]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
e4b5f3cda82e9b617631e5382d7134279c96e592
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
93         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
94                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
95         {0,}
96 };
97
98 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
99
100 /*  board_id = Subsystem Device ID & Vendor ID
101  *  product = Marketing Name for the board
102  *  access = Address of the struct of function pointers
103  */
104 static struct board_type products[] = {
105         {0x3241103C, "Smart Array P212", &SA5_access},
106         {0x3243103C, "Smart Array P410", &SA5_access},
107         {0x3245103C, "Smart Array P410i", &SA5_access},
108         {0x3247103C, "Smart Array P411", &SA5_access},
109         {0x3249103C, "Smart Array P812", &SA5_access},
110         {0x324a103C, "Smart Array P712m", &SA5_access},
111         {0x324b103C, "Smart Array P711m", &SA5_access},
112         {0x3250103C, "Smart Array", &SA5_access},
113         {0x3250113C, "Smart Array", &SA5_access},
114         {0x3250123C, "Smart Array", &SA5_access},
115         {0x3250133C, "Smart Array", &SA5_access},
116         {0x3250143C, "Smart Array", &SA5_access},
117         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
118 };
119
120 static int number_of_controllers;
121
122 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
123 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
124 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
125 static void start_io(struct ctlr_info *h);
126
127 #ifdef CONFIG_COMPAT
128 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
129 #endif
130
131 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
132 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
133 static struct CommandList *cmd_alloc(struct ctlr_info *h);
134 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
135 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
136         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
137         int cmd_type);
138
139 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
140 static void hpsa_scan_start(struct Scsi_Host *);
141 static int hpsa_scan_finished(struct Scsi_Host *sh,
142         unsigned long elapsed_time);
143 static int hpsa_change_queue_depth(struct scsi_device *sdev,
144         int qdepth, int reason);
145
146 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
147 static int hpsa_slave_alloc(struct scsi_device *sdev);
148 static void hpsa_slave_destroy(struct scsi_device *sdev);
149
150 static ssize_t raid_level_show(struct device *dev,
151         struct device_attribute *attr, char *buf);
152 static ssize_t lunid_show(struct device *dev,
153         struct device_attribute *attr, char *buf);
154 static ssize_t unique_id_show(struct device *dev,
155         struct device_attribute *attr, char *buf);
156 static ssize_t host_show_firmware_revision(struct device *dev,
157              struct device_attribute *attr, char *buf);
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static ssize_t host_store_rescan(struct device *dev,
160          struct device_attribute *attr, const char *buf, size_t count);
161 static int check_for_unit_attention(struct ctlr_info *h,
162         struct CommandList *c);
163 static void check_ioctl_unit_attention(struct ctlr_info *h,
164         struct CommandList *c);
165 /* performant mode helper functions */
166 static void calc_bucket_map(int *bucket, int num_buckets,
167         int nsgs, int *bucket_map);
168 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
169 static inline u32 next_command(struct ctlr_info *h);
170 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
171         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
172         u64 *cfg_offset);
173 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
174         unsigned long *memory_bar);
175 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
176
177 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
178 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
179 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
180 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
181 static DEVICE_ATTR(firmware_revision, S_IRUGO,
182         host_show_firmware_revision, NULL);
183
184 static struct device_attribute *hpsa_sdev_attrs[] = {
185         &dev_attr_raid_level,
186         &dev_attr_lunid,
187         &dev_attr_unique_id,
188         NULL,
189 };
190
191 static struct device_attribute *hpsa_shost_attrs[] = {
192         &dev_attr_rescan,
193         &dev_attr_firmware_revision,
194         NULL,
195 };
196
197 static struct scsi_host_template hpsa_driver_template = {
198         .module                 = THIS_MODULE,
199         .name                   = "hpsa",
200         .proc_name              = "hpsa",
201         .queuecommand           = hpsa_scsi_queue_command,
202         .scan_start             = hpsa_scan_start,
203         .scan_finished          = hpsa_scan_finished,
204         .change_queue_depth     = hpsa_change_queue_depth,
205         .this_id                = -1,
206         .use_clustering         = ENABLE_CLUSTERING,
207         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
208         .ioctl                  = hpsa_ioctl,
209         .slave_alloc            = hpsa_slave_alloc,
210         .slave_destroy          = hpsa_slave_destroy,
211 #ifdef CONFIG_COMPAT
212         .compat_ioctl           = hpsa_compat_ioctl,
213 #endif
214         .sdev_attrs = hpsa_sdev_attrs,
215         .shost_attrs = hpsa_shost_attrs,
216 };
217
218 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
219 {
220         unsigned long *priv = shost_priv(sdev->host);
221         return (struct ctlr_info *) *priv;
222 }
223
224 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
225 {
226         unsigned long *priv = shost_priv(sh);
227         return (struct ctlr_info *) *priv;
228 }
229
230 static int check_for_unit_attention(struct ctlr_info *h,
231         struct CommandList *c)
232 {
233         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
234                 return 0;
235
236         switch (c->err_info->SenseInfo[12]) {
237         case STATE_CHANGED:
238                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
239                         "detected, command retried\n", h->ctlr);
240                 break;
241         case LUN_FAILED:
242                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
243                         "detected, action required\n", h->ctlr);
244                 break;
245         case REPORT_LUNS_CHANGED:
246                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
247                         "changed, action required\n", h->ctlr);
248         /*
249          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
250          */
251                 break;
252         case POWER_OR_RESET:
253                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
254                         "or device reset detected\n", h->ctlr);
255                 break;
256         case UNIT_ATTENTION_CLEARED:
257                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
258                     "cleared by another initiator\n", h->ctlr);
259                 break;
260         default:
261                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
262                         "unit attention detected\n", h->ctlr);
263                 break;
264         }
265         return 1;
266 }
267
268 static ssize_t host_store_rescan(struct device *dev,
269                                  struct device_attribute *attr,
270                                  const char *buf, size_t count)
271 {
272         struct ctlr_info *h;
273         struct Scsi_Host *shost = class_to_shost(dev);
274         h = shost_to_hba(shost);
275         hpsa_scan_start(h->scsi_host);
276         return count;
277 }
278
279 static ssize_t host_show_firmware_revision(struct device *dev,
280              struct device_attribute *attr, char *buf)
281 {
282         struct ctlr_info *h;
283         struct Scsi_Host *shost = class_to_shost(dev);
284         unsigned char *fwrev;
285
286         h = shost_to_hba(shost);
287         if (!h->hba_inquiry_data)
288                 return 0;
289         fwrev = &h->hba_inquiry_data[32];
290         return snprintf(buf, 20, "%c%c%c%c\n",
291                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
292 }
293
294 /* Enqueuing and dequeuing functions for cmdlists. */
295 static inline void addQ(struct hlist_head *list, struct CommandList *c)
296 {
297         hlist_add_head(&c->list, list);
298 }
299
300 static inline u32 next_command(struct ctlr_info *h)
301 {
302         u32 a;
303
304         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
305                 return h->access.command_completed(h);
306
307         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
308                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
309                 (h->reply_pool_head)++;
310                 h->commands_outstanding--;
311         } else {
312                 a = FIFO_EMPTY;
313         }
314         /* Check for wraparound */
315         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
316                 h->reply_pool_head = h->reply_pool;
317                 h->reply_pool_wraparound ^= 1;
318         }
319         return a;
320 }
321
322 /* set_performant_mode: Modify the tag for cciss performant
323  * set bit 0 for pull model, bits 3-1 for block fetch
324  * register number
325  */
326 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
327 {
328         if (likely(h->transMethod == CFGTBL_Trans_Performant))
329                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
330 }
331
332 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
333         struct CommandList *c)
334 {
335         unsigned long flags;
336
337         set_performant_mode(h, c);
338         spin_lock_irqsave(&h->lock, flags);
339         addQ(&h->reqQ, c);
340         h->Qdepth++;
341         start_io(h);
342         spin_unlock_irqrestore(&h->lock, flags);
343 }
344
345 static inline void removeQ(struct CommandList *c)
346 {
347         if (WARN_ON(hlist_unhashed(&c->list)))
348                 return;
349         hlist_del_init(&c->list);
350 }
351
352 static inline int is_hba_lunid(unsigned char scsi3addr[])
353 {
354         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
355 }
356
357 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
358 {
359         return (scsi3addr[3] & 0xC0) == 0x40;
360 }
361
362 static inline int is_scsi_rev_5(struct ctlr_info *h)
363 {
364         if (!h->hba_inquiry_data)
365                 return 0;
366         if ((h->hba_inquiry_data[2] & 0x07) == 5)
367                 return 1;
368         return 0;
369 }
370
371 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
372         "UNKNOWN"
373 };
374 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
375
376 static ssize_t raid_level_show(struct device *dev,
377              struct device_attribute *attr, char *buf)
378 {
379         ssize_t l = 0;
380         unsigned char rlevel;
381         struct ctlr_info *h;
382         struct scsi_device *sdev;
383         struct hpsa_scsi_dev_t *hdev;
384         unsigned long flags;
385
386         sdev = to_scsi_device(dev);
387         h = sdev_to_hba(sdev);
388         spin_lock_irqsave(&h->lock, flags);
389         hdev = sdev->hostdata;
390         if (!hdev) {
391                 spin_unlock_irqrestore(&h->lock, flags);
392                 return -ENODEV;
393         }
394
395         /* Is this even a logical drive? */
396         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
397                 spin_unlock_irqrestore(&h->lock, flags);
398                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
399                 return l;
400         }
401
402         rlevel = hdev->raid_level;
403         spin_unlock_irqrestore(&h->lock, flags);
404         if (rlevel > RAID_UNKNOWN)
405                 rlevel = RAID_UNKNOWN;
406         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
407         return l;
408 }
409
410 static ssize_t lunid_show(struct device *dev,
411              struct device_attribute *attr, char *buf)
412 {
413         struct ctlr_info *h;
414         struct scsi_device *sdev;
415         struct hpsa_scsi_dev_t *hdev;
416         unsigned long flags;
417         unsigned char lunid[8];
418
419         sdev = to_scsi_device(dev);
420         h = sdev_to_hba(sdev);
421         spin_lock_irqsave(&h->lock, flags);
422         hdev = sdev->hostdata;
423         if (!hdev) {
424                 spin_unlock_irqrestore(&h->lock, flags);
425                 return -ENODEV;
426         }
427         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
428         spin_unlock_irqrestore(&h->lock, flags);
429         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
430                 lunid[0], lunid[1], lunid[2], lunid[3],
431                 lunid[4], lunid[5], lunid[6], lunid[7]);
432 }
433
434 static ssize_t unique_id_show(struct device *dev,
435              struct device_attribute *attr, char *buf)
436 {
437         struct ctlr_info *h;
438         struct scsi_device *sdev;
439         struct hpsa_scsi_dev_t *hdev;
440         unsigned long flags;
441         unsigned char sn[16];
442
443         sdev = to_scsi_device(dev);
444         h = sdev_to_hba(sdev);
445         spin_lock_irqsave(&h->lock, flags);
446         hdev = sdev->hostdata;
447         if (!hdev) {
448                 spin_unlock_irqrestore(&h->lock, flags);
449                 return -ENODEV;
450         }
451         memcpy(sn, hdev->device_id, sizeof(sn));
452         spin_unlock_irqrestore(&h->lock, flags);
453         return snprintf(buf, 16 * 2 + 2,
454                         "%02X%02X%02X%02X%02X%02X%02X%02X"
455                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
456                         sn[0], sn[1], sn[2], sn[3],
457                         sn[4], sn[5], sn[6], sn[7],
458                         sn[8], sn[9], sn[10], sn[11],
459                         sn[12], sn[13], sn[14], sn[15]);
460 }
461
462 static int hpsa_find_target_lun(struct ctlr_info *h,
463         unsigned char scsi3addr[], int bus, int *target, int *lun)
464 {
465         /* finds an unused bus, target, lun for a new physical device
466          * assumes h->devlock is held
467          */
468         int i, found = 0;
469         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
470
471         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
472
473         for (i = 0; i < h->ndevices; i++) {
474                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
475                         set_bit(h->dev[i]->target, lun_taken);
476         }
477
478         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
479                 if (!test_bit(i, lun_taken)) {
480                         /* *bus = 1; */
481                         *target = i;
482                         *lun = 0;
483                         found = 1;
484                         break;
485                 }
486         }
487         return !found;
488 }
489
490 /* Add an entry into h->dev[] array. */
491 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
492                 struct hpsa_scsi_dev_t *device,
493                 struct hpsa_scsi_dev_t *added[], int *nadded)
494 {
495         /* assumes h->devlock is held */
496         int n = h->ndevices;
497         int i;
498         unsigned char addr1[8], addr2[8];
499         struct hpsa_scsi_dev_t *sd;
500
501         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
502                 dev_err(&h->pdev->dev, "too many devices, some will be "
503                         "inaccessible.\n");
504                 return -1;
505         }
506
507         /* physical devices do not have lun or target assigned until now. */
508         if (device->lun != -1)
509                 /* Logical device, lun is already assigned. */
510                 goto lun_assigned;
511
512         /* If this device a non-zero lun of a multi-lun device
513          * byte 4 of the 8-byte LUN addr will contain the logical
514          * unit no, zero otherise.
515          */
516         if (device->scsi3addr[4] == 0) {
517                 /* This is not a non-zero lun of a multi-lun device */
518                 if (hpsa_find_target_lun(h, device->scsi3addr,
519                         device->bus, &device->target, &device->lun) != 0)
520                         return -1;
521                 goto lun_assigned;
522         }
523
524         /* This is a non-zero lun of a multi-lun device.
525          * Search through our list and find the device which
526          * has the same 8 byte LUN address, excepting byte 4.
527          * Assign the same bus and target for this new LUN.
528          * Use the logical unit number from the firmware.
529          */
530         memcpy(addr1, device->scsi3addr, 8);
531         addr1[4] = 0;
532         for (i = 0; i < n; i++) {
533                 sd = h->dev[i];
534                 memcpy(addr2, sd->scsi3addr, 8);
535                 addr2[4] = 0;
536                 /* differ only in byte 4? */
537                 if (memcmp(addr1, addr2, 8) == 0) {
538                         device->bus = sd->bus;
539                         device->target = sd->target;
540                         device->lun = device->scsi3addr[4];
541                         break;
542                 }
543         }
544         if (device->lun == -1) {
545                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
546                         " suspect firmware bug or unsupported hardware "
547                         "configuration.\n");
548                         return -1;
549         }
550
551 lun_assigned:
552
553         h->dev[n] = device;
554         h->ndevices++;
555         added[*nadded] = device;
556         (*nadded)++;
557
558         /* initially, (before registering with scsi layer) we don't
559          * know our hostno and we don't want to print anything first
560          * time anyway (the scsi layer's inquiries will show that info)
561          */
562         /* if (hostno != -1) */
563                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
564                         scsi_device_type(device->devtype), hostno,
565                         device->bus, device->target, device->lun);
566         return 0;
567 }
568
569 /* Replace an entry from h->dev[] array. */
570 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
571         int entry, struct hpsa_scsi_dev_t *new_entry,
572         struct hpsa_scsi_dev_t *added[], int *nadded,
573         struct hpsa_scsi_dev_t *removed[], int *nremoved)
574 {
575         /* assumes h->devlock is held */
576         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
577         removed[*nremoved] = h->dev[entry];
578         (*nremoved)++;
579         h->dev[entry] = new_entry;
580         added[*nadded] = new_entry;
581         (*nadded)++;
582         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
583                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
584                         new_entry->target, new_entry->lun);
585 }
586
587 /* Remove an entry from h->dev[] array. */
588 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
589         struct hpsa_scsi_dev_t *removed[], int *nremoved)
590 {
591         /* assumes h->devlock is held */
592         int i;
593         struct hpsa_scsi_dev_t *sd;
594
595         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
596
597         sd = h->dev[entry];
598         removed[*nremoved] = h->dev[entry];
599         (*nremoved)++;
600
601         for (i = entry; i < h->ndevices-1; i++)
602                 h->dev[i] = h->dev[i+1];
603         h->ndevices--;
604         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
605                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
606                 sd->lun);
607 }
608
609 #define SCSI3ADDR_EQ(a, b) ( \
610         (a)[7] == (b)[7] && \
611         (a)[6] == (b)[6] && \
612         (a)[5] == (b)[5] && \
613         (a)[4] == (b)[4] && \
614         (a)[3] == (b)[3] && \
615         (a)[2] == (b)[2] && \
616         (a)[1] == (b)[1] && \
617         (a)[0] == (b)[0])
618
619 static void fixup_botched_add(struct ctlr_info *h,
620         struct hpsa_scsi_dev_t *added)
621 {
622         /* called when scsi_add_device fails in order to re-adjust
623          * h->dev[] to match the mid layer's view.
