]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/spi/pxa2xx_spi.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86
[karo-tx-linux.git] / drivers / spi / pxa2xx_spi.c
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/spi/spi.h>
28 #include <linux/workqueue.h>
29 #include <linux/delay.h>
30 #include <linux/clk.h>
31
32 #include <asm/io.h>
33 #include <asm/irq.h>
34 #include <asm/hardware.h>
35 #include <asm/delay.h>
36 #include <asm/dma.h>
37
38 #include <asm/arch/hardware.h>
39 #include <asm/arch/pxa-regs.h>
40 #include <asm/arch/regs-ssp.h>
41 #include <asm/arch/ssp.h>
42 #include <asm/arch/pxa2xx_spi.h>
43
44 MODULE_AUTHOR("Stephen Street");
45 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
46 MODULE_LICENSE("GPL");
47
48 #define MAX_BUSES 3
49
50 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
51 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
52 #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
53
54 /* for testing SSCR1 changes that require SSP restart, basically
55  * everything except the service and interrupt enables */
56 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_EBCEI | SSCR1_SCFR \
57                                 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
58                                 | SSCR1_RWOT | SSCR1_TRAIL | SSCR1_PINTE \
59                                 | SSCR1_STRF | SSCR1_EFWR |SSCR1_RFT \
60                                 | SSCR1_TFT | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
61
62 #define DEFINE_SSP_REG(reg, off) \
63 static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
64 static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
65
66 DEFINE_SSP_REG(SSCR0, 0x00)
67 DEFINE_SSP_REG(SSCR1, 0x04)
68 DEFINE_SSP_REG(SSSR, 0x08)
69 DEFINE_SSP_REG(SSITR, 0x0c)
70 DEFINE_SSP_REG(SSDR, 0x10)
71 DEFINE_SSP_REG(SSTO, 0x28)
72 DEFINE_SSP_REG(SSPSP, 0x2c)
73
74 #define START_STATE ((void*)0)
75 #define RUNNING_STATE ((void*)1)
76 #define DONE_STATE ((void*)2)
77 #define ERROR_STATE ((void*)-1)
78
79 #define QUEUE_RUNNING 0
80 #define QUEUE_STOPPED 1
81
82 struct driver_data {
83         /* Driver model hookup */
84         struct platform_device *pdev;
85
86         /* SSP Info */
87         struct ssp_device *ssp;
88
89         /* SPI framework hookup */
90         enum pxa_ssp_type ssp_type;
91         struct spi_master *master;
92
93         /* PXA hookup */
94         struct pxa2xx_spi_master *master_info;
95
96         /* DMA setup stuff */
97         int rx_channel;
98         int tx_channel;
99         u32 *null_dma_buf;
100
101         /* SSP register addresses */
102         void *ioaddr;
103         u32 ssdr_physical;
104
105         /* SSP masks*/
106         u32 dma_cr1;
107         u32 int_cr1;
108         u32 clear_sr;
109         u32 mask_sr;
110
111         /* Driver message queue */
112         struct workqueue_struct *workqueue;
113         struct work_struct pump_messages;
114         spinlock_t lock;
115         struct list_head queue;
116         int busy;
117         int run;
118
119         /* Message Transfer pump */
120         struct tasklet_struct pump_transfers;
121
122         /* Current message transfer state info */
123         struct spi_message* cur_msg;
124         struct spi_transfer* cur_transfer;
125         struct chip_data *cur_chip;
126         size_t len;
127         void *tx;
128         void *tx_end;
129         void *rx;
130         void *rx_end;
131         int dma_mapped;
132         dma_addr_t rx_dma;
133         dma_addr_t tx_dma;
134         size_t rx_map_len;
135         size_t tx_map_len;
136         u8 n_bytes;
137         u32 dma_width;
138         int cs_change;
139         int (*write)(struct driver_data *drv_data);
140         int (*read)(struct driver_data *drv_data);
141         irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
142         void (*cs_control)(u32 command);
143 };
144
145 struct chip_data {
146         u32 cr0;
147         u32 cr1;
148         u32 psp;
149         u32 timeout;
150         u8 n_bytes;
151         u32 dma_width;
152         u32 dma_burst_size;
153         u32 threshold;
154         u32 dma_threshold;
155         u8 enable_dma;
156         u8 bits_per_word;
157         u32 speed_hz;
158         int (*write)(struct driver_data *drv_data);
159         int (*read)(struct driver_data *drv_data);
160         void (*cs_control)(u32 command);
161 };
162
163 static void pump_messages(struct work_struct *work);
164
165 static int flush(struct driver_data *drv_data)
166 {
167         unsigned long limit = loops_per_jiffy << 1;
168
169         void *reg = drv_data->ioaddr;
170
171         do {
172                 while (read_SSSR(reg) & SSSR_RNE) {
173                         read_SSDR(reg);
174                 }
175         } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
176         write_SSSR(SSSR_ROR, reg);
177
178         return limit;
179 }
180
181 static void null_cs_control(u32 command)
182 {
183 }
184
185 static int null_writer(struct driver_data *drv_data)
186 {
187         void *reg = drv_data->ioaddr;
188         u8 n_bytes = drv_data->n_bytes;
189
190         if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
191                 || (drv_data->tx == drv_data->tx_end))
192                 return 0;
193
194         write_SSDR(0, reg);
195         drv_data->tx += n_bytes;
196
197         return 1;
198 }
199
200 static int null_reader(struct driver_data *drv_data)
201 {
202         void *reg = drv_data->ioaddr;
203         u8 n_bytes = drv_data->n_bytes;
204
205         while ((read_SSSR(reg) & SSSR_RNE)
206                 && (drv_data->rx < drv_data->rx_end)) {
207                 read_SSDR(reg);
208                 drv_data->rx += n_bytes;
209         }
210
211         return drv_data->rx == drv_data->rx_end;
212 }
213
214 static int u8_writer(struct driver_data *drv_data)
215 {
216         void *reg = drv_data->ioaddr;
217
218         if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
219                 || (drv_data->tx == drv_data->tx_end))
220                 return 0;
221
222         write_SSDR(*(u8 *)(drv_data->tx), reg);
223         ++drv_data->tx;
224
225         return 1;
226 }
227
228 static int u8_reader(struct driver_data *drv_data)
229 {
230         void *reg = drv_data->ioaddr;
231
232         while ((read_SSSR(reg) & SSSR_RNE)
233                 && (drv_data->rx < drv_data->rx_end)) {
234                 *(u8 *)(drv_data->rx) = read_SSDR(reg);
235                 ++drv_data->rx;
236         }
237
238         return drv_data->rx == drv_data->rx_end;
239 }
240
241 static int u16_writer(struct driver_data *drv_data)
242 {
243         void *reg = drv_data->ioaddr;
244
245         if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
246                 || (drv_data->tx == drv_data->tx_end))
247                 return 0;
248
249         write_SSDR(*(u16 *)(drv_data->tx), reg);
250         drv_data->tx += 2;
251
252         return 1;
253 }
254
255 static int u16_reader(struct driver_data *drv_data)
256 {
257         void *reg = drv_data->ioaddr;
258
259         while ((read_SSSR(reg) & SSSR_RNE)
260                 && (drv_data->rx < drv_data->rx_end)) {
261                 *(u16 *)(drv_data->rx) = read_SSDR(reg);
262                 drv_data->rx += 2;
263         }
264
265         return drv_data->rx == drv_data->rx_end;
266 }
267
268 static int u32_writer(struct driver_data *drv_data)
269 {
270         void *reg = drv_data->ioaddr;
271
272         if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
273                 || (drv_data->tx == drv_data->tx_end))
274                 return 0;
275
276         write_SSDR(*(u32 *)(drv_data->tx), reg);
277         drv_data->tx += 4;
278
279         return 1;
280 }
281
282 static int u32_reader(struct driver_data *drv_data)
283 {
284         void *reg = drv_data->ioaddr;
285
286         while ((read_SSSR(reg) & SSSR_RNE)
287                 && (drv_data->rx < drv_data->rx_end)) {
