]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/usb/core/hcd.c
ARM: delete struct sys_timer
[karo-tx-linux.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42
43 #include <linux/usb.h>
44 #include <linux/usb/hcd.h>
45
46 #include "usb.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
78  *              associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
80  */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS              64
94 struct usb_busmap {
95         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117         return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123  * Sharable chunks of root hub code.
124  */
125
126 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132         0x12,       /*  __u8  bLength; */
133         0x01,       /*  __u8  bDescriptorType; Device */
134         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135
136         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
137         0x00,       /*  __u8  bDeviceSubClass; */
138         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140
141         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
142         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144
145         0x03,       /*  __u8  iManufacturer; */
146         0x02,       /*  __u8  iProduct; */
147         0x01,       /*  __u8  iSerialNumber; */
148         0x01        /*  __u8  bNumConfigurations; */
149 };
150
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153         0x12,       /*  __u8  bLength; */
154         0x01,       /*  __u8  bDescriptorType; Device */
155         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
163         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176         0x12,       /*  __u8  bLength; */
177         0x01,       /*  __u8  bDescriptorType; Device */
178         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
179
180         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
181         0x00,       /*  __u8  bDeviceSubClass; */
182         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
183         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
184
185         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
186         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
187         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188
189         0x03,       /*  __u8  iManufacturer; */
190         0x02,       /*  __u8  iProduct; */
191         0x01,       /*  __u8  iSerialNumber; */
192         0x01        /*  __u8  bNumConfigurations; */
193 };
194
195
196 /*-------------------------------------------------------------------------*/
197
198 /* Configuration descriptors for our root hubs */
199
200 static const u8 fs_rh_config_descriptor [] = {
201
202         /* one configuration */
203         0x09,       /*  __u8  bLength; */
204         0x02,       /*  __u8  bDescriptorType; Configuration */
205         0x19, 0x00, /*  __le16 wTotalLength; */
206         0x01,       /*  __u8  bNumInterfaces; (1) */
207         0x01,       /*  __u8  bConfigurationValue; */
208         0x00,       /*  __u8  iConfiguration; */
209         0xc0,       /*  __u8  bmAttributes; 
210                                  Bit 7: must be set,
211                                      6: Self-powered,
212                                      5: Remote wakeup,
213                                      4..0: resvd */
214         0x00,       /*  __u8  MaxPower; */
215       
216         /* USB 1.1:
217          * USB 2.0, single TT organization (mandatory):
218          *      one interface, protocol 0
219          *
220          * USB 2.0, multiple TT organization (optional):
221          *      two interfaces, protocols 1 (like single TT)
222          *      and 2 (multiple TT mode) ... config is
223          *      sometimes settable
224          *      NOT IMPLEMENTED
225          */
226
227         /* one interface */
228         0x09,       /*  __u8  if_bLength; */
229         0x04,       /*  __u8  if_bDescriptorType; Interface */
230         0x00,       /*  __u8  if_bInterfaceNumber; */
231         0x00,       /*  __u8  if_bAlternateSetting; */
232         0x01,       /*  __u8  if_bNumEndpoints; */
233         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
234         0x00,       /*  __u8  if_bInterfaceSubClass; */
235         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
236         0x00,       /*  __u8  if_iInterface; */
237      
238         /* one endpoint (status change endpoint) */
239         0x07,       /*  __u8  ep_bLength; */
240         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
241         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
242         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
243         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246
247 static const u8 hs_rh_config_descriptor [] = {
248
249         /* one configuration */
250         0x09,       /*  __u8  bLength; */
251         0x02,       /*  __u8  bDescriptorType; Configuration */
252         0x19, 0x00, /*  __le16 wTotalLength; */
253         0x01,       /*  __u8  bNumInterfaces; (1) */
254         0x01,       /*  __u8  bConfigurationValue; */
255         0x00,       /*  __u8  iConfiguration; */
256         0xc0,       /*  __u8  bmAttributes; 
257                                  Bit 7: must be set,
258                                      6: Self-powered,
259                                      5: Remote wakeup,
260                                      4..0: resvd */
261         0x00,       /*  __u8  MaxPower; */
262       
263         /* USB 1.1:
264          * USB 2.0, single TT organization (mandatory):
265          *      one interface, protocol 0
266          *
267          * USB 2.0, multiple TT organization (optional):
268          *      two interfaces, protocols 1 (like single TT)
269          *      and 2 (multiple TT mode) ... config is
270          *      sometimes settable
271          *      NOT IMPLEMENTED
272          */
273
274         /* one interface */
275         0x09,       /*  __u8  if_bLength; */
276         0x04,       /*  __u8  if_bDescriptorType; Interface */
277         0x00,       /*  __u8  if_bInterfaceNumber; */
278         0x00,       /*  __u8  if_bAlternateSetting; */
279         0x01,       /*  __u8  if_bNumEndpoints; */
280         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
281         0x00,       /*  __u8  if_bInterfaceSubClass; */
282         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
283         0x00,       /*  __u8  if_iInterface; */
284      
285         /* one endpoint (status change endpoint) */
286         0x07,       /*  __u8  ep_bLength; */
287         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
288         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
289         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
290                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291                      * see hub.c:hub_configure() for details. */
292         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295
296 static const u8 ss_rh_config_descriptor[] = {
297         /* one configuration */
298         0x09,       /*  __u8  bLength; */
299         0x02,       /*  __u8  bDescriptorType; Configuration */
300         0x1f, 0x00, /*  __le16 wTotalLength; */
301         0x01,       /*  __u8  bNumInterfaces; (1) */
302         0x01,       /*  __u8  bConfigurationValue; */
303         0x00,       /*  __u8  iConfiguration; */
304         0xc0,       /*  __u8  bmAttributes;
305                                  Bit 7: must be set,
306                                      6: Self-powered,
307                                      5: Remote wakeup,
308                                      4..0: resvd */
309         0x00,       /*  __u8  MaxPower; */
310
311         /* one interface */
312         0x09,       /*  __u8  if_bLength; */
313         0x04,       /*  __u8  if_bDescriptorType; Interface */
314         0x00,       /*  __u8  if_bInterfaceNumber; */
315         0x00,       /*  __u8  if_bAlternateSetting; */
316         0x01,       /*  __u8  if_bNumEndpoints; */
317         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
318         0x00,       /*  __u8  if_bInterfaceSubClass; */
319         0x00,       /*  __u8  if_bInterfaceProtocol; */
320         0x00,       /*  __u8  if_iInterface; */
321
322         /* one endpoint (status change endpoint) */
323         0x07,       /*  __u8  ep_bLength; */
324         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
325         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
326         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
327                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328                      * see hub.c:hub_configure() for details. */
329         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
331
332         /* one SuperSpeed endpoint companion descriptor */
333         0x06,        /* __u8 ss_bLength */
334         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
337         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339
340 /* authorized_default behaviour:
341  * -1 is authorized for all devices except wireless (old behaviour)
342  * 0 is unauthorized for all devices
343  * 1 is authorized for all devices
344  */
345 static int authorized_default = -1;
346 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347 MODULE_PARM_DESC(authorized_default,
348                 "Default USB device authorization: 0 is not authorized, 1 is "
349                 "authorized, -1 is authorized except for wireless USB (default, "
350                 "old behaviour");
351 /*-------------------------------------------------------------------------*/
352
353 /**
354  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355  * @s: Null-terminated ASCII (actually ISO-8859-1) string
356  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357  * @len: Length (in bytes; may be odd) of descriptor buffer.
358  *
359  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360  * buflen, whichever is less.
361  *
362  * USB String descriptors can contain at most 126 characters; input
363  * strings longer than that are truncated.
364  */
365 static unsigned
366 ascii2desc(char const *s, u8 *buf, unsigned len)
367 {
368         unsigned n, t = 2 + 2*strlen(s);
369
370         if (t > 254)
371                 t = 254;        /* Longest possible UTF string descriptor */
372         if (len > t)
373                 len = t;
374
375         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
376
377         n = len;
378         while (n--) {
379                 *buf++ = t;
380                 if (!n--)
381                         break;
382                 *buf++ = t >> 8;
383                 t = (unsigned char)*s++;
384         }
385         return len;
386 }
387
388 /**
389  * rh_string() - provides string descriptors for root hub
390  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391  * @hcd: the host controller for this root hub
392  * @data: buffer for output packet
393  * @len: length of the provided buffer
394  *
395  * Produces either a manufacturer, product or serial number string for the
396  * virtual root hub device.
397  * Returns the number of bytes filled in: the length of the descriptor or
398  * of the provided buffer, whichever is less.
399  */
400 static unsigned
401 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402 {
403         char buf[100];
404         char const *s;
405         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406
407         // language ids
408         switch (id) {
409         case 0:
410                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412                 if (len > 4)
413                         len = 4;
414                 memcpy(data, langids, len);
415                 return len;
416         case 1:
417                 /* Serial number */
418                 s = hcd->self.bus_name;
419                 break;
420         case 2:
421                 /* Product name */
422                 s = hcd->product_desc;
423                 break;
424         case 3:
425                 /* Manufacturer */
426                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427                         init_utsname()->release, hcd->driver->description);
428                 s = buf;
429                 break;
430         default:
431                 /* Can't happen; caller guarantees it */
432                 return 0;
433         }
434
435         return ascii2desc(s, data, len);
436 }
437
438
439 /* Root hub control transfers execute synchronously */
440 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441 {
442         struct usb_ctrlrequest *cmd;
443         u16             typeReq, wValue, wIndex, wLength;
444         u8              *ubuf = urb->transfer_buffer;
445         /*
446          * tbuf should be as big as the BOS descriptor and
447          * the USB hub descriptor.
