]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/spi/spi-bcm-qspi.c
ANDROID: binder: fix proc->tsk check.
[karo-tx-linux.git] / drivers / spi / spi-bcm-qspi.c
1 /*
2  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
3  *
4  * Copyright 2016 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation (the "GPL").
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 (GPLv2) for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * version 2 (GPLv2) along with this source code.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/ioport.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/mtd/spi-nor.h>
29 #include <linux/of.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/spi/spi.h>
34 #include <linux/sysfs.h>
35 #include <linux/types.h>
36 #include "spi-bcm-qspi.h"
37
38 #define DRIVER_NAME "bcm_qspi"
39
40
41 /* BSPI register offsets */
42 #define BSPI_REVISION_ID                        0x000
43 #define BSPI_SCRATCH                            0x004
44 #define BSPI_MAST_N_BOOT_CTRL                   0x008
45 #define BSPI_BUSY_STATUS                        0x00c
46 #define BSPI_INTR_STATUS                        0x010
47 #define BSPI_B0_STATUS                          0x014
48 #define BSPI_B0_CTRL                            0x018
49 #define BSPI_B1_STATUS                          0x01c
50 #define BSPI_B1_CTRL                            0x020
51 #define BSPI_STRAP_OVERRIDE_CTRL                0x024
52 #define BSPI_FLEX_MODE_ENABLE                   0x028
53 #define BSPI_BITS_PER_CYCLE                     0x02c
54 #define BSPI_BITS_PER_PHASE                     0x030
55 #define BSPI_CMD_AND_MODE_BYTE                  0x034
56 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
57 #define BSPI_BSPI_XOR_VALUE                     0x03c
58 #define BSPI_BSPI_XOR_ENABLE                    0x040
59 #define BSPI_BSPI_PIO_MODE_ENABLE               0x044
60 #define BSPI_BSPI_PIO_IODIR                     0x048
61 #define BSPI_BSPI_PIO_DATA                      0x04c
62
63 /* RAF register offsets */
64 #define BSPI_RAF_START_ADDR                     0x100
65 #define BSPI_RAF_NUM_WORDS                      0x104
66 #define BSPI_RAF_CTRL                           0x108
67 #define BSPI_RAF_FULLNESS                       0x10c
68 #define BSPI_RAF_WATERMARK                      0x110
69 #define BSPI_RAF_STATUS                 0x114
70 #define BSPI_RAF_READ_DATA                      0x118
71 #define BSPI_RAF_WORD_CNT                       0x11c
72 #define BSPI_RAF_CURR_ADDR                      0x120
73
74 /* Override mode masks */
75 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE       BIT(0)
76 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL      BIT(1)
77 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE     BIT(2)
78 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD      BIT(3)
79 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE    BIT(4)
80
81 #define BSPI_ADDRLEN_3BYTES                     3
82 #define BSPI_ADDRLEN_4BYTES                     4
83
84 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
85
86 #define BSPI_RAF_CTRL_START_MASK                BIT(0)
87 #define BSPI_RAF_CTRL_CLEAR_MASK                BIT(1)
88
89 #define BSPI_BPP_MODE_SELECT_MASK               BIT(8)
90 #define BSPI_BPP_ADDR_SELECT_MASK               BIT(16)
91
92 #define BSPI_READ_LENGTH                        512
93
94 /* MSPI register offsets */
95 #define MSPI_SPCR0_LSB                          0x000
96 #define MSPI_SPCR0_MSB                          0x004
97 #define MSPI_SPCR1_LSB                          0x008
98 #define MSPI_SPCR1_MSB                          0x00c
99 #define MSPI_NEWQP                              0x010
100 #define MSPI_ENDQP                              0x014
101 #define MSPI_SPCR2                              0x018
102 #define MSPI_MSPI_STATUS                        0x020
103 #define MSPI_CPTQP                              0x024
104 #define MSPI_SPCR3                              0x028
105 #define MSPI_TXRAM                              0x040
106 #define MSPI_RXRAM                              0x0c0
107 #define MSPI_CDRAM                              0x140
108 #define MSPI_WRITE_LOCK                 0x180
109
110 #define MSPI_MASTER_BIT                 BIT(7)
111
112 #define MSPI_NUM_CDRAM                          16
113 #define MSPI_CDRAM_CONT_BIT                     BIT(7)
114 #define MSPI_CDRAM_BITSE_BIT                    BIT(6)
115 #define MSPI_CDRAM_PCS                          0xf
116
117 #define MSPI_SPCR2_SPE                          BIT(6)
118 #define MSPI_SPCR2_CONT_AFTER_CMD               BIT(7)
119
120 #define MSPI_MSPI_STATUS_SPIF                   BIT(0)
121
122 #define INTR_BASE_BIT_SHIFT                     0x02
123 #define INTR_COUNT                              0x07
124
125 #define NUM_CHIPSELECT                          4
126 #define QSPI_SPBR_MIN                           8U
127 #define QSPI_SPBR_MAX                           255U
128
129 #define OPCODE_DIOR                             0xBB
130 #define OPCODE_QIOR                             0xEB
131 #define OPCODE_DIOR_4B                          0xBC
132 #define OPCODE_QIOR_4B                          0xEC
133
134 #define MAX_CMD_SIZE                            6
135
136 #define ADDR_4MB_MASK                           GENMASK(22, 0)
137
138 /* stop at end of transfer, no other reason */
139 #define TRANS_STATUS_BREAK_NONE         0
140 /* stop at end of spi_message */
141 #define TRANS_STATUS_BREAK_EOM                  1
142 /* stop at end of spi_transfer if delay */
143 #define TRANS_STATUS_BREAK_DELAY                2
144 /* stop at end of spi_transfer if cs_change */
145 #define TRANS_STATUS_BREAK_CS_CHANGE            4
146 /* stop if we run out of bytes */
147 #define TRANS_STATUS_BREAK_NO_BYTES             8
148
149 /* events that make us stop filling TX slots */
150 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |         \
151                                TRANS_STATUS_BREAK_DELAY |               \
152                                TRANS_STATUS_BREAK_CS_CHANGE)
153
154 /* events that make us deassert CS */
155 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |           \
156                                      TRANS_STATUS_BREAK_CS_CHANGE)
157
158 struct bcm_qspi_parms {
159         u32 speed_hz;
160         u8 mode;
161         u8 bits_per_word;
162 };
163
164 struct bcm_xfer_mode {
165         bool flex_mode;
166         unsigned int width;
167         unsigned int addrlen;
168         unsigned int hp;
169 };
170
171 enum base_type {
172         MSPI,
173         BSPI,
174         CHIP_SELECT,
175         BASEMAX,
176 };
177
178 enum irq_source {
179         SINGLE_L2,
180         MUXED_L1,
181 };
182
183 struct bcm_qspi_irq {
184         const char *irq_name;
185         const irq_handler_t irq_handler;
186         int irq_source;
187         u32 mask;
188 };
189
190 struct bcm_qspi_dev_id {
191         const struct bcm_qspi_irq *irqp;
192         void *dev;
193 };
194
195
196 struct qspi_trans {
197         struct spi_transfer *trans;
198         int byte;
199         bool mspi_last_trans;
200 };
201
202 struct bcm_qspi {
203         struct platform_device *pdev;
204         struct spi_master *master;
205         struct clk *clk;
206         u32 base_clk;
207         u32 max_speed_hz;
208         void __iomem *base[BASEMAX];
209
210         /* Some SoCs provide custom interrupt status register(s) */
211         struct bcm_qspi_soc_intc        *soc_intc;
212
213         struct bcm_qspi_parms last_parms;
214         struct qspi_trans  trans_pos;
215         int curr_cs;
216         int bspi_maj_rev;
217         int bspi_min_rev;
218         int bspi_enabled;
219         struct spi_flash_read_message *bspi_rf_msg;
220         u32 bspi_rf_msg_idx;
221         u32 bspi_rf_msg_len;
222         u32 bspi_rf_msg_status;
223         struct bcm_xfer_mode xfer_mode;
224         u32 s3_strap_override_ctrl;
225         bool bspi_mode;
226         bool big_endian;
227         int num_irqs;
228         struct bcm_qspi_dev_id *dev_ids;
229         struct completion mspi_done;
230         struct completion bspi_done;
231 };
232
233 static inline bool has_bspi(struct bcm_qspi *qspi)
234 {
235         return qspi->bspi_mode;
236 }
237
238 /* Read qspi controller register*/
239 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
240                                 unsigned int offset)
241 {
242         return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
243 }
244
245 /* Write qspi controller register*/
246 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
247                                   unsigned int offset, unsigned int data)
248 {
249         bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
250 }
251
252 /* BSPI helpers */
253 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
254 {
255         int i;
256
257         /* this should normally finish within 10us */
258         for (i = 0; i < 1000; i++) {
259                 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
260                         return 0;
261                 udelay(1);
262         }
263         dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
264         return -EIO;
265 }
266
267 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
268 {
269         if (qspi->bspi_maj_rev < 4)
270                 return true;
271         return false;
272 }
273
274 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
275 {
276         bcm_qspi_bspi_busy_poll(qspi);
277         /* Force rising edge for the b0/b1 'flush' field */
278         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
279         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
280         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
281         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
282 }
283
284 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
285 {
286         return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
287                                 BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
288 }
289
290 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
291 {
292         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
293
294         /* BSPI v3 LR is LE only, convert data to host endianness */
295         if (bcm_qspi_bspi_ver_three(qspi))
296                 data = le32_to_cpu(data);
297
298         return data;
299 }
300
301 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
302 {
303         bcm_qspi_bspi_busy_poll(qspi);
304         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
305                        BSPI_RAF_CTRL_START_MASK);
306 }
307
308 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
309 {
310         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
311                        BSPI_RAF_CTRL_CLEAR_MASK);
312         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
313 }
314
315 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
316 {
317         u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
318         u32 data = 0;
319
320         dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
321                 qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
322         while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
323                 data = bcm_qspi_bspi_lr_read_fifo(qspi);
324                 if (likely(qspi->bspi_rf_msg_len >= 4) &&
325                     IS_ALIGNED((uintptr_t)buf, 4)) {
326                         buf[qspi->bspi_rf_msg_idx++] = data;
327                         qspi->bspi_rf_msg_len -= 4;
328                 } else {
329                         /* Read out remaining bytes, make sure*/
330                         u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
331
332                         data = cpu_to_le32(data);
333                         while (qspi->bspi_rf_msg_len) {
334                                 *cbuf++ = (u8)data;
335                                 data >>= 8;
336                                 qspi->bspi_rf_msg_len--;
337                         }
338                 }
339         }
340 }
341
342 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
343                                           int bpp, int bpc, int flex_mode)
344 {
345         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
346         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
347         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
348         bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
349         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
350 }
351
352 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi, int width,
353                                        int addrlen, int hp)
354 {
355         int bpc = 0, bpp = 0;
356         u8 command = SPINOR_OP_READ_FAST;
357         int flex_mode = 1, rv = 0;
358         bool spans_4byte = false;
359
360         dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
361                 width, addrlen, hp);
362
363         if (addrlen == BSPI_ADDRLEN_4BYTES) {
364                 bpp = BSPI_BPP_ADDR_SELECT_MASK;
365                 spans_4byte = true;
366         }
367
368         bpp |= 8;
369
