This is it.  Register the PCI driver information for the cards we control
4124  *  the OS will call our registered routines when it finds one of our cards.
4125  */
4126 static int __init hpsa_init(void)
4127 {
4128         return pci_register_driver(&hpsa_pci_driver);
4129 }
4130
4131 static void __exit hpsa_cleanup(void)
4132 {
4133         pci_unregister_driver(&hpsa_pci_driver);
4134 }
4135
4136 module_init(hpsa_init);
4137 module_exit(hpsa_cleanup);