]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume...
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67                                         struct extent_io_tree *dirty_pages,
68                                         int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70                                        struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75  * btrfs_end_io_wq structs are used to do processing in task context when an IO
76  * is complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct btrfs_end_io_wq {
80         struct bio *bio;
81         bio_end_io_t *end_io;
82         void *private;
83         struct btrfs_fs_info *info;
84         int error;
85         enum btrfs_wq_endio_type metadata;
86         struct list_head list;
87         struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95                                         sizeof(struct btrfs_end_io_wq),
96                                         0,
97                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98                                         NULL);
99         if (!btrfs_end_io_wq_cache)
100                 return -ENOMEM;
101         return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106         if (btrfs_end_io_wq_cache)
107                 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111  * async submit bios are used to offload expensive checksumming
112  * onto the worker threads.  They checksum file and metadata bios
113  * just before they are sent down the IO stack.
114  */
115 struct async_submit_bio {
116         struct inode *inode;
117         struct bio *bio;
118         struct list_head list;
119         extent_submit_bio_hook_t *submit_bio_start;
120         extent_submit_bio_hook_t *submit_bio_done;
121         int rw;
122         int mirror_num;
123         unsigned long bio_flags;
124         /*
125          * bio_offset is optional, can be used if the pages in the bio
126          * can't tell us where in the file the bio should go
127          */
128         u64 bio_offset;
129         struct btrfs_work work;
130         int error;
131 };
132
133 /*
134  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135  * eb, the lockdep key is determined by the btrfs_root it belongs to and
136  * the level the eb occupies in the tree.
137  *
138  * Different roots are used for different purposes and may nest inside each
139  * other and they require separate keysets.  As lockdep keys should be
140  * static, assign keysets according to the purpose of the root as indicated
141  * by btrfs_root->objectid.  This ensures that all special purpose roots
142  * have separate keysets.
143  *
144  * Lock-nesting across peer nodes is always done with the immediate parent
145  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146  * subclass to avoid triggering lockdep warning in such cases.
147  *
148  * The key is set by the readpage_end_io_hook after the buffer has passed
149  * csum validation but before the pages are unlocked.  It is also set by
150  * btrfs_init_new_buffer on freshly allocated blocks.
151  *
152  * We also add a check to make sure the highest level of the tree is the
153  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154  * needs update as well.
155  */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 #  error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162         u64                     id;             /* root objectid */
163         const char              *name_stem;     /* lock name stem */
164         char                    names[BTRFS_MAX_LEVEL + 1][20];
165         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
168         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
169         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
170         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
171         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
172         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
173         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
174         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
175         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
176         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
177         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
178         { .id = 0,                              .name_stem = "tree"     },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183         int i, j;
184
185         /* initialize lockdep class names */
186         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190                         snprintf(ks->names[j], sizeof(ks->names[j]),
191                                  "btrfs-%s-%02d", ks->name_stem, j);
192         }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196                                     int level)
197 {
198         struct btrfs_lockdep_keyset *ks;
199
200         BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202         /* find the matching keyset, id 0 is the default entry */
203         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204                 if (ks->id == objectid)
205                         break;
206
207         lockdep_set_class_and_name(&eb->lock,
208                                    &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214  * extents on the btree inode are pretty simple, there's one extent
215  * that covers the entire device
216  */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218                 struct page *page, size_t pg_offset, u64 start, u64 len,
219                 int create)
220 {
221         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222         struct extent_map *em;
223         int ret;
224
225         read_lock(&em_tree->lock);
226         em = lookup_extent_mapping(em_tree, start, len);
227         if (em) {
228                 em->bdev =
229                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230                 read_unlock(&em_tree->lock);
231                 goto out;
232         }
233         read_unlock(&em_tree->lock);
234
235         em = alloc_extent_map();
236         if (!em) {
237                 em = ERR_PTR(-ENOMEM);
238                 goto out;
239         }
240         em->start = 0;
241         em->len = (u64)-1;
242         em->block_len = (u64)-1;
243         em->block_start = 0;
244         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246         write_lock(&em_tree->lock);
247         ret = add_extent_mapping(em_tree, em, 0);
248         if (ret == -EEXIST) {
249                 free_extent_map(em);
250                 em = lookup_extent_mapping(em_tree, start, len);
251                 if (!em)
252                         em = ERR_PTR(-EIO);
253         } else if (ret) {
254                 free_extent_map(em);
255                 em = ERR_PTR(ret);
256         }
257         write_unlock(&em_tree->lock);
258
259 out:
260         return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265         return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270         put_unaligned_le32(~crc, result);
271 }
272
273 /*
274  * compute the csum for a btree block, and either verify it or write it
275  * into the csum field of the block.
276  */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278                            struct extent_buffer *buf,
279                            int verify)
280 {
281         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282         char *result = NULL;
283         unsigned long len;
284         unsigned long cur_len;
285         unsigned long offset = BTRFS_CSUM_SIZE;
286         char *kaddr;
287         unsigned long map_start;
288         unsigned long map_len;
289         int err;
290         u32 crc = ~(u32)0;
291         unsigned long inline_result;
292
293         len = buf->len - offset;
294         while (len > 0) {
295                 err = map_private_extent_buffer(buf, offset, 32,
296                                         &kaddr, &map_start, &map_len);
297                 if (err)
298                         return 1;
299                 cur_len = min(len, map_len - (offset - map_start));
300                 crc = btrfs_csum_data(kaddr + offset - map_start,
301                                       crc, cur_len);
302                 len -= cur_len;
303                 offset += cur_len;
304         }
305         if (csum_size > sizeof(inline_result)) {
306                 result = kzalloc(csum_size, GFP_NOFS);
307                 if (!result)
308                         return 1;
309         } else {
310                 result = (char *)&inline_result;
311         }
312
313         btrfs_csum_final(crc, result);
314
315         if (verify) {
316                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317                         u32 val;
318                         u32 found = 0;
319                         memcpy(&found, result, csum_size);
320
321                         read_extent_buffer(buf, &val, 0, csum_size);
322                         btrfs_warn_rl(fs_info,
323                                 "%s checksum verify failed on %llu wanted %X found %X "
324                                 "level %d",
325                                 fs_info->sb->s_id, buf->start,
326                                 val, found, btrfs_header_level(buf));
327                         if (result != (char *)&inline_result)
328                                 kfree(result);
329                         return 1;
330                 }
331         } else {
332                 write_extent_buffer(buf, result, 0, csum_size);
333         }
334         if (result != (char *)&inline_result)
335                 kfree(result);
336         return 0;
337 }
338
339 /*
340  * we can't consider a given block up to date unless the transid of the
341  * block matches the transid in the parent node's pointer.  This is how we
342  * detect blocks that either didn't get written at all or got written
343  * in the wrong place.
344  */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346                                  struct extent_buffer *eb, u64 parent_transid,
347                                  int atomic)
348 {
349         struct extent_state *cached_state = NULL;
350         int ret;
351         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354                 return 0;
355
356         if (atomic)
357                 return -EAGAIN;
358
359         if (need_lock) {
360                 btrfs_tree_read_lock(eb);
361                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362         }
363
364         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365                          0, &cached_state);
366         if (extent_buffer_uptodate(eb) &&
367             btrfs_header_generation(eb) == parent_transid) {
368                 ret = 0;
369                 goto out;
370         }
371         btrfs_err_rl(eb->fs_info,
372                 "parent transid verify failed on %llu wanted %llu found %llu",
373                         eb->start,
374                         parent_transid, btrfs_header_generation(eb));
375         ret = 1;
376
377         /*
378          * Things reading via commit roots that don't have normal protection,
379          * like send, can have a really old block in cache that may point at a
380          * block that has been free'd and re-allocated.  So don't clear uptodate
381          * if we find an eb that is under IO (dirty/writeback) because we could
382          * end up reading in the stale data and then writing it back out and
383          * making everybody very sad.
384          */
385         if (!extent_buffer_under_io(eb))
386                 clear_extent_buffer_uptodate(eb);
387 out:
388         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389                              &cached_state, GFP_NOFS);
390         if (need_lock)
391                 btrfs_tree_read_unlock_blocking(eb);
392         return ret;
393 }
394
395 /*
396  * Return 0 if the superblock checksum type matches the checksum value of that
397  * algorithm. Pass the raw disk superblock data.
398  */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401         struct btrfs_super_block *disk_sb =
402                 (struct btrfs_super_block *)raw_disk_sb;
403         u16 csum_type = btrfs_super_csum_type(disk_sb);
404         int ret = 0;
405
406         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407                 u32 crc = ~(u32)0;
408                 const int csum_size = sizeof(crc);
409                 char result[csum_size];
410
411                 /*
412                  * The super_block structure does not span the whole
413                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414                  * is filled with zeros and is included in the checkum.
415                  */
416                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418                 btrfs_csum_final(crc, result);
419
420                 if (memcmp(raw_disk_sb, result, csum_size))
421                         ret = 1;
422         }
423
424         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426                                 csum_type);
427                 ret = 1;
428         }
429
430         return ret;
431 }
432
433 /*
434  * helper to read a given tree block, doing retries as required when
435  * the checksums don't match and we have alternate mirrors to try.
436  */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438                                           struct extent_buffer *eb,
439                                           u64 start, u64 parent_transid)
440 {
441         struct extent_io_tree *io_tree;
442         int failed = 0;
443         int ret;
444         int num_copies = 0;
445         int mirror_num = 0;
446         int failed_mirror = 0;
447
448         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450         while (1) {
451                 ret = read_extent_buffer_pages(io_tree, eb, start,
452                                                WAIT_COMPLETE,
453                                                btree_get_extent, mirror_num);
454                 if (!ret) {
455                         if (!verify_parent_transid(io_tree, eb,
456                                                    parent_transid, 0))
457                                 break;
458                         else
459                                 ret = -EIO;
460                 }
461
462                 /*
463                  * This buffer's crc is fine, but its contents are corrupted, so
464                  * there is no reason to read the other copies, they won't be
465                  * any less wrong.
466                  */
467                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468                         break;
469
470                 num_copies = btrfs_num_copies(root->fs_info,
471                                               eb->start, eb->len);
472                 if (num_copies == 1)
473                         break;
474
475                 if (!failed_mirror) {
476                         failed = 1;
477                         failed_mirror = eb->read_mirror;
478                 }
479
480                 mirror_num++;
481                 if (mirror_num == failed_mirror)
482                         mirror_num++;
483
484                 if (mirror_num > num_copies)
485                         break;
486         }
487
488         if (failed && !ret && failed_mirror)
489                 repair_eb_io_failure(root, eb, failed_mirror);
490
491         return ret;
492 }
493
494 /*
495  * checksum a dirty tree block before IO.  This has extra checks to make sure
496  * we only fill in the checksum field in the first page of a multi-page block
497  */
498
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501         u64 start = page_offset(page);
502         u64 found_start;
503         struct extent_buffer *eb;
504
505         eb = (struct extent_buffer *)page->private;
506         if (page != eb->pages[0])
507                 return 0;
508         found_start = btrfs_header_bytenr(eb);
509         if (WARN_ON(found_start != start || !PageUptodate(page)))
510                 return 0;
511         csum_tree_block(fs_info, eb, 0);
512         return 0;
513 }
514
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516                                  struct extent_buffer *eb)
517 {
518         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519         u8 fsid[BTRFS_UUID_SIZE];
520         int ret = 1;
521
522         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523         while (fs_devices) {
524                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525                         ret = 0;
526                         break;
527                 }
528                 fs_devices = fs_devices->seed;
529         }
530         return ret;
531 }
532
533 #define CORRUPT(reason, eb, root, slot)                         \
534         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
535                    "root=%llu, slot=%d", reason,                        \
536                btrfs_header_bytenr(eb), root->objectid, slot)
537
538 static noinline int check_leaf(struct btrfs_root *root,
539                                struct extent_buffer *leaf)
540 {
541         struct btrfs_key key;
542         struct btrfs_key leaf_key;
543         u32 nritems = btrfs_header_nritems(leaf);
544         int slot;
545
546         if (nritems == 0)
547                 return 0;
548
549         /* Check the 0 item */
550         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551             BTRFS_LEAF_DATA_SIZE(root)) {
552                 CORRUPT("invalid item offset size pair", leaf, root, 0);
553                 return -EIO;
554         }
555
556         /*
557          * Check to make sure each items keys are in the correct order and their
558          * offsets make sense.  We only have to loop through nritems-1 because
559          * we check the current slot against the next slot, which verifies the
560          * next slot's offset+size makes sense and that the current's slot
561          * offset is correct.
562          */
563         for (slot = 0; slot < nritems - 1; slot++) {
564                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567                 /* Make sure the keys are in the right order */
568                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569                         CORRUPT("bad key order", leaf, root, slot);
570                         return -EIO;
571                 }
572
573                 /*
574                  * Make sure the offset and ends are right, remember that the
575                  * item data starts at the end of the leaf and grows towards the
576                  * front.
577                  */
578                 if (btrfs_item_offset_nr(leaf, slot) !=
579                         btrfs_item_end_nr(leaf, slot + 1)) {
580                         CORRUPT("slot offset bad", leaf, root, slot);
581                         return -EIO;
582                 }
583
584                 /*
585                  * Check to make sure that we don't point outside of the leaf,
586                  * just incase all the items are consistent to eachother, but
587                  * all point outside of the leaf.
588                  */
589                 if (btrfs_item_end_nr(leaf, slot) >
590                     BTRFS_LEAF_DATA_SIZE(root)) {
591                         CORRUPT("slot end outside of leaf", leaf, root, slot);
592                         return -EIO;
593                 }
594         }
595
596         return 0;
597 }
598
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600                                       u64 phy_offset, struct page *page,
601                                       u64 start, u64 end, int mirror)
602 {
603         u64 found_start;
604         int found_level;
605         struct extent_buffer *eb;
606         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607         int ret = 0;
608         int reads_done;
609
610         if (!page->private)
611                 goto out;
612
613         eb = (struct extent_buffer *)page->private;
614
615         /* the pending IO might have been the only thing that kept this buffer
616          * in memory.  Make sure we have a ref for all this other checks
617          */
618         extent_buffer_get(eb);
619
620         reads_done = atomic_dec_and_test(&eb->io_pages);
621         if (!reads_done)
622                 goto err;
623
624         eb->read_mirror = mirror;
625         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626                 ret = -EIO;
627                 goto err;
628         }
629
630         found_start = btrfs_header_bytenr(eb);
631         if (found_start != eb->start) {
632                 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633                                found_start, eb->start);
634                 ret = -EIO;
635                 goto err;
636         }
637         if (check_tree_block_fsid(root->fs_info, eb)) {
638                 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639                                eb->start);
640                 ret = -EIO;
641                 goto err;
642         }
643         found_level = btrfs_header_level(eb);
644         if (found_level >= BTRFS_MAX_LEVEL) {
645                 btrfs_err(root->fs_info, "bad tree block level %d",
646                            (int)btrfs_header_level(eb));
647                 ret = -EIO;
648                 goto err;
649         }
650
651         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652                                        eb, found_level);
653
654         ret = csum_tree_block(root->fs_info, eb, 1);
655         if (ret) {
656                 ret = -EIO;
657                 goto err;
658         }
659
660         /*
661          * If this is a leaf block and it is corrupt, set the corrupt bit so
662          * that we don't try and read the other copies of this block, just
663          * return -EIO.