370         switch (width) {
371         case SPI_NBITS_SINGLE:
372                 if (addrlen == BSPI_ADDRLEN_3BYTES)
373                         /* default mode, does not need flex_cmd */
374                         flex_mode = 0;
375                 else
376                         command = SPINOR_OP_READ_FAST_4B;
377                 break;
378         case SPI_NBITS_DUAL:
379                 bpc = 0x00000001;
380                 if (hp) {
381                         bpc |= 0x00010100; /* address and mode are 2-bit */
382                         bpp = BSPI_BPP_MODE_SELECT_MASK;
383                         command = OPCODE_DIOR;
384                         if (spans_4byte)
385                                 command = OPCODE_DIOR_4B;
386                 } else {
387                         command = SPINOR_OP_READ_1_1_2;
388                         if (spans_4byte)
389                                 command = SPINOR_OP_READ_1_1_2_4B;
390                 }
391                 break;
392         case SPI_NBITS_QUAD:
393                 bpc = 0x00000002;
394                 if (hp) {
395                         bpc |= 0x00020200; /* address and mode are 4-bit */
396                         bpp = 4; /* dummy cycles */
397                         bpp |= BSPI_BPP_ADDR_SELECT_MASK;
398                         command = OPCODE_QIOR;
399                         if (spans_4byte)
400                                 command = OPCODE_QIOR_4B;
401                 } else {
402                         command = SPINOR_OP_READ_1_1_4;
403                         if (spans_4byte)
404                                 command = SPINOR_OP_READ_1_1_4_4B;
405                 }
406                 break;
407         default:
408                 rv = -EINVAL;
409                 break;
410         }
411
412         if (rv == 0)
413                 bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc,
414                                               flex_mode);
415
416         return rv;
417 }
418
419 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi, int width,
420                                       int addrlen, int hp)
421 {
422         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
423
424         dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
425                 width, addrlen, hp);
426
427         switch (width) {
428         case SPI_NBITS_SINGLE:
429                 /* clear quad/dual mode */
430                 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
431                           BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
432                 break;
433
434         case SPI_NBITS_QUAD:
435                 /* clear dual mode and set quad mode */
436                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
437                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
438                 break;
439         case SPI_NBITS_DUAL:
440                 /* clear quad mode set dual mode */
441                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
442                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
443                 break;
444         default:
445                 return -EINVAL;
446         }
447
448         if (addrlen == BSPI_ADDRLEN_4BYTES)
449                 /* set 4byte mode*/
450                 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
451         else
452                 /* clear 4 byte mode */
453                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
454
455         /* set the override mode */
456         data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
457         bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
458         bcm_qspi_bspi_set_xfer_params(qspi, SPINOR_OP_READ_FAST, 0, 0, 0);
459
460         return 0;
461 }
462
463 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
464                                   int width, int addrlen, int hp)
465 {
466         int error = 0;
467
468         /* default mode */
469         qspi->xfer_mode.flex_mode = true;
470
471         if (!bcm_qspi_bspi_ver_three(qspi)) {
472                 u32 val, mask;
473
474                 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
475                 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
476                 if (val & mask || qspi->s3_strap_override_ctrl & mask) {
477                         qspi->xfer_mode.flex_mode = false;
478                         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE,
479                                        0);
480
481                         if ((val | qspi->s3_strap_override_ctrl) &
482                             BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL)
483                                 width = SPI_NBITS_DUAL;
484                         else if ((val |  qspi->s3_strap_override_ctrl) &
485                                  BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD)
486                                 width = SPI_NBITS_QUAD;
487
488                         error = bcm_qspi_bspi_set_override(qspi, width, addrlen,
489                                                            hp);
490                 }
491         }
492
493         if (qspi->xfer_mode.flex_mode)
494                 error = bcm_qspi_bspi_set_flex_mode(qspi, width, addrlen, hp);
495
496         if (error) {
497                 dev_warn(&qspi->pdev->dev,
498                          "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
499                          width, addrlen, hp);
500         } else if (qspi->xfer_mode.width != width ||
501                    qspi->xfer_mode.addrlen != addrlen ||
502                    qspi->xfer_mode.hp != hp) {
503                 qspi->xfer_mode.width = width;
504                 qspi->xfer_mode.addrlen = addrlen;
505                 qspi->xfer_mode.hp = hp;
506                 dev_dbg(&qspi->pdev->dev,
507                         "cs:%d %d-lane output, %d-byte address%s\n",
508                         qspi->curr_cs,
509                         qspi->xfer_mode.width,
510                         qspi->xfer_mode.addrlen,
511                         qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
512         }
513
514         return error;
515 }
516
517 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
518 {
519         if (!has_bspi(qspi) || (qspi->bspi_enabled))
520                 return;
521
522         qspi->bspi_enabled = 1;
523         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
524                 return;
525
526         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
