]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/usb/core/hcd.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/usb.h>
46 #include <linux/usb/hcd.h>
47
48 #include "usb.h"
49
50
51 /*-------------------------------------------------------------------------*/
52
53 /*
54  * USB Host Controller Driver framework
55  *
56  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
57  * HCD-specific behaviors/bugs.
58  *
59  * This does error checks, tracks devices and urbs, and delegates to a
60  * "hc_driver" only for code (and data) that really needs to know about
61  * hardware differences.  That includes root hub registers, i/o queues,
62  * and so on ... but as little else as possible.
63  *
64  * Shared code includes most of the "root hub" code (these are emulated,
65  * though each HC's hardware works differently) and PCI glue, plus request
66  * tracking overhead.  The HCD code should only block on spinlocks or on
67  * hardware handshaking; blocking on software events (such as other kernel
68  * threads releasing resources, or completing actions) is all generic.
69  *
70  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
71  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
72  * only by the hub driver ... and that neither should be seen or used by
73  * usb client device drivers.
74  *
75  * Contributors of ideas or unattributed patches include: David Brownell,
76  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
77  *
78  * HISTORY:
79  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
80  *              associated cleanup.  "usb_hcd" still != "usb_bus".
81  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
82  */
83
84 /*-------------------------------------------------------------------------*/
85
86 /* Keep track of which host controller drivers are loaded */
87 unsigned long usb_hcds_loaded;
88 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
89
90 /* host controllers we manage */
91 LIST_HEAD (usb_bus_list);
92 EXPORT_SYMBOL_GPL (usb_bus_list);
93
94 /* used when allocating bus numbers */
95 #define USB_MAXBUS              64
96 static DECLARE_BITMAP(busmap, USB_MAXBUS);
97
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114 static inline int is_root_hub(struct usb_device *udev)
115 {
116         return (udev->parent == NULL);
117 }
118
119 /*-------------------------------------------------------------------------*/
120
121 /*
122  * Sharable chunks of root hub code.
123  */
124
125 /*-------------------------------------------------------------------------*/
126 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
127 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
128
129 /* usb 3.0 root hub device descriptor */
130 static const u8 usb3_rh_dev_descriptor[18] = {
131         0x12,       /*  __u8  bLength; */
132         0x01,       /*  __u8  bDescriptorType; Device */
133         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
134
135         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
136         0x00,       /*  __u8  bDeviceSubClass; */
137         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
138         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
139
140         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
141         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
142         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
143
144         0x03,       /*  __u8  iManufacturer; */
145         0x02,       /*  __u8  iProduct; */
146         0x01,       /*  __u8  iSerialNumber; */
147         0x01        /*  __u8  bNumConfigurations; */
148 };
149
150 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
151 static const u8 usb25_rh_dev_descriptor[18] = {
152         0x12,       /*  __u8  bLength; */
153         0x01,       /*  __u8  bDescriptorType; Device */
154         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
155
156         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
157         0x00,       /*  __u8  bDeviceSubClass; */
158         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
159         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
160
161         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
162         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
163         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
164
165         0x03,       /*  __u8  iManufacturer; */
166         0x02,       /*  __u8  iProduct; */
167         0x01,       /*  __u8  iSerialNumber; */
168         0x01        /*  __u8  bNumConfigurations; */
169 };
170
171 /* usb 2.0 root hub device descriptor */
172 static const u8 usb2_rh_dev_descriptor[18] = {
173         0x12,       /*  __u8  bLength; */
174         0x01,       /*  __u8  bDescriptorType; Device */
175         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
176
177         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
178         0x00,       /*  __u8  bDeviceSubClass; */
179         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
180         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
181
182         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
183         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
184         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
185
186         0x03,       /*  __u8  iManufacturer; */
187         0x02,       /*  __u8  iProduct; */
188         0x01,       /*  __u8  iSerialNumber; */
189         0x01        /*  __u8  bNumConfigurations; */
190 };
191
192 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
193
194 /* usb 1.1 root hub device descriptor */
195 static const u8 usb11_rh_dev_descriptor[18] = {
196         0x12,       /*  __u8  bLength; */
197         0x01,       /*  __u8  bDescriptorType; Device */
198         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
199
200         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
201         0x00,       /*  __u8  bDeviceSubClass; */
202         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
203         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
204
205         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
206         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
207         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
208
209         0x03,       /*  __u8  iManufacturer; */
210         0x02,       /*  __u8  iProduct; */
211         0x01,       /*  __u8  iSerialNumber; */
212         0x01        /*  __u8  bNumConfigurations; */
213 };
214
215
216 /*-------------------------------------------------------------------------*/
217
218 /* Configuration descriptors for our root hubs */
219
220 static const u8 fs_rh_config_descriptor[] = {
221
222         /* one configuration */
223         0x09,       /*  __u8  bLength; */
224         0x02,       /*  __u8  bDescriptorType; Configuration */
225         0x19, 0x00, /*  __le16 wTotalLength; */
226         0x01,       /*  __u8  bNumInterfaces; (1) */
227         0x01,       /*  __u8  bConfigurationValue; */
228         0x00,       /*  __u8  iConfiguration; */
229         0xc0,       /*  __u8  bmAttributes;
230                                  Bit 7: must be set,
231                                      6: Self-powered,
232                                      5: Remote wakeup,
233                                      4..0: resvd */
234         0x00,       /*  __u8  MaxPower; */
235
236         /* USB 1.1:
237          * USB 2.0, single TT organization (mandatory):
238          *      one interface, protocol 0
239          *
240          * USB 2.0, multiple TT organization (optional):
241          *      two interfaces, protocols 1 (like single TT)
242          *      and 2 (multiple TT mode) ... config is
243          *      sometimes settable
244          *      NOT IMPLEMENTED
245          */
246
247         /* one interface */
248         0x09,       /*  __u8  if_bLength; */
249         0x04,       /*  __u8  if_bDescriptorType; Interface */
250         0x00,       /*  __u8  if_bInterfaceNumber; */
251         0x00,       /*  __u8  if_bAlternateSetting; */
252         0x01,       /*  __u8  if_bNumEndpoints; */
253         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
254         0x00,       /*  __u8  if_bInterfaceSubClass; */
255         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
256         0x00,       /*  __u8  if_iInterface; */
257
258         /* one endpoint (status change endpoint) */
259         0x07,       /*  __u8  ep_bLength; */
260         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
261         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
262         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
263         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
264         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
265 };
266
267 static const u8 hs_rh_config_descriptor[] = {
268
269         /* one configuration */
270         0x09,       /*  __u8  bLength; */
271         0x02,       /*  __u8  bDescriptorType; Configuration */
272         0x19, 0x00, /*  __le16 wTotalLength; */
273         0x01,       /*  __u8  bNumInterfaces; (1) */
274         0x01,       /*  __u8  bConfigurationValue; */
275         0x00,       /*  __u8  iConfiguration; */
276         0xc0,       /*  __u8  bmAttributes;
277                                  Bit 7: must be set,
278                                      6: Self-powered,
279                                      5: Remote wakeup,
280                                      4..0: resvd */
281         0x00,       /*  __u8  MaxPower; */
282
283         /* USB 1.1:
284          * USB 2.0, single TT organization (mandatory):
285          *      one interface, protocol 0
286          *
287          * USB 2.0, multiple TT organization (optional):
288          *      two interfaces, protocols 1 (like single TT)
289          *      and 2 (multiple TT mode) ... config is
290          *      sometimes settable
291          *      NOT IMPLEMENTED
292          */
293
294         /* one interface */
295         0x09,       /*  __u8  if_bLength; */
296         0x04,       /*  __u8  if_bDescriptorType; Interface */
297         0x00,       /*  __u8  if_bInterfaceNumber; */
298         0x00,       /*  __u8  if_bAlternateSetting; */
299         0x01,       /*  __u8  if_bNumEndpoints; */
300         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
301         0x00,       /*  __u8  if_bInterfaceSubClass; */
302         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
303         0x00,       /*  __u8  if_iInterface; */
304
305         /* one endpoint (status change endpoint) */
306         0x07,       /*  __u8  ep_bLength; */
307         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
308         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
309         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
310                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
311                      * see hub.c:hub_configure() for details. */
312         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
313         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
314 };
315
316 static const u8 ss_rh_config_descriptor[] = {
317         /* one configuration */
318         0x09,       /*  __u8  bLength; */
319         0x02,       /*  __u8  bDescriptorType; Configuration */
320         0x1f, 0x00, /*  __le16 wTotalLength; */
321         0x01,       /*  __u8  bNumInterfaces; (1) */
322         0x01,       /*  __u8  bConfigurationValue; */
323         0x00,       /*  __u8  iConfiguration; */
324         0xc0,       /*  __u8  bmAttributes;
325                                  Bit 7: must be set,
326                                      6: Self-powered,
327                                      5: Remote wakeup,
328                                      4..0: resvd */
329         0x00,       /*  __u8  MaxPower; */
330
331         /* one interface */
332         0x09,       /*  __u8  if_bLength; */
333         0x04,       /*  __u8  if_bDescriptorType; Interface */
334         0x00,       /*  __u8  if_bInterfaceNumber; */
335         0x00,       /*  __u8  if_bAlternateSetting; */
336         0x01,       /*  __u8  if_bNumEndpoints; */
337         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
338         0x00,       /*  __u8  if_bInterfaceSubClass; */
339         0x00,       /*  __u8  if_bInterfaceProtocol; */
340         0x00,       /*  __u8  if_iInterface; */
341
342         /* one endpoint (status change endpoint) */
343         0x07,       /*  __u8  ep_bLength; */
344         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
345         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
346         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
347                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
348                      * see hub.c:hub_configure() for details. */
349         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
350         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
351
352         /* one SuperSpeed endpoint companion descriptor */
353         0x06,        /* __u8 ss_bLength */
354         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
355         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
356         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
357         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
358 };
359
360 /* authorized_default behaviour:
361  * -1 is authorized for all devices except wireless (old behaviour)
362  * 0 is unauthorized for all devices
363  * 1 is authorized for all devices
364  */
365 static int authorized_default = -1;
366 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
367 MODULE_PARM_DESC(authorized_default,
368                 "Default USB device authorization: 0 is not authorized, 1 is "
369                 "authorized, -1 is authorized except for wireless USB (default, "
370                 "old behaviour");
371 /*-------------------------------------------------------------------------*/
372
373 /**
374  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
375  * @s: Null-terminated ASCII (actually ISO-8859-1) string
376  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
377  * @len: Length (in bytes; may be odd) of descriptor buffer.
378  *
379  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
380  * whichever is less.
381  *
382  * Note:
383  * USB String descriptors can contain at most 126 characters; input
384  * strings longer than that are truncated.
385  */
386 static unsigned
387 ascii2desc(char const *s, u8 *buf, unsigned len)
388 {
389         unsigned n, t = 2 + 2*strlen(s);
390
391         if (t > 254)
392                 t = 254;        /* Longest possible UTF string descriptor */
393         if (len > t)
394                 len = t;
395
396         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
397
398         n = len;
399         while (n--) {
400                 *buf++ = t;
401                 if (!n--)
402                         break;
403                 *buf++ = t >> 8;
404                 t = (unsigned char)*s++;
405         }
406         return len;
407 }
408
409 /**
410  * rh_string() - provides string descriptors for root hub
411  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
412  * @hcd: the host controller for this root hub
413  * @data: buffer for output packet
414  * @len: length of the provided buffer
415  *
416  * Produces either a manufacturer, product or serial number string for the
417  * virtual root hub device.