448          */
449         u8              tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
450                 __attribute__((aligned(4)));
451         const u8        *bufp = tbuf;
452         unsigned        len = 0;
453         int             status;
454         u8              patch_wakeup = 0;
455         u8              patch_protocol = 0;
456
457         might_sleep();
458
459         spin_lock_irq(&hcd_root_hub_lock);
460         status = usb_hcd_link_urb_to_ep(hcd, urb);
461         spin_unlock_irq(&hcd_root_hub_lock);
462         if (status)
463                 return status;
464         urb->hcpriv = hcd;      /* Indicate it's queued */
465
466         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
467         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
468         wValue   = le16_to_cpu (cmd->wValue);
469         wIndex   = le16_to_cpu (cmd->wIndex);
470         wLength  = le16_to_cpu (cmd->wLength);
471
472         if (wLength > urb->transfer_buffer_length)
473                 goto error;
474
475         urb->actual_length = 0;
476         switch (typeReq) {
477
478         /* DEVICE REQUESTS */
479
480         /* The root hub's remote wakeup enable bit is implemented using
481          * driver model wakeup flags.  If this system supports wakeup
482          * through USB, userspace may change the default "allow wakeup"
483          * policy through sysfs or these calls.
484          *
485          * Most root hubs support wakeup from downstream devices, for
486          * runtime power management (disabling USB clocks and reducing
487          * VBUS power usage).  However, not all of them do so; silicon,
488          * board, and BIOS bugs here are not uncommon, so these can't
489          * be treated quite like external hubs.
490          *
491          * Likewise, not all root hubs will pass wakeup events upstream,
492          * to wake up the whole system.  So don't assume root hub and
493          * controller capabilities are identical.
494          */
495
496         case DeviceRequest | USB_REQ_GET_STATUS:
497                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
498                                         << USB_DEVICE_REMOTE_WAKEUP)
499                                 | (1 << USB_DEVICE_SELF_POWERED);
500                 tbuf [1] = 0;
501                 len = 2;
502                 break;
503         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
504                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
505                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
506                 else
507                         goto error;
508                 break;
509         case DeviceOutRequest | USB_REQ_SET_FEATURE:
510                 if (device_can_wakeup(&hcd->self.root_hub->dev)
511                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
512                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
513                 else
514                         goto error;
515                 break;
516         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
517                 tbuf [0] = 1;
518                 len = 1;
519                         /* FALLTHROUGH */
520         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
521                 break;
522         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
523                 switch (wValue & 0xff00) {
524                 case USB_DT_DEVICE << 8:
525                         switch (hcd->speed) {
526                         case HCD_USB3:
527                                 bufp = usb3_rh_dev_descriptor;
528                                 break;
529                         case HCD_USB2:
530                                 bufp = usb2_rh_dev_descriptor;
531                                 break;
532                         case HCD_USB11:
533                                 bufp = usb11_rh_dev_descriptor;
534                                 break;
535                         default:
536                                 goto error;
537                         }
538                         len = 18;
539                         if (hcd->has_tt)
540                                 patch_protocol = 1;
541                         break;
542                 case USB_DT_CONFIG << 8:
543                         switch (hcd->speed) {
544                         case HCD_USB3:
545                                 bufp = ss_rh_config_descriptor;
546                                 len = sizeof ss_rh_config_descriptor;
547                                 break;
548                         case HCD_USB2:
549                                 bufp = hs_rh_config_descriptor;
550                                 len = sizeof hs_rh_config_descriptor;
551                                 break;
552                         case HCD_USB11:
553                                 bufp = fs_rh_config_descriptor;
554                                 len = sizeof fs_rh_config_descriptor;
555                                 break;
556                         default:
557                                 goto error;
558                         }
559                         if (device_can_wakeup(&hcd->self.root_hub->dev))
560                                 patch_wakeup = 1;
561                         break;
562                 case USB_DT_STRING << 8:
563                         if ((wValue & 0xff) < 4)
564                                 urb->actual_length = rh_string(wValue & 0xff,
565                                                 hcd, ubuf, wLength);
566                         else /* unsupported IDs --> "protocol stall" */
567                                 goto error;
568                         break;
569                 case USB_DT_BOS << 8:
570                         goto nongeneric;
571                 default:
572                         goto error;
573                 }
574                 break;
575         case DeviceRequest | USB_REQ_GET_INTERFACE:
576                 tbuf [0] = 0;
577                 len = 1;
578                         /* FALLTHROUGH */
579         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
580                 break;
581         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
582                 // wValue == urb->dev->devaddr
583                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
584                         wValue);
585                 break;
586
587         /* INTERFACE REQUESTS (no defined feature/status flags) */
588
589         /* ENDPOINT REQUESTS */
590
591         case EndpointRequest | USB_REQ_GET_STATUS:
592                 // ENDPOINT_HALT flag
593                 tbuf [0] = 0;
594                 tbuf [1] = 0;
595                 len = 2;
596                         /* FALLTHROUGH */
597         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
598         case EndpointOutRequest | USB_REQ_SET_FEATURE:
599                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
600                 break;
601
602         /* CLASS REQUESTS (and errors) */
603
604         default:
605 nongeneric:
606                 /* non-generic request */
607                 switch (typeReq) {
608                 case GetHubStatus:
609                 case GetPortStatus:
610                         len = 4;
611                         break;
612                 case GetHubDescriptor:
613                         len = sizeof (struct usb_hub_descriptor);
614                         break;
615                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
616                         /* len is returned by hub_control */
617                         break;
618                 }
619                 status = hcd->driver->hub_control (hcd,
620                         typeReq, wValue, wIndex,
621                         tbuf, wLength);
622                 break;
623 error:
624                 /* "protocol stall" on error */
625                 status = -EPIPE;
626         }
627
628         if (status < 0) {
629                 len = 0;
630                 if (status != -EPIPE) {
631                         dev_dbg (hcd->self.controller,
632                                 "CTRL: TypeReq=0x%x val=0x%x "
633                                 "idx=0x%x len=%d ==> %d\n",
634                                 typeReq, wValue, wIndex,
635                                 wLength, status);
636                 }
637         } else if (status > 0) {
638                 /* hub_control may return the length of data copied. */
639                 len = status;
640                 status = 0;
641         }
642         if (len) {
643                 if (urb->transfer_buffer_length < len)
644                         len = urb->transfer_buffer_length;
645                 urb->actual_length = len;
646                 // always USB_DIR_IN, toward host
647                 memcpy (ubuf, bufp, len);
648
649                 /* report whether RH hardware supports remote wakeup */
650                 if (patch_wakeup &&
651                                 len > offsetof (struct usb_config_descriptor,
652                                                 bmAttributes))
653                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
654                                 |= USB_CONFIG_ATT_WAKEUP;
655
656                 /* report whether RH hardware has an integrated TT */
657                 if (patch_protocol &&
658                                 len > offsetof(struct usb_device_descriptor,
659                                                 bDeviceProtocol))
660                         ((struct usb_device_descriptor *) ubuf)->
661                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
662         }
663
664         /* any errors get returned through the urb completion */
665         spin_lock_irq(&hcd_root_hub_lock);
666         usb_hcd_unlink_urb_from_ep(hcd, urb);
667
668         /* This peculiar use of spinlocks echoes what real HC drivers do.
669          * Avoiding calls to local_irq_disable/enable makes the code
670          * RT-friendly.
671          */
672         spin_unlock(&hcd_root_hub_lock);
673         usb_hcd_giveback_urb(hcd, urb, status);
674         spin_lock(&hcd_root_hub_lock);
675
676         spin_unlock_irq(&hcd_root_hub_lock);
677         return 0;
678 }
679
680 /*-------------------------------------------------------------------------*/
681
682 /*
683  * Root Hub interrupt transfers are polled using a timer if the
684  * driver requests it; otherwise the driver is responsible for
685  * calling usb_hcd_poll_rh_status() when an event occurs.
686  *
687  * Completions are called in_interrupt(), but they may or may not
688  * be in_irq().
689  */
690 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
691 {
692         struct urb      *urb;
693         int             length;
694         unsigned long   flags;
695         char            buffer[6];      /* Any root hubs with > 31 ports? */
696
697         if (unlikely(!hcd->rh_pollable))
698                 return;
699         if (!hcd->uses_new_polling && !hcd->status_urb)
700                 return;
701
702         length = hcd->driver->hub_status_data(hcd, buffer);
703         if (length > 0) {
704
705                 /* try to complete the status urb */
706                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
707                 urb = hcd->status_urb;
708                 if (urb) {
709                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
710                         hcd->status_urb = NULL;
711                         urb->actual_length = length;
712                         memcpy(urb->transfer_buffer, buffer, length);
713
714                         usb_hcd_unlink_urb_from_ep(hcd, urb);
715                         spin_unlock(&hcd_root_hub_lock);
716                         usb_hcd_giveback_urb(hcd, urb, 0);
717                         spin_lock(&hcd_root_hub_lock);
718                 } else {
719                         length = 0;
720                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
721                 }
722                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
723         }
724
725         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
726          * exceed that limit if HZ is 100. The math is more clunky than
727          * maybe expected, this is to make sure that all timers for USB devices
728          * fire at the same time to give the CPU a break in between */
729         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
730                         (length == 0 && hcd->status_urb != NULL))
731                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
732 }
733 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
734
735 /* timer callback */
736 static void rh_timer_func (unsigned long _hcd)
737 {
738         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
739 }
740
741 /*-------------------------------------------------------------------------*/
742
743 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
744 {
745         int             retval;
746         unsigned long   flags;
747         unsigned        len = 1 + (urb->dev->maxchild / 8);
748
749         spin_lock_irqsave (&hcd_root_hub_lock, flags);
750         if (hcd->status_urb || urb->transfer_buffer_length < len) {
751                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
752                 retval = -EINVAL;
753                 goto done;
754         }
755
756         retval = usb_hcd_link_urb_to_ep(hcd, urb);
757         if (retval)
758                 goto done;
759
760         hcd->status_urb = urb;
761         urb->hcpriv = hcd;      /* indicate it's queued */
762         if (!hcd->uses_new_polling)
763                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764
765         /* If a status change has already occurred, report it ASAP */
766         else if (HCD_POLL_PENDING(hcd))
767                 mod_timer(&hcd->rh_timer, jiffies);
768         retval = 0;
769  done:
770         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
771         return retval;
772 }
773
774 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
775 {
776         if (usb_endpoint_xfer_int(&urb->ep->desc))
777                 return rh_queue_status (hcd, urb);
778         if (usb_endpoint_xfer_control(&urb->ep->desc))
779                 return rh_call_control (hcd, urb);
780         return -EINVAL;
781 }
782
783 /*-------------------------------------------------------------------------*/
784
785 /* Unlinks of root-hub control URBs are legal, but they don't do anything
786  * since these URBs always execute synchronously.
