]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/usb/gadget/s3c-hsudc.c
Merge remote-tracking branch 'kgdb/kgdb-next'
[karo-tx-linux.git] / drivers / usb / gadget / s3c-hsudc.c
1 /* linux/drivers/usb/gadget/s3c-hsudc.c
2  *
3  * Copyright (c) 2010 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com/
5  *
6  * S3C24XX USB 2.0 High-speed USB controller gadget driver
7  *
8  * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
9  * Each endpoint can be configured as either in or out endpoint. Endpoints
10  * can be configured for Bulk or Interrupt transfer mode.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/delay.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/err.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/prefetch.h>
32 #include <linux/platform_data/s3c-hsudc.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/pm_runtime.h>
35
36 #include <mach/regs-s3c2443-clock.h>
37
38 #define S3C_HSUDC_REG(x)        (x)
39
40 /* Non-Indexed Registers */
41 #define S3C_IR                          S3C_HSUDC_REG(0x00) /* Index Register */
42 #define S3C_EIR                         S3C_HSUDC_REG(0x04) /* EP Intr Status */
43 #define S3C_EIR_EP0                     (1<<0)
44 #define S3C_EIER                        S3C_HSUDC_REG(0x08) /* EP Intr Enable */
45 #define S3C_FAR                         S3C_HSUDC_REG(0x0c) /* Gadget Address */
46 #define S3C_FNR                         S3C_HSUDC_REG(0x10) /* Frame Number */
47 #define S3C_EDR                         S3C_HSUDC_REG(0x14) /* EP Direction */
48 #define S3C_TR                          S3C_HSUDC_REG(0x18) /* Test Register */
49 #define S3C_SSR                         S3C_HSUDC_REG(0x1c) /* System Status */
50 #define S3C_SSR_DTZIEN_EN               (0xff8f)
51 #define S3C_SSR_ERR                     (0xff80)
52 #define S3C_SSR_VBUSON                  (1 << 8)
53 #define S3C_SSR_HSP                     (1 << 4)
54 #define S3C_SSR_SDE                     (1 << 3)
55 #define S3C_SSR_RESUME                  (1 << 2)
56 #define S3C_SSR_SUSPEND                 (1 << 1)
57 #define S3C_SSR_RESET                   (1 << 0)
58 #define S3C_SCR                         S3C_HSUDC_REG(0x20) /* System Control */
59 #define S3C_SCR_DTZIEN_EN               (1 << 14)
60 #define S3C_SCR_RRD_EN                  (1 << 5)
61 #define S3C_SCR_SUS_EN                  (1 << 1)
62 #define S3C_SCR_RST_EN                  (1 << 0)
63 #define S3C_EP0SR                       S3C_HSUDC_REG(0x24) /* EP0 Status */
64 #define S3C_EP0SR_EP0_LWO               (1 << 6)
65 #define S3C_EP0SR_STALL                 (1 << 4)
66 #define S3C_EP0SR_TX_SUCCESS            (1 << 1)
67 #define S3C_EP0SR_RX_SUCCESS            (1 << 0)
68 #define S3C_EP0CR                       S3C_HSUDC_REG(0x28) /* EP0 Control */
69 #define S3C_BR(_x)                      S3C_HSUDC_REG(0x60 + (_x * 4))
70
71 /* Indexed Registers */
72 #define S3C_ESR                         S3C_HSUDC_REG(0x2c) /* EPn Status */
73 #define S3C_ESR_FLUSH                   (1 << 6)
74 #define S3C_ESR_STALL                   (1 << 5)
75 #define S3C_ESR_LWO                     (1 << 4)
76 #define S3C_ESR_PSIF_ONE                (1 << 2)
77 #define S3C_ESR_PSIF_TWO                (2 << 2)
78 #define S3C_ESR_TX_SUCCESS              (1 << 1)
79 #define S3C_ESR_RX_SUCCESS              (1 << 0)
80 #define S3C_ECR                         S3C_HSUDC_REG(0x30) /* EPn Control */
81 #define S3C_ECR_DUEN                    (1 << 7)
82 #define S3C_ECR_FLUSH                   (1 << 6)
83 #define S3C_ECR_STALL                   (1 << 1)
84 #define S3C_ECR_IEMS                    (1 << 0)
85 #define S3C_BRCR                        S3C_HSUDC_REG(0x34) /* Read Count */
86 #define S3C_BWCR                        S3C_HSUDC_REG(0x38) /* Write Count */
87 #define S3C_MPR                         S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
88
89 #define WAIT_FOR_SETUP                  (0)
90 #define DATA_STATE_XMIT                 (1)
91 #define DATA_STATE_RECV                 (2)
92
93 static const char * const s3c_hsudc_supply_names[] = {
94         "vdda",         /* analog phy supply, 3.3V */
95         "vddi",         /* digital phy supply, 1.2V */
96         "vddosc",       /* oscillator supply, 1.8V - 3.3V */
97 };
98
99 /**
100  * struct s3c_hsudc_ep - Endpoint representation used by driver.
101  * @ep: USB gadget layer representation of device endpoint.
102  * @name: Endpoint name (as required by ep autoconfiguration).
103  * @dev: Reference to the device controller to which this EP belongs.
104  * @desc: Endpoint descriptor obtained from the gadget driver.
105  * @queue: Transfer request queue for the endpoint.
106  * @stopped: Maintains state of endpoint, set if EP is halted.
107  * @bEndpointAddress: EP address (including direction bit).
108  * @fifo: Base address of EP FIFO.
109  */
110 struct s3c_hsudc_ep {
111         struct usb_ep ep;
112         char name[20];
113         struct s3c_hsudc *dev;
114         struct list_head queue;
115         u8 stopped;
116         u8 wedge;
117         u8 bEndpointAddress;
118         void __iomem *fifo;
119 };
120
121 /**
122  * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
123  * @req: Reference to USB gadget transfer request.