418  *
419  * Return: The number of bytes filled in: the length of the descriptor or
420  * of the provided buffer, whichever is less.
421  */
422 static unsigned
423 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
424 {
425         char buf[100];
426         char const *s;
427         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
428
429         /* language ids */
430         switch (id) {
431         case 0:
432                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
433                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
434                 if (len > 4)
435                         len = 4;
436                 memcpy(data, langids, len);
437                 return len;
438         case 1:
439                 /* Serial number */
440                 s = hcd->self.bus_name;
441                 break;
442         case 2:
443                 /* Product name */
444                 s = hcd->product_desc;
445                 break;
446         case 3:
447                 /* Manufacturer */
448                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
449                         init_utsname()->release, hcd->driver->description);
450                 s = buf;
451                 break;
452         default:
453                 /* Can't happen; caller guarantees it */
454                 return 0;
455         }
456
457         return ascii2desc(s, data, len);
458 }
459
460
461 /* Root hub control transfers execute synchronously */
462 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
463 {
464         struct usb_ctrlrequest *cmd;
465         u16             typeReq, wValue, wIndex, wLength;
466         u8              *ubuf = urb->transfer_buffer;
467         unsigned        len = 0;
468         int             status;
469         u8              patch_wakeup = 0;
470         u8              patch_protocol = 0;
471         u16             tbuf_size;
472         u8              *tbuf = NULL;
473         const u8        *bufp;
474
475         might_sleep();
476
477         spin_lock_irq(&hcd_root_hub_lock);
478         status = usb_hcd_link_urb_to_ep(hcd, urb);
479         spin_unlock_irq(&hcd_root_hub_lock);
480         if (status)
481                 return status;
482         urb->hcpriv = hcd;      /* Indicate it's queued */
483
484         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
485         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
486         wValue   = le16_to_cpu (cmd->wValue);
487         wIndex   = le16_to_cpu (cmd->wIndex);
488         wLength  = le16_to_cpu (cmd->wLength);
489
490         if (wLength > urb->transfer_buffer_length)
491                 goto error;
492
493         /*
494          * tbuf should be at least as big as the
495          * USB hub descriptor.
496          */
497         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
498         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
499         if (!tbuf)
500                 return -ENOMEM;
501
502         bufp = tbuf;
503
504
505         urb->actual_length = 0;
506         switch (typeReq) {
507
508         /* DEVICE REQUESTS */
509
510         /* The root hub's remote wakeup enable bit is implemented using
511          * driver model wakeup flags.  If this system supports wakeup
512          * through USB, userspace may change the default "allow wakeup"
513          * policy through sysfs or these calls.
514          *
515          * Most root hubs support wakeup from downstream devices, for
516          * runtime power management (disabling USB clocks and reducing
517          * VBUS power usage).  However, not all of them do so; silicon,
518          * board, and BIOS bugs here are not uncommon, so these can't
519          * be treated quite like external hubs.
520          *
521          * Likewise, not all root hubs will pass wakeup events upstream,
522          * to wake up the whole system.  So don't assume root hub and
523          * controller capabilities are identical.
524          */
525
526         case DeviceRequest | USB_REQ_GET_STATUS:
527                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
528                                         << USB_DEVICE_REMOTE_WAKEUP)
529                                 | (1 << USB_DEVICE_SELF_POWERED);
530                 tbuf[1] = 0;
531                 len = 2;
532                 break;
533         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
534                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
535                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
536                 else
537                         goto error;
538                 break;
539         case DeviceOutRequest | USB_REQ_SET_FEATURE:
540                 if (device_can_wakeup(&hcd->self.root_hub->dev)
541                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
542                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
543                 else
544                         goto error;
545                 break;
546         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
547                 tbuf[0] = 1;
548                 len = 1;
549                         /* FALLTHROUGH */
550         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
551                 break;
552         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
553                 switch (wValue & 0xff00) {
554                 case USB_DT_DEVICE << 8:
555                         switch (hcd->speed) {
556                         case HCD_USB3:
557                                 bufp = usb3_rh_dev_descriptor;
558                                 break;
559                         case HCD_USB25:
560                                 bufp = usb25_rh_dev_descriptor;
561                                 break;
562                         case HCD_USB2:
563                                 bufp = usb2_rh_dev_descriptor;
564                                 break;
565                         case HCD_USB11:
566                                 bufp = usb11_rh_dev_descriptor;
567                                 break;
568                         default:
569                                 goto error;
570                         }
571                         len = 18;
572                         if (hcd->has_tt)
573                                 patch_protocol = 1;
574                         break;
575                 case USB_DT_CONFIG << 8:
576                         switch (hcd->speed) {
577                         case HCD_USB3:
578                                 bufp = ss_rh_config_descriptor;
579                                 len = sizeof ss_rh_config_descriptor;
580                                 break;
581                         case HCD_USB25:
582                         case HCD_USB2:
583                                 bufp = hs_rh_config_descriptor;
584                                 len = sizeof hs_rh_config_descriptor;
585                                 break;
586                         case HCD_USB11:
587                                 bufp = fs_rh_config_descriptor;
588                                 len = sizeof fs_rh_config_descriptor;
589                                 break;
590                         default:
591                                 goto error;
592                         }
593                         if (device_can_wakeup(&hcd->self.root_hub->dev))
594                                 patch_wakeup = 1;
595                         break;
596                 case USB_DT_STRING << 8:
597                         if ((wValue & 0xff) < 4)
598                                 urb->actual_length = rh_string(wValue & 0xff,
599                                                 hcd, ubuf, wLength);
600                         else /* unsupported IDs --> "protocol stall" */
601                                 goto error;
602                         break;
603                 case USB_DT_BOS << 8:
604                         goto nongeneric;
605                 default:
606                         goto error;
607                 }
608                 break;
609         case DeviceRequest | USB_REQ_GET_INTERFACE:
610                 tbuf[0] = 0;
611                 len = 1;
612                         /* FALLTHROUGH */
613         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
614                 break;
615         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
616                 /* wValue == urb->dev->devaddr */
617                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
618                         wValue);
619                 break;
620
621         /* INTERFACE REQUESTS (no defined feature/status flags) */
622
623         /* ENDPOINT REQUESTS */
624
625         case EndpointRequest | USB_REQ_GET_STATUS:
626                 /* ENDPOINT_HALT flag */
627                 tbuf[0] = 0;
628                 tbuf[1] = 0;
629                 len = 2;
630                         /* FALLTHROUGH */
631         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
632         case EndpointOutRequest | USB_REQ_SET_FEATURE:
633                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
634                 break;
635
636         /* CLASS REQUESTS (and errors) */
637
638         default:
639 nongeneric:
640                 /* non-generic request */
641                 switch (typeReq) {
642                 case GetHubStatus:
643                 case GetPortStatus:
644                         len = 4;
645                         break;
646                 case GetHubDescriptor:
647                         len = sizeof (struct usb_hub_descriptor);
648                         break;
649                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
650                         /* len is returned by hub_control */
651                         break;
652                 }
653                 status = hcd->driver->hub_control (hcd,
654                         typeReq, wValue, wIndex,
655                         tbuf, wLength);
656
657                 if (typeReq == GetHubDescriptor)
658                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
659                                 (struct usb_hub_descriptor *)tbuf);
660                 break;
661 error:
662                 /* "protocol stall" on error */
663                 status = -EPIPE;
664         }
665
666         if (status < 0) {
667                 len = 0;
668                 if (status != -EPIPE) {
669                         dev_dbg (hcd->self.controller,
670                                 "CTRL: TypeReq=0x%x val=0x%x "
671                                 "idx=0x%x len=%d ==> %d\n",
672                                 typeReq, wValue, wIndex,
673                                 wLength, status);
674                 }
675         } else if (status > 0) {
676                 /* hub_control may return the length of data copied. */
677                 len = status;
678                 status = 0;
679         }
680         if (len) {
681                 if (urb->transfer_buffer_length < len)
682                         len = urb->transfer_buffer_length;
683                 urb->actual_length = len;
684                 /* always USB_DIR_IN, toward host */
685                 memcpy (ubuf, bufp, len);
686
687                 /* report whether RH hardware supports remote wakeup */
688                 if (patch_wakeup &&
689                                 len > offsetof (struct usb_config_descriptor,
690                                                 bmAttributes))
691                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
692                                 |= USB_CONFIG_ATT_WAKEUP;
693
694                 /* report whether RH hardware has an integrated TT */
695                 if (patch_protocol &&
696                                 len > offsetof(struct usb_device_descriptor,
697                                                 bDeviceProtocol))
698                         ((struct usb_device_descriptor *) ubuf)->
699                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
700         }
701
702         kfree(tbuf);
703
704         /* any errors get returned through the urb completion */
705         spin_lock_irq(&hcd_root_hub_lock);
706         usb_hcd_unlink_urb_from_ep(hcd, urb);
707         usb_hcd_giveback_urb(hcd, urb, status);
708         spin_unlock_irq(&hcd_root_hub_lock);
709         return 0;
710 }
711
712 /*-------------------------------------------------------------------------*/
713
714 /*
715  * Root Hub interrupt transfers are polled using a timer if the
716  * driver requests it; otherwise the driver is responsible for
717  * calling usb_hcd_poll_rh_status() when an event occurs.
718  *
719  * Completions are called in_interrupt(), but they may or may not
720  * be in_irq().
721  */
722 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
723 {
724         struct urb      *urb;
725         int             length;
726         unsigned long   flags;
727         char            buffer[6];      /* Any root hubs with > 31 ports? */
728
729         if (unlikely(!hcd->rh_pollable))
730                 return;
731         if (!hcd->uses_new_polling && !hcd->status_urb)
732                 return;
733
734         length = hcd->driver->hub_status_data(hcd, buffer);
735         if (length > 0) {
736
737                 /* try to complete the status urb */
738                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
739                 urb = hcd->status_urb;
740                 if (urb) {
741                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
742                         hcd->status_urb = NULL;
743                         urb->actual_length = length;
744                         memcpy(urb->transfer_buffer, buffer, length);
745
746                         usb_hcd_unlink_urb_from_ep(hcd, urb);
747                         usb_hcd_giveback_urb(hcd, urb, 0);
748                 } else {
749                         length = 0;
750                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
751                 }
752                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
753         }
754
755         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
756          * exceed that limit if HZ is 100. The math is more clunky than
757          * maybe expected, this is to make sure that all timers for USB devices
758          * fire at the same time to give the CPU a break in between */
759         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
760                         (length == 0 && hcd->status_urb != NULL))
761                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
762 }
763 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
764
765 /* timer callback */
766 static void rh_timer_func (unsigned long _hcd)
767 {
768         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
769 }
770
771 /*-------------------------------------------------------------------------*/
772
773 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
774 {
775         int             retval;
776         unsigned long   flags;
777         unsigned        len = 1 + (urb->dev->maxchild / 8);
778
779         spin_lock_irqsave (&hcd_root_hub_lock, flags);
780         if (hcd->status_urb || urb->transfer_buffer_length < len) {
781                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
782                 retval = -EINVAL;
783                 goto done;
784         }
785
786         retval = usb_hcd_link_urb_to_ep(hcd, urb);
787         if (retval)
788                 goto done;
789
790         hcd->status_urb = urb;
791         urb->hcpriv = hcd;      /* indicate it's queued */
792         if (!hcd->uses_new_polling)
793                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
794
795         /* If a status change has already occurred, report it ASAP */
796         else if (HCD_POLL_PENDING(hcd))
797                 mod_timer(&hcd->rh_timer, jiffies);
798         retval = 0;
799  done:
800         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
801         return retval;
802 }
803
804 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
805 {
806         if (usb_endpoint_xfer_int(&urb->ep->desc))
807                 return rh_queue_status (hcd, urb);
808         if (usb_endpoint_xfer_control(&urb->ep->desc))
809                 return rh_call_control (hcd, urb);
810         return -EINVAL;
811 }
812
813 /*-------------------------------------------------------------------------*/
814
815 /* Unlinks of root-hub control URBs are legal, but they don't do anything
816  * since these URBs always execute synchronously.