787  */
788 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
789 {
790         unsigned long   flags;
791         int             rc;
792
793         spin_lock_irqsave(&hcd_root_hub_lock, flags);
794         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
795         if (rc)
796                 goto done;
797
798         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
799                 ;       /* Do nothing */
800
801         } else {                                /* Status URB */
802                 if (!hcd->uses_new_polling)
803                         del_timer (&hcd->rh_timer);
804                 if (urb == hcd->status_urb) {
805                         hcd->status_urb = NULL;
806                         usb_hcd_unlink_urb_from_ep(hcd, urb);
807
808                         spin_unlock(&hcd_root_hub_lock);
809                         usb_hcd_giveback_urb(hcd, urb, status);
810                         spin_lock(&hcd_root_hub_lock);
811                 }
812         }
813  done:
814         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
815         return rc;
816 }
817
818
819
820 /*
821  * Show & store the current value of authorized_default
822  */
823 static ssize_t usb_host_authorized_default_show(struct device *dev,
824                                                 struct device_attribute *attr,
825                                                 char *buf)
826 {
827         struct usb_device *rh_usb_dev = to_usb_device(dev);
828         struct usb_bus *usb_bus = rh_usb_dev->bus;
829         struct usb_hcd *usb_hcd;
830
831         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
832                 return -ENODEV;
833         usb_hcd = bus_to_hcd(usb_bus);
834         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
835 }
836
837 static ssize_t usb_host_authorized_default_store(struct device *dev,
838                                                  struct device_attribute *attr,
839                                                  const char *buf, size_t size)
840 {
841         ssize_t result;
842         unsigned val;
843         struct usb_device *rh_usb_dev = to_usb_device(dev);
844         struct usb_bus *usb_bus = rh_usb_dev->bus;
845         struct usb_hcd *usb_hcd;
846
847         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
848                 return -ENODEV;
849         usb_hcd = bus_to_hcd(usb_bus);
850         result = sscanf(buf, "%u\n", &val);
851         if (result == 1) {
852                 usb_hcd->authorized_default = val? 1 : 0;
853                 result = size;
854         }
855         else
856                 result = -EINVAL;
857         return result;
858 }
859
860 static DEVICE_ATTR(authorized_default, 0644,
861             usb_host_authorized_default_show,
862             usb_host_authorized_default_store);
863
864
865 /* Group all the USB bus attributes */
866 static struct attribute *usb_bus_attrs[] = {
867                 &dev_attr_authorized_default.attr,
868                 NULL,
869 };
870
871 static struct attribute_group usb_bus_attr_group = {
872         .name = NULL,   /* we want them in the same directory */
873         .attrs = usb_bus_attrs,
874 };
875
876
877
878 /*-------------------------------------------------------------------------*/
879
880 /**
881  * usb_bus_init - shared initialization code
882  * @bus: the bus structure being initialized
883  *
884  * This code is used to initialize a usb_bus structure, memory for which is
885  * separately managed.
886  */
887 static void usb_bus_init (struct usb_bus *bus)
888 {
889         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891         bus->devnum_next = 1;
892
893         bus->root_hub = NULL;
894         bus->busnum = -1;
895         bus->bandwidth_allocated = 0;
896         bus->bandwidth_int_reqs  = 0;
897         bus->bandwidth_isoc_reqs = 0;
898
899         INIT_LIST_HEAD (&bus->bus_list);
900 }
901
902 /*-------------------------------------------------------------------------*/
903
904 /**
905  * usb_register_bus - registers the USB host controller with the usb core
906  * @bus: pointer to the bus to register
907  * Context: !in_interrupt()
908  *
909  * Assigns a bus number, and links the controller into usbcore data
910  * structures so that it can be seen by scanning the bus list.
911  */
912 static int usb_register_bus(struct usb_bus *bus)
913 {
914         int result = -E2BIG;
915         int busnum;
916
917         mutex_lock(&usb_bus_list_lock);
918         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
919         if (busnum >= USB_MAXBUS) {
920                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
921                 goto error_find_busnum;
922         }
923         set_bit (busnum, busmap.busmap);
924         bus->busnum = busnum;
925
926         /* Add it to the local list of buses */
927         list_add (&bus->bus_list, &usb_bus_list);
928         mutex_unlock(&usb_bus_list_lock);
929
930         usb_notify_add_bus(bus);
931
932         dev_info (bus->controller, "new USB bus registered, assigned bus "
933                   "number %d\n", bus->busnum);
934         return 0;
935
936 error_find_busnum:
937         mutex_unlock(&usb_bus_list_lock);
938         return result;
939 }
940
941 /**
942  * usb_deregister_bus - deregisters the USB host controller
943  * @bus: pointer to the bus to deregister
944  * Context: !in_interrupt()
945  *
946  * Recycles the bus number, and unlinks the controller from usbcore data
947  * structures so that it won't be seen by scanning the bus list.
948  */
949 static void usb_deregister_bus (struct usb_bus *bus)
950 {
951         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
952
953         /*
954          * NOTE: make sure that all the devices are removed by the
955          * controller code, as well as having it call this when cleaning
956          * itself up
957          */
958         mutex_lock(&usb_bus_list_lock);
959         list_del (&bus->bus_list);
960         mutex_unlock(&usb_bus_list_lock);
961
962         usb_notify_remove_bus(bus);
963
964         clear_bit (bus->busnum, busmap.busmap);
965 }
966
967 /**
968  * register_root_hub - called by usb_add_hcd() to register a root hub
969  * @hcd: host controller for this root hub
970  *
971  * This function registers the root hub with the USB subsystem.  It sets up
972  * the device properly in the device tree and then calls usb_new_device()
973  * to register the usb device.  It also assigns the root hub's USB address
974  * (always 1).
975  */
976 static int register_root_hub(struct usb_hcd *hcd)
977 {
978         struct device *parent_dev = hcd->self.controller;
979         struct usb_device *usb_dev = hcd->self.root_hub;
980         const int devnum = 1;
981         int retval;
982
983         usb_dev->devnum = devnum;
984         usb_dev->bus->devnum_next = devnum + 1;
985         memset (&usb_dev->bus->devmap.devicemap, 0,
986                         sizeof usb_dev->bus->devmap.devicemap);
987         set_bit (devnum, usb_dev->bus->devmap.devicemap);
988         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
989
990         mutex_lock(&usb_bus_list_lock);
991
992         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
993         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
994         if (retval != sizeof usb_dev->descriptor) {
995                 mutex_unlock(&usb_bus_list_lock);
996                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
997                                 dev_name(&usb_dev->dev), retval);
998                 return (retval < 0) ? retval : -EMSGSIZE;
999         }
1000         if (usb_dev->speed == USB_SPEED_SUPER) {
1001                 retval = usb_get_bos_descriptor(usb_dev);
1002                 if (retval < 0) {
1003                         mutex_unlock(&usb_bus_list_lock);
1004                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1005                                         dev_name(&usb_dev->dev), retval);
1006                         return retval;
1007                 }
1008         }
1009
1010         retval = usb_new_device (usb_dev);
1011         if (retval) {
1012                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1013                                 dev_name(&usb_dev->dev), retval);
1014         } else {
1015                 spin_lock_irq (&hcd_root_hub_lock);
1016                 hcd->rh_registered = 1;
1017                 spin_unlock_irq (&hcd_root_hub_lock);
1018
1019                 /* Did the HC die before the root hub was registered? */
1020                 if (HCD_DEAD(hcd))
1021                         usb_hc_died (hcd);      /* This time clean up */
1022         }
1023         mutex_unlock(&usb_bus_list_lock);
1024
1025         return retval;
1026 }
1027
1028
1029 /*-------------------------------------------------------------------------*/
1030
1031 /**
1032  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1033  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1034  * @is_input: true iff the transaction sends data to the host
1035  * @isoc: true for isochronous transactions, false for interrupt ones
1036  * @bytecount: how many bytes in the transaction.
1037  *
1038  * Returns approximate bus time in nanoseconds for a periodic transaction.
1039  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1040  * scheduled in software, this function is only used for such scheduling.
1041  */
1042 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1043 {
1044         unsigned long   tmp;
1045
1046         switch (speed) {
1047         case USB_SPEED_LOW:     /* INTR only */
1048                 if (is_input) {
1049                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1050                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1051                 } else {
1052                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1053                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1054                 }
1055         case USB_SPEED_FULL:    /* ISOC or INTR */
1056                 if (isoc) {
1057                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1058                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1059                 } else {
1060                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1061                         return (9107L + BW_HOST_DELAY + tmp);
1062                 }
1063         case USB_SPEED_HIGH:    /* ISOC or INTR */
1064                 // FIXME adjust for input vs output
1065                 if (isoc)
1066                         tmp = HS_NSECS_ISO (bytecount);
1067                 else
1068                         tmp = HS_NSECS (bytecount);
1069                 return tmp;
1070         default:
1071                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1072                 return -1;
1073         }
1074 }
1075 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1076
1077
1078 /*-------------------------------------------------------------------------*/
1079
1080 /*
1081  * Generic HC operations.
1082  */
1083
1084 /*-------------------------------------------------------------------------*/
1085
1086 /**
1087  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1088  * @hcd: host controller to which @urb was submitted
1089  * @urb: URB being submitted
1090  *
1091  * Host controller drivers should call this routine in their enqueue()
1092  * method.  The HCD's private spinlock must be held and interrupts must
1093  * be disabled.  The actions carried out here are required for URB
1094  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1095  *
1096  * Returns 0 for no error, otherwise a negative error code (in which case
1097  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1098  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1099  * the private spinlock and returning.
1100  */
1101 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1102 {
1103         int             rc = 0;
1104
1105         spin_lock(&hcd_urb_list_lock);
1106
1107         /* Check that the URB isn't being killed */
1108         if (unlikely(atomic_read(&urb->reject))) {
1109                 rc = -EPERM;
1110                 goto done;
1111         }
1112
1113         if (unlikely(!urb->ep->enabled)) {
1114                 rc = -ENOENT;
1115                 goto done;
1116         }
1117
1118         if (unlikely(!urb->dev->can_submit)) {
1119                 rc = -EHOSTUNREACH;
1120                 goto done;
1121         }
1122
1123         /*
1124          * Check the host controller's state and add the URB to the
1125          * endpoint's queue.
1126          */
1127         if (HCD_RH_RUNNING(hcd)) {
1128                 urb->unlinked = 0;
1129                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1130         } else {
1131                 rc = -ESHUTDOWN;
1132                 goto done;
1133         }
1134  done:
1135         spin_unlock(&hcd_urb_list_lock);
1136         return rc;
1137 }
1138 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1139
1140 /**
1141  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1142  * @hcd: host controller to which @urb was submitted
1143  * @urb: URB being checked for unlinkability
1144  * @status: error code to store in @urb if the unlink succeeds
1145  *
1146  * Host controller drivers should call this routine in their dequeue()
1147  * method.  The HCD's private spinlock must be held and interrupts must
1148  * be disabled.  The actions carried out here are required for making
1149  * sure than an unlink is valid.
1150  *
1151  * Returns 0 for no error, otherwise a negative error code (in which case
1152  * the dequeue() method must fail).  The possible error codes are:
1153  *
1154  *      -EIDRM: @urb was not submitted or has already completed.
1155  *              The completion function may not have been called yet.
1156  *
1157  *      -EBUSY: @urb has already been unlinked.
1158  */
1159 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1160                 int status)
1161 {
1162         struct list_head        *tmp;
1163
1164         /* insist the urb is still queued */
1165         list_for_each(tmp, &urb->ep->urb_list) {
1166                 if (tmp == &urb->urb_list)
1167                         break;
1168         }
1169         if (tmp != &urb->urb_list)
1170                 return -EIDRM;
1171
1172         /* Any status except -EINPROGRESS means something already started to
1173          * unlink this URB from the hardware.  So there's no more work to do.
1174          */
1175         if (urb->unlinked)
1176                 return -EBUSY;
1177         urb->unlinked = status;
1178         return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1181
1182 /**
1183  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1184  * @hcd: host controller to which @urb was submitted
1185  * @urb: URB being unlinked
1186  *
1187  * Host controller drivers should call this routine before calling
1188  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1189  * interrupts must be disabled.  The actions carried out here are required
1190  * for URB completion.
1191  */
1192 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1193 {
1194         /* clear all state linking urb to this dev (and hcd) */
1195         spin_lock(&hcd_urb_list_lock);
1196         list_del_init(&urb->urb_list);
1197         spin_unlock(&hcd_urb_list_lock);
1198 }
1199 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1200
1201 /*
1202  * Some usb host controllers can only perform dma using a small SRAM area.
1203  * The usb core itself is however optimized for host controllers that can dma
1204  * using regular system memory - like pci devices doing bus mastering.
1205  *
1206  * To support host controllers with limited dma capabilites we provide dma
1207  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1208  * For this to work properly the host controller code must first use the
1209  * function dma_declare_coherent_memory() to point out which memory area
1210  * that should be used for dma allocations.
1211  *
1212  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1213  * dma using dma_alloc_coherent() which in turn allocates from the memory
1214  * area pointed out with dma_declare_coherent_memory().
1215  *
1216  * So, to summarize...
1217  *
1218  * - We need "local" memory, canonical example being
1219  *   a small SRAM on a discrete controller being the
1220  *   only memory that the controller can read ...
1221  *   (a) "normal" kernel memory is no good, and
1222  *   (b) there's not enough to share
1223  *
1224  * - The only *portable* hook for such stuff in the
1225  *   DMA framework is dma_declare_coherent_memory()
1226  *
1227  * - So we use that, even though the primary requirement
1228  *   is that the memory be "local" (hence addressible
1229  *   by that device), not "coherent".
1230  *
1231  */
1232
1233 static int hcd_alloc_coherent(struct usb_bus *bus,
1234                               gfp_t mem_flags, dma_addr_t *dma_handle,
1235                               void **vaddr_handle, size_t size,
1236                               enum dma_data_direction dir)
1237 {
1238         unsigned char *vaddr;
1239
1240         if (*vaddr_handle == NULL) {
1241                 WARN_ON_ONCE(1);
1242                 return -EFAULT;
1243         }
1244
1245         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1246                                  mem_flags, dma_handle);
1247         if (!vaddr)
1248                 return -ENOMEM;
1249
1250         /*
1251          * Store the virtual address of the buffer at the end
1252          * of the allocated dma buffer. The size of the buffer
1253          * may be uneven so use unaligned functions instead
1254          * of just rounding up. It makes sense to optimize for
1255          * memory footprint over access speed since the amount
1256          * of memory available for dma may be limited.
1257          */
1258         put_unaligned((unsigned long)*vaddr_handle,
1259                       (unsigned long *)(vaddr + size));
1260
1261         if (dir == DMA_TO_DEVICE)
1262                 memcpy(vaddr, *vaddr_handle, size);
1263
1264         *vaddr_handle = vaddr;
1265         return 0;
1266 }
1267
1268 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1269                               void **vaddr_handle, size_t size,
1270                               enum dma_data_direction dir)
1271 {
1272         unsigned char *vaddr = *vaddr_handle;
1273
1274         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1275
1276         if (dir == DMA_FROM_DEVICE)
1277                 memcpy(vaddr, *vaddr_handle, size);
1278
1279         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1280
1281         *vaddr_handle = vaddr;
1282         *dma_handle = 0;
1283 }
1284
1285 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1286 {
1287         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1288                 dma_unmap_single(hcd->self.controller,
1289                                 urb->setup_dma,
1290                                 sizeof(struct usb_ctrlrequest),
1291                                 DMA_TO_DEVICE);
1292         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1293                 hcd_free_coherent(urb->dev->bus,
1294                                 &urb->setup_dma,
1295                                 (void **) &urb->setup_packet,
1296                                 sizeof(struct usb_ctrlrequest),
1297                                 DMA_TO_DEVICE);
1298
1299         /* Make it safe to call this routine more than once */
1300         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1301 }
1302 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1303
1304 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1305 {
1306         if (hcd->driver->unmap_urb_for_dma)
1307                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1308         else
1309                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1310 }
1311
1312 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1313 {
1314         enum dma_data_direction dir;
1315
1316         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1317
1318         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1319         if (urb->transfer_flags & URB_DMA_MAP_SG)
1320                 dma_unmap_sg(hcd->self.controller,
1321                                 urb->sg,
1322                                 urb->num_sgs,
1323                                 dir);
1324         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1325                 dma_unmap_page(hcd->self.controller,
1326                                 urb->transfer_dma,
1327                                 urb->transfer_buffer_length,
1328                                 dir);
1329         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1330                 dma_unmap_single(hcd->self.controller,
1331                                 urb->transfer_dma,
1332                                 urb->transfer_buffer_length,
1333                                 dir);
1334         else if (urb->transfer_flags & URB_MAP_LOCAL)
1335                 hcd_free_coherent(urb->dev->bus,
1336                                 &urb->transfer_dma,
1337                                 &urb->transfer_buffer,
1338                                 urb->transfer_buffer_length,
1339                                 dir);
1340
1341         /* Make it safe to call this routine more than once */
1342         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1343                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1344 }
1345 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1346
1347 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1348                            gfp_t mem_flags)
1349 {
1350         if (hcd->driver->map_urb_for_dma)
1351                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1352         else
1353                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1354 }
1355
1356 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1357                             gfp_t mem_flags)
1358 {
1359         enum dma_data_direction dir;
1360         int ret = 0;
1361
1362         /* Map the URB's buffers for DMA access.
1363          * Lower level HCD code should use *_dma exclusively,
1364          * unless it uses pio or talks to another transport,
1365          * or uses the provided scatter gather list for bulk.
1366          */
1367
1368         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1369                 if (hcd->self.uses_pio_for_control)
1370                         return ret;
1371                 if (hcd->self.uses_dma) {
1372                         urb->setup_dma = dma_map_single(
1373                                         hcd->self.controller,
1374                                         urb->setup_packet,
1375                                         sizeof(struct usb_ctrlrequest),
1376                                         DMA_TO_DEVICE);
1377                         if (dma_mapping_error(hcd->self.controller,
1378                                                 urb->setup_dma))
1379                                 return -EAGAIN;
1380                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1381                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1382                         ret = hcd_alloc_coherent(
1383                                         urb->dev->bus, mem_flags,
1384                                         &urb->setup_dma,
1385                                         (void **)&urb->setup_packet,
1386                                         sizeof(struct usb_ctrlrequest),
1387                                         DMA_TO_DEVICE);
1388                         if (ret)
1389                                 return ret;
1390                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1391                 }
1392         }
1393
1394         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1395         if (urb->transfer_buffer_length != 0
1396             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1397                 if (hcd->self.uses_dma) {
1398                         if (urb->num_sgs) {
1399                                 int n;
1400
1401                                 /* We don't support sg for isoc transfers ! */
1402                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1403                                         WARN_ON(1);
1404                                         return -EINVAL;
1405                                 }
1406
1407                                 n = dma_map_sg(
1408                                                 hcd->self.controller,
1409                                                 urb->sg,
1410                                                 urb->num_sgs,
1411                                                 dir);
1412                                 if (n <= 0)
1413                                         ret = -EAGAIN;
1414                                 else
1415                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1416                                 urb->num_mapped_sgs = n;
1417                                 if (n != urb->num_sgs)
1418                                         urb->transfer_flags |=
1419                                                         URB_DMA_SG_COMBINED;
1420                         } else if (urb->sg) {
1421                                 struct scatterlist *sg = urb->sg;
1422                                 urb->transfer_dma = dma_map_page(
1423                                                 hcd->self.controller,
1424                                                 sg_page(sg),
1425                                                 sg->offset,
1426                                                 urb->transfer_buffer_length,
1427                                                 dir);
1428                                 if (dma_mapping_error(hcd->self.controller,
1429                                                 urb->transfer_dma))
1430                                         ret = -EAGAIN;
1431                                 else
1432                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1433                         } else {
1434                                 urb->transfer_dma = dma_map_single(
1435                                                 hcd->self.controller,
1436                                                 urb->transfer_buffer,
1437                                                 urb->transfer_buffer_length,
1438                                                 dir);
1439                                 if (dma_mapping_error(hcd->self.controller,
1440                                                 urb->transfer_dma))
1441                                         ret = -EAGAIN;
1442                                 else
1443                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1444                         }
1445                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1446                         ret = hcd_alloc_coherent(
1447                                         urb->dev->bus, mem_flags,
1448                                         &urb->transfer_dma,
1449                                         &urb->transfer_buffer,
1450                                         urb->transfer_buffer_length,
1451                                         dir);
1452                         if (ret == 0)
1453                                 urb->transfer_flags |= URB_MAP_LOCAL;
1454                 }
1455                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1456                                 URB_SETUP_MAP_LOCAL)))
1457                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1458         }
1459         return ret;
1460 }
1461 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1462
1463 /*-------------------------------------------------------------------------*/
1464
1465 /* may be called in any context with a valid urb->dev usecount
1466  * caller surrenders "ownership" of urb
1467  * expects usb_submit_urb() to have sanity checked and conditioned all
1468  * inputs in the urb
1469  */
1470 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1471 {
1472         int                     status;
1473         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1474
1475         /* increment urb's reference count as part of giving it to the HCD
1476          * (which will control it).  HCD guarantees that it either returns
1477          * an error or calls giveback(), but not both.
1478          */
1479         usb_get_urb(urb);
1480         atomic_inc(&urb->use_count);
1481         atomic_inc(&urb->dev->urbnum);
1482         usbmon_urb_submit(&hcd->self, urb);
1483
1484         /* NOTE requirements on root-hub callers (usbfs and the hub
1485          * driver, for now):  URBs' urb->transfer_buffer must be
1486          * valid and usb_buffer_{sync,unmap}() not be needed, since
1487          * they could clobber root hub response data.  Also, control
1488          * URBs must be submitted in process context with interrupts
1489          * enabled.
1490          */
1491
1492         if (is_root_hub(urb->dev)) {
1493                 status = rh_urb_enqueue(hcd, urb);
1494         } else {
1495                 status = map_urb_for_dma(hcd, urb, mem_flags);
1496                 if (likely(status == 0)) {
1497                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1498                         if (unlikely(status))
1499                                 unmap_urb_for_dma(hcd, urb);
1500                 }
1501         }
1502
1503         if (unlikely(status)) {
1504                 usbmon_urb_submit_error(&hcd->self, urb, status);
1505                 urb->hcpriv = NULL;
1506                 INIT_LIST_HEAD(&urb->urb_list);
1507                 atomic_dec(&urb->use_count);
1508                 atomic_dec(&urb->dev->urbnum);
1509                 if (atomic_read(&urb->reject))
1510                         wake_up(&usb_kill_urb_queue);
1511                 usb_put_urb(urb);
1512         }
1513         return status;
1514 }
1515
1516 /*-------------------------------------------------------------------------*/
1517
1518 /* this makes the hcd giveback() the urb more quickly, by kicking it
1519  * off hardware queues (which may take a while) and returning it as
1520  * soon as practical.  we've already set up the urb's return status,
1521  * but we can't know if the callback completed already.
1522  */
1523 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1524 {
1525         int             value;
1526
1527         if (is_root_hub(urb->dev))
1528                 value = usb_rh_urb_dequeue(hcd, urb, status);
1529         else {
1530
1531                 /* The only reason an HCD might fail this call is if
1532                  * it has not yet fully queued the urb to begin with.
1533                  * Such failures should be harmless. */
1534                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1535         }
1536         return value;
1537 }
1538
1539 /*
1540  * called in any context
1541  *
1542  * caller guarantees urb won't be recycled till both unlink()
1543  * and the urb's completion function return
1544  */
1545 int usb_hcd_unlink_urb (struct urb *urb, int status)
1546 {
1547         struct usb_hcd          *hcd;
1548         int                     retval = -EIDRM;
1549         unsigned long           flags;
1550
1551         /* Prevent the device and bus from going away while
1552          * the unlink is carried out.  If they are already gone
1553          * then urb->use_count must be 0, since disconnected
1554          * devices can't have any active URBs.
1555          */
1556         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1557         if (atomic_read(&urb->use_count) > 0) {
1558                 retval = 0;
1559                 usb_get_dev(urb->dev);
1560         }
1561         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1562         if (retval == 0) {
1563                 hcd = bus_to_hcd(urb->dev->bus);
1564                 retval = unlink1(hcd, urb, status);
1565                 usb_put_dev(urb->dev);
1566         }
1567
1568         if (retval == 0)
1569                 retval = -EINPROGRESS;
1570         else if (retval != -EIDRM && retval != -EBUSY)
1571                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1572                                 urb, retval);
1573         return retval;
1574 }
1575
1576 /*-------------------------------------------------------------------------*/
1577
1578 /**
1579  * usb_hcd_giveback_urb - return URB from HCD to device driver
1580  * @hcd: host controller returning the URB
1581  * @urb: urb being returned to the USB device driver.
1582  * @status: completion status code for the URB.
1583  * Context: in_interrupt()
1584  *
1585  * This hands the URB from HCD to its USB device driver, using its
1586  * completion function.  The HCD has freed all per-urb resources
1587  * (and is done using urb->hcpriv).  It also released all HCD locks;
1588  * the device driver won't cause problems if it frees, modifies,
1589  * or resubmits this URB.
1590  *
1591  * If @urb was unlinked, the value of @status will be overridden by
1592  * @urb->unlinked.  Erroneous short transfers are detected in case
1593  * the HCD hasn't checked for them.
1594  */
1595 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1596 {
1597         urb->hcpriv = NULL;
1598         if (unlikely(urb->unlinked))
1599                 status = urb->unlinked;
1600         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1601                         urb->actual_length < urb->transfer_buffer_length &&
1602                         !status))
1603                 status = -EREMOTEIO;
1604
1605         unmap_urb_for_dma(hcd, urb);
1606         usbmon_urb_complete(&hcd->self, urb, status);
1607         usb_unanchor_urb(urb);
1608
1609         /* pass ownership to the completion handler */
1610         urb->status = status;
1611         urb->complete (urb);
1612         atomic_dec (&urb->use_count);
1613         if (unlikely(atomic_read(&urb->reject)))
1614                 wake_up (&usb_kill_urb_queue);
1615         usb_put_urb (urb);
1616 }
1617 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1618
1619 /*-------------------------------------------------------------------------*/
1620
1621 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1622  * queue to drain completely.  The caller must first insure that no more
1623  * URBs can be submitted for this endpoint.
1624  */
1625 void usb_hcd_flush_endpoint(struct usb_device *udev,
1626                 struct usb_host_endpoint *ep)
1627 {
1628         struct usb_hcd          *hcd;
1629         struct urb              *urb;
1630
1631         if (!ep)
1632                 return;
1633         might_sleep();
1634         hcd = bus_to_hcd(udev->bus);
1635
1636         /* No more submits can occur */
1637         spin_lock_irq(&hcd_urb_list_lock);
1638 rescan:
1639         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1640                 int     is_in;
1641
1642                 if (urb->unlinked)
1643                         continue;
1644                 usb_get_urb (urb);
1645                 is_in = usb_urb_dir_in(urb);
1646                 spin_unlock(&hcd_urb_list_lock);
1647
1648                 /* kick hcd */
1649                 unlink1(hcd, urb, -ESHUTDOWN);
1650                 dev_dbg (hcd->self.controller,
1651                         "shutdown urb %p ep%d%s%s\n",
1652                         urb, usb_endpoint_num(&ep->desc),
1653                         is_in ? "in" : "out",
1654                         ({      char *s;
1655
1656                                  switch (usb_endpoint_type(&ep->desc)) {
1657                                  case USB_ENDPOINT_XFER_CONTROL:
1658                                         s = ""; break;
1659                                  case USB_ENDPOINT_XFER_BULK:
1660                                         s = "-bulk"; break;
1661                                  case USB_ENDPOINT_XFER_INT:
1662                                         s = "-intr"; break;
1663                                  default:
1664                                         s = "-iso"; break;
1665                                 };
1666                                 s;
1667                         }));
1668                 usb_put_urb (urb);
1669
1670                 /* list contents may have changed */
1671                 spin_lock(&hcd_urb_list_lock);
1672                 goto rescan;
1673         }
1674         spin_unlock_irq(&hcd_urb_list_lock);
1675
1676         /* Wait until the endpoint queue is completely empty */
1677         while (!list_empty (&ep->urb_list)) {
1678                 spin_lock_irq(&hcd_urb_list_lock);
1679
1680                 /* The list may have changed while we acquired the spinlock */
1681                 urb = NULL;
1682                 if (!list_empty (&ep->urb_list)) {
1683                         urb = list_entry (ep->urb_list.prev, struct urb,
1684                                         urb_list);
1685                         usb_get_urb (urb);
1686                 }
1687                 spin_unlock_irq(&hcd_urb_list_lock);
1688
1689                 if (urb) {
1690                         usb_kill_urb (urb);
1691                         usb_put_urb (urb);
1692                 }
1693         }
1694 }
1695
1696 /**
1697  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1698  *                              the bus bandwidth
1699  * @udev: target &usb_device
1700  * @new_config: new configuration to install
1701  * @cur_alt: the current alternate interface setting
1702  * @new_alt: alternate interface setting that is being installed
1703  *
1704  * To change configurations, pass in the new configuration in new_config,
1705  * and pass NULL for cur_alt and new_alt.
1706  *
1707  * To reset a device's configuration (put the device in the ADDRESSED state),
1708  * pass in NULL for new_config, cur_alt, and new_alt.
1709  *
1710  * To change alternate interface settings, pass in NULL for new_config,
1711  * pass in the current alternate interface setting in cur_alt,
1712  * and pass in the new alternate interface setting in new_alt.
1713  *
1714  * Returns an error if the requested bandwidth change exceeds the
1715  * bus bandwidth or host controller internal resources.
1716  */
1717 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1718                 struct usb_host_config *new_config,
1719                 struct usb_host_interface *cur_alt,
1720                 struct usb_host_interface *new_alt)
1721 {
1722         int num_intfs, i, j;
1723         struct usb_host_interface *alt = NULL;
1724         int ret = 0;
1725         struct usb_hcd *hcd;
1726         struct usb_host_endpoint *ep;
1727
1728         hcd = bus_to_hcd(udev->bus);
1729         if (!hcd->driver->check_bandwidth)
1730                 return 0;
1731
1732         /* Configuration is being removed - set configuration 0 */
1733         if (!new_config && !cur_alt) {
1734                 for (i = 1; i < 16; ++i) {
1735                         ep = udev->ep_out[i];
1736                         if (ep)
1737                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1738                         ep = udev->ep_in[i];
1739                         if (ep)
1740                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1741                 }
1742                 hcd->driver->check_bandwidth(hcd, udev);
1743                 return 0;
1744         }
1745         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1746          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1747          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1748          * ok to exclude it.
1749          */
1750         if (new_config) {
1751                 num_intfs = new_config->desc.bNumInterfaces;
1752                 /* Remove endpoints (except endpoint 0, which is always on the
1753                  * schedule) from the old config from the schedule
1754                  */
1755                 for (i = 1; i < 16; ++i) {
1756                         ep = udev->ep_out[i];
1757                         if (ep) {
1758                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1759                                 if (ret < 0)
1760                                         goto reset;
1761                         }
1762                         ep = udev->ep_in[i];
1763                         if (ep) {
1764                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1765                                 if (ret < 0)
1766                                         goto reset;
1767                         }
1768                 }
1769                 for (i = 0; i < num_intfs; ++i) {
1770                         struct usb_host_interface *first_alt;
1771                         int iface_num;
1772
1773                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1774                         iface_num = first_alt->desc.bInterfaceNumber;
1775                         /* Set up endpoints for alternate interface setting 0 */
1776                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1777                         if (!alt)
1778                                 /* No alt setting 0? Pick the first setting. */
1779                                 alt = first_alt;
1780
1781                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1782                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1783                                 if (ret < 0)
1784                                         goto reset;
1785                         }
1786                 }
1787         }
1788         if (cur_alt && new_alt) {
1789                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1790                                 cur_alt->desc.bInterfaceNumber);
1791
1792                 if (!iface)
1793                         return -EINVAL;
1794                 if (iface->resetting_device) {
1795                         /*
1796                          * The USB core just reset the device, so the xHCI host
1797                          * and the device will think alt setting 0 is installed.
1798                          * However, the USB core will pass in the alternate
1799                          * setting installed before the reset as cur_alt.  Dig
1800                          * out the alternate setting 0 structure, or the first
1801                          * alternate setting if a broken device doesn't have alt
1802                          * setting 0.
1803                          */
1804                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1805                         if (!cur_alt)
1806                                 cur_alt = &iface->altsetting[0];
1807                 }
1808
1809                 /* Drop all the endpoints in the current alt setting */
1810                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1811                         ret = hcd->driver->drop_endpoint(hcd, udev,
1812                                         &cur_alt->endpoint[i]);
1813                         if (ret < 0)
1814                                 goto reset;
1815                 }
1816                 /* Add all the endpoints in the new alt setting */
1817                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1818                         ret = hcd->driver->add_endpoint(hcd, udev,
1819                                         &new_alt->endpoint[i]);
1820                         if (ret < 0)
1821                                 goto reset;
1822                 }
1823         }
1824         ret = hcd->driver->check_bandwidth(hcd, udev);
1825 reset:
1826         if (ret < 0)
1827                 hcd->driver->reset_bandwidth(hcd, udev);
1828         return ret;
1829 }
1830
1831 /* Disables the endpoint: synchronizes with the hcd to make sure all
1832  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1833  * have been called previously.  Use for set_configuration, set_interface,
1834  * driver removal, physical disconnect.
1835  *
1836  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1837  * type, maxpacket size, toggle, halt status, and scheduling.
1838  */
1839 void usb_hcd_disable_endpoint(struct usb_device *udev,
1840                 struct usb_host_endpoint *ep)
1841 {
1842         struct usb_hcd          *hcd;
1843
1844         might_sleep();
1845         hcd = bus_to_hcd(udev->bus);
1846         if (hcd->driver->endpoint_disable)
1847                 hcd->driver->endpoint_disable(hcd, ep);
1848 }
1849
1850 /**
1851  * usb_hcd_reset_endpoint - reset host endpoint state
1852  * @udev: USB device.
1853  * @ep:   the endpoint to reset.
1854  *
1855  * Resets any host endpoint state such as the toggle bit, sequence
1856  * number and current window.
1857  */
1858 void usb_hcd_reset_endpoint(struct usb_device *udev,
1859                             struct usb_host_endpoint *ep)
1860 {
1861         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1862
1863         if (hcd->driver->endpoint_reset)
1864                 hcd->driver->endpoint_reset(hcd, ep);
1865         else {
1866                 int epnum = usb_endpoint_num(&ep->desc);
1867                 int is_out = usb_endpoint_dir_out(&ep->desc);
1868                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1869
1870                 usb_settoggle(udev, epnum, is_out, 0);
1871                 if (is_control)
1872                         usb_settoggle(udev, epnum, !is_out, 0);
1873         }
1874 }
1875
1876 /**
1877  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1878  * @interface:          alternate setting that includes all endpoints.
1879  * @eps:                array of endpoints that need streams.
1880  * @num_eps:            number of endpoints in the array.
1881  * @num_streams:        number of streams to allocate.
1882  * @mem_flags:          flags hcd should use to allocate memory.
1883  *
1884  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1885  * Drivers may queue multiple transfers to different stream IDs, which may
1886  * complete in a different order than they were queued.
1887  */
1888 int usb_alloc_streams(struct usb_interface *interface,
1889                 struct usb_host_endpoint **eps, unsigned int num_eps,
1890                 unsigned int num_streams, gfp_t mem_flags)
1891 {
1892         struct usb_hcd *hcd;
1893         struct usb_device *dev;
1894         int i;
1895
1896         dev = interface_to_usbdev(interface);
1897         hcd = bus_to_hcd(dev->bus);
1898         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1899                 return -EINVAL;
1900         if (dev->speed != USB_SPEED_SUPER)
1901                 return -EINVAL;
1902
1903         /* Streams only apply to bulk endpoints. */
1904         for (i = 0; i < num_eps; i++)
1905                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1906                         return -EINVAL;
1907
1908         return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1909                         num_streams, mem_flags);
1910 }
1911 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1912
1913 /**
1914  * usb_free_streams - free bulk endpoint stream IDs.
1915  * @interface:  alternate setting that includes all endpoints.
1916  * @eps:        array of endpoints to remove streams from.
1917  * @num_eps:    number of endpoints in the array.
1918  * @mem_flags:  flags hcd should use to allocate memory.
1919  *
1920  * Reverts a group of bulk endpoints back to not using stream IDs.
1921  * Can fail if we are given bad arguments, or HCD is broken.
1922  */
1923 void usb_free_streams(struct usb_interface *interface,
1924                 struct usb_host_endpoint **eps, unsigned int num_eps,
1925                 gfp_t mem_flags)
1926 {
1927         struct usb_hcd *hcd;
1928         struct usb_device *dev;
1929         int i;
1930
1931         dev = interface_to_usbdev(interface);
1932         hcd = bus_to_hcd(dev->bus);
1933         if (dev->speed != USB_SPEED_SUPER)
1934                 return;
1935
1936         /* Streams only apply to bulk endpoints. */
1937         for (i = 0; i < num_eps; i++)
1938                 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1939                         return;
1940
1941         hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1942 }
1943 EXPORT_SYMBOL_GPL(usb_free_streams);
1944
1945 /* Protect against drivers that try to unlink URBs after the device
1946  * is gone, by waiting until all unlinks for @udev are finished.
1947  * Since we don't currently track URBs by device, simply wait until
1948  * nothing is running in the locked region of usb_hcd_unlink_urb().
1949  */
1950 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1951 {
1952         spin_lock_irq(&hcd_urb_unlink_lock);
1953         spin_unlock_irq(&hcd_urb_unlink_lock);
1954 }
1955
1956 /*-------------------------------------------------------------------------*/
1957
1958 /* called in any context */
1959 int usb_hcd_get_frame_number (struct usb_device *udev)
1960 {
1961         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1962
1963         if (!HCD_RH_RUNNING(hcd))
1964                 return -ESHUTDOWN;
1965         return hcd->driver->get_frame_number (hcd);
1966 }
1967
1968 /*-------------------------------------------------------------------------*/
1969
1970 #ifdef  CONFIG_PM
1971
1972 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1973 {
1974         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1975         int             status;
1976         int             old_state = hcd->state;
1977
1978         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
1979                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
1980                         rhdev->do_remote_wakeup);
1981         if (HCD_DEAD(hcd)) {
1982                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1983                 return 0;
1984         }
1985
1986         if (!hcd->driver->bus_suspend) {
1987                 status = -ENOENT;
1988         } else {
1989                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1990                 hcd->state = HC_STATE_QUIESCING;
1991                 status = hcd->driver->bus_suspend(hcd);
1992         }
1993         if (status == 0) {
1994                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1995                 hcd->state = HC_STATE_SUSPENDED;
1996
1997                 /* Did we race with a root-hub wakeup event? */
1998                 if (rhdev->do_remote_wakeup) {
1999                         char    buffer[6];
2000
2001                         status = hcd->driver->hub_status_data(hcd, buffer);
2002                         if (status != 0) {
2003                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2004                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2005                                 status = -EBUSY;
2006                         }
2007                 }
2008         } else {
2009                 spin_lock_irq(&hcd_root_hub_lock);
2010                 if (!HCD_DEAD(hcd)) {
2011                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2012                         hcd->state = old_state;
2013                 }
2014                 spin_unlock_irq(&hcd_root_hub_lock);
2015                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2016                                 "suspend", status);
2017         }
2018         return status;
2019 }
2020
2021 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2022 {
2023         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2024         int             status;
2025         int             old_state = hcd->state;
2026
2027         dev_dbg(&rhdev->dev, "usb %sresume\n",
2028                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2029         if (HCD_DEAD(hcd)) {
2030                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2031                 return 0;
2032         }
2033         if (!hcd->driver->bus_resume)
2034                 return -ENOENT;
2035         if (HCD_RH_RUNNING(hcd))
2036                 return 0;
2037
2038         hcd->state = HC_STATE_RESUMING;
2039         status = hcd->driver->bus_resume(hcd);
2040         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2041         if (status == 0) {
2042                 struct usb_device *udev;
2043                 int port1;
2044
2045                 spin_lock_irq(&hcd_root_hub_lock);
2046                 if (!HCD_DEAD(hcd)) {
2047                         usb_set_device_state(rhdev, rhdev->actconfig
2048                                         ? USB_STATE_CONFIGURED
2049                                         : USB_STATE_ADDRESS);
2050                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2051                         hcd->state = HC_STATE_RUNNING;
2052                 }
2053                 spin_unlock_irq(&hcd_root_hub_lock);
2054
2055                 /*
2056                  * Check whether any of the enabled ports on the root hub are
2057                  * unsuspended.  If they are then a TRSMRCY delay is needed
2058                  * (this is what the USB-2 spec calls a "global resume").
2059                  * Otherwise we can skip the delay.
2060                  */
2061                 usb_hub_for_each_child(rhdev, port1, udev) {
2062                         if (udev->state != USB_STATE_NOTATTACHED &&
2063                                         !udev->port_is_suspended) {
2064                                 usleep_range(10000, 11000);     /* TRSMRCY */
2065                                 break;
2066                         }
2067                 }
2068         } else {
2069                 hcd->state = old_state;
2070                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2071                                 "resume", status);
2072                 if (status != -ESHUTDOWN)
2073                         usb_hc_died(hcd);
2074         }
2075         return status;
2076 }
2077
2078 #endif  /* CONFIG_PM */
2079
2080 #ifdef  CONFIG_USB_SUSPEND
2081
2082 /* Workqueue routine for root-hub remote wakeup */
2083 static void hcd_resume_work(struct work_struct *work)
2084 {
2085         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2086         struct usb_device *udev = hcd->self.root_hub;
2087
2088         usb_lock_device(udev);
2089         usb_remote_wakeup(udev);
2090         usb_unlock_device(udev);
2091 }
2092
2093 /**
2094  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
2095  * @hcd: host controller for this root hub
2096  *
2097  * The USB host controller calls this function when its root hub is
2098  * suspended (with the remote wakeup feature enabled) and a remote
2099  * wakeup request is received.  The routine submits a workqueue request
2100  * to resume the root hub (that is, manage its downstream ports again).
2101  */
2102 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2103 {
2104         unsigned long flags;
2105
2106         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2107         if (hcd->rh_registered) {
2108                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2109                 queue_work(pm_wq, &hcd->wakeup_work);
2110         }
2111         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2112 }
2113 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2114
2115 #endif  /* CONFIG_USB_SUSPEND */
2116
2117 /*-------------------------------------------------------------------------*/
2118
2119 #ifdef  CONFIG_USB_OTG
2120
2121 /**
2122  * usb_bus_start_enum - start immediate enumeration (for OTG)
2123  * @bus: the bus (must use hcd framework)
2124  * @port_num: 1-based number of port; usually bus->otg_port
2125  * Context: in_interrupt()
2126  *
2127  * Starts enumeration, with an immediate reset followed later by
2128  * khubd identifying and possibly configuring the device.
2129  * This is needed by OTG controller drivers, where it helps meet
2130  * HNP protocol timing requirements for starting a port reset.
2131  */
2132 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2133 {
2134         struct usb_hcd          *hcd;
2135         int                     status = -EOPNOTSUPP;
2136
2137         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2138          * boards with root hubs hooked up to internal devices (instead of
2139          * just the OTG port) may need more attention to resetting...
2140          */
2141         hcd = container_of (bus, struct usb_hcd, self);
2142         if (port_num && hcd->driver->start_port_reset)
2143                 status = hcd->driver->start_port_reset(hcd, port_num);
2144
2145         /* run khubd shortly after (first) root port reset finishes;
2146          * it may issue others, until at least 50 msecs have passed.
2147          */
2148         if (status == 0)
2149                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2150         return status;
2151 }
2152 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2153
2154 #endif
2155
2156 /*-------------------------------------------------------------------------*/
2157
2158 /**
2159  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2160  * @irq: the IRQ being raised
2161  * @__hcd: pointer to the HCD whose IRQ is being signaled
2162  *
2163  * If the controller isn't HALTed, calls the driver's irq handler.
2164  * Checks whether the controller is now dead.
2165  */
2166 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2167 {
2168         struct usb_hcd          *hcd = __hcd;
2169         unsigned long           flags;
2170         irqreturn_t             rc;
2171
2172         /* IRQF_DISABLED doesn't work correctly with shared IRQs
2173          * when the first handler doesn't use it.  So let's just
2174          * assume it's never used.
2175          */
2176         local_irq_save(flags);
2177
2178         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2179                 rc = IRQ_NONE;
2180         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2181                 rc = IRQ_NONE;
2182         else
2183                 rc = IRQ_HANDLED;
2184
2185         local_irq_restore(flags);
2186         return rc;
2187 }
2188 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2189
2190 /*-------------------------------------------------------------------------*/
2191
2192 /**
2193  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2194  * @hcd: pointer to the HCD representing the controller
2195  *
2196  * This is called by bus glue to report a USB host controller that died
2197  * while operations may still have been pending.  It's called automatically
2198  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2199  *
2200  * Only call this function with the primary HCD.
2201  */
2202 void usb_hc_died (struct usb_hcd *hcd)
2203 {
2204         unsigned long flags;
2205
2206         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2207
2208         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2209         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2210         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2211         if (hcd->rh_registered) {
2212                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2213
2214                 /* make khubd clean up old urbs and devices */
2215                 usb_set_device_state (hcd->self.root_hub,
2216                                 USB_STATE_NOTATTACHED);
2217                 usb_kick_khubd (hcd->self.root_hub);
2218         }
2219         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2220                 hcd = hcd->shared_hcd;
2221                 if (hcd->rh_registered) {
2222                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2223
2224                         /* make khubd clean up old urbs and devices */
2225                         usb_set_device_state(hcd->self.root_hub,
2226                                         USB_STATE_NOTATTACHED);
2227                         usb_kick_khubd(hcd->self.root_hub);
2228                 }
2229         }
2230         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2231         /* Make sure that the other roothub is also deallocated. */
2232 }
2233 EXPORT_SYMBOL_GPL (usb_hc_died);
2234
2235 /*-------------------------------------------------------------------------*/
2236
2237 /**
2238  * usb_create_shared_hcd - create and initialize an HCD structure
2239  * @driver: HC driver that will use this hcd
2240  * @dev: device for this HC, stored in hcd->self.controller
2241  * @bus_name: value to store in hcd->self.bus_name
2242  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2243  *              PCI device.  Only allocate certain resources for the primary HCD
2244  * Context: !in_interrupt()
2245  *
2246  * Allocate a struct usb_hcd, with extra space at the end for the
2247  * HC driver's private data.  Initialize the generic members of the
2248  * hcd structure.
2249  *
2250  * If memory is unavailable, returns NULL.
2251  */
2252 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2253                 struct device *dev, const char *bus_name,
2254                 struct usb_hcd *primary_hcd)
2255 {
2256         struct usb_hcd *hcd;
2257
2258         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2259         if (!hcd) {
2260                 dev_dbg (dev, "hcd alloc failed\n");
2261                 return NULL;
2262         }
2263         if (primary_hcd == NULL) {
2264                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2265                                 GFP_KERNEL);
2266                 if (!hcd->bandwidth_mutex) {
2267                         kfree(hcd);
2268                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2269                         return NULL;
2270                 }
2271                 mutex_init(hcd->bandwidth_mutex);
2272                 dev_set_drvdata(dev, hcd);
2273         } else {
2274                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2275                 hcd->primary_hcd = primary_hcd;
2276                 primary_hcd->primary_hcd = primary_hcd;
2277                 hcd->shared_hcd = primary_hcd;
2278                 primary_hcd->shared_hcd = hcd;
2279         }
2280
2281         kref_init(&hcd->kref);
2282
2283         usb_bus_init(&hcd->self);
2284         hcd->self.controller = dev;
2285         hcd->self.bus_name = bus_name;
2286         hcd->self.uses_dma = (dev->dma_mask != NULL);
2287
2288         init_timer(&hcd->rh_timer);
2289         hcd->rh_timer.function = rh_timer_func;
2290         hcd->rh_timer.data = (unsigned long) hcd;
2291 #ifdef CONFIG_USB_SUSPEND
2292         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2293 #endif
2294
2295         hcd->driver = driver;
2296         hcd->speed = driver->flags & HCD_MASK;
2297         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2298                         "USB Host Controller";
2299         return hcd;
2300 }
2301 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2302
2303 /**
2304  * usb_create_hcd - create and initialize an HCD structure
2305  * @driver: HC driver that will use this hcd
2306  * @dev: device for this HC, stored in hcd->self.controller
2307  * @bus_name: value to store in hcd->self.bus_name
2308  * Context: !in_interrupt()
2309  *
2310  * Allocate a struct usb_hcd, with extra space at the end for the
2311  * HC driver's private data.  Initialize the generic members of the
2312  * hcd structure.
2313  *
2314  * If memory is unavailable, returns NULL.
2315  */
2316 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2317                 struct device *dev, const char *bus_name)
2318 {
2319         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2320 }
2321 EXPORT_SYMBOL_GPL(usb_create_hcd);
2322
2323 /*
2324  * Roothubs that share one PCI device must also share the bandwidth mutex.
2325  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2326  * deallocated.
2327  *
2328  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2329  * freed.  When hcd_release() is called for the non-primary HCD, set the
2330  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2331  * freed shortly).
2332  */
2333 static void hcd_release (struct kref *kref)
2334 {
2335         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2336
2337         if (usb_hcd_is_primary_hcd(hcd))
2338                 kfree(hcd->bandwidth_mutex);
2339         else
2340                 hcd->shared_hcd->shared_hcd = NULL;
2341         kfree(hcd);
2342 }
2343
2344 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2345 {
2346         if (hcd)
2347                 kref_get (&hcd->kref);
2348         return hcd;
2349 }
2350 EXPORT_SYMBOL_GPL(usb_get_hcd);
2351
2352 void usb_put_hcd (struct usb_hcd *hcd)
2353 {
2354         if (hcd)
2355                 kref_put (&hcd->kref, hcd_release);
2356 }
2357 EXPORT_SYMBOL_GPL(usb_put_hcd);
2358
2359 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2360 {
2361         if (!hcd->primary_hcd)
2362                 return 1;
2363         return hcd == hcd->primary_hcd;
2364 }
2365 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2366
2367 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2368                 unsigned int irqnum, unsigned long irqflags)
2369 {
2370         int retval;
2371
2372         if (hcd->driver->irq) {
2373
2374                 /* IRQF_DISABLED doesn't work as advertised when used together
2375                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
2376                  * interrupts we can remove it here.
2377                  */
2378                 if (irqflags & IRQF_SHARED)
2379                         irqflags &= ~IRQF_DISABLED;
2380
2381                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2382                                 hcd->driver->description, hcd->self.busnum);
2383                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2384                                 hcd->irq_descr, hcd);
2385                 if (retval != 0) {
2386                         dev_err(hcd->self.controller,
2387                                         "request interrupt %d failed\n",
2388                                         irqnum);
2389                         return retval;
2390                 }
2391                 hcd->irq = irqnum;
2392                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2393                                 (hcd->driver->flags & HCD_MEMORY) ?
2394                                         "io mem" : "io base",
2395                                         (unsigned long long)hcd->rsrc_start);
2396         } else {
2397                 hcd->irq = 0;
2398                 if (hcd->rsrc_start)
2399                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2400                                         (hcd->driver->flags & HCD_MEMORY) ?
2401                                         "io mem" : "io base",
2402                                         (unsigned long long)hcd->rsrc_start);
2403         }
2404         return 0;
2405 }
2406
2407 /**
2408  * usb_add_hcd - finish generic HCD structure initialization and register
2409  * @hcd: the usb_hcd structure to initialize
2410  * @irqnum: Interrupt line to allocate
2411  * @irqflags: Interrupt type flags
2412  *
2413  * Finish the remaining parts of generic HCD initialization: allocate the
2414  * buffers of consistent memory, register the bus, request the IRQ line,
2415  * and call the driver's reset() and start() routines.
2416  */
2417 int usb_add_hcd(struct usb_hcd *hcd,
2418                 unsigned int irqnum, unsigned long irqflags)
2419 {
2420         int retval;
2421         struct usb_device *rhdev;
2422
2423         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2424
2425         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2426         if (authorized_default < 0 || authorized_default > 1)
2427                 hcd->authorized_default = hcd->wireless? 0 : 1;
2428         else
2429                 hcd->authorized_default = authorized_default;
2430         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2431
2432         /* HC is in reset state, but accessible.  Now do the one-time init,
2433          * bottom up so that hcds can customize the root hubs before khubd
2434          * starts talking to them.  (Note, bus id is assigned early too.)
2435          */
2436         if ((retval = hcd_buffer_create(hcd)) != 0) {
2437                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2438                 return retval;
2439         }
2440
2441         if ((retval = usb_register_bus(&hcd->self)) < 0)
2442                 goto err_register_bus;
2443
2444         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2445                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2446                 retval = -ENOMEM;
2447                 goto err_allocate_root_hub;
2448         }
2449         hcd->self.root_hub = rhdev;
2450
2451         switch (hcd->speed) {
2452         case HCD_USB11:
2453                 rhdev->speed = USB_SPEED_FULL;
2454                 break;
2455         case HCD_USB2:
2456                 rhdev->speed = USB_SPEED_HIGH;
2457                 break;
2458         case HCD_USB3:
2459                 rhdev->speed = USB_SPEED_SUPER;
2460                 break;
2461         default:
2462                 retval = -EINVAL;
2463                 goto err_set_rh_speed;
2464         }
2465
2466         /* wakeup flag init defaults to "everything works" for root hubs,
2467          * but drivers can override it in reset() if needed, along with
2468          * recording the overall controller's system wakeup capability.
2469          */
2470         device_set_wakeup_capable(&rhdev->dev, 1);
2471
2472         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2473          * registered.  But since the controller can die at any time,
2474          * let's initialize the flag before touching the hardware.
2475          */
2476         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2477
2478         /* "reset" is misnamed; its role is now one-time init. the controller
2479          * should already have been reset (and boot firmware kicked off etc).
2480          */
2481         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2482                 dev_err(hcd->self.controller, "can't setup\n");
2483                 goto err_hcd_driver_setup;
2484         }
2485         hcd->rh_pollable = 1;
2486
2487         /* NOTE: root hub and controller capabilities may not be the same */
2488         if (device_can_wakeup(hcd->self.controller)
2489                         && device_can_wakeup(&hcd->self.root_hub->dev))
2490                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2491
2492         /* enable irqs just before we start the controller,
2493          * if the BIOS provides legacy PCI irqs.
2494          */
2495         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2496                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2497                 if (retval)
2498                         goto err_request_irq;
2499         }
2500
2501         hcd->state = HC_STATE_RUNNING;
2502         retval = hcd->driver->start(hcd);
2503         if (retval < 0) {
2504                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2505                 goto err_hcd_driver_start;
2506         }
2507
2508         /* starting here, usbcore will pay attention to this root hub */
2509         rhdev->bus_mA = min(500u, hcd->power_budget);
2510         if ((retval = register_root_hub(hcd)) != 0)
2511                 goto err_register_root_hub;
2512
2513         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2514         if (retval < 0) {
2515                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2516                        retval);
2517                 goto error_create_attr_group;
2518         }
2519         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2520                 usb_hcd_poll_rh_status(hcd);
2521
2522         /*
2523          * Host controllers don't generate their own wakeup requests;
2524          * they only forward requests from the root hub.  Therefore
2525          * controllers should always be enabled for remote wakeup.
2526          */
2527         device_wakeup_enable(hcd->self.controller);
2528         return retval;
2529
2530 error_create_attr_group:
2531         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2532         if (HC_IS_RUNNING(hcd->state))
2533                 hcd->state = HC_STATE_QUIESCING;
2534         spin_lock_irq(&hcd_root_hub_lock);
2535         hcd->rh_registered = 0;
2536         spin_unlock_irq(&hcd_root_hub_lock);
2537
2538 #ifdef CONFIG_USB_SUSPEND
2539         cancel_work_sync(&hcd->wakeup_work);
2540 #endif
2541         mutex_lock(&usb_bus_list_lock);
2542         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2543         mutex_unlock(&usb_bus_list_lock);
2544 err_register_root_hub:
2545         hcd->rh_pollable = 0;
2546         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2547         del_timer_sync(&hcd->rh_timer);
2548         hcd->driver->stop(hcd);
2549         hcd->state = HC_STATE_HALT;
2550         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2551         del_timer_sync(&hcd->rh_timer);
2552 err_hcd_driver_start:
2553         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2554                 free_irq(irqnum, hcd);
2555 err_request_irq:
2556 err_hcd_driver_setup:
2557 err_set_rh_speed:
2558         usb_put_dev(hcd->self.root_hub);
2559 err_allocate_root_hub:
2560         usb_deregister_bus(&hcd->self);
2561 err_register_bus:
2562         hcd_buffer_destroy(hcd);
2563         return retval;
2564
2565 EXPORT_SYMBOL_GPL(usb_add_hcd);
2566
2567 /**
2568  * usb_remove_hcd - shutdown processing for generic HCDs
2569  * @hcd: the usb_hcd structure to remove
2570  * Context: !in_interrupt()
2571  *
2572  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2573  * invoking the HCD's stop() method.
2574  */
2575 void usb_remove_hcd(struct usb_hcd *hcd)
2576 {
2577         struct usb_device *rhdev = hcd->self.root_hub;
2578
2579         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2580
2581         usb_get_dev(rhdev);
2582         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2583
2584         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2585         if (HC_IS_RUNNING (hcd->state))
2586                 hcd->state = HC_STATE_QUIESCING;
2587
2588         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2589         spin_lock_irq (&hcd_root_hub_lock);
2590         hcd->rh_registered = 0;
2591         spin_unlock_irq (&hcd_root_hub_lock);
2592
2593 #ifdef CONFIG_USB_SUSPEND
2594         cancel_work_sync(&hcd->wakeup_work);
2595 #endif
2596
2597         mutex_lock(&usb_bus_list_lock);
2598         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2599         mutex_unlock(&usb_bus_list_lock);
2600
2601         /* Prevent any more root-hub status calls from the timer.
2602          * The HCD might still restart the timer (if a port status change
2603          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2604          * the hub_status_data() callback.
2605          */
2606         hcd->rh_pollable = 0;
2607         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2608         del_timer_sync(&hcd->rh_timer);
2609
2610         hcd->driver->stop(hcd);
2611         hcd->state = HC_STATE_HALT;
2612
2613         /* In case the HCD restarted the timer, stop it again. */
2614         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2615         del_timer_sync(&hcd->rh_timer);
2616
2617         if (usb_hcd_is_primary_hcd(hcd)) {
2618                 if (hcd->irq > 0)
2619                         free_irq(hcd->irq, hcd);
2620         }
2621
2622         usb_put_dev(hcd->self.root_hub);
2623         usb_deregister_bus(&hcd->self);
2624         hcd_buffer_destroy(hcd);
2625 }
2626 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2627
2628 void
2629 usb_hcd_platform_shutdown(struct platform_device* dev)
2630 {
2631         struct usb_hcd *hcd = platform_get_drvdata(dev);
2632
2633         if (hcd->driver->shutdown)
2634                 hcd->driver->shutdown(hcd);
2635 }
2636 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2637
2638 /*-------------------------------------------------------------------------*/
2639
2640 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2641
2642 struct usb_mon_operations *mon_ops;
2643
2644 /*
2645  * The registration is unlocked.
2646  * We do it this way because we do not want to lock in hot paths.
2647  *
2648  * Notice that the code is minimally error-proof. Because usbmon needs
2649  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2650  */
2651  
2652 int usb_mon_register (struct usb_mon_operations *ops)
2653 {
2654
2655         if (mon_ops)
2656                 return -EBUSY;
2657
2658         mon_ops = ops;
2659         mb();
2660         return 0;
2661 }
2662 EXPORT_SYMBOL_GPL (usb_mon_register);
2663
2664 void usb_mon_deregister (void)
2665 {
2666
2667         if (mon_ops == NULL) {
2668                 printk(KERN_ERR "USB: monitor was not registered\n");
2669                 return;
2670         }
2671         mon_ops = NULL;
2672         mb();
2673 }
2674 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2675
2676 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */