]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/scsi/isci/host.c
isci: remove port start handler
[karo-tx-linux.git] / drivers / scsi / isci / host.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/device.h>
56 #include <scsi/sas.h>
57 #include "host.h"
58 #include "isci.h"
59 #include "port.h"
60 #include "host.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
69 #include "scu_unsolicited_frame.h"
70 #include "timers.h"
71
72 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
73
74 /**
75  * smu_dcc_get_max_ports() -
76  *
77  * This macro returns the maximum number of logical ports supported by the
78  * hardware. The caller passes in the value read from the device context
79  * capacity register and this macro will mash and shift the value appropriately.
80  */
81 #define smu_dcc_get_max_ports(dcc_value) \
82         (\
83                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
84                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
85         )
86
87 /**
88  * smu_dcc_get_max_task_context() -
89  *
90  * This macro returns the maximum number of task contexts supported by the
91  * hardware. The caller passes in the value read from the device context
92  * capacity register and this macro will mash and shift the value appropriately.
93  */
94 #define smu_dcc_get_max_task_context(dcc_value) \
95         (\
96                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
97                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
98         )
99
100 /**
101  * smu_dcc_get_max_remote_node_context() -
102  *
103  * This macro returns the maximum number of remote node contexts supported by
104  * the hardware. The caller passes in the value read from the device context
105  * capacity register and this macro will mash and shift the value appropriately.
106  */
107 #define smu_dcc_get_max_remote_node_context(dcc_value) \
108         (\
109                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
110                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
111         )
112
113
114 #define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT  3
115 #define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT  3
116
117 /**
118  *
119  *
120  * The number of milliseconds to wait for a phy to start.
121  */
122 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
123
124 /**
125  *
126  *
127  * The number of milliseconds to wait while a given phy is consuming power
128  * before allowing another set of phys to consume power. Ultimately, this will
129  * be specified by OEM parameter.
130  */
131 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
132
133 /**
134  * NORMALIZE_PUT_POINTER() -
135  *
136  * This macro will normalize the completion queue put pointer so its value can
137  * be used as an array inde
138  */
139 #define NORMALIZE_PUT_POINTER(x) \
140         ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
141
142
143 /**
144  * NORMALIZE_EVENT_POINTER() -
145  *
146  * This macro will normalize the completion queue event entry so its value can
147  * be used as an index.
148  */
149 #define NORMALIZE_EVENT_POINTER(x) \
150         (\
151                 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
152                 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
153         )
154
155 /**
156  * INCREMENT_COMPLETION_QUEUE_GET() -
157  *
158  * This macro will increment the controllers completion queue index value and
159  * possibly toggle the cycle bit if the completion queue index wraps back to 0.
160  */
161 #define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
162         INCREMENT_QUEUE_GET(\
163                 (index), \
164                 (cycle), \
165                 (controller)->completion_queue_entries, \
166                 SMU_CQGR_CYCLE_BIT \
167                 )
168
169 /**
170  * INCREMENT_EVENT_QUEUE_GET() -
171  *
172  * This macro will increment the controllers event queue index value and
173  * possibly toggle the event cycle bit if the event queue index wraps back to 0.
174  */
175 #define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
176         INCREMENT_QUEUE_GET(\
177                 (index), \
178                 (cycle), \
179                 (controller)->completion_event_entries, \
180                 SMU_CQGR_EVENT_CYCLE_BIT \
181                 )
182
183
184 /**
185  * NORMALIZE_GET_POINTER() -
186  *
187  * This macro will normalize the completion queue get pointer so its value can
188  * be used as an index into an array
189  */
190 #define NORMALIZE_GET_POINTER(x) \
191         ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
192
193 /**
194  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
195  *
196  * This macro will normalize the completion queue cycle pointer so it matches
197  * the completion queue cycle bit
198  */
199 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
200         ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
201
202 /**
203  * COMPLETION_QUEUE_CYCLE_BIT() -
204  *
205  * This macro will return the cycle bit of the completion queue entry
206  */
207 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
208
209 static bool scic_sds_controller_completion_queue_has_entries(
210         struct scic_sds_controller *scic)
211 {
212         u32 get_value = scic->completion_queue_get;
213         u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
214
215         if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
216             COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]))
217                 return true;
218
219         return false;
220 }
221
222 static bool scic_sds_controller_isr(struct scic_sds_controller *scic)
223 {
224         if (scic_sds_controller_completion_queue_has_entries(scic)) {
225                 return true;
226         } else {
227                 /*
228                  * we have a spurious interrupt it could be that we have already
229                  * emptied the completion queue from a previous interrupt */
230                 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
231
232                 /*
233                  * There is a race in the hardware that could cause us not to be notified
234                  * of an interrupt completion if we do not take this step.  We will mask
235                  * then unmask the interrupts so if there is another interrupt pending
236                  * the clearing of the interrupt source we get the next interrupt message. */
237                 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
238                 writel(0, &scic->smu_registers->interrupt_mask);
239         }
240
241         return false;
242 }
243
244 irqreturn_t isci_msix_isr(int vec, void *data)
245 {
246         struct isci_host *ihost = data;
247
248         if (scic_sds_controller_isr(&ihost->sci))
249                 tasklet_schedule(&ihost->completion_tasklet);
250
251         return IRQ_HANDLED;
252 }
253
254 static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic)
255 {
256         u32 interrupt_status;
257
258         interrupt_status =
259                 readl(&scic->smu_registers->interrupt_status);
260         interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
261
262         if (interrupt_status != 0) {
263                 /*
264                  * There is an error interrupt pending so let it through and handle
265                  * in the callback */
266                 return true;
267         }
268
269         /*
270          * There is a race in the hardware that could cause us not to be notified
271          * of an interrupt completion if we do not take this step.  We will mask
272          * then unmask the error interrupts so if there was another interrupt
273          * pending we will be notified.
274          * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
275         writel(0xff, &scic->smu_registers->interrupt_mask);
276         writel(0, &scic->smu_registers->interrupt_mask);
277
278         return false;
279 }
280
281 static void scic_sds_controller_task_completion(struct scic_sds_controller *scic,
282                                                 u32 completion_entry)
283 {
284         u32 index;
285         struct scic_sds_request *io_request;
286
287         index = SCU_GET_COMPLETION_INDEX(completion_entry);
288         io_request = scic->io_request_table[index];
289
290         /* Make sure that we really want to process this IO request */
291         if (
292                 (io_request != NULL)
293                 && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
294                 && (
295                         scic_sds_io_tag_get_sequence(io_request->io_tag)
296                         == scic->io_request_sequence[index]
297                         )
298                 ) {
299                 /* Yep this is a valid io request pass it along to the io request handler */
300                 scic_sds_io_request_tc_completion(io_request, completion_entry);
301         }
302 }
303
304 static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic,
305                                                 u32 completion_entry)
306 {
307         u32 index;
308         struct scic_sds_request *io_request;
309         struct scic_sds_remote_device *device;
310
311         index = SCU_GET_COMPLETION_INDEX(completion_entry);
312
313         switch (scu_get_command_request_type(completion_entry)) {
314         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
315         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
316                 io_request = scic->io_request_table[index];
317                 dev_warn(scic_to_dev(scic),
318                          "%s: SCIC SDS Completion type SDMA %x for io request "
319                          "%p\n",
320                          __func__,
321                          completion_entry,
322                          io_request);
323                 /* @todo For a post TC operation we need to fail the IO
324                  * request
325                  */
326                 break;
327
328         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
329         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
330         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
331                 device = scic->device_table[index];
332                 dev_warn(scic_to_dev(scic),
333                          "%s: SCIC SDS Completion type SDMA %x for remote "
334                          "device %p\n",
335                          __func__,
336                          completion_entry,
337                          device);
338                 /* @todo For a port RNC operation we need to fail the
339                  * device
340                  */
341                 break;
342
343         default:
344                 dev_warn(scic_to_dev(scic),
345                          "%s: SCIC SDS Completion unknown SDMA completion "
346                          "type %x\n",
347                          __func__,
348                          completion_entry);
349                 break;
350
351         }
352 }
353
354 static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic,
355                                                   u32 completion_entry)
356 {
357         u32 index;
358         u32 frame_index;
359
360         struct isci_host *ihost = scic_to_ihost(scic);
361         struct scu_unsolicited_frame_header *frame_header;
362         struct scic_sds_phy *phy;
363         struct scic_sds_remote_device *device;
364
365         enum sci_status result = SCI_FAILURE;
366
367         frame_index = SCU_GET_FRAME_INDEX(completion_entry);
368
369         frame_header = scic->uf_control.buffers.array[frame_index].header;
370         scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
371
372         if (SCU_GET_FRAME_ERROR(completion_entry)) {
373                 /*
374                  * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
375                  * /       this cause a problem? We expect the phy initialization will
376                  * /       fail if there is an error in the frame. */
377                 scic_sds_controller_release_frame(scic, frame_index);
378                 return;
379         }
380
381         if (frame_header->is_address_frame) {
382                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
383                 phy = &ihost->phys[index].sci;
384                 result = scic_sds_phy_frame_handler(phy, frame_index);
385         } else {
386
387                 index = SCU_GET_COMPLETION_INDEX(completion_entry);
388
389                 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
390                         /*
391                          * This is a signature fis or a frame from a direct attached SATA
392                          * device that has not yet been created.  In either case forwared
393                          * the frame to the PE and let it take care of the frame data. */
394                         index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
395                         phy = &ihost->phys[index].sci;
396                         result = scic_sds_phy_frame_handler(phy, frame_index);
397                 } else {
398                         if (index < scic->remote_node_entries)
399                                 device = scic->device_table[index];
400                         else
401                                 device = NULL;
402
403                         if (device != NULL)
404                                 result = scic_sds_remote_device_frame_handler(device, frame_index);
405                         else
406                                 scic_sds_controller_release_frame(scic, frame_index);
407                 }
408         }
409
410         if (result != SCI_SUCCESS) {
411                 /*
412                  * / @todo Is there any reason to report some additional error message
413                  * /       when we get this failure notifiction? */
414         }
415 }
416
417 static void scic_sds_controller_event_completion(struct scic_sds_controller *scic,
418                                                  u32 completion_entry)
419 {
420         struct isci_host *ihost = scic_to_ihost(scic);
421         struct scic_sds_request *io_request;
422         struct scic_sds_remote_device *device;
423         struct scic_sds_phy *phy;
424         u32 index;
425
426         index = SCU_GET_COMPLETION_INDEX(completion_entry);
427
428         switch (scu_get_event_type(completion_entry)) {
429         case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
430                 /* / @todo The driver did something wrong and we need to fix the condtion. */
431                 dev_err(scic_to_dev(scic),
432                         "%s: SCIC Controller 0x%p received SMU command error "
433                         "0x%x\n",
434                         __func__,
435                         scic,
436                         completion_entry);
437                 break;
438
439         case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
440         case SCU_EVENT_TYPE_SMU_ERROR:
441         case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
442                 /*
443                  * / @todo This is a hardware failure and its likely that we want to
444                  * /       reset the controller. */
445                 dev_err(scic_to_dev(scic),
446                         "%s: SCIC Controller 0x%p received fatal controller "
447                         "event  0x%x\n",
448                         __func__,
449                         scic,
450                         completion_entry);
451                 break;
452
453         case SCU_EVENT_TYPE_TRANSPORT_ERROR:
454                 io_request = scic->io_request_table[index];
455                 scic_sds_io_request_event_handler(io_request, completion_entry);
456                 break;
457
458         case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
459                 switch (scu_get_event_specifier(completion_entry)) {
460                 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
461                 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
462                         io_request = scic->io_request_table[index];
463                         if (io_request != NULL)
464                                 scic_sds_io_request_event_handler(io_request, completion_entry);
465                         else
466                                 dev_warn(scic_to_dev(scic),
467                                          "%s: SCIC Controller 0x%p received "
468                                          "event 0x%x for io request object "
469                                          "that doesnt exist.\n",
470                                          __func__,
471                                          scic,
472                                          completion_entry);
473
474                         break;
475
476                 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
477                         device = scic->device_table[index];
478                         if (device != NULL)
479                                 scic_sds_remote_device_event_handler(device, completion_entry);
480                         else
481                                 dev_warn(scic_to_dev(scic),
482                                          "%s: SCIC Controller 0x%p received "
483                                          "event 0x%x for remote device object "
484                                          "that doesnt exist.\n",
485                                          __func__,
486                                          scic,
487                                          completion_entry);
488
489                         break;
490                 }
491                 break;
492
493         case SCU_EVENT_TYPE_BROADCAST_CHANGE:
494         /*
495          * direct the broadcast change event to the phy first and then let
496          * the phy redirect the broadcast change to the port object */
497         case SCU_EVENT_TYPE_ERR_CNT_EVENT:
498         /*
499          * direct error counter event to the phy object since that is where
500          * we get the event notification.  This is a type 4 event. */
501         case SCU_EVENT_TYPE_OSSP_EVENT:
502                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
503                 phy = &ihost->phys[index].sci;
504                 scic_sds_phy_event_handler(phy, completion_entry);
505                 break;
506
507         case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
508         case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
509         case SCU_EVENT_TYPE_RNC_OPS_MISC:
510                 if (index < scic->remote_node_entries) {
511                         device = scic->device_table[index];
512
513                         if (device != NULL)
514                                 scic_sds_remote_device_event_handler(device, completion_entry);
515                 } else
516                         dev_err(scic_to_dev(scic),
517                                 "%s: SCIC Controller 0x%p received event 0x%x "
518                                 "for remote device object 0x%0x that doesnt "
519                                 "exist.\n",
520                                 __func__,
521                                 scic,
522                                 completion_entry,
523                                 index);
524
525                 break;
526
527         default:
528                 dev_warn(scic_to_dev(scic),
529                          "%s: SCIC Controller received unknown event code %x\n",
530                          __func__,
531                          completion_entry);
532                 break;
533         }
534 }
535
536
537
538 static void scic_sds_controller_process_completions(struct scic_sds_controller *scic)
539 {
540         u32 completion_count = 0;
541         u32 completion_entry;
542         u32 get_index;
543         u32 get_cycle;
544         u32 event_index;
545         u32 event_cycle;
546
547         dev_dbg(scic_to_dev(scic),
548                 "%s: completion queue begining get:0x%08x\n",
549                 __func__,
550                 scic->completion_queue_get);
551
552         /* Get the component parts of the completion queue */
553         get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get);
554         get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get;
555
556         event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get);
557         event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get;
558
559         while (
560                 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
561                 == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])
562                 ) {
563                 completion_count++;
564
565                 completion_entry = scic->completion_queue[get_index];
566                 INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle);
567
568                 dev_dbg(scic_to_dev(scic),
569                         "%s: completion queue entry:0x%08x\n",
570                         __func__,
571                         completion_entry);
572
573                 switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
574                 case SCU_COMPLETION_TYPE_TASK:
575                         scic_sds_controller_task_completion(scic, completion_entry);
576                         break;
577
578                 case SCU_COMPLETION_TYPE_SDMA:
579                         scic_sds_controller_sdma_completion(scic, completion_entry);
580                         break;
581
582                 case SCU_COMPLETION_TYPE_UFI:
583                         scic_sds_controller_unsolicited_frame(scic, completion_entry);
584                         break;
585
586                 case SCU_COMPLETION_TYPE_EVENT:
587                         INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
588                         scic_sds_controller_event_completion(scic, completion_entry);
589                         break;
590
591                 case SCU_COMPLETION_TYPE_NOTIFY:
592                         /*
593                          * Presently we do the same thing with a notify event that we do with the
594                          * other event codes. */
595                         INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
596                         scic_sds_controller_event_completion(scic, completion_entry);
597                         break;
598
599                 default:
600                         dev_warn(scic_to_dev(scic),
601                                  "%s: SCIC Controller received unknown "
602                                  "completion type %x\n",
603                                  __func__,
604                                  completion_entry);
605                         break;
606                 }
607         }
608
609         /* Update the get register if we completed one or more entries */
610         if (completion_count > 0) {
611                 scic->completion_queue_get =
612                         SMU_CQGR_GEN_BIT(ENABLE) |
613                         SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
614                         event_cycle |
615                         SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
616                         get_cycle |
617                         SMU_CQGR_GEN_VAL(POINTER, get_index);
618
619                 writel(scic->completion_queue_get,
620                        &scic->smu_registers->completion_queue_get);
621
622         }
623
624         dev_dbg(scic_to_dev(scic),
625                 "%s: completion queue ending get:0x%08x\n",
626                 __func__,
627                 scic->completion_queue_get);
628
629 }
630
631 static void scic_sds_controller_error_handler(struct scic_sds_controller *scic)
632 {
633         u32 interrupt_status;
634
635         interrupt_status =
636                 readl(&scic->smu_registers->interrupt_status);
637
638         if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
639             scic_sds_controller_completion_queue_has_entries(scic)) {
640
641                 scic_sds_controller_process_completions(scic);
642                 writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status);
643         } else {
644                 dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__,
645                         interrupt_status);
646
647                 sci_base_state_machine_change_state(&scic->state_machine,
648                                                     SCI_BASE_CONTROLLER_STATE_FAILED);
649
650                 return;
651         }
652
653         /* If we dont process any completions I am not sure that we want to do this.
654          * We are in the middle of a hardware fault and should probably be reset.
655          */
656         writel(0, &scic->smu_registers->interrupt_mask);
657 }
658
659 irqreturn_t isci_intx_isr(int vec, void *data)
660 {
661         irqreturn_t ret = IRQ_NONE;
662         struct isci_host *ihost = data;
663         struct scic_sds_controller *scic = &ihost->sci;
664
665         if (scic_sds_controller_isr(scic)) {
666                 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
667                 tasklet_schedule(&ihost->completion_tasklet);
668                 ret = IRQ_HANDLED;
669         } else if (scic_sds_controller_error_isr(scic)) {
670                 spin_lock(&ihost->scic_lock);
671                 scic_sds_controller_error_handler(scic);
672                 spin_unlock(&ihost->scic_lock);
673                 ret = IRQ_HANDLED;
674         }
675
676         return ret;
677 }
678
679 irqreturn_t isci_error_isr(int vec, void *data)
680 {
681         struct isci_host *ihost = data;
682
683         if (scic_sds_controller_error_isr(&ihost->sci))
684                 scic_sds_controller_error_handler(&ihost->sci);
685
686         return IRQ_HANDLED;
687 }
688
689 /**
690  * isci_host_start_complete() - This function is called by the core library,
691  *    through the ISCI Module, to indicate controller start status.
692  * @isci_host: This parameter specifies the ISCI host object
693  * @completion_status: This parameter specifies the completion status from the
694  *    core library.
695  *
696  */
697 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
698 {
699         if (completion_status != SCI_SUCCESS)
700                 dev_info(&ihost->pdev->dev,
701                         "controller start timed out, continuing...\n");
702         isci_host_change_state(ihost, isci_ready);
703         clear_bit(IHOST_START_PENDING, &ihost->flags);
704         wake_up(&ihost->eventq);
705 }
706
707 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
708 {
709         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
710
711         if (test_bit(IHOST_START_PENDING, &ihost->flags))
712                 return 0;
713
714         /* todo: use sas_flush_discovery once it is upstream */
715         scsi_flush_work(shost);
716
717         scsi_flush_work(shost);
718
719         dev_dbg(&ihost->pdev->dev,
720                 "%s: ihost->status = %d, time = %ld\n",
721                  __func__, isci_host_get_state(ihost), time);
722
723         return 1;
724
725 }
726
727 /**
728  * scic_controller_get_suggested_start_timeout() - This method returns the
729  *    suggested scic_controller_start() timeout amount.  The user is free to
730  *    use any timeout value, but this method provides the suggested minimum
731  *    start timeout value.  The returned value is based upon empirical
732  *    information determined as a result of interoperability testing.
733  * @controller: the handle to the controller object for which to return the
734  *    suggested start timeout.
735  *
736  * This method returns the number of milliseconds for the suggested start
737  * operation timeout.
738  */
739 static u32 scic_controller_get_suggested_start_timeout(
740         struct scic_sds_controller *sc)
741 {
742         /* Validate the user supplied parameters. */
743         if (sc == NULL)
744                 return 0;
745
746         /*
747          * The suggested minimum timeout value for a controller start operation:
748          *
749          *     Signature FIS Timeout
750          *   + Phy Start Timeout
751          *   + Number of Phy Spin Up Intervals
752          *   ---------------------------------
753          *   Number of milliseconds for the controller start operation.
754          *
755          * NOTE: The number of phy spin up intervals will be equivalent
756          *       to the number of phys divided by the number phys allowed
757          *       per interval - 1 (once OEM parameters are supported).
758          *       Currently we assume only 1 phy per interval. */
759
760         return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
761                 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
762                 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
763 }
764
765 static void scic_controller_enable_interrupts(
766         struct scic_sds_controller *scic)
767 {
768         BUG_ON(scic->smu_registers == NULL);
769         writel(0, &scic->smu_registers->interrupt_mask);
770 }
771
772 void scic_controller_disable_interrupts(
773         struct scic_sds_controller *scic)
774 {
775         BUG_ON(scic->smu_registers == NULL);
776         writel(0xffffffff, &scic->smu_registers->interrupt_mask);
777 }
778
779 static void scic_sds_controller_enable_port_task_scheduler(
780         struct scic_sds_controller *scic)
781 {
782         u32 port_task_scheduler_value;
783
784         port_task_scheduler_value =
785                 readl(&scic->scu_registers->peg0.ptsg.control);
786         port_task_scheduler_value |=
787                 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
788                  SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
789         writel(port_task_scheduler_value,
790                &scic->scu_registers->peg0.ptsg.control);
791 }
792
793 static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic)
794 {
795         u32 task_assignment;
796
797         /*
798          * Assign all the TCs to function 0
799          * TODO: Do we actually need to read this register to write it back?
800          */
801
802         task_assignment =
803                 readl(&scic->smu_registers->task_context_assignment[0]);
804
805         task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
806                 (SMU_TCA_GEN_VAL(ENDING,  scic->task_context_entries - 1)) |
807                 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
808
809         writel(task_assignment,
810                 &scic->smu_registers->task_context_assignment[0]);
811
812 }
813
814 static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic)
815 {
816         u32 index;
817         u32 completion_queue_control_value;
818         u32 completion_queue_get_value;
819         u32 completion_queue_put_value;
820
821         scic->completion_queue_get = 0;
822
823         completion_queue_control_value = (
824                 SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1)
825                 | SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1)
826                 );
827
828         writel(completion_queue_control_value,
829                &scic->smu_registers->completion_queue_control);
830
831
832         /* Set the completion queue get pointer and enable the queue */
833         completion_queue_get_value = (
834                 (SMU_CQGR_GEN_VAL(POINTER, 0))
835                 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
836                 | (SMU_CQGR_GEN_BIT(ENABLE))
837                 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
838                 );
839
840         writel(completion_queue_get_value,
841                &scic->smu_registers->completion_queue_get);
842
843         /* Set the completion queue put pointer */
844         completion_queue_put_value = (
845                 (SMU_CQPR_GEN_VAL(POINTER, 0))
846                 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
847                 );
848
849         writel(completion_queue_put_value,
850                &scic->smu_registers->completion_queue_put);
851
852         /* Initialize the cycle bit of the completion queue entries */
853         for (index = 0; index < scic->completion_queue_entries; index++) {
854                 /*
855                  * If get.cycle_bit != completion_queue.cycle_bit
856                  * its not a valid completion queue entry
857                  * so at system start all entries are invalid */
858                 scic->completion_queue[index] = 0x80000000;
859         }
860 }
861
862 static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic)
863 {
864         u32 frame_queue_control_value;
865         u32 frame_queue_get_value;
866         u32 frame_queue_put_value;
867
868         /* Write the queue size */
869         frame_queue_control_value =
870                 SCU_UFQC_GEN_VAL(QUEUE_SIZE,
871                                  scic->uf_control.address_table.count);
872
873         writel(frame_queue_control_value,
874                &scic->scu_registers->sdma.unsolicited_frame_queue_control);
875
876         /* Setup the get pointer for the unsolicited frame queue */
877         frame_queue_get_value = (
878                 SCU_UFQGP_GEN_VAL(POINTER, 0)
879                 |  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
880                 );
881
882         writel(frame_queue_get_value,
883                &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
884         /* Setup the put pointer for the unsolicited frame queue */
885         frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
886         writel(frame_queue_put_value,
887                &scic->scu_registers->sdma.unsolicited_frame_put_pointer);
888 }
889
890 /**
891  * This method will attempt to transition into the ready state for the
892  *    controller and indicate that the controller start operation has completed
893  *    if all criteria are met.
894  * @scic: This parameter indicates the controller object for which
895  *    to transition to ready.
896  * @status: This parameter indicates the status value to be pass into the call
897  *    to scic_cb_controller_start_complete().
898  *
899  * none.
900  */
901 static void scic_sds_controller_transition_to_ready(
902         struct scic_sds_controller *scic,
903         enum sci_status status)
904 {
905         struct isci_host *ihost = scic_to_ihost(scic);
906
907         if (scic->state_machine.current_state_id ==
908             SCI_BASE_CONTROLLER_STATE_STARTING) {
909                 /*
910                  * We move into the ready state, because some of the phys/ports
911                  * may be up and operational.
912                  */
913                 sci_base_state_machine_change_state(&scic->state_machine,
914                                                     SCI_BASE_CONTROLLER_STATE_READY);
915
916                 isci_host_start_complete(ihost, status);
917         }
918 }
919
920 static void scic_sds_controller_phy_timer_stop(struct scic_sds_controller *scic)
921 {
922         isci_timer_stop(scic->phy_startup_timer);
923
924         scic->phy_startup_timer_pending = false;
925 }
926
927 static void scic_sds_controller_phy_timer_start(struct scic_sds_controller *scic)
928 {
929         isci_timer_start(scic->phy_startup_timer,
930                          SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
931
932         scic->phy_startup_timer_pending = true;
933 }
934
935 static bool is_phy_starting(struct scic_sds_phy *sci_phy)
936 {
937         enum scic_sds_phy_states state;
938
939         state = sci_phy->state_machine.current_state_id;
940         switch (state) {
941         case SCI_BASE_PHY_STATE_STARTING:
942         case SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL:
943         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN:
944         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF:
945         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER:
946         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER:
947         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN:
948         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN:
949         case SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF:
950         case SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL:
951                 return true;
952         default:
953                 return false;
954         }
955 }
956
957 /**
958  * scic_sds_controller_start_next_phy - start phy
959  * @scic: controller
960  *
961  * If all the phys have been started, then attempt to transition the
962  * controller to the READY state and inform the user
963  * (scic_cb_controller_start_complete()).
964  */
965 static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic)
966 {
967         struct isci_host *ihost = scic_to_ihost(scic);
968         struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
969         struct scic_sds_phy *sci_phy;
970         enum sci_status status;
971
972         status = SCI_SUCCESS;
973
974         if (scic->phy_startup_timer_pending)
975                 return status;
976
977         if (scic->next_phy_to_start >= SCI_MAX_PHYS) {
978                 bool is_controller_start_complete = true;
979                 u32 state;
980                 u8 index;
981
982                 for (index = 0; index < SCI_MAX_PHYS; index++) {
983                         sci_phy = &ihost->phys[index].sci;
984                         state = sci_phy->state_machine.current_state_id;
985
986                         if (!phy_get_non_dummy_port(sci_phy))
987                                 continue;
988
989                         /* The controller start operation is complete iff:
990                          * - all links have been given an opportunity to start
991                          * - have no indication of a connected device
992                          * - have an indication of a connected device and it has
993                          *   finished the link training process.
994                          */
995                         if ((sci_phy->is_in_link_training == false &&
996                              state == SCI_BASE_PHY_STATE_INITIAL) ||
997                             (sci_phy->is_in_link_training == false &&
998                              state == SCI_BASE_PHY_STATE_STOPPED) ||
999                             (sci_phy->is_in_link_training == true &&
1000                              is_phy_starting(sci_phy))) {
1001                                 is_controller_start_complete = false;
1002                                 break;
1003                         }
1004                 }
1005
1006                 /*
1007                  * The controller has successfully finished the start process.
1008                  * Inform the SCI Core user and transition to the READY state. */
1009                 if (is_controller_start_complete == true) {
1010                         scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS);
1011                         scic_sds_controller_phy_timer_stop(scic);
1012                 }
1013         } else {
1014                 sci_phy = &ihost->phys[scic->next_phy_to_start].sci;
1015
1016                 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1017                         if (phy_get_non_dummy_port(sci_phy) == NULL) {
1018                                 scic->next_phy_to_start++;
1019
1020                                 /* Caution recursion ahead be forwarned
1021                                  *
1022                                  * The PHY was never added to a PORT in MPC mode
1023                                  * so start the next phy in sequence This phy
1024                                  * will never go link up and will not draw power
1025                                  * the OEM parameters either configured the phy
1026                                  * incorrectly for the PORT or it was never
1027                                  * assigned to a PORT
1028                                  */
1029                                 return scic_sds_controller_start_next_phy(scic);
1030                         }
1031                 }
1032
1033                 status = scic_sds_phy_start(sci_phy);
1034
1035                 if (status == SCI_SUCCESS) {
1036                         scic_sds_controller_phy_timer_start(scic);
1037                 } else {
1038                         dev_warn(scic_to_dev(scic),
1039                                  "%s: Controller stop operation failed "
1040                                  "to stop phy %d because of status "
1041                                  "%d.\n",
1042                                  __func__,
1043                                  ihost->phys[scic->next_phy_to_start].sci.phy_index,
1044                                  status);
1045                 }
1046
1047                 scic->next_phy_to_start++;
1048         }
1049
1050         return status;
1051 }
1052
1053 static void scic_sds_controller_phy_startup_timeout_handler(void *_scic)
1054 {
1055         struct scic_sds_controller *scic = _scic;
1056         enum sci_status status;
1057
1058         scic->phy_startup_timer_pending = false;
1059         status = SCI_FAILURE;
1060         while (status != SCI_SUCCESS)
1061                 status = scic_sds_controller_start_next_phy(scic);
1062 }
1063
1064 static enum sci_status scic_controller_start(struct scic_sds_controller *scic,
1065                                              u32 timeout)
1066 {
1067         struct isci_host *ihost = scic_to_ihost(scic);
1068         enum sci_status result;
1069         u16 index;
1070
1071         if (scic->state_machine.current_state_id !=
1072             SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1073                 dev_warn(scic_to_dev(scic),
1074                          "SCIC Controller start operation requested in "
1075                          "invalid state\n");
1076                 return SCI_FAILURE_INVALID_STATE;
1077         }
1078
1079         /* Build the TCi free pool */
1080         sci_pool_initialize(scic->tci_pool);
1081         for (index = 0; index < scic->task_context_entries; index++)
1082                 sci_pool_put(scic->tci_pool, index);
1083
1084         /* Build the RNi free pool */
1085         scic_sds_remote_node_table_initialize(
1086                         &scic->available_remote_nodes,
1087                         scic->remote_node_entries);
1088
1089         /*
1090          * Before anything else lets make sure we will not be
1091          * interrupted by the hardware.
1092          */
1093         scic_controller_disable_interrupts(scic);
1094
1095         /* Enable the port task scheduler */
1096         scic_sds_controller_enable_port_task_scheduler(scic);
1097
1098         /* Assign all the task entries to scic physical function */
1099         scic_sds_controller_assign_task_entries(scic);
1100
1101         /* Now initialize the completion queue */
1102         scic_sds_controller_initialize_completion_queue(scic);
1103
1104         /* Initialize the unsolicited frame queue for use */
1105         scic_sds_controller_initialize_unsolicited_frame_queue(scic);
1106
1107         /* Start all of the ports on this controller */
1108         for (index = 0; index < scic->logical_port_entries; index++) {
1109                 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1110
1111                 result = scic_sds_port_start(sci_port);
1112                 if (result)
1113                         return result;
1114         }
1115
1116         scic_sds_controller_start_next_phy(scic);
1117
1118         isci_timer_start(scic->timeout_timer, timeout);
1119
1120         sci_base_state_machine_change_state(&scic->state_machine,
1121                                             SCI_BASE_CONTROLLER_STATE_STARTING);
1122
1123         return SCI_SUCCESS;
1124 }
1125
1126 void isci_host_scan_start(struct Scsi_Host *shost)
1127 {
1128         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1129         unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci);
1130
1131         set_bit(IHOST_START_PENDING, &ihost->flags);
1132
1133         spin_lock_irq(&ihost->scic_lock);
1134         scic_controller_start(&ihost->sci, tmo);
1135         scic_controller_enable_interrupts(&ihost->sci);
1136         spin_unlock_irq(&ihost->scic_lock);
1137 }
1138
1139 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1140 {
1141         isci_host_change_state(ihost, isci_stopped);
1142         scic_controller_disable_interrupts(&ihost->sci);
1143         clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1144         wake_up(&ihost->eventq);
1145 }
1146
1147 static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic)
1148 {
1149         /* Empty out the completion queue */
1150         if (scic_sds_controller_completion_queue_has_entries(scic))
1151                 scic_sds_controller_process_completions(scic);
1152
1153         /* Clear the interrupt and enable all interrupts again */
1154         writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
1155         /* Could we write the value of SMU_ISR_COMPLETION? */
1156         writel(0xFF000000, &scic->smu_registers->interrupt_mask);
1157         writel(0, &scic->smu_registers->interrupt_mask);
1158 }
1159
1160 /**
1161  * isci_host_completion_routine() - This function is the delayed service
1162  *    routine that calls the sci core library's completion handler. It's
1163  *    scheduled as a tasklet from the interrupt service routine when interrupts
1164  *    in use, or set as the timeout function in polled mode.
1165  * @data: This parameter specifies the ISCI host object
1166  *
1167  */
1168 static void isci_host_completion_routine(unsigned long data)
1169 {
1170         struct isci_host *isci_host = (struct isci_host *)data;
1171         struct list_head    completed_request_list;
1172         struct list_head    errored_request_list;
1173         struct list_head    *current_position;
1174         struct list_head    *next_position;
1175         struct isci_request *request;
1176         struct isci_request *next_request;
1177         struct sas_task     *task;
1178
1179         INIT_LIST_HEAD(&completed_request_list);
1180         INIT_LIST_HEAD(&errored_request_list);
1181
1182         spin_lock_irq(&isci_host->scic_lock);
1183
1184         scic_sds_controller_completion_handler(&isci_host->sci);
1185
1186         /* Take the lists of completed I/Os from the host. */
1187
1188         list_splice_init(&isci_host->requests_to_complete,
1189                          &completed_request_list);
1190
1191         /* Take the list of errored I/Os from the host. */
1192         list_splice_init(&isci_host->requests_to_errorback,
1193                          &errored_request_list);
1194
1195         spin_unlock_irq(&isci_host->scic_lock);
1196
1197         /* Process any completions in the lists. */
1198         list_for_each_safe(current_position, next_position,
1199                            &completed_request_list) {
1200
1201                 request = list_entry(current_position, struct isci_request,
1202                                      completed_node);
1203                 task = isci_request_access_task(request);
1204
1205                 /* Normal notification (task_done) */
1206                 dev_dbg(&isci_host->pdev->dev,
1207                         "%s: Normal - request/task = %p/%p\n",
1208                         __func__,
1209                         request,
1210                         task);
1211
1212                 /* Return the task to libsas */
1213                 if (task != NULL) {
1214
1215                         task->lldd_task = NULL;
1216                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1217
1218                                 /* If the task is already in the abort path,
1219                                 * the task_done callback cannot be called.
1220                                 */
1221                                 task->task_done(task);
1222                         }
1223                 }
1224                 /* Free the request object. */
1225                 isci_request_free(isci_host, request);
1226         }
1227         list_for_each_entry_safe(request, next_request, &errored_request_list,
1228                                  completed_node) {
1229
1230                 task = isci_request_access_task(request);
1231
1232                 /* Use sas_task_abort */
1233                 dev_warn(&isci_host->pdev->dev,
1234                          "%s: Error - request/task = %p/%p\n",
1235                          __func__,
1236                          request,
1237                          task);
1238
1239                 if (task != NULL) {
1240
1241                         /* Put the task into the abort path if it's not there
1242                          * already.
1243                          */
1244                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1245                                 sas_task_abort(task);
1246
1247                 } else {
1248                         /* This is a case where the request has completed with a
1249                          * status such that it needed further target servicing,
1250                          * but the sas_task reference has already been removed
1251                          * from the request.  Since it was errored, it was not
1252                          * being aborted, so there is nothing to do except free
1253                          * it.
1254                          */
1255
1256                         spin_lock_irq(&isci_host->scic_lock);
1257                         /* Remove the request from the remote device's list
1258                         * of pending requests.
1259                         */
1260                         list_del_init(&request->dev_node);
1261                         spin_unlock_irq(&isci_host->scic_lock);
1262
1263                         /* Free the request object. */
1264                         isci_request_free(isci_host, request);
1265                 }
1266         }
1267
1268 }
1269
1270 /**
1271  * scic_controller_stop() - This method will stop an individual controller
1272  *    object.This method will invoke the associated user callback upon
1273  *    completion.  The completion callback is called when the following
1274  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1275  *    controller has been quiesced. This method will ensure that all IO
1276  *    requests are quiesced, phys are stopped, and all additional operation by
1277  *    the hardware is halted.
1278  * @controller: the handle to the controller object to stop.
1279  * @timeout: This parameter specifies the number of milliseconds in which the
1280  *    stop operation should complete.
1281  *
1282  * The controller must be in the STARTED or STOPPED state. Indicate if the
1283  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1284  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1285  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1286  * controller is not either in the STARTED or STOPPED states.
1287  */
1288 static enum sci_status scic_controller_stop(struct scic_sds_controller *scic,
1289                                             u32 timeout)
1290 {
1291         if (scic->state_machine.current_state_id !=
1292             SCI_BASE_CONTROLLER_STATE_READY) {
1293                 dev_warn(scic_to_dev(scic),
1294                          "SCIC Controller stop operation requested in "
1295                          "invalid state\n");
1296                 return SCI_FAILURE_INVALID_STATE;
1297         }
1298
1299         isci_timer_start(scic->timeout_timer, timeout);
1300         sci_base_state_machine_change_state(&scic->state_machine,
1301                                             SCI_BASE_CONTROLLER_STATE_STOPPING);
1302         return SCI_SUCCESS;
1303 }
1304
1305 /**
1306  * scic_controller_reset() - This method will reset the supplied core
1307  *    controller regardless of the state of said controller.  This operation is
1308  *    considered destructive.  In other words, all current operations are wiped
1309  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1310  *    requests are not aborted or completed at the actual remote device.
1311  * @controller: the handle to the controller object to reset.
1312  *
1313  * Indicate if the controller reset method succeeded or failed in some way.
1314  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1315  * the controller reset operation is unable to complete.
1316  */
1317 static enum sci_status scic_controller_reset(struct scic_sds_controller *scic)
1318 {
1319         switch (scic->state_machine.current_state_id) {
1320         case SCI_BASE_CONTROLLER_STATE_RESET:
1321         case SCI_BASE_CONTROLLER_STATE_READY:
1322         case SCI_BASE_CONTROLLER_STATE_STOPPED:
1323         case SCI_BASE_CONTROLLER_STATE_FAILED:
1324                 /*
1325                  * The reset operation is not a graceful cleanup, just
1326                  * perform the state transition.
1327                  */
1328                 sci_base_state_machine_change_state(&scic->state_machine,
1329                                 SCI_BASE_CONTROLLER_STATE_RESETTING);
1330                 return SCI_SUCCESS;
1331         default:
1332                 dev_warn(scic_to_dev(scic),
1333                          "SCIC Controller reset operation requested in "
1334                          "invalid state\n");
1335                 return SCI_FAILURE_INVALID_STATE;
1336         }
1337 }
1338
1339 void isci_host_deinit(struct isci_host *ihost)
1340 {
1341         int i;
1342
1343         isci_host_change_state(ihost, isci_stopping);
1344         for (i = 0; i < SCI_MAX_PORTS; i++) {
1345                 struct isci_port *iport = &ihost->ports[i];
1346                 struct isci_remote_device *idev, *d;
1347
1348                 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1349                         isci_remote_device_change_state(idev, isci_stopping);
1350                         isci_remote_device_stop(ihost, idev);
1351                 }
1352         }
1353
1354         set_bit(IHOST_STOP_PENDING, &ihost->flags);
1355
1356         spin_lock_irq(&ihost->scic_lock);
1357         scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT);
1358         spin_unlock_irq(&ihost->scic_lock);
1359
1360         wait_for_stop(ihost);
1361         scic_controller_reset(&ihost->sci);
1362         isci_timer_list_destroy(ihost);
1363 }
1364
1365 static void __iomem *scu_base(struct isci_host *isci_host)
1366 {
1367         struct pci_dev *pdev = isci_host->pdev;
1368         int id = isci_host->id;
1369
1370         return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1371 }
1372
1373 static void __iomem *smu_base(struct isci_host *isci_host)
1374 {
1375         struct pci_dev *pdev = isci_host->pdev;
1376         int id = isci_host->id;
1377
1378         return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1379 }
1380
1381 static void isci_user_parameters_get(
1382                 struct isci_host *isci_host,
1383                 union scic_user_parameters *scic_user_params)
1384 {
1385         struct scic_sds_user_parameters *u = &scic_user_params->sds1;
1386         int i;
1387
1388         for (i = 0; i < SCI_MAX_PHYS; i++) {
1389                 struct sci_phy_user_params *u_phy = &u->phys[i];
1390
1391                 u_phy->max_speed_generation = phy_gen;
1392
1393                 /* we are not exporting these for now */
1394                 u_phy->align_insertion_frequency = 0x7f;
1395                 u_phy->in_connection_align_insertion_frequency = 0xff;
1396                 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1397         }
1398
1399         u->stp_inactivity_timeout = stp_inactive_to;
1400         u->ssp_inactivity_timeout = ssp_inactive_to;
1401         u->stp_max_occupancy_timeout = stp_max_occ_to;
1402         u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1403         u->no_outbound_task_timeout = no_outbound_task_to;
1404         u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1405 }
1406
1407 static void scic_sds_controller_initial_state_enter(void *object)
1408 {
1409         struct scic_sds_controller *scic = object;
1410
1411         sci_base_state_machine_change_state(&scic->state_machine,
1412                         SCI_BASE_CONTROLLER_STATE_RESET);
1413 }
1414
1415 static inline void scic_sds_controller_starting_state_exit(void *object)
1416 {
1417         struct scic_sds_controller *scic = object;
1418
1419         isci_timer_stop(scic->timeout_timer);
1420 }
1421
1422 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1423 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1424 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1425 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1426 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1427 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1428
1429 /**
1430  * scic_controller_set_interrupt_coalescence() - This method allows the user to
1431  *    configure the interrupt coalescence.
1432  * @controller: This parameter represents the handle to the controller object
1433  *    for which its interrupt coalesce register is overridden.
1434  * @coalesce_number: Used to control the number of entries in the Completion
1435  *    Queue before an interrupt is generated. If the number of entries exceed
1436  *    this number, an interrupt will be generated. The valid range of the input
1437  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1438  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1439  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1440  *    interrupt coalescing timeout.
1441  *
1442  * Indicate if the user successfully set the interrupt coalesce parameters.
1443  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1444  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1445  */
1446 static enum sci_status scic_controller_set_interrupt_coalescence(
1447         struct scic_sds_controller *scic_controller,
1448         u32 coalesce_number,
1449         u32 coalesce_timeout)
1450 {
1451         u8 timeout_encode = 0;
1452         u32 min = 0;
1453         u32 max = 0;
1454
1455         /* Check if the input parameters fall in the range. */
1456         if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1457                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1458
1459         /*
1460          *  Defined encoding for interrupt coalescing timeout:
1461          *              Value   Min      Max     Units
1462          *              -----   ---      ---     -----
1463          *              0       -        -       Disabled
1464          *              1       13.3     20.0    ns
1465          *              2       26.7     40.0
1466          *              3       53.3     80.0
1467          *              4       106.7    160.0
1468          *              5       213.3    320.0
1469          *              6       426.7    640.0
1470          *              7       853.3    1280.0
1471          *              8       1.7      2.6     us
1472          *              9       3.4      5.1
1473          *              10      6.8      10.2
1474          *              11      13.7     20.5
1475          *              12      27.3     41.0
1476          *              13      54.6     81.9
1477          *              14      109.2    163.8
1478          *              15      218.5    327.7
1479          *              16      436.9    655.4
1480          *              17      873.8    1310.7
1481          *              18      1.7      2.6     ms
1482          *              19      3.5      5.2
1483          *              20      7.0      10.5
1484          *              21      14.0     21.0
1485          *              22      28.0     41.9
1486          *              23      55.9     83.9
1487          *              24      111.8    167.8
1488          *              25      223.7    335.5
1489          *              26      447.4    671.1
1490          *              27      894.8    1342.2
1491          *              28      1.8      2.7     s
1492          *              Others Undefined */
1493
1494         /*
1495          * Use the table above to decide the encode of interrupt coalescing timeout
1496          * value for register writing. */
1497         if (coalesce_timeout == 0)
1498                 timeout_encode = 0;
1499         else{
1500                 /* make the timeout value in unit of (10 ns). */
1501                 coalesce_timeout = coalesce_timeout * 100;
1502                 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1503                 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1504
1505                 /* get the encode of timeout for register writing. */
1506                 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1507                       timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1508                       timeout_encode++) {
1509                         if (min <= coalesce_timeout &&  max > coalesce_timeout)
1510                                 break;
1511                         else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1512                                  && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1513                                 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1514                                         break;
1515                                 else{
1516                                         timeout_encode++;
1517                                         break;
1518                                 }
1519                         } else {
1520                                 max = max * 2;
1521                                 min = min * 2;
1522                         }
1523                 }
1524
1525                 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1526                         /* the value is out of range. */
1527                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1528         }
1529
1530         writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1531                SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1532                &scic_controller->smu_registers->interrupt_coalesce_control);
1533
1534
1535         scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
1536         scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
1537
1538         return SCI_SUCCESS;
1539 }
1540
1541
1542 static void scic_sds_controller_ready_state_enter(void *object)
1543 {
1544         struct scic_sds_controller *scic = object;
1545
1546         /* set the default interrupt coalescence number and timeout value. */
1547         scic_controller_set_interrupt_coalescence(scic, 0x10, 250);
1548 }
1549
1550 static void scic_sds_controller_ready_state_exit(void *object)
1551 {
1552         struct scic_sds_controller *scic = object;
1553
1554         /* disable interrupt coalescence. */
1555         scic_controller_set_interrupt_coalescence(scic, 0, 0);
1556 }
1557
1558 static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic)
1559 {
1560         u32 index;
1561         enum sci_status status;
1562         enum sci_status phy_status;
1563         struct isci_host *ihost = scic_to_ihost(scic);
1564
1565         status = SCI_SUCCESS;
1566
1567         for (index = 0; index < SCI_MAX_PHYS; index++) {
1568                 phy_status = scic_sds_phy_stop(&ihost->phys[index].sci);
1569
1570                 if (phy_status != SCI_SUCCESS &&
1571                     phy_status != SCI_FAILURE_INVALID_STATE) {
1572                         status = SCI_FAILURE;
1573
1574                         dev_warn(scic_to_dev(scic),
1575                                  "%s: Controller stop operation failed to stop "
1576                                  "phy %d because of status %d.\n",
1577                                  __func__,
1578                                  ihost->phys[index].sci.phy_index, phy_status);
1579                 }
1580         }
1581
1582         return status;
1583 }
1584
1585 static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
1586 {
1587         u32 index;
1588         enum sci_status port_status;
1589         enum sci_status status = SCI_SUCCESS;
1590         struct isci_host *ihost = scic_to_ihost(scic);
1591
1592         for (index = 0; index < scic->logical_port_entries; index++) {
1593                 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1594                 scic_sds_port_handler_t stop;
1595
1596                 stop = sci_port->state_handlers->stop_handler;
1597                 port_status = stop(sci_port);
1598
1599                 if ((port_status != SCI_SUCCESS) &&
1600                     (port_status != SCI_FAILURE_INVALID_STATE)) {
1601                         status = SCI_FAILURE;
1602
1603                         dev_warn(scic_to_dev(scic),
1604                                  "%s: Controller stop operation failed to "
1605                                  "stop port %d because of status %d.\n",
1606                                  __func__,
1607                                  sci_port->logical_port_index,
1608                                  port_status);
1609                 }
1610         }
1611
1612         return status;
1613 }
1614
1615 static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic)
1616 {
1617         u32 index;
1618         enum sci_status status;
1619         enum sci_status device_status;
1620
1621         status = SCI_SUCCESS;
1622
1623         for (index = 0; index < scic->remote_node_entries; index++) {
1624                 if (scic->device_table[index] != NULL) {
1625                         /* / @todo What timeout value do we want to provide to this request? */
1626                         device_status = scic_remote_device_stop(scic->device_table[index], 0);
1627
1628                         if ((device_status != SCI_SUCCESS) &&
1629                             (device_status != SCI_FAILURE_INVALID_STATE)) {
1630                                 dev_warn(scic_to_dev(scic),
1631                                          "%s: Controller stop operation failed "
1632                                          "to stop device 0x%p because of "
1633                                          "status %d.\n",
1634                                          __func__,
1635                                          scic->device_table[index], device_status);
1636                         }
1637                 }
1638         }
1639
1640         return status;
1641 }
1642
1643 static void scic_sds_controller_stopping_state_enter(void *object)
1644 {
1645         struct scic_sds_controller *scic = object;
1646
1647         /* Stop all of the components for this controller */
1648         scic_sds_controller_stop_phys(scic);
1649         scic_sds_controller_stop_ports(scic);
1650         scic_sds_controller_stop_devices(scic);
1651 }
1652
1653 static void scic_sds_controller_stopping_state_exit(void *object)
1654 {
1655         struct scic_sds_controller *scic = object;
1656
1657         isci_timer_stop(scic->timeout_timer);
1658 }
1659
1660
1661 /**
1662  * scic_sds_controller_reset_hardware() -
1663  *
1664  * This method will reset the controller hardware.
1665  */
1666 static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic)
1667 {
1668         /* Disable interrupts so we dont take any spurious interrupts */
1669         scic_controller_disable_interrupts(scic);
1670
1671         /* Reset the SCU */
1672         writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control);
1673
1674         /* Delay for 1ms to before clearing the CQP and UFQPR. */
1675         udelay(1000);
1676
1677         /* The write to the CQGR clears the CQP */
1678         writel(0x00000000, &scic->smu_registers->completion_queue_get);
1679
1680         /* The write to the UFQGP clears the UFQPR */
1681         writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
1682 }
1683
1684 static void scic_sds_controller_resetting_state_enter(void *object)
1685 {
1686         struct scic_sds_controller *scic = object;
1687
1688         scic_sds_controller_reset_hardware(scic);
1689         sci_base_state_machine_change_state(&scic->state_machine,
1690                                             SCI_BASE_CONTROLLER_STATE_RESET);
1691 }
1692
1693 static const struct sci_base_state scic_sds_controller_state_table[] = {
1694         [SCI_BASE_CONTROLLER_STATE_INITIAL] = {
1695                 .enter_state = scic_sds_controller_initial_state_enter,
1696         },
1697         [SCI_BASE_CONTROLLER_STATE_RESET] = {},
1698         [SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {},
1699         [SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {},
1700         [SCI_BASE_CONTROLLER_STATE_STARTING] = {
1701                 .exit_state  = scic_sds_controller_starting_state_exit,
1702         },
1703         [SCI_BASE_CONTROLLER_STATE_READY] = {
1704                 .enter_state = scic_sds_controller_ready_state_enter,
1705                 .exit_state  = scic_sds_controller_ready_state_exit,
1706         },
1707         [SCI_BASE_CONTROLLER_STATE_RESETTING] = {
1708                 .enter_state = scic_sds_controller_resetting_state_enter,
1709         },
1710         [SCI_BASE_CONTROLLER_STATE_STOPPING] = {
1711                 .enter_state = scic_sds_controller_stopping_state_enter,
1712                 .exit_state = scic_sds_controller_stopping_state_exit,
1713         },
1714         [SCI_BASE_CONTROLLER_STATE_STOPPED] = {},
1715         [SCI_BASE_CONTROLLER_STATE_FAILED] = {}
1716 };
1717
1718 static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic)
1719 {
1720         /* these defaults are overridden by the platform / firmware */
1721         struct isci_host *ihost = scic_to_ihost(scic);
1722         u16 index;
1723
1724         /* Default to APC mode. */
1725         scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1726
1727         /* Default to APC mode. */
1728         scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1;
1729
1730         /* Default to no SSC operation. */
1731         scic->oem_parameters.sds1.controller.do_enable_ssc = false;
1732
1733         /* Initialize all of the port parameter information to narrow ports. */
1734         for (index = 0; index < SCI_MAX_PORTS; index++) {
1735                 scic->oem_parameters.sds1.ports[index].phy_mask = 0;
1736         }
1737
1738         /* Initialize all of the phy parameter information. */
1739         for (index = 0; index < SCI_MAX_PHYS; index++) {
1740                 /* Default to 6G (i.e. Gen 3) for now. */
1741                 scic->user_parameters.sds1.phys[index].max_speed_generation = 3;
1742
1743                 /* the frequencies cannot be 0 */
1744                 scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
1745                 scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
1746                 scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1747
1748                 /*
1749                  * Previous Vitesse based expanders had a arbitration issue that
1750                  * is worked around by having the upper 32-bits of SAS address
1751                  * with a value greater then the Vitesse company identifier.
1752                  * Hence, usage of 0x5FCFFFFF. */
1753                 scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id;
1754                 scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF;
1755         }
1756
1757         scic->user_parameters.sds1.stp_inactivity_timeout = 5;
1758         scic->user_parameters.sds1.ssp_inactivity_timeout = 5;
1759         scic->user_parameters.sds1.stp_max_occupancy_timeout = 5;
1760         scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
1761         scic->user_parameters.sds1.no_outbound_task_timeout = 20;
1762 }
1763
1764
1765
1766 /**
1767  * scic_controller_construct() - This method will attempt to construct a
1768  *    controller object utilizing the supplied parameter information.
1769  * @c: This parameter specifies the controller to be constructed.
1770  * @scu_base: mapped base address of the scu registers
1771  * @smu_base: mapped base address of the smu registers
1772  *
1773  * Indicate if the controller was successfully constructed or if it failed in
1774  * some way. SCI_SUCCESS This value is returned if the controller was
1775  * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
1776  * if the interrupt coalescence timer may cause SAS compliance issues for SMP
1777  * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
1778  * This value is returned if the controller does not support the supplied type.
1779  * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
1780  * controller does not support the supplied initialization data version.
1781  */
1782 static enum sci_status scic_controller_construct(struct scic_sds_controller *scic,
1783                                           void __iomem *scu_base,
1784                                           void __iomem *smu_base)
1785 {
1786         struct isci_host *ihost = scic_to_ihost(scic);
1787         u8 i;
1788
1789         sci_base_state_machine_construct(&scic->state_machine,
1790                 scic, scic_sds_controller_state_table,
1791                 SCI_BASE_CONTROLLER_STATE_INITIAL);
1792
1793         sci_base_state_machine_start(&scic->state_machine);
1794
1795         scic->scu_registers = scu_base;
1796         scic->smu_registers = smu_base;
1797
1798         scic_sds_port_configuration_agent_construct(&scic->port_agent);
1799
1800         /* Construct the ports for this controller */
1801         for (i = 0; i < SCI_MAX_PORTS; i++)
1802                 scic_sds_port_construct(&ihost->ports[i].sci, i, scic);
1803         scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic);
1804
1805         /* Construct the phys for this controller */
1806         for (i = 0; i < SCI_MAX_PHYS; i++) {
1807                 /* Add all the PHYs to the dummy port */
1808                 scic_sds_phy_construct(&ihost->phys[i].sci,
1809                                        &ihost->ports[SCI_MAX_PORTS].sci, i);
1810         }
1811
1812         scic->invalid_phy_mask = 0;
1813
1814         /* Set the default maximum values */
1815         scic->completion_event_entries      = SCU_EVENT_COUNT;
1816         scic->completion_queue_entries      = SCU_COMPLETION_QUEUE_COUNT;
1817         scic->remote_node_entries           = SCI_MAX_REMOTE_DEVICES;
1818         scic->logical_port_entries          = SCI_MAX_PORTS;
1819         scic->task_context_entries          = SCU_IO_REQUEST_COUNT;
1820         scic->uf_control.buffers.count      = SCU_UNSOLICITED_FRAME_COUNT;
1821         scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT;
1822
1823         /* Initialize the User and OEM parameters to default values. */
1824         scic_sds_controller_set_default_config_parameters(scic);
1825
1826         return scic_controller_reset(scic);
1827 }
1828
1829 int scic_oem_parameters_validate(struct scic_sds_oem_params *oem)
1830 {
1831         int i;
1832
1833         for (i = 0; i < SCI_MAX_PORTS; i++)
1834                 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1835                         return -EINVAL;
1836
1837         for (i = 0; i < SCI_MAX_PHYS; i++)
1838                 if (oem->phys[i].sas_address.high == 0 &&
1839                     oem->phys[i].sas_address.low == 0)
1840                         return -EINVAL;
1841
1842         if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1843                 for (i = 0; i < SCI_MAX_PHYS; i++)
1844                         if (oem->ports[i].phy_mask != 0)
1845                                 return -EINVAL;
1846         } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1847                 u8 phy_mask = 0;
1848
1849                 for (i = 0; i < SCI_MAX_PHYS; i++)
1850                         phy_mask |= oem->ports[i].phy_mask;
1851
1852                 if (phy_mask == 0)
1853                         return -EINVAL;
1854         } else
1855                 return -EINVAL;
1856
1857         if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1858                 return -EINVAL;
1859
1860         return 0;
1861 }
1862
1863 static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic,
1864                                         union scic_oem_parameters *scic_parms)
1865 {
1866         u32 state = scic->state_machine.current_state_id;
1867
1868         if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
1869             state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
1870             state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1871
1872                 if (scic_oem_parameters_validate(&scic_parms->sds1))
1873                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1874                 scic->oem_parameters.sds1 = scic_parms->sds1;
1875
1876                 return SCI_SUCCESS;
1877         }
1878
1879         return SCI_FAILURE_INVALID_STATE;
1880 }
1881
1882 void scic_oem_parameters_get(
1883         struct scic_sds_controller *scic,
1884         union scic_oem_parameters *scic_parms)
1885 {
1886         memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
1887 }
1888
1889 static void scic_sds_controller_timeout_handler(void *_scic)
1890 {
1891         struct scic_sds_controller *scic = _scic;
1892         struct isci_host *ihost = scic_to_ihost(scic);
1893         struct sci_base_state_machine *sm = &scic->state_machine;
1894
1895         if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STARTING)
1896                 scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT);
1897         else if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STOPPING) {
1898                 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_FAILED);
1899                 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1900         } else  /* / @todo Now what do we want to do in this case? */
1901                 dev_err(scic_to_dev(scic),
1902                         "%s: Controller timer fired when controller was not "
1903                         "in a state being timed.\n",
1904                         __func__);
1905 }
1906
1907 static enum sci_status scic_sds_controller_initialize_phy_startup(struct scic_sds_controller *scic)
1908 {
1909         struct isci_host *ihost = scic_to_ihost(scic);
1910
1911         scic->phy_startup_timer = isci_timer_create(ihost,
1912                                                     scic,
1913                                                     scic_sds_controller_phy_startup_timeout_handler);
1914
1915         if (scic->phy_startup_timer == NULL)
1916                 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
1917         else {
1918                 scic->next_phy_to_start = 0;
1919                 scic->phy_startup_timer_pending = false;
1920         }
1921
1922         return SCI_SUCCESS;
1923 }
1924
1925 static void scic_sds_controller_power_control_timer_start(struct scic_sds_controller *scic)
1926 {
1927         isci_timer_start(scic->power_control.timer,
1928                          SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1929
1930         scic->power_control.timer_started = true;
1931 }
1932
1933 static void scic_sds_controller_power_control_timer_stop(struct scic_sds_controller *scic)
1934 {
1935         if (scic->power_control.timer_started) {
1936                 isci_timer_stop(scic->power_control.timer);
1937                 scic->power_control.timer_started = false;
1938         }
1939 }
1940
1941 static void scic_sds_controller_power_control_timer_restart(struct scic_sds_controller *scic)
1942 {
1943         scic_sds_controller_power_control_timer_stop(scic);
1944         scic_sds_controller_power_control_timer_start(scic);
1945 }
1946
1947 static void scic_sds_controller_power_control_timer_handler(
1948         void *controller)
1949 {
1950         struct scic_sds_controller *scic;
1951
1952         scic = (struct scic_sds_controller *)controller;
1953
1954         scic->power_control.phys_granted_power = 0;
1955
1956         if (scic->power_control.phys_waiting == 0) {
1957                 scic->power_control.timer_started = false;
1958         } else {
1959                 struct scic_sds_phy *sci_phy = NULL;
1960                 u8 i;
1961
1962                 for (i = 0;
1963                      (i < SCI_MAX_PHYS)
1964                      && (scic->power_control.phys_waiting != 0);
1965                      i++) {
1966                         if (scic->power_control.requesters[i] != NULL) {
1967                                 if (scic->power_control.phys_granted_power <
1968                                     scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
1969                                         sci_phy = scic->power_control.requesters[i];
1970                                         scic->power_control.requesters[i] = NULL;
1971                                         scic->power_control.phys_waiting--;
1972                                         scic->power_control.phys_granted_power++;
1973                                         scic_sds_phy_consume_power_handler(sci_phy);
1974                                 } else {
1975                                         break;
1976                                 }
1977                         }
1978                 }
1979
1980                 /*
1981                  * It doesn't matter if the power list is empty, we need to start the
1982                  * timer in case another phy becomes ready.
1983                  */
1984                 scic_sds_controller_power_control_timer_start(scic);
1985         }
1986 }
1987
1988 /**
1989  * This method inserts the phy in the stagger spinup control queue.
1990  * @scic:
1991  *
1992  *
1993  */
1994 void scic_sds_controller_power_control_queue_insert(
1995         struct scic_sds_controller *scic,
1996         struct scic_sds_phy *sci_phy)
1997 {
1998         BUG_ON(sci_phy == NULL);
1999
2000         if (scic->power_control.phys_granted_power <
2001             scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
2002                 scic->power_control.phys_granted_power++;
2003                 scic_sds_phy_consume_power_handler(sci_phy);
2004
2005                 /*
2006                  * stop and start the power_control timer. When the timer fires, the
2007                  * no_of_phys_granted_power will be set to 0
2008                  */
2009                 scic_sds_controller_power_control_timer_restart(scic);
2010         } else {
2011                 /* Add the phy in the waiting list */
2012                 scic->power_control.requesters[sci_phy->phy_index] = sci_phy;
2013                 scic->power_control.phys_waiting++;
2014         }
2015 }
2016
2017 /**
2018  * This method removes the phy from the stagger spinup control queue.
2019  * @scic:
2020  *
2021  *
2022  */
2023 void scic_sds_controller_power_control_queue_remove(
2024         struct scic_sds_controller *scic,
2025         struct scic_sds_phy *sci_phy)
2026 {
2027         BUG_ON(sci_phy == NULL);
2028
2029         if (scic->power_control.requesters[sci_phy->phy_index] != NULL) {
2030                 scic->power_control.phys_waiting--;
2031         }
2032
2033         scic->power_control.requesters[sci_phy->phy_index] = NULL;
2034 }
2035
2036 #define AFE_REGISTER_WRITE_DELAY 10
2037
2038 /* Initialize the AFE for this phy index. We need to read the AFE setup from
2039  * the OEM parameters
2040  */
2041 static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
2042 {
2043         const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
2044         u32 afe_status;
2045         u32 phy_id;
2046
2047         /* Clear DFX Status registers */
2048         writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0);
2049         udelay(AFE_REGISTER_WRITE_DELAY);
2050
2051         if (is_b0()) {
2052                 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2053                  * Timer, PM Stagger Timer */
2054                 writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2);
2055                 udelay(AFE_REGISTER_WRITE_DELAY);
2056         }
2057
2058         /* Configure bias currents to normal */
2059         if (is_a0())
2060                 writel(0x00005500, &scic->scu_registers->afe.afe_bias_control);
2061         else if (is_a2())
2062                 writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control);
2063         else if (is_b0())
2064                 writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control);
2065
2066         udelay(AFE_REGISTER_WRITE_DELAY);
2067
2068         /* Enable PLL */
2069         if (is_b0())
2070                 writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0);
2071         else
2072                 writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0);
2073
2074         udelay(AFE_REGISTER_WRITE_DELAY);
2075
2076         /* Wait for the PLL to lock */
2077         do {
2078                 afe_status = readl(&scic->scu_registers->afe.afe_common_block_status);
2079                 udelay(AFE_REGISTER_WRITE_DELAY);
2080         } while ((afe_status & 0x00001000) == 0);
2081
2082         if (is_a0() || is_a2()) {
2083                 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
2084                 writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0);
2085                 udelay(AFE_REGISTER_WRITE_DELAY);
2086         }
2087
2088         for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2089                 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2090
2091                 if (is_b0()) {
2092                          /* Configure transmitter SSC parameters */
2093                         writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
2094                         udelay(AFE_REGISTER_WRITE_DELAY);
2095                 } else {
2096                         /*
2097                          * All defaults, except the Receive Word Alignament/Comma Detect
2098                          * Enable....(0xe800) */
2099                         writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2100                         udelay(AFE_REGISTER_WRITE_DELAY);
2101
2102                         writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
2103                         udelay(AFE_REGISTER_WRITE_DELAY);
2104                 }
2105
2106                 /*
2107                  * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2108                  * & increase TX int & ext bias 20%....(0xe85c) */
2109                 if (is_a0())
2110                         writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2111                 else if (is_a2())
2112                         writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2113                 else {
2114                          /* Power down TX and RX (PWRDNTX and PWRDNRX) */
2115                         writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2116                         udelay(AFE_REGISTER_WRITE_DELAY);
2117
2118                         /*
2119                          * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2120                          * & increase TX int & ext bias 20%....(0xe85c) */
2121                         writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2122                 }
2123                 udelay(AFE_REGISTER_WRITE_DELAY);
2124
2125                 if (is_a0() || is_a2()) {
2126                         /* Enable TX equalization (0xe824) */
2127                         writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2128                         udelay(AFE_REGISTER_WRITE_DELAY);
2129                 }
2130
2131                 /*
2132                  * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
2133                  * RDD=0x0(RX Detect Enabled) ....(0xe800) */
2134                 writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2135                 udelay(AFE_REGISTER_WRITE_DELAY);
2136
2137                 /* Leave DFE/FFE on */
2138                 if (is_a0())
2139                         writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2140                 else if (is_a2())
2141                         writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2142                 else {
2143                         writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2144                         udelay(AFE_REGISTER_WRITE_DELAY);
2145                         /* Enable TX equalization (0xe824) */
2146                         writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2147                 }
2148                 udelay(AFE_REGISTER_WRITE_DELAY);
2149
2150                 writel(oem_phy->afe_tx_amp_control0,
2151                         &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2152                 udelay(AFE_REGISTER_WRITE_DELAY);
2153
2154                 writel(oem_phy->afe_tx_amp_control1,
2155                         &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2156                 udelay(AFE_REGISTER_WRITE_DELAY);
2157
2158                 writel(oem_phy->afe_tx_amp_control2,
2159                         &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2160                 udelay(AFE_REGISTER_WRITE_DELAY);
2161
2162                 writel(oem_phy->afe_tx_amp_control3,
2163                         &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2164                 udelay(AFE_REGISTER_WRITE_DELAY);
2165         }
2166
2167         /* Transfer control to the PEs */
2168         writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0);
2169         udelay(AFE_REGISTER_WRITE_DELAY);
2170 }
2171
2172 static enum sci_status scic_controller_set_mode(struct scic_sds_controller *scic,
2173                                                 enum sci_controller_mode operating_mode)
2174 {
2175         enum sci_status status          = SCI_SUCCESS;
2176
2177         if ((scic->state_machine.current_state_id ==
2178                                 SCI_BASE_CONTROLLER_STATE_INITIALIZING) ||
2179             (scic->state_machine.current_state_id ==
2180                                 SCI_BASE_CONTROLLER_STATE_INITIALIZED)) {
2181                 switch (operating_mode) {
2182                 case SCI_MODE_SPEED:
2183                         scic->remote_node_entries      = SCI_MAX_REMOTE_DEVICES;
2184                         scic->task_context_entries     = SCU_IO_REQUEST_COUNT;
2185                         scic->uf_control.buffers.count =
2186                                 SCU_UNSOLICITED_FRAME_COUNT;
2187                         scic->completion_event_entries = SCU_EVENT_COUNT;
2188                         scic->completion_queue_entries =
2189                                 SCU_COMPLETION_QUEUE_COUNT;
2190                         break;
2191
2192                 case SCI_MODE_SIZE:
2193                         scic->remote_node_entries      = SCI_MIN_REMOTE_DEVICES;
2194                         scic->task_context_entries     = SCI_MIN_IO_REQUESTS;
2195                         scic->uf_control.buffers.count =
2196                                 SCU_MIN_UNSOLICITED_FRAMES;
2197                         scic->completion_event_entries = SCU_MIN_EVENTS;
2198                         scic->completion_queue_entries =
2199                                 SCU_MIN_COMPLETION_QUEUE_ENTRIES;
2200                         break;
2201
2202                 default:
2203                         status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
2204                         break;
2205                 }
2206         } else
2207                 status = SCI_FAILURE_INVALID_STATE;
2208
2209         return status;
2210 }
2211
2212 static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic)
2213 {
2214         struct isci_host *ihost = scic_to_ihost(scic);
2215         scic->power_control.timer = isci_timer_create(ihost,
2216                                                       scic,
2217                                         scic_sds_controller_power_control_timer_handler);
2218
2219         memset(scic->power_control.requesters, 0,
2220                sizeof(scic->power_control.requesters));
2221
2222         scic->power_control.phys_waiting = 0;
2223         scic->power_control.phys_granted_power = 0;
2224 }
2225
2226 static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic)
2227 {
2228         struct sci_base_state_machine *sm = &scic->state_machine;
2229         enum sci_status result = SCI_SUCCESS;
2230         struct isci_host *ihost = scic_to_ihost(scic);
2231         u32 index, state;
2232
2233         if (scic->state_machine.current_state_id !=
2234             SCI_BASE_CONTROLLER_STATE_RESET) {
2235                 dev_warn(scic_to_dev(scic),
2236                          "SCIC Controller initialize operation requested "
2237                          "in invalid state\n");
2238                 return SCI_FAILURE_INVALID_STATE;
2239         }
2240
2241         sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_INITIALIZING);
2242
2243         scic->timeout_timer = isci_timer_create(ihost, scic,
2244                                                 scic_sds_controller_timeout_handler);
2245
2246         scic_sds_controller_initialize_phy_startup(scic);
2247
2248         scic_sds_controller_initialize_power_control(scic);
2249
2250         /*
2251          * There is nothing to do here for B0 since we do not have to
2252          * program the AFE registers.
2253          * / @todo The AFE settings are supposed to be correct for the B0 but
2254          * /       presently they seem to be wrong. */
2255         scic_sds_controller_afe_initialization(scic);
2256
2257         if (result == SCI_SUCCESS) {
2258                 u32 status;
2259                 u32 terminate_loop;
2260
2261                 /* Take the hardware out of reset */
2262                 writel(0, &scic->smu_registers->soft_reset_control);
2263
2264                 /*
2265                  * / @todo Provide meaningfull error code for hardware failure
2266                  * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2267                 result = SCI_FAILURE;
2268                 terminate_loop = 100;
2269
2270                 while (terminate_loop-- && (result != SCI_SUCCESS)) {
2271                         /* Loop until the hardware reports success */
2272                         udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2273                         status = readl(&scic->smu_registers->control_status);
2274
2275                         if ((status & SCU_RAM_INIT_COMPLETED) ==
2276                                         SCU_RAM_INIT_COMPLETED)
2277                                 result = SCI_SUCCESS;
2278                 }
2279         }
2280
2281         if (result == SCI_SUCCESS) {
2282                 u32 max_supported_ports;
2283                 u32 max_supported_devices;
2284                 u32 max_supported_io_requests;
2285                 u32 device_context_capacity;
2286
2287                 /*
2288                  * Determine what are the actaul device capacities that the
2289                  * hardware will support */
2290                 device_context_capacity =
2291                         readl(&scic->smu_registers->device_context_capacity);
2292
2293
2294                 max_supported_ports = smu_dcc_get_max_ports(device_context_capacity);
2295                 max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity);
2296                 max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity);
2297
2298                 /*
2299                  * Make all PEs that are unassigned match up with the
2300                  * logical ports
2301                  */
2302                 for (index = 0; index < max_supported_ports; index++) {
2303                         struct scu_port_task_scheduler_group_registers __iomem
2304                                 *ptsg = &scic->scu_registers->peg0.ptsg;
2305
2306                         writel(index, &ptsg->protocol_engine[index]);
2307                 }
2308
2309                 /* Record the smaller of the two capacity values */
2310                 scic->logical_port_entries =
2311                         min(max_supported_ports, scic->logical_port_entries);
2312
2313                 scic->task_context_entries =
2314                         min(max_supported_io_requests,
2315                             scic->task_context_entries);
2316
2317                 scic->remote_node_entries =
2318                         min(max_supported_devices, scic->remote_node_entries);
2319
2320                 /*
2321                  * Now that we have the correct hardware reported minimum values
2322                  * build the MDL for the controller.  Default to a performance
2323                  * configuration.
2324                  */
2325                 scic_controller_set_mode(scic, SCI_MODE_SPEED);
2326         }
2327
2328         /* Initialize hardware PCI Relaxed ordering in DMA engines */
2329         if (result == SCI_SUCCESS) {
2330                 u32 dma_configuration;
2331
2332                 /* Configure the payload DMA */
2333                 dma_configuration =
2334                         readl(&scic->scu_registers->sdma.pdma_configuration);
2335                 dma_configuration |=
2336                         SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2337                 writel(dma_configuration,
2338                         &scic->scu_registers->sdma.pdma_configuration);
2339
2340                 /* Configure the control DMA */
2341                 dma_configuration =
2342                         readl(&scic->scu_registers->sdma.cdma_configuration);
2343                 dma_configuration |=
2344                         SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2345                 writel(dma_configuration,
2346                         &scic->scu_registers->sdma.cdma_configuration);
2347         }
2348
2349         /*
2350          * Initialize the PHYs before the PORTs because the PHY registers
2351          * are accessed during the port initialization.
2352          */
2353         if (result == SCI_SUCCESS) {
2354                 /* Initialize the phys */
2355                 for (index = 0;
2356                      (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS);
2357                      index++) {
2358                         result = scic_sds_phy_initialize(
2359                                 &ihost->phys[index].sci,
2360                                 &scic->scu_registers->peg0.pe[index].tl,
2361                                 &scic->scu_registers->peg0.pe[index].ll);
2362                 }
2363         }
2364
2365         if (result == SCI_SUCCESS) {
2366                 /* Initialize the logical ports */
2367                 for (index = 0;
2368                      (index < scic->logical_port_entries) &&
2369                      (result == SCI_SUCCESS);
2370                      index++) {
2371                         result = scic_sds_port_initialize(
2372                                 &ihost->ports[index].sci,
2373                                 &scic->scu_registers->peg0.ptsg.port[index],
2374                                 &scic->scu_registers->peg0.ptsg.protocol_engine,
2375                                 &scic->scu_registers->peg0.viit[index]);
2376                 }
2377         }
2378
2379         if (result == SCI_SUCCESS)
2380                 result = scic_sds_port_configuration_agent_initialize(
2381                                 scic,
2382                                 &scic->port_agent);
2383
2384         /* Advance the controller state machine */
2385         if (result == SCI_SUCCESS)
2386                 state = SCI_BASE_CONTROLLER_STATE_INITIALIZED;
2387         else
2388                 state = SCI_BASE_CONTROLLER_STATE_FAILED;
2389         sci_base_state_machine_change_state(sm, state);
2390
2391         return result;
2392 }
2393
2394 static enum sci_status scic_user_parameters_set(
2395         struct scic_sds_controller *scic,
2396         union scic_user_parameters *scic_parms)
2397 {
2398         u32 state = scic->state_machine.current_state_id;
2399
2400         if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
2401             state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
2402             state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
2403                 u16 index;
2404
2405                 /*
2406                  * Validate the user parameters.  If they are not legal, then
2407                  * return a failure.
2408                  */
2409                 for (index = 0; index < SCI_MAX_PHYS; index++) {
2410                         struct sci_phy_user_params *user_phy;
2411
2412                         user_phy = &scic_parms->sds1.phys[index];
2413
2414                         if (!((user_phy->max_speed_generation <=
2415                                                 SCIC_SDS_PARM_MAX_SPEED) &&
2416                               (user_phy->max_speed_generation >
2417                                                 SCIC_SDS_PARM_NO_SPEED)))
2418                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2419
2420                         if (user_phy->in_connection_align_insertion_frequency <
2421                                         3)
2422                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2423
2424                         if ((user_phy->in_connection_align_insertion_frequency <
2425                                                 3) ||
2426                             (user_phy->align_insertion_frequency == 0) ||
2427                             (user_phy->
2428                                 notify_enable_spin_up_insertion_frequency ==
2429                                                 0))
2430                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2431                 }
2432
2433                 if ((scic_parms->sds1.stp_inactivity_timeout == 0) ||
2434                     (scic_parms->sds1.ssp_inactivity_timeout == 0) ||
2435                     (scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
2436                     (scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
2437                     (scic_parms->sds1.no_outbound_task_timeout == 0))
2438                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2439
2440                 memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
2441
2442                 return SCI_SUCCESS;
2443         }
2444
2445         return SCI_FAILURE_INVALID_STATE;
2446 }
2447
2448 static int scic_controller_mem_init(struct scic_sds_controller *scic)
2449 {
2450         struct device *dev = scic_to_dev(scic);
2451         dma_addr_t dma_handle;
2452         enum sci_status result;
2453
2454         scic->completion_queue = dmam_alloc_coherent(dev,
2455                         scic->completion_queue_entries * sizeof(u32),
2456                         &dma_handle, GFP_KERNEL);
2457         if (!scic->completion_queue)
2458                 return -ENOMEM;
2459
2460         writel(lower_32_bits(dma_handle),
2461                 &scic->smu_registers->completion_queue_lower);
2462         writel(upper_32_bits(dma_handle),
2463                 &scic->smu_registers->completion_queue_upper);
2464
2465         scic->remote_node_context_table = dmam_alloc_coherent(dev,
2466                         scic->remote_node_entries *
2467                                 sizeof(union scu_remote_node_context),
2468                         &dma_handle, GFP_KERNEL);
2469         if (!scic->remote_node_context_table)
2470                 return -ENOMEM;
2471
2472         writel(lower_32_bits(dma_handle),
2473                 &scic->smu_registers->remote_node_context_lower);
2474         writel(upper_32_bits(dma_handle),
2475                 &scic->smu_registers->remote_node_context_upper);
2476
2477         scic->task_context_table = dmam_alloc_coherent(dev,
2478                         scic->task_context_entries *
2479                                 sizeof(struct scu_task_context),
2480                         &dma_handle, GFP_KERNEL);
2481         if (!scic->task_context_table)
2482                 return -ENOMEM;
2483
2484         writel(lower_32_bits(dma_handle),
2485                 &scic->smu_registers->host_task_table_lower);
2486         writel(upper_32_bits(dma_handle),
2487                 &scic->smu_registers->host_task_table_upper);
2488
2489         result = scic_sds_unsolicited_frame_control_construct(scic);
2490         if (result)
2491                 return result;
2492
2493         /*
2494          * Inform the silicon as to the location of the UF headers and
2495          * address table.
2496          */
2497         writel(lower_32_bits(scic->uf_control.headers.physical_address),
2498                 &scic->scu_registers->sdma.uf_header_base_address_lower);
2499         writel(upper_32_bits(scic->uf_control.headers.physical_address),
2500                 &scic->scu_registers->sdma.uf_header_base_address_upper);
2501
2502         writel(lower_32_bits(scic->uf_control.address_table.physical_address),
2503                 &scic->scu_registers->sdma.uf_address_table_lower);
2504         writel(upper_32_bits(scic->uf_control.address_table.physical_address),
2505                 &scic->scu_registers->sdma.uf_address_table_upper);
2506
2507         return 0;
2508 }
2509
2510 int isci_host_init(struct isci_host *isci_host)
2511 {
2512         int err = 0, i;
2513         enum sci_status status;
2514         union scic_oem_parameters oem;
2515         union scic_user_parameters scic_user_params;
2516         struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev);
2517
2518         isci_timer_list_construct(isci_host);
2519
2520         spin_lock_init(&isci_host->state_lock);
2521         spin_lock_init(&isci_host->scic_lock);
2522         spin_lock_init(&isci_host->queue_lock);
2523         init_waitqueue_head(&isci_host->eventq);
2524
2525         isci_host_change_state(isci_host, isci_starting);
2526         isci_host->can_queue = ISCI_CAN_QUEUE_VAL;
2527
2528         status = scic_controller_construct(&isci_host->sci, scu_base(isci_host),
2529                                            smu_base(isci_host));
2530
2531         if (status != SCI_SUCCESS) {
2532                 dev_err(&isci_host->pdev->dev,
2533                         "%s: scic_controller_construct failed - status = %x\n",
2534                         __func__,
2535                         status);
2536                 return -ENODEV;
2537         }
2538
2539         isci_host->sas_ha.dev = &isci_host->pdev->dev;
2540         isci_host->sas_ha.lldd_ha = isci_host;
2541
2542         /*
2543          * grab initial values stored in the controller object for OEM and USER
2544          * parameters
2545          */
2546         isci_user_parameters_get(isci_host, &scic_user_params);
2547         status = scic_user_parameters_set(&isci_host->sci,
2548                                           &scic_user_params);
2549         if (status != SCI_SUCCESS) {
2550                 dev_warn(&isci_host->pdev->dev,
2551                          "%s: scic_user_parameters_set failed\n",
2552                          __func__);
2553                 return -ENODEV;
2554         }
2555
2556         scic_oem_parameters_get(&isci_host->sci, &oem);
2557
2558         /* grab any OEM parameters specified in orom */
2559         if (pci_info->orom) {
2560                 status = isci_parse_oem_parameters(&oem,
2561                                                    pci_info->orom,
2562                                                    isci_host->id);
2563                 if (status != SCI_SUCCESS) {
2564                         dev_warn(&isci_host->pdev->dev,
2565                                  "parsing firmware oem parameters failed\n");
2566                         return -EINVAL;
2567                 }
2568         }
2569
2570         status = scic_oem_parameters_set(&isci_host->sci, &oem);
2571         if (status != SCI_SUCCESS) {
2572                 dev_warn(&isci_host->pdev->dev,
2573                                 "%s: scic_oem_parameters_set failed\n",
2574                                 __func__);
2575                 return -ENODEV;
2576         }
2577
2578         tasklet_init(&isci_host->completion_tasklet,
2579                      isci_host_completion_routine, (unsigned long)isci_host);
2580
2581         INIT_LIST_HEAD(&isci_host->requests_to_complete);
2582         INIT_LIST_HEAD(&isci_host->requests_to_errorback);
2583
2584         spin_lock_irq(&isci_host->scic_lock);
2585         status = scic_controller_initialize(&isci_host->sci);
2586         spin_unlock_irq(&isci_host->scic_lock);
2587         if (status != SCI_SUCCESS) {
2588                 dev_warn(&isci_host->pdev->dev,
2589                          "%s: scic_controller_initialize failed -"
2590                          " status = 0x%x\n",
2591                          __func__, status);
2592                 return -ENODEV;
2593         }
2594
2595         err = scic_controller_mem_init(&isci_host->sci);
2596         if (err)
2597                 return err;
2598
2599         isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev,
2600                                                sizeof(struct isci_request),
2601                                                SLAB_HWCACHE_ALIGN, 0);
2602
2603         if (!isci_host->dma_pool)
2604                 return -ENOMEM;
2605
2606         for (i = 0; i < SCI_MAX_PORTS; i++)
2607                 isci_port_init(&isci_host->ports[i], isci_host, i);
2608
2609         for (i = 0; i < SCI_MAX_PHYS; i++)
2610                 isci_phy_init(&isci_host->phys[i], isci_host, i);
2611
2612         for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2613                 struct isci_remote_device *idev = &isci_host->devices[i];
2614
2615                 INIT_LIST_HEAD(&idev->reqs_in_process);
2616                 INIT_LIST_HEAD(&idev->node);
2617                 spin_lock_init(&idev->state_lock);
2618         }
2619
2620         return 0;
2621 }
2622
2623 void scic_sds_controller_link_up(struct scic_sds_controller *scic,
2624                 struct scic_sds_port *port, struct scic_sds_phy *phy)
2625 {
2626         switch (scic->state_machine.current_state_id) {
2627         case SCI_BASE_CONTROLLER_STATE_STARTING:
2628                 scic_sds_controller_phy_timer_stop(scic);
2629                 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2630                                                  port, phy);
2631                 scic_sds_controller_start_next_phy(scic);
2632                 break;
2633         case SCI_BASE_CONTROLLER_STATE_READY:
2634                 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2635                                                  port, phy);
2636                 break;
2637         default:
2638                 dev_dbg(scic_to_dev(scic),
2639                         "%s: SCIC Controller linkup event from phy %d in "
2640                         "unexpected state %d\n", __func__, phy->phy_index,
2641                         scic->state_machine.current_state_id);
2642         }
2643 }
2644
2645 void scic_sds_controller_link_down(struct scic_sds_controller *scic,
2646                 struct scic_sds_port *port, struct scic_sds_phy *phy)
2647 {
2648         switch (scic->state_machine.current_state_id) {
2649         case SCI_BASE_CONTROLLER_STATE_STARTING:
2650         case SCI_BASE_CONTROLLER_STATE_READY:
2651                 scic->port_agent.link_down_handler(scic, &scic->port_agent,
2652                                                    port, phy);
2653                 break;
2654         default:
2655                 dev_dbg(scic_to_dev(scic),
2656                         "%s: SCIC Controller linkdown event from phy %d in "
2657                         "unexpected state %d\n",
2658                         __func__,
2659                         phy->phy_index,
2660                         scic->state_machine.current_state_id);
2661         }
2662 }
2663
2664 /**
2665  * This is a helper method to determine if any remote devices on this
2666  * controller are still in the stopping state.
2667  *
2668  */
2669 static bool scic_sds_controller_has_remote_devices_stopping(
2670         struct scic_sds_controller *controller)
2671 {
2672         u32 index;
2673
2674         for (index = 0; index < controller->remote_node_entries; index++) {
2675                 if ((controller->device_table[index] != NULL) &&
2676                    (controller->device_table[index]->state_machine.current_state_id
2677                     == SCI_BASE_REMOTE_DEVICE_STATE_STOPPING))
2678                         return true;
2679         }
2680
2681         return false;
2682 }
2683
2684 /**
2685  * This method is called by the remote device to inform the controller
2686  * object that the remote device has stopped.
2687  */
2688 void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic,
2689                                                struct scic_sds_remote_device *sci_dev)
2690 {
2691         if (scic->state_machine.current_state_id !=
2692             SCI_BASE_CONTROLLER_STATE_STOPPING) {
2693                 dev_dbg(scic_to_dev(scic),
2694                         "SCIC Controller 0x%p remote device stopped event "
2695                         "from device 0x%p in unexpected state %d\n",
2696                         scic, sci_dev,
2697                         scic->state_machine.current_state_id);
2698                 return;
2699         }
2700
2701         if (!scic_sds_controller_has_remote_devices_stopping(scic)) {
2702                 sci_base_state_machine_change_state(&scic->state_machine,
2703                                 SCI_BASE_CONTROLLER_STATE_STOPPED);
2704         }
2705 }
2706
2707 /**
2708  * This method will write to the SCU PCP register the request value. The method
2709  *    is used to suspend/resume ports, devices, and phys.
2710  * @scic:
2711  *
2712  *
2713  */
2714 void scic_sds_controller_post_request(
2715         struct scic_sds_controller *scic,
2716         u32 request)
2717 {
2718         dev_dbg(scic_to_dev(scic),
2719                 "%s: SCIC Controller 0x%p post request 0x%08x\n",
2720                 __func__,
2721                 scic,
2722                 request);
2723
2724         writel(request, &scic->smu_registers->post_context_port);
2725 }
2726
2727 /**
2728  * This method will copy the soft copy of the task context into the physical
2729  *    memory accessible by the controller.
2730  * @scic: This parameter specifies the controller for which to copy
2731  *    the task context.
2732  * @sci_req: This parameter specifies the request for which the task
2733  *    context is being copied.
2734  *
2735  * After this call is made the SCIC_SDS_IO_REQUEST object will always point to
2736  * the physical memory version of the task context. Thus, all subsequent
2737  * updates to the task context are performed in the TC table (i.e. DMAable
2738  * memory). none
2739  */
2740 void scic_sds_controller_copy_task_context(
2741         struct scic_sds_controller *scic,
2742         struct scic_sds_request *sci_req)
2743 {
2744         struct scu_task_context *task_context_buffer;
2745
2746         task_context_buffer = scic_sds_controller_get_task_context_buffer(
2747                 scic, sci_req->io_tag);
2748
2749         memcpy(task_context_buffer,
2750                sci_req->task_context_buffer,
2751                offsetof(struct scu_task_context, sgl_snapshot_ac));
2752
2753         /*
2754          * Now that the soft copy of the TC has been copied into the TC
2755          * table accessible by the silicon.  Thus, any further changes to
2756          * the TC (e.g. TC termination) occur in the appropriate location. */
2757         sci_req->task_context_buffer = task_context_buffer;
2758 }
2759
2760 /**
2761  * This method returns the task context buffer for the given io tag.
2762  * @scic:
2763  * @io_tag:
2764  *
2765  * struct scu_task_context*
2766  */
2767 struct scu_task_context *scic_sds_controller_get_task_context_buffer(
2768         struct scic_sds_controller *scic,
2769         u16 io_tag
2770         ) {
2771         u16 task_index = scic_sds_io_tag_get_index(io_tag);
2772
2773         if (task_index < scic->task_context_entries) {
2774                 return &scic->task_context_table[task_index];
2775         }
2776
2777         return NULL;
2778 }
2779
2780 struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic,
2781                                              u16 io_tag)
2782 {
2783         u16 task_index;
2784         u16 task_sequence;
2785
2786         task_index = scic_sds_io_tag_get_index(io_tag);
2787
2788         if (task_index  < scic->task_context_entries) {
2789                 if (scic->io_request_table[task_index] != NULL) {
2790                         task_sequence = scic_sds_io_tag_get_sequence(io_tag);
2791
2792                         if (task_sequence == scic->io_request_sequence[task_index]) {
2793                                 return scic->io_request_table[task_index];
2794                         }
2795                 }
2796         }
2797
2798         return NULL;
2799 }
2800
2801 /**
2802  * This method allocates remote node index and the reserves the remote node
2803  *    context space for use. This method can fail if there are no more remote
2804  *    node index available.
2805  * @scic: This is the controller object which contains the set of
2806  *    free remote node ids
2807  * @sci_dev: This is the device object which is requesting the a remote node
2808  *    id
2809  * @node_id: This is the remote node id that is assinged to the device if one
2810  *    is available
2811  *
2812  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2813  * node index available.
2814  */
2815 enum sci_status scic_sds_controller_allocate_remote_node_context(
2816         struct scic_sds_controller *scic,
2817         struct scic_sds_remote_device *sci_dev,
2818         u16 *node_id)
2819 {
2820         u16 node_index;
2821         u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2822
2823         node_index = scic_sds_remote_node_table_allocate_remote_node(
2824                 &scic->available_remote_nodes, remote_node_count
2825                 );
2826
2827         if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2828                 scic->device_table[node_index] = sci_dev;
2829
2830                 *node_id = node_index;
2831
2832                 return SCI_SUCCESS;
2833         }
2834
2835         return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2836 }
2837
2838 /**
2839  * This method frees the remote node index back to the available pool.  Once
2840  *    this is done the remote node context buffer is no longer valid and can
2841  *    not be used.
2842  * @scic:
2843  * @sci_dev:
2844  * @node_id:
2845  *
2846  */
2847 void scic_sds_controller_free_remote_node_context(
2848         struct scic_sds_controller *scic,
2849         struct scic_sds_remote_device *sci_dev,
2850         u16 node_id)
2851 {
2852         u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2853
2854         if (scic->device_table[node_id] == sci_dev) {
2855                 scic->device_table[node_id] = NULL;
2856
2857                 scic_sds_remote_node_table_release_remote_node_index(
2858                         &scic->available_remote_nodes, remote_node_count, node_id
2859                         );
2860         }
2861 }
2862
2863 /**
2864  * This method returns the union scu_remote_node_context for the specified remote
2865  *    node id.
2866  * @scic:
2867  * @node_id:
2868  *
2869  * union scu_remote_node_context*
2870  */
2871 union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
2872         struct scic_sds_controller *scic,
2873         u16 node_id
2874         ) {
2875         if (
2876                 (node_id < scic->remote_node_entries)
2877                 && (scic->device_table[node_id] != NULL)
2878                 ) {
2879                 return &scic->remote_node_context_table[node_id];
2880         }
2881
2882         return NULL;
2883 }
2884
2885 /**
2886  *
2887  * @resposne_buffer: This is the buffer into which the D2H register FIS will be
2888  *    constructed.
2889  * @frame_header: This is the frame header returned by the hardware.
2890  * @frame_buffer: This is the frame buffer returned by the hardware.
2891  *
2892  * This method will combind the frame header and frame buffer to create a SATA
2893  * D2H register FIS none
2894  */
2895 void scic_sds_controller_copy_sata_response(
2896         void *response_buffer,
2897         void *frame_header,
2898         void *frame_buffer)
2899 {
2900         memcpy(response_buffer, frame_header, sizeof(u32));
2901
2902         memcpy(response_buffer + sizeof(u32),
2903                frame_buffer,
2904                sizeof(struct dev_to_host_fis) - sizeof(u32));
2905 }
2906
2907 /**
2908  * This method releases the frame once this is done the frame is available for
2909  *    re-use by the hardware.  The data contained in the frame header and frame
2910  *    buffer is no longer valid. The UF queue get pointer is only updated if UF
2911  *    control indicates this is appropriate.
2912  * @scic:
2913  * @frame_index:
2914  *
2915  */
2916 void scic_sds_controller_release_frame(
2917         struct scic_sds_controller *scic,
2918         u32 frame_index)
2919 {
2920         if (scic_sds_unsolicited_frame_control_release_frame(
2921                     &scic->uf_control, frame_index) == true)
2922                 writel(scic->uf_control.get,
2923                         &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
2924 }
2925
2926 /**
2927  * scic_controller_start_io() - This method is called by the SCI user to
2928  *    send/start an IO request. If the method invocation is successful, then
2929  *    the IO request has been queued to the hardware for processing.
2930  * @controller: the handle to the controller object for which to start an IO
2931  *    request.
2932  * @remote_device: the handle to the remote device object for which to start an
2933  *    IO request.
2934  * @io_request: the handle to the io request object to start.
2935  * @io_tag: This parameter specifies a previously allocated IO tag that the
2936  *    user desires to be utilized for this request. This parameter is optional.
2937  *     The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
2938  *    for this parameter.
2939  *
2940  * - IO tags are a protected resource.  It is incumbent upon the SCI Core user
2941  * to ensure that each of the methods that may allocate or free available IO
2942  * tags are handled in a mutually exclusive manner.  This method is one of said
2943  * methods requiring proper critical code section protection (e.g. semaphore,
2944  * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags.  As a
2945  * result, it is expected the user will have set the NCQ tag field in the host
2946  * to device register FIS prior to calling this method.  There is also a
2947  * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
2948  * the scic_controller_start_io() method. scic_controller_allocate_tag() for
2949  * more information on allocating a tag. Indicate if the controller
2950  * successfully started the IO request. SCI_SUCCESS if the IO request was
2951  * successfully started. Determine the failure situations and return values.
2952  */
2953 enum sci_status scic_controller_start_io(
2954         struct scic_sds_controller *scic,
2955         struct scic_sds_remote_device *rdev,
2956         struct scic_sds_request *req,
2957         u16 io_tag)
2958 {
2959         enum sci_status status;
2960
2961         if (scic->state_machine.current_state_id !=
2962             SCI_BASE_CONTROLLER_STATE_READY) {
2963                 dev_warn(scic_to_dev(scic), "invalid state to start I/O");
2964                 return SCI_FAILURE_INVALID_STATE;
2965         }
2966
2967         status = scic_sds_remote_device_start_io(scic, rdev, req);
2968         if (status != SCI_SUCCESS)
2969                 return status;
2970
2971         scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
2972         scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req));
2973         return SCI_SUCCESS;
2974 }
2975
2976 /**
2977  * scic_controller_terminate_request() - This method is called by the SCI Core
2978  *    user to terminate an ongoing (i.e. started) core IO request.  This does
2979  *    not abort the IO request at the target, but rather removes the IO request
2980  *    from the host controller.
2981  * @controller: the handle to the controller object for which to terminate a
2982  *    request.
2983  * @remote_device: the handle to the remote device object for which to
2984  *    terminate a request.
2985  * @request: the handle to the io or task management request object to
2986  *    terminate.
2987  *
2988  * Indicate if the controller successfully began the terminate process for the
2989  * IO request. SCI_SUCCESS if the terminate process was successfully started
2990  * for the request. Determine the failure situations and return values.
2991  */
2992 enum sci_status scic_controller_terminate_request(
2993         struct scic_sds_controller *scic,
2994         struct scic_sds_remote_device *rdev,
2995         struct scic_sds_request *req)
2996 {
2997         enum sci_status status;
2998
2999         if (scic->state_machine.current_state_id !=
3000             SCI_BASE_CONTROLLER_STATE_READY) {
3001                 dev_warn(scic_to_dev(scic),
3002                          "invalid state to terminate request\n");
3003                 return SCI_FAILURE_INVALID_STATE;
3004         }
3005
3006         status = scic_sds_io_request_terminate(req);
3007         if (status != SCI_SUCCESS)
3008                 return status;
3009
3010         /*
3011          * Utilize the original post context command and or in the POST_TC_ABORT
3012          * request sub-type.
3013          */
3014         scic_sds_controller_post_request(scic,
3015                 scic_sds_request_get_post_context(req) |
3016                 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
3017         return SCI_SUCCESS;
3018 }
3019
3020 /**
3021  * scic_controller_complete_io() - This method will perform core specific
3022  *    completion operations for an IO request.  After this method is invoked,
3023  *    the user should consider the IO request as invalid until it is properly
3024  *    reused (i.e. re-constructed).
3025  * @controller: The handle to the controller object for which to complete the
3026  *    IO request.
3027  * @remote_device: The handle to the remote device object for which to complete
3028  *    the IO request.
3029  * @io_request: the handle to the io request object to complete.
3030  *
3031  * - IO tags are a protected resource.  It is incumbent upon the SCI Core user
3032  * to ensure that each of the methods that may allocate or free available IO
3033  * tags are handled in a mutually exclusive manner.  This method is one of said
3034  * methods requiring proper critical code section protection (e.g. semaphore,
3035  * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3036  * Core user, using the scic_controller_allocate_io_tag() method, then it is
3037  * the responsibility of the caller to invoke the scic_controller_free_io_tag()
3038  * method to free the tag (i.e. this method will not free the IO tag). Indicate
3039  * if the controller successfully completed the IO request. SCI_SUCCESS if the
3040  * completion process was successful.
3041  */
3042 enum sci_status scic_controller_complete_io(
3043         struct scic_sds_controller *scic,
3044         struct scic_sds_remote_device *rdev,
3045         struct scic_sds_request *request)
3046 {
3047         enum sci_status status;
3048         u16 index;
3049
3050         switch (scic->state_machine.current_state_id) {
3051         case SCI_BASE_CONTROLLER_STATE_STOPPING:
3052                 /* XXX: Implement this function */
3053                 return SCI_FAILURE;
3054         case SCI_BASE_CONTROLLER_STATE_READY:
3055                 status = scic_sds_remote_device_complete_io(scic, rdev, request);
3056                 if (status != SCI_SUCCESS)
3057                         return status;
3058
3059                 index = scic_sds_io_tag_get_index(request->io_tag);
3060                 scic->io_request_table[index] = NULL;
3061                 return SCI_SUCCESS;
3062         default:
3063                 dev_warn(scic_to_dev(scic), "invalid state to complete I/O");
3064                 return SCI_FAILURE_INVALID_STATE;
3065         }
3066
3067 }
3068
3069 enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req)
3070 {
3071         struct scic_sds_controller *scic = sci_req->owning_controller;
3072
3073         if (scic->state_machine.current_state_id !=
3074             SCI_BASE_CONTROLLER_STATE_READY) {
3075                 dev_warn(scic_to_dev(scic), "invalid state to continue I/O");
3076                 return SCI_FAILURE_INVALID_STATE;
3077         }
3078
3079         scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req;
3080         scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req));
3081         return SCI_SUCCESS;
3082 }
3083
3084 /**
3085  * scic_controller_start_task() - This method is called by the SCIC user to
3086  *    send/start a framework task management request.
3087  * @controller: the handle to the controller object for which to start the task
3088  *    management request.
3089  * @remote_device: the handle to the remote device object for which to start
3090  *    the task management request.
3091  * @task_request: the handle to the task request object to start.
3092  * @io_tag: This parameter specifies a previously allocated IO tag that the
3093  *    user desires to be utilized for this request.  Note this not the io_tag
3094  *    of the request being managed.  It is to be utilized for the task request
3095  *    itself. This parameter is optional.  The user is allowed to supply
3096  *    SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
3097  *
3098  * - IO tags are a protected resource.  It is incumbent upon the SCI Core user
3099  * to ensure that each of the methods that may allocate or free available IO
3100  * tags are handled in a mutually exclusive manner.  This method is one of said
3101  * methods requiring proper critical code section protection (e.g. semaphore,
3102  * spin-lock, etc.). - The user must synchronize this task with completion
3103  * queue processing.  If they are not synchronized then it is possible for the
3104  * io requests that are being managed by the task request can complete before
3105  * starting the task request. scic_controller_allocate_tag() for more
3106  * information on allocating a tag. Indicate if the controller successfully
3107  * started the IO request. SCI_TASK_SUCCESS if the task request was
3108  * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
3109  * returned if there is/are task(s) outstanding that require termination or
3110  * completion before this request can succeed.
3111  */
3112 enum sci_task_status scic_controller_start_task(
3113         struct scic_sds_controller *scic,
3114         struct scic_sds_remote_device *rdev,
3115         struct scic_sds_request *req,
3116         u16 task_tag)
3117 {
3118         enum sci_status status;
3119
3120         if (scic->state_machine.current_state_id !=
3121             SCI_BASE_CONTROLLER_STATE_READY) {
3122                 dev_warn(scic_to_dev(scic),
3123                          "%s: SCIC Controller starting task from invalid "
3124                          "state\n",
3125                          __func__);
3126                 return SCI_TASK_FAILURE_INVALID_STATE;
3127         }
3128
3129         status = scic_sds_remote_device_start_task(scic, rdev, req);
3130         switch (status) {
3131         case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
3132                 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3133
3134                 /*
3135                  * We will let framework know this task request started successfully,
3136                  * although core is still woring on starting the request (to post tc when
3137                  * RNC is resumed.)
3138                  */
3139                 return SCI_SUCCESS;
3140         case SCI_SUCCESS:
3141                 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3142
3143                 scic_sds_controller_post_request(scic,
3144                         scic_sds_request_get_post_context(req));
3145                 break;
3146         default:
3147                 break;
3148         }
3149
3150         return status;
3151 }
3152
3153 /**
3154  * scic_controller_allocate_io_tag() - This method will allocate a tag from the
3155  *    pool of free IO tags. Direct allocation of IO tags by the SCI Core user
3156  *    is optional. The scic_controller_start_io() method will allocate an IO
3157  *    tag if this method is not utilized and the tag is not supplied to the IO
3158  *    construct routine.  Direct allocation of IO tags may provide additional
3159  *    performance improvements in environments capable of supporting this usage
3160  *    model.  Additionally, direct allocation of IO tags also provides
3161  *    additional flexibility to the SCI Core user.  Specifically, the user may
3162  *    retain IO tags across the lives of multiple IO requests.
3163  * @controller: the handle to the controller object for which to allocate the
3164  *    tag.
3165  *
3166  * IO tags are a protected resource.  It is incumbent upon the SCI Core user to
3167  * ensure that each of the methods that may allocate or free available IO tags
3168  * are handled in a mutually exclusive manner.  This method is one of said
3169  * methods requiring proper critical code section protection (e.g. semaphore,
3170  * spin-lock, etc.). An unsigned integer representing an available IO tag.
3171  * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
3172  * currently available tags to be allocated. All return other values indicate a
3173  * legitimate tag.
3174  */
3175 u16 scic_controller_allocate_io_tag(
3176         struct scic_sds_controller *scic)
3177 {
3178         u16 task_context;
3179         u16 sequence_count;
3180
3181         if (!sci_pool_empty(scic->tci_pool)) {
3182                 sci_pool_get(scic->tci_pool, task_context);
3183
3184                 sequence_count = scic->io_request_sequence[task_context];
3185
3186                 return scic_sds_io_tag_construct(sequence_count, task_context);
3187         }
3188
3189         return SCI_CONTROLLER_INVALID_IO_TAG;
3190 }
3191
3192 /**
3193  * scic_controller_free_io_tag() - This method will free an IO tag to the pool
3194  *    of free IO tags. This method provides the SCI Core user more flexibility
3195  *    with regards to IO tags.  The user may desire to keep an IO tag after an
3196  *    IO request has completed, because they plan on re-using the tag for a
3197  *    subsequent IO request.  This method is only legal if the tag was
3198  *    allocated via scic_controller_allocate_io_tag().
3199  * @controller: This parameter specifies the handle to the controller object
3200  *    for which to free/return the tag.
3201  * @io_tag: This parameter represents the tag to be freed to the pool of
3202  *    available tags.
3203  *
3204  * - IO tags are a protected resource.  It is incumbent upon the SCI Core user
3205  * to ensure that each of the methods that may allocate or free available IO
3206  * tags are handled in a mutually exclusive manner.  This method is one of said
3207  * methods requiring proper critical code section protection (e.g. semaphore,
3208  * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3209  * Core user, using the scic_controller_allocate_io_tag() method, then it is
3210  * the responsibility of the caller to invoke this method to free the tag. This
3211  * method returns an indication of whether the tag was successfully put back
3212  * (freed) to the pool of available tags. SCI_SUCCESS This return value
3213  * indicates the tag was successfully placed into the pool of available IO
3214  * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
3215  * is not a valid IO tag value.
3216  */
3217 enum sci_status scic_controller_free_io_tag(
3218         struct scic_sds_controller *scic,
3219         u16 io_tag)
3220 {
3221         u16 sequence;
3222         u16 index;
3223
3224         BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG);
3225
3226         sequence = scic_sds_io_tag_get_sequence(io_tag);
3227         index    = scic_sds_io_tag_get_index(io_tag);
3228
3229         if (!sci_pool_full(scic->tci_pool)) {
3230                 if (sequence == scic->io_request_sequence[index]) {
3231                         scic_sds_io_sequence_increment(
3232                                 scic->io_request_sequence[index]);
3233
3234                         sci_pool_put(scic->tci_pool, index);
3235
3236                         return SCI_SUCCESS;
3237                 }
3238         }
3239
3240         return SCI_FAILURE_INVALID_IO_TAG;
3241 }
3242
3243