817  */
818 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
819 {
820         unsigned long   flags;
821         int             rc;
822
823         spin_lock_irqsave(&hcd_root_hub_lock, flags);
824         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
825         if (rc)
826                 goto done;
827
828         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
829                 ;       /* Do nothing */
830
831         } else {                                /* Status URB */
832                 if (!hcd->uses_new_polling)
833                         del_timer (&hcd->rh_timer);
834                 if (urb == hcd->status_urb) {
835                         hcd->status_urb = NULL;
836                         usb_hcd_unlink_urb_from_ep(hcd, urb);
837                         usb_hcd_giveback_urb(hcd, urb, status);
838                 }
839         }
840  done:
841         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
842         return rc;
843 }
844
845
846
847 /*
848  * Show & store the current value of authorized_default
849  */
850 static ssize_t authorized_default_show(struct device *dev,
851                                        struct device_attribute *attr, char *buf)
852 {
853         struct usb_device *rh_usb_dev = to_usb_device(dev);
854         struct usb_bus *usb_bus = rh_usb_dev->bus;
855         struct usb_hcd *usb_hcd;
856
857         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
858                 return -ENODEV;
859         usb_hcd = bus_to_hcd(usb_bus);
860         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
861 }
862
863 static ssize_t authorized_default_store(struct device *dev,
864                                         struct device_attribute *attr,
865                                         const char *buf, size_t size)
866 {
867         ssize_t result;
868         unsigned val;
869         struct usb_device *rh_usb_dev = to_usb_device(dev);
870         struct usb_bus *usb_bus = rh_usb_dev->bus;
871         struct usb_hcd *usb_hcd;
872
873         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
874                 return -ENODEV;
875         usb_hcd = bus_to_hcd(usb_bus);
876         result = sscanf(buf, "%u\n", &val);
877         if (result == 1) {
878                 usb_hcd->authorized_default = val ? 1 : 0;
879                 result = size;
880         } else {
881                 result = -EINVAL;
882         }
883         return result;
884 }
885 static DEVICE_ATTR_RW(authorized_default);
886
887 /* Group all the USB bus attributes */
888 static struct attribute *usb_bus_attrs[] = {
889                 &dev_attr_authorized_default.attr,
890                 NULL,
891 };
892
893 static struct attribute_group usb_bus_attr_group = {
894         .name = NULL,   /* we want them in the same directory */
895         .attrs = usb_bus_attrs,
896 };
897
898
899
900 /*-------------------------------------------------------------------------*/
901
902 /**
903  * usb_bus_init - shared initialization code
904  * @bus: the bus structure being initialized
905  *
906  * This code is used to initialize a usb_bus structure, memory for which is
907  * separately managed.
908  */
909 static void usb_bus_init (struct usb_bus *bus)
910 {
911         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
912
913         bus->devnum_next = 1;
914
915         bus->root_hub = NULL;
916         bus->busnum = -1;
917         bus->bandwidth_allocated = 0;
918         bus->bandwidth_int_reqs  = 0;
919         bus->bandwidth_isoc_reqs = 0;
920
921         INIT_LIST_HEAD (&bus->bus_list);
922 }
923
924 /*-------------------------------------------------------------------------*/
925
926 /**
927  * usb_register_bus - registers the USB host controller with the usb core
928  * @bus: pointer to the bus to register
929  * Context: !in_interrupt()
930  *
931  * Assigns a bus number, and links the controller into usbcore data
932  * structures so that it can be seen by scanning the bus list.
933  *
934  * Return: 0 if successful. A negative error code otherwise.
935  */
936 static int usb_register_bus(struct usb_bus *bus)
937 {
938         int result = -E2BIG;
939         int busnum;
940
941         mutex_lock(&usb_bus_list_lock);
942         busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
943         if (busnum >= USB_MAXBUS) {
944                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
945                 goto error_find_busnum;
946         }
947         set_bit(busnum, busmap);
948         bus->busnum = busnum;
949
950         /* Add it to the local list of buses */
951         list_add (&bus->bus_list, &usb_bus_list);
952         mutex_unlock(&usb_bus_list_lock);
953
954         usb_notify_add_bus(bus);
955
956         dev_info (bus->controller, "new USB bus registered, assigned bus "
957                   "number %d\n", bus->busnum);
958         return 0;
959
960 error_find_busnum:
961         mutex_unlock(&usb_bus_list_lock);
962         return result;
963 }
964
965 /**
966  * usb_deregister_bus - deregisters the USB host controller
967  * @bus: pointer to the bus to deregister
968  * Context: !in_interrupt()
969  *
970  * Recycles the bus number, and unlinks the controller from usbcore data
971  * structures so that it won't be seen by scanning the bus list.
972  */
973 static void usb_deregister_bus (struct usb_bus *bus)
974 {
975         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
976
977         /*
978          * NOTE: make sure that all the devices are removed by the
979          * controller code, as well as having it call this when cleaning
980          * itself up
981          */
982         mutex_lock(&usb_bus_list_lock);
983         list_del (&bus->bus_list);
984         mutex_unlock(&usb_bus_list_lock);
985
986         usb_notify_remove_bus(bus);
987
988         clear_bit(bus->busnum, busmap);
989 }
990
991 /**
992  * register_root_hub - called by usb_add_hcd() to register a root hub
993  * @hcd: host controller for this root hub
994  *
995  * This function registers the root hub with the USB subsystem.  It sets up
996  * the device properly in the device tree and then calls usb_new_device()
997  * to register the usb device.  It also assigns the root hub's USB address
998  * (always 1).
999  *
1000  * Return: 0 if successful. A negative error code otherwise.
1001  */
1002 static int register_root_hub(struct usb_hcd *hcd)
1003 {
1004         struct device *parent_dev = hcd->self.controller;
1005         struct usb_device *usb_dev = hcd->self.root_hub;
1006         const int devnum = 1;
1007         int retval;
1008
1009         usb_dev->devnum = devnum;
1010         usb_dev->bus->devnum_next = devnum + 1;
1011         memset (&usb_dev->bus->devmap.devicemap, 0,
1012                         sizeof usb_dev->bus->devmap.devicemap);
1013         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1014         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1015
1016         mutex_lock(&usb_bus_list_lock);
1017
1018         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1019         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1020         if (retval != sizeof usb_dev->descriptor) {
1021                 mutex_unlock(&usb_bus_list_lock);
1022                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1023                                 dev_name(&usb_dev->dev), retval);
1024                 return (retval < 0) ? retval : -EMSGSIZE;
1025         }
1026         if (usb_dev->speed == USB_SPEED_SUPER) {
1027                 retval = usb_get_bos_descriptor(usb_dev);
1028                 if (retval < 0) {
1029                         mutex_unlock(&usb_bus_list_lock);
1030                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1031                                         dev_name(&usb_dev->dev), retval);
1032                         return retval;
1033                 }
1034                 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1035         }
1036
1037         retval = usb_new_device (usb_dev);
1038         if (retval) {
1039                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1040                                 dev_name(&usb_dev->dev), retval);
1041         } else {
1042                 spin_lock_irq (&hcd_root_hub_lock);
1043                 hcd->rh_registered = 1;
1044                 spin_unlock_irq (&hcd_root_hub_lock);
1045
1046                 /* Did the HC die before the root hub was registered? */
1047                 if (HCD_DEAD(hcd))
1048                         usb_hc_died (hcd);      /* This time clean up */
1049         }
1050         mutex_unlock(&usb_bus_list_lock);
1051
1052         return retval;
1053 }
1054
1055 /*
1056  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1057  * @bus: the bus which the root hub belongs to
1058  * @portnum: the port which is being resumed
1059  *
1060  * HCDs should call this function when they know that a resume signal is
1061  * being sent to a root-hub port.  The root hub will be prevented from
1062  * going into autosuspend until usb_hcd_end_port_resume() is called.
1063  *
1064  * The bus's private lock must be held by the caller.
1065  */
1066 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1067 {
1068         unsigned bit = 1 << portnum;
1069
1070         if (!(bus->resuming_ports & bit)) {
1071                 bus->resuming_ports |= bit;
1072                 pm_runtime_get_noresume(&bus->root_hub->dev);
1073         }
1074 }
1075 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1076
1077 /*
1078  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1079  * @bus: the bus which the root hub belongs to
1080  * @portnum: the port which is being resumed
1081  *
1082  * HCDs should call this function when they know that a resume signal has
1083  * stopped being sent to a root-hub port.  The root hub will be allowed to
1084  * autosuspend again.
1085  *
1086  * The bus's private lock must be held by the caller.
1087  */
1088 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1089 {
1090         unsigned bit = 1 << portnum;
1091
1092         if (bus->resuming_ports & bit) {
1093                 bus->resuming_ports &= ~bit;
1094                 pm_runtime_put_noidle(&bus->root_hub->dev);
1095         }
1096 }
1097 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1098
1099 /*-------------------------------------------------------------------------*/
1100
1101 /**
1102  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1103  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1104  * @is_input: true iff the transaction sends data to the host
1105  * @isoc: true for isochronous transactions, false for interrupt ones
1106  * @bytecount: how many bytes in the transaction.
1107  *
1108  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1109  *
1110  * Note:
1111  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1112  * scheduled in software, this function is only used for such scheduling.
1113  */
1114 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1115 {
1116         unsigned long   tmp;
1117
1118         switch (speed) {
1119         case USB_SPEED_LOW:     /* INTR only */
1120                 if (is_input) {
1121                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1122                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1123                 } else {
1124                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1125                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1126                 }
1127         case USB_SPEED_FULL:    /* ISOC or INTR */
1128                 if (isoc) {
1129                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1130                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1131                 } else {
1132                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1133                         return 9107L + BW_HOST_DELAY + tmp;
1134                 }
1135         case USB_SPEED_HIGH:    /* ISOC or INTR */
1136                 /* FIXME adjust for input vs output */
1137                 if (isoc)
1138                         tmp = HS_NSECS_ISO (bytecount);
1139                 else
1140                         tmp = HS_NSECS (bytecount);
1141                 return tmp;
1142         default:
1143                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1144                 return -1;
1145         }
1146 }
1147 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1148
1149
1150 /*-------------------------------------------------------------------------*/
1151
1152 /*
1153  * Generic HC operations.