527         udelay(1);
528         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
529         udelay(1);
530 }
531
532 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
533 {
534         if (!has_bspi(qspi) || (!qspi->bspi_enabled))
535                 return;
536
537         qspi->bspi_enabled = 0;
538         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
539                 return;
540
541         bcm_qspi_bspi_busy_poll(qspi);
542         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
543         udelay(1);
544 }
545
546 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
547 {
548         u32 data = 0;
549
550         if (qspi->curr_cs == cs)
551                 return;
552         if (qspi->base[CHIP_SELECT]) {
553                 data = bcm_qspi_read(qspi, CHIP_SELECT, 0);
554                 data = (data & ~0xff) | (1 << cs);
555                 bcm_qspi_write(qspi, CHIP_SELECT, 0, data);
556                 usleep_range(10, 20);
557         }
558         qspi->curr_cs = cs;
559 }
560
561 /* MSPI helpers */
562 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
563                                   const struct bcm_qspi_parms *xp)
564 {
565         u32 spcr, spbr = 0;
566
567         if (xp->speed_hz)
568                 spbr = qspi->base_clk / (2 * xp->speed_hz);
569
570         spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
571         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
572
573         spcr = MSPI_MASTER_BIT;
574         /* for 16 bit the data should be zero */
575         if (xp->bits_per_word != 16)
576                 spcr |= xp->bits_per_word << 2;
577         spcr |= xp->mode & 3;
578         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
579
580         qspi->last_parms = *xp;
581 }
582
583 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
584                                   struct spi_device *spi,
585                                   struct spi_transfer *trans)
586 {
587         struct bcm_qspi_parms xp;
588
589         xp.speed_hz = trans->speed_hz;
590         xp.bits_per_word = trans->bits_per_word;
591         xp.mode = spi->mode;
592
593         bcm_qspi_hw_set_parms(qspi, &xp);
594 }
595
596 static int bcm_qspi_setup(struct spi_device *spi)
597 {
598         struct bcm_qspi_parms *xp;
599
600         if (spi->bits_per_word > 16)
601                 return -EINVAL;
602
603         xp = spi_get_ctldata(spi);
604         if (!xp) {
605                 xp = kzalloc(sizeof(*xp), GFP_KERNEL);
606                 if (!xp)
607                         return -ENOMEM;
608                 spi_set_ctldata(spi, xp);
609         }
610         xp->speed_hz = spi->max_speed_hz;
611         xp->mode = spi->mode;
612
613         if (spi->bits_per_word)
614                 xp->bits_per_word = spi->bits_per_word;
615         else
616                 xp->bits_per_word = 8;
617
618         return 0;
619 }
620
621 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
622                                            struct qspi_trans *qt)
623 {
624         if (qt->mspi_last_trans &&
625             spi_transfer_is_last(qspi->master, qt->trans))
626                 return true;
627         else
628                 return false;
629 }
630
631 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
632                                         struct qspi_trans *qt, int flags)
633 {
634         int ret = TRANS_STATUS_BREAK_NONE;
635
636         /* count the last transferred bytes */
637         if (qt->trans->bits_per_word <= 8)
638                 qt->byte++;
639         else
640                 qt->byte += 2;
641
642         if (qt->byte >= qt->trans->len) {
643                 /* we're at the end of the spi_transfer */
644                 /* in TX mode, need to pause for a delay or CS change */
645                 if (qt->trans->delay_usecs &&
646                     (flags & TRANS_STATUS_BREAK_DELAY))
647                         ret |= TRANS_STATUS_BREAK_DELAY;
648                 if (qt->trans->cs_change &&
649                     (flags & TRANS_STATUS_BREAK_CS_CHANGE))
650                         ret |= TRANS_STATUS_BREAK_CS_CHANGE;
651                 if (ret)
652                         goto done;
653
654                 dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
655                 if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
656                         ret = TRANS_STATUS_BREAK_EOM;
657                 else
658                         ret = TRANS_STATUS_BREAK_NO_BYTES;
659
660                 qt->trans = NULL;
661         }
662
663 done:
664         dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
665                 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
666         return ret;
667 }
668
669 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
670 {
671         u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
672
673         /* mask out reserved bits */
674         return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
675 }
676
677 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
678 {
679         u32 reg_offset = MSPI_RXRAM;
680         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
681         u32 msb_offset = reg_offset + (slot << 3);
682
683         return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
684                 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
685 }
686
687 static void read_from_hw(struct bcm_qspi *qspi, int slots)
688 {
689         struct qspi_trans tp;
690         int slot;
691
692         bcm_qspi_disable_bspi(qspi);
693
694         if (slots > MSPI_NUM_CDRAM) {
695                 /* should never happen */
696                 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
697                 return;
698         }
699
700         tp = qspi->trans_pos;
701
702         for (slot = 0; slot < slots; slot++) {
703                 if (tp.trans->bits_per_word <= 8) {
704                         u8 *buf = tp.trans->rx_buf;
705
706                         if (buf)
707                                 buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
708                         dev_dbg(&qspi->pdev->dev, "RD %02x\n",
709                                 buf ? buf[tp.byte] : 0xff);
710                 } else {
711                         u16 *buf = tp.trans->rx_buf;
712
713                         if (buf)
714                                 buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
715                                                                       slot);
716                         dev_dbg(&qspi->pdev->dev, "RD %04x\n",