664          */
665         if (found_level == 0 && check_leaf(root, eb)) {
666                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667                 ret = -EIO;
668         }
669
670         if (!ret)
671                 set_extent_buffer_uptodate(eb);
672 err:
673         if (reads_done &&
674             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675                 btree_readahead_hook(root, eb, eb->start, ret);
676
677         if (ret) {
678                 /*
679                  * our io error hook is going to dec the io pages
680                  * again, we have to make sure it has something
681                  * to decrement
682                  */
683                 atomic_inc(&eb->io_pages);
684                 clear_extent_buffer_uptodate(eb);
685         }
686         free_extent_buffer(eb);
687 out:
688         return ret;
689 }
690
691 static int btree_io_failed_hook(struct page *page, int failed_mirror)
692 {
693         struct extent_buffer *eb;
694         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695
696         eb = (struct extent_buffer *)page->private;
697         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
698         eb->read_mirror = failed_mirror;
699         atomic_dec(&eb->io_pages);
700         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
701                 btree_readahead_hook(root, eb, eb->start, -EIO);
702         return -EIO;    /* we fixed nothing */
703 }
704
705 static void end_workqueue_bio(struct bio *bio)
706 {
707         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
708         struct btrfs_fs_info *fs_info;
709         struct btrfs_workqueue *wq;
710         btrfs_work_func_t func;
711
712         fs_info = end_io_wq->info;
713         end_io_wq->error = bio->bi_error;
714
715         if (bio->bi_rw & REQ_WRITE) {
716                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717                         wq = fs_info->endio_meta_write_workers;
718                         func = btrfs_endio_meta_write_helper;
719                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720                         wq = fs_info->endio_freespace_worker;
721                         func = btrfs_freespace_write_helper;
722                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723                         wq = fs_info->endio_raid56_workers;
724                         func = btrfs_endio_raid56_helper;
725                 } else {
726                         wq = fs_info->endio_write_workers;
727                         func = btrfs_endio_write_helper;
728                 }
729         } else {
730                 if (unlikely(end_io_wq->metadata ==
731                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732                         wq = fs_info->endio_repair_workers;
733                         func = btrfs_endio_repair_helper;
734                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
735                         wq = fs_info->endio_raid56_workers;
736                         func = btrfs_endio_raid56_helper;
737                 } else if (end_io_wq->metadata) {
738                         wq = fs_info->endio_meta_workers;
739                         func = btrfs_endio_meta_helper;
740                 } else {
741                         wq = fs_info->endio_workers;
742                         func = btrfs_endio_helper;
743                 }
744         }
745
746         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747         btrfs_queue_work(wq, &end_io_wq->work);
748 }
749
750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
751                         enum btrfs_wq_endio_type metadata)
752 {
753         struct btrfs_end_io_wq *end_io_wq;
754
755         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
756         if (!end_io_wq)
757                 return -ENOMEM;
758
759         end_io_wq->private = bio->bi_private;
760         end_io_wq->end_io = bio->bi_end_io;
761         end_io_wq->info = info;
762         end_io_wq->error = 0;
763         end_io_wq->bio = bio;
764         end_io_wq->metadata = metadata;
765
766         bio->bi_private = end_io_wq;
767         bio->bi_end_io = end_workqueue_bio;
768         return 0;
769 }
770
771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
772 {
773         unsigned long limit = min_t(unsigned long,
774                                     info->thread_pool_size,
775                                     info->fs_devices->open_devices);
776         return 256 * limit;
777 }
778
779 static void run_one_async_start(struct btrfs_work *work)
780 {
781         struct async_submit_bio *async;
782         int ret;
783
784         async = container_of(work, struct  async_submit_bio, work);
785         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786                                       async->mirror_num, async->bio_flags,
787                                       async->bio_offset);
788         if (ret)
789                 async->error = ret;
790 }
791
792 static void run_one_async_done(struct btrfs_work *work)
793 {
794         struct btrfs_fs_info *fs_info;
795         struct async_submit_bio *async;
796         int limit;
797
798         async = container_of(work, struct  async_submit_bio, work);
799         fs_info = BTRFS_I(async->inode)->root->fs_info;
800
801         limit = btrfs_async_submit_limit(fs_info);
802         limit = limit * 2 / 3;
803
804         /*
805          * atomic_dec_return implies a barrier for waitqueue_active
806          */
807         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
808             waitqueue_active(&fs_info->async_submit_wait))
809                 wake_up(&fs_info->async_submit_wait);
810
811         /* If an error occured we just want to clean up the bio and move on */
812         if (async->error) {
813                 async->bio->bi_error = async->error;
814                 bio_endio(async->bio);
815                 return;
816         }
817
818         async->submit_bio_done(async->inode, async->rw, async->bio,
819                                async->mirror_num, async->bio_flags,
820                                async->bio_offset);
821 }
822
823 static void run_one_async_free(struct btrfs_work *work)
824 {
825         struct async_submit_bio *async;
826
827         async = container_of(work, struct  async_submit_bio, work);
828         kfree(async);
829 }
830
831 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
832                         int rw, struct bio *bio, int mirror_num,
833                         unsigned long bio_flags,
834                         u64 bio_offset,
835                         extent_submit_bio_hook_t *submit_bio_start,
836                         extent_submit_bio_hook_t *submit_bio_done)
837 {
838         struct async_submit_bio *async;
839
840         async = kmalloc(sizeof(*async), GFP_NOFS);
841         if (!async)
842                 return -ENOMEM;
843
844         async->inode = inode;
845         async->rw = rw;
846         async->bio = bio;
847         async->mirror_num = mirror_num;
848         async->submit_bio_start = submit_bio_start;
849         async->submit_bio_done = submit_bio_done;
850
851         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
852                         run_one_async_done, run_one_async_free);
853
854         async->bio_flags = bio_flags;
855         async->bio_offset = bio_offset;
856
857         async->error = 0;
858
859         atomic_inc(&fs_info->nr_async_submits);
860
861         if (rw & REQ_SYNC)
862                 btrfs_set_work_high_priority(&async->work);
863
864         btrfs_queue_work(fs_info->workers, &async->work);
865
866         while (atomic_read(&fs_info->async_submit_draining) &&
867               atomic_read(&fs_info->nr_async_submits)) {
868                 wait_event(fs_info->async_submit_wait,
869                            (atomic_read(&fs_info->nr_async_submits) == 0));
870         }
871
872         return 0;
873 }
874
875 static int btree_csum_one_bio(struct bio *bio)
876 {
877         struct bio_vec *bvec;
878         struct btrfs_root *root;
879         int i, ret = 0;
880
881         bio_for_each_segment_all(bvec, bio, i) {
882                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
883                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
884                 if (ret)
885                         break;
886         }
887
888         return ret;
889 }
890
891 static int __btree_submit_bio_start(struct inode *inode, int rw,
892                                     struct bio *bio, int mirror_num,
893                                     unsigned long bio_flags,
894                                     u64 bio_offset)
895 {
896         /*
897          * when we're called for a write, we're already in the async
898          * submission context.  Just jump into btrfs_map_bio
899          */
900         return btree_csum_one_bio(bio);
901 }
902
903 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
904                                  int mirror_num, unsigned long bio_flags,
905                                  u64 bio_offset)
906 {
907         int ret;
908
909         /*
910          * when we're called for a write, we're already in the async
911          * submission context.  Just jump into btrfs_map_bio
912          */
913         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
914         if (ret) {
915                 bio->bi_error = ret;
916                 bio_endio(bio);
917         }
918         return ret;
919 }
920
921 static int check_async_write(struct inode *inode, unsigned long bio_flags)
922 {
923         if (bio_flags & EXTENT_BIO_TREE_LOG)
924                 return 0;
925 #ifdef CONFIG_X86
926         if (cpu_has_xmm4_2)
927                 return 0;
928 #endif
929         return 1;
930 }
931
932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
933                                  int mirror_num, unsigned long bio_flags,
934                                  u64 bio_offset)
935 {
936         int async = check_async_write(inode, bio_flags);
937         int ret;
938
939         if (!(rw & REQ_WRITE)) {
940                 /*
941                  * called for a read, do the setup so that checksum validation
942                  * can happen in the async kernel threads
943                  */
944                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
945                                           bio, BTRFS_WQ_ENDIO_METADATA);
946                 if (ret)
947                         goto out_w_error;
948                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949                                     mirror_num, 0);
950         } else if (!async) {
951                 ret = btree_csum_one_bio(bio);
952                 if (ret)
953                         goto out_w_error;
954                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955                                     mirror_num, 0);
956         } else {
957                 /*
958                  * kthread helpers are used to submit writes so that
959                  * checksumming can happen in parallel across all CPUs
960                  */
961                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962                                           inode, rw, bio, mirror_num, 0,
963                                           bio_offset,
964                                           __btree_submit_bio_start,
965                                           __btree_submit_bio_done);
966         }
967
968         if (ret)
969                 goto out_w_error;
970         return 0;
971
972 out_w_error:
973         bio->bi_error = ret;
974         bio_endio(bio);
975         return ret;
976 }
977
978 #ifdef CONFIG_MIGRATION
979 static int btree_migratepage(struct address_space *mapping,
980                         struct page *newpage, struct page *page,
981                         enum migrate_mode mode)
982 {
983         /*
984          * we can't safely write a btree page from here,
985          * we haven't done the locking hook
986          */
987         if (PageDirty(page))
988                 return -EAGAIN;
989         /*
990          * Buffers may be managed in a filesystem specific way.
991          * We must have no buffers or drop them.
992          */
993         if (page_has_private(page) &&
994             !try_to_release_page(page, GFP_KERNEL))
995                 return -EAGAIN;
996         return migrate_page(mapping, newpage, page, mode);
997 }
998 #endif
999
1000
1001 static int btree_writepages(struct address_space *mapping,
1002                             struct writeback_control *wbc)
1003 {
1004         struct btrfs_fs_info *fs_info;
1005         int ret;
1006
1007         if (wbc->sync_mode == WB_SYNC_NONE) {
1008
1009                 if (wbc->for_kupdate)
1010                         return 0;
1011
1012                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1013                 /* this is a bit racy, but that's ok */
1014                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1015                                              BTRFS_DIRTY_METADATA_THRESH);
1016                 if (ret < 0)
1017                         return 0;
1018         }
1019         return btree_write_cache_pages(mapping, wbc);
1020 }
1021
1022 static int btree_readpage(struct file *file, struct page *page)
1023 {
1024         struct extent_io_tree *tree;
1025         tree = &BTRFS_I(page->mapping->host)->io_tree;
1026         return extent_read_full_page(tree, page, btree_get_extent, 0);
1027 }
1028
1029 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1030 {
1031         if (PageWriteback(page) || PageDirty(page))
1032                 return 0;
1033
1034         return try_release_extent_buffer(page);
1035 }
1036
1037 static void btree_invalidatepage(struct page *page, unsigned int offset,
1038                                  unsigned int length)
1039 {
1040         struct extent_io_tree *tree;
1041         tree = &BTRFS_I(page->mapping->host)->io_tree;
1042         extent_invalidatepage(tree, page, offset);
1043         btree_releasepage(page, GFP_NOFS);
1044         if (PagePrivate(page)) {
1045                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1046                            "page private not zero on page %llu",
1047                            (unsigned long long)page_offset(page));
1048                 ClearPagePrivate(page);
1049                 set_page_private(page, 0);
1050                 page_cache_release(page);
1051         }
1052 }
1053
1054 static int btree_set_page_dirty(struct page *page)
1055 {
1056 #ifdef DEBUG
1057         struct extent_buffer *eb;
1058
1059         BUG_ON(!PagePrivate(page));
1060         eb = (struct extent_buffer *)page->private;
1061         BUG_ON(!eb);
1062         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063         BUG_ON(!atomic_read(&eb->refs));
1064         btrfs_assert_tree_locked(eb);
1065 #endif
1066         return __set_page_dirty_nobuffers(page);
1067 }
1068
1069 static const struct address_space_operations btree_aops = {
1070         .readpage       = btree_readpage,
1071         .writepages     = btree_writepages,
1072         .releasepage    = btree_releasepage,
1073         .invalidatepage = btree_invalidatepage,
1074 #ifdef CONFIG_MIGRATION
1075         .migratepage    = btree_migratepage,
1076 #endif
1077         .set_page_dirty = btree_set_page_dirty,
1078 };
1079
1080 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1081 {
1082         struct extent_buffer *buf = NULL;
1083         struct inode *btree_inode = root->fs_info->btree_inode;
1084
1085         buf = btrfs_find_create_tree_block(root, bytenr);
1086         if (!buf)
1087                 return;
1088         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1089                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1090         free_extent_buffer(buf);
1091 }
1092
1093 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1094                          int mirror_num, struct extent_buffer **eb)
1095 {
1096         struct extent_buffer *buf = NULL;
1097         struct inode *btree_inode = root->fs_info->btree_inode;
1098         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1099         int ret;
1100
1101         buf = btrfs_find_create_tree_block(root, bytenr);
1102         if (!buf)
1103                 return 0;
1104
1105         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1106
1107         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1108                                        btree_get_extent, mirror_num);
1109         if (ret) {
1110                 free_extent_buffer(buf);
1111                 return ret;
1112         }
1113
1114         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1115                 free_extent_buffer(buf);
1116                 return -EIO;
1117         } else if (extent_buffer_uptodate(buf)) {
1118                 *eb = buf;
1119         } else {
1120                 free_extent_buffer(buf);
1121         }
1122         return 0;
1123 }
1124
1125 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1126                                             u64 bytenr)
1127 {
1128         return find_extent_buffer(fs_info, bytenr);
1129 }
1130
1131 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1132                                                  u64 bytenr)
1133 {
1134         if (btrfs_test_is_dummy_root(root))
1135                 return alloc_test_extent_buffer(root->fs_info, bytenr);
1136         return alloc_extent_buffer(root->fs_info, bytenr);
1137 }
1138
1139
1140 int btrfs_write_tree_block(struct extent_buffer *buf)
1141 {
1142         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1143                                         buf->start + buf->len - 1);
1144 }
1145
1146 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1147 {
1148         return filemap_fdatawait_range(buf->pages[0]->mapping,
1149                                        buf->start, buf->start + buf->len - 1);
1150 }
1151
1152 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1153                                       u64 parent_transid)
1154 {
1155         struct extent_buffer *buf = NULL;
1156         int ret;
1157
1158         buf = btrfs_find_create_tree_block(root, bytenr);
1159         if (!buf)
1160                 return ERR_PTR(-ENOMEM);
1161
1162         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1163         if (ret) {
1164                 free_extent_buffer(buf);
1165                 return ERR_PTR(ret);
1166         }
1167         return buf;
1168
1169 }
1170
1171 void clean_tree_block(struct btrfs_trans_handle *trans,
1172                       struct btrfs_fs_info *fs_info,
1173                       struct extent_buffer *buf)
1174 {
1175         if (btrfs_header_generation(buf) ==
1176             fs_info->running_transaction->transid) {
1177                 btrfs_assert_tree_locked(buf);
1178
1179                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1180                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1181                                              -buf->len,
1182                                              fs_info->dirty_metadata_batch);
1183                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1184                         btrfs_set_lock_blocking(buf);
1185                         clear_extent_buffer_dirty(buf);
1186                 }
1187         }
1188 }
1189
1190 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1191 {
1192         struct btrfs_subvolume_writers *writers;
1193         int ret;
1194
1195         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1196         if (!writers)
1197                 return ERR_PTR(-ENOMEM);
1198
1199         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1200         if (ret < 0) {
1201                 kfree(writers);
1202                 return ERR_PTR(ret);
1203         }
1204
1205         init_waitqueue_head(&writers->wait);
1206         return writers;
1207 }
1208
1209 static void
1210 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1211 {
1212         percpu_counter_destroy(&writers->counter);
1213         kfree(writers);
1214 }
1215
1216 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1217                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1218                          u64 objectid)
1219 {
1220         root->node = NULL;
1221         root->commit_root = NULL;
1222         root->sectorsize = sectorsize;
1223         root->nodesize = nodesize;
1224         root->stripesize = stripesize;
1225         root->state = 0;
1226         root->orphan_cleanup_state = 0;
1227
1228         root->objectid = objectid;
1229         root->last_trans = 0;
1230         root->highest_objectid = 0;
1231         root->nr_delalloc_inodes = 0;
1232         root->nr_ordered_extents = 0;
1233         root->name = NULL;
1234         root->inode_tree = RB_ROOT;
1235         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1236         root->block_rsv = NULL;
1237         root->orphan_block_rsv = NULL;
1238
1239         INIT_LIST_HEAD(&root->dirty_list);
1240         INIT_LIST_HEAD(&root->root_list);
1241         INIT_LIST_HEAD(&root->delalloc_inodes);
1242         INIT_LIST_HEAD(&root->delalloc_root);
1243         INIT_LIST_HEAD(&root->ordered_extents);
1244         INIT_LIST_HEAD(&root->ordered_root);
1245         INIT_LIST_HEAD(&root->logged_list[0]);
1246         INIT_LIST_HEAD(&root->logged_list[1]);
1247         spin_lock_init(&root->orphan_lock);
1248         spin_lock_init(&root->inode_lock);
1249         spin_lock_init(&root->delalloc_lock);
1250         spin_lock_init(&root->ordered_extent_lock);
1251         spin_lock_init(&root->accounting_lock);