1154  */
1155
1156 /*-------------------------------------------------------------------------*/
1157
1158 /**
1159  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1160  * @hcd: host controller to which @urb was submitted
1161  * @urb: URB being submitted
1162  *
1163  * Host controller drivers should call this routine in their enqueue()
1164  * method.  The HCD's private spinlock must be held and interrupts must
1165  * be disabled.  The actions carried out here are required for URB
1166  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1167  *
1168  * Return: 0 for no error, otherwise a negative error code (in which case
1169  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1170  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1171  * the private spinlock and returning.
1172  */
1173 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1174 {
1175         int             rc = 0;
1176
1177         spin_lock(&hcd_urb_list_lock);
1178
1179         /* Check that the URB isn't being killed */
1180         if (unlikely(atomic_read(&urb->reject))) {
1181                 rc = -EPERM;
1182                 goto done;
1183         }
1184
1185         if (unlikely(!urb->ep->enabled)) {
1186                 rc = -ENOENT;
1187                 goto done;
1188         }
1189
1190         if (unlikely(!urb->dev->can_submit)) {
1191                 rc = -EHOSTUNREACH;
1192                 goto done;
1193         }
1194
1195         /*
1196          * Check the host controller's state and add the URB to the
1197          * endpoint's queue.
1198          */
1199         if (HCD_RH_RUNNING(hcd)) {
1200                 urb->unlinked = 0;
1201                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1202         } else {
1203                 rc = -ESHUTDOWN;
1204                 goto done;
1205         }
1206  done:
1207         spin_unlock(&hcd_urb_list_lock);
1208         return rc;
1209 }
1210 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1211
1212 /**
1213  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1214  * @hcd: host controller to which @urb was submitted
1215  * @urb: URB being checked for unlinkability
1216  * @status: error code to store in @urb if the unlink succeeds
1217  *
1218  * Host controller drivers should call this routine in their dequeue()
1219  * method.  The HCD's private spinlock must be held and interrupts must
1220  * be disabled.  The actions carried out here are required for making
1221  * sure than an unlink is valid.
1222  *
1223  * Return: 0 for no error, otherwise a negative error code (in which case
1224  * the dequeue() method must fail).  The possible error codes are:
1225  *
1226  *      -EIDRM: @urb was not submitted or has already completed.
1227  *              The completion function may not have been called yet.
1228  *
1229  *      -EBUSY: @urb has already been unlinked.
1230  */
1231 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1232                 int status)
1233 {
1234         struct list_head        *tmp;
1235
1236         /* insist the urb is still queued */
1237         list_for_each(tmp, &urb->ep->urb_list) {
1238                 if (tmp == &urb->urb_list)
1239                         break;
1240         }
1241         if (tmp != &urb->urb_list)
1242                 return -EIDRM;
1243
1244         /* Any status except -EINPROGRESS means something already started to
1245          * unlink this URB from the hardware.  So there's no more work to do.
1246          */
1247         if (urb->unlinked)
1248                 return -EBUSY;
1249         urb->unlinked = status;
1250         return 0;
1251 }
1252 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1253
1254 /**
1255  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1256  * @hcd: host controller to which @urb was submitted
1257  * @urb: URB being unlinked
1258  *
1259  * Host controller drivers should call this routine before calling
1260  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1261  * interrupts must be disabled.  The actions carried out here are required
1262  * for URB completion.
1263  */
1264 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1265 {
1266         /* clear all state linking urb to this dev (and hcd) */
1267         spin_lock(&hcd_urb_list_lock);
1268         list_del_init(&urb->urb_list);
1269         spin_unlock(&hcd_urb_list_lock);
1270 }
1271 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1272
1273 /*
1274  * Some usb host controllers can only perform dma using a small SRAM area.
1275  * The usb core itself is however optimized for host controllers that can dma
1276  * using regular system memory - like pci devices doing bus mastering.
1277  *
1278  * To support host controllers with limited dma capabilites we provide dma
1279  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1280  * For this to work properly the host controller code must first use the
1281  * function dma_declare_coherent_memory() to point out which memory area
1282  * that should be used for dma allocations.
1283  *
1284  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1285  * dma using dma_alloc_coherent() which in turn allocates from the memory
1286  * area pointed out with dma_declare_coherent_memory().
1287  *
1288  * So, to summarize...
1289  *
1290  * - We need "local" memory, canonical example being
1291  *   a small SRAM on a discrete controller being the
1292  *   only memory that the controller can read ...
1293  *   (a) "normal" kernel memory is no good, and
1294  *   (b) there's not enough to share
1295  *
1296  * - The only *portable* hook for such stuff in the
1297  *   DMA framework is dma_declare_coherent_memory()
1298  *
1299  * - So we use that, even though the primary requirement
1300  *   is that the memory be "local" (hence addressible
1301  *   by that device), not "coherent".
1302  *
1303  */
1304
1305 static int hcd_alloc_coherent(struct usb_bus *bus,
1306                               gfp_t mem_flags, dma_addr_t *dma_handle,
1307                               void **vaddr_handle, size_t size,
1308                               enum dma_data_direction dir)
1309 {
1310         unsigned char *vaddr;
1311
1312         if (*vaddr_handle == NULL) {
1313                 WARN_ON_ONCE(1);
1314                 return -EFAULT;
1315         }
1316
1317         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1318                                  mem_flags, dma_handle);
1319         if (!vaddr)
1320                 return -ENOMEM;
1321
1322         /*
1323          * Store the virtual address of the buffer at the end
1324          * of the allocated dma buffer. The size of the buffer
1325          * may be uneven so use unaligned functions instead
1326          * of just rounding up. It makes sense to optimize for
1327          * memory footprint over access speed since the amount
1328          * of memory available for dma may be limited.
1329          */
1330         put_unaligned((unsigned long)*vaddr_handle,
1331                       (unsigned long *)(vaddr + size));
1332
1333         if (dir == DMA_TO_DEVICE)
1334                 memcpy(vaddr, *vaddr_handle, size);
1335
1336         *vaddr_handle = vaddr;
1337         return 0;
1338 }
1339
1340 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1341                               void **vaddr_handle, size_t size,
1342                               enum dma_data_direction dir)
1343 {
1344         unsigned char *vaddr = *vaddr_handle;
1345
1346         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1347
1348         if (dir == DMA_FROM_DEVICE)
1349                 memcpy(vaddr, *vaddr_handle, size);
1350
1351         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1352
1353         *vaddr_handle = vaddr;
1354         *dma_handle = 0;
1355 }
1356
1357 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1358 {
1359         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1360                 dma_unmap_single(hcd->self.controller,
1361                                 urb->setup_dma,
1362                                 sizeof(struct usb_ctrlrequest),
1363                                 DMA_TO_DEVICE);
1364         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1365                 hcd_free_coherent(urb->dev->bus,
1366                                 &urb->setup_dma,
1367                                 (void **) &urb->setup_packet,
1368                                 sizeof(struct usb_ctrlrequest),
1369                                 DMA_TO_DEVICE);
1370
1371         /* Make it safe to call this routine more than once */
1372         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1373 }
1374 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1375
1376 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1377 {
1378         if (hcd->driver->unmap_urb_for_dma)
1379                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1380         else
1381                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1382 }
1383
1384 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1385 {
1386         enum dma_data_direction dir;
1387
1388         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1389
1390         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1391         if (urb->transfer_flags & URB_DMA_MAP_SG)
1392                 dma_unmap_sg(hcd->self.controller,
1393                                 urb->sg,
1394                                 urb->num_sgs,
1395                                 dir);
1396         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1397                 dma_unmap_page(hcd->self.controller,
1398                                 urb->transfer_dma,
1399                                 urb->transfer_buffer_length,
1400                                 dir);
1401         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1402                 dma_unmap_single(hcd->self.controller,
1403                                 urb->transfer_dma,
1404                                 urb->transfer_buffer_length,
1405                                 dir);
1406         else if (urb->transfer_flags & URB_MAP_LOCAL)
1407                 hcd_free_coherent(urb->dev->bus,
1408                                 &urb->transfer_dma,
1409                                 &urb->transfer_buffer,
1410                                 urb->transfer_buffer_length,
1411                                 dir);
1412
1413         /* Make it safe to call this routine more than once */
1414         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1415                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1416 }
1417 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1418
1419 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1420                            gfp_t mem_flags)
1421 {
1422         if (hcd->driver->map_urb_for_dma)
1423                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1424         else
1425                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1426 }
1427
1428 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1429                             gfp_t mem_flags)
1430 {
1431         enum dma_data_direction dir;
1432         int ret = 0;
1433
1434         /* Map the URB's buffers for DMA access.
1435          * Lower level HCD code should use *_dma exclusively,
1436          * unless it uses pio or talks to another transport,
1437          * or uses the provided scatter gather list for bulk.
1438          */
1439
1440         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1441                 if (hcd->self.uses_pio_for_control)
1442                         return ret;
1443                 if (hcd->self.uses_dma) {
1444                         urb->setup_dma = dma_map_single(
1445                                         hcd->self.controller,
1446                                         urb->setup_packet,
1447                                         sizeof(struct usb_ctrlrequest),
1448                                         DMA_TO_DEVICE);
1449                         if (dma_mapping_error(hcd->self.controller,
1450                                                 urb->setup_dma))
1451                                 return -EAGAIN;
1452                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1453                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1454                         ret = hcd_alloc_coherent(
1455                                         urb->dev->bus, mem_flags,
1456                                         &urb->setup_dma,
1457                                         (void **)&urb->setup_packet,
1458                                         sizeof(struct usb_ctrlrequest),
1459                                         DMA_TO_DEVICE);
1460                         if (ret)
1461                                 return ret;
1462                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1463                 }
1464         }
1465
1466         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1467         if (urb->transfer_buffer_length != 0
1468             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1469                 if (hcd->self.uses_dma) {
1470                         if (urb->num_sgs) {
1471                                 int n;
1472
1473                                 /* We don't support sg for isoc transfers ! */
1474                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1475                                         WARN_ON(1);
1476                                         return -EINVAL;
1477                                 }
1478
1479                                 n = dma_map_sg(
1480                                                 hcd->self.controller,
1481                                                 urb->sg,
1482                                                 urb->num_sgs,
1483                                                 dir);
1484                                 if (n <= 0)
1485                                         ret = -EAGAIN;
1486                                 else
1487                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1488                                 urb->num_mapped_sgs = n;
1489                                 if (n != urb->num_sgs)
1490                                         urb->transfer_flags |=
1491                                                         URB_DMA_SG_COMBINED;
1492                         } else if (urb->sg) {
1493                                 struct scatterlist *sg = urb->sg;
1494                                 urb->transfer_dma = dma_map_page(
1495                                                 hcd->self.controller,
1496                                                 sg_page(sg),
1497                                                 sg->offset,
1498                                                 urb->transfer_buffer_length,
1499                                                 dir);
1500                                 if (dma_mapping_error(hcd->self.controller,
1501                                                 urb->transfer_dma))
1502                                         ret = -EAGAIN;
1503                                 else
1504                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1505                         } else {
1506                                 urb->transfer_dma = dma_map_single(
1507                                                 hcd->self.controller,
1508                                                 urb->transfer_buffer,
1509                                                 urb->transfer_buffer_length,
1510                                                 dir);
1511                                 if (dma_mapping_error(hcd->self.controller,
1512                                                 urb->transfer_dma))
1513                                         ret = -EAGAIN;
1514                                 else
1515                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1516                         }
1517                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1518                         ret = hcd_alloc_coherent(
1519                                         urb->dev->bus, mem_flags,
1520                                         &urb->transfer_dma,
1521                                         &urb->transfer_buffer,
1522                                         urb->transfer_buffer_length,
1523                                         dir);
1524                         if (ret == 0)
1525                                 urb->transfer_flags |= URB_MAP_LOCAL;
1526                 }
1527                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1528                                 URB_SETUP_MAP_LOCAL)))
1529                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1530         }
1531         return ret;
1532 }
1533 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1534
1535 /*-------------------------------------------------------------------------*/
1536
1537 /* may be called in any context with a valid urb->dev usecount
1538  * caller surrenders "ownership" of urb
1539  * expects usb_submit_urb() to have sanity checked and conditioned all
1540  * inputs in the urb
1541  */
1542 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1543 {
1544         int                     status;
1545         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1546
1547         /* increment urb's reference count as part of giving it to the HCD
1548          * (which will control it).  HCD guarantees that it either returns
1549          * an error or calls giveback(), but not both.