288                 *(u32 *)(drv_data->rx) = read_SSDR(reg);
289                 drv_data->rx += 4;
290         }
291
292         return drv_data->rx == drv_data->rx_end;
293 }
294
295 static void *next_transfer(struct driver_data *drv_data)
296 {
297         struct spi_message *msg = drv_data->cur_msg;
298         struct spi_transfer *trans = drv_data->cur_transfer;
299
300         /* Move to next transfer */
301         if (trans->transfer_list.next != &msg->transfers) {
302                 drv_data->cur_transfer =
303                         list_entry(trans->transfer_list.next,
304                                         struct spi_transfer,
305                                         transfer_list);
306                 return RUNNING_STATE;
307         } else
308                 return DONE_STATE;
309 }
310
311 static int map_dma_buffers(struct driver_data *drv_data)
312 {
313         struct spi_message *msg = drv_data->cur_msg;
314         struct device *dev = &msg->spi->dev;
315
316         if (!drv_data->cur_chip->enable_dma)
317                 return 0;
318
319         if (msg->is_dma_mapped)
320                 return  drv_data->rx_dma && drv_data->tx_dma;
321
322         if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
323                 return 0;
324
325         /* Modify setup if rx buffer is null */
326         if (drv_data->rx == NULL) {
327                 *drv_data->null_dma_buf = 0;
328                 drv_data->rx = drv_data->null_dma_buf;
329                 drv_data->rx_map_len = 4;
330         } else
331                 drv_data->rx_map_len = drv_data->len;
332
333
334         /* Modify setup if tx buffer is null */
335         if (drv_data->tx == NULL) {
336                 *drv_data->null_dma_buf = 0;
337                 drv_data->tx = drv_data->null_dma_buf;
338                 drv_data->tx_map_len = 4;
339         } else
340                 drv_data->tx_map_len = drv_data->len;
341
342         /* Stream map the rx buffer */
343         drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
344                                                 drv_data->rx_map_len,
345                                                 DMA_FROM_DEVICE);
346         if (dma_mapping_error(drv_data->rx_dma))
347                 return 0;
348
349         /* Stream map the tx buffer */
350         drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
351                                                 drv_data->tx_map_len,
352                                                 DMA_TO_DEVICE);
353
354         if (dma_mapping_error(drv_data->tx_dma)) {
355                 dma_unmap_single(dev, drv_data->rx_dma,
356                                         drv_data->rx_map_len, DMA_FROM_DEVICE);
357                 return 0;
358         }
359
360         return 1;
361 }
362
363 static void unmap_dma_buffers(struct driver_data *drv_data)
364 {
365         struct device *dev;
366
367         if (!drv_data->dma_mapped)
368                 return;
369
370         if (!drv_data->cur_msg->is_dma_mapped) {
371                 dev = &drv_data->cur_msg->spi->dev;
372                 dma_unmap_single(dev, drv_data->rx_dma,
373                                         drv_data->rx_map_len, DMA_FROM_DEVICE);
374                 dma_unmap_single(dev, drv_data->tx_dma,
375                                         drv_data->tx_map_len, DMA_TO_DEVICE);
376         }
377
378         drv_data->dma_mapped = 0;
379 }
380
381 /* caller already set message->status; dma and pio irqs are blocked */
382 static void giveback(struct driver_data *drv_data)
383 {
384         struct spi_transfer* last_transfer;
385         unsigned long flags;
386         struct spi_message *msg;
387
388         spin_lock_irqsave(&drv_data->lock, flags);
389         msg = drv_data->cur_msg;
390         drv_data->cur_msg = NULL;
391         drv_data->cur_transfer = NULL;
392         drv_data->cur_chip = NULL;
393         queue_work(drv_data->workqueue, &drv_data->pump_messages);
394         spin_unlock_irqrestore(&drv_data->lock, flags);
395
396         last_transfer = list_entry(msg->transfers.prev,
397                                         struct spi_transfer,
398                                         transfer_list);
399
400         if (!last_transfer->cs_change)
401                 drv_data->cs_control(PXA2XX_CS_DEASSERT);
402
403         msg->state = NULL;
404         if (msg->complete)
405                 msg->complete(msg->context);
406 }
407
408 static int wait_ssp_rx_stall(void *ioaddr)
409 {
410         unsigned long limit = loops_per_jiffy << 1;
411
412         while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
413                 cpu_relax();
414
415         return limit;
416 }
417
418 static int wait_dma_channel_stop(int channel)
419 {
420         unsigned long limit = loops_per_jiffy << 1;
421
422         while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
423                 cpu_relax();
424
425         return limit;
426 }
427
428 void dma_error_stop(struct driver_data *drv_data, const char *msg)
429 {
430         void *reg = drv_data->ioaddr;
431
432         /* Stop and reset */
433         DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
434         DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
435         write_SSSR(drv_data->clear_sr, reg);
436         write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
437         if (drv_data->ssp_type != PXA25x_SSP)
438                 write_SSTO(0, reg);
439         flush(drv_data);
440         write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
441
442         unmap_dma_buffers(drv_data);
443
444         dev_err(&drv_data->pdev->dev, "%s\n", msg);
445
446         drv_data->cur_msg->state = ERROR_STATE;
447         tasklet_schedule(&drv_data->pump_transfers);
448 }
449
450 static void dma_transfer_complete(struct driver_data *drv_data)
451 {
452         void *reg = drv_data->ioaddr;
453         struct spi_message *msg = drv_data->cur_msg;
454
455         /* Clear and disable interrupts on SSP and DMA channels*/
456         write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
457         write_SSSR(drv_data->clear_sr, reg);
458         DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
459         DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
460
461         if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
462                 dev_err(&drv_data->pdev->dev,
463                         "dma_handler: dma rx channel stop failed\n");
464
465         if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
466                 dev_err(&drv_data->pdev->dev,
467                         "dma_transfer: ssp rx stall failed\n");
468
469         unmap_dma_buffers(drv_data);
470
471         /* update the buffer pointer for the amount completed in dma */
472         drv_data->rx += drv_data->len -
473                         (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
474
475         /* read trailing data from fifo, it does not matter how many
476          * bytes are in the fifo just read until buffer is full
477          * or fifo is empty, which ever occurs first */
478         drv_data->read(drv_data);
479
480         /* return count of what was actually read */
481         msg->actual_length += drv_data->len -
482                                 (drv_data->rx_end - drv_data->rx);
483
484         /* Release chip select if requested, transfer delays are
485          * handled in pump_transfers */
486         if (drv_data->cs_change)
487                 drv_data->cs_control(PXA2XX_CS_DEASSERT);
488
489         /* Move to next transfer */
490         msg->state = next_transfer(drv_data);
491
492         /* Schedule transfer tasklet */
493         tasklet_schedule(&drv_data->pump_transfers);
494 }
495
496 static void dma_handler(int channel, void *data)
497 {
498         struct driver_data *drv_data = data;