1252         spin_lock_init(&root->log_extents_lock[0]);
1253         spin_lock_init(&root->log_extents_lock[1]);
1254         mutex_init(&root->objectid_mutex);
1255         mutex_init(&root->log_mutex);
1256         mutex_init(&root->ordered_extent_mutex);
1257         mutex_init(&root->delalloc_mutex);
1258         init_waitqueue_head(&root->log_writer_wait);
1259         init_waitqueue_head(&root->log_commit_wait[0]);
1260         init_waitqueue_head(&root->log_commit_wait[1]);
1261         INIT_LIST_HEAD(&root->log_ctxs[0]);
1262         INIT_LIST_HEAD(&root->log_ctxs[1]);
1263         atomic_set(&root->log_commit[0], 0);
1264         atomic_set(&root->log_commit[1], 0);
1265         atomic_set(&root->log_writers, 0);
1266         atomic_set(&root->log_batch, 0);
1267         atomic_set(&root->orphan_inodes, 0);
1268         atomic_set(&root->refs, 1);
1269         atomic_set(&root->will_be_snapshoted, 0);
1270         atomic_set(&root->qgroup_meta_rsv, 0);
1271         root->log_transid = 0;
1272         root->log_transid_committed = -1;
1273         root->last_log_commit = 0;
1274         if (fs_info)
1275                 extent_io_tree_init(&root->dirty_log_pages,
1276                                      fs_info->btree_inode->i_mapping);
1277
1278         memset(&root->root_key, 0, sizeof(root->root_key));
1279         memset(&root->root_item, 0, sizeof(root->root_item));
1280         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1281         if (fs_info)
1282                 root->defrag_trans_start = fs_info->generation;
1283         else
1284                 root->defrag_trans_start = 0;
1285         root->root_key.objectid = objectid;
1286         root->anon_dev = 0;
1287
1288         spin_lock_init(&root->root_item_lock);
1289 }
1290
1291 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1292 {
1293         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1294         if (root)
1295                 root->fs_info = fs_info;
1296         return root;
1297 }
1298
1299 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1300 /* Should only be used by the testing infrastructure */
1301 struct btrfs_root *btrfs_alloc_dummy_root(void)
1302 {
1303         struct btrfs_root *root;
1304
1305         root = btrfs_alloc_root(NULL);
1306         if (!root)
1307                 return ERR_PTR(-ENOMEM);
1308         __setup_root(4096, 4096, 4096, root, NULL, 1);
1309         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1310         root->alloc_bytenr = 0;
1311
1312         return root;
1313 }
1314 #endif
1315
1316 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1317                                      struct btrfs_fs_info *fs_info,
1318                                      u64 objectid)
1319 {
1320         struct extent_buffer *leaf;
1321         struct btrfs_root *tree_root = fs_info->tree_root;
1322         struct btrfs_root *root;
1323         struct btrfs_key key;
1324         int ret = 0;
1325         uuid_le uuid;
1326
1327         root = btrfs_alloc_root(fs_info);
1328         if (!root)
1329                 return ERR_PTR(-ENOMEM);
1330
1331         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1332                 tree_root->stripesize, root, fs_info, objectid);
1333         root->root_key.objectid = objectid;
1334         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1335         root->root_key.offset = 0;
1336
1337         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1338         if (IS_ERR(leaf)) {
1339                 ret = PTR_ERR(leaf);
1340                 leaf = NULL;
1341                 goto fail;
1342         }
1343
1344         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1345         btrfs_set_header_bytenr(leaf, leaf->start);
1346         btrfs_set_header_generation(leaf, trans->transid);
1347         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1348         btrfs_set_header_owner(leaf, objectid);
1349         root->node = leaf;
1350
1351         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1352                             BTRFS_FSID_SIZE);
1353         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1354                             btrfs_header_chunk_tree_uuid(leaf),
1355                             BTRFS_UUID_SIZE);
1356         btrfs_mark_buffer_dirty(leaf);
1357
1358         root->commit_root = btrfs_root_node(root);
1359         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1360
1361         root->root_item.flags = 0;
1362         root->root_item.byte_limit = 0;
1363         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1364         btrfs_set_root_generation(&root->root_item, trans->transid);
1365         btrfs_set_root_level(&root->root_item, 0);
1366         btrfs_set_root_refs(&root->root_item, 1);
1367         btrfs_set_root_used(&root->root_item, leaf->len);
1368         btrfs_set_root_last_snapshot(&root->root_item, 0);
1369         btrfs_set_root_dirid(&root->root_item, 0);
1370         uuid_le_gen(&uuid);
1371         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1372         root->root_item.drop_level = 0;
1373
1374         key.objectid = objectid;
1375         key.type = BTRFS_ROOT_ITEM_KEY;
1376         key.offset = 0;
1377         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1378         if (ret)
1379                 goto fail;
1380
1381         btrfs_tree_unlock(leaf);
1382
1383         return root;
1384
1385 fail:
1386         if (leaf) {
1387                 btrfs_tree_unlock(leaf);
1388                 free_extent_buffer(root->commit_root);
1389                 free_extent_buffer(leaf);
1390         }
1391         kfree(root);
1392
1393         return ERR_PTR(ret);
1394 }
1395
1396 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1397                                          struct btrfs_fs_info *fs_info)
1398 {
1399         struct btrfs_root *root;
1400         struct btrfs_root *tree_root = fs_info->tree_root;
1401         struct extent_buffer *leaf;
1402
1403         root = btrfs_alloc_root(fs_info);
1404         if (!root)
1405                 return ERR_PTR(-ENOMEM);
1406
1407         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1408                      tree_root->stripesize, root, fs_info,
1409                      BTRFS_TREE_LOG_OBJECTID);
1410
1411         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1412         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1413         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1414
1415         /*
1416          * DON'T set REF_COWS for log trees
1417          *
1418          * log trees do not get reference counted because they go away
1419          * before a real commit is actually done.  They do store pointers
1420          * to file data extents, and those reference counts still get
1421          * updated (along with back refs to the log tree).
1422          */
1423
1424         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1425                         NULL, 0, 0, 0);
1426         if (IS_ERR(leaf)) {
1427                 kfree(root);
1428                 return ERR_CAST(leaf);
1429         }
1430
1431         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1432         btrfs_set_header_bytenr(leaf, leaf->start);
1433         btrfs_set_header_generation(leaf, trans->transid);
1434         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1435         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1436         root->node = leaf;
1437
1438         write_extent_buffer(root->node, root->fs_info->fsid,
1439                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1440         btrfs_mark_buffer_dirty(root->node);
1441         btrfs_tree_unlock(root->node);
1442         return root;
1443 }
1444
1445 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1446                              struct btrfs_fs_info *fs_info)
1447 {
1448         struct btrfs_root *log_root;
1449
1450         log_root = alloc_log_tree(trans, fs_info);
1451         if (IS_ERR(log_root))
1452                 return PTR_ERR(log_root);
1453         WARN_ON(fs_info->log_root_tree);
1454         fs_info->log_root_tree = log_root;
1455         return 0;
1456 }
1457
1458 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1459                        struct btrfs_root *root)
1460 {
1461         struct btrfs_root *log_root;
1462         struct btrfs_inode_item *inode_item;
1463
1464         log_root = alloc_log_tree(trans, root->fs_info);
1465         if (IS_ERR(log_root))
1466                 return PTR_ERR(log_root);
1467
1468         log_root->last_trans = trans->transid;
1469         log_root->root_key.offset = root->root_key.objectid;
1470
1471         inode_item = &log_root->root_item.inode;
1472         btrfs_set_stack_inode_generation(inode_item, 1);
1473         btrfs_set_stack_inode_size(inode_item, 3);
1474         btrfs_set_stack_inode_nlink(inode_item, 1);
1475         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1476         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1477
1478         btrfs_set_root_node(&log_root->root_item, log_root->node);
1479
1480         WARN_ON(root->log_root);
1481         root->log_root = log_root;
1482         root->log_transid = 0;
1483         root->log_transid_committed = -1;
1484         root->last_log_commit = 0;
1485         return 0;
1486 }
1487
1488 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1489                                                struct btrfs_key *key)
1490 {
1491         struct btrfs_root *root;
1492         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1493         struct btrfs_path *path;
1494         u64 generation;
1495         int ret;
1496
1497         path = btrfs_alloc_path();
1498         if (!path)
1499                 return ERR_PTR(-ENOMEM);
1500
1501         root = btrfs_alloc_root(fs_info);
1502         if (!root) {
1503                 ret = -ENOMEM;
1504                 goto alloc_fail;
1505         }
1506
1507         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1508                 tree_root->stripesize, root, fs_info, key->objectid);
1509
1510         ret = btrfs_find_root(tree_root, key, path,
1511                               &root->root_item, &root->root_key);
1512         if (ret) {
1513                 if (ret > 0)
1514                         ret = -ENOENT;
1515                 goto find_fail;
1516         }
1517
1518         generation = btrfs_root_generation(&root->root_item);
1519         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1520                                      generation);
1521         if (IS_ERR(root->node)) {
1522                 ret = PTR_ERR(root->node);
1523                 goto find_fail;
1524         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1525                 ret = -EIO;
1526                 free_extent_buffer(root->node);
1527                 goto find_fail;
1528         }
1529         root->commit_root = btrfs_root_node(root);
1530 out:
1531         btrfs_free_path(path);
1532         return root;
1533
1534 find_fail:
1535         kfree(root);
1536 alloc_fail:
1537         root = ERR_PTR(ret);
1538         goto out;
1539 }
1540
1541 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1542                                       struct btrfs_key *location)
1543 {
1544         struct btrfs_root *root;
1545
1546         root = btrfs_read_tree_root(tree_root, location);
1547         if (IS_ERR(root))
1548                 return root;
1549
1550         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1551                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1552                 btrfs_check_and_init_root_item(&root->root_item);
1553         }
1554
1555         return root;
1556 }
1557
1558 int btrfs_init_fs_root(struct btrfs_root *root)
1559 {
1560         int ret;
1561         struct btrfs_subvolume_writers *writers;
1562
1563         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1564         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1565                                         GFP_NOFS);
1566         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1567                 ret = -ENOMEM;
1568                 goto fail;
1569         }
1570
1571         writers = btrfs_alloc_subvolume_writers();
1572         if (IS_ERR(writers)) {
1573                 ret = PTR_ERR(writers);
1574                 goto fail;
1575         }
1576         root->subv_writers = writers;
1577
1578         btrfs_init_free_ino_ctl(root);
1579         spin_lock_init(&root->ino_cache_lock);
1580         init_waitqueue_head(&root->ino_cache_wait);
1581
1582         ret = get_anon_bdev(&root->anon_dev);
1583         if (ret)
1584                 goto free_writers;
1585
1586         mutex_lock(&root->objectid_mutex);
1587         ret = btrfs_find_highest_objectid(root,
1588                                         &root->highest_objectid);
1589         if (ret) {
1590                 mutex_unlock(&root->objectid_mutex);
1591                 goto free_root_dev;
1592         }
1593
1594         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1595
1596         mutex_unlock(&root->objectid_mutex);
1597
1598         return 0;
1599
1600 free_root_dev:
1601         free_anon_bdev(root->anon_dev);
1602 free_writers:
1603         btrfs_free_subvolume_writers(root->subv_writers);
1604 fail:
1605         kfree(root->free_ino_ctl);
1606         kfree(root->free_ino_pinned);
1607         return ret;
1608 }
1609
1610 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1611                                                u64 root_id)
1612 {
1613         struct btrfs_root *root;
1614
1615         spin_lock(&fs_info->fs_roots_radix_lock);
1616         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1617                                  (unsigned long)root_id);
1618         spin_unlock(&fs_info->fs_roots_radix_lock);
1619         return root;
1620 }
1621
1622 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1623                          struct btrfs_root *root)
1624 {
1625         int ret;
1626
1627         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1628         if (ret)
1629                 return ret;
1630
1631         spin_lock(&fs_info->fs_roots_radix_lock);
1632         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1633                                 (unsigned long)root->root_key.objectid,
1634                                 root);
1635         if (ret == 0)
1636                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1637         spin_unlock(&fs_info->fs_roots_radix_lock);
1638         radix_tree_preload_end();
1639
1640         return ret;
1641 }
1642
1643 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1644                                      struct btrfs_key *location,
1645                                      bool check_ref)
1646 {
1647         struct btrfs_root *root;
1648         struct btrfs_path *path;
1649         struct btrfs_key key;
1650         int ret;
1651
1652         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1653                 return fs_info->tree_root;
1654         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1655                 return fs_info->extent_root;
1656         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1657                 return fs_info->chunk_root;
1658         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1659                 return fs_info->dev_root;
1660         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1661                 return fs_info->csum_root;
1662         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1663                 return fs_info->quota_root ? fs_info->quota_root :
1664                                              ERR_PTR(-ENOENT);
1665         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1666                 return fs_info->uuid_root ? fs_info->uuid_root :
1667                                             ERR_PTR(-ENOENT);
1668 again:
1669         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1670         if (root) {
1671                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1672                         return ERR_PTR(-ENOENT);
1673                 return root;
1674         }
1675
1676         root = btrfs_read_fs_root(fs_info->tree_root, location);
1677         if (IS_ERR(root))
1678                 return root;
1679
1680         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1681                 ret = -ENOENT;
1682                 goto fail;
1683         }
1684
1685         ret = btrfs_init_fs_root(root);
1686         if (ret)
1687                 goto fail;
1688
1689         path = btrfs_alloc_path();
1690         if (!path) {
1691                 ret = -ENOMEM;
1692                 goto fail;
1693         }
1694         key.objectid = BTRFS_ORPHAN_OBJECTID;
1695         key.type = BTRFS_ORPHAN_ITEM_KEY;
1696         key.offset = location->objectid;
1697
1698         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1699         btrfs_free_path(path);
1700         if (ret < 0)
1701                 goto fail;
1702         if (ret == 0)
1703                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1704
1705         ret = btrfs_insert_fs_root(fs_info, root);
1706         if (ret) {
1707                 if (ret == -EEXIST) {
1708                         free_fs_root(root);
1709                         goto again;
1710                 }
1711                 goto fail;
1712         }
1713         return root;
1714 fail:
1715         free_fs_root(root);
1716         return ERR_PTR(ret);
1717 }
1718
1719 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1720 {
1721         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1722         int ret = 0;
1723         struct btrfs_device *device;
1724         struct backing_dev_info *bdi;
1725
1726         rcu_read_lock();
1727         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1728                 if (!device->bdev)
1729                         continue;
1730                 bdi = blk_get_backing_dev_info(device->bdev);
1731                 if (bdi_congested(bdi, bdi_bits)) {
1732                         ret = 1;
1733                         break;
1734                 }
1735         }
1736         rcu_read_unlock();
1737         return ret;
1738 }
1739
1740 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1741 {
1742         int err;
1743
1744         err = bdi_setup_and_register(bdi, "btrfs");
1745         if (err)
1746                 return err;
1747
1748         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1749         bdi->congested_fn       = btrfs_congested_fn;
1750         bdi->congested_data     = info;
1751         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1752         return 0;
1753 }
1754
1755 /*
1756  * called by the kthread helper functions to finally call the bio end_io
1757  * functions.  This is where read checksum verification actually happens
1758  */
1759 static void end_workqueue_fn(struct btrfs_work *work)
1760 {
1761         struct bio *bio;
1762         struct btrfs_end_io_wq *end_io_wq;
1763
1764         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1765         bio = end_io_wq->bio;
1766
1767         bio->bi_error = end_io_wq->error;
1768         bio->bi_private = end_io_wq->private;
1769         bio->bi_end_io = end_io_wq->end_io;
1770         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1771         bio_endio(bio);
1772 }
1773
1774 static int cleaner_kthread(void *arg)
1775 {
1776         struct btrfs_root *root = arg;
1777         int again;
1778         struct btrfs_trans_handle *trans;
1779
1780         do {
1781                 again = 0;
1782
1783                 /* Make the cleaner go to sleep early. */
1784                 if (btrfs_need_cleaner_sleep(root))
1785                         goto sleep;
1786
1787                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1788                         goto sleep;
1789
1790                 /*
1791                  * Avoid the problem that we change the status of the fs
1792                  * during the above check and trylock.
1793                  */
1794                 if (btrfs_need_cleaner_sleep(root)) {
1795                         mutex_unlock(&root->fs_info->cleaner_mutex);
1796                         goto sleep;
1797                 }
1798
1799                 btrfs_run_delayed_iputs(root);
1800                 again = btrfs_clean_one_deleted_snapshot(root);
1801                 mutex_unlock(&root->fs_info->cleaner_mutex);
1802
1803                 /*
1804                  * The defragger has dealt with the R/O remount and umount,
1805                  * needn't do anything special here.
1806                  */
1807                 btrfs_run_defrag_inodes(root->fs_info);
1808
1809                 /*
1810                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1811                  * with relocation (btrfs_relocate_chunk) and relocation
1812                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1813                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1814                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1815                  * unused block groups.
1816                  */
1817                 btrfs_delete_unused_bgs(root->fs_info);
1818 sleep:
1819                 if (!try_to_freeze() && !again) {
1820                         set_current_state(TASK_INTERRUPTIBLE);
1821                         if (!kthread_should_stop())
1822                                 schedule();
1823                         __set_current_state(TASK_RUNNING);
1824                 }
1825         } while (!kthread_should_stop());
1826
1827         /*
1828          * Transaction kthread is stopped before us and wakes us up.