624          */
625         unsigned long flags;
626         int i, j;
627
628         spin_lock_irqsave(&h->lock, flags);
629         for (i = 0; i < h->ndevices; i++) {
630                 if (h->dev[i] == added) {
631                         for (j = i; j < h->ndevices-1; j++)
632                                 h->dev[j] = h->dev[j+1];
633                         h->ndevices--;
634                         break;
635                 }
636         }
637         spin_unlock_irqrestore(&h->lock, flags);
638         kfree(added);
639 }
640
641 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
642         struct hpsa_scsi_dev_t *dev2)
643 {
644         /* we compare everything except lun and target as these
645          * are not yet assigned.  Compare parts likely
646          * to differ first
647          */
648         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
649                 sizeof(dev1->scsi3addr)) != 0)
650                 return 0;
651         if (memcmp(dev1->device_id, dev2->device_id,
652                 sizeof(dev1->device_id)) != 0)
653                 return 0;
654         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
655                 return 0;
656         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
657                 return 0;
658         if (dev1->devtype != dev2->devtype)
659                 return 0;
660         if (dev1->bus != dev2->bus)
661                 return 0;
662         return 1;
663 }
664
665 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
666  * and return needle location in *index.  If scsi3addr matches, but not
667  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
668  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
669  */
670 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
671         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
672         int *index)
673 {
674         int i;
675 #define DEVICE_NOT_FOUND 0
676 #define DEVICE_CHANGED 1
677 #define DEVICE_SAME 2
678         for (i = 0; i < haystack_size; i++) {
679                 if (haystack[i] == NULL) /* previously removed. */
680                         continue;
681                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
682                         *index = i;
683                         if (device_is_the_same(needle, haystack[i]))
684                                 return DEVICE_SAME;
685                         else
686                                 return DEVICE_CHANGED;
687                 }
688         }
689         *index = -1;
690         return DEVICE_NOT_FOUND;
691 }
692
693 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
694         struct hpsa_scsi_dev_t *sd[], int nsds)
695 {
696         /* sd contains scsi3 addresses and devtypes, and inquiry
697          * data.  This function takes what's in sd to be the current
698          * reality and updates h->dev[] to reflect that reality.
699          */
700         int i, entry, device_change, changes = 0;
701         struct hpsa_scsi_dev_t *csd;
702         unsigned long flags;
703         struct hpsa_scsi_dev_t **added, **removed;
704         int nadded, nremoved;
705         struct Scsi_Host *sh = NULL;
706
707         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
708                 GFP_KERNEL);
709         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
710                 GFP_KERNEL);
711
712         if (!added || !removed) {
713                 dev_warn(&h->pdev->dev, "out of memory in "
714                         "adjust_hpsa_scsi_table\n");
715                 goto free_and_out;
716         }
717
718         spin_lock_irqsave(&h->devlock, flags);
719
720         /* find any devices in h->dev[] that are not in
721          * sd[] and remove them from h->dev[], and for any
722          * devices which have changed, remove the old device
723          * info and add the new device info.
724          */
725         i = 0;
726         nremoved = 0;
727         nadded = 0;
728         while (i < h->ndevices) {
729                 csd = h->dev[i];
730                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
731                 if (device_change == DEVICE_NOT_FOUND) {
732                         changes++;
733                         hpsa_scsi_remove_entry(h, hostno, i,
734                                 removed, &nremoved);
735                         continue; /* remove ^^^, hence i not incremented */
736                 } else if (device_change == DEVICE_CHANGED) {
737                         changes++;
738                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
739                                 added, &nadded, removed, &nremoved);
740                         /* Set it to NULL to prevent it from being freed
741                          * at the bottom of hpsa_update_scsi_devices()
742                          */
743                         sd[entry] = NULL;
744                 }
745                 i++;
746         }
747
748         /* Now, make sure every device listed in sd[] is also
749          * listed in h->dev[], adding them if they aren't found
750          */
751
752         for (i = 0; i < nsds; i++) {
753                 if (!sd[i]) /* if already added above. */
754                         continue;
755                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
756                                         h->ndevices, &entry);
757                 if (device_change == DEVICE_NOT_FOUND) {
758                         changes++;
759                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
760                                 added, &nadded) != 0)
761                                 break;
762                         sd[i] = NULL; /* prevent from being freed later. */
763                 } else if (device_change == DEVICE_CHANGED) {
764                         /* should never happen... */
765                         changes++;
766                         dev_warn(&h->pdev->dev,
767                                 "device unexpectedly changed.\n");
768                         /* but if it does happen, we just ignore that device */
769                 }
770         }
771         spin_unlock_irqrestore(&h->devlock, flags);
772
773         /* Don't notify scsi mid layer of any changes the first time through
774          * (or if there are no changes) scsi_scan_host will do it later the
775          * first time through.
776          */
777         if (hostno == -1 || !changes)
778                 goto free_and_out;
779
780         sh = h->scsi_host;
781         /* Notify scsi mid layer of any removed devices */
782         for (i = 0; i < nremoved; i++) {
783                 struct scsi_device *sdev =
784                         scsi_device_lookup(sh, removed[i]->bus,
785                                 removed[i]->target, removed[i]->lun);
786                 if (sdev != NULL) {
787                         scsi_remove_device(sdev);
788                         scsi_device_put(sdev);
789                 } else {
790                         /* We don't expect to get here.
791                          * future cmds to this device will get selection
792                          * timeout as if the device was gone.
793                          */
794                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
795                                 " for removal.", hostno, removed[i]->bus,
796                                 removed[i]->target, removed[i]->lun);
797                 }
798                 kfree(removed[i]);
799                 removed[i] = NULL;
800         }
801
802         /* Notify scsi mid layer of any added devices */
803         for (i = 0; i < nadded; i++) {
804                 if (scsi_add_device(sh, added[i]->bus,
805                         added[i]->target, added[i]->lun) == 0)
806                         continue;
807                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
808                         "device not added.\n", hostno, added[i]->bus,
809                         added[i]->target, added[i]->lun);
810                 /* now we have to remove it from h->dev,
811                  * since it didn't get added to scsi mid layer
812                  */
813                 fixup_botched_add(h, added[i]);
814         }
815
816 free_and_out:
817         kfree(added);
818         kfree(removed);
819 }
820
821 /*
822  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
823  * Assume's h->devlock is held.
824  */
825 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
826         int bus, int target, int lun)
827 {
828         int i;
829         struct hpsa_scsi_dev_t *sd;
830
831         for (i = 0; i < h->ndevices; i++) {
832                 sd = h->dev[i];
833                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
834                         return sd;
835         }
836         return NULL;
837 }
838
839 /* link sdev->hostdata to our per-device structure. */
840 static int hpsa_slave_alloc(struct scsi_device *sdev)
841 {
842         struct hpsa_scsi_dev_t *sd;
843         unsigned long flags;
844         struct ctlr_info *h;
845
846         h = sdev_to_hba(sdev);
847         spin_lock_irqsave(&h->devlock, flags);
848         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
849                 sdev_id(sdev), sdev->lun);
850         if (sd != NULL)
851                 sdev->hostdata = sd;
852         spin_unlock_irqrestore(&h->devlock, flags);
853         return 0;
854 }
855
856 static void hpsa_slave_destroy(struct scsi_device *sdev)
857 {
858         /* nothing to do. */
859 }
860
861 static void hpsa_scsi_setup(struct ctlr_info *h)
862 {
863         h->ndevices = 0;
864         h->scsi_host = NULL;
865         spin_lock_init(&h->devlock);
866 }
867
868 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
869 {
870         int i;
871
872         if (!h->cmd_sg_list)
873                 return;
874         for (i = 0; i < h->nr_cmds; i++) {
875                 kfree(h->cmd_sg_list[i]);
876                 h->cmd_sg_list[i] = NULL;
877         }
878         kfree(h->cmd_sg_list);
879         h->cmd_sg_list = NULL;
880 }
881
882 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
883 {
884         int i;
885
886         if (h->chainsize <= 0)
887                 return 0;
888
889         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
890                                 GFP_KERNEL);
891         if (!h->cmd_sg_list)
892                 return -ENOMEM;
893         for (i = 0; i < h->nr_cmds; i++) {
894                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
895                                                 h->chainsize, GFP_KERNEL);
896                 if (!h->cmd_sg_list[i])
897                         goto clean;
898         }
899         return 0;
900
901 clean:
902         hpsa_free_sg_chain_blocks(h);
903         return -ENOMEM;
904 }
905
906 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
907         struct CommandList *c)
908 {
909         struct SGDescriptor *chain_sg, *chain_block;
910         u64 temp64;
911
912         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
913         chain_block = h->cmd_sg_list[c->cmdindex];
914         chain_sg->Ext = HPSA_SG_CHAIN;
915         chain_sg->Len = sizeof(*chain_sg) *
916                 (c->Header.SGTotal - h->max_cmd_sg_entries);
917         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
918                                 PCI_DMA_TODEVICE);
919         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
920         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
921 }
922
923 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
924         struct CommandList *c)
925 {
926         struct SGDescriptor *chain_sg;
927         union u64bit temp64;
928
929         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
930                 return;
931
932         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
933         temp64.val32.lower = chain_sg->Addr.lower;
934         temp64.val32.upper = chain_sg->Addr.upper;
935         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
936 }
937
938 static void complete_scsi_command(struct CommandList *cp,
939         int timeout, u32 tag)
940 {
941         struct scsi_cmnd *cmd;
942         struct ctlr_info *h;
943         struct ErrorInfo *ei;
944
945         unsigned char sense_key;
946         unsigned char asc;      /* additional sense code */
947         unsigned char ascq;     /* additional sense code qualifier */
948
949         ei = cp->err_info;
950         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
951         h = cp->h;
952
953         scsi_dma_unmap(cmd); /* undo the DMA mappings */
954         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
955                 hpsa_unmap_sg_chain_block(h, cp);
956
957         cmd->result = (DID_OK << 16);           /* host byte */
958         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
959         cmd->result |= ei->ScsiStatus;
960
961         /* copy the sense data whether we need to or not. */
962         memcpy(cmd->sense_buffer, ei->SenseInfo,
963                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
964                         SCSI_SENSE_BUFFERSIZE :
965                         ei->SenseLen);
966         scsi_set_resid(cmd, ei->ResidualCnt);
967
968         if (ei->CommandStatus == 0) {
969                 cmd->scsi_done(cmd);
970                 cmd_free(h, cp);
971                 return;
972         }
973
974         /* an error has occurred */
975         switch (ei->CommandStatus) {
976
977         case CMD_TARGET_STATUS:
978                 if (ei->ScsiStatus) {
979                         /* Get sense key */
980                         sense_key = 0xf & ei->SenseInfo[2];
981                         /* Get additional sense code */
982                         asc = ei->SenseInfo[12];
983                         /* Get addition sense code qualifier */
984                         ascq = ei->SenseInfo[13];
985                 }
986
987                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
988                         if (check_for_unit_attention(h, cp)) {
989                                 cmd->result = DID_SOFT_ERROR << 16;
990                                 break;
991                         }
992                         if (sense_key == ILLEGAL_REQUEST) {
993                                 /*
994                                  * SCSI REPORT_LUNS is commonly unsupported on
995                                  * Smart Array.  Suppress noisy complaint.
996                                  */
997                                 if (cp->Request.CDB[0] == REPORT_LUNS)
998                                         break;
999
1000                                 /* If ASC/ASCQ indicate Logical Unit
1001                                  * Not Supported condition,
1002                                  */
1003                                 if ((asc == 0x25) && (ascq == 0x0)) {
1004                                         dev_warn(&h->pdev->dev, "cp %p "
1005                                                 "has check condition\n", cp);
1006                                         break;
1007                                 }
1008                         }
1009
1010                         if (sense_key == NOT_READY) {
1011                                 /* If Sense is Not Ready, Logical Unit
1012                                  * Not ready, Manual Intervention
1013                                  * required
1014                                  */
1015                                 if ((asc == 0x04) && (ascq == 0x03)) {
1016                                         dev_warn(&h->pdev->dev, "cp %p "
1017                                                 "has check condition: unit "
1018                                                 "not ready, manual "
1019                                                 "intervention required\n", cp);
1020                                         break;
1021                                 }
1022                         }
1023                         if (sense_key == ABORTED_COMMAND) {
1024                                 /* Aborted command is retryable */
1025                                 dev_warn(&h->pdev->dev, "cp %p "
1026                                         "has check condition: aborted command: "
1027                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1028                                         cp, asc, ascq);
1029                                 cmd->result = DID_SOFT_ERROR << 16;
1030                                 break;
1031                         }
1032                         /* Must be some other type of check condition */
1033                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1034                                         "unknown type: "
1035                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1036                                         "Returning result: 0x%x, "
1037                                         "cmd=[%02x %02x %02x %02x %02x "
1038                                         "%02x %02x %02x %02x %02x %02x "
1039                                         "%02x %02x %02x %02x %02x]\n",
1040                                         cp, sense_key, asc, ascq,
1041                                         cmd->result,
1042                                         cmd->cmnd[0], cmd->cmnd[1],
1043                                         cmd->cmnd[2], cmd->cmnd[3],
1044                                         cmd->cmnd[4], cmd->cmnd[5],
1045                                         cmd->cmnd[6], cmd->cmnd[7],
1046                                         cmd->cmnd[8], cmd->cmnd[9],
1047                                         cmd->cmnd[10], cmd->cmnd[11],
1048                                         cmd->cmnd[12], cmd->cmnd[13],
1049                                         cmd->cmnd[14], cmd->cmnd[15]);
1050                         break;
1051                 }
1052
1053
1054                 /* Problem was not a check condition
1055                  * Pass it up to the upper layers...
1056                  */
1057                 if (ei->ScsiStatus) {
1058                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1059                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1060                                 "Returning result: 0x%x\n",
1061                                 cp, ei->ScsiStatus,
1062                                 sense_key, asc, ascq,
1063                                 cmd->result);
1064                 } else {  /* scsi status is zero??? How??? */
1065                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1066                                 "Returning no connection.\n", cp),
1067
1068                         /* Ordinarily, this case should never happen,
1069                          * but there is a bug in some released firmware
1070                          * revisions that allows it to happen if, for
1071                          * example, a 4100 backplane loses power and
1072                          * the tape drive is in it.  We assume that
1073                          * it's a fatal error of some kind because we
1074                          * can't show that it wasn't. We will make it
1075                          * look like selection timeout since that is
1076                          * the most common reason for this to occur,
1077                          * and it's severe enough.
1078                          */
1079
1080                         cmd->result = DID_NO_CONNECT << 16;
1081                 }
1082                 break;
1083
1084         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1085                 break;
1086         case CMD_DATA_OVERRUN:
1087                 dev_warn(&h->pdev->dev, "cp %p has"
1088                         " completed with data overrun "
1089                         "reported\n", cp);
1090                 break;
1091         case CMD_INVALID: {
1092                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1093                 print_cmd(cp); */
1094                 /* We get CMD_INVALID if you address a non-existent device
1095                  * instead of a selection timeout (no response).  You will
1096                  * see this if you yank out a drive, then try to access it.
1097                  * This is kind of a shame because it means that any other
1098                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1099                  * missing target. */
1100                 cmd->result = DID_NO_CONNECT << 16;
1101         }
1102                 break;
1103         case CMD_PROTOCOL_ERR:
1104                 dev_warn(&h->pdev->dev, "cp %p has "
1105                         "protocol error \n", cp);
1106                 break;
1107         case CMD_HARDWARE_ERR:
1108                 cmd->result = DID_ERROR << 16;
1109                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1110                 break;
1111         case CMD_CONNECTION_LOST:
1112                 cmd->result = DID_ERROR << 16;
1113                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1114                 break;
1115         case CMD_ABORTED:
1116                 cmd->result = DID_ABORT << 16;
1117                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1118                                 cp, ei->ScsiStatus);
1119                 break;
1120         case CMD_ABORT_FAILED:
1121                 cmd->result = DID_ERROR << 16;
1122                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1123                 break;
1124         case CMD_UNSOLICITED_ABORT:
1125                 cmd->result = DID_RESET << 16;
1126                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1127                         "abort\n", cp);
1128                 break;
1129         case CMD_TIMEOUT:
1130                 cmd->result = DID_TIME_OUT << 16;
1131                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1132                 break;
1133         default:
1134                 cmd->result = DID_ERROR << 16;
1135                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1136                                 cp, ei->CommandStatus);
1137         }
1138         cmd->scsi_done(cmd);
1139         cmd_free(h, cp);
1140 }
1141
1142 static int hpsa_scsi_detect(struct ctlr_info *h)
1143 {
1144         struct Scsi_Host *sh;
1145         int error;
1146
1147         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1148         if (sh == NULL)
1149                 goto fail;
1150
1151         sh->io_port = 0;
1152         sh->n_io_port = 0;
1153         sh->this_id = -1;
1154         sh->max_channel = 3;
1155         sh->max_cmd_len = MAX_COMMAND_SIZE;
1156         sh->max_lun = HPSA_MAX_LUN;
1157         sh->max_id = HPSA_MAX_LUN;
1158         sh->can_queue = h->nr_cmds;
1159         sh->cmd_per_lun = h->nr_cmds;
1160         sh->sg_tablesize = h->maxsgentries;
1161         h->scsi_host = sh;
1162         sh->hostdata[0] = (unsigned long) h;
1163         sh->irq = h->intr[PERF_MODE_INT];
1164         sh->unique_id = sh->irq;
1165         error = scsi_add_host(sh, &h->pdev->dev);
1166         if (error)
1167                 goto fail_host_put;
1168         scsi_scan_host(sh);
1169         return 0;
1170
1171  fail_host_put:
1172         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1173                 " failed for controller %d\n", h->ctlr);
1174         scsi_host_put(sh);
1175         return error;
1176  fail:
1177         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1178                 " failed for controller %d\n", h->ctlr);
1179         return -ENOMEM;
1180 }
1181
1182 static void hpsa_pci_unmap(struct pci_dev *pdev,
1183         struct CommandList *c, int sg_used, int data_direction)
1184 {
1185         int i;
1186         union u64bit addr64;
1187
1188         for (i = 0; i < sg_used; i++) {
1189                 addr64.val32.lower = c->SG[i].Addr.lower;
1190                 addr64.val32.upper = c->SG[i].Addr.upper;
1191                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1192                         data_direction);
1193         }
1194 }
1195
1196 static void hpsa_map_one(struct pci_dev *pdev,
1197                 struct CommandList *cp,
1198                 unsigned char *buf,
1199                 size_t buflen,
1200                 int data_direction)
1201 {
1202         u64 addr64;
1203
1204         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1205                 cp->Header.SGList = 0;
1206                 cp->Header.SGTotal = 0;
1207                 return;
1208         }
1209
1210         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1211         cp->SG[0].Addr.lower =
1212           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1213         cp->SG[0].Addr.upper =
1214           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1215         cp->SG[0].Len = buflen;
1216         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1217         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1218 }
1219
1220 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1221         struct CommandList *c)
1222 {
1223         DECLARE_COMPLETION_ONSTACK(wait);
1224
1225         c->waiting = &wait;
1226         enqueue_cmd_and_start_io(h, c);
1227         wait_for_completion(&wait);
1228 }
1229
1230 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1231         struct CommandList *c, int data_direction)
1232 {
1233         int retry_count = 0;
1234
1235         do {
1236                 memset(c->err_info, 0, sizeof(c->err_info));
1237                 hpsa_scsi_do_simple_cmd_core(h, c);
1238                 retry_count++;
1239         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1240         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1241 }
1242
1243 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1244 {
1245         struct ErrorInfo *ei;
1246         struct device *d = &cp->h->pdev->dev;
1247
1248         ei = cp->err_info;
1249         switch (ei->CommandStatus) {
1250         case CMD_TARGET_STATUS:
1251                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1252                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1253                                 ei->ScsiStatus);
1254                 if (ei->ScsiStatus == 0)
1255                         dev_warn(d, "SCSI status is abnormally zero.  "
1256                         "(probably indicates selection timeout "
1257                         "reported incorrectly due to a known "
1258                         "firmware bug, circa July, 2001.)\n");
1259                 break;
1260         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1261                         dev_info(d, "UNDERRUN\n");
1262                 break;
1263         case CMD_DATA_OVERRUN:
1264                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1265                 break;
1266         case CMD_INVALID: {
1267                 /* controller unfortunately reports SCSI passthru's
1268                  * to non-existent targets as invalid commands.
1269                  */
1270                 dev_warn(d, "cp %p is reported invalid (probably means "
1271                         "target device no longer present)\n", cp);
1272                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1273                 print_cmd(cp);  */
1274                 }
1275                 break;
1276         case CMD_PROTOCOL_ERR:
1277                 dev_warn(d, "cp %p has protocol error \n", cp);
1278                 break;
1279         case CMD_HARDWARE_ERR:
1280                 /* cmd->result = DID_ERROR << 16; */
1281                 dev_warn(d, "cp %p had hardware error\n", cp);
1282                 break;
1283         case CMD_CONNECTION_LOST:
1284                 dev_warn(d, "cp %p had connection lost\n", cp);
1285                 break;
1286         case CMD_ABORTED:
1287                 dev_warn(d, "cp %p was aborted\n", cp);
1288                 break;
1289         case CMD_ABORT_FAILED:
1290                 dev_warn(d, "cp %p reports abort failed\n", cp);
1291                 break;
1292         case CMD_UNSOLICITED_ABORT:
1293                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1294                 break;
1295         case CMD_TIMEOUT:
1296                 dev_warn(d, "cp %p timed out\n", cp);
1297                 break;
1298         default:
1299                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1300                                 ei->CommandStatus);
1301         }
1302 }
1303
1304 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1305                         unsigned char page, unsigned char *buf,
1306                         unsigned char bufsize)
1307 {
1308         int rc = IO_OK;
1309         struct CommandList *c;
1310         struct ErrorInfo *ei;
1311
1312         c = cmd_special_alloc(h);
1313
1314         if (c == NULL) {                        /* trouble... */
1315                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1316                 return -ENOMEM;
1317         }
1318
1319         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1320         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1321         ei = c->err_info;
1322         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1323                 hpsa_scsi_interpret_error(c);
1324                 rc = -1;
1325         }
1326         cmd_special_free(h, c);
1327         return rc;
1328 }
1329
1330 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1331 {
1332         int rc = IO_OK;
1333         struct CommandList *c;
1334         struct ErrorInfo *ei;
1335
1336         c = cmd_special_alloc(h);
1337
1338         if (c == NULL) {                        /* trouble... */
1339                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1340                 return -ENOMEM;
1341         }
1342
1343         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1344         hpsa_scsi_do_simple_cmd_core(h, c);
1345         /* no unmap needed here because no data xfer. */
1346
1347         ei = c->err_info;
1348         if (ei->CommandStatus != 0) {
1349                 hpsa_scsi_interpret_error(c);
1350                 rc = -1;
1351         }
1352         cmd_special_free(h, c);
1353         return rc;
1354 }
1355
1356 static void hpsa_get_raid_level(struct ctlr_info *h,
1357         unsigned char *scsi3addr, unsigned char *raid_level)
1358 {
1359         int rc;
1360         unsigned char *buf;
1361
1362         *raid_level = RAID_UNKNOWN;
1363         buf = kzalloc(64, GFP_KERNEL);
1364         if (!buf)
1365                 return;
1366         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1367         if (rc == 0)
1368                 *raid_level = buf[8];
1369         if (*raid_level > RAID_UNKNOWN)
1370                 *raid_level = RAID_UNKNOWN;
1371         kfree(buf);
1372         return;
1373 }
1374
1375 /* Get the device id from inquiry page 0x83 */
1376 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1377         unsigned char *device_id, int buflen)
1378 {
1379         int rc;
1380         unsigned char *buf;
1381
1382         if (buflen > 16)
1383                 buflen = 16;
1384         buf = kzalloc(64, GFP_KERNEL);
1385         if (!buf)
1386                 return -1;
1387         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1388         if (rc == 0)
1389                 memcpy(device_id, &buf[8], buflen);
1390         kfree(buf);
1391         return rc != 0;
1392 }
1393
1394 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1395                 struct ReportLUNdata *buf, int bufsize,
1396                 int extended_response)
1397 {
1398         int rc = IO_OK;
1399         struct CommandList *c;
1400         unsigned char scsi3addr[8];
1401         struct ErrorInfo *ei;
1402
1403         c = cmd_special_alloc(h);
1404         if (c == NULL) {                        /* trouble... */
1405                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1406                 return -1;
1407         }
1408         /* address the controller */
1409         memset(scsi3addr, 0, sizeof(scsi3addr));
1410         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1411                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1412         if (extended_response)
1413                 c->Request.CDB[1] = extended_response;
1414         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1415         ei = c->err_info;
1416         if (ei->CommandStatus != 0 &&
1417             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1418                 hpsa_scsi_interpret_error(c);
1419                 rc = -1;
1420         }
1421         cmd_special_free(h, c);
1422         return rc;
1423 }
1424
1425 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1426                 struct ReportLUNdata *buf,
1427                 int bufsize, int extended_response)
1428 {
1429         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1430 }
1431
1432 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1433                 struct ReportLUNdata *buf, int bufsize)
1434 {
1435         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1436 }
1437
1438 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1439         int bus, int target, int lun)
1440 {
1441         device->bus = bus;
1442         device->target = target;
1443         device->lun = lun;
1444 }
1445
1446 static int hpsa_update_device_info(struct ctlr_info *h,
1447         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1448 {
1449 #define OBDR_TAPE_INQ_SIZE 49
1450         unsigned char *inq_buff;
1451
1452         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1453         if (!inq_buff)
1454                 goto bail_out;
1455
1456         /* Do an inquiry to the device to see what it is. */
1457         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1458                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1459                 /* Inquiry failed (msg printed already) */
1460                 dev_err(&h->pdev->dev,
1461                         "hpsa_update_device_info: inquiry failed\n");
1462                 goto bail_out;
1463         }
1464
1465         this_device->devtype = (inq_buff[0] & 0x1f);
1466         memcpy(this_device->scsi3addr, scsi3addr, 8);
1467         memcpy(this_device->vendor, &inq_buff[8],
1468                 sizeof(this_device->vendor));
1469         memcpy(this_device->model, &inq_buff[16],
1470                 sizeof(this_device->model));
1471         memset(this_device->device_id, 0,
1472                 sizeof(this_device->device_id));
1473         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1474                 sizeof(this_device->device_id));
1475
1476         if (this_device->devtype == TYPE_DISK &&
1477                 is_logical_dev_addr_mode(scsi3addr))
1478                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1479         else
1480                 this_device->raid_level = RAID_UNKNOWN;
1481
1482         kfree(inq_buff);
1483         return 0;
1484
1485 bail_out:
1486         kfree(inq_buff);
1487         return 1;
1488 }
1489
1490 static unsigned char *msa2xxx_model[] = {
1491         "MSA2012",
1492         "MSA2024",
1493         "MSA2312",
1494         "MSA2324",
1495         NULL,
1496 };
1497
1498 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1499 {
1500         int i;
1501
1502         for (i = 0; msa2xxx_model[i]; i++)
1503                 if (strncmp(device->model, msa2xxx_model[i],
1504                         strlen(msa2xxx_model[i])) == 0)
1505                         return 1;
1506         return 0;
1507 }
1508
1509 /* Helper function to assign bus, target, lun mapping of devices.
1510  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1511  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1512  * Logical drive target and lun are assigned at this time, but
1513  * physical device lun and target assignment are deferred (assigned
1514  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1515  */
1516 static void figure_bus_target_lun(struct ctlr_info *h,
1517         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1518         struct hpsa_scsi_dev_t *device)
1519 {
1520         u32 lunid;
1521
1522         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1523                 /* logical device */
1524                 if (unlikely(is_scsi_rev_5(h))) {
1525                         /* p1210m, logical drives lun assignments
1526                          * match SCSI REPORT LUNS data.
1527                          */
1528                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1529                         *bus = 0;
1530                         *target = 0;
1531                         *lun = (lunid & 0x3fff) + 1;
1532                 } else {
1533                         /* not p1210m... */
1534                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1535                         if (is_msa2xxx(h, device)) {
1536                                 /* msa2xxx way, put logicals on bus 1
1537                                  * and match target/lun numbers box
1538                                  * reports.
1539                                  */
1540                                 *bus = 1;
1541                                 *target = (lunid >> 16) & 0x3fff;
1542                                 *lun = lunid & 0x00ff;
1543                         } else {
1544                                 /* Traditional smart array way. */
1545                                 *bus = 0;
1546                                 *lun = 0;
1547                                 *target = lunid & 0x3fff;
1548                         }
1549                 }
1550         } else {
1551                 /* physical device */
1552                 if (is_hba_lunid(lunaddrbytes))
1553                         if (unlikely(is_scsi_rev_5(h))) {
1554                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1555                                 *target = 0;
1556                                 *lun = 0;
1557                                 return;
1558                         } else
1559                                 *bus = 3; /* traditional smartarray */
1560                 else
1561                         *bus = 2; /* physical disk */
1562                 *target = -1;
1563                 *lun = -1; /* we will fill these in later. */
1564         }
1565 }
1566
1567 /*
1568  * If there is no lun 0 on a target, linux won't find any devices.
1569  * For the MSA2xxx boxes, we have to manually detect the enclosure
1570  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1571  * it for some reason.  *tmpdevice is the target we're adding,
1572  * this_device is a pointer into the current element of currentsd[]
1573  * that we're building up in update_scsi_devices(), below.
1574  * lunzerobits is a bitmap that tracks which targets already have a
1575  * lun 0 assigned.
1576  * Returns 1 if an enclosure was added, 0 if not.
1577  */
1578 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1579         struct hpsa_scsi_dev_t *tmpdevice,
1580         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1581         int bus, int target, int lun, unsigned long lunzerobits[],
1582         int *nmsa2xxx_enclosures)
1583 {
1584         unsigned char scsi3addr[8];
1585
1586         if (test_bit(target, lunzerobits))
1587                 return 0; /* There is already a lun 0 on this target. */
1588
1589         if (!is_logical_dev_addr_mode(lunaddrbytes))
1590                 return 0; /* It's the logical targets that may lack lun 0. */
1591
1592         if (!is_msa2xxx(h, tmpdevice))
1593                 return 0; /* It's only the MSA2xxx that have this problem. */
1594
1595         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1596                 return 0;
1597
1598         if (is_hba_lunid(scsi3addr))
1599                 return 0; /* Don't add the RAID controller here. */
1600
1601         if (is_scsi_rev_5(h))
1602                 return 0; /* p1210m doesn't need to do this. */
1603
1604 #define MAX_MSA2XXX_ENCLOSURES 32
1605         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1606                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1607                         "enclosures exceeded.  Check your hardware "
1608                         "configuration.");
1609                 return 0;
1610         }
1611
1612         memset(scsi3addr, 0, 8);
1613         scsi3addr[3] = target;
1614         if (hpsa_update_device_info(h, scsi3addr, this_device))
1615                 return 0;
1616         (*nmsa2xxx_enclosures)++;
1617         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1618         set_bit(target, lunzerobits);
1619         return 1;
1620 }
1621
1622 /*
1623  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1624  * logdev.  The number of luns in physdev and logdev are returned in
1625  * *nphysicals and *nlogicals, respectively.