499         u32 irq_status = DCSR(channel) & DMA_INT_MASK;
500
501         if (irq_status & DCSR_BUSERR) {
502
503                 if (channel == drv_data->tx_channel)
504                         dma_error_stop(drv_data,
505                                         "dma_handler: "
506                                         "bad bus address on tx channel");
507                 else
508                         dma_error_stop(drv_data,
509                                         "dma_handler: "
510                                         "bad bus address on rx channel");
511                 return;
512         }
513
514         /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
515         if ((channel == drv_data->tx_channel)
516                 && (irq_status & DCSR_ENDINTR)
517                 && (drv_data->ssp_type == PXA25x_SSP)) {
518
519                 /* Wait for rx to stall */
520                 if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
521                         dev_err(&drv_data->pdev->dev,
522                                 "dma_handler: ssp rx stall failed\n");
523
524                 /* finish this transfer, start the next */
525                 dma_transfer_complete(drv_data);
526         }
527 }
528
529 static irqreturn_t dma_transfer(struct driver_data *drv_data)
530 {
531         u32 irq_status;
532         void *reg = drv_data->ioaddr;
533
534         irq_status = read_SSSR(reg) & drv_data->mask_sr;
535         if (irq_status & SSSR_ROR) {
536                 dma_error_stop(drv_data, "dma_transfer: fifo overrun");
537                 return IRQ_HANDLED;
538         }
539
540         /* Check for false positive timeout */
541         if ((irq_status & SSSR_TINT)
542                 && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
543                 write_SSSR(SSSR_TINT, reg);
544                 return IRQ_HANDLED;
545         }
546
547         if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
548
549                 /* Clear and disable timeout interrupt, do the rest in
550                  * dma_transfer_complete */
551                 if (drv_data->ssp_type != PXA25x_SSP)
552                         write_SSTO(0, reg);
553
554                 /* finish this transfer, start the next */
555                 dma_transfer_complete(drv_data);
556
557                 return IRQ_HANDLED;
558         }
559
560         /* Opps problem detected */
561         return IRQ_NONE;
562 }
563
564 static void int_error_stop(struct driver_data *drv_data, const char* msg)
565 {
566         void *reg = drv_data->ioaddr;
567
568         /* Stop and reset SSP */
569         write_SSSR(drv_data->clear_sr, reg);
570         write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
571         if (drv_data->ssp_type != PXA25x_SSP)
572                 write_SSTO(0, reg);
573         flush(drv_data);
574         write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
575
576         dev_err(&drv_data->pdev->dev, "%s\n", msg);
577
578         drv_data->cur_msg->state = ERROR_STATE;
579         tasklet_schedule(&drv_data->pump_transfers);
580 }
581
582 static void int_transfer_complete(struct driver_data *drv_data)
583 {
584         void *reg = drv_data->ioaddr;
585
586         /* Stop SSP */
587         write_SSSR(drv_data->clear_sr, reg);
588         write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
589         if (drv_data->ssp_type != PXA25x_SSP)
590                 write_SSTO(0, reg);
591
592         /* Update total byte transfered return count actual bytes read */
593         drv_data->cur_msg->actual_length += drv_data->len -
594                                 (drv_data->rx_end - drv_data->rx);
595
596         /* Release chip select if requested, transfer delays are
597          * handled in pump_transfers */
598         if (drv_data->cs_change)
599                 drv_data->cs_control(PXA2XX_CS_DEASSERT);
600
601         /* Move to next transfer */
602         drv_data->cur_msg->state = next_transfer(drv_data);
603
604         /* Schedule transfer tasklet */
605         tasklet_schedule(&drv_data->pump_transfers);
606 }
607
608 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
609 {
610         void *reg = drv_data->ioaddr;
611
612         u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
613                         drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
614
615         u32 irq_status = read_SSSR(reg) & irq_mask;
616
617         if (irq_status & SSSR_ROR) {
618                 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
619                 return IRQ_HANDLED;
620         }
621
622         if (irq_status & SSSR_TINT) {
623                 write_SSSR(SSSR_TINT, reg);
624                 if (drv_data->read(drv_data)) {
625                         int_transfer_complete(drv_data);
626                         return IRQ_HANDLED;
627                 }
628         }
629
630         /* Drain rx fifo, Fill tx fifo and prevent overruns */
631         do {
632                 if (drv_data->read(drv_data)) {
633                         int_transfer_complete(drv_data);
634                         return IRQ_HANDLED;
635                 }
636         } while (drv_data->write(drv_data));
637
638         if (drv_data->read(drv_data)) {
639                 int_transfer_complete(drv_data);
640                 return IRQ_HANDLED;
641         }
642
643         if (drv_data->tx == drv_data->tx_end) {
644                 write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
645                 /* PXA25x_SSP has no timeout, read trailing bytes */
646                 if (drv_data->ssp_type == PXA25x_SSP) {
647                         if (!wait_ssp_rx_stall(reg))
648                         {
649                                 int_error_stop(drv_data, "interrupt_transfer: "
650                                                 "rx stall failed");
651                                 return IRQ_HANDLED;
652                         }
653                         if (!drv_data->read(drv_data))
654                         {
655                                 int_error_stop(drv_data,
656                                                 "interrupt_transfer: "
657                                                 "trailing byte read failed");
658                                 return IRQ_HANDLED;
659                         }
660                         int_transfer_complete(drv_data);
661                 }
662         }
663
664         /* We did something */
665         return IRQ_HANDLED;
666 }
667
668 static irqreturn_t ssp_int(int irq, void *dev_id)
669 {
670         struct driver_data *drv_data = dev_id;
671         void *reg = drv_data->ioaddr;
672
673         if (!drv_data->cur_msg) {
674
675                 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
676                 write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
677                 if (drv_data->ssp_type != PXA25x_SSP)
678                         write_SSTO(0, reg);
679                 write_SSSR(drv_data->clear_sr, reg);
680
681                 dev_err(&drv_data->pdev->dev, "bad message state "
682                         "in interrupt handler\n");
683
684                 /* Never fail */
685                 return IRQ_HANDLED;
686         }
687
688         return drv_data->transfer_handler(drv_data);
689 }
690
691 int set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi,
692                                 u8 bits_per_word, u32 *burst_code,
693                                 u32 *threshold)
694 {
695         struct pxa2xx_spi_chip *chip_info =
696                         (struct pxa2xx_spi_chip *)spi->controller_data;
697         int bytes_per_word;
698         int burst_bytes;
699         int thresh_words;
700         int req_burst_size;
701         int retval = 0;
702
703         /* Set the threshold (in registers) to equal the same amount of data