1829          * However we might have started a new transaction and COWed some
1830          * tree blocks when deleting unused block groups for example. So
1831          * make sure we commit the transaction we started to have a clean
1832          * shutdown when evicting the btree inode - if it has dirty pages
1833          * when we do the final iput() on it, eviction will trigger a
1834          * writeback for it which will fail with null pointer dereferences
1835          * since work queues and other resources were already released and
1836          * destroyed by the time the iput/eviction/writeback is made.
1837          */
1838         trans = btrfs_attach_transaction(root);
1839         if (IS_ERR(trans)) {
1840                 if (PTR_ERR(trans) != -ENOENT)
1841                         btrfs_err(root->fs_info,
1842                                   "cleaner transaction attach returned %ld",
1843                                   PTR_ERR(trans));
1844         } else {
1845                 int ret;
1846
1847                 ret = btrfs_commit_transaction(trans, root);
1848                 if (ret)
1849                         btrfs_err(root->fs_info,
1850                                   "cleaner open transaction commit returned %d",
1851                                   ret);
1852         }
1853
1854         return 0;
1855 }
1856
1857 static int transaction_kthread(void *arg)
1858 {
1859         struct btrfs_root *root = arg;
1860         struct btrfs_trans_handle *trans;
1861         struct btrfs_transaction *cur;
1862         u64 transid;
1863         unsigned long now;
1864         unsigned long delay;
1865         bool cannot_commit;
1866
1867         do {
1868                 cannot_commit = false;
1869                 delay = HZ * root->fs_info->commit_interval;
1870                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1871
1872                 spin_lock(&root->fs_info->trans_lock);
1873                 cur = root->fs_info->running_transaction;
1874                 if (!cur) {
1875                         spin_unlock(&root->fs_info->trans_lock);
1876                         goto sleep;
1877                 }
1878
1879                 now = get_seconds();
1880                 if (cur->state < TRANS_STATE_BLOCKED &&
1881                     (now < cur->start_time ||
1882                      now - cur->start_time < root->fs_info->commit_interval)) {
1883                         spin_unlock(&root->fs_info->trans_lock);
1884                         delay = HZ * 5;
1885                         goto sleep;
1886                 }
1887                 transid = cur->transid;
1888                 spin_unlock(&root->fs_info->trans_lock);
1889
1890                 /* If the file system is aborted, this will always fail. */
1891                 trans = btrfs_attach_transaction(root);
1892                 if (IS_ERR(trans)) {
1893                         if (PTR_ERR(trans) != -ENOENT)
1894                                 cannot_commit = true;
1895                         goto sleep;
1896                 }
1897                 if (transid == trans->transid) {
1898                         btrfs_commit_transaction(trans, root);
1899                 } else {
1900                         btrfs_end_transaction(trans, root);
1901                 }
1902 sleep:
1903                 wake_up_process(root->fs_info->cleaner_kthread);
1904                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1905
1906                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1907                                       &root->fs_info->fs_state)))
1908                         btrfs_cleanup_transaction(root);
1909                 if (!try_to_freeze()) {
1910                         set_current_state(TASK_INTERRUPTIBLE);
1911                         if (!kthread_should_stop() &&
1912                             (!btrfs_transaction_blocked(root->fs_info) ||
1913                              cannot_commit))
1914                                 schedule_timeout(delay);
1915                         __set_current_state(TASK_RUNNING);
1916                 }
1917         } while (!kthread_should_stop());
1918         return 0;
1919 }
1920
1921 /*
1922  * this will find the highest generation in the array of
1923  * root backups.  The index of the highest array is returned,
1924  * or -1 if we can't find anything.
1925  *
1926  * We check to make sure the array is valid by comparing the
1927  * generation of the latest  root in the array with the generation
1928  * in the super block.  If they don't match we pitch it.
1929  */
1930 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1931 {
1932         u64 cur;
1933         int newest_index = -1;
1934         struct btrfs_root_backup *root_backup;
1935         int i;
1936
1937         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1938                 root_backup = info->super_copy->super_roots + i;
1939                 cur = btrfs_backup_tree_root_gen(root_backup);
1940                 if (cur == newest_gen)
1941                         newest_index = i;
1942         }
1943
1944         /* check to see if we actually wrapped around */
1945         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1946                 root_backup = info->super_copy->super_roots;
1947                 cur = btrfs_backup_tree_root_gen(root_backup);
1948                 if (cur == newest_gen)
1949                         newest_index = 0;
1950         }
1951         return newest_index;
1952 }
1953
1954
1955 /*
1956  * find the oldest backup so we know where to store new entries
1957  * in the backup array.  This will set the backup_root_index
1958  * field in the fs_info struct
1959  */
1960 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1961                                      u64 newest_gen)
1962 {
1963         int newest_index = -1;
1964
1965         newest_index = find_newest_super_backup(info, newest_gen);
1966         /* if there was garbage in there, just move along */
1967         if (newest_index == -1) {
1968                 info->backup_root_index = 0;
1969         } else {
1970                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1971         }
1972 }
1973
1974 /*
1975  * copy all the root pointers into the super backup array.
1976  * this will bump the backup pointer by one when it is
1977  * done
1978  */
1979 static void backup_super_roots(struct btrfs_fs_info *info)
1980 {
1981         int next_backup;
1982         struct btrfs_root_backup *root_backup;
1983         int last_backup;
1984
1985         next_backup = info->backup_root_index;
1986         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1987                 BTRFS_NUM_BACKUP_ROOTS;
1988
1989         /*
1990          * just overwrite the last backup if we're at the same generation
1991          * this happens only at umount
1992          */
1993         root_backup = info->super_for_commit->super_roots + last_backup;
1994         if (btrfs_backup_tree_root_gen(root_backup) ==
1995             btrfs_header_generation(info->tree_root->node))
1996                 next_backup = last_backup;
1997
1998         root_backup = info->super_for_commit->super_roots + next_backup;
1999
2000         /*
2001          * make sure all of our padding and empty slots get zero filled
2002          * regardless of which ones we use today
2003          */
2004         memset(root_backup, 0, sizeof(*root_backup));
2005
2006         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2007
2008         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2009         btrfs_set_backup_tree_root_gen(root_backup,
2010                                btrfs_header_generation(info->tree_root->node));
2011
2012         btrfs_set_backup_tree_root_level(root_backup,
2013                                btrfs_header_level(info->tree_root->node));
2014
2015         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2016         btrfs_set_backup_chunk_root_gen(root_backup,
2017                                btrfs_header_generation(info->chunk_root->node));
2018         btrfs_set_backup_chunk_root_level(root_backup,
2019                                btrfs_header_level(info->chunk_root->node));
2020
2021         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2022         btrfs_set_backup_extent_root_gen(root_backup,
2023                                btrfs_header_generation(info->extent_root->node));
2024         btrfs_set_backup_extent_root_level(root_backup,
2025                                btrfs_header_level(info->extent_root->node));
2026
2027         /*
2028          * we might commit during log recovery, which happens before we set
2029          * the fs_root.  Make sure it is valid before we fill it in.
2030          */
2031         if (info->fs_root && info->fs_root->node) {
2032                 btrfs_set_backup_fs_root(root_backup,
2033                                          info->fs_root->node->start);
2034                 btrfs_set_backup_fs_root_gen(root_backup,
2035                                btrfs_header_generation(info->fs_root->node));
2036                 btrfs_set_backup_fs_root_level(root_backup,
2037                                btrfs_header_level(info->fs_root->node));
2038         }
2039
2040         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2041         btrfs_set_backup_dev_root_gen(root_backup,
2042                                btrfs_header_generation(info->dev_root->node));
2043         btrfs_set_backup_dev_root_level(root_backup,
2044                                        btrfs_header_level(info->dev_root->node));
2045
2046         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2047         btrfs_set_backup_csum_root_gen(root_backup,
2048                                btrfs_header_generation(info->csum_root->node));
2049         btrfs_set_backup_csum_root_level(root_backup,
2050                                btrfs_header_level(info->csum_root->node));
2051
2052         btrfs_set_backup_total_bytes(root_backup,
2053                              btrfs_super_total_bytes(info->super_copy));
2054         btrfs_set_backup_bytes_used(root_backup,
2055                              btrfs_super_bytes_used(info->super_copy));
2056         btrfs_set_backup_num_devices(root_backup,
2057                              btrfs_super_num_devices(info->super_copy));
2058
2059         /*
2060          * if we don't copy this out to the super_copy, it won't get remembered
2061          * for the next commit
2062          */
2063         memcpy(&info->super_copy->super_roots,
2064                &info->super_for_commit->super_roots,
2065                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2066 }
2067
2068 /*
2069  * this copies info out of the root backup array and back into
2070  * the in-memory super block.  It is meant to help iterate through
2071  * the array, so you send it the number of backups you've already
2072  * tried and the last backup index you used.
2073  *
2074  * this returns -1 when it has tried all the backups
2075  */
2076 static noinline int next_root_backup(struct btrfs_fs_info *info,
2077                                      struct btrfs_super_block *super,
2078                                      int *num_backups_tried, int *backup_index)
2079 {
2080         struct btrfs_root_backup *root_backup;
2081         int newest = *backup_index;
2082
2083         if (*num_backups_tried == 0) {
2084                 u64 gen = btrfs_super_generation(super);
2085
2086                 newest = find_newest_super_backup(info, gen);
2087                 if (newest == -1)
2088                         return -1;
2089
2090                 *backup_index = newest;
2091                 *num_backups_tried = 1;
2092         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2093                 /* we've tried all the backups, all done */
2094                 return -1;
2095         } else {
2096                 /* jump to the next oldest backup */
2097                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2098                         BTRFS_NUM_BACKUP_ROOTS;
2099                 *backup_index = newest;
2100                 *num_backups_tried += 1;
2101         }
2102         root_backup = super->super_roots + newest;
2103
2104         btrfs_set_super_generation(super,
2105                                    btrfs_backup_tree_root_gen(root_backup));
2106         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2107         btrfs_set_super_root_level(super,
2108                                    btrfs_backup_tree_root_level(root_backup));
2109         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2110
2111         /*
2112          * fixme: the total bytes and num_devices need to match or we should
2113          * need a fsck
2114          */
2115         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2116         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2117         return 0;
2118 }
2119
2120 /* helper to cleanup workers */
2121 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2122 {
2123         btrfs_destroy_workqueue(fs_info->fixup_workers);
2124         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2125         btrfs_destroy_workqueue(fs_info->workers);
2126         btrfs_destroy_workqueue(fs_info->endio_workers);
2127         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2128         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2129         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2130         btrfs_destroy_workqueue(fs_info->rmw_workers);
2131         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2132         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2133         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2134         btrfs_destroy_workqueue(fs_info->submit_workers);
2135         btrfs_destroy_workqueue(fs_info->delayed_workers);
2136         btrfs_destroy_workqueue(fs_info->caching_workers);
2137         btrfs_destroy_workqueue(fs_info->readahead_workers);
2138         btrfs_destroy_workqueue(fs_info->flush_workers);
2139         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2140         btrfs_destroy_workqueue(fs_info->extent_workers);
2141 }
2142
2143 static void free_root_extent_buffers(struct btrfs_root *root)
2144 {
2145         if (root) {
2146                 free_extent_buffer(root->node);
2147                 free_extent_buffer(root->commit_root);
2148                 root->node = NULL;
2149                 root->commit_root = NULL;
2150         }
2151 }
2152
2153 /* helper to cleanup tree roots */
2154 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2155 {
2156         free_root_extent_buffers(info->tree_root);
2157
2158         free_root_extent_buffers(info->dev_root);
2159         free_root_extent_buffers(info->extent_root);
2160         free_root_extent_buffers(info->csum_root);
2161         free_root_extent_buffers(info->quota_root);
2162         free_root_extent_buffers(info->uuid_root);
2163         if (chunk_root)
2164                 free_root_extent_buffers(info->chunk_root);
2165 }
2166
2167 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2168 {
2169         int ret;
2170         struct btrfs_root *gang[8];
2171         int i;
2172
2173         while (!list_empty(&fs_info->dead_roots)) {
2174                 gang[0] = list_entry(fs_info->dead_roots.next,
2175                                      struct btrfs_root, root_list);
2176                 list_del(&gang[0]->root_list);
2177
2178                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2179                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2180                 } else {
2181                         free_extent_buffer(gang[0]->node);
2182                         free_extent_buffer(gang[0]->commit_root);
2183                         btrfs_put_fs_root(gang[0]);
2184                 }
2185         }
2186
2187         while (1) {
2188                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2189                                              (void **)gang, 0,
2190                                              ARRAY_SIZE(gang));
2191                 if (!ret)
2192                         break;
2193                 for (i = 0; i < ret; i++)
2194                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2195         }
2196
2197         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2198                 btrfs_free_log_root_tree(NULL, fs_info);
2199                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2200                                             fs_info->pinned_extents);
2201         }
2202 }
2203
2204 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2205 {
2206         mutex_init(&fs_info->scrub_lock);
2207         atomic_set(&fs_info->scrubs_running, 0);
2208         atomic_set(&fs_info->scrub_pause_req, 0);
2209         atomic_set(&fs_info->scrubs_paused, 0);
2210         atomic_set(&fs_info->scrub_cancel_req, 0);
2211         init_waitqueue_head(&fs_info->scrub_pause_wait);
2212         fs_info->scrub_workers_refcnt = 0;
2213 }
2214
2215 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2216 {
2217         spin_lock_init(&fs_info->balance_lock);
2218         mutex_init(&fs_info->balance_mutex);
2219         atomic_set(&fs_info->balance_running, 0);
2220         atomic_set(&fs_info->balance_pause_req, 0);
2221         atomic_set(&fs_info->balance_cancel_req, 0);
2222         fs_info->balance_ctl = NULL;
2223         init_waitqueue_head(&fs_info->balance_wait_q);
2224 }
2225
2226 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2227                                    struct btrfs_root *tree_root)
2228 {
2229         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2230         set_nlink(fs_info->btree_inode, 1);
2231         /*
2232          * we set the i_size on the btree inode to the max possible int.