1626  * Returns 0 on success, -1 otherwise.
1627  */
1628 static int hpsa_gather_lun_info(struct ctlr_info *h,
1629         int reportlunsize,
1630         struct ReportLUNdata *physdev, u32 *nphysicals,
1631         struct ReportLUNdata *logdev, u32 *nlogicals)
1632 {
1633         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1634                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1635                 return -1;
1636         }
1637         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1638         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1639                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1640                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1641                         *nphysicals - HPSA_MAX_PHYS_LUN);
1642                 *nphysicals = HPSA_MAX_PHYS_LUN;
1643         }
1644         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1645                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1646                 return -1;
1647         }
1648         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1649         /* Reject Logicals in excess of our max capability. */
1650         if (*nlogicals > HPSA_MAX_LUN) {
1651                 dev_warn(&h->pdev->dev,
1652                         "maximum logical LUNs (%d) exceeded.  "
1653                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1654                         *nlogicals - HPSA_MAX_LUN);
1655                         *nlogicals = HPSA_MAX_LUN;
1656         }
1657         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1658                 dev_warn(&h->pdev->dev,
1659                         "maximum logical + physical LUNs (%d) exceeded. "
1660                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1661                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1662                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1663         }
1664         return 0;
1665 }
1666
1667 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1668         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1669         struct ReportLUNdata *logdev_list)
1670 {
1671         /* Helper function, figure out where the LUN ID info is coming from
1672          * given index i, lists of physical and logical devices, where in
1673          * the list the raid controller is supposed to appear (first or last)
1674          */
1675
1676         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1677         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1678
1679         if (i == raid_ctlr_position)
1680                 return RAID_CTLR_LUNID;
1681
1682         if (i < logicals_start)
1683                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1684
1685         if (i < last_device)
1686                 return &logdev_list->LUN[i - nphysicals -
1687                         (raid_ctlr_position == 0)][0];
1688         BUG();
1689         return NULL;
1690 }
1691
1692 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1693 {
1694         /* the idea here is we could get notified
1695          * that some devices have changed, so we do a report
1696          * physical luns and report logical luns cmd, and adjust
1697          * our list of devices accordingly.
1698          *
1699          * The scsi3addr's of devices won't change so long as the
1700          * adapter is not reset.  That means we can rescan and
1701          * tell which devices we already know about, vs. new
1702          * devices, vs.  disappearing devices.
1703          */
1704         struct ReportLUNdata *physdev_list = NULL;
1705         struct ReportLUNdata *logdev_list = NULL;
1706         unsigned char *inq_buff = NULL;
1707         u32 nphysicals = 0;
1708         u32 nlogicals = 0;
1709         u32 ndev_allocated = 0;
1710         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1711         int ncurrent = 0;
1712         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1713         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1714         int bus, target, lun;
1715         int raid_ctlr_position;
1716         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1717
1718         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1719                 GFP_KERNEL);
1720         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1721         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1722         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1723         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1724
1725         if (!currentsd || !physdev_list || !logdev_list ||
1726                 !inq_buff || !tmpdevice) {
1727                 dev_err(&h->pdev->dev, "out of memory\n");
1728                 goto out;
1729         }
1730         memset(lunzerobits, 0, sizeof(lunzerobits));
1731
1732         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1733                         logdev_list, &nlogicals))
1734                 goto out;
1735
1736         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1737          * but each of them 4 times through different paths.  The plus 1
1738          * is for the RAID controller.
1739          */
1740         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1741
1742         /* Allocate the per device structures */
1743         for (i = 0; i < ndevs_to_allocate; i++) {
1744                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1745                 if (!currentsd[i]) {
1746                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1747                                 __FILE__, __LINE__);
1748                         goto out;
1749                 }
1750                 ndev_allocated++;
1751         }
1752
1753         if (unlikely(is_scsi_rev_5(h)))
1754                 raid_ctlr_position = 0;
1755         else
1756                 raid_ctlr_position = nphysicals + nlogicals;
1757
1758         /* adjust our table of devices */
1759         nmsa2xxx_enclosures = 0;
1760         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1761                 u8 *lunaddrbytes;
1762
1763                 /* Figure out where the LUN ID info is coming from */
1764                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1765                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1766                 /* skip masked physical devices. */
1767                 if (lunaddrbytes[3] & 0xC0 &&
1768                         i < nphysicals + (raid_ctlr_position == 0))
1769                         continue;
1770
1771                 /* Get device type, vendor, model, device id */
1772                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1773                         continue; /* skip it if we can't talk to it. */
1774                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1775                         tmpdevice);
1776                 this_device = currentsd[ncurrent];
1777
1778                 /*
1779                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1780                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1781                  * is nonetheless an enclosure device there.  We have to
1782                  * present that otherwise linux won't find anything if
1783                  * there is no lun 0.
1784                  */
1785                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1786                                 lunaddrbytes, bus, target, lun, lunzerobits,
1787                                 &nmsa2xxx_enclosures)) {
1788                         ncurrent++;
1789                         this_device = currentsd[ncurrent];
1790                 }
1791
1792                 *this_device = *tmpdevice;
1793                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1794
1795                 switch (this_device->devtype) {
1796                 case TYPE_ROM: {
1797                         /* We don't *really* support actual CD-ROM devices,
1798                          * just "One Button Disaster Recovery" tape drive
1799                          * which temporarily pretends to be a CD-ROM drive.
1800                          * So we check that the device is really an OBDR tape
1801                          * device by checking for "$DR-10" in bytes 43-48 of
1802                          * the inquiry data.
1803                          */
1804                                 char obdr_sig[7];
1805 #define OBDR_TAPE_SIG "$DR-10"
1806                                 strncpy(obdr_sig, &inq_buff[43], 6);
1807                                 obdr_sig[6] = '\0';
1808                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1809                                         /* Not OBDR device, ignore it. */
1810                                         break;
1811                         }
1812                         ncurrent++;
1813                         break;
1814                 case TYPE_DISK:
1815                         if (i < nphysicals)
1816                                 break;
1817                         ncurrent++;
1818                         break;
1819                 case TYPE_TAPE:
1820                 case TYPE_MEDIUM_CHANGER:
1821                         ncurrent++;
1822                         break;
1823                 case TYPE_RAID:
1824                         /* Only present the Smartarray HBA as a RAID controller.
1825                          * If it's a RAID controller other than the HBA itself
1826                          * (an external RAID controller, MSA500 or similar)
1827                          * don't present it.
1828                          */
1829                         if (!is_hba_lunid(lunaddrbytes))
1830                                 break;
1831                         ncurrent++;
1832                         break;
1833                 default:
1834                         break;
1835                 }
1836                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1837                         break;
1838         }
1839         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1840 out:
1841         kfree(tmpdevice);
1842         for (i = 0; i < ndev_allocated; i++)
1843                 kfree(currentsd[i]);
1844         kfree(currentsd);
1845         kfree(inq_buff);
1846         kfree(physdev_list);
1847         kfree(logdev_list);
1848 }
1849
1850 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1851  * dma mapping  and fills in the scatter gather entries of the
1852  * hpsa command, cp.
1853  */
1854 static int hpsa_scatter_gather(struct ctlr_info *h,
1855                 struct CommandList *cp,
1856                 struct scsi_cmnd *cmd)
1857 {
1858         unsigned int len;
1859         struct scatterlist *sg;
1860         u64 addr64;
1861         int use_sg, i, sg_index, chained;
1862         struct SGDescriptor *curr_sg;
1863
1864         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1865
1866         use_sg = scsi_dma_map(cmd);
1867         if (use_sg < 0)
1868                 return use_sg;
1869
1870         if (!use_sg)
1871                 goto sglist_finished;
1872
1873         curr_sg = cp->SG;
1874         chained = 0;
1875         sg_index = 0;
1876         scsi_for_each_sg(cmd, sg, use_sg, i) {
1877                 if (i == h->max_cmd_sg_entries - 1 &&
1878                         use_sg > h->max_cmd_sg_entries) {
1879                         chained = 1;
1880                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1881                         sg_index = 0;
1882                 }
1883                 addr64 = (u64) sg_dma_address(sg);
1884                 len  = sg_dma_len(sg);
1885                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1886                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1887                 curr_sg->Len = len;
1888                 curr_sg->Ext = 0;  /* we are not chaining */
1889                 curr_sg++;
1890         }
1891
1892         if (use_sg + chained > h->maxSG)
1893                 h->maxSG = use_sg + chained;
1894
1895         if (chained) {
1896                 cp->Header.SGList = h->max_cmd_sg_entries;
1897                 cp->Header.SGTotal = (u16) (use_sg + 1);
1898                 hpsa_map_sg_chain_block(h, cp);
1899                 return 0;
1900         }
1901
1902 sglist_finished:
1903
1904         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1905         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1906         return 0;
1907 }
1908
1909
1910 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1911         void (*done)(struct scsi_cmnd *))
1912 {
1913         struct ctlr_info *h;
1914         struct hpsa_scsi_dev_t *dev;
1915         unsigned char scsi3addr[8];
1916         struct CommandList *c;
1917         unsigned long flags;
1918
1919         /* Get the ptr to our adapter structure out of cmd->host. */
1920         h = sdev_to_hba(cmd->device);
1921         dev = cmd->device->hostdata;
1922         if (!dev) {
1923                 cmd->result = DID_NO_CONNECT << 16;
1924                 done(cmd);
1925                 return 0;
1926         }
1927         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1928
1929         /* Need a lock as this is being allocated from the pool */
1930         spin_lock_irqsave(&h->lock, flags);
1931         c = cmd_alloc(h);
1932         spin_unlock_irqrestore(&h->lock, flags);
1933         if (c == NULL) {                        /* trouble... */
1934                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1935                 return SCSI_MLQUEUE_HOST_BUSY;
1936         }
1937
1938         /* Fill in the command list header */
1939
1940         cmd->scsi_done = done;    /* save this for use by completion code */
1941
1942         /* save c in case we have to abort it  */
1943         cmd->host_scribble = (unsigned char *) c;
1944
1945         c->cmd_type = CMD_SCSI;
1946         c->scsi_cmd = cmd;
1947         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1948         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1949         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1950         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1951
1952         /* Fill in the request block... */
1953
1954         c->Request.Timeout = 0;
1955         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1956         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1957         c->Request.CDBLen = cmd->cmd_len;
1958         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1959         c->Request.Type.Type = TYPE_CMD;
1960         c->Request.Type.Attribute = ATTR_SIMPLE;
1961         switch (cmd->sc_data_direction) {
1962         case DMA_TO_DEVICE:
1963                 c->Request.Type.Direction = XFER_WRITE;
1964                 break;
1965         case DMA_FROM_DEVICE:
1966                 c->Request.Type.Direction = XFER_READ;
1967                 break;
1968         case DMA_NONE:
1969                 c->Request.Type.Direction = XFER_NONE;
1970                 break;
1971         case DMA_BIDIRECTIONAL:
1972                 /* This can happen if a buggy application does a scsi passthru
1973                  * and sets both inlen and outlen to non-zero. ( see
1974                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1975                  */
1976
1977                 c->Request.Type.Direction = XFER_RSVD;
1978                 /* This is technically wrong, and hpsa controllers should
1979                  * reject it with CMD_INVALID, which is the most correct
1980                  * response, but non-fibre backends appear to let it
1981                  * slide by, and give the same results as if this field
1982                  * were set correctly.  Either way is acceptable for
1983                  * our purposes here.
1984                  */
1985
1986                 break;
1987
1988         default:
1989                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1990                         cmd->sc_data_direction);
1991                 BUG();
1992                 break;
1993         }
1994
1995         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
1996                 cmd_free(h, c);
1997                 return SCSI_MLQUEUE_HOST_BUSY;
1998         }
1999         enqueue_cmd_and_start_io(h, c);
2000         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2001         return 0;
2002 }
2003
2004 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2005
2006 static void hpsa_scan_start(struct Scsi_Host *sh)
2007 {
2008         struct ctlr_info *h = shost_to_hba(sh);
2009         unsigned long flags;
2010
2011         /* wait until any scan already in progress is finished. */
2012         while (1) {
2013                 spin_lock_irqsave(&h->scan_lock, flags);
2014                 if (h->scan_finished)
2015                         break;
2016                 spin_unlock_irqrestore(&h->scan_lock, flags);
2017                 wait_event(h->scan_wait_queue, h->scan_finished);
2018                 /* Note: We don't need to worry about a race between this
2019                  * thread and driver unload because the midlayer will
2020                  * have incremented the reference count, so unload won't
2021                  * happen if we're in here.
2022                  */
2023         }
2024         h->scan_finished = 0; /* mark scan as in progress */
2025         spin_unlock_irqrestore(&h->scan_lock, flags);
2026
2027         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2028
2029         spin_lock_irqsave(&h->scan_lock, flags);
2030         h->scan_finished = 1; /* mark scan as finished. */
2031         wake_up_all(&h->scan_wait_queue);
2032         spin_unlock_irqrestore(&h->scan_lock, flags);
2033 }
2034
2035 static int hpsa_scan_finished(struct Scsi_Host *sh,
2036         unsigned long elapsed_time)
2037 {
2038         struct ctlr_info *h = shost_to_hba(sh);
2039         unsigned long flags;
2040         int finished;
2041
2042         spin_lock_irqsave(&h->scan_lock, flags);
2043         finished = h->scan_finished;
2044         spin_unlock_irqrestore(&h->scan_lock, flags);
2045         return finished;
2046 }
2047
2048 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2049         int qdepth, int reason)
2050 {
2051         struct ctlr_info *h = sdev_to_hba(sdev);
2052
2053         if (reason != SCSI_QDEPTH_DEFAULT)
2054                 return -ENOTSUPP;
2055
2056         if (qdepth < 1)
2057                 qdepth = 1;
2058         else
2059                 if (qdepth > h->nr_cmds)
2060                         qdepth = h->nr_cmds;
2061         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2062         return sdev->queue_depth;
2063 }
2064
2065 static void hpsa_unregister_scsi(struct ctlr_info *h)
2066 {
2067         /* we are being forcibly unloaded, and may not refuse. */
2068         scsi_remove_host(h->scsi_host);
2069         scsi_host_put(h->scsi_host);
2070         h->scsi_host = NULL;
2071 }
2072
2073 static int hpsa_register_scsi(struct ctlr_info *h)
2074 {
2075         int rc;
2076
2077         rc = hpsa_scsi_detect(h);
2078         if (rc != 0)
2079                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2080                         " hpsa_scsi_detect(), rc is %d\n", rc);
2081         return rc;
2082 }
2083
2084 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2085         unsigned char lunaddr[])
2086 {
2087         int rc = 0;
2088         int count = 0;
2089         int waittime = 1; /* seconds */
2090         struct CommandList *c;
2091
2092         c = cmd_special_alloc(h);
2093         if (!c) {
2094                 dev_warn(&h->pdev->dev, "out of memory in "
2095                         "wait_for_device_to_become_ready.\n");
2096                 return IO_ERROR;
2097         }
2098
2099         /* Send test unit ready until device ready, or give up. */
2100         while (count < HPSA_TUR_RETRY_LIMIT) {
2101
2102                 /* Wait for a bit.  do this first, because if we send
2103                  * the TUR right away, the reset will just abort it.