717                                 buf ? buf[tp.byte] : 0xffff);
718                 }
719
720                 update_qspi_trans_byte_count(qspi, &tp,
721                                              TRANS_STATUS_BREAK_NONE);
722         }
723
724         qspi->trans_pos = tp;
725 }
726
727 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
728                                        u8 val)
729 {
730         u32 reg_offset = MSPI_TXRAM + (slot << 3);
731
732         /* mask out reserved bits */
733         bcm_qspi_write(qspi, MSPI, reg_offset, val);
734 }
735
736 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
737                                         u16 val)
738 {
739         u32 reg_offset = MSPI_TXRAM;
740         u32 msb_offset = reg_offset + (slot << 3);
741         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
742
743         bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
744         bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
745 }
746
747 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
748 {
749         return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
750 }
751
752 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
753 {
754         bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
755 }
756
757 /* Return number of slots written */
758 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
759 {
760         struct qspi_trans tp;
761         int slot = 0, tstatus = 0;
762         u32 mspi_cdram = 0;
763
764         bcm_qspi_disable_bspi(qspi);
765         tp = qspi->trans_pos;
766         bcm_qspi_update_parms(qspi, spi, tp.trans);
767
768         /* Run until end of transfer or reached the max data */
769         while (!tstatus && slot < MSPI_NUM_CDRAM) {
770                 if (tp.trans->bits_per_word <= 8) {
771                         const u8 *buf = tp.trans->tx_buf;
772                         u8 val = buf ? buf[tp.byte] : 0xff;
773
774                         write_txram_slot_u8(qspi, slot, val);
775                         dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
776                 } else {
777                         const u16 *buf = tp.trans->tx_buf;
778                         u16 val = buf ? buf[tp.byte / 2] : 0xffff;
779
780                         write_txram_slot_u16(qspi, slot, val);
781                         dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
782                 }
783                 mspi_cdram = MSPI_CDRAM_CONT_BIT;
784                 mspi_cdram |= (~(1 << spi->chip_select) &
785                                MSPI_CDRAM_PCS);
786                 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
787                                 MSPI_CDRAM_BITSE_BIT);
788
789                 write_cdram_slot(qspi, slot, mspi_cdram);
790
791                 tstatus = update_qspi_trans_byte_count(qspi, &tp,
792                                                        TRANS_STATUS_BREAK_TX);
793                 slot++;
794         }
795
796         if (!slot) {
797                 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
798                 goto done;
799         }
800
801         dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
802         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
803         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
804
805         if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
806                 mspi_cdram = read_cdram_slot(qspi, slot - 1) &
807                         ~MSPI_CDRAM_CONT_BIT;
808                 write_cdram_slot(qspi, slot - 1, mspi_cdram);
809         }
810
811         if (has_bspi(qspi))
812                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
813
814         /* Must flush previous writes before starting MSPI operation */
815         mb();
816         /* Set cont | spe | spifie */
817         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
818
819 done:
820         return slot;
821 }
822
823 static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
824                                     struct spi_flash_read_message *msg)
825 {
826         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
827         u32 addr = 0, len, rdlen, len_words;
828         int ret = 0;
829         unsigned long timeo = msecs_to_jiffies(100);
830         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
831
832         if (bcm_qspi_bspi_ver_three(qspi))
833                 if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
834                         return -EIO;
835
836         bcm_qspi_chip_select(qspi, spi->chip_select);
837         bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
838
839         /*
840          * when using flex mode we need to send
841          * the upper address byte to bspi
842          */
843         if (bcm_qspi_bspi_ver_three(qspi) == false) {
844                 addr = msg->from & 0xff000000;
845                 bcm_qspi_write(qspi, BSPI,
846                                BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
847         }
848
849         if (!qspi->xfer_mode.flex_mode)
850                 addr = msg->from;
851         else
852                 addr = msg->from & 0x00ffffff;
853
854         if (bcm_qspi_bspi_ver_three(qspi) == true)
855                 addr = (addr + 0xc00000) & 0xffffff;
856
857         /*
858          * read into the entire buffer by breaking the reads
859          * into RAF buffer read lengths
860          */
861         len = msg->len;
862         qspi->bspi_rf_msg_idx = 0;
863
864         do {
865                 if (len > BSPI_READ_LENGTH)
866                         rdlen = BSPI_READ_LENGTH;
867                 else
868                         rdlen = len;
869
870                 reinit_completion(&qspi->bspi_done);
871                 bcm_qspi_enable_bspi(qspi);
872                 len_words = (rdlen + 3) >> 2;
873                 qspi->bspi_rf_msg = msg;
874                 qspi->bspi_rf_msg_status = 0;
875                 qspi->bspi_rf_msg_len = rdlen;
876                 dev_dbg(&qspi->pdev->dev,
877                         "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
878                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
879                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
880                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
881                 if (qspi->soc_intc) {
882                         /*
883                          * clear soc MSPI and BSPI interrupts and enable
884                          * BSPI interrupts.