2233          * the real end of the address space is determined by all of
2234          * the devices in the system
2235          */
2236         fs_info->btree_inode->i_size = OFFSET_MAX;
2237         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2238
2239         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2240         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2241                              fs_info->btree_inode->i_mapping);
2242         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2243         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2244
2245         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2246
2247         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2248         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2249                sizeof(struct btrfs_key));
2250         set_bit(BTRFS_INODE_DUMMY,
2251                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2252         btrfs_insert_inode_hash(fs_info->btree_inode);
2253 }
2254
2255 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2256 {
2257         fs_info->dev_replace.lock_owner = 0;
2258         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2259         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2260         mutex_init(&fs_info->dev_replace.lock_management_lock);
2261         mutex_init(&fs_info->dev_replace.lock);
2262         init_waitqueue_head(&fs_info->replace_wait);
2263 }
2264
2265 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2266 {
2267         spin_lock_init(&fs_info->qgroup_lock);
2268         mutex_init(&fs_info->qgroup_ioctl_lock);
2269         fs_info->qgroup_tree = RB_ROOT;
2270         fs_info->qgroup_op_tree = RB_ROOT;
2271         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2272         fs_info->qgroup_seq = 1;
2273         fs_info->quota_enabled = 0;
2274         fs_info->pending_quota_state = 0;
2275         fs_info->qgroup_ulist = NULL;
2276         mutex_init(&fs_info->qgroup_rescan_lock);
2277 }
2278
2279 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2280                 struct btrfs_fs_devices *fs_devices)
2281 {
2282         int max_active = fs_info->thread_pool_size;
2283         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2284
2285         fs_info->workers =
2286                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2287                                       max_active, 16);
2288
2289         fs_info->delalloc_workers =
2290                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2291
2292         fs_info->flush_workers =
2293                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2294
2295         fs_info->caching_workers =
2296                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2297
2298         /*
2299          * a higher idle thresh on the submit workers makes it much more
2300          * likely that bios will be send down in a sane order to the
2301          * devices
2302          */
2303         fs_info->submit_workers =
2304                 btrfs_alloc_workqueue("submit", flags,
2305                                       min_t(u64, fs_devices->num_devices,
2306                                             max_active), 64);
2307
2308         fs_info->fixup_workers =
2309                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2310
2311         /*
2312          * endios are largely parallel and should have a very
2313          * low idle thresh
2314          */
2315         fs_info->endio_workers =
2316                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2317         fs_info->endio_meta_workers =
2318                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2319         fs_info->endio_meta_write_workers =
2320                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2321         fs_info->endio_raid56_workers =
2322                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2323         fs_info->endio_repair_workers =
2324                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2325         fs_info->rmw_workers =
2326                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2327         fs_info->endio_write_workers =
2328                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2329         fs_info->endio_freespace_worker =
2330                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2331         fs_info->delayed_workers =
2332                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2333         fs_info->readahead_workers =
2334                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2335         fs_info->qgroup_rescan_workers =
2336                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2337         fs_info->extent_workers =
2338                 btrfs_alloc_workqueue("extent-refs", flags,
2339                                       min_t(u64, fs_devices->num_devices,
2340                                             max_active), 8);
2341
2342         if (!(fs_info->workers && fs_info->delalloc_workers &&
2343               fs_info->submit_workers && fs_info->flush_workers &&
2344               fs_info->endio_workers && fs_info->endio_meta_workers &&
2345               fs_info->endio_meta_write_workers &&
2346               fs_info->endio_repair_workers &&
2347               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2348               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2349               fs_info->caching_workers && fs_info->readahead_workers &&
2350               fs_info->fixup_workers && fs_info->delayed_workers &&
2351               fs_info->extent_workers &&
2352               fs_info->qgroup_rescan_workers)) {
2353                 return -ENOMEM;
2354         }
2355
2356         return 0;
2357 }
2358
2359 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2360                             struct btrfs_fs_devices *fs_devices)
2361 {
2362         int ret;
2363         struct btrfs_root *tree_root = fs_info->tree_root;
2364         struct btrfs_root *log_tree_root;
2365         struct btrfs_super_block *disk_super = fs_info->super_copy;
2366         u64 bytenr = btrfs_super_log_root(disk_super);
2367
2368         if (fs_devices->rw_devices == 0) {
2369                 btrfs_warn(fs_info, "log replay required on RO media");
2370                 return -EIO;
2371         }
2372
2373         log_tree_root = btrfs_alloc_root(fs_info);
2374         if (!log_tree_root)
2375                 return -ENOMEM;
2376
2377         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2378                         tree_root->stripesize, log_tree_root, fs_info,
2379                         BTRFS_TREE_LOG_OBJECTID);
2380
2381         log_tree_root->node = read_tree_block(tree_root, bytenr,
2382                         fs_info->generation + 1);
2383         if (IS_ERR(log_tree_root->node)) {
2384                 btrfs_warn(fs_info, "failed to read log tree");
2385                 ret = PTR_ERR(log_tree_root->node);
2386                 kfree(log_tree_root);
2387                 return ret;
2388         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2389                 btrfs_err(fs_info, "failed to read log tree");
2390                 free_extent_buffer(log_tree_root->node);
2391                 kfree(log_tree_root);
2392                 return -EIO;
2393         }
2394         /* returns with log_tree_root freed on success */
2395         ret = btrfs_recover_log_trees(log_tree_root);
2396         if (ret) {
2397                 btrfs_std_error(tree_root->fs_info, ret,
2398                             "Failed to recover log tree");
2399                 free_extent_buffer(log_tree_root->node);
2400                 kfree(log_tree_root);
2401                 return ret;
2402         }
2403
2404         if (fs_info->sb->s_flags & MS_RDONLY) {
2405                 ret = btrfs_commit_super(tree_root);
2406                 if (ret)
2407                         return ret;
2408         }
2409
2410         return 0;
2411 }
2412
2413 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2414                             struct btrfs_root *tree_root)
2415 {
2416         struct btrfs_root *root;
2417         struct btrfs_key location;
2418         int ret;
2419
2420         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2421         location.type = BTRFS_ROOT_ITEM_KEY;
2422         location.offset = 0;
2423
2424         root = btrfs_read_tree_root(tree_root, &location);
2425         if (IS_ERR(root))
2426                 return PTR_ERR(root);
2427         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2428         fs_info->extent_root = root;
2429
2430         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2431         root = btrfs_read_tree_root(tree_root, &location);
2432         if (IS_ERR(root))
2433                 return PTR_ERR(root);
2434         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2435         fs_info->dev_root = root;
2436         btrfs_init_devices_late(fs_info);
2437
2438         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2439         root = btrfs_read_tree_root(tree_root, &location);
2440         if (IS_ERR(root))
2441                 return PTR_ERR(root);
2442         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2443         fs_info->csum_root = root;
2444
2445         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2446         root = btrfs_read_tree_root(tree_root, &location);
2447         if (!IS_ERR(root)) {
2448                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2449                 fs_info->quota_enabled = 1;
2450                 fs_info->pending_quota_state = 1;
2451                 fs_info->quota_root = root;
2452         }
2453
2454         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2455         root = btrfs_read_tree_root(tree_root, &location);
2456         if (IS_ERR(root)) {
2457                 ret = PTR_ERR(root);
2458                 if (ret != -ENOENT)
2459                         return ret;
2460         } else {
2461                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462                 fs_info->uuid_root = root;
2463         }
2464
2465         return 0;
2466 }
2467
2468 int open_ctree(struct super_block *sb,
2469                struct btrfs_fs_devices *fs_devices,
2470                char *options)
2471 {
2472         u32 sectorsize;
2473         u32 nodesize;
2474         u32 stripesize;
2475         u64 generation;
2476         u64 features;
2477         struct btrfs_key location;
2478         struct buffer_head *bh;
2479         struct btrfs_super_block *disk_super;
2480         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2481         struct btrfs_root *tree_root;
2482         struct btrfs_root *chunk_root;
2483         int ret;
2484         int err = -EINVAL;
2485         int num_backups_tried = 0;
2486         int backup_index = 0;
2487         int max_active;
2488
2489         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2490         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2491         if (!tree_root || !chunk_root) {
2492                 err = -ENOMEM;
2493                 goto fail;
2494         }
2495
2496         ret = init_srcu_struct(&fs_info->subvol_srcu);
2497         if (ret) {
2498                 err = ret;
2499                 goto fail;
2500         }
2501
2502         ret = setup_bdi(fs_info, &fs_info->bdi);
2503         if (ret) {
2504                 err = ret;
2505                 goto fail_srcu;
2506         }
2507
2508         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2509         if (ret) {
2510                 err = ret;
2511                 goto fail_bdi;
2512         }
2513         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2514                                         (1 + ilog2(nr_cpu_ids));
2515
2516         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2517         if (ret) {
2518                 err = ret;
2519                 goto fail_dirty_metadata_bytes;
2520         }
2521
2522         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2523         if (ret) {
2524                 err = ret;
2525                 goto fail_delalloc_bytes;
2526         }
2527
2528         fs_info->btree_inode = new_inode(sb);
2529         if (!fs_info->btree_inode) {
2530                 err = -ENOMEM;
2531                 goto fail_bio_counter;
2532         }
2533
2534         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2535
2536         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2537         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2538         INIT_LIST_HEAD(&fs_info->trans_list);
2539         INIT_LIST_HEAD(&fs_info->dead_roots);
2540         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2541         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2542         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2543         spin_lock_init(&fs_info->delalloc_root_lock);
2544         spin_lock_init(&fs_info->trans_lock);
2545         spin_lock_init(&fs_info->fs_roots_radix_lock);
2546         spin_lock_init(&fs_info->delayed_iput_lock);
2547         spin_lock_init(&fs_info->defrag_inodes_lock);
2548         spin_lock_init(&fs_info->free_chunk_lock);
2549         spin_lock_init(&fs_info->tree_mod_seq_lock);
2550         spin_lock_init(&fs_info->super_lock);
2551         spin_lock_init(&fs_info->qgroup_op_lock);
2552         spin_lock_init(&fs_info->buffer_lock);
2553         spin_lock_init(&fs_info->unused_bgs_lock);
2554         rwlock_init(&fs_info->tree_mod_log_lock);
2555         mutex_init(&fs_info->unused_bg_unpin_mutex);
2556         mutex_init(&fs_info->delete_unused_bgs_mutex);
2557         mutex_init(&fs_info->reloc_mutex);
2558         mutex_init(&fs_info->delalloc_root_mutex);
2559         seqlock_init(&fs_info->profiles_lock);
2560         init_rwsem(&fs_info->delayed_iput_sem);
2561
2562         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2563         INIT_LIST_HEAD(&fs_info->space_info);
2564         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2565         INIT_LIST_HEAD(&fs_info->unused_bgs);
2566         btrfs_mapping_init(&fs_info->mapping_tree);
2567         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2568                              BTRFS_BLOCK_RSV_GLOBAL);
2569         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2570                              BTRFS_BLOCK_RSV_DELALLOC);
2571         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2572         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2573         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2574         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2575                              BTRFS_BLOCK_RSV_DELOPS);
2576         atomic_set(&fs_info->nr_async_submits, 0);
2577         atomic_set(&fs_info->async_delalloc_pages, 0);
2578         atomic_set(&fs_info->async_submit_draining, 0);
2579         atomic_set(&fs_info->nr_async_bios, 0);
2580         atomic_set(&fs_info->defrag_running, 0);
2581         atomic_set(&fs_info->qgroup_op_seq, 0);
2582         atomic64_set(&fs_info->tree_mod_seq, 0);
2583         fs_info->sb = sb;
2584         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2585         fs_info->metadata_ratio = 0;
2586         fs_info->defrag_inodes = RB_ROOT;
2587         fs_info->free_chunk_space = 0;
2588         fs_info->tree_mod_log = RB_ROOT;
2589         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2590         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2591         /* readahead state */
2592         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2593         spin_lock_init(&fs_info->reada_lock);
2594
2595         fs_info->thread_pool_size = min_t(unsigned long,
2596                                           num_online_cpus() + 2, 8);
2597
2598         INIT_LIST_HEAD(&fs_info->ordered_roots);
2599         spin_lock_init(&fs_info->ordered_root_lock);
2600         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2601                                         GFP_NOFS);
2602         if (!fs_info->delayed_root) {
2603                 err = -ENOMEM;
2604                 goto fail_iput;
2605         }
2606         btrfs_init_delayed_root(fs_info->delayed_root);
2607
2608         btrfs_init_scrub(fs_info);
2609 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2610         fs_info->check_integrity_print_mask = 0;
2611 #endif
2612         btrfs_init_balance(fs_info);
2613         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2614
2615         sb->s_blocksize = 4096;
2616         sb->s_blocksize_bits = blksize_bits(4096);
2617         sb->s_bdi = &fs_info->bdi;
2618
2619         btrfs_init_btree_inode(fs_info, tree_root);
2620
2621         spin_lock_init(&fs_info->block_group_cache_lock);
2622         fs_info->block_group_cache_tree = RB_ROOT;
2623         fs_info->first_logical_byte = (u64)-1;
2624
2625         extent_io_tree_init(&fs_info->freed_extents[0],
2626                              fs_info->btree_inode->i_mapping);
2627         extent_io_tree_init(&fs_info->freed_extents[1],
2628                              fs_info->btree_inode->i_mapping);
2629         fs_info->pinned_extents = &fs_info->freed_extents[0];
2630         fs_info->do_barriers = 1;
2631
2632
2633         mutex_init(&fs_info->ordered_operations_mutex);
2634         mutex_init(&fs_info->tree_log_mutex);
2635         mutex_init(&fs_info->chunk_mutex);
2636         mutex_init(&fs_info->transaction_kthread_mutex);
2637         mutex_init(&fs_info->cleaner_mutex);
2638         mutex_init(&fs_info->volume_mutex);
2639         mutex_init(&fs_info->ro_block_group_mutex);
2640         init_rwsem(&fs_info->commit_root_sem);
2641         init_rwsem(&fs_info->cleanup_work_sem);
2642         init_rwsem(&fs_info->subvol_sem);
2643         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2644
2645         btrfs_init_dev_replace_locks(fs_info);
2646         btrfs_init_qgroup(fs_info);
2647
2648         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2649         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2650
2651         init_waitqueue_head(&fs_info->transaction_throttle);
2652         init_waitqueue_head(&fs_info->transaction_wait);
2653         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2654         init_waitqueue_head(&fs_info->async_submit_wait);
2655
2656         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2657
2658         ret = btrfs_alloc_stripe_hash_table(fs_info);
2659         if (ret) {
2660                 err = ret;
2661                 goto fail_alloc;
2662         }
2663
2664         __setup_root(4096, 4096, 4096, tree_root,
2665                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2666
2667         invalidate_bdev(fs_devices->latest_bdev);
2668
2669         /*
2670          * Read super block and check the signature bytes only
2671          */
2672         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2673         if (IS_ERR(bh)) {
2674                 err = PTR_ERR(bh);
2675                 goto fail_alloc;
2676         }
2677
2678         /*
2679          * We want to check superblock checksum, the type is stored inside.
2680          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2681          */
2682         if (btrfs_check_super_csum(bh->b_data)) {
2683                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2684                 err = -EINVAL;
2685                 brelse(bh);
2686                 goto fail_alloc;
2687         }
2688
2689         /*
2690          * super_copy is zeroed at allocation time and we never touch the
2691          * following bytes up to INFO_SIZE, the checksum is calculated from
2692          * the whole block of INFO_SIZE
2693          */
2694         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2695         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2696                sizeof(*fs_info->super_for_commit));
2697         brelse(bh);
2698
2699         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2700
2701         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2702         if (ret) {
2703                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2704                 err = -EINVAL;
2705                 goto fail_alloc;
2706         }
2707
2708         disk_super = fs_info->super_copy;
2709         if (!btrfs_super_root(disk_super))
2710                 goto fail_alloc;
2711
2712         /* check FS state, whether FS is broken. */
2713         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2714                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2715
2716         /*
2717          * run through our array of backup supers and setup
2718          * our ring pointer to the oldest one
2719          */
2720         generation = btrfs_super_generation(disk_super);
2721         find_oldest_super_backup(fs_info, generation);
2722
2723         /*
2724          * In the long term, we'll store the compression type in the super
2725          * block, and it'll be used for per file compression control.
2726          */
2727         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2728
2729         ret = btrfs_parse_options(tree_root, options);
2730         if (ret) {
2731                 err = ret;
2732                 goto fail_alloc;
2733         }
2734
2735         features = btrfs_super_incompat_flags(disk_super) &
2736                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2737         if (features) {
2738                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2739                        "unsupported optional features (%Lx).\n",
2740                        features);
2741                 err = -EINVAL;
2742                 goto fail_alloc;
2743         }
2744
2745         /*
2746          * Leafsize and nodesize were always equal, this is only a sanity check.
2747          */
2748         if (le32_to_cpu(disk_super->__unused_leafsize) !=
2749             btrfs_super_nodesize(disk_super)) {
2750                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2751                        "blocksizes don't match.  node %d leaf %d\n",
2752                        btrfs_super_nodesize(disk_super),
2753                        le32_to_cpu(disk_super->__unused_leafsize));
2754                 err = -EINVAL;
2755                 goto fail_alloc;
2756         }
2757         if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2758                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2759                        "blocksize (%d) was too large\n",
2760                        btrfs_super_nodesize(disk_super));
2761                 err = -EINVAL;
2762                 goto fail_alloc;
2763         }
2764
2765         features = btrfs_super_incompat_flags(disk_super);
2766         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2767         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2768                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2769
2770         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2771                 printk(KERN_INFO "BTRFS: has skinny extents\n");
2772
2773         /*
2774          * flag our filesystem as having big metadata blocks if
2775          * they are bigger than the page size
2776          */
2777         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2778                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2779                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2780                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2781         }
2782
2783         nodesize = btrfs_super_nodesize(disk_super);
2784         sectorsize = btrfs_super_sectorsize(disk_super);
2785         stripesize = btrfs_super_stripesize(disk_super);
2786         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2787         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2788
2789         /*
2790          * mixed block groups end up with duplicate but slightly offset
2791          * extent buffers for the same range.  It leads to corruptions
2792          */
2793         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2794             (sectorsize != nodesize)) {
2795                 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2796                                 "are not allowed for mixed block groups on %s\n",
2797                                 sb->s_id);
2798                 goto fail_alloc;
2799         }
2800
2801         /*
2802          * Needn't use the lock because there is no other task which will
2803          * update the flag.
2804          */
2805         btrfs_set_super_incompat_flags(disk_super, features);
2806
2807         features = btrfs_super_compat_ro_flags(disk_super) &
2808                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2809         if (!(sb->s_flags & MS_RDONLY) && features) {
2810                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2811                        "unsupported option features (%Lx).\n",
2812                        features);
2813                 err = -EINVAL;
2814                 goto fail_alloc;
2815         }
2816
2817         max_active = fs_info->thread_pool_size;
2818
2819         ret = btrfs_init_workqueues(fs_info, fs_devices);
2820         if (ret) {
2821                 err = ret;
2822                 goto fail_sb_buffer;
2823         }
2824
2825         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2826         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2827                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2828
2829         tree_root->nodesize = nodesize;
2830         tree_root->sectorsize = sectorsize;
2831         tree_root->stripesize = stripesize;
2832
2833         sb->s_blocksize = sectorsize;
2834         sb->s_blocksize_bits = blksize_bits(sectorsize);
2835
2836         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2837                 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2838                 goto fail_sb_buffer;
2839         }
2840
2841         if (sectorsize != PAGE_SIZE) {
2842                 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2843                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2844                 goto fail_sb_buffer;
2845         }
2846
2847         mutex_lock(&fs_info->chunk_mutex);
2848         ret = btrfs_read_sys_array(tree_root);
2849         mutex_unlock(&fs_info->chunk_mutex);
2850         if (ret) {
2851                 printk(KERN_ERR "BTRFS: failed to read the system "
2852                        "array on %s\n", sb->s_id);
2853                 goto fail_sb_buffer;
2854         }
2855
2856         generation = btrfs_super_chunk_root_generation(disk_super);
2857
2858         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2859                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2860
2861         chunk_root->node = read_tree_block(chunk_root,
2862                                            btrfs_super_chunk_root(disk_super),
2863                                            generation);
2864         if (IS_ERR(chunk_root->node) ||
2865             !extent_buffer_uptodate(chunk_root->node)) {
2866                 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2867                        sb->s_id);
2868                 if (!IS_ERR(chunk_root->node))
2869                         free_extent_buffer(chunk_root->node);
2870                 chunk_root->node = NULL;
2871                 goto fail_tree_roots;
2872         }
2873         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2874         chunk_root->commit_root = btrfs_root_node(chunk_root);
2875
2876         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2877            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2878
2879         ret = btrfs_read_chunk_tree(chunk_root);
2880         if (ret) {
2881                 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2882                        sb->s_id);
2883                 goto fail_tree_roots;
2884         }
2885
2886         /*
2887          * keep the device that is marked to be the target device for the
2888          * dev_replace procedure
2889          */
2890         btrfs_close_extra_devices(fs_devices, 0);
2891
2892         if (!fs_devices->latest_bdev) {
2893                 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2894                        sb->s_id);
2895                 goto fail_tree_roots;
2896         }
2897
2898 retry_root_backup:
2899         generation = btrfs_super_generation(disk_super);
2900
2901         tree_root->node = read_tree_block(tree_root,
2902                                           btrfs_super_root(disk_super),
2903                                           generation);
2904         if (IS_ERR(tree_root->node) ||
2905             !extent_buffer_uptodate(tree_root->node)) {
2906                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2907                        sb->s_id);
2908                 if (!IS_ERR(tree_root->node))
2909                         free_extent_buffer(tree_root->node);
2910                 tree_root->node = NULL;
2911                 goto recovery_tree_root;
2912         }
2913
2914         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2915         tree_root->commit_root = btrfs_root_node(tree_root);
2916         btrfs_set_root_refs(&tree_root->root_item, 1);
2917
2918         mutex_lock(&tree_root->objectid_mutex);
2919         ret = btrfs_find_highest_objectid(tree_root,
2920                                         &tree_root->highest_objectid);
2921         if (ret) {
2922                 mutex_unlock(&tree_root->objectid_mutex);
2923                 goto recovery_tree_root;
2924         }
2925
2926         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2927
2928         mutex_unlock(&tree_root->objectid_mutex);
2929
2930         ret = btrfs_read_roots(fs_info, tree_root);
2931         if (ret)
2932                 goto recovery_tree_root;
2933
2934         fs_info->generation = generation;
2935         fs_info->last_trans_committed = generation;
2936
2937         ret = btrfs_recover_balance(fs_info);
2938         if (ret) {
2939                 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2940                 goto fail_block_groups;
2941         }
2942
2943         ret = btrfs_init_dev_stats(fs_info);
2944         if (ret) {
2945                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2946                        ret);
2947                 goto fail_block_groups;
2948         }
2949
2950         ret = btrfs_init_dev_replace(fs_info);
2951         if (ret) {
2952                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2953                 goto fail_block_groups;
2954         }
2955
2956         btrfs_close_extra_devices(fs_devices, 1);
2957
2958         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2959         if (ret) {
2960                 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2961                 goto fail_block_groups;
2962         }
2963
2964         ret = btrfs_sysfs_add_device(fs_devices);
2965         if (ret) {
2966                 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2967                 goto fail_fsdev_sysfs;
2968         }
2969
2970         ret = btrfs_sysfs_add_mounted(fs_info);
2971         if (ret) {
2972                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2973                 goto fail_fsdev_sysfs;
2974         }
2975
2976         ret = btrfs_init_space_info(fs_info);
2977         if (ret) {
2978                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2979                 goto fail_sysfs;
2980         }
2981
2982         ret = btrfs_read_block_groups(fs_info->extent_root);
2983         if (ret) {
2984                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2985                 goto fail_sysfs;
2986         }
2987         fs_info->num_tolerated_disk_barrier_failures =
2988                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2989         if (fs_info->fs_devices->missing_devices >
2990              fs_info->num_tolerated_disk_barrier_failures &&
2991             !(sb->s_flags & MS_RDONLY)) {
2992                 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2993                         fs_info->fs_devices->missing_devices,
2994                         fs_info->num_tolerated_disk_barrier_failures);
2995                 goto fail_sysfs;
2996         }
2997
2998         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2999                                                "btrfs-cleaner");
3000         if (IS_ERR(fs_info->cleaner_kthread))
3001                 goto fail_sysfs;
3002
3003         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3004                                                    tree_root,
3005                                                    "btrfs-transaction");
3006         if (IS_ERR(fs_info->transaction_kthread))
3007                 goto fail_cleaner;
3008
3009         if (!btrfs_test_opt(tree_root, SSD) &&
3010             !btrfs_test_opt(tree_root, NOSSD) &&
3011             !fs_info->fs_devices->rotating) {
3012                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3013                        "mode\n");
3014                 btrfs_set_opt(fs_info->mount_opt, SSD);
3015         }
3016
3017         /*
3018          * Mount does not set all options immediatelly, we can do it now and do
3019          * not have to wait for transaction commit
3020          */
3021         btrfs_apply_pending_changes(fs_info);
3022
3023 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3024         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3025                 ret = btrfsic_mount(tree_root, fs_devices,
3026                                     btrfs_test_opt(tree_root,
3027                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3028                                     1 : 0,
3029                                     fs_info->check_integrity_print_mask);
3030                 if (ret)
3031                         printk(KERN_WARNING "BTRFS: failed to initialize"
3032                                " integrity check module %s\n", sb->s_id);
3033         }
3034 #endif
3035         ret = btrfs_read_qgroup_config(fs_info);
3036         if (ret)
3037                 goto fail_trans_kthread;
3038
3039         /* do not make disk changes in broken FS */
3040         if (btrfs_super_log_root(disk_super) != 0) {
3041                 ret = btrfs_replay_log(fs_info, fs_devices);
3042                 if (ret) {
3043                         err = ret;
3044                         goto fail_qgroup;
3045                 }
3046         }
3047
3048         ret = btrfs_find_orphan_roots(tree_root);
3049         if (ret)
3050                 goto fail_qgroup;
3051
3052         if (!(sb->s_flags & MS_RDONLY)) {
3053                 ret = btrfs_cleanup_fs_roots(fs_info);
3054                 if (ret)
3055                         goto fail_qgroup;
3056
3057                 mutex_lock(&fs_info->cleaner_mutex);
3058                 ret = btrfs_recover_relocation(tree_root);
3059                 mutex_unlock(&fs_info->cleaner_mutex);
3060                 if (ret < 0) {
3061                         printk(KERN_WARNING
3062                                "BTRFS: failed to recover relocation\n");
3063                         err = -EINVAL;
3064                         goto fail_qgroup;
3065                 }
3066         }
3067
3068         location.objectid = BTRFS_FS_TREE_OBJECTID;
3069         location.type = BTRFS_ROOT_ITEM_KEY;
3070         location.offset = 0;
3071
3072         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3073         if (IS_ERR(fs_info->fs_root)) {
3074                 err = PTR_ERR(fs_info->fs_root);
3075                 goto fail_qgroup;
3076         }
3077
3078         if (sb->s_flags & MS_RDONLY)
3079                 return 0;
3080
3081         down_read(&fs_info->cleanup_work_sem);
3082         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3083             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3084                 up_read(&fs_info->cleanup_work_sem);
3085                 close_ctree(tree_root);
3086                 return ret;
3087         }
3088         up_read(&fs_info->cleanup_work_sem);
3089
3090         ret = btrfs_resume_balance_async(fs_info);
3091         if (ret) {
3092                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3093                 close_ctree(tree_root);
3094                 return ret;
3095         }
3096
3097         ret = btrfs_resume_dev_replace_async(fs_info);
3098         if (ret) {
3099                 pr_warn("BTRFS: failed to resume dev_replace\n");
3100                 close_ctree(tree_root);
3101                 return ret;
3102         }
3103
3104         btrfs_qgroup_rescan_resume(fs_info);
3105
3106         if (!fs_info->uuid_root) {
3107                 pr_info("BTRFS: creating UUID tree\n");
3108                 ret = btrfs_create_uuid_tree(fs_info);
3109                 if (ret) {
3110                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
3111                                 ret);
3112                         close_ctree(tree_root);
3113                         return ret;
3114                 }
3115         } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3116                    fs_info->generation !=
3117                                 btrfs_super_uuid_tree_generation(disk_super)) {
3118                 pr_info("BTRFS: checking UUID tree\n");
3119                 ret = btrfs_check_uuid_tree(fs_info);
3120                 if (ret) {
3121                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
3122                                 ret);
3123                         close_ctree(tree_root);
3124                         return ret;
3125                 }
3126         } else {
3127                 fs_info->update_uuid_tree_gen = 1;
3128         }
3129
3130         fs_info->open = 1;
3131
3132         return 0;
3133
3134 fail_qgroup:
3135         btrfs_free_qgroup_config(fs_info);
3136 fail_trans_kthread:
3137         kthread_stop(fs_info->transaction_kthread);
3138         btrfs_cleanup_transaction(fs_info->tree_root);
3139         btrfs_free_fs_roots(fs_info);
3140 fail_cleaner:
3141         kthread_stop(fs_info->cleaner_kthread);
3142
3143         /*
3144          * make sure we're done with the btree inode before we stop our
3145          * kthreads
3146          */
3147         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3148
3149 fail_sysfs:
3150         btrfs_sysfs_remove_mounted(fs_info);
3151
3152 fail_fsdev_sysfs:
3153         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3154
3155 fail_block_groups:
3156         btrfs_put_block_group_cache(fs_info);
3157         btrfs_free_block_groups(fs_info);
3158
3159 fail_tree_roots:
3160         free_root_pointers(fs_info, 1);
3161         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3162
3163 fail_sb_buffer:
3164         btrfs_stop_all_workers(fs_info);
3165 fail_alloc:
3166 fail_iput:
3167         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3168
3169         iput(fs_info->btree_inode);
3170 fail_bio_counter:
3171         percpu_counter_destroy(&fs_info->bio_counter);
3172 fail_delalloc_bytes:
3173         percpu_counter_destroy(&fs_info->delalloc_bytes);
3174 fail_dirty_metadata_bytes:
3175         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3176 fail_bdi:
3177         bdi_destroy(&fs_info->bdi);
3178 fail_srcu:
3179         cleanup_srcu_struct(&fs_info->subvol_srcu);
3180 fail:
3181         btrfs_free_stripe_hash_table(fs_info);
3182         btrfs_close_devices(fs_info->fs_devices);
3183         return err;
3184
3185 recovery_tree_root:
3186         if (!btrfs_test_opt(tree_root, RECOVERY))
3187                 goto fail_tree_roots;
3188
3189         free_root_pointers(fs_info, 0);
3190
3191         /* don't use the log in recovery mode, it won't be valid */
3192         btrfs_set_super_log_root(disk_super, 0);
3193
3194         /* we can't trust the free space cache either */
3195         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3196
3197         ret = next_root_backup(fs_info, fs_info->super_copy,
3198                                &num_backups_tried, &backup_index);
3199         if (ret == -1)
3200                 goto fail_block_groups;
3201         goto retry_root_backup;
3202 }
3203
3204 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3205 {
3206         if (uptodate) {
3207                 set_buffer_uptodate(bh);
3208         } else {
3209                 struct btrfs_device *device = (struct btrfs_device *)
3210                         bh->b_private;
3211
3212                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3213                                 "lost page write due to IO error on %s",
3214                                           rcu_str_deref(device->name));
3215                 /* note, we dont' set_buffer_write_io_error because we have
3216                  * our own ways of dealing with the IO errors
3217                  */
3218                 clear_buffer_uptodate(bh);
3219                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3220         }
3221         unlock_buffer(bh);
3222         put_bh(bh);
3223 }
3224
3225 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3226                         struct buffer_head **bh_ret)
3227 {
3228         struct buffer_head *bh;
3229         struct btrfs_super_block *super;
3230         u64 bytenr;
3231
3232         bytenr = btrfs_sb_offset(copy_num);
3233         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3234                 return -EINVAL;
3235
3236         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3237         /*
3238          * If we fail to read from the underlying devices, as of now
3239          * the best option we have is to mark it EIO.
3240          */
3241         if (!bh)
3242                 return -EIO;
3243
3244         super = (struct btrfs_super_block *)bh->b_data;
3245         if (btrfs_super_bytenr(super) != bytenr ||
3246                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3247                 brelse(bh);
3248                 return -EINVAL;
3249         }
3250
3251         *bh_ret = bh;
3252         return 0;
3253 }
3254
3255
3256 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3257 {
3258         struct buffer_head *bh;
3259         struct buffer_head *latest = NULL;
3260         struct btrfs_super_block *super;
3261         int i;
3262         u64 transid = 0;
3263         int ret = -EINVAL;
3264
3265         /* we would like to check all the supers, but that would make
3266          * a btrfs mount succeed after a mkfs from a different FS.
3267          * So, we need to add a special mount option to scan for
3268          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3269          */
3270         for (i = 0; i < 1; i++) {
3271                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3272                 if (ret)
3273                         continue;
3274
3275                 super = (struct btrfs_super_block *)bh->b_data;
3276
3277                 if (!latest || btrfs_super_generation(super) > transid) {
3278                         brelse(latest);
3279                         latest = bh;
3280                         transid = btrfs_super_generation(super);
3281                 } else {
3282                         brelse(bh);
3283                 }
3284         }
3285
3286         if (!latest)
3287                 return ERR_PTR(ret);
3288
3289         return latest;
3290 }
3291
3292 /*
3293  * this should be called twice, once with wait == 0 and
3294  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3295  * we write are pinned.
3296  *
3297  * They are released when wait == 1 is done.
3298  * max_mirrors must be the same for both runs, and it indicates how
3299  * many supers on this one device should be written.
3300  *
3301  * max_mirrors == 0 means to write them all.
3302  */
3303 static int write_dev_supers(struct btrfs_device *device,
3304                             struct btrfs_super_block *sb,
3305                             int do_barriers, int wait, int max_mirrors)
3306 {
3307         struct buffer_head *bh;
3308         int i;
3309         int ret;
3310         int errors = 0;
3311         u32 crc;
3312         u64 bytenr;
3313
3314         if (max_mirrors == 0)
3315                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3316
3317         for (i = 0; i < max_mirrors; i++) {
3318                 bytenr = btrfs_sb_offset(i);
3319                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3320                     device->commit_total_bytes)
3321                         break;
3322
3323                 if (wait) {
3324                         bh = __find_get_block(device->bdev, bytenr / 4096,
3325                                               BTRFS_SUPER_INFO_SIZE);
3326                         if (!bh) {
3327                                 errors++;
3328                                 continue;
3329                         }
3330                         wait_on_buffer(bh);
3331                         if (!buffer_uptodate(bh))
3332                                 errors++;
3333
3334                         /* drop our reference */
3335                         brelse(bh);
3336
3337                         /* drop the reference from the wait == 0 run */
3338                         brelse(bh);
3339                         continue;
3340                 } else {
3341                         btrfs_set_super_bytenr(sb, bytenr);
3342
3343                         crc = ~(u32)0;
3344                         crc = btrfs_csum_data((char *)sb +
3345                                               BTRFS_CSUM_SIZE, crc,
3346                                               BTRFS_SUPER_INFO_SIZE -
3347                                               BTRFS_CSUM_SIZE);
3348                         btrfs_csum_final(crc, sb->csum);
3349
3350                         /*
3351                          * one reference for us, and we leave it for the
3352                          * caller
3353                          */
3354                         bh = __getblk(device->bdev, bytenr / 4096,
3355                                       BTRFS_SUPER_INFO_SIZE);
3356                         if (!bh) {
3357                                 btrfs_err(device->dev_root->fs_info,
3358                                     "couldn't get super buffer head for bytenr %llu",
3359                                     bytenr);
3360                                 errors++;
3361                                 continue;
3362                         }
3363
3364                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3365
3366                         /* one reference for submit_bh */
3367                         get_bh(bh);
3368
3369                         set_buffer_uptodate(bh);
3370                         lock_buffer(bh);
3371                         bh->b_end_io = btrfs_end_buffer_write_sync;
3372                         bh->b_private = device;
3373                 }
3374
3375                 /*
3376                  * we fua the first super.  The others we allow
3377                  * to go down lazy.
3378                  */
3379                 if (i == 0)
3380                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3381                 else
3382                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3383                 if (ret)
3384                         errors++;
3385         }
3386         return errors < i ? 0 : -1;
3387 }
3388
3389 /*
3390  * endio for the write_dev_flush, this will wake anyone waiting
3391  * for the barrier when it is done
3392  */
3393 static void btrfs_end_empty_barrier(struct bio *bio)
3394 {
3395         if (bio->bi_private)
3396                 complete(bio->bi_private);
3397         bio_put(bio);
3398 }
3399
3400 /*
3401  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3402  * sent down.  With wait == 1, it waits for the previous flush.
3403  *
3404  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3405  * capable
3406  */
3407 static int write_dev_flush(struct btrfs_device *device, int wait)
3408 {
3409         struct bio *bio;
3410         int ret = 0;
3411
3412         if (device->nobarriers)
3413                 return 0;
3414
3415         if (wait) {
3416                 bio = device->flush_bio;
3417                 if (!bio)
3418                         return 0;
3419
3420                 wait_for_completion(&device->flush_wait);
3421
3422                 if (bio->bi_error) {
3423                         ret = bio->bi_error;
3424                         btrfs_dev_stat_inc_and_print(device,
3425                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3426                 }
3427
3428                 /* drop the reference from the wait == 0 run */
3429                 bio_put(bio);
3430                 device->flush_bio = NULL;
3431
3432                 return ret;
3433         }
3434
3435         /*
3436          * one reference for us, and we leave it for the
3437          * caller
3438          */
3439         device->flush_bio = NULL;
3440         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3441         if (!bio)
3442                 return -ENOMEM;
3443
3444         bio->bi_end_io = btrfs_end_empty_barrier;
3445         bio->bi_bdev = device->bdev;
3446         init_completion(&device->flush_wait);
3447         bio->bi_private = &device->flush_wait;
3448         device->flush_bio = bio;
3449
3450         bio_get(bio);
3451         btrfsic_submit_bio(WRITE_FLUSH, bio);
3452
3453         return 0;
3454 }
3455
3456 /*
3457  * send an empty flush down to each device in parallel,
3458  * then wait for them
3459  */
3460 static int barrier_all_devices(struct btrfs_fs_info *info)
3461 {
3462         struct list_head *head;
3463         struct btrfs_device *dev;
3464         int errors_send = 0;
3465         int errors_wait = 0;
3466         int ret;
3467
3468         /* send down all the barriers */
3469         head = &info->fs_devices->devices;
3470         list_for_each_entry_rcu(dev, head, dev_list) {
3471                 if (dev->missing)
3472                         continue;
3473                 if (!dev->bdev) {
3474                         errors_send++;
3475                         continue;
3476                 }
3477                 if (!dev->in_fs_metadata || !dev->writeable)
3478                         continue;
3479
3480                 ret = write_dev_flush(dev, 0);
3481                 if (ret)
3482                         errors_send++;
3483         }
3484
3485         /* wait for all the barriers */
3486         list_for_each_entry_rcu(dev, head, dev_list) {
3487                 if (dev->missing)
3488                         continue;
3489                 if (!dev->bdev) {
3490                         errors_wait++;
3491                         continue;
3492                 }
3493                 if (!dev->in_fs_metadata || !dev->writeable)
3494                         continue;
3495
3496                 ret = write_dev_flush(dev, 1);
3497                 if (ret)
3498                         errors_wait++;
3499         }
3500         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3501             errors_wait > info->num_tolerated_disk_barrier_failures)
3502                 return -EIO;
3503         return 0;
3504 }
3505
3506 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3507 {
3508         int raid_type;
3509         int min_tolerated = INT_MAX;
3510
3511         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3512             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3513                 min_tolerated = min(min_tolerated,
3514                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3515                                     tolerated_failures);
3516
3517         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3518                 if (raid_type == BTRFS_RAID_SINGLE)
3519                         continue;
3520                 if (!(flags & btrfs_raid_group[raid_type]))
3521                         continue;
3522                 min_tolerated = min(min_tolerated,
3523                                     btrfs_raid_array[raid_type].
3524                                     tolerated_failures);
3525         }
3526
3527         if (min_tolerated == INT_MAX) {
3528                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3529                 min_tolerated = 0;
3530         }
3531
3532         return min_tolerated;
3533 }
3534
3535 int btrfs_calc_num_tolerated_disk_barrier_failures(
3536         struct btrfs_fs_info *fs_info)
3537 {
3538         struct btrfs_ioctl_space_info space;
3539         struct btrfs_space_info *sinfo;
3540         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3541                        BTRFS_BLOCK_GROUP_SYSTEM,
3542                        BTRFS_BLOCK_GROUP_METADATA,
3543                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3544         int i;
3545         int c;
3546         int num_tolerated_disk_barrier_failures =
3547                 (int)fs_info->fs_devices->num_devices;
3548
3549         for (i = 0; i < ARRAY_SIZE(types); i++) {
3550                 struct btrfs_space_info *tmp;
3551
3552                 sinfo = NULL;
3553                 rcu_read_lock();
3554                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3555                         if (tmp->flags == types[i]) {
3556                                 sinfo = tmp;
3557                                 break;
3558                         }
3559                 }
3560                 rcu_read_unlock();
3561
3562                 if (!sinfo)
3563                         continue;
3564
3565                 down_read(&sinfo->groups_sem);
3566                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3567                         u64 flags;
3568
3569                         if (list_empty(&sinfo->block_groups[c]))
3570                                 continue;
3571
3572                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3573                                                    &space);
3574                         if (space.total_bytes == 0 || space.used_bytes == 0)
3575                                 continue;
3576                         flags = space.flags;
3577
3578                         num_tolerated_disk_barrier_failures = min(
3579                                 num_tolerated_disk_barrier_failures,
3580                                 btrfs_get_num_tolerated_disk_barrier_failures(
3581                                         flags));
3582                 }
3583                 up_read(&sinfo->groups_sem);
3584         }
3585
3586         return num_tolerated_disk_barrier_failures;
3587 }
3588
3589 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3590 {
3591         struct list_head *head;
3592         struct btrfs_device *dev;
3593         struct btrfs_super_block *sb;
3594         struct btrfs_dev_item *dev_item;
3595         int ret;
3596         int do_barriers;
3597         int max_errors;
3598         int total_errors = 0;
3599         u64 flags;
3600
3601         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3602         backup_super_roots(root->fs_info);
3603
3604         sb = root->fs_info->super_for_commit;
3605         dev_item = &sb->dev_item;
3606
3607         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3608         head = &root->fs_info->fs_devices->devices;
3609         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3610
3611         if (do_barriers) {
3612                 ret = barrier_all_devices(root->fs_info);
3613                 if (ret) {
3614                         mutex_unlock(
3615                                 &root->fs_info->fs_devices->device_list_mutex);
3616                         btrfs_std_error(root->fs_info, ret,
3617                                     "errors while submitting device barriers.");
3618                         return ret;
3619                 }
3620         }
3621
3622         list_for_each_entry_rcu(dev, head, dev_list) {
3623                 if (!dev->bdev) {
3624                         total_errors++;
3625                         continue;
3626                 }
3627                 if (!dev->in_fs_metadata || !dev->writeable)
3628                         continue;
3629
3630                 btrfs_set_stack_device_generation(dev_item, 0);
3631                 btrfs_set_stack_device_type(dev_item, dev->type);
3632                 btrfs_set_stack_device_id(dev_item, dev->devid);
3633                 btrfs_set_stack_device_total_bytes(dev_item,
3634                                                    dev->commit_total_bytes);
3635                 btrfs_set_stack_device_bytes_used(dev_item,
3636                                                   dev->commit_bytes_used);
3637                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3638                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3639                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3640                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3641                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3642
3643                 flags = btrfs_super_flags(sb);
3644                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3645
3646                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3647                 if (ret)
3648                         total_errors++;
3649         }
3650         if (total_errors > max_errors) {
3651                 btrfs_err(root->fs_info, "%d errors while writing supers",
3652                        total_errors);
3653                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3654
3655                 /* FUA is masked off if unsupported and can't be the reason */
3656                 btrfs_std_error(root->fs_info, -EIO,
3657                             "%d errors while writing supers", total_errors);
3658                 return -EIO;
3659         }
3660
3661         total_errors = 0;
3662         list_for_each_entry_rcu(dev, head, dev_list) {
3663                 if (!dev->bdev)
3664                         continue;
3665                 if (!dev->in_fs_metadata || !dev->writeable)
3666                         continue;
3667
3668                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3669                 if (ret)
3670                         total_errors++;
3671         }
3672         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3673         if (total_errors > max_errors) {
3674                 btrfs_std_error(root->fs_info, -EIO,
3675                             "%d errors while writing supers", total_errors);
3676                 return -EIO;
3677         }
3678         return 0;
3679 }
3680
3681 int write_ctree_super(struct btrfs_trans_handle *trans,
3682                       struct btrfs_root *root, int max_mirrors)
3683 {
3684         return write_all_supers(root, max_mirrors);
3685 }
3686
3687 /* Drop a fs root from the radix tree and free it. */
3688 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3689                                   struct btrfs_root *root)
3690 {
3691         spin_lock(&fs_info->fs_roots_radix_lock);
3692         radix_tree_delete(&fs_info->fs_roots_radix,
3693                           (unsigned long)root->root_key.objectid);
3694         spin_unlock(&fs_info->fs_roots_radix_lock);
3695
3696         if (btrfs_root_refs(&root->root_item) == 0)
3697                 synchronize_srcu(&fs_info->subvol_srcu);
3698
3699         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3700                 btrfs_free_log(NULL, root);
3701
3702         if (root->free_ino_pinned)
3703                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3704         if (root->free_ino_ctl)
3705                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3706         free_fs_root(root);
3707 }
3708
3709 static void free_fs_root(struct btrfs_root *root)
3710 {
3711         iput(root->ino_cache_inode);
3712         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3713         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3714         root->orphan_block_rsv = NULL;
3715         if (root->anon_dev)
3716                 free_anon_bdev(root->anon_dev);
3717         if (root->subv_writers)
3718                 btrfs_free_subvolume_writers(root->subv_writers);
3719         free_extent_buffer(root->node);
3720         free_extent_buffer(root->commit_root);
3721         kfree(root->free_ino_ctl);
3722         kfree(root->free_ino_pinned);
3723         kfree(root->name);
3724         btrfs_put_fs_root(root);
3725 }
3726
3727 void btrfs_free_fs_root(struct btrfs_root *root)
3728 {
3729         free_fs_root(root);
3730 }
3731
3732 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3733 {
3734         u64 root_objectid = 0;
3735         struct btrfs_root *gang[8];
3736         int i = 0;
3737         int err = 0;
3738         unsigned int ret = 0;
3739         int index;
3740
3741         while (1) {
3742                 index = srcu_read_lock(&fs_info->subvol_srcu);
3743                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3744                                              (void **)gang, root_objectid,
3745                                              ARRAY_SIZE(gang));
3746                 if (!ret) {
3747                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3748                         break;
3749                 }
3750                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3751
3752                 for (i = 0; i < ret; i++) {
3753                         /* Avoid to grab roots in dead_roots */
3754                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3755                                 gang[i] = NULL;
3756                                 continue;
3757                         }
3758                         /* grab all the search result for later use */
3759                         gang[i] = btrfs_grab_fs_root(gang[i]);
3760                 }
3761                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3762
3763                 for (i = 0; i < ret; i++) {
3764                         if (!gang[i])
3765                                 continue;
3766                         root_objectid = gang[i]->root_key.objectid;
3767                         err = btrfs_orphan_cleanup(gang[i]);
3768                         if (err)
3769                                 break;
3770                         btrfs_put_fs_root(gang[i]);
3771                 }
3772                 root_objectid++;
3773         }
3774
3775         /* release the uncleaned roots due to error */
3776         for (; i < ret; i++) {
3777                 if (gang[i])
3778                         btrfs_put_fs_root(gang[i]);
3779         }
3780         return err;
3781 }
3782
3783 int btrfs_commit_super(struct btrfs_root *root)
3784 {
3785         struct btrfs_trans_handle *trans;
3786
3787         mutex_lock(&root->fs_info->cleaner_mutex);
3788         btrfs_run_delayed_iputs(root);
3789         mutex_unlock(&root->fs_info->cleaner_mutex);
3790         wake_up_process(root->fs_info->cleaner_kthread);
3791
3792         /* wait until ongoing cleanup work done */
3793         down_write(&root->fs_info->cleanup_work_sem);
3794         up_write(&root->fs_info->cleanup_work_sem);
3795
3796         trans = btrfs_join_transaction(root);
3797         if (IS_ERR(trans))
3798                 return PTR_ERR(trans);
3799         return btrfs_commit_transaction(trans, root);
3800 }
3801
3802 void close_ctree(struct btrfs_root *root)
3803 {
3804         struct btrfs_fs_info *fs_info = root->fs_info;
3805         int ret;
3806
3807         fs_info->closing = 1;
3808         smp_mb();
3809
3810         /* wait for the qgroup rescan worker to stop */
3811         btrfs_qgroup_wait_for_completion(fs_info);
3812
3813         /* wait for the uuid_scan task to finish */
3814         down(&fs_info->uuid_tree_rescan_sem);
3815         /* avoid complains from lockdep et al., set sem back to initial state */
3816         up(&fs_info->uuid_tree_rescan_sem);
3817
3818         /* pause restriper - we want to resume on mount */
3819         btrfs_pause_balance(fs_info);
3820
3821         btrfs_dev_replace_suspend_for_unmount(fs_info);
3822
3823         btrfs_scrub_cancel(fs_info);
3824
3825         /* wait for any defraggers to finish */
3826         wait_event(fs_info->transaction_wait,
3827                    (atomic_read(&fs_info->defrag_running) == 0));
3828
3829         /* clear out the rbtree of defraggable inodes */
3830         btrfs_cleanup_defrag_inodes(fs_info);
3831
3832         cancel_work_sync(&fs_info->async_reclaim_work);
3833
3834         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3835                 /*
3836                  * If the cleaner thread is stopped and there are
3837                  * block groups queued for removal, the deletion will be
3838                  * skipped when we quit the cleaner thread.
3839                  */
3840                 btrfs_delete_unused_bgs(root->fs_info);
3841
3842                 ret = btrfs_commit_super(root);
3843                 if (ret)
3844                         btrfs_err(fs_info, "commit super ret %d", ret);
3845         }
3846
3847         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3848                 btrfs_error_commit_super(root);
3849
3850         kthread_stop(fs_info->transaction_kthread);
3851         kthread_stop(fs_info->cleaner_kthread);
3852
3853         fs_info->closing = 2;
3854         smp_mb();
3855
3856         btrfs_free_qgroup_config(fs_info);
3857
3858         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3859                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3860                        percpu_counter_sum(&fs_info->delalloc_bytes));
3861         }
3862
3863         btrfs_sysfs_remove_mounted(fs_info);
3864         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3865
3866         btrfs_free_fs_roots(fs_info);
3867
3868         btrfs_put_block_group_cache(fs_info);
3869
3870         btrfs_free_block_groups(fs_info);
3871
3872         /*
3873          * we must make sure there is not any read request to
3874          * submit after we stopping all workers.