2104                  */
2105                 msleep(1000 * waittime);
2106                 count++;
2107
2108                 /* Increase wait time with each try, up to a point. */
2109                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2110                         waittime = waittime * 2;
2111
2112                 /* Send the Test Unit Ready */
2113                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2114                 hpsa_scsi_do_simple_cmd_core(h, c);
2115                 /* no unmap needed here because no data xfer. */
2116
2117                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2118                         break;
2119
2120                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2121                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2122                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2123                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2124                         break;
2125
2126                 dev_warn(&h->pdev->dev, "waiting %d secs "
2127                         "for device to become ready.\n", waittime);
2128                 rc = 1; /* device not ready. */
2129         }
2130
2131         if (rc)
2132                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2133         else
2134                 dev_warn(&h->pdev->dev, "device is ready.\n");
2135
2136         cmd_special_free(h, c);
2137         return rc;
2138 }
2139
2140 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2141  * complaining.  Doing a host- or bus-reset can't do anything good here.
2142  */
2143 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2144 {
2145         int rc;
2146         struct ctlr_info *h;
2147         struct hpsa_scsi_dev_t *dev;
2148
2149         /* find the controller to which the command to be aborted was sent */
2150         h = sdev_to_hba(scsicmd->device);
2151         if (h == NULL) /* paranoia */
2152                 return FAILED;
2153         dev = scsicmd->device->hostdata;
2154         if (!dev) {
2155                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2156                         "device lookup failed.\n");
2157                 return FAILED;
2158         }
2159         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2160                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2161         /* send a reset to the SCSI LUN which the command was sent to */
2162         rc = hpsa_send_reset(h, dev->scsi3addr);
2163         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2164                 return SUCCESS;
2165
2166         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2167         return FAILED;
2168 }
2169
2170 /*
2171  * For operations that cannot sleep, a command block is allocated at init,
2172  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2173  * which ones are free or in use.  Lock must be held when calling this.
2174  * cmd_free() is the complement.
2175  */
2176 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2177 {
2178         struct CommandList *c;
2179         int i;
2180         union u64bit temp64;
2181         dma_addr_t cmd_dma_handle, err_dma_handle;
2182
2183         do {
2184                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2185                 if (i == h->nr_cmds)
2186                         return NULL;
2187         } while (test_and_set_bit
2188                  (i & (BITS_PER_LONG - 1),
2189                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2190         c = h->cmd_pool + i;
2191         memset(c, 0, sizeof(*c));
2192         cmd_dma_handle = h->cmd_pool_dhandle
2193             + i * sizeof(*c);
2194         c->err_info = h->errinfo_pool + i;
2195         memset(c->err_info, 0, sizeof(*c->err_info));
2196         err_dma_handle = h->errinfo_pool_dhandle
2197             + i * sizeof(*c->err_info);
2198         h->nr_allocs++;
2199
2200         c->cmdindex = i;
2201
2202         INIT_HLIST_NODE(&c->list);
2203         c->busaddr = (u32) cmd_dma_handle;
2204         temp64.val = (u64) err_dma_handle;
2205         c->ErrDesc.Addr.lower = temp64.val32.lower;
2206         c->ErrDesc.Addr.upper = temp64.val32.upper;
2207         c->ErrDesc.Len = sizeof(*c->err_info);
2208
2209         c->h = h;
2210         return c;
2211 }
2212
2213 /* For operations that can wait for kmalloc to possibly sleep,
2214  * this routine can be called. Lock need not be held to call
2215  * cmd_special_alloc. cmd_special_free() is the complement.
2216  */
2217 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2218 {
2219         struct CommandList *c;
2220         union u64bit temp64;
2221         dma_addr_t cmd_dma_handle, err_dma_handle;
2222
2223         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2224         if (c == NULL)
2225                 return NULL;
2226         memset(c, 0, sizeof(*c));
2227
2228         c->cmdindex = -1;
2229
2230         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2231                     &err_dma_handle);
2232
2233         if (c->err_info == NULL) {
2234                 pci_free_consistent(h->pdev,
2235                         sizeof(*c), c, cmd_dma_handle);
2236                 return NULL;
2237         }
2238         memset(c->err_info, 0, sizeof(*c->err_info));
2239
2240         INIT_HLIST_NODE(&c->list);
2241         c->busaddr = (u32) cmd_dma_handle;
2242         temp64.val = (u64) err_dma_handle;
2243         c->ErrDesc.Addr.lower = temp64.val32.lower;
2244         c->ErrDesc.Addr.upper = temp64.val32.upper;
2245         c->ErrDesc.Len = sizeof(*c->err_info);
2246
2247         c->h = h;
2248         return c;
2249 }
2250
2251 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2252 {
2253         int i;
2254
2255         i = c - h->cmd_pool;
2256         clear_bit(i & (BITS_PER_LONG - 1),
2257                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2258         h->nr_frees++;
2259 }
2260
2261 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2262 {
2263         union u64bit temp64;
2264
2265         temp64.val32.lower = c->ErrDesc.Addr.lower;
2266         temp64.val32.upper = c->ErrDesc.Addr.upper;
2267         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2268                             c->err_info, (dma_addr_t) temp64.val);
2269         pci_free_consistent(h->pdev, sizeof(*c),
2270                             c, (dma_addr_t) c->busaddr);
2271 }
2272
2273 #ifdef CONFIG_COMPAT
2274
2275 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2276 {
2277         IOCTL32_Command_struct __user *arg32 =
2278             (IOCTL32_Command_struct __user *) arg;
2279         IOCTL_Command_struct arg64;
2280         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2281         int err;
2282         u32 cp;
2283
2284         err = 0;
2285         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2286                            sizeof(arg64.LUN_info));
2287         err |= copy_from_user(&arg64.Request, &arg32->Request,
2288                            sizeof(arg64.Request));
2289         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2290                            sizeof(arg64.error_info));
2291         err |= get_user(arg64.buf_size, &arg32->buf_size);
2292         err |= get_user(cp, &arg32->buf);
2293         arg64.buf = compat_ptr(cp);
2294         err |= copy_to_user(p, &arg64, sizeof(arg64));
2295
2296         if (err)
2297                 return -EFAULT;
2298
2299         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2300         if (err)
2301                 return err;
2302         err |= copy_in_user(&arg32->error_info, &p->error_info,
2303                          sizeof(arg32->error_info));
2304         if (err)
2305                 return -EFAULT;
2306         return err;
2307 }
2308
2309 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2310         int cmd, void *arg)
2311 {
2312         BIG_IOCTL32_Command_struct __user *arg32 =
2313             (BIG_IOCTL32_Command_struct __user *) arg;
2314         BIG_IOCTL_Command_struct arg64;
2315         BIG_IOCTL_Command_struct __user *p =
2316             compat_alloc_user_space(sizeof(arg64));
2317         int err;
2318         u32 cp;
2319
2320         err = 0;
2321         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2322                            sizeof(arg64.LUN_info));
2323         err |= copy_from_user(&arg64.Request, &arg32->Request,
2324                            sizeof(arg64.Request));
2325         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2326                            sizeof(arg64.error_info));
2327         err |= get_user(arg64.buf_size, &arg32->buf_size);
2328         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2329         err |= get_user(cp, &arg32->buf);
2330         arg64.buf = compat_ptr(cp);
2331         err |= copy_to_user(p, &arg64, sizeof(arg64));
2332
2333         if (err)
2334                 return -EFAULT;
2335
2336         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2337         if (err)
2338                 return err;
2339         err |= copy_in_user(&arg32->error_info, &p->error_info,
2340                          sizeof(arg32->error_info));
2341         if (err)
2342                 return -EFAULT;
2343         return err;
2344 }
2345
2346 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2347 {
2348         switch (cmd) {
2349         case CCISS_GETPCIINFO:
2350         case CCISS_GETINTINFO:
2351         case CCISS_SETINTINFO:
2352         case CCISS_GETNODENAME:
2353         case CCISS_SETNODENAME:
2354         case CCISS_GETHEARTBEAT:
2355         case CCISS_GETBUSTYPES:
2356         case CCISS_GETFIRMVER:
2357         case CCISS_GETDRIVVER:
2358         case CCISS_REVALIDVOLS:
2359         case CCISS_DEREGDISK:
2360         case CCISS_REGNEWDISK:
2361         case CCISS_REGNEWD:
2362         case CCISS_RESCANDISK:
2363         case CCISS_GETLUNINFO:
2364                 return hpsa_ioctl(dev, cmd, arg);
2365
2366         case CCISS_PASSTHRU32:
2367                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2368         case CCISS_BIG_PASSTHRU32:
2369                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2370
2371         default:
2372                 return -ENOIOCTLCMD;
2373         }
2374 }
2375 #endif
2376
2377 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2378 {
2379         struct hpsa_pci_info pciinfo;
2380
2381         if (!argp)
2382                 return -EINVAL;
2383         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2384         pciinfo.bus = h->pdev->bus->number;
2385         pciinfo.dev_fn = h->pdev->devfn;
2386         pciinfo.board_id = h->board_id;
2387         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2388                 return -EFAULT;
2389         return 0;
2390 }
2391
2392 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2393 {
2394         DriverVer_type DriverVer;
2395         unsigned char vmaj, vmin, vsubmin;
2396         int rc;
2397
2398         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2399                 &vmaj, &vmin, &vsubmin);
2400         if (rc != 3) {
2401                 dev_info(&h->pdev->dev, "driver version string '%s' "
2402                         "unrecognized.", HPSA_DRIVER_VERSION);
2403                 vmaj = 0;
2404                 vmin = 0;
2405                 vsubmin = 0;
2406         }
2407         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2408         if (!argp)
2409                 return -EINVAL;
2410         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2411                 return -EFAULT;
2412         return 0;
2413 }
2414
2415 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2416 {
2417         IOCTL_Command_struct iocommand;
2418         struct CommandList *c;
2419         char *buff = NULL;
2420         union u64bit temp64;
2421
2422         if (!argp)
2423                 return -EINVAL;
2424         if (!capable(CAP_SYS_RAWIO))
2425                 return -EPERM;
2426         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2427                 return -EFAULT;
2428         if ((iocommand.buf_size < 1) &&
2429             (iocommand.Request.Type.Direction != XFER_NONE)) {
2430                 return -EINVAL;
2431         }
2432         if (iocommand.buf_size > 0) {
2433                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2434                 if (buff == NULL)
2435                         return -EFAULT;
2436                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2437                         /* Copy the data into the buffer we created */
2438                         if (copy_from_user(buff, iocommand.buf,
2439                                 iocommand.buf_size)) {
2440                                 kfree(buff);
2441                                 return -EFAULT;
2442                         }
2443                 } else {
2444                         memset(buff, 0, iocommand.buf_size);
2445                 }
2446         }
2447         c = cmd_special_alloc(h);
2448         if (c == NULL) {
2449                 kfree(buff);
2450                 return -ENOMEM;
2451         }
2452         /* Fill in the command type */
2453         c->cmd_type = CMD_IOCTL_PEND;
2454         /* Fill in Command Header */
2455         c->Header.ReplyQueue = 0; /* unused in simple mode */
2456         if (iocommand.buf_size > 0) {   /* buffer to fill */
2457                 c->Header.SGList = 1;
2458                 c->Header.SGTotal = 1;
2459         } else  { /* no buffers to fill */
2460                 c->Header.SGList = 0;
2461                 c->Header.SGTotal = 0;
2462         }
2463         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2464         /* use the kernel address the cmd block for tag */
2465         c->Header.Tag.lower = c->busaddr;
2466
2467         /* Fill in Request block */
2468         memcpy(&c->Request, &iocommand.Request,
2469                 sizeof(c->Request));
2470
2471         /* Fill in the scatter gather information */
2472         if (iocommand.buf_size > 0) {
2473                 temp64.val = pci_map_single(h->pdev, buff,
2474                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2475                 c->SG[0].Addr.lower = temp64.val32.lower;
2476                 c->SG[0].Addr.upper = temp64.val32.upper;
2477                 c->SG[0].Len = iocommand.buf_size;
2478                 c->SG[0].Ext = 0; /* we are not chaining*/
2479         }
2480         hpsa_scsi_do_simple_cmd_core(h, c);
2481         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2482         check_ioctl_unit_attention(h, c);
2483
2484         /* Copy the error information out */
2485         memcpy(&iocommand.error_info, c->err_info,
2486                 sizeof(iocommand.error_info));
2487         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2488                 kfree(buff);
2489                 cmd_special_free(h, c);
2490                 return -EFAULT;
2491         }
2492         if (iocommand.Request.Type.Direction == XFER_READ &&
2493                 iocommand.buf_size > 0) {
2494                 /* Copy the data out of the buffer we created */
2495                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2496                         kfree(buff);
2497                         cmd_special_free(h, c);
2498                         return -EFAULT;
2499                 }
2500         }
2501         kfree(buff);
2502         cmd_special_free(h, c);
2503         return 0;
2504 }
2505
2506 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2507 {
2508         BIG_IOCTL_Command_struct *ioc;
2509         struct CommandList *c;
2510         unsigned char **buff = NULL;
2511         int *buff_size = NULL;
2512         union u64bit temp64;
2513         BYTE sg_used = 0;
2514         int status = 0;
2515         int i;
2516         u32 left;
2517         u32 sz;
2518         BYTE __user *data_ptr;
2519
2520         if (!argp)
2521                 return -EINVAL;
2522         if (!capable(CAP_SYS_RAWIO))
2523                 return -EPERM;
2524         ioc = (BIG_IOCTL_Command_struct *)
2525             kmalloc(sizeof(*ioc), GFP_KERNEL);
2526         if (!ioc) {
2527                 status = -ENOMEM;
2528                 goto cleanup1;
2529         }
2530         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2531                 status = -EFAULT;
2532                 goto cleanup1;
2533         }
2534         if ((ioc->buf_size < 1) &&
2535             (ioc->Request.Type.Direction != XFER_NONE)) {
2536                 status = -EINVAL;
2537                 goto cleanup1;
2538         }
2539         /* Check kmalloc limits  using all SGs */
2540         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2541                 status = -EINVAL;
2542                 goto cleanup1;
2543         }
2544         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2545                 status = -EINVAL;
2546                 goto cleanup1;
2547         }
2548         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2549         if (!buff) {
2550                 status = -ENOMEM;
2551                 goto cleanup1;
2552         }
2553         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2554         if (!buff_size) {
2555                 status = -ENOMEM;
2556                 goto cleanup1;
2557         }
2558         left = ioc->buf_size;
2559         data_ptr = ioc->buf;
2560         while (left) {
2561                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2562                 buff_size[sg_used] = sz;
2563                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2564                 if (buff[sg_used] == NULL) {
2565                         status = -ENOMEM;
2566                         goto cleanup1;
2567                 }
2568                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2569                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2570                                 status = -ENOMEM;
2571                                 goto cleanup1;
2572                         }
2573                 } else
2574                         memset(buff[sg_used], 0, sz);
2575                 left -= sz;
2576                 data_ptr += sz;
2577                 sg_used++;
2578         }
2579         c = cmd_special_alloc(h);
2580         if (c == NULL) {
2581                 status = -ENOMEM;
2582                 goto cleanup1;
2583         }
2584         c->cmd_type = CMD_IOCTL_PEND;
2585         c->Header.ReplyQueue = 0;
2586         c->Header.SGList = c->Header.SGTotal = sg_used;
2587         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2588         c->Header.Tag.lower = c->busaddr;
2589         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2590         if (ioc->buf_size > 0) {
2591                 int i;
2592                 for (i = 0; i < sg_used; i++) {
2593                         temp64.val = pci_map_single(h->pdev, buff[i],
2594                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2595                         c->SG[i].Addr.lower = temp64.val32.lower;
2596                         c->SG[i].Addr.upper = temp64.val32.upper;
2597                         c->SG[i].Len = buff_size[i];
2598                         /* we are not chaining */
2599                         c->SG[i].Ext = 0;
2600                 }
2601         }
2602         hpsa_scsi_do_simple_cmd_core(h, c);
2603         if (sg_used)
2604                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2605         check_ioctl_unit_attention(h, c);
2606         /* Copy the error information out */
2607         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2608         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2609                 cmd_special_free(h, c);
2610                 status = -EFAULT;
2611                 goto cleanup1;
2612         }
2613         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2614                 /* Copy the data out of the buffer we created */
2615                 BYTE __user *ptr = ioc->buf;
2616                 for (i = 0; i < sg_used; i++) {
2617                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2618                                 cmd_special_free(h, c);
2619                                 status = -EFAULT;
2620                                 goto cleanup1;
2621                         }
2622                         ptr += buff_size[i];
2623                 }
2624         }
2625         cmd_special_free(h, c);
2626         status = 0;
2627 cleanup1:
2628         if (buff) {
2629                 for (i = 0; i < sg_used; i++)
2630                         kfree(buff[i]);
2631                 kfree(buff);
2632         }
2633         kfree(buff_size);
2634         kfree(ioc);
2635         return status;
2636 }
2637
2638 static void check_ioctl_unit_attention(struct ctlr_info *h,
2639         struct CommandList *c)
2640 {
2641         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2642                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2643                 (void) check_for_unit_attention(h, c);
2644 }
2645 /*
2646  * ioctl
2647  */
2648 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2649 {
2650         struct ctlr_info *h;
2651         void __user *argp = (void __user *)arg;
2652
2653         h = sdev_to_hba(dev);
2654
2655         switch (cmd) {
2656         case CCISS_DEREGDISK:
2657         case CCISS_REGNEWDISK:
2658         case CCISS_REGNEWD:
2659                 hpsa_scan_start(h->scsi_host);
2660                 return 0;
2661         case CCISS_GETPCIINFO:
2662                 return hpsa_getpciinfo_ioctl(h, argp);
2663         case CCISS_GETDRIVVER:
2664                 return hpsa_getdrivver_ioctl(h, argp);
2665         case CCISS_PASSTHRU:
2666                 return hpsa_passthru_ioctl(h, argp);
2667         case CCISS_BIG_PASSTHRU:
2668                 return hpsa_big_passthru_ioctl(h, argp);
2669         default:
2670                 return -ENOTTY;
2671         }
2672 }
2673
2674 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2675         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2676         int cmd_type)
2677 {
2678         int pci_dir = XFER_NONE;
2679
2680         c->cmd_type = CMD_IOCTL_PEND;
2681         c->Header.ReplyQueue = 0;
2682         if (buff != NULL && size > 0) {
2683                 c->Header.SGList = 1;
2684                 c->Header.SGTotal = 1;
2685         } else {
2686                 c->Header.SGList = 0;
2687                 c->Header.SGTotal = 0;
2688         }
2689         c->Header.Tag.lower = c->busaddr;
2690         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2691
2692         c->Request.Type.Type = cmd_type;
2693         if (cmd_type == TYPE_CMD) {
2694                 switch (cmd) {
2695                 case HPSA_INQUIRY:
2696                         /* are we trying to read a vital product page */
2697                         if (page_code != 0) {
2698                                 c->Request.CDB[1] = 0x01;
2699                                 c->Request.CDB[2] = page_code;
2700                         }
2701                         c->Request.CDBLen = 6;
2702                         c->Request.Type.Attribute = ATTR_SIMPLE;
2703                         c->Request.Type.Direction = XFER_READ;
2704                         c->Request.Timeout = 0;
2705                         c->Request.CDB[0] = HPSA_INQUIRY;
2706                         c->Request.CDB[4] = size & 0xFF;
2707                         break;
2708                 case HPSA_REPORT_LOG:
2709                 case HPSA_REPORT_PHYS:
2710                         /* Talking to controller so It's a physical command
2711                            mode = 00 target = 0.  Nothing to write.