885                          */
886                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
887                         soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
888                 }
889
890                 /* Must flush previous writes before starting BSPI operation */
891                 mb();
892                 bcm_qspi_bspi_lr_start(qspi);
893                 if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
894                         dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
895                         ret = -ETIMEDOUT;
896                         break;
897                 }
898
899                 /* set msg return length */
900                 msg->retlen += rdlen;
901                 addr += rdlen;
902                 len -= rdlen;
903         } while (len);
904
905         return ret;
906 }
907
908 static int bcm_qspi_transfer_one(struct spi_master *master,
909                                  struct spi_device *spi,
910                                  struct spi_transfer *trans)
911 {
912         struct bcm_qspi *qspi = spi_master_get_devdata(master);
913         int slots;
914         unsigned long timeo = msecs_to_jiffies(100);
915
916         bcm_qspi_chip_select(qspi, spi->chip_select);
917         qspi->trans_pos.trans = trans;
918         qspi->trans_pos.byte = 0;
919
920         while (qspi->trans_pos.byte < trans->len) {
921                 reinit_completion(&qspi->mspi_done);
922
923                 slots = write_to_hw(qspi, spi);
924                 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
925                         dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
926                         return -ETIMEDOUT;
927                 }
928
929                 read_from_hw(qspi, slots);
930         }
931
932         return 0;
933 }
934
935 static int bcm_qspi_mspi_flash_read(struct spi_device *spi,
936                                     struct spi_flash_read_message *msg)
937 {
938         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
939         struct spi_transfer t[2];
940         u8 cmd[6];
941         int ret;
942
943         memset(cmd, 0, sizeof(cmd));
944         memset(t, 0, sizeof(t));
945
946         /* tx */
947         /* opcode is in cmd[0] */
948         cmd[0] = msg->read_opcode;
949         cmd[1] = msg->from >> (msg->addr_width * 8 -  8);
950         cmd[2] = msg->from >> (msg->addr_width * 8 - 16);
951         cmd[3] = msg->from >> (msg->addr_width * 8 - 24);
952         cmd[4] = msg->from >> (msg->addr_width * 8 - 32);
953         t[0].tx_buf = cmd;
954         t[0].len = msg->addr_width + msg->dummy_bytes + 1;
955         t[0].bits_per_word = spi->bits_per_word;
956         t[0].tx_nbits = msg->opcode_nbits;
957         /* lets mspi know that this is not last transfer */
958         qspi->trans_pos.mspi_last_trans = false;
959         ret = bcm_qspi_transfer_one(spi->master, spi, &t[0]);
960
961         /* rx */
962         qspi->trans_pos.mspi_last_trans = true;
963         if (!ret) {
964                 /* rx */
965                 t[1].rx_buf = msg->buf;
966                 t[1].len = msg->len;
967                 t[1].rx_nbits =  msg->data_nbits;
968                 t[1].bits_per_word = spi->bits_per_word;
969                 ret = bcm_qspi_transfer_one(spi->master, spi, &t[1]);
970         }
971
972         if (!ret)
973                 msg->retlen = msg->len;
974
975         return ret;
976 }
977
978 static int bcm_qspi_flash_read(struct spi_device *spi,
979                                struct spi_flash_read_message *msg)
980 {
981         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
982         int ret = 0;
983         bool mspi_read = false;
984         u32 io_width, addrlen, addr, len;
985         u_char *buf;
986
987         buf = msg->buf;
988         addr = msg->from;
989         len = msg->len;
990
991         if (bcm_qspi_bspi_ver_three(qspi) == true) {
992                 /*
993                  * The address coming into this function is a raw flash offset.
994                  * But for BSPI <= V3, we need to convert it to a remapped BSPI
995                  * address. If it crosses a 4MB boundary, just revert back to
996                  * using MSPI.
997                  */
998                 addr = (addr + 0xc00000) & 0xffffff;
999
1000                 if ((~ADDR_4MB_MASK & addr) ^
1001                     (~ADDR_4MB_MASK & (addr + len - 1)))
1002                         mspi_read = true;
1003         }
1004
1005         /* non-aligned and very short transfers are handled by MSPI */
1006         if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1007             len < 4)
1008                 mspi_read = true;
1009
1010         if (mspi_read)
1011                 return bcm_qspi_mspi_flash_read(spi, msg);
1012
1013         io_width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
1014         addrlen = msg->addr_width;
1015         ret = bcm_qspi_bspi_set_mode(qspi, io_width, addrlen, -1);
1016
1017         if (!ret)
1018                 ret = bcm_qspi_bspi_flash_read(spi, msg);
1019
1020         return ret;
1021 }
1022
1023 static void bcm_qspi_cleanup(struct spi_device *spi)
1024 {
1025         struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1026
1027         kfree(xp);
1028 }
1029
1030 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1031 {
1032         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1033         struct bcm_qspi *qspi = qspi_dev_id->dev;
1034         u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1035
1036         if (status & MSPI_MSPI_STATUS_SPIF) {
1037                 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1038                 /* clear interrupt */
1039                 status &= ~MSPI_MSPI_STATUS_SPIF;
1040                 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1041                 if (qspi->soc_intc)
1042                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1043                 complete(&qspi->mspi_done);
1044                 return IRQ_HANDLED;
1045         }
1046
1047         return IRQ_NONE;
1048 }
1049
1050 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1051 {
1052         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1053         struct bcm_qspi *qspi = qspi_dev_id->dev;
1054         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1055         u32 status = qspi_dev_id->irqp->mask;
1056
1057         if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
1058                 bcm_qspi_bspi_lr_data_read(qspi);
1059                 if (qspi->bspi_rf_msg_len == 0) {
1060                         qspi->bspi_rf_msg = NULL;
1061                         if (qspi->soc_intc) {
1062                                 /* disable soc BSPI interrupt */
1063                                 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1064                                                            false);
1065                                 /* indicate done */
1066                                 status = INTR_BSPI_LR_SESSION_DONE_MASK;
1067                         }
1068
1069                         if (qspi->bspi_rf_msg_status)
1070                                 bcm_qspi_bspi_lr_clear(qspi);
1071                         else
1072                                 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1073                 }
1074