1550          */
1551         usb_get_urb(urb);
1552         atomic_inc(&urb->use_count);
1553         atomic_inc(&urb->dev->urbnum);
1554         usbmon_urb_submit(&hcd->self, urb);
1555
1556         /* NOTE requirements on root-hub callers (usbfs and the hub
1557          * driver, for now):  URBs' urb->transfer_buffer must be
1558          * valid and usb_buffer_{sync,unmap}() not be needed, since
1559          * they could clobber root hub response data.  Also, control
1560          * URBs must be submitted in process context with interrupts
1561          * enabled.
1562          */
1563
1564         if (is_root_hub(urb->dev)) {
1565                 status = rh_urb_enqueue(hcd, urb);
1566         } else {
1567                 status = map_urb_for_dma(hcd, urb, mem_flags);
1568                 if (likely(status == 0)) {
1569                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1570                         if (unlikely(status))
1571                                 unmap_urb_for_dma(hcd, urb);
1572                 }
1573         }
1574
1575         if (unlikely(status)) {
1576                 usbmon_urb_submit_error(&hcd->self, urb, status);
1577                 urb->hcpriv = NULL;
1578                 INIT_LIST_HEAD(&urb->urb_list);
1579                 atomic_dec(&urb->use_count);
1580                 atomic_dec(&urb->dev->urbnum);
1581                 if (atomic_read(&urb->reject))
1582                         wake_up(&usb_kill_urb_queue);
1583                 usb_put_urb(urb);
1584         }
1585         return status;
1586 }
1587
1588 /*-------------------------------------------------------------------------*/
1589
1590 /* this makes the hcd giveback() the urb more quickly, by kicking it
1591  * off hardware queues (which may take a while) and returning it as
1592  * soon as practical.  we've already set up the urb's return status,
1593  * but we can't know if the callback completed already.
1594  */
1595 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1596 {
1597         int             value;
1598
1599         if (is_root_hub(urb->dev))
1600                 value = usb_rh_urb_dequeue(hcd, urb, status);
1601         else {
1602
1603                 /* The only reason an HCD might fail this call is if
1604                  * it has not yet fully queued the urb to begin with.
1605                  * Such failures should be harmless. */
1606                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1607         }
1608         return value;
1609 }
1610
1611 /*
1612  * called in any context
1613  *
1614  * caller guarantees urb won't be recycled till both unlink()
1615  * and the urb's completion function return
1616  */
1617 int usb_hcd_unlink_urb (struct urb *urb, int status)
1618 {
1619         struct usb_hcd          *hcd;
1620         int                     retval = -EIDRM;
1621         unsigned long           flags;
1622
1623         /* Prevent the device and bus from going away while
1624          * the unlink is carried out.  If they are already gone
1625          * then urb->use_count must be 0, since disconnected
1626          * devices can't have any active URBs.
1627          */
1628         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1629         if (atomic_read(&urb->use_count) > 0) {
1630                 retval = 0;
1631                 usb_get_dev(urb->dev);
1632         }
1633         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1634         if (retval == 0) {
1635                 hcd = bus_to_hcd(urb->dev->bus);
1636                 retval = unlink1(hcd, urb, status);
1637                 usb_put_dev(urb->dev);
1638         }
1639
1640         if (retval == 0)
1641                 retval = -EINPROGRESS;
1642         else if (retval != -EIDRM && retval != -EBUSY)
1643                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1644                                 urb, retval);
1645         return retval;
1646 }
1647
1648 /*-------------------------------------------------------------------------*/
1649
1650 static void __usb_hcd_giveback_urb(struct urb *urb)
1651 {
1652         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1653         struct usb_anchor *anchor = urb->anchor;
1654         int status = urb->unlinked;
1655         unsigned long flags;
1656
1657         urb->hcpriv = NULL;
1658         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1659             urb->actual_length < urb->transfer_buffer_length &&
1660             !status))
1661                 status = -EREMOTEIO;
1662
1663         unmap_urb_for_dma(hcd, urb);
1664         usbmon_urb_complete(&hcd->self, urb, status);
1665         usb_anchor_suspend_wakeups(anchor);
1666         usb_unanchor_urb(urb);
1667
1668         /* pass ownership to the completion handler */
1669         urb->status = status;
1670
1671         /*
1672          * We disable local IRQs here avoid possible deadlock because
1673          * drivers may call spin_lock() to hold lock which might be
1674          * acquired in one hard interrupt handler.
1675          *
1676          * The local_irq_save()/local_irq_restore() around complete()
1677          * will be removed if current USB drivers have been cleaned up
1678          * and no one may trigger the above deadlock situation when
1679          * running complete() in tasklet.
1680          */
1681         local_irq_save(flags);
1682         urb->complete(urb);
1683         local_irq_restore(flags);
1684
1685         usb_anchor_resume_wakeups(anchor);
1686         atomic_dec(&urb->use_count);
1687         if (unlikely(atomic_read(&urb->reject)))
1688                 wake_up(&usb_kill_urb_queue);
1689         usb_put_urb(urb);
1690 }
1691
1692 static void usb_giveback_urb_bh(unsigned long param)
1693 {
1694         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1695         struct list_head local_list;
1696
1697         spin_lock_irq(&bh->lock);
1698         bh->running = true;
1699  restart:
1700         list_replace_init(&bh->head, &local_list);
1701         spin_unlock_irq(&bh->lock);
1702
1703         while (!list_empty(&local_list)) {
1704                 struct urb *urb;
1705
1706                 urb = list_entry(local_list.next, struct urb, urb_list);
1707                 list_del_init(&urb->urb_list);
1708                 bh->completing_ep = urb->ep;
1709                 __usb_hcd_giveback_urb(urb);
1710                 bh->completing_ep = NULL;
1711         }
1712
1713         /* check if there are new URBs to giveback */
1714         spin_lock_irq(&bh->lock);
1715         if (!list_empty(&bh->head))
1716                 goto restart;
1717         bh->running = false;
1718         spin_unlock_irq(&bh->lock);
1719 }
1720
1721 /**
1722  * usb_hcd_giveback_urb - return URB from HCD to device driver
1723  * @hcd: host controller returning the URB
1724  * @urb: urb being returned to the USB device driver.
1725  * @status: completion status code for the URB.
1726  * Context: in_interrupt()
1727  *
1728  * This hands the URB from HCD to its USB device driver, using its
1729  * completion function.  The HCD has freed all per-urb resources
1730  * (and is done using urb->hcpriv).  It also released all HCD locks;
1731  * the device driver won't cause problems if it frees, modifies,
1732  * or resubmits this URB.
1733  *
1734  * If @urb was unlinked, the value of @status will be overridden by
1735  * @urb->unlinked.  Erroneous short transfers are detected in case
1736  * the HCD hasn't checked for them.
1737  */
1738 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1739 {
1740         struct giveback_urb_bh *bh;
1741         bool running, high_prio_bh;
1742
1743         /* pass status to tasklet via unlinked */
1744         if (likely(!urb->unlinked))
1745                 urb->unlinked = status;
1746
1747         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1748                 __usb_hcd_giveback_urb(urb);
1749                 return;
1750         }
1751
1752         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1753                 bh = &hcd->high_prio_bh;
1754                 high_prio_bh = true;
1755         } else {
1756                 bh = &hcd->low_prio_bh;
1757                 high_prio_bh = false;
1758         }
1759
1760         spin_lock(&bh->lock);
1761         list_add_tail(&urb->urb_list, &bh->head);
1762         running = bh->running;
1763         spin_unlock(&bh->lock);
1764
1765         if (running)
1766                 ;
1767         else if (high_prio_bh)
1768                 tasklet_hi_schedule(&bh->bh);
1769         else
1770                 tasklet_schedule(&bh->bh);
1771 }
1772 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1773
1774 /*-------------------------------------------------------------------------*/
1775
1776 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1777  * queue to drain completely.  The caller must first insure that no more
1778  * URBs can be submitted for this endpoint.
1779  */
1780 void usb_hcd_flush_endpoint(struct usb_device *udev,
1781                 struct usb_host_endpoint *ep)
1782 {
1783         struct usb_hcd          *hcd;
1784         struct urb              *urb;
1785
1786         if (!ep)
1787                 return;
1788         might_sleep();
1789         hcd = bus_to_hcd(udev->bus);
1790
1791         /* No more submits can occur */
1792         spin_lock_irq(&hcd_urb_list_lock);
1793 rescan:
1794         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1795                 int     is_in;
1796
1797                 if (urb->unlinked)
1798                         continue;
1799                 usb_get_urb (urb);
1800                 is_in = usb_urb_dir_in(urb);
1801                 spin_unlock(&hcd_urb_list_lock);
1802
1803                 /* kick hcd */
1804                 unlink1(hcd, urb, -ESHUTDOWN);
1805                 dev_dbg (hcd->self.controller,
1806                         "shutdown urb %p ep%d%s%s\n",
1807                         urb, usb_endpoint_num(&ep->desc),
1808                         is_in ? "in" : "out",
1809                         ({      char *s;
1810
1811                                  switch (usb_endpoint_type(&ep->desc)) {
1812                                  case USB_ENDPOINT_XFER_CONTROL:
1813                                         s = ""; break;
1814                                  case USB_ENDPOINT_XFER_BULK:
1815                                         s = "-bulk"; break;
1816                                  case USB_ENDPOINT_XFER_INT:
1817                                         s = "-intr"; break;
1818                                  default:
1819                                         s = "-iso"; break;
1820                                 };
1821                                 s;
1822                         }));
1823                 usb_put_urb (urb);
1824
1825                 /* list contents may have changed */
1826                 spin_lock(&hcd_urb_list_lock);
1827                 goto rescan;
1828         }
1829         spin_unlock_irq(&hcd_urb_list_lock);
1830
1831         /* Wait until the endpoint queue is completely empty */
1832         while (!list_empty (&ep->urb_list)) {
1833                 spin_lock_irq(&hcd_urb_list_lock);
1834
1835                 /* The list may have changed while we acquired the spinlock */
1836                 urb = NULL;
1837                 if (!list_empty (&ep->urb_list)) {
1838                         urb = list_entry (ep->urb_list.prev, struct urb,
1839                                         urb_list);
1840                         usb_get_urb (urb);
1841                 }
1842                 spin_unlock_irq(&hcd_urb_list_lock);
1843
1844                 if (urb) {
1845                         usb_kill_urb (urb);
1846                         usb_put_urb (urb);
1847                 }
1848         }
1849 }
1850
1851 /**
1852  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1853  *                              the bus bandwidth
1854  * @udev: target &usb_device
1855  * @new_config: new configuration to install
1856  * @cur_alt: the current alternate interface setting
1857  * @new_alt: alternate interface setting that is being installed
1858  *
1859  * To change configurations, pass in the new configuration in new_config,
1860  * and pass NULL for cur_alt and new_alt.