2712                          */
2713                         c->Request.CDBLen = 12;
2714                         c->Request.Type.Attribute = ATTR_SIMPLE;
2715                         c->Request.Type.Direction = XFER_READ;
2716                         c->Request.Timeout = 0;
2717                         c->Request.CDB[0] = cmd;
2718                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2719                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2720                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2721                         c->Request.CDB[9] = size & 0xFF;
2722                         break;
2723                 case HPSA_CACHE_FLUSH:
2724                         c->Request.CDBLen = 12;
2725                         c->Request.Type.Attribute = ATTR_SIMPLE;
2726                         c->Request.Type.Direction = XFER_WRITE;
2727                         c->Request.Timeout = 0;
2728                         c->Request.CDB[0] = BMIC_WRITE;
2729                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2730                         break;
2731                 case TEST_UNIT_READY:
2732                         c->Request.CDBLen = 6;
2733                         c->Request.Type.Attribute = ATTR_SIMPLE;
2734                         c->Request.Type.Direction = XFER_NONE;
2735                         c->Request.Timeout = 0;
2736                         break;
2737                 default:
2738                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2739                         BUG();
2740                         return;
2741                 }
2742         } else if (cmd_type == TYPE_MSG) {
2743                 switch (cmd) {
2744
2745                 case  HPSA_DEVICE_RESET_MSG:
2746                         c->Request.CDBLen = 16;
2747                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2748                         c->Request.Type.Attribute = ATTR_SIMPLE;
2749                         c->Request.Type.Direction = XFER_NONE;
2750                         c->Request.Timeout = 0; /* Don't time out */
2751                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2752                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2753                         /* If bytes 4-7 are zero, it means reset the */
2754                         /* LunID device */
2755                         c->Request.CDB[4] = 0x00;
2756                         c->Request.CDB[5] = 0x00;
2757                         c->Request.CDB[6] = 0x00;
2758                         c->Request.CDB[7] = 0x00;
2759                 break;
2760
2761                 default:
2762                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2763                                 cmd);
2764                         BUG();
2765                 }
2766         } else {
2767                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2768                 BUG();
2769         }
2770
2771         switch (c->Request.Type.Direction) {
2772         case XFER_READ:
2773                 pci_dir = PCI_DMA_FROMDEVICE;
2774                 break;
2775         case XFER_WRITE:
2776                 pci_dir = PCI_DMA_TODEVICE;
2777                 break;
2778         case XFER_NONE:
2779                 pci_dir = PCI_DMA_NONE;
2780                 break;
2781         default:
2782                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2783         }
2784
2785         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2786
2787         return;
2788 }
2789
2790 /*
2791  * Map (physical) PCI mem into (virtual) kernel space
2792  */
2793 static void __iomem *remap_pci_mem(ulong base, ulong size)
2794 {
2795         ulong page_base = ((ulong) base) & PAGE_MASK;
2796         ulong page_offs = ((ulong) base) - page_base;
2797         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2798
2799         return page_remapped ? (page_remapped + page_offs) : NULL;
2800 }
2801
2802 /* Takes cmds off the submission queue and sends them to the hardware,
2803  * then puts them on the queue of cmds waiting for completion.
2804  */
2805 static void start_io(struct ctlr_info *h)
2806 {
2807         struct CommandList *c;
2808
2809         while (!hlist_empty(&h->reqQ)) {
2810                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2811                 /* can't do anything if fifo is full */
2812                 if ((h->access.fifo_full(h))) {
2813                         dev_warn(&h->pdev->dev, "fifo full\n");
2814                         break;
2815                 }
2816
2817                 /* Get the first entry from the Request Q */
2818                 removeQ(c);
2819                 h->Qdepth--;
2820
2821                 /* Tell the controller execute command */
2822                 h->access.submit_command(h, c);
2823
2824                 /* Put job onto the completed Q */
2825                 addQ(&h->cmpQ, c);
2826         }
2827 }
2828
2829 static inline unsigned long get_next_completion(struct ctlr_info *h)
2830 {
2831         return h->access.command_completed(h);
2832 }
2833
2834 static inline bool interrupt_pending(struct ctlr_info *h)
2835 {
2836         return h->access.intr_pending(h);
2837 }
2838
2839 static inline long interrupt_not_for_us(struct ctlr_info *h)
2840 {
2841         return (h->access.intr_pending(h) == 0) ||
2842                 (h->interrupts_enabled == 0);
2843 }
2844
2845 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2846         u32 raw_tag)
2847 {
2848         if (unlikely(tag_index >= h->nr_cmds)) {
2849                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2850                 return 1;
2851         }
2852         return 0;
2853 }
2854
2855 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2856 {
2857         removeQ(c);
2858         if (likely(c->cmd_type == CMD_SCSI))
2859                 complete_scsi_command(c, 0, raw_tag);
2860         else if (c->cmd_type == CMD_IOCTL_PEND)
2861                 complete(c->waiting);
2862 }
2863
2864 static inline u32 hpsa_tag_contains_index(u32 tag)
2865 {
2866 #define DIRECT_LOOKUP_BIT 0x10
2867         return tag & DIRECT_LOOKUP_BIT;
2868 }
2869
2870 static inline u32 hpsa_tag_to_index(u32 tag)
2871 {
2872 #define DIRECT_LOOKUP_SHIFT 5
2873         return tag >> DIRECT_LOOKUP_SHIFT;
2874 }
2875
2876 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2877 {
2878 #define HPSA_ERROR_BITS 0x03
2879         return tag & ~HPSA_ERROR_BITS;
2880 }
2881
2882 /* process completion of an indexed ("direct lookup") command */
2883 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2884         u32 raw_tag)
2885 {
2886         u32 tag_index;
2887         struct CommandList *c;
2888
2889         tag_index = hpsa_tag_to_index(raw_tag);
2890         if (bad_tag(h, tag_index, raw_tag))
2891                 return next_command(h);
2892         c = h->cmd_pool + tag_index;
2893         finish_cmd(c, raw_tag);
2894         return next_command(h);
2895 }
2896
2897 /* process completion of a non-indexed command */
2898 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2899         u32 raw_tag)
2900 {
2901         u32 tag;
2902         struct CommandList *c = NULL;
2903         struct hlist_node *tmp;
2904
2905         tag = hpsa_tag_discard_error_bits(raw_tag);
2906         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2907                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2908                         finish_cmd(c, raw_tag);
2909                         return next_command(h);
2910                 }
2911         }
2912         bad_tag(h, h->nr_cmds + 1, raw_tag);
2913         return next_command(h);
2914 }
2915
2916 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2917 {
2918         struct ctlr_info *h = dev_id;
2919         unsigned long flags;
2920         u32 raw_tag;
2921
2922         if (interrupt_not_for_us(h))
2923                 return IRQ_NONE;
2924         spin_lock_irqsave(&h->lock, flags);
2925         while (interrupt_pending(h)) {
2926                 raw_tag = get_next_completion(h);
2927                 while (raw_tag != FIFO_EMPTY) {
2928                         if (hpsa_tag_contains_index(raw_tag))
2929                                 raw_tag = process_indexed_cmd(h, raw_tag);
2930                         else
2931                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
2932                 }
2933         }
2934         spin_unlock_irqrestore(&h->lock, flags);
2935         return IRQ_HANDLED;
2936 }
2937
2938 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2939 {
2940         struct ctlr_info *h = dev_id;
2941         unsigned long flags;
2942         u32 raw_tag;
2943
2944         spin_lock_irqsave(&h->lock, flags);
2945         raw_tag = get_next_completion(h);
2946         while (raw_tag != FIFO_EMPTY) {
2947                 if (hpsa_tag_contains_index(raw_tag))
2948                         raw_tag = process_indexed_cmd(h, raw_tag);
2949                 else
2950                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2951         }
2952         spin_unlock_irqrestore(&h->lock, flags);
2953         return IRQ_HANDLED;
2954 }
2955
2956 /* Send a message CDB to the firmware. */
2957 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2958                                                 unsigned char type)
2959 {
2960         struct Command {
2961                 struct CommandListHeader CommandHeader;
2962                 struct RequestBlock Request;
2963                 struct ErrDescriptor ErrorDescriptor;
2964         };
2965         struct Command *cmd;
2966         static const size_t cmd_sz = sizeof(*cmd) +
2967                                         sizeof(cmd->ErrorDescriptor);
2968         dma_addr_t paddr64;
2969         uint32_t paddr32, tag;
2970         void __iomem *vaddr;
2971         int i, err;
2972
2973         vaddr = pci_ioremap_bar(pdev, 0);
2974         if (vaddr == NULL)
2975                 return -ENOMEM;
2976
2977         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2978          * CCISS commands, so they must be allocated from the lower 4GiB of
2979          * memory.
2980          */
2981         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2982         if (err) {
2983                 iounmap(vaddr);
2984                 return -ENOMEM;
2985         }
2986
2987         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2988         if (cmd == NULL) {
2989                 iounmap(vaddr);
2990                 return -ENOMEM;
2991         }
2992
2993         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
2994          * although there's no guarantee, we assume that the address is at
2995          * least 4-byte aligned (most likely, it's page-aligned).
2996          */
2997         paddr32 = paddr64;
2998
2999         cmd->CommandHeader.ReplyQueue = 0;
3000         cmd->CommandHeader.SGList = 0;
3001         cmd->CommandHeader.SGTotal = 0;
3002         cmd->CommandHeader.Tag.lower = paddr32;
3003         cmd->CommandHeader.Tag.upper = 0;
3004         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3005
3006         cmd->Request.CDBLen = 16;
3007         cmd->Request.Type.Type = TYPE_MSG;
3008         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3009         cmd->Request.Type.Direction = XFER_NONE;
3010         cmd->Request.Timeout = 0; /* Don't time out */
3011         cmd->Request.CDB[0] = opcode;
3012         cmd->Request.CDB[1] = type;
3013         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3014         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3015         cmd->ErrorDescriptor.Addr.upper = 0;
3016         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3017
3018         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3019
3020         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3021                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3022                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3023                         break;
3024                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3025         }
3026
3027         iounmap(vaddr);
3028
3029         /* we leak the DMA buffer here ... no choice since the controller could
3030          *  still complete the command.
3031          */
3032         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3033                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3034                         opcode, type);
3035                 return -ETIMEDOUT;
3036         }
3037
3038         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3039
3040         if (tag & HPSA_ERROR_BIT) {
3041                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3042                         opcode, type);
3043                 return -EIO;
3044         }
3045
3046         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3047                 opcode, type);
3048         return 0;
3049 }
3050
3051 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3052 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3053
3054 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3055 {
3056 /* the #defines are stolen from drivers/pci/msi.h. */
3057 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3058 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3059
3060         int pos;
3061         u16 control = 0;
3062
3063         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3064         if (pos) {
3065                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3066                 if (control & PCI_MSI_FLAGS_ENABLE) {
3067                         dev_info(&pdev->dev, "resetting MSI\n");
3068                         pci_write_config_word(pdev, msi_control_reg(pos),
3069                                         control & ~PCI_MSI_FLAGS_ENABLE);
3070                 }
3071         }
3072
3073         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3074         if (pos) {
3075                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3076                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3077                         dev_info(&pdev->dev, "resetting MSI-X\n");
3078                         pci_write_config_word(pdev, msi_control_reg(pos),
3079                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3080                 }
3081         }
3082
3083         return 0;
3084 }
3085
3086 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3087         void * __iomem vaddr, bool use_doorbell)
3088 {
3089         u16 pmcsr;
3090         int pos;
3091
3092         if (use_doorbell) {
3093                 /* For everything after the P600, the PCI power state method
3094                  * of resetting the controller doesn't work, so we have this
3095                  * other way using the doorbell register.