1075                 if (qspi->soc_intc)
1076                         /* clear soc BSPI interrupt */
1077                         soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1078         }
1079
1080         status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1081         if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
1082                 complete(&qspi->bspi_done);
1083
1084         return IRQ_HANDLED;
1085 }
1086
1087 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1088 {
1089         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1090         struct bcm_qspi *qspi = qspi_dev_id->dev;
1091         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1092
1093         dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1094         qspi->bspi_rf_msg_status = -EIO;
1095         if (qspi->soc_intc)
1096                 /* clear soc interrupt */
1097                 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1098
1099         complete(&qspi->bspi_done);
1100         return IRQ_HANDLED;
1101 }
1102
1103 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1104 {
1105         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1106         struct bcm_qspi *qspi = qspi_dev_id->dev;
1107         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1108         irqreturn_t ret = IRQ_NONE;
1109
1110         if (soc_intc) {
1111                 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1112
1113                 if (status & MSPI_DONE)
1114                         ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1115                 else if (status & BSPI_DONE)
1116                         ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1117                 else if (status & BSPI_ERR)
1118                         ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1119         }
1120
1121         return ret;
1122 }
1123
1124 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1125         {
1126                 .irq_name = "spi_lr_fullness_reached",
1127                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1128                 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1129         },
1130         {
1131                 .irq_name = "spi_lr_session_aborted",
1132                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1133                 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1134         },
1135         {
1136                 .irq_name = "spi_lr_impatient",
1137                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1138                 .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1139         },
1140         {
1141                 .irq_name = "spi_lr_session_done",
1142                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1143                 .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1144         },
1145 #ifdef QSPI_INT_DEBUG
1146         /* this interrupt is for debug purposes only, dont request irq */
1147         {
1148                 .irq_name = "spi_lr_overread",
1149                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1150                 .mask = INTR_BSPI_LR_OVERREAD_MASK,
1151         },
1152 #endif
1153         {
1154                 .irq_name = "mspi_done",
1155                 .irq_handler = bcm_qspi_mspi_l2_isr,
1156                 .mask = INTR_MSPI_DONE_MASK,
1157         },
1158         {
1159                 .irq_name = "mspi_halted",
1160                 .irq_handler = bcm_qspi_mspi_l2_isr,
1161                 .mask = INTR_MSPI_HALTED_MASK,
1162         },
1163         {
1164                 /* single muxed L1 interrupt source */
1165                 .irq_name = "spi_l1_intr",
1166                 .irq_handler = bcm_qspi_l1_isr,
1167                 .irq_source = MUXED_L1,
1168                 .mask = QSPI_INTERRUPTS_ALL,
1169         },
1170 };
1171
1172 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1173 {
1174         u32 val = 0;
1175
1176         val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1177         qspi->bspi_maj_rev = (val >> 8) & 0xff;
1178         qspi->bspi_min_rev = val & 0xff;
1179         if (!(bcm_qspi_bspi_ver_three(qspi))) {
1180                 /* Force mapping of BSPI address -> flash offset */
1181                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1182                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1183         }
1184         qspi->bspi_enabled = 1;
1185         bcm_qspi_disable_bspi(qspi);
1186         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1187         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1188 }
1189
1190 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1191 {
1192         struct bcm_qspi_parms parms;
1193
1194         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1195         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1196         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1197         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1198         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1199
1200         parms.mode = SPI_MODE_3;
1201         parms.bits_per_word = 8;
1202         parms.speed_hz = qspi->max_speed_hz;
1203         bcm_qspi_hw_set_parms(qspi, &parms);
1204
1205         if (has_bspi(qspi))
1206                 bcm_qspi_bspi_init(qspi);
1207 }
1208
1209 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1210 {
1211         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1212         if (has_bspi(qspi))
1213                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1214
1215 }
1216
1217 static const struct of_device_id bcm_qspi_of_match[] = {
1218         { .compatible = "brcm,spi-bcm-qspi" },
1219         {},
1220 };
1221 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1222
1223 int bcm_qspi_probe(struct platform_device *pdev,
1224                    struct bcm_qspi_soc_intc *soc_intc)
1225 {
1226         struct device *dev = &pdev->dev;
1227         struct bcm_qspi *qspi;
1228         struct spi_master *master;
1229         struct resource *res;
1230         int irq, ret = 0, num_ints = 0;
1231         u32 val;
1232         const char *name = NULL;
1233         int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1234
1235         /* We only support device-tree instantiation */
1236         if (!dev->of_node)
1237                 return -ENODEV;
1238
1239         if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1240                 return -ENODEV;
1241
1242         master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1243         if (!master) {
1244                 dev_err(dev, "error allocating spi_master\n");
1245                 return -ENOMEM;
1246         }
1247
1248         qspi = spi_master_get_devdata(master);
1249         qspi->pdev = pdev;
1250         qspi->trans_pos.trans = NULL;
1251         qspi->trans_pos.byte = 0;
1252         qspi->trans_pos.mspi_last_trans = true;
1253         qspi->master = master;
1254
1255         master->bus_num = -1;
1256         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1257         master->setup = bcm_qspi_setup;
1258         master->transfer_one = bcm_qspi_transfer_one;
1259         master->spi_flash_read = bcm_qspi_flash_read;
1260         master->cleanup = bcm_qspi_cleanup;
1261         master->dev.of_node = dev->of_node;
1262         master->num_chipselect = NUM_CHIPSELECT;
1263
1264         qspi->big_endian = of_device_is_big_endian(dev->of_node);
1265
1266         if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1267                 master->num_chipselect = val;
1268
1269         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1270         if (!res)
1271                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1272                                                    "mspi");
1273
1274         if (res) {
1275                 qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1276                 if (IS_ERR(qspi->base[MSPI])) {
1277                         ret = PTR_ERR(qspi->base[MSPI]);
1278                         goto qspi_probe_err;
1279                 }
1280         } else {
1281                 goto qspi_probe_err;
1282         }
1283
1284         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1285         if (res) {
1286                 qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1287                 if (IS_ERR(qspi->base[BSPI])) {
1288                         ret = PTR_ERR(qspi->base[BSPI]);
1289                         goto qspi_probe_err;
1290                 }
1291                 qspi->bspi_mode = true;
1292         } else {
1293                 qspi->bspi_mode = false;
1294         }
1295
1296         dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1297
1298         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1299         if (res) {
1300                 qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1301                 if (IS_ERR(qspi->base[CHIP_SELECT])) {
1302                         ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1303                         goto qspi_probe_err;
1304                 }
1305         }
1306
1307         qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1308                                 GFP_KERNEL);
1309         if (!qspi->dev_ids) {
1310                 ret = -ENOMEM;
1311                 goto qspi_probe_err;
1312         }
1313
1314         for (val = 0; val < num_irqs; val++) {
1315                 irq = -1;
1316                 name = qspi_irq_tab[val].irq_name;
1317                 if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1318                         /* get the l2 interrupts */
1319                         irq = platform_get_irq_byname(pdev, name);
1320                 } else if (!num_ints && soc_intc) {
1321                         /* all mspi, bspi intrs muxed to one L1 intr */
1322                         irq = platform_get_irq(pdev, 0);
1323                 }
1324
1325                 if (irq  >= 0) {
1326                         ret = devm_request_irq(&pdev->dev, irq,
1327                                                qspi_irq_tab[val].irq_handler, 0,
1328                                                name,
1329                                                &qspi->dev_ids[val]);
1330                         if (ret < 0) {
1331                                 dev_err(&pdev->dev, "IRQ %s not found\n", name);
1332                                 goto qspi_probe_err;
1333                         }
1334
1335                         qspi->dev_ids[val].dev = qspi;
1336                         qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1337                         num_ints++;
1338                         dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1339                                 qspi_irq_tab[val].irq_name,
1340                                 irq);
1341                 }
1342         }
1343
1344         if (!num_ints) {
1345                 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1346                 ret = -EINVAL;
1347                 goto qspi_probe_err;
1348         }
1349
1350         /*
1351          * Some SoCs integrate spi controller (e.g., its interrupt bits)
1352          * in specific ways
1353          */
1354         if (soc_intc) {
1355                 qspi->soc_intc = soc_intc;
1356                 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1357         } else {
1358                 qspi->soc_intc = NULL;
1359         }
1360
1361         qspi->clk = devm_clk_get(&pdev->dev, NULL);
1362         if (IS_ERR(qspi->clk)) {
1363                 dev_warn(dev, "unable to get clock\n");
1364                 ret = PTR_ERR(qspi->clk);
1365                 goto qspi_probe_err;
1366         }
1367
1368         ret = clk_prepare_enable(qspi->clk);
1369         if (ret) {
1370                 dev_err(dev, "failed to prepare clock\n");
1371                 goto qspi_probe_err;
1372         }
1373
1374         qspi->base_clk = clk_get_rate(qspi->clk);
1375         qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1376
1377         bcm_qspi_hw_init(qspi);
1378         init_completion(&qspi->mspi_done);
1379         init_completion(&qspi->bspi_done);
1380         qspi->curr_cs = -1;
1381
1382         platform_set_drvdata(pdev, qspi);
1383
1384         qspi->xfer_mode.width = -1;
1385         qspi->xfer_mode.addrlen = -1;
1386         qspi->xfer_mode.hp = -1;
1387
1388         ret = devm_spi_register_master(&pdev->dev, master);
1389         if (ret < 0) {
1390                 dev_err(dev, "can't register master\n");
1391                 goto qspi_reg_err;
1392         }
1393
1394         return 0;
1395
1396 qspi_reg_err:
1397         bcm_qspi_hw_uninit(qspi);
1398         clk_disable_unprepare(qspi->clk);
1399 qspi_probe_err:
1400         spi_master_put(master);
1401         kfree(qspi->dev_ids);
1402         return ret;
1403 }
1404 /* probe function to be called by SoC specific platform driver probe */
1405 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1406
1407 int bcm_qspi_remove(struct platform_device *pdev)
1408 {
1409         struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1410
1411         bcm_qspi_hw_uninit(qspi);
1412         clk_disable_unprepare(qspi->clk);
1413         kfree(qspi->dev_ids);
1414         spi_unregister_master(qspi->master);
1415
1416         return 0;
1417 }
1418 /* function to be called by SoC specific platform driver remove() */
1419 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1420
1421 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1422 {
1423         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1424
1425         spi_master_suspend(qspi->master);
1426         clk_disable(qspi->clk);
1427         bcm_qspi_hw_uninit(qspi);
1428
1429         return 0;
1430 };
1431
1432 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1433 {
1434         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1435         int ret = 0;
1436
1437         bcm_qspi_hw_init(qspi);
1438         bcm_qspi_chip_select(qspi, qspi->curr_cs);
1439         if (qspi->soc_intc)
1440                 /* enable MSPI interrupt */
1441                 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1442                                                  true);
1443
1444         ret = clk_enable(qspi->clk);
1445         if (!ret)
1446                 spi_master_resume(qspi->master);
1447
1448         return ret;
1449 }
1450
1451 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1452
1453 /* pm_ops to be called by SoC specific platform driver */
1454 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1455
1456 MODULE_AUTHOR("Kamal Dasu");
1457 MODULE_DESCRIPTION("Broadcom QSPI driver");
1458 MODULE_LICENSE("GPL v2");
1459 MODULE_ALIAS("platform:" DRIVER_NAME);