1861  *
1862  * To reset a device's configuration (put the device in the ADDRESSED state),
1863  * pass in NULL for new_config, cur_alt, and new_alt.
1864  *
1865  * To change alternate interface settings, pass in NULL for new_config,
1866  * pass in the current alternate interface setting in cur_alt,
1867  * and pass in the new alternate interface setting in new_alt.
1868  *
1869  * Return: An error if the requested bandwidth change exceeds the
1870  * bus bandwidth or host controller internal resources.
1871  */
1872 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1873                 struct usb_host_config *new_config,
1874                 struct usb_host_interface *cur_alt,
1875                 struct usb_host_interface *new_alt)
1876 {
1877         int num_intfs, i, j;
1878         struct usb_host_interface *alt = NULL;
1879         int ret = 0;
1880         struct usb_hcd *hcd;
1881         struct usb_host_endpoint *ep;
1882
1883         hcd = bus_to_hcd(udev->bus);
1884         if (!hcd->driver->check_bandwidth)
1885                 return 0;
1886
1887         /* Configuration is being removed - set configuration 0 */
1888         if (!new_config && !cur_alt) {
1889                 for (i = 1; i < 16; ++i) {
1890                         ep = udev->ep_out[i];
1891                         if (ep)
1892                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1893                         ep = udev->ep_in[i];
1894                         if (ep)
1895                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1896                 }
1897                 hcd->driver->check_bandwidth(hcd, udev);
1898                 return 0;
1899         }
1900         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1901          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1902          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1903          * ok to exclude it.
1904          */
1905         if (new_config) {
1906                 num_intfs = new_config->desc.bNumInterfaces;
1907                 /* Remove endpoints (except endpoint 0, which is always on the
1908                  * schedule) from the old config from the schedule
1909                  */
1910                 for (i = 1; i < 16; ++i) {
1911                         ep = udev->ep_out[i];
1912                         if (ep) {
1913                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1914                                 if (ret < 0)
1915                                         goto reset;
1916                         }
1917                         ep = udev->ep_in[i];
1918                         if (ep) {
1919                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1920                                 if (ret < 0)
1921                                         goto reset;
1922                         }
1923                 }
1924                 for (i = 0; i < num_intfs; ++i) {
1925                         struct usb_host_interface *first_alt;
1926                         int iface_num;
1927
1928                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1929                         iface_num = first_alt->desc.bInterfaceNumber;
1930                         /* Set up endpoints for alternate interface setting 0 */
1931                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1932                         if (!alt)
1933                                 /* No alt setting 0? Pick the first setting. */
1934                                 alt = first_alt;
1935
1936                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1937                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1938                                 if (ret < 0)
1939                                         goto reset;
1940                         }
1941                 }
1942         }
1943         if (cur_alt && new_alt) {
1944                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1945                                 cur_alt->desc.bInterfaceNumber);
1946
1947                 if (!iface)
1948                         return -EINVAL;
1949                 if (iface->resetting_device) {
1950                         /*
1951                          * The USB core just reset the device, so the xHCI host
1952                          * and the device will think alt setting 0 is installed.
1953                          * However, the USB core will pass in the alternate
1954                          * setting installed before the reset as cur_alt.  Dig
1955                          * out the alternate setting 0 structure, or the first
1956                          * alternate setting if a broken device doesn't have alt
1957                          * setting 0.
1958                          */
1959                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1960                         if (!cur_alt)
1961                                 cur_alt = &iface->altsetting[0];
1962                 }
1963
1964                 /* Drop all the endpoints in the current alt setting */
1965                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1966                         ret = hcd->driver->drop_endpoint(hcd, udev,
1967                                         &cur_alt->endpoint[i]);
1968                         if (ret < 0)
1969                                 goto reset;
1970                 }
1971                 /* Add all the endpoints in the new alt setting */
1972                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1973                         ret = hcd->driver->add_endpoint(hcd, udev,
1974                                         &new_alt->endpoint[i]);
1975                         if (ret < 0)
1976                                 goto reset;
1977                 }
1978         }
1979         ret = hcd->driver->check_bandwidth(hcd, udev);
1980 reset:
1981         if (ret < 0)
1982                 hcd->driver->reset_bandwidth(hcd, udev);
1983         return ret;
1984 }
1985
1986 /* Disables the endpoint: synchronizes with the hcd to make sure all
1987  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1988  * have been called previously.  Use for set_configuration, set_interface,
1989  * driver removal, physical disconnect.
1990  *
1991  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1992  * type, maxpacket size, toggle, halt status, and scheduling.
1993  */
1994 void usb_hcd_disable_endpoint(struct usb_device *udev,
1995                 struct usb_host_endpoint *ep)
1996 {
1997         struct usb_hcd          *hcd;
1998
1999         might_sleep();
2000         hcd = bus_to_hcd(udev->bus);
2001         if (hcd->driver->endpoint_disable)
2002                 hcd->driver->endpoint_disable(hcd, ep);
2003 }
2004
2005 /**
2006  * usb_hcd_reset_endpoint - reset host endpoint state
2007  * @udev: USB device.
2008  * @ep:   the endpoint to reset.
2009  *
2010  * Resets any host endpoint state such as the toggle bit, sequence
2011  * number and current window.
2012  */
2013 void usb_hcd_reset_endpoint(struct usb_device *udev,
2014                             struct usb_host_endpoint *ep)
2015 {
2016         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2017
2018         if (hcd->driver->endpoint_reset)
2019                 hcd->driver->endpoint_reset(hcd, ep);
2020         else {
2021                 int epnum = usb_endpoint_num(&ep->desc);
2022                 int is_out = usb_endpoint_dir_out(&ep->desc);
2023                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2024
2025                 usb_settoggle(udev, epnum, is_out, 0);
2026                 if (is_control)
2027                         usb_settoggle(udev, epnum, !is_out, 0);
2028         }
2029 }
2030
2031 /**
2032  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2033  * @interface:          alternate setting that includes all endpoints.
2034  * @eps:                array of endpoints that need streams.
2035  * @num_eps:            number of endpoints in the array.
2036  * @num_streams:        number of streams to allocate.
2037  * @mem_flags:          flags hcd should use to allocate memory.
2038  *
2039  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2040  * Drivers may queue multiple transfers to different stream IDs, which may
2041  * complete in a different order than they were queued.
2042  *
2043  * Return: On success, the number of allocated streams. On failure, a negative
2044  * error code.
2045  */
2046 int usb_alloc_streams(struct usb_interface *interface,
2047                 struct usb_host_endpoint **eps, unsigned int num_eps,
2048                 unsigned int num_streams, gfp_t mem_flags)
2049 {
2050         struct usb_hcd *hcd;
2051         struct usb_device *dev;
2052         int i;
2053
2054         dev = interface_to_usbdev(interface);
2055         hcd = bus_to_hcd(dev->bus);
2056         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2057                 return -EINVAL;
2058         if (dev->speed != USB_SPEED_SUPER)
2059                 return -EINVAL;
2060
2061         /* Streams only apply to bulk endpoints. */
2062         for (i = 0; i < num_eps; i++)
2063                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2064                         return -EINVAL;
2065
2066         return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2067                         num_streams, mem_flags);
2068 }
2069 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2070
2071 /**
2072  * usb_free_streams - free bulk endpoint stream IDs.
2073  * @interface:  alternate setting that includes all endpoints.
2074  * @eps:        array of endpoints to remove streams from.
2075  * @num_eps:    number of endpoints in the array.
2076  * @mem_flags:  flags hcd should use to allocate memory.
2077  *
2078  * Reverts a group of bulk endpoints back to not using stream IDs.
2079  * Can fail if we are given bad arguments, or HCD is broken.
2080  *
2081  * Return: On success, the number of allocated streams. On failure, a negative
2082  * error code.
2083  */
2084 int usb_free_streams(struct usb_interface *interface,
2085                 struct usb_host_endpoint **eps, unsigned int num_eps,
2086                 gfp_t mem_flags)
2087 {
2088         struct usb_hcd *hcd;
2089         struct usb_device *dev;
2090         int i;
2091
2092         dev = interface_to_usbdev(interface);
2093         hcd = bus_to_hcd(dev->bus);
2094         if (dev->speed != USB_SPEED_SUPER)
2095                 return -EINVAL;
2096
2097         /* Streams only apply to bulk endpoints. */
2098         for (i = 0; i < num_eps; i++)
2099                 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
2100                         return -EINVAL;
2101
2102         return hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2103 }
2104 EXPORT_SYMBOL_GPL(usb_free_streams);
2105
2106 /* Protect against drivers that try to unlink URBs after the device
2107  * is gone, by waiting until all unlinks for @udev are finished.
2108  * Since we don't currently track URBs by device, simply wait until
2109  * nothing is running in the locked region of usb_hcd_unlink_urb().
