]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/spi/spi-sun6i.c
ftgmac100: Split ring alloc, init and rx buffer alloc
[karo-tx-linux.git] / drivers / spi / spi-sun6i.c
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/reset.h>
24
25 #include <linux/spi/spi.h>
26
27 #define SUN6I_FIFO_DEPTH                128
28 #define SUN8I_FIFO_DEPTH                64
29
30 #define SUN6I_GBL_CTL_REG               0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE                BIT(0)
32 #define SUN6I_GBL_CTL_MASTER                    BIT(1)
33 #define SUN6I_GBL_CTL_TP                        BIT(7)
34 #define SUN6I_GBL_CTL_RST                       BIT(31)
35
36 #define SUN6I_TFR_CTL_REG               0x08
37 #define SUN6I_TFR_CTL_CPHA                      BIT(0)
38 #define SUN6I_TFR_CTL_CPOL                      BIT(1)
39 #define SUN6I_TFR_CTL_SPOL                      BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK                   0x30
41 #define SUN6I_TFR_CTL_CS(cs)                    (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL                 BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL                  BIT(7)
44 #define SUN6I_TFR_CTL_DHB                       BIT(8)
45 #define SUN6I_TFR_CTL_FBS                       BIT(12)
46 #define SUN6I_TFR_CTL_XCH                       BIT(31)
47
48 #define SUN6I_INT_CTL_REG               0x10
49 #define SUN6I_INT_CTL_RF_OVF                    BIT(8)
50 #define SUN6I_INT_CTL_TC                        BIT(12)
51
52 #define SUN6I_INT_STA_REG               0x14
53
54 #define SUN6I_FIFO_CTL_REG              0x18
55 #define SUN6I_FIFO_CTL_RF_RST                   BIT(15)
56 #define SUN6I_FIFO_CTL_TF_RST                   BIT(31)
57
58 #define SUN6I_FIFO_STA_REG              0x1c
59 #define SUN6I_FIFO_STA_RF_CNT_MASK              0x7f
60 #define SUN6I_FIFO_STA_RF_CNT_BITS              0
61 #define SUN6I_FIFO_STA_TF_CNT_MASK              0x7f
62 #define SUN6I_FIFO_STA_TF_CNT_BITS              16
63
64 #define SUN6I_CLK_CTL_REG               0x24
65 #define SUN6I_CLK_CTL_CDR2_MASK                 0xff
66 #define SUN6I_CLK_CTL_CDR2(div)                 (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
67 #define SUN6I_CLK_CTL_CDR1_MASK                 0xf
68 #define SUN6I_CLK_CTL_CDR1(div)                 (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
69 #define SUN6I_CLK_CTL_DRS                       BIT(12)
70
71 #define SUN6I_BURST_CNT_REG             0x30
72 #define SUN6I_BURST_CNT(cnt)                    ((cnt) & 0xffffff)
73
74 #define SUN6I_XMIT_CNT_REG              0x34
75 #define SUN6I_XMIT_CNT(cnt)                     ((cnt) & 0xffffff)
76
77 #define SUN6I_BURST_CTL_CNT_REG         0x38
78 #define SUN6I_BURST_CTL_CNT_STC(cnt)            ((cnt) & 0xffffff)
79
80 #define SUN6I_TXDATA_REG                0x200
81 #define SUN6I_RXDATA_REG                0x300
82
83 struct sun6i_spi {
84         struct spi_master       *master;
85         void __iomem            *base_addr;
86         struct clk              *hclk;
87         struct clk              *mclk;
88         struct reset_control    *rstc;
89
90         struct completion       done;
91
92         const u8                *tx_buf;
93         u8                      *rx_buf;
94         int                     len;
95         unsigned long           fifo_depth;
96 };
97
98 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
99 {
100         return readl(sspi->base_addr + reg);
101 }
102
103 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
104 {
105         writel(value, sspi->base_addr + reg);
106 }
107
108 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
109 {
110         u32 reg, cnt;
111         u8 byte;
112
113         /* See how much data is available */
114         reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
115         reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
116         cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
117
118         if (len > cnt)
119                 len = cnt;
120
121         while (len--) {
122                 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
123                 if (sspi->rx_buf)
124                         *sspi->rx_buf++ = byte;
125         }
126 }
127
128 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
129 {
130         u8 byte;
131
132         if (len > sspi->len)
133                 len = sspi->len;
134
135         while (len--) {
136                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
137                 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
138                 sspi->len--;
139         }
140 }
141
142 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
143 {
144         struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
145         u32 reg;
146
147         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
148         reg &= ~SUN6I_TFR_CTL_CS_MASK;
149         reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
150
151         if (enable)
152                 reg |= SUN6I_TFR_CTL_CS_LEVEL;
153         else
154                 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
155
156         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
157 }
158
159 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
160 {
161         struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
162
163         return sspi->fifo_depth - 1;
164 }
165
166 static int sun6i_spi_transfer_one(struct spi_master *master,
167                                   struct spi_device *spi,
168                                   struct spi_transfer *tfr)
169 {
170         struct sun6i_spi *sspi = spi_master_get_devdata(master);
171         unsigned int mclk_rate, div, timeout;
172         unsigned int start, end, tx_time;
173         unsigned int tx_len = 0;
174         int ret = 0;
175         u32 reg;
176
177         /* We don't support transfer larger than the FIFO */
178         if (tfr->len > sspi->fifo_depth)
179                 return -EINVAL;
180
181         reinit_completion(&sspi->done);
182         sspi->tx_buf = tfr->tx_buf;
183         sspi->rx_buf = tfr->rx_buf;
184         sspi->len = tfr->len;
185
186         /* Clear pending interrupts */
187         sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
188
189         /* Reset FIFO */
190         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
191                         SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
192
193         /*
194          * Setup the transfer control register: Chip Select,
195          * polarities, etc.
196          */
197         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
198
199         if (spi->mode & SPI_CPOL)
200                 reg |= SUN6I_TFR_CTL_CPOL;
201         else
202                 reg &= ~SUN6I_TFR_CTL_CPOL;
203
204         if (spi->mode & SPI_CPHA)
205                 reg |= SUN6I_TFR_CTL_CPHA;
206         else
207                 reg &= ~SUN6I_TFR_CTL_CPHA;
208
209         if (spi->mode & SPI_LSB_FIRST)
210                 reg |= SUN6I_TFR_CTL_FBS;
211         else
212                 reg &= ~SUN6I_TFR_CTL_FBS;
213
214         /*
215          * If it's a TX only transfer, we don't want to fill the RX
216          * FIFO with bogus data
217          */
218         if (sspi->rx_buf)
219                 reg &= ~SUN6I_TFR_CTL_DHB;
220         else
221                 reg |= SUN6I_TFR_CTL_DHB;
222
223         /* We want to control the chip select manually */
224         reg |= SUN6I_TFR_CTL_CS_MANUAL;
225
226         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
227
228         /* Ensure that we have a parent clock fast enough */
229         mclk_rate = clk_get_rate(sspi->mclk);
230         if (mclk_rate < (2 * tfr->speed_hz)) {
231                 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
232                 mclk_rate = clk_get_rate(sspi->mclk);
233         }
234
235         /*
236          * Setup clock divider.
237          *
238          * We have two choices there. Either we can use the clock
239          * divide rate 1, which is calculated thanks to this formula:
240          * SPI_CLK = MOD_CLK / (2 ^ cdr)
241          * Or we can use CDR2, which is calculated with the formula:
242          * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
243          * Wether we use the former or the latter is set through the
244          * DRS bit.
245          *
246          * First try CDR2, and if we can't reach the expected
247          * frequency, fall back to CDR1.
248          */
249         div = mclk_rate / (2 * tfr->speed_hz);
250         if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
251                 if (div > 0)
252                         div--;
253
254                 reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
255         } else {
256                 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
257                 reg = SUN6I_CLK_CTL_CDR1(div);
258         }
259
260         sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
261
262         /* Setup the transfer now... */
263         if (sspi->tx_buf)
264                 tx_len = tfr->len;
265
266         /* Setup the counters */
267         sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
268         sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
269         sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
270                         SUN6I_BURST_CTL_CNT_STC(tx_len));
271
272         /* Fill the TX FIFO */
273         sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
274
275         /* Enable the interrupts */
276         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
277
278         /* Start the transfer */
279         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
280         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
281
282         tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
283         start = jiffies;
284         timeout = wait_for_completion_timeout(&sspi->done,
285                                               msecs_to_jiffies(tx_time));
286         end = jiffies;
287         if (!timeout) {
288                 dev_warn(&master->dev,
289                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
290                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
291                          jiffies_to_msecs(end - start), tx_time);
292                 ret = -ETIMEDOUT;
293                 goto out;
294         }
295
296         sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
297
298 out:
299         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
300
301         return ret;
302 }
303
304 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
305 {
306         struct sun6i_spi *sspi = dev_id;
307         u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
308
309         /* Transfer complete */
310         if (status & SUN6I_INT_CTL_TC) {
311                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
312                 complete(&sspi->done);
313                 return IRQ_HANDLED;
314         }
315
316         return IRQ_NONE;
317 }
318
319 static int sun6i_spi_runtime_resume(struct device *dev)
320 {
321         struct spi_master *master = dev_get_drvdata(dev);
322         struct sun6i_spi *sspi = spi_master_get_devdata(master);
323         int ret;
324
325         ret = clk_prepare_enable(sspi->hclk);
326         if (ret) {
327                 dev_err(dev, "Couldn't enable AHB clock\n");
328                 goto out;
329         }
330
331         ret = clk_prepare_enable(sspi->mclk);
332         if (ret) {
333                 dev_err(dev, "Couldn't enable module clock\n");
334                 goto err;
335         }
336
337         ret = reset_control_deassert(sspi->rstc);
338         if (ret) {
339                 dev_err(dev, "Couldn't deassert the device from reset\n");
340                 goto err2;
341         }
342
343         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
344                         SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
345
346         return 0;
347
348 err2:
349         clk_disable_unprepare(sspi->mclk);
350 err:
351         clk_disable_unprepare(sspi->hclk);
352 out:
353         return ret;
354 }
355
356 static int sun6i_spi_runtime_suspend(struct device *dev)
357 {
358         struct spi_master *master = dev_get_drvdata(dev);
359         struct sun6i_spi *sspi = spi_master_get_devdata(master);
360
361         reset_control_assert(sspi->rstc);
362         clk_disable_unprepare(sspi->mclk);
363         clk_disable_unprepare(sspi->hclk);
364
365         return 0;
366 }
367
368 static int sun6i_spi_probe(struct platform_device *pdev)
369 {
370         struct spi_master *master;
371         struct sun6i_spi *sspi;
372         struct resource *res;
373         int ret = 0, irq;
374
375         master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
376         if (!master) {
377                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
378                 return -ENOMEM;
379         }
380
381         platform_set_drvdata(pdev, master);
382         sspi = spi_master_get_devdata(master);
383
384         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
385         sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
386         if (IS_ERR(sspi->base_addr)) {
387                 ret = PTR_ERR(sspi->base_addr);
388                 goto err_free_master;
389         }
390
391         irq = platform_get_irq(pdev, 0);
392         if (irq < 0) {
393                 dev_err(&pdev->dev, "No spi IRQ specified\n");
394                 ret = -ENXIO;
395                 goto err_free_master;
396         }
397
398         ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
399                                0, "sun6i-spi", sspi);
400         if (ret) {
401                 dev_err(&pdev->dev, "Cannot request IRQ\n");
402                 goto err_free_master;
403         }
404
405         sspi->master = master;
406         sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
407
408         master->max_speed_hz = 100 * 1000 * 1000;
409         master->min_speed_hz = 3 * 1000;
410         master->set_cs = sun6i_spi_set_cs;
411         master->transfer_one = sun6i_spi_transfer_one;
412         master->num_chipselect = 4;
413         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
414         master->bits_per_word_mask = SPI_BPW_MASK(8);
415         master->dev.of_node = pdev->dev.of_node;
416         master->auto_runtime_pm = true;
417         master->max_transfer_size = sun6i_spi_max_transfer_size;
418
419         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
420         if (IS_ERR(sspi->hclk)) {
421                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
422                 ret = PTR_ERR(sspi->hclk);
423                 goto err_free_master;
424         }
425
426         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
427         if (IS_ERR(sspi->mclk)) {
428                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
429                 ret = PTR_ERR(sspi->mclk);
430                 goto err_free_master;
431         }
432
433         init_completion(&sspi->done);
434
435         sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
436         if (IS_ERR(sspi->rstc)) {
437                 dev_err(&pdev->dev, "Couldn't get reset controller\n");
438                 ret = PTR_ERR(sspi->rstc);
439                 goto err_free_master;
440         }
441
442         /*
443          * This wake-up/shutdown pattern is to be able to have the
444          * device woken up, even if runtime_pm is disabled
445          */
446         ret = sun6i_spi_runtime_resume(&pdev->dev);
447         if (ret) {
448                 dev_err(&pdev->dev, "Couldn't resume the device\n");
449                 goto err_free_master;
450         }
451
452         pm_runtime_set_active(&pdev->dev);
453         pm_runtime_enable(&pdev->dev);
454         pm_runtime_idle(&pdev->dev);
455
456         ret = devm_spi_register_master(&pdev->dev, master);
457         if (ret) {
458                 dev_err(&pdev->dev, "cannot register SPI master\n");
459                 goto err_pm_disable;
460         }
461
462         return 0;
463
464 err_pm_disable:
465         pm_runtime_disable(&pdev->dev);
466         sun6i_spi_runtime_suspend(&pdev->dev);
467 err_free_master:
468         spi_master_put(master);
469         return ret;
470 }
471
472 static int sun6i_spi_remove(struct platform_device *pdev)
473 {
474         pm_runtime_disable(&pdev->dev);
475
476         return 0;
477 }
478
479 static const struct of_device_id sun6i_spi_match[] = {
480         { .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
481         { .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
482         {}
483 };
484 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
485
486 static const struct dev_pm_ops sun6i_spi_pm_ops = {
487         .runtime_resume         = sun6i_spi_runtime_resume,
488         .runtime_suspend        = sun6i_spi_runtime_suspend,
489 };
490
491 static struct platform_driver sun6i_spi_driver = {
492         .probe  = sun6i_spi_probe,
493         .remove = sun6i_spi_remove,
494         .driver = {
495                 .name           = "sun6i-spi",
496                 .of_match_table = sun6i_spi_match,
497                 .pm             = &sun6i_spi_pm_ops,
498         },
499 };
500 module_platform_driver(sun6i_spi_driver);
501
502 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
503 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
504 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
505 MODULE_LICENSE("GPL");