3875          */
3876         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3877         btrfs_stop_all_workers(fs_info);
3878
3879         fs_info->open = 0;
3880         free_root_pointers(fs_info, 1);
3881
3882         iput(fs_info->btree_inode);
3883
3884 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3885         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3886                 btrfsic_unmount(root, fs_info->fs_devices);
3887 #endif
3888
3889         btrfs_close_devices(fs_info->fs_devices);
3890         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3891
3892         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3893         percpu_counter_destroy(&fs_info->delalloc_bytes);
3894         percpu_counter_destroy(&fs_info->bio_counter);
3895         bdi_destroy(&fs_info->bdi);
3896         cleanup_srcu_struct(&fs_info->subvol_srcu);
3897
3898         btrfs_free_stripe_hash_table(fs_info);
3899
3900         __btrfs_free_block_rsv(root->orphan_block_rsv);
3901         root->orphan_block_rsv = NULL;
3902
3903         lock_chunks(root);
3904         while (!list_empty(&fs_info->pinned_chunks)) {
3905                 struct extent_map *em;
3906
3907                 em = list_first_entry(&fs_info->pinned_chunks,
3908                                       struct extent_map, list);
3909                 list_del_init(&em->list);
3910                 free_extent_map(em);
3911         }
3912         unlock_chunks(root);
3913 }
3914
3915 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3916                           int atomic)
3917 {
3918         int ret;
3919         struct inode *btree_inode = buf->pages[0]->mapping->host;
3920
3921         ret = extent_buffer_uptodate(buf);
3922         if (!ret)
3923                 return ret;
3924
3925         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3926                                     parent_transid, atomic);
3927         if (ret == -EAGAIN)
3928                 return ret;
3929         return !ret;
3930 }
3931
3932 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3933 {
3934         return set_extent_buffer_uptodate(buf);
3935 }
3936
3937 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3938 {
3939         struct btrfs_root *root;
3940         u64 transid = btrfs_header_generation(buf);
3941         int was_dirty;
3942
3943 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3944         /*
3945          * This is a fast path so only do this check if we have sanity tests
3946          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3947          * outside of the sanity tests.
3948          */
3949         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3950                 return;
3951 #endif
3952         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3953         btrfs_assert_tree_locked(buf);
3954         if (transid != root->fs_info->generation)
3955                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3956                        "found %llu running %llu\n",
3957                         buf->start, transid, root->fs_info->generation);
3958         was_dirty = set_extent_buffer_dirty(buf);
3959         if (!was_dirty)
3960                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3961                                      buf->len,
3962                                      root->fs_info->dirty_metadata_batch);
3963 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3964         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3965                 btrfs_print_leaf(root, buf);
3966                 ASSERT(0);
3967         }
3968 #endif
3969 }
3970
3971 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3972                                         int flush_delayed)
3973 {
3974         /*
3975          * looks as though older kernels can get into trouble with
3976          * this code, they end up stuck in balance_dirty_pages forever
3977          */
3978         int ret;
3979
3980         if (current->flags & PF_MEMALLOC)
3981                 return;
3982
3983         if (flush_delayed)
3984                 btrfs_balance_delayed_items(root);
3985
3986         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3987                                      BTRFS_DIRTY_METADATA_THRESH);
3988         if (ret > 0) {
3989                 balance_dirty_pages_ratelimited(
3990                                    root->fs_info->btree_inode->i_mapping);
3991         }
3992         return;
3993 }
3994
3995 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3996 {
3997         __btrfs_btree_balance_dirty(root, 1);
3998 }
3999
4000 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4001 {
4002         __btrfs_btree_balance_dirty(root, 0);
4003 }
4004
4005 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4006 {
4007         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4008         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4009 }
4010
4011 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4012                               int read_only)
4013 {
4014         struct btrfs_super_block *sb = fs_info->super_copy;
4015         int ret = 0;
4016
4017         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4018                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4019                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4020                 ret = -EINVAL;
4021         }
4022         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4023                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4024                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4025                 ret = -EINVAL;
4026         }
4027         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4028                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4029                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4030                 ret = -EINVAL;
4031         }
4032
4033         /*
4034          * The common minimum, we don't know if we can trust the nodesize/sectorsize
4035          * items yet, they'll be verified later. Issue just a warning.
4036          */
4037         if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
4038                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4039                                 btrfs_super_root(sb));
4040         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4041                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4042                                 btrfs_super_chunk_root(sb));
4043         if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4044                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4045                                 btrfs_super_log_root(sb));
4046
4047         /*
4048          * Check the lower bound, the alignment and other constraints are
4049          * checked later.
4050          */
4051         if (btrfs_super_nodesize(sb) < 4096) {
4052                 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4053                                 btrfs_super_nodesize(sb));
4054                 ret = -EINVAL;
4055         }
4056         if (btrfs_super_sectorsize(sb) < 4096) {
4057                 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4058                                 btrfs_super_sectorsize(sb));
4059                 ret = -EINVAL;
4060         }
4061
4062         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4063                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4064                                 fs_info->fsid, sb->dev_item.fsid);
4065                 ret = -EINVAL;
4066         }
4067
4068         /*
4069          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4070          * done later
4071          */
4072         if (btrfs_super_num_devices(sb) > (1UL << 31))
4073                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4074                                 btrfs_super_num_devices(sb));
4075         if (btrfs_super_num_devices(sb) == 0) {
4076                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4077                 ret = -EINVAL;
4078         }
4079
4080         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4081                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4082                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4083                 ret = -EINVAL;
4084         }
4085
4086         /*
4087          * Obvious sys_chunk_array corruptions, it must hold at least one key
4088          * and one chunk
4089          */
4090         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4091                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4092                                 btrfs_super_sys_array_size(sb),
4093                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4094                 ret = -EINVAL;
4095         }
4096         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4097                         + sizeof(struct btrfs_chunk)) {
4098                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4099                                 btrfs_super_sys_array_size(sb),
4100                                 sizeof(struct btrfs_disk_key)
4101                                 + sizeof(struct btrfs_chunk));
4102                 ret = -EINVAL;
4103         }
4104
4105         /*
4106          * The generation is a global counter, we'll trust it more than the others
4107          * but it's still possible that it's the one that's wrong.
4108          */
4109         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4110                 printk(KERN_WARNING
4111                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4112                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4113         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4114             && btrfs_super_cache_generation(sb) != (u64)-1)
4115                 printk(KERN_WARNING
4116                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4117                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4118
4119         return ret;
4120 }
4121
4122 static void btrfs_error_commit_super(struct btrfs_root *root)
4123 {
4124         mutex_lock(&root->fs_info->cleaner_mutex);
4125         btrfs_run_delayed_iputs(root);
4126         mutex_unlock(&root->fs_info->cleaner_mutex);
4127
4128         down_write(&root->fs_info->cleanup_work_sem);
4129         up_write(&root->fs_info->cleanup_work_sem);
4130
4131         /* cleanup FS via transaction */
4132         btrfs_cleanup_transaction(root);
4133 }
4134
4135 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4136 {
4137         struct btrfs_ordered_extent *ordered;
4138
4139         spin_lock(&root->ordered_extent_lock);
4140         /*
4141          * This will just short circuit the ordered completion stuff which will
4142          * make sure the ordered extent gets properly cleaned up.
4143          */
4144         list_for_each_entry(ordered, &root->ordered_extents,
4145                             root_extent_list)
4146                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4147         spin_unlock(&root->ordered_extent_lock);
4148 }
4149
4150 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4151 {
4152         struct btrfs_root *root;
4153         struct list_head splice;
4154
4155         INIT_LIST_HEAD(&splice);
4156
4157         spin_lock(&fs_info->ordered_root_lock);
4158         list_splice_init(&fs_info->ordered_roots, &splice);
4159         while (!list_empty(&splice)) {
4160                 root = list_first_entry(&splice, struct btrfs_root,
4161                                         ordered_root);
4162                 list_move_tail(&root->ordered_root,
4163                                &fs_info->ordered_roots);
4164
4165                 spin_unlock(&fs_info->ordered_root_lock);
4166                 btrfs_destroy_ordered_extents(root);
4167
4168                 cond_resched();
4169                 spin_lock(&fs_info->ordered_root_lock);
4170         }
4171         spin_unlock(&fs_info->ordered_root_lock);
4172 }
4173
4174 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4175                                       struct btrfs_root *root)
4176 {
4177         struct rb_node *node;
4178         struct btrfs_delayed_ref_root *delayed_refs;
4179         struct btrfs_delayed_ref_node *ref;
4180         int ret = 0;
4181
4182         delayed_refs = &trans->delayed_refs;
4183
4184         spin_lock(&delayed_refs->lock);
4185         if (atomic_read(&delayed_refs->num_entries) == 0) {
4186                 spin_unlock(&delayed_refs->lock);
4187                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4188                 return ret;
4189         }
4190
4191         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4192                 struct btrfs_delayed_ref_head *head;
4193                 struct btrfs_delayed_ref_node *tmp;
4194                 bool pin_bytes = false;
4195
4196                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4197                                 href_node);
4198                 if (!mutex_trylock(&head->mutex)) {
4199                         atomic_inc(&head->node.refs);
4200                         spin_unlock(&delayed_refs->lock);
4201
4202                         mutex_lock(&head->mutex);
4203                         mutex_unlock(&head->mutex);
4204                         btrfs_put_delayed_ref(&head->node);
4205                         spin_lock(&delayed_refs->lock);
4206                         continue;
4207                 }
4208                 spin_lock(&head->lock);
4209                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4210                                                  list) {
4211                         ref->in_tree = 0;
4212                         list_del(&ref->list);
4213                         atomic_dec(&delayed_refs->num_entries);
4214                         btrfs_put_delayed_ref(ref);
4215                 }
4216                 if (head->must_insert_reserved)
4217                         pin_bytes = true;
4218                 btrfs_free_delayed_extent_op(head->extent_op);
4219                 delayed_refs->num_heads--;
4220                 if (head->processing == 0)
4221                         delayed_refs->num_heads_ready--;
4222                 atomic_dec(&delayed_refs->num_entries);
4223                 head->node.in_tree = 0;
4224                 rb_erase(&head->href_node, &delayed_refs->href_root);
4225                 spin_unlock(&head->lock);
4226                 spin_unlock(&delayed_refs->lock);
4227                 mutex_unlock(&head->mutex);
4228
4229                 if (pin_bytes)
4230                         btrfs_pin_extent(root, head->node.bytenr,
4231                                          head->node.num_bytes, 1);
4232                 btrfs_put_delayed_ref(&head->node);
4233                 cond_resched();
4234                 spin_lock(&delayed_refs->lock);
4235         }
4236
4237         spin_unlock(&delayed_refs->lock);
4238
4239         return ret;
4240 }
4241
4242 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4243 {
4244         struct btrfs_inode *btrfs_inode;
4245         struct list_head splice;
4246
4247         INIT_LIST_HEAD(&splice);
4248
4249         spin_lock(&root->delalloc_lock);
4250         list_splice_init(&root->delalloc_inodes, &splice);
4251
4252         while (!list_empty(&splice)) {
4253                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4254                                                delalloc_inodes);
4255
4256                 list_del_init(&btrfs_inode->delalloc_inodes);
4257                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4258                           &btrfs_inode->runtime_flags);
4259                 spin_unlock(&root->delalloc_lock);
4260
4261                 btrfs_invalidate_inodes(btrfs_inode->root);
4262
4263                 spin_lock(&root->delalloc_lock);
4264         }
4265
4266         spin_unlock(&root->delalloc_lock);
4267 }
4268
4269 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4270 {
4271         struct btrfs_root *root;
4272         struct list_head splice;
4273
4274         INIT_LIST_HEAD(&splice);
4275
4276         spin_lock(&fs_info->delalloc_root_lock);
4277         list_splice_init(&fs_info->delalloc_roots, &splice);
4278         while (!list_empty(&splice)) {
4279                 root = list_first_entry(&splice, struct btrfs_root,
4280                                          delalloc_root);
4281                 list_del_init(&root->delalloc_root);
4282                 root = btrfs_grab_fs_root(root);
4283                 BUG_ON(!root);
4284                 spin_unlock(&fs_info->delalloc_root_lock);
4285
4286                 btrfs_destroy_delalloc_inodes(root);
4287                 btrfs_put_fs_root(root);
4288
4289                 spin_lock(&fs_info->delalloc_root_lock);
4290         }
4291         spin_unlock(&fs_info->delalloc_root_lock);
4292 }
4293
4294 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4295                                         struct extent_io_tree *dirty_pages,
4296                                         int mark)
4297 {
4298         int ret;
4299         struct extent_buffer *eb;
4300         u64 start = 0;
4301         u64 end;
4302
4303         while (1) {
4304                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4305                                             mark, NULL);
4306                 if (ret)
4307                         break;
4308
4309                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4310                 while (start <= end) {
4311                         eb = btrfs_find_tree_block(root->fs_info, start);
4312                         start += root->nodesize;
4313                         if (!eb)
4314                                 continue;
4315                         wait_on_extent_buffer_writeback(eb);
4316
4317                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4318                                                &eb->bflags))
4319                                 clear_extent_buffer_dirty(eb);
4320                         free_extent_buffer_stale(eb);
4321                 }
4322         }
4323
4324         return ret;
4325 }
4326
4327 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4328                                        struct extent_io_tree *pinned_extents)
4329 {
4330         struct extent_io_tree *unpin;
4331         u64 start;
4332         u64 end;
4333         int ret;
4334         bool loop = true;
4335
4336         unpin = pinned_extents;
4337 again:
4338         while (1) {
4339                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4340                                             EXTENT_DIRTY, NULL);
4341                 if (ret)
4342                         break;
4343
4344                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4345                 btrfs_error_unpin_extent_range(root, start, end);
4346                 cond_resched();
4347         }
4348
4349         if (loop) {
4350                 if (unpin == &root->fs_info->freed_extents[0])
4351                         unpin = &root->fs_info->freed_extents[1];
4352                 else
4353                         unpin = &root->fs_info->freed_extents[0];
4354                 loop = false;
4355                 goto again;
4356         }
4357
4358         return 0;
4359 }
4360
4361 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4362                                    struct btrfs_root *root)
4363 {
4364         btrfs_destroy_delayed_refs(cur_trans, root);
4365
4366         cur_trans->state = TRANS_STATE_COMMIT_START;
4367         wake_up(&root->fs_info->transaction_blocked_wait);
4368
4369         cur_trans->state = TRANS_STATE_UNBLOCKED;
4370         wake_up(&root->fs_info->transaction_wait);
4371
4372         btrfs_destroy_delayed_inodes(root);
4373         btrfs_assert_delayed_root_empty(root);
4374
4375         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4376                                      EXTENT_DIRTY);
4377         btrfs_destroy_pinned_extent(root,
4378                                     root->fs_info->pinned_extents);
4379
4380         cur_trans->state =TRANS_STATE_COMPLETED;
4381         wake_up(&cur_trans->commit_wait);
4382
4383         /*
4384         memset(cur_trans, 0, sizeof(*cur_trans));
4385         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4386         */
4387 }
4388
4389 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4390 {
4391         struct btrfs_transaction *t;
4392
4393         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4394
4395         spin_lock(&root->fs_info->trans_lock);
4396         while (!list_empty(&root->fs_info->trans_list)) {
4397                 t = list_first_entry(&root->fs_info->trans_list,
4398                                      struct btrfs_transaction, list);
4399                 if (t->state >= TRANS_STATE_COMMIT_START) {
4400                         atomic_inc(&t->use_count);
4401                         spin_unlock(&root->fs_info->trans_lock);
4402                         btrfs_wait_for_commit(root, t->transid);
4403                         btrfs_put_transaction(t);
4404                         spin_lock(&root->fs_info->trans_lock);
4405                         continue;
4406                 }
4407                 if (t == root->fs_info->running_transaction) {
4408                         t->state = TRANS_STATE_COMMIT_DOING;
4409                         spin_unlock(&root->fs_info->trans_lock);
4410                         /*
4411                          * We wait for 0 num_writers since we don't hold a trans
4412                          * handle open currently for this transaction.
4413                          */
4414                         wait_event(t->writer_wait,
4415                                    atomic_read(&t->num_writers) == 0);
4416                 } else {
4417                         spin_unlock(&root->fs_info->trans_lock);
4418                 }
4419                 btrfs_cleanup_one_transaction(t, root);
4420
4421                 spin_lock(&root->fs_info->trans_lock);
4422                 if (t == root->fs_info->running_transaction)
4423                         root->fs_info->running_transaction = NULL;
4424                 list_del_init(&t->list);
4425                 spin_unlock(&root->fs_info->trans_lock);
4426
4427                 btrfs_put_transaction(t);
4428                 trace_btrfs_transaction_commit(root);
4429                 spin_lock(&root->fs_info->trans_lock);
4430         }
4431         spin_unlock(&root->fs_info->trans_lock);
4432         btrfs_destroy_all_ordered_extents(root->fs_info);
4433         btrfs_destroy_delayed_inodes(root);
4434         btrfs_assert_delayed_root_empty(root);
4435         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4436         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4437         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4438
4439         return 0;
4440 }
4441
4442 static const struct extent_io_ops btree_extent_io_ops = {
4443         .readpage_end_io_hook = btree_readpage_end_io_hook,
4444         .readpage_io_failed_hook = btree_io_failed_hook,
4445         .submit_bio_hook = btree_submit_bio_hook,
4446         /* note we're sharing with inode.c for the merge bio hook */
4447         .merge_bio_hook = btrfs_merge_bio_hook,
4448 };