704          * as represented by burst size (in bytes).  The computation below
705          * is (burst_size rounded up to nearest 8 byte, word or long word)
706          * divided by (bytes/register); the tx threshold is the inverse of
707          * the rx, so that there will always be enough data in the rx fifo
708          * to satisfy a burst, and there will always be enough space in the
709          * tx fifo to accept a burst (a tx burst will overwrite the fifo if
710          * there is not enough space), there must always remain enough empty
711          * space in the rx fifo for any data loaded to the tx fifo.
712          * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
713          * will be 8, or half the fifo;
714          * The threshold can only be set to 2, 4 or 8, but not 16, because
715          * to burst 16 to the tx fifo, the fifo would have to be empty;
716          * however, the minimum fifo trigger level is 1, and the tx will
717          * request service when the fifo is at this level, with only 15 spaces.
718          */
719
720         /* find bytes/word */
721         if (bits_per_word <= 8)
722                 bytes_per_word = 1;
723         else if (bits_per_word <= 16)
724                 bytes_per_word = 2;
725         else
726                 bytes_per_word = 4;
727
728         /* use struct pxa2xx_spi_chip->dma_burst_size if available */
729         if (chip_info)
730                 req_burst_size = chip_info->dma_burst_size;
731         else {
732                 switch (chip->dma_burst_size) {
733                 default:
734                         /* if the default burst size is not set,
735                          * do it now */
736                         chip->dma_burst_size = DCMD_BURST8;
737                 case DCMD_BURST8:
738                         req_burst_size = 8;
739                         break;
740                 case DCMD_BURST16:
741                         req_burst_size = 16;
742                         break;
743                 case DCMD_BURST32:
744                         req_burst_size = 32;
745                         break;
746                 }
747         }
748         if (req_burst_size <= 8) {
749                 *burst_code = DCMD_BURST8;
750                 burst_bytes = 8;
751         } else if (req_burst_size <= 16) {
752                 if (bytes_per_word == 1) {
753                         /* don't burst more than 1/2 the fifo */
754                         *burst_code = DCMD_BURST8;
755                         burst_bytes = 8;
756                         retval = 1;
757                 } else {
758                         *burst_code = DCMD_BURST16;
759                         burst_bytes = 16;
760                 }
761         } else {
762                 if (bytes_per_word == 1) {
763                         /* don't burst more than 1/2 the fifo */
764                         *burst_code = DCMD_BURST8;
765                         burst_bytes = 8;
766                         retval = 1;
767                 } else if (bytes_per_word == 2) {
768                         /* don't burst more than 1/2 the fifo */
769                         *burst_code = DCMD_BURST16;
770                         burst_bytes = 16;
771                         retval = 1;
772                 } else {
773                         *burst_code = DCMD_BURST32;
774                         burst_bytes = 32;
775                 }
776         }
777
778         thresh_words = burst_bytes / bytes_per_word;
779
780         /* thresh_words will be between 2 and 8 */
781         *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
782                         | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
783
784         return retval;
785 }
786
787 static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
788 {
789         unsigned long ssp_clk = clk_get_rate(ssp->clk);
790
791         if (ssp->type == PXA25x_SSP)
792                 return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
793         else
794                 return ((ssp_clk / rate - 1) & 0xfff) << 8;
795 }
796
797 static void pump_transfers(unsigned long data)
798 {
799         struct driver_data *drv_data = (struct driver_data *)data;
800         struct spi_message *message = NULL;
801         struct spi_transfer *transfer = NULL;
802         struct spi_transfer *previous = NULL;
803         struct chip_data *chip = NULL;
804         struct ssp_device *ssp = drv_data->ssp;
805         void *reg = drv_data->ioaddr;
806         u32 clk_div = 0;
807         u8 bits = 0;
808         u32 speed = 0;
809         u32 cr0;
810         u32 cr1;
811         u32 dma_thresh = drv_data->cur_chip->dma_threshold;
812         u32 dma_burst = drv_data->cur_chip->dma_burst_size;
813
814         /* Get current state information */
815         message = drv_data->cur_msg;
816         transfer = drv_data->cur_transfer;
817         chip = drv_data->cur_chip;
818
819         /* Handle for abort */
820         if (message->state == ERROR_STATE) {
821                 message->status = -EIO;
822                 giveback(drv_data);
823                 return;
824         }
825
826         /* Handle end of message */
827         if (message->state == DONE_STATE) {
828                 message->status = 0;
829                 giveback(drv_data);
830                 return;
831         }
832
833         /* Delay if requested at end of transfer*/
834         if (message->state == RUNNING_STATE) {
835                 previous = list_entry(transfer->transfer_list.prev,
836                                         struct spi_transfer,
837                                         transfer_list);
838                 if (previous->delay_usecs)
839                         udelay(previous->delay_usecs);
840         }
841
842         /* Check transfer length */
843         if (transfer->len > 8191)
844         {
845                 dev_warn(&drv_data->pdev->dev, "pump_transfers: transfer "
846                                 "length greater than 8191\n");
847                 message->status = -EINVAL;
848                 giveback(drv_data);
849                 return;
850         }
851
852         /* Setup the transfer state based on the type of transfer */
853         if (flush(drv_data) == 0) {
854                 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
855                 message->status = -EIO;
856                 giveback(drv_data);
857                 return;
858         }
859         drv_data->n_bytes = chip->n_bytes;
860         drv_data->dma_width = chip->dma_width;
861         drv_data->cs_control = chip->cs_control;
862         drv_data->tx = (void *)transfer->tx_buf;
863         drv_data->tx_end = drv_data->tx + transfer->len;
864         drv_data->rx = transfer->rx_buf;
865         drv_data->rx_end = drv_data->rx + transfer->len;
866         drv_data->rx_dma = transfer->rx_dma;
867         drv_data->tx_dma = transfer->tx_dma;
868         drv_data->len = transfer->len & DCMD_LENGTH;
869         drv_data->write = drv_data->tx ? chip->write : null_writer;
870         drv_data->read = drv_data->rx ? chip->read : null_reader;
871         drv_data->cs_change = transfer->cs_change;
872
873         /* Change speed and bit per word on a per transfer */
874         cr0 = chip->cr0;
875         if (transfer->speed_hz || transfer->bits_per_word) {
876
877                 bits = chip->bits_per_word;
878                 speed = chip->speed_hz;
879
880                 if (transfer->speed_hz)
881                         speed = transfer->speed_hz;
882
883                 if (transfer->bits_per_word)
884                         bits = transfer->bits_per_word;
885
886                 clk_div = ssp_get_clk_div(ssp, speed);
887
888                 if (bits <= 8) {
889                         drv_data->n_bytes = 1;
890                         drv_data->dma_width = DCMD_WIDTH1;
891                         drv_data->read = drv_data->read != null_reader ?