3096                  */
3097                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3098                 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3099                 msleep(1000);
3100         } else { /* Try to do it the PCI power state way */
3101
3102                 /* Quoting from the Open CISS Specification: "The Power
3103                  * Management Control/Status Register (CSR) controls the power
3104                  * state of the device.  The normal operating state is D0,
3105                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3106                  * the controller, place the interface device in D3 then to D0,
3107                  * this causes a secondary PCI reset which will reset the
3108                  * controller." */
3109
3110                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3111                 if (pos == 0) {
3112                         dev_err(&pdev->dev,
3113                                 "hpsa_reset_controller: "
3114                                 "PCI PM not supported\n");
3115                         return -ENODEV;
3116                 }
3117                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3118                 /* enter the D3hot power management state */
3119                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3120                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3121                 pmcsr |= PCI_D3hot;
3122                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3123
3124                 msleep(500);
3125
3126                 /* enter the D0 power management state */
3127                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3128                 pmcsr |= PCI_D0;
3129                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3130
3131                 msleep(500);
3132         }
3133         return 0;
3134 }
3135
3136 /* This does a hard reset of the controller using PCI power management
3137  * states or the using the doorbell register.
3138  */
3139 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3140 {
3141         u16 saved_config_space[32];
3142         u64 cfg_offset;
3143         u32 cfg_base_addr;
3144         u64 cfg_base_addr_index;
3145         void __iomem *vaddr;
3146         unsigned long paddr;
3147         u32 misc_fw_support, active_transport;
3148         int rc, i;
3149         struct CfgTable __iomem *cfgtable;
3150         bool use_doorbell;
3151         u32 board_id;
3152
3153         /* For controllers as old as the P600, this is very nearly
3154          * the same thing as
3155          *
3156          * pci_save_state(pci_dev);
3157          * pci_set_power_state(pci_dev, PCI_D3hot);
3158          * pci_set_power_state(pci_dev, PCI_D0);
3159          * pci_restore_state(pci_dev);
3160          *
3161          * but we can't use these nice canned kernel routines on
3162          * kexec, because they also check the MSI/MSI-X state in PCI
3163          * configuration space and do the wrong thing when it is
3164          * set/cleared.  Also, the pci_save/restore_state functions
3165          * violate the ordering requirements for restoring the
3166          * configuration space from the CCISS document (see the
3167          * comment below).  So we roll our own ....
3168          *
3169          * For controllers newer than the P600, the pci power state
3170          * method of resetting doesn't work so we have another way
3171          * using the doorbell register.
3172          */
3173
3174         /* Exclude 640x boards.  These are two pci devices in one slot
3175          * which share a battery backed cache module.  One controls the
3176          * cache, the other accesses the cache through the one that controls
3177          * it.  If we reset the one controlling the cache, the other will
3178          * likely not be happy.  Just forbid resetting this conjoined mess.
3179          * The 640x isn't really supported by hpsa anyway.
3180          */
3181         hpsa_lookup_board_id(pdev, &board_id);
3182         if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3183                 return -ENOTSUPP;
3184
3185         for (i = 0; i < 32; i++)
3186                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3187
3188
3189         /* find the first memory BAR, so we can find the cfg table */
3190         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3191         if (rc)
3192                 return rc;
3193         vaddr = remap_pci_mem(paddr, 0x250);
3194         if (!vaddr)
3195                 return -ENOMEM;
3196
3197         /* find cfgtable in order to check if reset via doorbell is supported */
3198         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3199                                         &cfg_base_addr_index, &cfg_offset);
3200         if (rc)
3201                 goto unmap_vaddr;
3202         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3203                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3204         if (!cfgtable) {
3205                 rc = -ENOMEM;
3206                 goto unmap_vaddr;
3207         }
3208
3209         /* If reset via doorbell register is supported, use that. */
3210         misc_fw_support = readl(&cfgtable->misc_fw_support);
3211         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3212
3213         /* The doorbell reset seems to cause lockups on some Smart
3214          * Arrays (e.g. P410, P410i, maybe others).  Until this is
3215          * fixed or at least isolated, avoid the doorbell reset.
3216          */
3217         use_doorbell = 0;
3218
3219         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3220         if (rc)
3221                 goto unmap_cfgtable;
3222
3223         /* Restore the PCI configuration space.  The Open CISS
3224          * Specification says, "Restore the PCI Configuration
3225          * Registers, offsets 00h through 60h. It is important to
3226          * restore the command register, 16-bits at offset 04h,
3227          * last. Do not restore the configuration status register,
3228          * 16-bits at offset 06h."  Note that the offset is 2*i.
3229          */
3230         for (i = 0; i < 32; i++) {
3231                 if (i == 2 || i == 3)
3232                         continue;
3233                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3234         }
3235         wmb();
3236         pci_write_config_word(pdev, 4, saved_config_space[2]);
3237
3238         /* Some devices (notably the HP Smart Array 5i Controller)
3239            need a little pause here */
3240         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3241
3242         /* Controller should be in simple mode at this point.  If it's not,
3243          * It means we're on one of those controllers which doesn't support
3244          * the doorbell reset method and on which the PCI power management reset
3245          * method doesn't work (P800, for example.)
3246          * In those cases, pretend the reset worked and hope for the best.
3247          */
3248         active_transport = readl(&cfgtable->TransportActive);
3249         if (active_transport & PERFORMANT_MODE) {
3250                 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3251                         " proceeding anyway.\n");
3252                 rc = -ENOTSUPP;
3253         }
3254
3255 unmap_cfgtable:
3256         iounmap(cfgtable);
3257
3258 unmap_vaddr:
3259         iounmap(vaddr);
3260         return rc;
3261 }
3262
3263 /*
3264  *  We cannot read the structure directly, for portability we must use
3265  *   the io functions.
3266  *   This is for debug only.
3267  */
3268 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3269 {
3270 #ifdef HPSA_DEBUG
3271         int i;
3272         char temp_name[17];
3273
3274         dev_info(dev, "Controller Configuration information\n");
3275         dev_info(dev, "------------------------------------\n");
3276         for (i = 0; i < 4; i++)
3277                 temp_name[i] = readb(&(tb->Signature[i]));
3278         temp_name[4] = '\0';
3279         dev_info(dev, "   Signature = %s\n", temp_name);
3280         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3281         dev_info(dev, "   Transport methods supported = 0x%x\n",
3282                readl(&(tb->TransportSupport)));
3283         dev_info(dev, "   Transport methods active = 0x%x\n",
3284                readl(&(tb->TransportActive)));
3285         dev_info(dev, "   Requested transport Method = 0x%x\n",
3286                readl(&(tb->HostWrite.TransportRequest)));
3287         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3288                readl(&(tb->HostWrite.CoalIntDelay)));
3289         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3290                readl(&(tb->HostWrite.CoalIntCount)));
3291         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3292                readl(&(tb->CmdsOutMax)));
3293         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3294         for (i = 0; i < 16; i++)
3295                 temp_name[i] = readb(&(tb->ServerName[i]));
3296         temp_name[16] = '\0';
3297         dev_info(dev, "   Server Name = %s\n", temp_name);
3298         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3299                 readl(&(tb->HeartBeat)));
3300 #endif                          /* HPSA_DEBUG */
3301 }
3302
3303 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3304 {
3305         int i, offset, mem_type, bar_type;
3306
3307         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3308                 return 0;
3309         offset = 0;
3310         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3311                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3312                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3313                         offset += 4;
3314                 else {
3315                         mem_type = pci_resource_flags(pdev, i) &
3316                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3317                         switch (mem_type) {
3318                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3319                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3320                                 offset += 4;    /* 32 bit */
3321                                 break;
3322                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3323                                 offset += 8;
3324                                 break;
3325                         default:        /* reserved in PCI 2.2 */
3326                                 dev_warn(&pdev->dev,
3327                                        "base address is invalid\n");
3328                                 return -1;
3329                                 break;
3330                         }
3331                 }
3332                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3333                         return i + 1;
3334         }
3335         return -1;
3336 }
3337
3338 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3339  * controllers that are capable. If not, we use IO-APIC mode.
3340  */
3341
3342 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3343 {
3344 #ifdef CONFIG_PCI_MSI
3345         int err;
3346         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3347         {0, 2}, {0, 3}
3348         };
3349
3350         /* Some boards advertise MSI but don't really support it */
3351         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3352             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3353                 goto default_int_mode;
3354         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3355                 dev_info(&h->pdev->dev, "MSIX\n");
3356                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3357                 if (!err) {
3358                         h->intr[0] = hpsa_msix_entries[0].vector;
3359                         h->intr[1] = hpsa_msix_entries[1].vector;
3360                         h->intr[2] = hpsa_msix_entries[2].vector;
3361                         h->intr[3] = hpsa_msix_entries[3].vector;
3362                         h->msix_vector = 1;
3363                         return;
3364                 }
3365                 if (err > 0) {
3366                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3367                                "available\n", err);
3368                         goto default_int_mode;
3369                 } else {
3370                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3371                                err);
3372                         goto default_int_mode;
3373                 }
3374         }
3375         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3376                 dev_info(&h->pdev->dev, "MSI\n");
3377                 if (!pci_enable_msi(h->pdev))
3378                         h->msi_vector = 1;
3379                 else
3380                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3381         }
3382 default_int_mode:
3383 #endif                          /* CONFIG_PCI_MSI */
3384         /* if we get here we're going to use the default interrupt mode */
3385         h->intr[PERF_MODE_INT] = h->pdev->irq;
3386 }
3387
3388 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3389 {
3390         int i;
3391         u32 subsystem_vendor_id, subsystem_device_id;
3392
3393         subsystem_vendor_id = pdev->subsystem_vendor;
3394         subsystem_device_id = pdev->subsystem_device;
3395         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3396                     subsystem_vendor_id;
3397
3398         for (i = 0; i < ARRAY_SIZE(products); i++)
3399                 if (*board_id == products[i].board_id)
3400                         return i;
3401
3402         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3403                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3404                 !hpsa_allow_any) {
3405                 dev_warn(&pdev->dev, "unrecognized board ID: "
3406                         "0x%08x, ignoring.\n", *board_id);
3407                         return -ENODEV;
3408         }
3409         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3410 }
3411
3412 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3413 {
3414         u16 command;
3415
3416         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3417         return ((command & PCI_COMMAND_MEMORY) == 0);
3418 }
3419
3420 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3421         unsigned long *memory_bar)
3422 {
3423         int i;
3424
3425         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3426                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3427                         /* addressing mode bits already removed */
3428                         *memory_bar = pci_resource_start(pdev, i);
3429                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3430                                 *memory_bar);
3431                         return 0;
3432                 }
3433         dev_warn(&pdev->dev, "no memory BAR found\n");
3434         return -ENODEV;
3435 }
3436
3437 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3438 {
3439         int i;
3440         u32 scratchpad;
3441
3442         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3443                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3444                 if (scratchpad == HPSA_FIRMWARE_READY)
3445                         return 0;
3446                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3447         }
3448         dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3449         return -ENODEV;
3450 }
3451
3452 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3453         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3454         u64 *cfg_offset)
3455 {
3456         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3457         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3458         *cfg_base_addr &= (u32) 0x0000ffff;
3459         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3460         if (*cfg_base_addr_index == -1) {
3461                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3462                 return -ENODEV;
3463         }
3464         return 0;
3465 }
3466
3467 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3468 {
3469         u64 cfg_offset;
3470         u32 cfg_base_addr;
3471         u64 cfg_base_addr_index;
3472         u32 trans_offset;
3473         int rc;
3474
3475         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3476                 &cfg_base_addr_index, &cfg_offset);
3477         if (rc)
3478                 return rc;
3479         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3480                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3481         if (!h->cfgtable)
3482                 return -ENOMEM;
3483         /* Find performant mode table. */
3484         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3485         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3486                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3487                                 sizeof(*h->transtable));
3488         if (!h->transtable)
3489                 return -ENOMEM;
3490         return 0;
3491 }
3492
3493 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3494 {
3495         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3496         if (h->max_commands < 16) {
3497                 dev_warn(&h->pdev->dev, "Controller reports "
3498                         "max supported commands of %d, an obvious lie. "
3499                         "Using 16.  Ensure that firmware is up to date.\n",
3500                         h->max_commands);
3501                 h->max_commands = 16;
3502         }
3503 }
3504
3505 /* Interrogate the hardware for some limits:
3506  * max commands, max SG elements without chaining, and with chaining,
3507  * SG chain block size, etc.
3508  */
3509 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3510 {
3511         hpsa_get_max_perf_mode_cmds(h);
3512         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3513         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3514         /*
3515          * Limit in-command s/g elements to 32 save dma'able memory.
3516          * Howvever spec says if 0, use 31
3517          */
3518         h->max_cmd_sg_entries = 31;
3519         if (h->maxsgentries > 512) {
3520                 h->max_cmd_sg_entries = 32;
3521                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3522                 h->maxsgentries--; /* save one for chain pointer */
3523         } else {
3524                 h->maxsgentries = 31; /* default to traditional values */
3525                 h->chainsize = 0;
3526         }
3527 }
3528
3529 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3530 {
3531         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3532             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3533             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3534             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3535                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3536                 return false;
3537         }
3538         return true;
3539 }
3540
3541 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3542 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3543 {
3544 #ifdef CONFIG_X86
3545         u32 prefetch;
3546
3547         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3548         prefetch |= 0x100;
3549         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3550 #endif
3551 }
3552
3553 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3554  * in a prefetch beyond physical memory.
3555  */
3556 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3557 {
3558         u32 dma_prefetch;
3559
3560         if (h->board_id != 0x3225103C)
3561                 return;
3562         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3563         dma_prefetch |= 0x8000;
3564         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3565 }
3566
3567 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3568 {
3569         int i;
3570
3571         /* under certain very rare conditions, this can take awhile.
3572          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3573          * as we enter this code.)
3574          */
3575         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3576                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3577                         break;
3578                 /* delay and try again */
3579                 msleep(10);
3580         }
3581 }
3582
3583 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3584 {
3585         u32 trans_support;
3586
3587         trans_support = readl(&(h->cfgtable->TransportSupport));
3588         if (!(trans_support & SIMPLE_MODE))
3589                 return -ENOTSUPP;
3590
3591         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3592         /* Update the field, and then ring the doorbell */
3593         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3594         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3595         hpsa_wait_for_mode_change_ack(h);
3596         print_cfg_table(&h->pdev->dev, h->cfgtable);
3597         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3598                 dev_warn(&h->pdev->dev,
3599                         "unable to get board into simple mode\n");
3600                 return -ENODEV;
3601         }
3602         return 0;
3603 }
3604
3605 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3606 {
3607         int prod_index, err;
3608
3609         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3610         if (prod_index < 0)
3611                 return -ENODEV;
3612         h->product_name = products[prod_index].product_name;
3613         h->access = *(products[prod_index].access);
3614
3615         if (hpsa_board_disabled(h->pdev)) {
3616                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3617                 return -ENODEV;
3618         }
3619         err = pci_enable_device(h->pdev);
3620         if (err) {
3621                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3622                 return err;
3623         }
3624
3625         err = pci_request_regions(h->pdev, "hpsa");
3626         if (err) {
3627                 dev_err(&h->pdev->dev,
3628                         "cannot obtain PCI resources, aborting\n");
3629                 return err;
3630         }
3631         hpsa_interrupt_mode(h);
3632         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3633         if (err)
3634                 goto err_out_free_res;
3635         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3636         if (!h->vaddr) {
3637                 err = -ENOMEM;
3638                 goto err_out_free_res;
3639         }
3640         err = hpsa_wait_for_board_ready(h);
3641         if (err)
3642                 goto err_out_free_res;
3643         err = hpsa_find_cfgtables(h);
3644         if (err)
3645                 goto err_out_free_res;
3646         hpsa_find_board_params(h);
3647
3648         if (!hpsa_CISS_signature_present(h)) {
3649                 err = -ENODEV;
3650                 goto err_out_free_res;
3651         }
3652         hpsa_enable_scsi_prefetch(h);
3653         hpsa_p600_dma_prefetch_quirk(h);
3654         err = hpsa_enter_simple_mode(h);
3655         if (err)
3656                 goto err_out_free_res;
3657         return 0;
3658
3659 err_out_free_res:
3660         if (h->transtable)
3661                 iounmap(h->transtable);
3662         if (h->cfgtable)
3663                 iounmap(h->cfgtable);
3664         if (h->vaddr)
3665                 iounmap(h->vaddr);
3666         /*
3667          * Deliberately omit pci_disable_device(): it does something nasty to
3668          * Smart Array controllers that pci_enable_device does not undo
3669          */
3670         pci_release_regions(h->pdev);
3671         return err;
3672 }
3673
3674 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3675 {
3676         int rc;
3677
3678 #define HBA_INQUIRY_BYTE_COUNT 64
3679         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3680         if (!h->hba_inquiry_data)
3681                 return;
3682         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3683                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3684         if (rc != 0) {
3685                 kfree(h->hba_inquiry_data);
3686                 h->hba_inquiry_data = NULL;
3687         }
3688 }
3689
3690 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3691 {
3692         int rc, i;
3693
3694         if (!reset_devices)
3695                 return 0;
3696
3697         /* Reset the controller with a PCI power-cycle or via doorbell */
3698         rc = hpsa_kdump_hard_reset_controller(pdev);
3699
3700         /* -ENOTSUPP here means we cannot reset the controller
3701          * but it's already (and still) up and running in
3702          * "performant mode".  Or, it might be 640x, which can't reset
3703          * due to concerns about shared bbwc between 6402/6404 pair.
3704          */
3705         if (rc == -ENOTSUPP)
3706                 return 0; /* just try to do the kdump anyhow. */
3707         if (rc)
3708                 return -ENODEV;
3709         if (hpsa_reset_msi(pdev))
3710                 return -ENODEV;
3711
3712         /* Now try to get the controller to respond to a no-op */
3713         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3714                 if (hpsa_noop(pdev) == 0)
3715                         break;
3716                 else
3717                         dev_warn(&pdev->dev, "no-op failed%s\n",
3718                                         (i < 11 ? "; re-trying" : ""));
3719         }
3720         return 0;
3721 }
3722
3723 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3724                                     const struct pci_device_id *ent)
3725 {
3726         int dac, rc;
3727         struct ctlr_info *h;
3728
3729         if (number_of_controllers == 0)
3730                 printk(KERN_INFO DRIVER_NAME "\n");
3731
3732         rc = hpsa_init_reset_devices(pdev);
3733         if (rc)
3734                 return rc;
3735
3736         /* Command structures must be aligned on a 32-byte boundary because
3737          * the 5 lower bits of the address are used by the hardware. and by
3738          * the driver.  See comments in hpsa.h for more info.
3739          */
3740 #define COMMANDLIST_ALIGNMENT 32
3741         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3742         h = kzalloc(sizeof(*h), GFP_KERNEL);
3743         if (!h)
3744                 return -ENOMEM;
3745
3746         h->pdev = pdev;
3747         h->busy_initializing = 1;
3748         INIT_HLIST_HEAD(&h->cmpQ);
3749         INIT_HLIST_HEAD(&h->reqQ);
3750         rc = hpsa_pci_init(h);
3751         if (rc != 0)
3752                 goto clean1;
3753
3754         sprintf(h->devname, "hpsa%d", number_of_controllers);
3755         h->ctlr = number_of_controllers;
3756         number_of_controllers++;
3757
3758         /* configure PCI DMA stuff */
3759         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3760         if (rc == 0) {
3761                 dac = 1;
3762         } else {
3763                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3764                 if (rc == 0) {
3765                         dac = 0;
3766                 } else {
3767                         dev_err(&pdev->dev, "no suitable DMA available\n");
3768                         goto clean1;
3769                 }
3770         }
3771
3772         /* make sure the board interrupts are off */
3773         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3774
3775         if (h->msix_vector || h->msi_vector)
3776                 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi,
3777                                 IRQF_DISABLED, h->devname, h);
3778         else
3779                 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx,
3780                                 IRQF_DISABLED, h->devname, h);
3781         if (rc) {
3782                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3783                        h->intr[PERF_MODE_INT], h->devname);
3784                 goto clean2;
3785         }
3786
3787         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3788                h->devname, pdev->device,
3789                h->intr[PERF_MODE_INT], dac ? "" : " not");
3790
3791         h->cmd_pool_bits =
3792             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3793                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3794         h->cmd_pool = pci_alloc_consistent(h->pdev,
3795                     h->nr_cmds * sizeof(*h->cmd_pool),
3796                     &(h->cmd_pool_dhandle));
3797         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3798                     h->nr_cmds * sizeof(*h->errinfo_pool),
3799                     &(h->errinfo_pool_dhandle));
3800         if ((h->cmd_pool_bits == NULL)
3801             || (h->cmd_pool == NULL)
3802             || (h->errinfo_pool == NULL)) {
3803                 dev_err(&pdev->dev, "out of memory");
3804                 rc = -ENOMEM;
3805                 goto clean4;
3806         }
3807         if (hpsa_allocate_sg_chain_blocks(h))
3808                 goto clean4;
3809         spin_lock_init(&h->lock);
3810         spin_lock_init(&h->scan_lock);
3811         init_waitqueue_head(&h->scan_wait_queue);
3812         h->scan_finished = 1; /* no scan currently in progress */
3813
3814         pci_set_drvdata(pdev, h);
3815         memset(h->cmd_pool_bits, 0,
3816                ((h->nr_cmds + BITS_PER_LONG -
3817                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3818
3819         hpsa_scsi_setup(h);
3820
3821         /* Turn the interrupts on so we can service requests */
3822         h->access.set_intr_mask(h, HPSA_INTR_ON);
3823
3824         hpsa_put_ctlr_into_performant_mode(h);
3825         hpsa_hba_inquiry(h);
3826         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3827         h->busy_initializing = 0;
3828         return 1;
3829
3830 clean4:
3831         hpsa_free_sg_chain_blocks(h);
3832         kfree(h->cmd_pool_bits);
3833         if (h->cmd_pool)
3834                 pci_free_consistent(h->pdev,
3835                             h->nr_cmds * sizeof(struct CommandList),
3836                             h->cmd_pool, h->cmd_pool_dhandle);
3837         if (h->errinfo_pool)
3838                 pci_free_consistent(h->pdev,
3839                             h->nr_cmds * sizeof(struct ErrorInfo),
3840                             h->errinfo_pool,
3841                             h->errinfo_pool_dhandle);
3842         free_irq(h->intr[PERF_MODE_INT], h);
3843 clean2:
3844 clean1:
3845         h->busy_initializing = 0;
3846         kfree(h);
3847         return rc;
3848 }
3849
3850 static void hpsa_flush_cache(struct ctlr_info *h)
3851 {
3852         char *flush_buf;
3853         struct CommandList *c;
3854
3855         flush_buf = kzalloc(4, GFP_KERNEL);
3856         if (!flush_buf)
3857                 return;
3858
3859         c = cmd_special_alloc(h);
3860         if (!c) {
3861                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3862                 goto out_of_memory;
3863         }
3864         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3865                 RAID_CTLR_LUNID, TYPE_CMD);
3866         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3867         if (c->err_info->CommandStatus != 0)
3868                 dev_warn(&h->pdev->dev,
3869                         "error flushing cache on controller\n");
3870         cmd_special_free(h, c);
3871 out_of_memory:
3872         kfree(flush_buf);
3873 }
3874
3875 static void hpsa_shutdown(struct pci_dev *pdev)
3876 {
3877         struct ctlr_info *h;
3878
3879         h = pci_get_drvdata(pdev);
3880         /* Turn board interrupts off  and send the flush cache command
3881          * sendcmd will turn off interrupt, and send the flush...
3882          * To write all data in the battery backed cache to disks
3883          */
3884         hpsa_flush_cache(h);
3885         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3886         free_irq(h->intr[PERF_MODE_INT], h);
3887 #ifdef CONFIG_PCI_MSI
3888         if (h->msix_vector)
3889                 pci_disable_msix(h->pdev);
3890         else if (h->msi_vector)
3891                 pci_disable_msi(h->pdev);
3892 #endif                          /* CONFIG_PCI_MSI */
3893 }
3894
3895 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3896 {
3897         struct ctlr_info *h;
3898
3899         if (pci_get_drvdata(pdev) == NULL) {
3900                 dev_err(&pdev->dev, "unable to remove device \n");
3901                 return;
3902         }
3903         h = pci_get_drvdata(pdev);
3904         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3905         hpsa_shutdown(pdev);
3906         iounmap(h->vaddr);
3907         iounmap(h->transtable);
3908         iounmap(h->cfgtable);
3909         hpsa_free_sg_chain_blocks(h);
3910         pci_free_consistent(h->pdev,
3911                 h->nr_cmds * sizeof(struct CommandList),
3912                 h->cmd_pool, h->cmd_pool_dhandle);
3913         pci_free_consistent(h->pdev,
3914                 h->nr_cmds * sizeof(struct ErrorInfo),
3915                 h->errinfo_pool, h->errinfo_pool_dhandle);
3916         pci_free_consistent(h->pdev, h->reply_pool_size,
3917                 h->reply_pool, h->reply_pool_dhandle);
3918         kfree(h->cmd_pool_bits);
3919         kfree(h->blockFetchTable);
3920         kfree(h->hba_inquiry_data);
3921         /*
3922          * Deliberately omit pci_disable_device(): it does something nasty to
3923          * Smart Array controllers that pci_enable_device does not undo
3924          */
3925         pci_release_regions(pdev);
3926         pci_set_drvdata(pdev, NULL);
3927         kfree(h);
3928 }
3929
3930 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3931         __attribute__((unused)) pm_message_t state)
3932 {
3933         return -ENOSYS;
3934 }
3935
3936 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3937 {
3938         return -ENOSYS;
3939 }
3940
3941 static struct pci_driver hpsa_pci_driver = {
3942         .name = "hpsa",
3943         .probe = hpsa_init_one,
3944         .remove = __devexit_p(hpsa_remove_one),
3945         .id_table = hpsa_pci_device_id, /* id_table */
3946         .shutdown = hpsa_shutdown,
3947         .suspend = hpsa_suspend,
3948         .resume = hpsa_resume,
3949 };
3950
3951 /* Fill in bucket_map[], given nsgs (the max number of
3952  * scatter gather elements supported) and bucket[],
3953  * which is an array of 8 integers.  The bucket[] array
3954  * contains 8 different DMA transfer sizes (in 16
3955  * byte increments) which the controller uses to fetch
3956  * commands.  This function fills in bucket_map[], which
3957  * maps a given number of scatter gather elements to one of
3958  * the 8 DMA transfer sizes.  The point of it is to allow the
3959  * controller to only do as much DMA as needed to fetch the
3960  * command, with the DMA transfer size encoded in the lower
3961  * bits of the command address.
3962  */
3963 static void  calc_bucket_map(int bucket[], int num_buckets,
3964         int nsgs, int *bucket_map)
3965 {
3966         int i, j, b, size;
3967
3968         /* even a command with 0 SGs requires 4 blocks */
3969 #define MINIMUM_TRANSFER_BLOCKS 4
3970 #define NUM_BUCKETS 8
3971         /* Note, bucket_map must have nsgs+1 entries. */
3972         for (i = 0; i <= nsgs; i++) {
3973                 /* Compute size of a command with i SG entries */
3974                 size = i + MINIMUM_TRANSFER_BLOCKS;
3975                 b = num_buckets; /* Assume the biggest bucket */
3976                 /* Find the bucket that is just big enough */
3977                 for (j = 0; j < 8; j++) {
3978                         if (bucket[j] >= size) {
3979                                 b = j;
3980                                 break;
3981                         }
3982                 }
3983                 /* for a command with i SG entries, use bucket b. */
3984                 bucket_map[i] = b;
3985         }
3986 }
3987
3988 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
3989 {
3990         int i;
3991         unsigned long register_value;
3992
3993         /* This is a bit complicated.  There are 8 registers on
3994          * the controller which we write to to tell it 8 different
3995          * sizes of commands which there may be.  It's a way of
3996          * reducing the DMA done to fetch each command.  Encoded into
3997          * each command's tag are 3 bits which communicate to the controller
3998          * which of the eight sizes that command fits within.  The size of
3999          * each command depends on how many scatter gather entries there are.
4000          * Each SG entry requires 16 bytes.  The eight registers are programmed
4001          * with the number of 16-byte blocks a command of that size requires.
4002          * The smallest command possible requires 5 such 16 byte blocks.
4003          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4004          * blocks.  Note, this only extends to the SG entries contained
4005          * within the command block, and does not extend to chained blocks
4006          * of SG elements.   bft[] contains the eight values we write to
4007          * the registers.  They are not evenly distributed, but have more
4008          * sizes for small commands, and fewer sizes for larger commands.
4009          */
4010         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4011         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4012         /*  5 = 1 s/g entry or 4k
4013          *  6 = 2 s/g entry or 8k
4014          *  8 = 4 s/g entry or 16k
4015          * 10 = 6 s/g entry or 24k
4016          */
4017
4018         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4019
4020         /* Controller spec: zero out this buffer. */
4021         memset(h->reply_pool, 0, h->reply_pool_size);
4022         h->reply_pool_head = h->reply_pool;
4023
4024         bft[7] = h->max_sg_entries + 4;
4025         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4026         for (i = 0; i < 8; i++)
4027                 writel(bft[i], &h->transtable->BlockFetch[i]);
4028
4029         /* size of controller ring buffer */
4030         writel(h->max_commands, &h->transtable->RepQSize);
4031         writel(1, &h->transtable->RepQCount);
4032         writel(0, &h->transtable->RepQCtrAddrLow32);
4033         writel(0, &h->transtable->RepQCtrAddrHigh32);
4034         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4035         writel(0, &h->transtable->RepQAddr0High32);
4036         writel(CFGTBL_Trans_Performant,
4037                 &(h->cfgtable->HostWrite.TransportRequest));
4038         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4039         hpsa_wait_for_mode_change_ack(h);
4040         register_value = readl(&(h->cfgtable->TransportActive));
4041         if (!(register_value & CFGTBL_Trans_Performant)) {
4042                 dev_warn(&h->pdev->dev, "unable to get board into"
4043                                         " performant mode\n");
4044                 return;
4045         }
4046 }
4047
4048 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4049 {
4050         u32 trans_support;
4051
4052         trans_support = readl(&(h->cfgtable->TransportSupport));
4053         if (!(trans_support & PERFORMANT_MODE))
4054                 return;
4055
4056         hpsa_get_max_perf_mode_cmds(h);
4057         h->max_sg_entries = 32;
4058         /* Performant mode ring buffer and supporting data structures */
4059         h->reply_pool_size = h->max_commands * sizeof(u64);
4060         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4061                                 &(h->reply_pool_dhandle));
4062
4063         /* Need a block fetch table for performant mode */
4064         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4065                                 sizeof(u32)), GFP_KERNEL);
4066
4067         if ((h->reply_pool == NULL)
4068                 || (h->blockFetchTable == NULL))
4069                 goto clean_up;
4070
4071         hpsa_enter_performant_mode(h);
4072
4073         /* Change the access methods to the performant access methods */
4074         h->access = SA5_performant_access;
4075         h->transMethod = CFGTBL_Trans_Performant;
4076
4077         return;
4078
4079 clean_up:
4080         if (h->reply_pool)
4081                 pci_free_consistent(h->pdev, h->reply_pool_size,
4082                         h->reply_pool, h->reply_pool_dhandle);
4083         kfree(h->blockFetchTable);
4084 }
4085
4086 /*
4087  *  This is it.  Register the PCI driver information for the cards we control
4088  *  the OS will call our registered routines when it finds one of our cards.
4089  */
4090 static int __init hpsa_init(void)
4091 {
4092         return pci_register_driver(&hpsa_pci_driver);
4093 }
4094
4095 static void __exit hpsa_cleanup(void)
4096 {
4097         pci_unregister_driver(&hpsa_pci_driver);
4098 }
4099
4100 module_init(hpsa_init);
4101 module_exit(hpsa_cleanup);