2110  */
2111 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2112 {
2113         spin_lock_irq(&hcd_urb_unlink_lock);
2114         spin_unlock_irq(&hcd_urb_unlink_lock);
2115 }
2116
2117 /*-------------------------------------------------------------------------*/
2118
2119 /* called in any context */
2120 int usb_hcd_get_frame_number (struct usb_device *udev)
2121 {
2122         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2123
2124         if (!HCD_RH_RUNNING(hcd))
2125                 return -ESHUTDOWN;
2126         return hcd->driver->get_frame_number (hcd);
2127 }
2128
2129 /*-------------------------------------------------------------------------*/
2130
2131 #ifdef  CONFIG_PM
2132
2133 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2134 {
2135         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2136         int             status;
2137         int             old_state = hcd->state;
2138
2139         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2140                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2141                         rhdev->do_remote_wakeup);
2142         if (HCD_DEAD(hcd)) {
2143                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2144                 return 0;
2145         }
2146
2147         if (!hcd->driver->bus_suspend) {
2148                 status = -ENOENT;
2149         } else {
2150                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2151                 hcd->state = HC_STATE_QUIESCING;
2152                 status = hcd->driver->bus_suspend(hcd);
2153         }
2154         if (status == 0) {
2155                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2156                 hcd->state = HC_STATE_SUSPENDED;
2157
2158                 /* Did we race with a root-hub wakeup event? */
2159                 if (rhdev->do_remote_wakeup) {
2160                         char    buffer[6];
2161
2162                         status = hcd->driver->hub_status_data(hcd, buffer);
2163                         if (status != 0) {
2164                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2165                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2166                                 status = -EBUSY;
2167                         }
2168                 }
2169         } else {
2170                 spin_lock_irq(&hcd_root_hub_lock);
2171                 if (!HCD_DEAD(hcd)) {
2172                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2173                         hcd->state = old_state;
2174                 }
2175                 spin_unlock_irq(&hcd_root_hub_lock);
2176                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2177                                 "suspend", status);
2178         }
2179         return status;
2180 }
2181
2182 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2183 {
2184         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2185         int             status;
2186         int             old_state = hcd->state;
2187
2188         dev_dbg(&rhdev->dev, "usb %sresume\n",
2189                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2190         if (HCD_DEAD(hcd)) {
2191                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2192                 return 0;
2193         }
2194         if (!hcd->driver->bus_resume)
2195                 return -ENOENT;
2196         if (HCD_RH_RUNNING(hcd))
2197                 return 0;
2198
2199         hcd->state = HC_STATE_RESUMING;
2200         status = hcd->driver->bus_resume(hcd);
2201         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2202         if (status == 0) {
2203                 struct usb_device *udev;
2204                 int port1;
2205
2206                 spin_lock_irq(&hcd_root_hub_lock);
2207                 if (!HCD_DEAD(hcd)) {
2208                         usb_set_device_state(rhdev, rhdev->actconfig
2209                                         ? USB_STATE_CONFIGURED
2210                                         : USB_STATE_ADDRESS);
2211                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2212                         hcd->state = HC_STATE_RUNNING;
2213                 }
2214                 spin_unlock_irq(&hcd_root_hub_lock);
2215
2216                 /*
2217                  * Check whether any of the enabled ports on the root hub are
2218                  * unsuspended.  If they are then a TRSMRCY delay is needed
2219                  * (this is what the USB-2 spec calls a "global resume").
2220                  * Otherwise we can skip the delay.
2221                  */
2222                 usb_hub_for_each_child(rhdev, port1, udev) {
2223                         if (udev->state != USB_STATE_NOTATTACHED &&
2224                                         !udev->port_is_suspended) {
2225                                 usleep_range(10000, 11000);     /* TRSMRCY */
2226                                 break;
2227                         }
2228                 }
2229         } else {
2230                 hcd->state = old_state;
2231                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2232                                 "resume", status);
2233                 if (status != -ESHUTDOWN)
2234                         usb_hc_died(hcd);
2235         }
2236         return status;
2237 }
2238
2239 #endif  /* CONFIG_PM */
2240
2241 #ifdef  CONFIG_PM_RUNTIME
2242
2243 /* Workqueue routine for root-hub remote wakeup */
2244 static void hcd_resume_work(struct work_struct *work)
2245 {
2246         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2247         struct usb_device *udev = hcd->self.root_hub;
2248
2249         usb_lock_device(udev);
2250         usb_remote_wakeup(udev);
2251         usb_unlock_device(udev);
2252 }
2253
2254 /**
2255  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2256  * @hcd: host controller for this root hub
2257  *
2258  * The USB host controller calls this function when its root hub is
2259  * suspended (with the remote wakeup feature enabled) and a remote
2260  * wakeup request is received.  The routine submits a workqueue request
2261  * to resume the root hub (that is, manage its downstream ports again).
2262  */
2263 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2264 {
2265         unsigned long flags;
2266
2267         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2268         if (hcd->rh_registered) {
2269                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2270                 queue_work(pm_wq, &hcd->wakeup_work);
2271         }
2272         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2273 }
2274 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2275
2276 #endif  /* CONFIG_PM_RUNTIME */
2277
2278 /*-------------------------------------------------------------------------*/
2279
2280 #ifdef  CONFIG_USB_OTG
2281
2282 /**
2283  * usb_bus_start_enum - start immediate enumeration (for OTG)
2284  * @bus: the bus (must use hcd framework)
2285  * @port_num: 1-based number of port; usually bus->otg_port
2286  * Context: in_interrupt()
2287  *
2288  * Starts enumeration, with an immediate reset followed later by
2289  * khubd identifying and possibly configuring the device.
2290  * This is needed by OTG controller drivers, where it helps meet
2291  * HNP protocol timing requirements for starting a port reset.
2292  *
2293  * Return: 0 if successful.
2294  */
2295 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2296 {
2297         struct usb_hcd          *hcd;
2298         int                     status = -EOPNOTSUPP;
2299
2300         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2301          * boards with root hubs hooked up to internal devices (instead of
2302          * just the OTG port) may need more attention to resetting...
2303          */
2304         hcd = container_of (bus, struct usb_hcd, self);
2305         if (port_num && hcd->driver->start_port_reset)
2306                 status = hcd->driver->start_port_reset(hcd, port_num);
2307
2308         /* run khubd shortly after (first) root port reset finishes;
2309          * it may issue others, until at least 50 msecs have passed.
2310          */
2311         if (status == 0)
2312                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2313         return status;
2314 }
2315 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2316
2317 #endif
2318
2319 /*-------------------------------------------------------------------------*/
2320
2321 /**
2322  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2323  * @irq: the IRQ being raised
2324  * @__hcd: pointer to the HCD whose IRQ is being signaled
2325  *
2326  * If the controller isn't HALTed, calls the driver's irq handler.
2327  * Checks whether the controller is now dead.
2328  *
2329  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2330  */
2331 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2332 {
2333         struct usb_hcd          *hcd = __hcd;
2334         irqreturn_t             rc;
2335
2336         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2337                 rc = IRQ_NONE;
2338         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2339                 rc = IRQ_NONE;
2340         else
2341                 rc = IRQ_HANDLED;
2342
2343         return rc;
2344 }
2345 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2346
2347 /*-------------------------------------------------------------------------*/
2348
2349 /**
2350  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2351  * @hcd: pointer to the HCD representing the controller
2352  *
2353  * This is called by bus glue to report a USB host controller that died
2354  * while operations may still have been pending.  It's called automatically
2355  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2356  *
2357  * Only call this function with the primary HCD.
2358  */
2359 void usb_hc_died (struct usb_hcd *hcd)
2360 {
2361         unsigned long flags;
2362
2363         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2364
2365         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2366         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2367         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2368         if (hcd->rh_registered) {
2369                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2370
2371                 /* make khubd clean up old urbs and devices */
2372                 usb_set_device_state (hcd->self.root_hub,
2373                                 USB_STATE_NOTATTACHED);
2374                 usb_kick_khubd (hcd->self.root_hub);
2375         }
2376         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2377                 hcd = hcd->shared_hcd;
2378                 if (hcd->rh_registered) {
2379                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2380
2381                         /* make khubd clean up old urbs and devices */
2382                         usb_set_device_state(hcd->self.root_hub,
2383                                         USB_STATE_NOTATTACHED);
2384                         usb_kick_khubd(hcd->self.root_hub);
2385                 }
2386         }
2387         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2388         /* Make sure that the other roothub is also deallocated. */
2389 }
2390 EXPORT_SYMBOL_GPL (usb_hc_died);
2391
2392 /*-------------------------------------------------------------------------*/
2393
2394 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2395 {
2396
2397         spin_lock_init(&bh->lock);
2398         INIT_LIST_HEAD(&bh->head);
2399         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2400 }
2401
2402 /**
2403  * usb_create_shared_hcd - create and initialize an HCD structure
2404  * @driver: HC driver that will use this hcd
2405  * @dev: device for this HC, stored in hcd->self.controller
2406  * @bus_name: value to store in hcd->self.bus_name
2407  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2408  *              PCI device.  Only allocate certain resources for the primary HCD
2409  * Context: !in_interrupt()
2410  *
2411  * Allocate a struct usb_hcd, with extra space at the end for the
2412  * HC driver's private data.  Initialize the generic members of the
2413  * hcd structure.
2414  *
2415  * Return: On success, a pointer to the created and initialized HCD structure.
2416  * On failure (e.g. if memory is unavailable), %NULL.
2417  */
2418 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2419                 struct device *dev, const char *bus_name,
2420                 struct usb_hcd *primary_hcd)
2421 {
2422         struct usb_hcd *hcd;
2423
2424         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2425         if (!hcd) {
2426                 dev_dbg (dev, "hcd alloc failed\n");
2427                 return NULL;
2428         }
2429         if (primary_hcd == NULL) {
2430                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2431                                 GFP_KERNEL);
2432                 if (!hcd->bandwidth_mutex) {
2433                         kfree(hcd);
2434                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2435                         return NULL;
2436                 }
2437                 mutex_init(hcd->bandwidth_mutex);
2438                 dev_set_drvdata(dev, hcd);
2439         } else {
2440                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2441                 hcd->primary_hcd = primary_hcd;
2442                 primary_hcd->primary_hcd = primary_hcd;
2443                 hcd->shared_hcd = primary_hcd;
2444                 primary_hcd->shared_hcd = hcd;
2445         }
2446
2447         kref_init(&hcd->kref);
2448
2449         usb_bus_init(&hcd->self);
2450         hcd->self.controller = dev;
2451         hcd->self.bus_name = bus_name;
2452         hcd->self.uses_dma = (dev->dma_mask != NULL);
2453
2454         init_timer(&hcd->rh_timer);
2455         hcd->rh_timer.function = rh_timer_func;
2456         hcd->rh_timer.data = (unsigned long) hcd;
2457 #ifdef CONFIG_PM_RUNTIME
2458         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2459 #endif
2460
2461         hcd->driver = driver;
2462         hcd->speed = driver->flags & HCD_MASK;
2463         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2464                         "USB Host Controller";
2465         return hcd;
2466 }
2467 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2468
2469 /**
2470  * usb_create_hcd - create and initialize an HCD structure
2471  * @driver: HC driver that will use this hcd
2472  * @dev: device for this HC, stored in hcd->self.controller
2473  * @bus_name: value to store in hcd->self.bus_name
2474  * Context: !in_interrupt()
2475  *
2476  * Allocate a struct usb_hcd, with extra space at the end for the
2477  * HC driver's private data.  Initialize the generic members of the
2478  * hcd structure.
2479  *
2480  * Return: On success, a pointer to the created and initialized HCD
2481  * structure. On failure (e.g. if memory is unavailable), %NULL.
2482  */
2483 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2484                 struct device *dev, const char *bus_name)
2485 {
2486         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2487 }
2488 EXPORT_SYMBOL_GPL(usb_create_hcd);
2489
2490 /*
2491  * Roothubs that share one PCI device must also share the bandwidth mutex.
2492  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2493  * deallocated.
2494  *
2495  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2496  * freed.  When hcd_release() is called for the non-primary HCD, set the
2497  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2498  * freed shortly).