892                                                 u8_reader : null_reader;
893                         drv_data->write = drv_data->write != null_writer ?
894                                                 u8_writer : null_writer;
895                 } else if (bits <= 16) {
896                         drv_data->n_bytes = 2;
897                         drv_data->dma_width = DCMD_WIDTH2;
898                         drv_data->read = drv_data->read != null_reader ?
899                                                 u16_reader : null_reader;
900                         drv_data->write = drv_data->write != null_writer ?
901                                                 u16_writer : null_writer;
902                 } else if (bits <= 32) {
903                         drv_data->n_bytes = 4;
904                         drv_data->dma_width = DCMD_WIDTH4;
905                         drv_data->read = drv_data->read != null_reader ?
906                                                 u32_reader : null_reader;
907                         drv_data->write = drv_data->write != null_writer ?
908                                                 u32_writer : null_writer;
909                 }
910                 /* if bits/word is changed in dma mode, then must check the
911                  * thresholds and burst also */
912                 if (chip->enable_dma) {
913                         if (set_dma_burst_and_threshold(chip, message->spi,
914                                                         bits, &dma_burst,
915                                                         &dma_thresh))
916                                 if (printk_ratelimit())
917                                         dev_warn(&message->spi->dev,
918                                                 "pump_transfer: "
919                                                 "DMA burst size reduced to "
920                                                 "match bits_per_word\n");
921                 }
922
923                 cr0 = clk_div
924                         | SSCR0_Motorola
925                         | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
926                         | SSCR0_SSE
927                         | (bits > 16 ? SSCR0_EDSS : 0);
928         }
929
930         message->state = RUNNING_STATE;
931
932         /* Try to map dma buffer and do a dma transfer if successful */
933         if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
934
935                 /* Ensure we have the correct interrupt handler */
936                 drv_data->transfer_handler = dma_transfer;
937
938                 /* Setup rx DMA Channel */
939                 DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
940                 DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
941                 DTADR(drv_data->rx_channel) = drv_data->rx_dma;
942                 if (drv_data->rx == drv_data->null_dma_buf)
943                         /* No target address increment */
944                         DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
945                                                         | drv_data->dma_width
946                                                         | dma_burst
947                                                         | drv_data->len;
948                 else
949                         DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
950                                                         | DCMD_FLOWSRC
951                                                         | drv_data->dma_width
952                                                         | dma_burst
953                                                         | drv_data->len;
954
955                 /* Setup tx DMA Channel */
956                 DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
957                 DSADR(drv_data->tx_channel) = drv_data->tx_dma;
958                 DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
959                 if (drv_data->tx == drv_data->null_dma_buf)
960                         /* No source address increment */
961                         DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
962                                                         | drv_data->dma_width
963                                                         | dma_burst
964                                                         | drv_data->len;
965                 else
966                         DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
967                                                         | DCMD_FLOWTRG
968                                                         | drv_data->dma_width
969                                                         | dma_burst
970                                                         | drv_data->len;
971
972                 /* Enable dma end irqs on SSP to detect end of transfer */
973                 if (drv_data->ssp_type == PXA25x_SSP)
974                         DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
975
976                 /* Fix me, need to handle cs polarity */
977                 drv_data->cs_control(PXA2XX_CS_ASSERT);
978
979                 /* Clear status and start DMA engine */
980                 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
981                 write_SSSR(drv_data->clear_sr, reg);
982                 DCSR(drv_data->rx_channel) |= DCSR_RUN;
983                 DCSR(drv_data->tx_channel) |= DCSR_RUN;
984         } else {
985                 /* Ensure we have the correct interrupt handler */
986                 drv_data->transfer_handler = interrupt_transfer;
987
988                 /* Fix me, need to handle cs polarity */
989                 drv_data->cs_control(PXA2XX_CS_ASSERT);
990
991                 /* Clear status  */
992                 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
993                 write_SSSR(drv_data->clear_sr, reg);
994         }
995
996         /* see if we need to reload the config registers */
997         if ((read_SSCR0(reg) != cr0)
998                 || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
999                         (cr1 & SSCR1_CHANGE_MASK)) {
1000
1001                 write_SSCR0(cr0 & ~SSCR0_SSE, reg);
1002                 if (drv_data->ssp_type != PXA25x_SSP)
1003                         write_SSTO(chip->timeout, reg);
1004                 write_SSCR1(cr1, reg);
1005                 write_SSCR0(cr0, reg);
1006         } else {
1007                 if (drv_data->ssp_type != PXA25x_SSP)
1008                         write_SSTO(chip->timeout, reg);
1009                 write_SSCR1(cr1, reg);
1010         }
1011 }
1012
1013 static void pump_messages(struct work_struct *work)
1014 {
1015         struct driver_data *drv_data =
1016                 container_of(work, struct driver_data, pump_messages);
1017         unsigned long flags;
1018
1019         /* Lock queue and check for queue work */
1020         spin_lock_irqsave(&drv_data->lock, flags);
1021         if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1022                 drv_data->busy = 0;
1023                 spin_unlock_irqrestore(&drv_data->lock, flags);
1024                 return;
1025         }
1026
1027         /* Make sure we are not already running a message */
1028         if (drv_data->cur_msg) {
1029                 spin_unlock_irqrestore(&drv_data->lock, flags);
1030                 return;
1031         }
1032
1033         /* Extract head of queue */
1034         drv_data->cur_msg = list_entry(drv_data->queue.next,
1035                                         struct spi_message, queue);
1036         list_del_init(&drv_data->cur_msg->queue);
1037
1038         /* Initial message state*/
1039         drv_data->cur_msg->state = START_STATE;
1040         drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1041                                                 struct spi_transfer,
1042                                                 transfer_list);
1043
1044         /* prepare to setup the SSP, in pump_transfers, using the per
1045          * chip configuration */
1046         drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1047
1048         /* Mark as busy and launch transfers */
1049         tasklet_schedule(&drv_data->pump_transfers);
1050
1051         drv_data->busy = 1;
1052         spin_unlock_irqrestore(&drv_data->lock, flags);
1053 }
1054
1055 static int transfer(struct spi_device *spi, struct spi_message *msg)
1056 {
1057         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1058         unsigned long flags;
1059
1060         spin_lock_irqsave(&drv_data->lock, flags);
1061
1062         if (drv_data->run == QUEUE_STOPPED) {
1063                 spin_unlock_irqrestore(&drv_data->lock, flags);
1064                 return -ESHUTDOWN;
1065         }
1066
1067         msg->actual_length = 0;
1068         msg->status = -EINPROGRESS;
1069         msg->state = START_STATE;
1070
1071         list_add_tail(&msg->queue, &drv_data->queue);
1072
1073         if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1074                 queue_work(drv_data->workqueue, &drv_data->pump_messages);
1075
1076         spin_unlock_irqrestore(&drv_data->lock, flags);
1077
1078         return 0;
1079 }
1080
1081 /* the spi->mode bits understood by this driver: */
1082 #define MODEBITS (SPI_CPOL | SPI_CPHA)
1083
1084 static int setup(struct spi_device *spi)
1085 {
1086         struct pxa2xx_spi_chip *chip_info = NULL;
1087         struct chip_data *chip;
1088         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1089         struct ssp_device *ssp = drv_data->ssp;
1090         unsigned int clk_div;
1091
1092         if (!spi->bits_per_word)
1093                 spi->bits_per_word = 8;
1094
1095         if (drv_data->ssp_type != PXA25x_SSP
1096                 && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1097                 dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1098                                 "b/w not 4-32 for type non-PXA25x_SSP\n",
1099                                 drv_data->ssp_type, spi->bits_per_word);
1100                 return -EINVAL;
1101         }
1102         else if (drv_data->ssp_type == PXA25x_SSP
1103                         && (spi->bits_per_word < 4
1104                                 || spi->bits_per_word > 16)) {
1105                 dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1106                                 "b/w not 4-16 for type PXA25x_SSP\n",
1107                                 drv_data->ssp_type, spi->bits_per_word);
1108                 return -EINVAL;
1109         }
1110
1111         if (spi->mode & ~MODEBITS) {
1112                 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
1113                         spi->mode & ~MODEBITS);
1114                 return -EINVAL;
1115         }
1116
1117         /* Only alloc on first setup */
1118         chip = spi_get_ctldata(spi);
1119         if (!chip) {
1120                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1121                 if (!chip) {
1122                         dev_err(&spi->dev,
1123                                 "failed setup: can't allocate chip data\n");
1124                         return -ENOMEM;
1125                 }
1126
1127                 chip->cs_control = null_cs_control;
1128                 chip->enable_dma = 0;
1129                 chip->timeout = 1000;
1130                 chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
1131                 chip->dma_burst_size = drv_data->master_info->enable_dma ?
1132                                         DCMD_BURST8 : 0;
1133         }
1134
1135         /* protocol drivers may change the chip settings, so...
1136          * if chip_info exists, use it */
1137         chip_info = spi->controller_data;
1138
1139         /* chip_info isn't always needed */
1140         chip->cr1 = 0;
1141         if (chip_info) {
1142                 if (chip_info->cs_control)
1143                         chip->cs_control = chip_info->cs_control;
1144
1145                 chip->timeout = chip_info->timeout;
1146
1147                 chip->threshold = (SSCR1_RxTresh(chip_info->rx_threshold) &
1148                                                                 SSCR1_RFT) |
1149                                 (SSCR1_TxTresh(chip_info->tx_threshold) &
1150                                                                 SSCR1_TFT);
1151
1152                 chip->enable_dma = chip_info->dma_burst_size != 0
1153                                         && drv_data->master_info->enable_dma;
1154                 chip->dma_threshold = 0;
1155
1156                 if (chip_info->enable_loopback)
1157                         chip->cr1 = SSCR1_LBM;
1158         }
1159
1160         /* set dma burst and threshold outside of chip_info path so that if
1161          * chip_info goes away after setting chip->enable_dma, the
1162          * burst and threshold can still respond to changes in bits_per_word */
1163         if (chip->enable_dma) {
1164                 /* set up legal burst and threshold for dma */
1165                 if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
1166                                                 &chip->dma_burst_size,
1167                                                 &chip->dma_threshold)) {
1168                         dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1169                                         "to match bits_per_word\n");
1170                 }
1171         }
1172
1173         clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1174         chip->speed_hz = spi->max_speed_hz;
1175
1176         chip->cr0 = clk_div
1177                         | SSCR0_Motorola
1178                         | SSCR0_DataSize(spi->bits_per_word > 16 ?
1179                                 spi->bits_per_word - 16 : spi->bits_per_word)
1180                         | SSCR0_SSE
1181                         | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1182         chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1183         chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1184                         | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1185
1186         /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1187         if (drv_data->ssp_type != PXA25x_SSP)
1188                 dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
1189                                 spi->bits_per_word,
1190                                 clk_get_rate(ssp->clk)
1191                                         / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
1192                                 spi->mode & 0x3);
1193         else
1194                 dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
1195                                 spi->bits_per_word,
1196                                 clk_get_rate(ssp->clk)
1197                                         / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
1198                                 spi->mode & 0x3);
1199
1200         if (spi->bits_per_word <= 8) {
1201                 chip->n_bytes = 1;
1202                 chip->dma_width = DCMD_WIDTH1;
1203                 chip->read = u8_reader;
1204                 chip->write = u8_writer;
1205         } else if (spi->bits_per_word <= 16) {
1206                 chip->n_bytes = 2;
1207                 chip->dma_width = DCMD_WIDTH2;
1208                 chip->read = u16_reader;
1209                 chip->write = u16_writer;
1210         } else if (spi->bits_per_word <= 32) {
1211                 chip->cr0 |= SSCR0_EDSS;
1212                 chip->n_bytes = 4;
1213                 chip->dma_width = DCMD_WIDTH4;
1214                 chip->read = u32_reader;
1215                 chip->write = u32_writer;
1216         } else {
1217                 dev_err(&spi->dev, "invalid wordsize\n");
1218                 return -ENODEV;
1219         }
1220         chip->bits_per_word = spi->bits_per_word;
1221
1222         spi_set_ctldata(spi, chip);
1223
1224         return 0;
1225 }
1226
1227 static void cleanup(struct spi_device *spi)
1228 {
1229         struct chip_data *chip = spi_get_ctldata(spi);
1230
1231         kfree(chip);
1232 }
1233
1234 static int __init init_queue(struct driver_data *drv_data)
1235 {
1236         INIT_LIST_HEAD(&drv_data->queue);
1237         spin_lock_init(&drv_data->lock);
1238
1239         drv_data->run = QUEUE_STOPPED;
1240         drv_data->busy = 0;
1241
1242         tasklet_init(&drv_data->pump_transfers,
1243                         pump_transfers, (unsigned long)drv_data);
1244
1245         INIT_WORK(&drv_data->pump_messages, pump_messages);
1246         drv_data->workqueue = create_singlethread_workqueue(
1247                                         drv_data->master->dev.parent->bus_id);
1248         if (drv_data->workqueue == NULL)
1249                 return -EBUSY;
1250
1251         return 0;
1252 }
1253
1254 static int start_queue(struct driver_data *drv_data)
1255 {
1256         unsigned long flags;
1257
1258         spin_lock_irqsave(&drv_data->lock, flags);
1259
1260         if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1261                 spin_unlock_irqrestore(&drv_data->lock, flags);
1262                 return -EBUSY;
1263         }
1264
1265         drv_data->run = QUEUE_RUNNING;
1266         drv_data->cur_msg = NULL;
1267         drv_data->cur_transfer = NULL;
1268         drv_data->cur_chip = NULL;
1269         spin_unlock_irqrestore(&drv_data->lock, flags);
1270
1271         queue_work(drv_data->workqueue, &drv_data->pump_messages);
1272
1273         return 0;
1274 }
1275
1276 static int stop_queue(struct driver_data *drv_data)
1277 {
1278         unsigned long flags;
1279         unsigned limit = 500;
1280         int status = 0;
1281
1282         spin_lock_irqsave(&drv_data->lock, flags);
1283
1284         /* This is a bit lame, but is optimized for the common execution path.
1285          * A wait_queue on the drv_data->busy could be used, but then the common
1286          * execution path (pump_messages) would be required to call wake_up or
1287          * friends on every SPI message. Do this instead */
1288         drv_data->run = QUEUE_STOPPED;
1289         while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
1290                 spin_unlock_irqrestore(&drv_data->lock, flags);
1291                 msleep(10);
1292                 spin_lock_irqsave(&drv_data->lock, flags);
1293         }
1294
1295         if (!list_empty(&drv_data->queue) || drv_data->busy)
1296                 status = -EBUSY;
1297
1298         spin_unlock_irqrestore(&drv_data->lock, flags);
1299
1300         return status;
1301 }
1302
1303 static int destroy_queue(struct driver_data *drv_data)
1304 {
1305         int status;
1306
1307         status = stop_queue(drv_data);
1308         /* we are unloading the module or failing to load (only two calls
1309          * to this routine), and neither call can handle a return value.
1310          * However, destroy_workqueue calls flush_workqueue, and that will
1311          * block until all work is done.  If the reason that stop_queue
1312          * timed out is that the work will never finish, then it does no
1313          * good to call destroy_workqueue, so return anyway. */
1314         if (status != 0)
1315                 return status;
1316
1317         destroy_workqueue(drv_data->workqueue);
1318
1319         return 0;
1320 }
1321
1322 static int __init pxa2xx_spi_probe(struct platform_device *pdev)
1323 {
1324         struct device *dev = &pdev->dev;
1325         struct pxa2xx_spi_master *platform_info;
1326         struct spi_master *master;
1327         struct driver_data *drv_data = 0;
1328         struct ssp_device *ssp;
1329         int status = 0;
1330
1331         platform_info = dev->platform_data;
1332
1333         ssp = ssp_request(pdev->id, pdev->name);
1334         if (ssp == NULL) {
1335                 dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
1336                 return -ENODEV;
1337         }
1338
1339         /* Allocate master with space for drv_data and null dma buffer */
1340         master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1341         if (!master) {
1342                 dev_err(&pdev->dev, "can not alloc spi_master\n");
1343                 ssp_free(ssp);
1344                 return -ENOMEM;
1345         }
1346         drv_data = spi_master_get_devdata(master);
1347         drv_data->master = master;
1348         drv_data->master_info = platform_info;
1349         drv_data->pdev = pdev;
1350         drv_data->ssp = ssp;
1351
1352         master->bus_num = pdev->id;
1353         master->num_chipselect = platform_info->num_chipselect;
1354         master->cleanup = cleanup;
1355         master->setup = setup;
1356         master->transfer = transfer;
1357
1358         drv_data->ssp_type = ssp->type;
1359         drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1360                                                 sizeof(struct driver_data)), 8);
1361
1362         drv_data->ioaddr = ssp->mmio_base;
1363         drv_data->ssdr_physical = ssp->phys_base + SSDR;
1364         if (ssp->type == PXA25x_SSP) {
1365                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1366                 drv_data->dma_cr1 = 0;
1367                 drv_data->clear_sr = SSSR_ROR;
1368                 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1369         } else {
1370                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1371                 drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1372                 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1373                 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1374         }
1375
1376         status = request_irq(ssp->irq, ssp_int, 0, dev->bus_id, drv_data);
1377         if (status < 0) {
1378                 dev_err(&pdev->dev, "can not get IRQ\n");
1379                 goto out_error_master_alloc;
1380         }
1381
1382         /* Setup DMA if requested */
1383         drv_data->tx_channel = -1;
1384         drv_data->rx_channel = -1;
1385         if (platform_info->enable_dma) {
1386
1387                 /* Get two DMA channels (rx and tx) */
1388                 drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1389                                                         DMA_PRIO_HIGH,
1390                                                         dma_handler,
1391                                                         drv_data);
1392                 if (drv_data->rx_channel < 0) {
1393                         dev_err(dev, "problem (%d) requesting rx channel\n",
1394                                 drv_data->rx_channel);
1395                         status = -ENODEV;
1396                         goto out_error_irq_alloc;
1397                 }
1398                 drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1399                                                         DMA_PRIO_MEDIUM,
1400                                                         dma_handler,
1401                                                         drv_data);
1402                 if (drv_data->tx_channel < 0) {
1403                         dev_err(dev, "problem (%d) requesting tx channel\n",
1404                                 drv_data->tx_channel);
1405                         status = -ENODEV;
1406                         goto out_error_dma_alloc;
1407                 }
1408
1409                 DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1410                 DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1411         }
1412
1413         /* Enable SOC clock */
1414         clk_enable(ssp->clk);
1415
1416         /* Load default SSP configuration */
1417         write_SSCR0(0, drv_data->ioaddr);
1418         write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
1419         write_SSCR0(SSCR0_SerClkDiv(2)
1420                         | SSCR0_Motorola
1421                         | SSCR0_DataSize(8),
1422                         drv_data->ioaddr);
1423         if (drv_data->ssp_type != PXA25x_SSP)
1424                 write_SSTO(0, drv_data->ioaddr);
1425         write_SSPSP(0, drv_data->ioaddr);
1426
1427         /* Initial and start queue */
1428         status = init_queue(drv_data);
1429         if (status != 0) {
1430                 dev_err(&pdev->dev, "problem initializing queue\n");
1431                 goto out_error_clock_enabled;
1432         }
1433         status = start_queue(drv_data);
1434         if (status != 0) {
1435                 dev_err(&pdev->dev, "problem starting queue\n");
1436                 goto out_error_clock_enabled;
1437         }
1438
1439         /* Register with the SPI framework */
1440         platform_set_drvdata(pdev, drv_data);
1441         status = spi_register_master(master);
1442         if (status != 0) {
1443                 dev_err(&pdev->dev, "problem registering spi master\n");
1444                 goto out_error_queue_alloc;
1445         }
1446
1447         return status;
1448
1449 out_error_queue_alloc:
1450         destroy_queue(drv_data);
1451
1452 out_error_clock_enabled:
1453         clk_disable(ssp->clk);
1454
1455 out_error_dma_alloc:
1456         if (drv_data->tx_channel != -1)
1457                 pxa_free_dma(drv_data->tx_channel);
1458         if (drv_data->rx_channel != -1)
1459                 pxa_free_dma(drv_data->rx_channel);
1460
1461 out_error_irq_alloc:
1462         free_irq(ssp->irq, drv_data);
1463
1464 out_error_master_alloc:
1465         spi_master_put(master);
1466         ssp_free(ssp);
1467         return status;
1468 }
1469
1470 static int pxa2xx_spi_remove(struct platform_device *pdev)
1471 {
1472         struct driver_data *drv_data = platform_get_drvdata(pdev);
1473         struct ssp_device *ssp = drv_data->ssp;
1474         int status = 0;
1475
1476         if (!drv_data)
1477                 return 0;
1478
1479         /* Remove the queue */
1480         status = destroy_queue(drv_data);
1481         if (status != 0)
1482                 /* the kernel does not check the return status of this
1483                  * this routine (mod->exit, within the kernel).  Therefore
1484                  * nothing is gained by returning from here, the module is
1485                  * going away regardless, and we should not leave any more
1486                  * resources allocated than necessary.  We cannot free the
1487                  * message memory in drv_data->queue, but we can release the
1488                  * resources below.  I think the kernel should honor -EBUSY
1489                  * returns but... */
1490                 dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1491                         "complete, message memory not freed\n");
1492
1493         /* Disable the SSP at the peripheral and SOC level */
1494         write_SSCR0(0, drv_data->ioaddr);
1495         clk_disable(ssp->clk);
1496
1497         /* Release DMA */
1498         if (drv_data->master_info->enable_dma) {
1499                 DRCMR(ssp->drcmr_rx) = 0;
1500                 DRCMR(ssp->drcmr_tx) = 0;
1501                 pxa_free_dma(drv_data->tx_channel);
1502                 pxa_free_dma(drv_data->rx_channel);
1503         }
1504
1505         /* Release IRQ */
1506         free_irq(ssp->irq, drv_data);
1507
1508         /* Release SSP */
1509         ssp_free(ssp);
1510
1511         /* Disconnect from the SPI framework */
1512         spi_unregister_master(drv_data->master);
1513
1514         /* Prevent double remove */
1515         platform_set_drvdata(pdev, NULL);
1516
1517         return 0;
1518 }
1519
1520 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1521 {
1522         int status = 0;
1523
1524         if ((status = pxa2xx_spi_remove(pdev)) != 0)
1525                 dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1526 }
1527
1528 #ifdef CONFIG_PM
1529
1530 static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
1531 {
1532         struct driver_data *drv_data = platform_get_drvdata(pdev);
1533         struct ssp_device *ssp = drv_data->ssp;
1534         int status = 0;
1535
1536         status = stop_queue(drv_data);
1537         if (status != 0)
1538                 return status;
1539         write_SSCR0(0, drv_data->ioaddr);
1540         clk_disable(ssp->clk);
1541
1542         return 0;
1543 }
1544
1545 static int pxa2xx_spi_resume(struct platform_device *pdev)
1546 {
1547         struct driver_data *drv_data = platform_get_drvdata(pdev);
1548         struct ssp_device *ssp = drv_data->ssp;
1549         int status = 0;
1550
1551         /* Enable the SSP clock */
1552         clk_disable(ssp->clk);
1553
1554         /* Start the queue running */
1555         status = start_queue(drv_data);
1556         if (status != 0) {
1557                 dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
1558                 return status;
1559         }
1560
1561         return 0;
1562 }
1563 #else
1564 #define pxa2xx_spi_suspend NULL
1565 #define pxa2xx_spi_resume NULL
1566 #endif /* CONFIG_PM */
1567
1568 static struct platform_driver driver = {
1569         .driver = {
1570                 .name = "pxa2xx-spi",
1571                 .bus = &platform_bus_type,
1572                 .owner = THIS_MODULE,
1573         },
1574         .remove = pxa2xx_spi_remove,
1575         .shutdown = pxa2xx_spi_shutdown,
1576         .suspend = pxa2xx_spi_suspend,
1577         .resume = pxa2xx_spi_resume,
1578 };
1579
1580 static int __init pxa2xx_spi_init(void)
1581 {
1582         return platform_driver_probe(&driver, pxa2xx_spi_probe);
1583 }
1584 module_init(pxa2xx_spi_init);
1585
1586 static void __exit pxa2xx_spi_exit(void)
1587 {
1588         platform_driver_unregister(&driver);
1589 }
1590 module_exit(pxa2xx_spi_exit);