124  * @queue: Used for inserting this request to the endpoint request queue.
125  */
126 struct s3c_hsudc_req {
127         struct usb_request req;
128         struct list_head queue;
129 };
130
131 /**
132  * struct s3c_hsudc - Driver's abstraction of the device controller.
133  * @gadget: Instance of usb_gadget which is referenced by gadget driver.
134  * @driver: Reference to currenty active gadget driver.
135  * @dev: The device reference used by probe function.
136  * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
137  * @regs: Remapped base address of controller's register space.
138  * irq: IRQ number used by the controller.
139  * uclk: Reference to the controller clock.
140  * ep0state: Current state of EP0.
141  * ep: List of endpoints supported by the controller.
142  */
143 struct s3c_hsudc {
144         struct usb_gadget gadget;
145         struct usb_gadget_driver *driver;
146         struct device *dev;
147         struct s3c24xx_hsudc_platdata *pd;
148         struct usb_phy *transceiver;
149         struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
150         spinlock_t lock;
151         void __iomem *regs;
152         int irq;
153         struct clk *uclk;
154         int ep0state;
155         struct s3c_hsudc_ep ep[];
156 };
157
158 #define ep_maxpacket(_ep)       ((_ep)->ep.maxpacket)
159 #define ep_is_in(_ep)           ((_ep)->bEndpointAddress & USB_DIR_IN)
160 #define ep_index(_ep)           ((_ep)->bEndpointAddress & \
161                                         USB_ENDPOINT_NUMBER_MASK)
162
163 static const char driver_name[] = "s3c-udc";
164 static const char ep0name[] = "ep0-control";
165
166 static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
167 {
168         return container_of(req, struct s3c_hsudc_req, req);
169 }
170
171 static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
172 {
173         return container_of(ep, struct s3c_hsudc_ep, ep);
174 }
175
176 static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
177 {
178         return container_of(gadget, struct s3c_hsudc, gadget);
179 }
180
181 static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
182 {
183         ep_addr &= USB_ENDPOINT_NUMBER_MASK;
184         writel(ep_addr, hsudc->regs + S3C_IR);
185 }
186
187 static inline void __orr32(void __iomem *ptr, u32 val)
188 {
189         writel(readl(ptr) | val, ptr);
190 }
191
192 static void s3c_hsudc_init_phy(void)
193 {
194         u32 cfg;
195
196         cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY;
197         writel(cfg, S3C2443_PWRCFG);
198
199         cfg = readl(S3C2443_URSTCON);
200         cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
201         writel(cfg, S3C2443_URSTCON);
202         mdelay(1);
203
204         cfg = readl(S3C2443_URSTCON);
205         cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
206         writel(cfg, S3C2443_URSTCON);
207
208         cfg = readl(S3C2443_PHYCTRL);
209         cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT);
210         cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL);
211         writel(cfg, S3C2443_PHYCTRL);
212
213         cfg = readl(S3C2443_PHYPWR);
214         cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN |
215                 S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK |
216                 S3C2443_PHYPWR_ANALOG_PD);
217         cfg |= S3C2443_PHYPWR_COMMON_ON;
218         writel(cfg, S3C2443_PHYPWR);
219
220         cfg = readl(S3C2443_UCLKCON);
221         cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN |
222                 S3C2443_UCLKCON_TCLKEN);
223         writel(cfg, S3C2443_UCLKCON);
224 }
225
226 static void s3c_hsudc_uninit_phy(void)
227 {
228         u32 cfg;
229
230         cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY;
231         writel(cfg, S3C2443_PWRCFG);
232
233         writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR);
234
235         cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN;
236         writel(cfg, S3C2443_UCLKCON);
237 }
238
239 /**
240  * s3c_hsudc_complete_request - Complete a transfer request.
241  * @hsep: Endpoint to which the request belongs.
242  * @hsreq: Transfer request to be completed.
243  * @status: Transfer completion status for the transfer request.
244  */
245 static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
246                                 struct s3c_hsudc_req *hsreq, int status)
247 {
248         unsigned int stopped = hsep->stopped;
249         struct s3c_hsudc *hsudc = hsep->dev;
250
251         list_del_init(&hsreq->queue);
252         hsreq->req.status = status;
253
254         if (!ep_index(hsep)) {
255                 hsudc->ep0state = WAIT_FOR_SETUP;
256                 hsep->bEndpointAddress &= ~USB_DIR_IN;
257         }
258
259         hsep->stopped = 1;
260         spin_unlock(&hsudc->lock);
261         if (hsreq->req.complete != NULL)
262                 hsreq->req.complete(&hsep->ep, &hsreq->req);
263         spin_lock(&hsudc->lock);
264         hsep->stopped = stopped;
265 }
266
267 /**
268  * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
269  * @hsep: Endpoint for which queued requests have to be terminated.
270  * @status: Transfer completion status for the transfer request.
271  */
272 static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
273 {
274         struct s3c_hsudc_req *hsreq;
275
276         while (!list_empty(&hsep->queue)) {
277                 hsreq = list_entry(hsep->queue.next,
278                                 struct s3c_hsudc_req, queue);
279                 s3c_hsudc_complete_request(hsep, hsreq, status);
280         }
281 }
282
283 /**
284  * s3c_hsudc_stop_activity - Stop activity on all endpoints.
285  * @hsudc: Device controller for which EP activity is to be stopped.
286  *
287  * All the endpoints are stopped and any pending transfer requests if any on
288  * the endpoint are terminated.
289  */
290 static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
291 {
292         struct s3c_hsudc_ep *hsep;
293         int epnum;
294
295         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
296
297         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
298                 hsep = &hsudc->ep[epnum];
299                 hsep->stopped = 1;
300                 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
301         }
302 }
303
304 /**
305  * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
306  * @hsudc: Device controller from which setup packet is to be read.
307  * @buf: The buffer into which the setup packet is read.
308  *
309  * The setup packet received in the EP0 fifo is read and stored into a
310  * given buffer address.
311  */
312
313 static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
314 {
315         int count;
316
317         count = readl(hsudc->regs + S3C_BRCR);
318         while (count--)
319                 *buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
320
321         writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
322 }
323
324 /**
325  * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
326  * @hsep: Endpoint to which the data is to be written.
327  * @hsreq: Transfer request from which the next chunk of data is written.
328  *
329  * Write the next chunk of data from a transfer request to the endpoint FIFO.
330  * If the transfer request completes, 1 is returned, otherwise 0 is returned.
331  */
332 static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
333                                 struct s3c_hsudc_req *hsreq)
334 {
335         u16 *buf;
336         u32 max = ep_maxpacket(hsep);
337         u32 count, length;
338         bool is_last;
339         void __iomem *fifo = hsep->fifo;
340
341         buf = hsreq->req.buf + hsreq->req.actual;
342         prefetch(buf);
343
344         length = hsreq->req.length - hsreq->req.actual;
345         length = min(length, max);
346         hsreq->req.actual += length;
347
348         writel(length, hsep->dev->regs + S3C_BWCR);
349         for (count = 0; count < length; count += 2)
350                 writel(*buf++, fifo);
351
352         if (count != max) {
353                 is_last = true;
354         } else {
355                 if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
356                         is_last = false;
357                 else
358                         is_last = true;
359         }
360
361         if (is_last) {
362                 s3c_hsudc_complete_request(hsep, hsreq, 0);
363                 return 1;
364         }
365
366         return 0;
367 }
368
369 /**
370  * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
371  * @hsep: Endpoint from which the data is to be read.
372  * @hsreq: Transfer request to which the next chunk of data read is written.
373  *
374  * Read the next chunk of data from the endpoint FIFO and a write it to the
375  * transfer request buffer. If the transfer request completes, 1 is returned,
376  * otherwise 0 is returned.
377  */
378 static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
379                                 struct s3c_hsudc_req *hsreq)
380 {
381         struct s3c_hsudc *hsudc = hsep->dev;
382         u32 csr, offset;
383         u16 *buf, word;
384         u32 buflen, rcnt, rlen;
385         void __iomem *fifo = hsep->fifo;
386         u32 is_short = 0;
387
388         offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
389         csr = readl(hsudc->regs + offset);
390         if (!(csr & S3C_ESR_RX_SUCCESS))
391                 return -EINVAL;
392
393         buf = hsreq->req.buf + hsreq->req.actual;
394         prefetchw(buf);
395         buflen = hsreq->req.length - hsreq->req.actual;
396
397         rcnt = readl(hsudc->regs + S3C_BRCR);
398         rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
399
400         hsreq->req.actual += min(rlen, buflen);
401         is_short = (rlen < hsep->ep.maxpacket);
402
403         while (rcnt-- != 0) {
404                 word = (u16)readl(fifo);
405                 if (buflen) {
406                         *buf++ = word;
407                         buflen--;
408                 } else {
409                         hsreq->req.status = -EOVERFLOW;
410                 }
411         }
412
413         writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
414
415         if (is_short || hsreq->req.actual == hsreq->req.length) {
416                 s3c_hsudc_complete_request(hsep, hsreq, 0);
417                 return 1;
418         }
419
420         return 0;
421 }
422
423 /**
424  * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
425  * @hsudc - Device controller for which the interrupt is to be handled.
426  * @ep_idx - Endpoint number on which an interrupt is pending.
427  *
428  * Handles interrupt for a in-endpoint. The interrupts that are handled are
429  * stall and data transmit complete interrupt.
430  */
431 static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
432 {
433         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
434         struct s3c_hsudc_req *hsreq;
435         u32 csr;
436
437         csr = readl(hsudc->regs + S3C_ESR);
438         if (csr & S3C_ESR_STALL) {
439                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
440                 return;
441         }
442
443         if (csr & S3C_ESR_TX_SUCCESS) {
444                 writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
445                 if (list_empty(&hsep->queue))
446                         return;
447
448                 hsreq = list_entry(hsep->queue.next,
449                                 struct s3c_hsudc_req, queue);
450                 if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
451                                 (csr & S3C_ESR_PSIF_TWO))
452                         s3c_hsudc_write_fifo(hsep, hsreq);
453         }
454 }
455
456 /**
457  * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
458  * @hsudc - Device controller for which the interrupt is to be handled.
459  * @ep_idx - Endpoint number on which an interrupt is pending.
460  *
461  * Handles interrupt for a out-endpoint. The interrupts that are handled are
462  * stall, flush and data ready interrupt.
463  */
464 static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
465 {
466         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
467         struct s3c_hsudc_req *hsreq;
468         u32 csr;
469
470         csr = readl(hsudc->regs + S3C_ESR);
471         if (csr & S3C_ESR_STALL) {
472                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
473                 return;
474         }
475
476         if (csr & S3C_ESR_FLUSH) {
477                 __orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
478                 return;
479         }
480
481         if (csr & S3C_ESR_RX_SUCCESS) {
482                 if (list_empty(&hsep->queue))
483                         return;
484
485                 hsreq = list_entry(hsep->queue.next,
486                                 struct s3c_hsudc_req, queue);
487                 if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
488                                 (csr & S3C_ESR_PSIF_TWO))
489                         s3c_hsudc_read_fifo(hsep, hsreq);
490         }
491 }
492
493 /** s3c_hsudc_set_halt - Set or clear a endpoint halt.
494  * @_ep: Endpoint on which halt has to be set or cleared.
495  * @value: 1 for setting halt on endpoint, 0 to clear halt.
496  *
497  * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
498  * If halt is cleared, for in-endpoints, if there are any pending
499  * transfer requests, transfers are started.
500  */
501 static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
502 {
503         struct s3c_hsudc_ep *hsep = our_ep(_ep);
504         struct s3c_hsudc *hsudc = hsep->dev;
505         struct s3c_hsudc_req *hsreq;
506         unsigned long irqflags;
507         u32 ecr;
508         u32 offset;
509
510         if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
511                 return -EAGAIN;
512
513         spin_lock_irqsave(&hsudc->lock, irqflags);
514         set_index(hsudc, ep_index(hsep));
515         offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
516         ecr = readl(hsudc->regs + offset);
517
518         if (value) {
519                 ecr |= S3C_ECR_STALL;
520                 if (ep_index(hsep))
521                         ecr |= S3C_ECR_FLUSH;
522                 hsep->stopped = 1;
523         } else {
524                 ecr &= ~S3C_ECR_STALL;
525                 hsep->stopped = hsep->wedge = 0;
526         }
527         writel(ecr, hsudc->regs + offset);
528
529         if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
530                 hsreq = list_entry(hsep->queue.next,
531                         struct s3c_hsudc_req, queue);
532                 if (hsreq)
533                         s3c_hsudc_write_fifo(hsep, hsreq);
534         }
535
536         spin_unlock_irqrestore(&hsudc->lock, irqflags);
537         return 0;
538 }
539
540 /** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
541  * @_ep: Endpoint on which wedge has to be set.
542  *
543  * Sets the halt feature with the clear requests ignored.
544  */
545 static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
546 {
547         struct s3c_hsudc_ep *hsep = our_ep(_ep);
548
549         if (!hsep)
550                 return -EINVAL;
551
552         hsep->wedge = 1;
553         return usb_ep_set_halt(_ep);
554 }
555
556 /** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
557  * @_ep: Device controller on which the set/clear feature needs to be handled.
558  * @ctrl: Control request as received on the endpoint 0.
559  *
560  * Handle set feature or clear feature control requests on the control endpoint.
561  */
562 static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
563                                         struct usb_ctrlrequest *ctrl)
564 {
565         struct s3c_hsudc_ep *hsep;
566         bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
567         u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
568
569         if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
570                 hsep = &hsudc->ep[ep_num];
571                 switch (le16_to_cpu(ctrl->wValue)) {
572                 case USB_ENDPOINT_HALT:
573                         if (set || (!set && !hsep->wedge))
574                                 s3c_hsudc_set_halt(&hsep->ep, set);
575                         return 0;
576                 }
577         }
578
579         return -ENOENT;
580 }
581
582 /**
583  * s3c_hsudc_process_req_status - Handle get status control request.
584  * @hsudc: Device controller on which get status request has be handled.
585  * @ctrl: Control request as received on the endpoint 0.
586  *
587  * Handle get status control request received on control endpoint.
588  */
589 static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
590                                         struct usb_ctrlrequest *ctrl)
591 {
592         struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
593         struct s3c_hsudc_req hsreq;
594         struct s3c_hsudc_ep *hsep;
595         __le16 reply;
596         u8 epnum;
597
598         switch (ctrl->bRequestType & USB_RECIP_MASK) {
599         case USB_RECIP_DEVICE:
600                 reply = cpu_to_le16(0);
601                 break;
602
603         case USB_RECIP_INTERFACE:
604                 reply = cpu_to_le16(0);
605                 break;
606
607         case USB_RECIP_ENDPOINT:
608                 epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
609                 hsep = &hsudc->ep[epnum];
610                 reply = cpu_to_le16(hsep->stopped ? 1 : 0);
611                 break;
612         }
613
614         INIT_LIST_HEAD(&hsreq.queue);
615         hsreq.req.length = 2;
616         hsreq.req.buf = &reply;
617         hsreq.req.actual = 0;
618         hsreq.req.complete = NULL;
619         s3c_hsudc_write_fifo(hsep0, &hsreq);
620 }
621
622 /**
623  * s3c_hsudc_process_setup - Process control request received on endpoint 0.
624  * @hsudc: Device controller on which control request has been received.
625  *
626  * Read the control request received on endpoint 0, decode it and handle
627  * the request.
628  */
629 static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
630 {
631         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
632         struct usb_ctrlrequest ctrl = {0};
633         int ret;
634
635         s3c_hsudc_nuke_ep(hsep, -EPROTO);
636         s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
637
638         if (ctrl.bRequestType & USB_DIR_IN) {
639                 hsep->bEndpointAddress |= USB_DIR_IN;
640                 hsudc->ep0state = DATA_STATE_XMIT;
641         } else {
642                 hsep->bEndpointAddress &= ~USB_DIR_IN;
643                 hsudc->ep0state = DATA_STATE_RECV;
644         }
645
646         switch (ctrl.bRequest) {
647         case USB_REQ_SET_ADDRESS:
648                 if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
649                         break;
650                 hsudc->ep0state = WAIT_FOR_SETUP;
651                 return;
652
653         case USB_REQ_GET_STATUS:
654                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
655                         break;
656                 s3c_hsudc_process_req_status(hsudc, &ctrl);
657                 return;
658
659         case USB_REQ_SET_FEATURE:
660         case USB_REQ_CLEAR_FEATURE:
661                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
662                         break;
663                 s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
664                 hsudc->ep0state = WAIT_FOR_SETUP;
665                 return;
666         }
667
668         if (hsudc->driver) {
669                 spin_unlock(&hsudc->lock);
670                 ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
671                 spin_lock(&hsudc->lock);
672
673                 if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
674                         hsep->bEndpointAddress &= ~USB_DIR_IN;
675                         hsudc->ep0state = WAIT_FOR_SETUP;
676                 }
677
678                 if (ret < 0) {
679                         dev_err(hsudc->dev, "setup failed, returned %d\n",
680                                                 ret);
681                         s3c_hsudc_set_halt(&hsep->ep, 1);
682                         hsudc->ep0state = WAIT_FOR_SETUP;
683                         hsep->bEndpointAddress &= ~USB_DIR_IN;
684                 }
685         }
686 }
687
688 /** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
689  * @hsudc: Device controller on which endpoint 0 interrupt has occured.
690  *
691  * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
692  * when a stall handshake is sent to host or data is sent/received on
693  * endpoint 0.
694  */
695 static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
696 {
697         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
698         struct s3c_hsudc_req *hsreq;
699         u32 csr = readl(hsudc->regs + S3C_EP0SR);
700         u32 ecr;
701
702         if (csr & S3C_EP0SR_STALL) {
703                 ecr = readl(hsudc->regs + S3C_EP0CR);
704                 ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
705                 writel(ecr, hsudc->regs + S3C_EP0CR);
706
707                 writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
708                 hsep->stopped = 0;
709
710                 s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
711                 hsudc->ep0state = WAIT_FOR_SETUP;
712                 hsep->bEndpointAddress &= ~USB_DIR_IN;
713                 return;
714         }
715
716         if (csr & S3C_EP0SR_TX_SUCCESS) {
717                 writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
718                 if (ep_is_in(hsep)) {
719                         if (list_empty(&hsep->queue))
720                                 return;
721
722                         hsreq = list_entry(hsep->queue.next,
723                                         struct s3c_hsudc_req, queue);
724                         s3c_hsudc_write_fifo(hsep, hsreq);
725                 }
726         }
727
728         if (csr & S3C_EP0SR_RX_SUCCESS) {
729                 if (hsudc->ep0state == WAIT_FOR_SETUP)
730                         s3c_hsudc_process_setup(hsudc);
731                 else {
732                         if (!ep_is_in(hsep)) {
733                                 if (list_empty(&hsep->queue))
734                                         return;
735                                 hsreq = list_entry(hsep->queue.next,
736                                         struct s3c_hsudc_req, queue);
737                                 s3c_hsudc_read_fifo(hsep, hsreq);
738                         }
739                 }
740         }
741 }
742
743 /**
744  * s3c_hsudc_ep_enable - Enable a endpoint.
745  * @_ep: The endpoint to be enabled.
746  * @desc: Endpoint descriptor.
747  *
748  * Enables a endpoint when called from the gadget driver. Endpoint stall if
749  * any is cleared, transfer type is configured and endpoint interrupt is
750  * enabled.
751  */
752 static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
753                                 const struct usb_endpoint_descriptor *desc)
754 {
755         struct s3c_hsudc_ep *hsep;
756         struct s3c_hsudc *hsudc;
757         unsigned long flags;
758         u32 ecr = 0;
759
760         hsep = our_ep(_ep);
761         if (!_ep || !desc || _ep->name == ep0name
762                 || desc->bDescriptorType != USB_DT_ENDPOINT
763                 || hsep->bEndpointAddress != desc->bEndpointAddress
764                 || ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
765                 return -EINVAL;
766
767         if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
768                 && usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
769                 || !desc->wMaxPacketSize)
770                 return -ERANGE;
771
772         hsudc = hsep->dev;
773         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
774                 return -ESHUTDOWN;
775
776         spin_lock_irqsave(&hsudc->lock, flags);
777
778         set_index(hsudc, hsep->bEndpointAddress);
779         ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
780         writel(ecr, hsudc->regs + S3C_ECR);
781
782         hsep->stopped = hsep->wedge = 0;
783         hsep->ep.desc = desc;
784         hsep->ep.maxpacket = usb_endpoint_maxp(desc);
785
786         s3c_hsudc_set_halt(_ep, 0);
787         __set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
788
789         spin_unlock_irqrestore(&hsudc->lock, flags);
790         return 0;
791 }
792
793 /**
794  * s3c_hsudc_ep_disable - Disable a endpoint.
795  * @_ep: The endpoint to be disabled.
796  * @desc: Endpoint descriptor.
797  *
798  * Disables a endpoint when called from the gadget driver.
799  */
800 static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
801 {
802         struct s3c_hsudc_ep *hsep = our_ep(_ep);
803         struct s3c_hsudc *hsudc = hsep->dev;
804         unsigned long flags;
805
806         if (!_ep || !hsep->ep.desc)
807                 return -EINVAL;
808
809         spin_lock_irqsave(&hsudc->lock, flags);
810
811         set_index(hsudc, hsep->bEndpointAddress);
812         __clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
813
814         s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
815
816         hsep->ep.desc = NULL;
817         hsep->stopped = 1;
818
819         spin_unlock_irqrestore(&hsudc->lock, flags);
820         return 0;
821 }
822
823 /**
824  * s3c_hsudc_alloc_request - Allocate a new request.
825  * @_ep: Endpoint for which request is allocated (not used).
826  * @gfp_flags: Flags used for the allocation.
827  *
828  * Allocates a single transfer request structure when called from gadget driver.
829  */
830 static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
831                                                 gfp_t gfp_flags)
832 {
833         struct s3c_hsudc_req *hsreq;
834
835         hsreq = kzalloc(sizeof(*hsreq), gfp_flags);
836         if (!hsreq)
837                 return NULL;
838
839         INIT_LIST_HEAD(&hsreq->queue);
840         return &hsreq->req;
841 }
842
843 /**
844  * s3c_hsudc_free_request - Deallocate a request.
845  * @ep: Endpoint for which request is deallocated (not used).
846  * @_req: Request to be deallocated.
847  *
848  * Allocates a single transfer request structure when called from gadget driver.
849  */
850 static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
851 {
852         struct s3c_hsudc_req *hsreq;
853
854         hsreq = our_req(_req);
855         WARN_ON(!list_empty(&hsreq->queue));
856         kfree(hsreq);
857 }
858
859 /**
860  * s3c_hsudc_queue - Queue a transfer request for the endpoint.
861  * @_ep: Endpoint for which the request is queued.
862  * @_req: Request to be queued.
863  * @gfp_flags: Not used.
864  *
865  * Start or enqueue a request for a endpoint when called from gadget driver.
866  */
867 static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
868                         gfp_t gfp_flags)
869 {
870         struct s3c_hsudc_req *hsreq;
871         struct s3c_hsudc_ep *hsep;
872         struct s3c_hsudc *hsudc;
873         unsigned long flags;
874         u32 offset;
875         u32 csr;
876
877         hsreq = our_req(_req);
878         if ((!_req || !_req->complete || !_req->buf ||
879                 !list_empty(&hsreq->queue)))
880                 return -EINVAL;
881
882         hsep = our_ep(_ep);
883         hsudc = hsep->dev;
884         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
885                 return -ESHUTDOWN;
886
887         spin_lock_irqsave(&hsudc->lock, flags);
888         set_index(hsudc, hsep->bEndpointAddress);
889
890         _req->status = -EINPROGRESS;
891         _req->actual = 0;
892
893         if (!ep_index(hsep) && _req->length == 0) {
894                 hsudc->ep0state = WAIT_FOR_SETUP;
895                 s3c_hsudc_complete_request(hsep, hsreq, 0);
896                 spin_unlock_irqrestore(&hsudc->lock, flags);
897                 return 0;
898         }
899
900         if (list_empty(&hsep->queue) && !hsep->stopped) {
901                 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
902                 if (ep_is_in(hsep)) {
903                         csr = readl(hsudc->regs + offset);
904                         if (!(csr & S3C_ESR_TX_SUCCESS) &&
905                                 (s3c_hsudc_write_fifo(hsep, hsreq) == 1))
906                                 hsreq = NULL;
907                 } else {
908                         csr = readl(hsudc->regs + offset);
909                         if ((csr & S3C_ESR_RX_SUCCESS)
910                                    && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
911                                 hsreq = NULL;
912                 }
913         }
914
915         if (hsreq)
916                 list_add_tail(&hsreq->queue, &hsep->queue);
917
918         spin_unlock_irqrestore(&hsudc->lock, flags);
919         return 0;
920 }
921
922 /**
923  * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
924  * @_ep: Endpoint from which the request is dequeued.
925  * @_req: Request to be dequeued.
926  *
927  * Dequeue a request from a endpoint when called from gadget driver.
928  */
929 static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
930 {
931         struct s3c_hsudc_ep *hsep = our_ep(_ep);
932         struct s3c_hsudc *hsudc = hsep->dev;
933         struct s3c_hsudc_req *hsreq;
934         unsigned long flags;
935
936         hsep = our_ep(_ep);
937         if (!_ep || hsep->ep.name == ep0name)
938                 return -EINVAL;
939
940         spin_lock_irqsave(&hsudc->lock, flags);
941
942         list_for_each_entry(hsreq, &hsep->queue, queue) {
943                 if (&hsreq->req == _req)
944                         break;
945         }
946         if (&hsreq->req != _req) {
947                 spin_unlock_irqrestore(&hsudc->lock, flags);
948                 return -EINVAL;
949         }
950
951         set_index(hsudc, hsep->bEndpointAddress);
952         s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
953
954         spin_unlock_irqrestore(&hsudc->lock, flags);
955         return 0;
956 }
957
958 static struct usb_ep_ops s3c_hsudc_ep_ops = {
959         .enable = s3c_hsudc_ep_enable,
960         .disable = s3c_hsudc_ep_disable,
961         .alloc_request = s3c_hsudc_alloc_request,
962         .free_request = s3c_hsudc_free_request,
963         .queue = s3c_hsudc_queue,
964         .dequeue = s3c_hsudc_dequeue,
965         .set_halt = s3c_hsudc_set_halt,
966         .set_wedge = s3c_hsudc_set_wedge,
967 };
968
969 /**
970  * s3c_hsudc_initep - Initialize a endpoint to default state.
971  * @hsudc - Reference to the device controller.
972  * @hsep - Endpoint to be initialized.
973  * @epnum - Address to be assigned to the endpoint.
974  *
975  * Initialize a endpoint with default configuration.
976  */
977 static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
978                                 struct s3c_hsudc_ep *hsep, int epnum)
979 {
980         char *dir;
981
982         if ((epnum % 2) == 0) {
983                 dir = "out";
984         } else {
985                 dir = "in";
986                 hsep->bEndpointAddress = USB_DIR_IN;
987         }
988
989         hsep->bEndpointAddress |= epnum;
990         if (epnum)
991                 snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
992         else
993                 snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
994
995         INIT_LIST_HEAD(&hsep->queue);
996         INIT_LIST_HEAD(&hsep->ep.ep_list);
997         if (epnum)
998                 list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
999
1000         hsep->dev = hsudc;
1001         hsep->ep.name = hsep->name;
1002         hsep->ep.maxpacket = epnum ? 512 : 64;
1003         hsep->ep.ops = &s3c_hsudc_ep_ops;
1004         hsep->fifo = hsudc->regs + S3C_BR(epnum);
1005         hsep->ep.desc = NULL;
1006         hsep->stopped = 0;
1007         hsep->wedge = 0;
1008
1009         set_index(hsudc, epnum);
1010         writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
1011 }
1012
1013 /**
1014  * s3c_hsudc_setup_ep - Configure all endpoints to default state.
1015  * @hsudc: Reference to device controller.
1016  *
1017  * Configures all endpoints to default state.
1018  */
1019 static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
1020 {
1021         int epnum;
1022
1023         hsudc->ep0state = WAIT_FOR_SETUP;
1024         INIT_LIST_HEAD(&hsudc->gadget.ep_list);
1025         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
1026                 s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
1027 }
1028
1029 /**
1030  * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
1031  * @hsudc: Reference to device controller.
1032  *
1033  * Reconfigures the device controller registers to a default state.
1034  */
1035 static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
1036 {
1037         writel(0xAA, hsudc->regs + S3C_EDR);
1038         writel(1, hsudc->regs + S3C_EIER);
1039         writel(0, hsudc->regs + S3C_TR);
1040         writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
1041                         S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
1042         writel(0, hsudc->regs + S3C_EP0CR);
1043
1044         s3c_hsudc_setup_ep(hsudc);
1045 }
1046
1047 /**
1048  * s3c_hsudc_irq - Interrupt handler for device controller.
1049  * @irq: Not used.
1050  * @_dev: Reference to the device controller.
1051  *
1052  * Interrupt handler for the device controller. This handler handles controller
1053  * interrupts and endpoint interrupts.
1054  */
1055 static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
1056 {
1057         struct s3c_hsudc *hsudc = _dev;
1058         struct s3c_hsudc_ep *hsep;
1059         u32 ep_intr;
1060         u32 sys_status;
1061         u32 ep_idx;
1062
1063         spin_lock(&hsudc->lock);
1064
1065         sys_status = readl(hsudc->regs + S3C_SSR);
1066         ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
1067
1068         if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
1069                 spin_unlock(&hsudc->lock);
1070                 return IRQ_HANDLED;
1071         }
1072
1073         if (sys_status) {
1074                 if (sys_status & S3C_SSR_VBUSON)
1075                         writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
1076
1077                 if (sys_status & S3C_SSR_ERR)
1078                         writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
1079
1080                 if (sys_status & S3C_SSR_SDE) {
1081                         writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
1082                         hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
1083                                 USB_SPEED_HIGH : USB_SPEED_FULL;
1084                 }
1085
1086                 if (sys_status & S3C_SSR_SUSPEND) {
1087                         writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
1088                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1089                                 && hsudc->driver && hsudc->driver->suspend)
1090                                 hsudc->driver->suspend(&hsudc->gadget);
1091                 }
1092
1093                 if (sys_status & S3C_SSR_RESUME) {
1094                         writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
1095                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1096                                 && hsudc->driver && hsudc->driver->resume)
1097                                 hsudc->driver->resume(&hsudc->gadget);
1098                 }
1099
1100                 if (sys_status & S3C_SSR_RESET) {
1101                         writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
1102                         for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
1103                                 hsep = &hsudc->ep[ep_idx];
1104                                 hsep->stopped = 1;
1105                                 s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
1106                         }
1107                         s3c_hsudc_reconfig(hsudc);
1108                         hsudc->ep0state = WAIT_FOR_SETUP;
1109                 }
1110         }
1111
1112         if (ep_intr & S3C_EIR_EP0) {
1113                 writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
1114                 set_index(hsudc, 0);
1115                 s3c_hsudc_handle_ep0_intr(hsudc);
1116         }
1117
1118         ep_intr >>= 1;
1119         ep_idx = 1;
1120         while (ep_intr) {
1121                 if (ep_intr & 1)  {
1122                         hsep = &hsudc->ep[ep_idx];
1123                         set_index(hsudc, ep_idx);
1124                         writel(1 << ep_idx, hsudc->regs + S3C_EIR);
1125                         if (ep_is_in(hsep))
1126                                 s3c_hsudc_epin_intr(hsudc, ep_idx);
1127                         else
1128                                 s3c_hsudc_epout_intr(hsudc, ep_idx);
1129                 }
1130                 ep_intr >>= 1;
1131                 ep_idx++;
1132         }
1133
1134         spin_unlock(&hsudc->lock);
1135         return IRQ_HANDLED;
1136 }
1137
1138 static int s3c_hsudc_start(struct usb_gadget *gadget,
1139                 struct usb_gadget_driver *driver)
1140 {
1141         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1142         int ret;
1143
1144         if (!driver
1145                 || driver->max_speed < USB_SPEED_FULL
1146                 || !driver->setup)
1147                 return -EINVAL;
1148
1149         if (!hsudc)
1150                 return -ENODEV;
1151
1152         if (hsudc->driver)
1153                 return -EBUSY;
1154
1155         hsudc->driver = driver;
1156
1157         ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
1158                                     hsudc->supplies);
1159         if (ret != 0) {
1160                 dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
1161                 goto err_supplies;
1162         }
1163
1164         /* connect to bus through transceiver */
1165         if (!IS_ERR_OR_NULL(hsudc->transceiver)) {
1166                 ret = otg_set_peripheral(hsudc->transceiver->otg,
1167                                         &hsudc->gadget);
1168                 if (ret) {
1169                         dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
1170                                         hsudc->gadget.name);
1171                         goto err_otg;
1172                 }
1173         }
1174
1175         enable_irq(hsudc->irq);
1176         dev_info(hsudc->dev, "bound driver %s\n", driver->driver.name);
1177
1178         s3c_hsudc_reconfig(hsudc);
1179
1180         pm_runtime_get_sync(hsudc->dev);
1181
1182         s3c_hsudc_init_phy();
1183         if (hsudc->pd->gpio_init)
1184                 hsudc->pd->gpio_init();
1185
1186         return 0;
1187 err_otg:
1188         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1189 err_supplies:
1190         hsudc->driver = NULL;
1191         return ret;
1192 }
1193
1194 static int s3c_hsudc_stop(struct usb_gadget *gadget,
1195                 struct usb_gadget_driver *driver)
1196 {
1197         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1198         unsigned long flags;
1199
1200         if (!hsudc)
1201                 return -ENODEV;
1202
1203         if (!driver || driver != hsudc->driver)
1204                 return -EINVAL;
1205
1206         spin_lock_irqsave(&hsudc->lock, flags);
1207         hsudc->driver = NULL;
1208         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1209         s3c_hsudc_uninit_phy();
1210
1211         pm_runtime_put(hsudc->dev);
1212
1213         if (hsudc->pd->gpio_uninit)
1214                 hsudc->pd->gpio_uninit();
1215         s3c_hsudc_stop_activity(hsudc);
1216         spin_unlock_irqrestore(&hsudc->lock, flags);
1217
1218         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1219                 (void) otg_set_peripheral(hsudc->transceiver->otg, NULL);
1220
1221         disable_irq(hsudc->irq);
1222
1223         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1224
1225         dev_info(hsudc->dev, "unregistered gadget driver '%s'\n",
1226                         driver->driver.name);
1227         return 0;
1228 }
1229
1230 static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
1231 {
1232         return readl(hsudc->regs + S3C_FNR) & 0x3FF;
1233 }
1234
1235 static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
1236 {
1237         return s3c_hsudc_read_frameno(to_hsudc(gadget));
1238 }
1239
1240 static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
1241 {
1242         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1243
1244         if (!hsudc)
1245                 return -ENODEV;
1246
1247         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1248                 return usb_phy_set_power(hsudc->transceiver, mA);
1249
1250         return -EOPNOTSUPP;
1251 }
1252
1253 static const struct usb_gadget_ops s3c_hsudc_gadget_ops = {
1254         .get_frame      = s3c_hsudc_gadget_getframe,
1255         .udc_start      = s3c_hsudc_start,
1256         .udc_stop       = s3c_hsudc_stop,
1257         .vbus_draw      = s3c_hsudc_vbus_draw,
1258 };
1259
1260 static int s3c_hsudc_probe(struct platform_device *pdev)
1261 {
1262         struct device *dev = &pdev->dev;
1263         struct resource *res;
1264         struct s3c_hsudc *hsudc;
1265         struct s3c24xx_hsudc_platdata *pd = dev_get_platdata(&pdev->dev);
1266         int ret, i;
1267
1268         hsudc = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsudc) +
1269                         sizeof(struct s3c_hsudc_ep) * pd->epnum,
1270                         GFP_KERNEL);
1271         if (!hsudc) {
1272                 dev_err(dev, "cannot allocate memory\n");
1273                 return -ENOMEM;
1274         }
1275
1276         platform_set_drvdata(pdev, dev);
1277         hsudc->dev = dev;
1278         hsudc->pd = dev_get_platdata(&pdev->dev);
1279
1280         hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
1281
1282         for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
1283                 hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];
1284
1285         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
1286                                  hsudc->supplies);
1287         if (ret != 0) {
1288                 dev_err(dev, "failed to request supplies: %d\n", ret);
1289                 goto err_supplies;
1290         }
1291
1292         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1293
1294         hsudc->regs = devm_ioremap_resource(&pdev->dev, res);
1295         if (IS_ERR(hsudc->regs)) {
1296                 ret = PTR_ERR(hsudc->regs);
1297                 goto err_res;
1298         }
1299
1300         spin_lock_init(&hsudc->lock);
1301
1302         hsudc->gadget.max_speed = USB_SPEED_HIGH;
1303         hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
1304         hsudc->gadget.name = dev_name(dev);
1305         hsudc->gadget.ep0 = &hsudc->ep[0].ep;
1306         hsudc->gadget.is_otg = 0;
1307         hsudc->gadget.is_a_peripheral = 0;
1308         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1309
1310         s3c_hsudc_setup_ep(hsudc);
1311
1312         ret = platform_get_irq(pdev, 0);
1313         if (ret < 0) {
1314                 dev_err(dev, "unable to obtain IRQ number\n");
1315                 goto err_res;
1316         }
1317         hsudc->irq = ret;
1318
1319         ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0,
1320                                 driver_name, hsudc);
1321         if (ret < 0) {
1322                 dev_err(dev, "irq request failed\n");
1323                 goto err_res;
1324         }
1325
1326         hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device");
1327         if (IS_ERR(hsudc->uclk)) {
1328                 dev_err(dev, "failed to find usb-device clock source\n");
1329                 ret = PTR_ERR(hsudc->uclk);
1330                 goto err_res;
1331         }
1332         clk_enable(hsudc->uclk);
1333
1334         local_irq_disable();
1335
1336         disable_irq(hsudc->irq);
1337         local_irq_enable();
1338
1339         ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
1340         if (ret)
1341                 goto err_add_udc;
1342
1343         pm_runtime_enable(dev);
1344
1345         return 0;
1346 err_add_udc:
1347 err_add_device:
1348         clk_disable(hsudc->uclk);
1349 err_res:
1350         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1351                 usb_put_phy(hsudc->transceiver);
1352
1353 err_supplies:
1354         return ret;
1355 }
1356
1357 static struct platform_driver s3c_hsudc_driver = {
1358         .driver         = {
1359                 .owner  = THIS_MODULE,
1360                 .name   = "s3c-hsudc",
1361         },
1362         .probe          = s3c_hsudc_probe,
1363 };
1364
1365 module_platform_driver(s3c_hsudc_driver);
1366
1367 MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
1368 MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
1369 MODULE_LICENSE("GPL");
1370 MODULE_ALIAS("platform:s3c-hsudc");