2499  */
2500 static void hcd_release (struct kref *kref)
2501 {
2502         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2503
2504         if (usb_hcd_is_primary_hcd(hcd))
2505                 kfree(hcd->bandwidth_mutex);
2506         else
2507                 hcd->shared_hcd->shared_hcd = NULL;
2508         kfree(hcd);
2509 }
2510
2511 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2512 {
2513         if (hcd)
2514                 kref_get (&hcd->kref);
2515         return hcd;
2516 }
2517 EXPORT_SYMBOL_GPL(usb_get_hcd);
2518
2519 void usb_put_hcd (struct usb_hcd *hcd)
2520 {
2521         if (hcd)
2522                 kref_put (&hcd->kref, hcd_release);
2523 }
2524 EXPORT_SYMBOL_GPL(usb_put_hcd);
2525
2526 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2527 {
2528         if (!hcd->primary_hcd)
2529                 return 1;
2530         return hcd == hcd->primary_hcd;
2531 }
2532 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2533
2534 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2535 {
2536         if (!hcd->driver->find_raw_port_number)
2537                 return port1;
2538
2539         return hcd->driver->find_raw_port_number(hcd, port1);
2540 }
2541
2542 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2543                 unsigned int irqnum, unsigned long irqflags)
2544 {
2545         int retval;
2546
2547         if (hcd->driver->irq) {
2548
2549                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2550                                 hcd->driver->description, hcd->self.busnum);
2551                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2552                                 hcd->irq_descr, hcd);
2553                 if (retval != 0) {
2554                         dev_err(hcd->self.controller,
2555                                         "request interrupt %d failed\n",
2556                                         irqnum);
2557                         return retval;
2558                 }
2559                 hcd->irq = irqnum;
2560                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2561                                 (hcd->driver->flags & HCD_MEMORY) ?
2562                                         "io mem" : "io base",
2563                                         (unsigned long long)hcd->rsrc_start);
2564         } else {
2565                 hcd->irq = 0;
2566                 if (hcd->rsrc_start)
2567                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2568                                         (hcd->driver->flags & HCD_MEMORY) ?
2569                                         "io mem" : "io base",
2570                                         (unsigned long long)hcd->rsrc_start);
2571         }
2572         return 0;
2573 }
2574
2575 /**
2576  * usb_add_hcd - finish generic HCD structure initialization and register
2577  * @hcd: the usb_hcd structure to initialize
2578  * @irqnum: Interrupt line to allocate
2579  * @irqflags: Interrupt type flags
2580  *
2581  * Finish the remaining parts of generic HCD initialization: allocate the
2582  * buffers of consistent memory, register the bus, request the IRQ line,
2583  * and call the driver's reset() and start() routines.
2584  */
2585 int usb_add_hcd(struct usb_hcd *hcd,
2586                 unsigned int irqnum, unsigned long irqflags)
2587 {
2588         int retval;
2589         struct usb_device *rhdev;
2590
2591         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2592
2593         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2594         if (authorized_default < 0 || authorized_default > 1)
2595                 hcd->authorized_default = hcd->wireless ? 0 : 1;
2596         else
2597                 hcd->authorized_default = authorized_default;
2598         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2599
2600         /* HC is in reset state, but accessible.  Now do the one-time init,
2601          * bottom up so that hcds can customize the root hubs before khubd
2602          * starts talking to them.  (Note, bus id is assigned early too.)
2603          */
2604         if ((retval = hcd_buffer_create(hcd)) != 0) {
2605                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2606                 return retval;
2607         }
2608
2609         if ((retval = usb_register_bus(&hcd->self)) < 0)
2610                 goto err_register_bus;
2611
2612         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2613                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2614                 retval = -ENOMEM;
2615                 goto err_allocate_root_hub;
2616         }
2617         hcd->self.root_hub = rhdev;
2618
2619         switch (hcd->speed) {
2620         case HCD_USB11:
2621                 rhdev->speed = USB_SPEED_FULL;
2622                 break;
2623         case HCD_USB2:
2624                 rhdev->speed = USB_SPEED_HIGH;
2625                 break;
2626         case HCD_USB25:
2627                 rhdev->speed = USB_SPEED_WIRELESS;
2628                 break;
2629         case HCD_USB3:
2630                 rhdev->speed = USB_SPEED_SUPER;
2631                 break;
2632         default:
2633                 retval = -EINVAL;
2634                 goto err_set_rh_speed;
2635         }
2636
2637         /* wakeup flag init defaults to "everything works" for root hubs,
2638          * but drivers can override it in reset() if needed, along with
2639          * recording the overall controller's system wakeup capability.
2640          */
2641         device_set_wakeup_capable(&rhdev->dev, 1);
2642
2643         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2644          * registered.  But since the controller can die at any time,
2645          * let's initialize the flag before touching the hardware.
2646          */
2647         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2648
2649         /* "reset" is misnamed; its role is now one-time init. the controller
2650          * should already have been reset (and boot firmware kicked off etc).
2651          */
2652         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2653                 dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2654                 goto err_hcd_driver_setup;
2655         }
2656         hcd->rh_pollable = 1;
2657
2658         /* NOTE: root hub and controller capabilities may not be the same */
2659         if (device_can_wakeup(hcd->self.controller)
2660                         && device_can_wakeup(&hcd->self.root_hub->dev))
2661                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2662
2663         /* initialize tasklets */
2664         init_giveback_urb_bh(&hcd->high_prio_bh);
2665         init_giveback_urb_bh(&hcd->low_prio_bh);
2666
2667         /* enable irqs just before we start the controller,
2668          * if the BIOS provides legacy PCI irqs.
2669          */
2670         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2671                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2672                 if (retval)
2673                         goto err_request_irq;
2674         }
2675
2676         hcd->state = HC_STATE_RUNNING;
2677         retval = hcd->driver->start(hcd);
2678         if (retval < 0) {
2679                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2680                 goto err_hcd_driver_start;
2681         }
2682
2683         /* starting here, usbcore will pay attention to this root hub */
2684         if ((retval = register_root_hub(hcd)) != 0)
2685                 goto err_register_root_hub;
2686
2687         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2688         if (retval < 0) {
2689                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2690                        retval);
2691                 goto error_create_attr_group;
2692         }
2693         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2694                 usb_hcd_poll_rh_status(hcd);
2695
2696         /*
2697          * Host controllers don't generate their own wakeup requests;
2698          * they only forward requests from the root hub.  Therefore
2699          * controllers should always be enabled for remote wakeup.
2700          */
2701         device_wakeup_enable(hcd->self.controller);
2702         return retval;
2703
2704 error_create_attr_group:
2705         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2706         if (HC_IS_RUNNING(hcd->state))
2707                 hcd->state = HC_STATE_QUIESCING;
2708         spin_lock_irq(&hcd_root_hub_lock);
2709         hcd->rh_registered = 0;
2710         spin_unlock_irq(&hcd_root_hub_lock);
2711
2712 #ifdef CONFIG_PM_RUNTIME
2713         cancel_work_sync(&hcd->wakeup_work);
2714 #endif
2715         mutex_lock(&usb_bus_list_lock);
2716         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2717         mutex_unlock(&usb_bus_list_lock);
2718 err_register_root_hub:
2719         hcd->rh_pollable = 0;
2720         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2721         del_timer_sync(&hcd->rh_timer);
2722         hcd->driver->stop(hcd);
2723         hcd->state = HC_STATE_HALT;
2724         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2725         del_timer_sync(&hcd->rh_timer);
2726 err_hcd_driver_start:
2727         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2728                 free_irq(irqnum, hcd);
2729 err_request_irq:
2730 err_hcd_driver_setup:
2731 err_set_rh_speed:
2732         usb_put_dev(hcd->self.root_hub);
2733 err_allocate_root_hub:
2734         usb_deregister_bus(&hcd->self);
2735 err_register_bus:
2736         hcd_buffer_destroy(hcd);
2737         return retval;
2738 }
2739 EXPORT_SYMBOL_GPL(usb_add_hcd);
2740
2741 /**
2742  * usb_remove_hcd - shutdown processing for generic HCDs
2743  * @hcd: the usb_hcd structure to remove
2744  * Context: !in_interrupt()
2745  *
2746  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2747  * invoking the HCD's stop() method.
2748  */
2749 void usb_remove_hcd(struct usb_hcd *hcd)
2750 {
2751         struct usb_device *rhdev = hcd->self.root_hub;
2752
2753         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2754
2755         usb_get_dev(rhdev);
2756         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2757
2758         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2759         if (HC_IS_RUNNING (hcd->state))
2760                 hcd->state = HC_STATE_QUIESCING;
2761
2762         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2763         spin_lock_irq (&hcd_root_hub_lock);
2764         hcd->rh_registered = 0;
2765         spin_unlock_irq (&hcd_root_hub_lock);
2766
2767 #ifdef CONFIG_PM_RUNTIME
2768         cancel_work_sync(&hcd->wakeup_work);
2769 #endif
2770
2771         mutex_lock(&usb_bus_list_lock);
2772         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2773         mutex_unlock(&usb_bus_list_lock);
2774
2775         /*
2776          * tasklet_kill() isn't needed here because:
2777          * - driver's disconnect() called from usb_disconnect() should
2778          *   make sure its URBs are completed during the disconnect()
2779          *   callback
2780          *
2781          * - it is too late to run complete() here since driver may have
2782          *   been removed already now
2783          */
2784
2785         /* Prevent any more root-hub status calls from the timer.
2786          * The HCD might still restart the timer (if a port status change
2787          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2788          * the hub_status_data() callback.
2789          */
2790         hcd->rh_pollable = 0;
2791         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2792         del_timer_sync(&hcd->rh_timer);
2793
2794         hcd->driver->stop(hcd);
2795         hcd->state = HC_STATE_HALT;
2796
2797         /* In case the HCD restarted the timer, stop it again. */
2798         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2799         del_timer_sync(&hcd->rh_timer);
2800
2801         if (usb_hcd_is_primary_hcd(hcd)) {
2802                 if (hcd->irq > 0)
2803                         free_irq(hcd->irq, hcd);
2804         }
2805
2806         usb_put_dev(hcd->self.root_hub);
2807         usb_deregister_bus(&hcd->self);
2808         hcd_buffer_destroy(hcd);
2809 }
2810 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2811
2812 void
2813 usb_hcd_platform_shutdown(struct platform_device *dev)
2814 {
2815         struct usb_hcd *hcd = platform_get_drvdata(dev);
2816
2817         if (hcd->driver->shutdown)
2818                 hcd->driver->shutdown(hcd);
2819 }
2820 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2821
2822 /*-------------------------------------------------------------------------*/
2823
2824 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2825
2826 struct usb_mon_operations *mon_ops;
2827
2828 /*
2829  * The registration is unlocked.
2830  * We do it this way because we do not want to lock in hot paths.
2831  *
2832  * Notice that the code is minimally error-proof. Because usbmon needs
2833  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2834  */
2835
2836 int usb_mon_register (struct usb_mon_operations *ops)
2837 {
2838
2839         if (mon_ops)
2840                 return -EBUSY;
2841
2842         mon_ops = ops;
2843         mb();
2844         return 0;
2845 }
2846 EXPORT_SYMBOL_GPL (usb_mon_register);
2847
2848 void usb_mon_deregister (void)
2849 {
2850
2851         if (mon_ops == NULL) {
2852                 printk(KERN_ERR "USB: monitor was not registered\n");
2853                 return;
2854         }
2855         mon_ops = NULL;
2856         mb();
2857 }
2858 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2859
2860 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */