]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/extent-tree.c
Btrfs: fix deadlock running delayed iputs at transaction commit time
[karo-tx-linux.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57         CHUNK_ALLOC_NO_FORCE = 0,
58         CHUNK_ALLOC_LIMITED = 1,
59         CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72         RESERVE_FREE = 0,
73         RESERVE_ALLOC = 1,
74         RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78                               struct btrfs_root *root, u64 bytenr,
79                               u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81                                 struct btrfs_root *root,
82                                 struct btrfs_delayed_ref_node *node, u64 parent,
83                                 u64 root_objectid, u64 owner_objectid,
84                                 u64 owner_offset, int refs_to_drop,
85                                 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87                                     struct extent_buffer *leaf,
88                                     struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90                                       struct btrfs_root *root,
91                                       u64 parent, u64 root_objectid,
92                                       u64 flags, u64 owner, u64 offset,
93                                       struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95                                      struct btrfs_root *root,
96                                      u64 parent, u64 root_objectid,
97                                      u64 flags, struct btrfs_disk_key *key,
98                                      int level, struct btrfs_key *ins);
99 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
100                           struct btrfs_root *extent_root, u64 flags,
101                           int force);
102 static int find_next_key(struct btrfs_path *path, int level,
103                          struct btrfs_key *key);
104 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
105                             int dump_block_groups);
106 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
107                                        u64 num_bytes, int reserve,
108                                        int delalloc);
109 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
110                                u64 num_bytes);
111 int btrfs_pin_extent(struct btrfs_root *root,
112                      u64 bytenr, u64 num_bytes, int reserved);
113
114 static noinline int
115 block_group_cache_done(struct btrfs_block_group_cache *cache)
116 {
117         smp_mb();
118         return cache->cached == BTRFS_CACHE_FINISHED ||
119                 cache->cached == BTRFS_CACHE_ERROR;
120 }
121
122 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
123 {
124         return (cache->flags & bits) == bits;
125 }
126
127 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
128 {
129         atomic_inc(&cache->count);
130 }
131
132 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
133 {
134         if (atomic_dec_and_test(&cache->count)) {
135                 WARN_ON(cache->pinned > 0);
136                 WARN_ON(cache->reserved > 0);
137                 kfree(cache->free_space_ctl);
138                 kfree(cache);
139         }
140 }
141
142 /*
143  * this adds the block group to the fs_info rb tree for the block group
144  * cache
145  */
146 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
147                                 struct btrfs_block_group_cache *block_group)
148 {
149         struct rb_node **p;
150         struct rb_node *parent = NULL;
151         struct btrfs_block_group_cache *cache;
152
153         spin_lock(&info->block_group_cache_lock);
154         p = &info->block_group_cache_tree.rb_node;
155
156         while (*p) {
157                 parent = *p;
158                 cache = rb_entry(parent, struct btrfs_block_group_cache,
159                                  cache_node);
160                 if (block_group->key.objectid < cache->key.objectid) {
161                         p = &(*p)->rb_left;
162                 } else if (block_group->key.objectid > cache->key.objectid) {
163                         p = &(*p)->rb_right;
164                 } else {
165                         spin_unlock(&info->block_group_cache_lock);
166                         return -EEXIST;
167                 }
168         }
169
170         rb_link_node(&block_group->cache_node, parent, p);
171         rb_insert_color(&block_group->cache_node,
172                         &info->block_group_cache_tree);
173
174         if (info->first_logical_byte > block_group->key.objectid)
175                 info->first_logical_byte = block_group->key.objectid;
176
177         spin_unlock(&info->block_group_cache_lock);
178
179         return 0;
180 }
181
182 /*
183  * This will return the block group at or after bytenr if contains is 0, else
184  * it will return the block group that contains the bytenr
185  */
186 static struct btrfs_block_group_cache *
187 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
188                               int contains)
189 {
190         struct btrfs_block_group_cache *cache, *ret = NULL;
191         struct rb_node *n;
192         u64 end, start;
193
194         spin_lock(&info->block_group_cache_lock);
195         n = info->block_group_cache_tree.rb_node;
196
197         while (n) {
198                 cache = rb_entry(n, struct btrfs_block_group_cache,
199                                  cache_node);
200                 end = cache->key.objectid + cache->key.offset - 1;
201                 start = cache->key.objectid;
202
203                 if (bytenr < start) {
204                         if (!contains && (!ret || start < ret->key.objectid))
205                                 ret = cache;
206                         n = n->rb_left;
207                 } else if (bytenr > start) {
208                         if (contains && bytenr <= end) {
209                                 ret = cache;
210                                 break;
211                         }
212                         n = n->rb_right;
213                 } else {
214                         ret = cache;
215                         break;
216                 }
217         }
218         if (ret) {
219                 btrfs_get_block_group(ret);
220                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
221                         info->first_logical_byte = ret->key.objectid;
222         }
223         spin_unlock(&info->block_group_cache_lock);
224
225         return ret;
226 }
227
228 static int add_excluded_extent(struct btrfs_root *root,
229                                u64 start, u64 num_bytes)
230 {
231         u64 end = start + num_bytes - 1;
232         set_extent_bits(&root->fs_info->freed_extents[0],
233                         start, end, EXTENT_UPTODATE, GFP_NOFS);
234         set_extent_bits(&root->fs_info->freed_extents[1],
235                         start, end, EXTENT_UPTODATE, GFP_NOFS);
236         return 0;
237 }
238
239 static void free_excluded_extents(struct btrfs_root *root,
240                                   struct btrfs_block_group_cache *cache)
241 {
242         u64 start, end;
243
244         start = cache->key.objectid;
245         end = start + cache->key.offset - 1;
246
247         clear_extent_bits(&root->fs_info->freed_extents[0],
248                           start, end, EXTENT_UPTODATE, GFP_NOFS);
249         clear_extent_bits(&root->fs_info->freed_extents[1],
250                           start, end, EXTENT_UPTODATE, GFP_NOFS);
251 }
252
253 static int exclude_super_stripes(struct btrfs_root *root,
254                                  struct btrfs_block_group_cache *cache)
255 {
256         u64 bytenr;
257         u64 *logical;
258         int stripe_len;
259         int i, nr, ret;
260
261         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
262                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
263                 cache->bytes_super += stripe_len;
264                 ret = add_excluded_extent(root, cache->key.objectid,
265                                           stripe_len);
266                 if (ret)
267                         return ret;
268         }
269
270         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
271                 bytenr = btrfs_sb_offset(i);
272                 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
273                                        cache->key.objectid, bytenr,
274                                        0, &logical, &nr, &stripe_len);
275                 if (ret)
276                         return ret;
277
278                 while (nr--) {
279                         u64 start, len;
280
281                         if (logical[nr] > cache->key.objectid +
282                             cache->key.offset)
283                                 continue;
284
285                         if (logical[nr] + stripe_len <= cache->key.objectid)
286                                 continue;
287
288                         start = logical[nr];
289                         if (start < cache->key.objectid) {
290                                 start = cache->key.objectid;
291                                 len = (logical[nr] + stripe_len) - start;
292                         } else {
293                                 len = min_t(u64, stripe_len,
294                                             cache->key.objectid +
295                                             cache->key.offset - start);
296                         }
297
298                         cache->bytes_super += len;
299                         ret = add_excluded_extent(root, start, len);
300                         if (ret) {
301                                 kfree(logical);
302                                 return ret;
303                         }
304                 }
305
306                 kfree(logical);
307         }
308         return 0;
309 }
310
311 static struct btrfs_caching_control *
312 get_caching_control(struct btrfs_block_group_cache *cache)
313 {
314         struct btrfs_caching_control *ctl;
315
316         spin_lock(&cache->lock);
317         if (!cache->caching_ctl) {
318                 spin_unlock(&cache->lock);
319                 return NULL;
320         }
321
322         ctl = cache->caching_ctl;
323         atomic_inc(&ctl->count);
324         spin_unlock(&cache->lock);
325         return ctl;
326 }
327
328 static void put_caching_control(struct btrfs_caching_control *ctl)
329 {
330         if (atomic_dec_and_test(&ctl->count))
331                 kfree(ctl);
332 }
333
334 #ifdef CONFIG_BTRFS_DEBUG
335 static void fragment_free_space(struct btrfs_root *root,
336                                 struct btrfs_block_group_cache *block_group)
337 {
338         u64 start = block_group->key.objectid;
339         u64 len = block_group->key.offset;
340         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
341                 root->nodesize : root->sectorsize;
342         u64 step = chunk << 1;
343
344         while (len > chunk) {
345                 btrfs_remove_free_space(block_group, start, chunk);
346                 start += step;
347                 if (len < step)
348                         len = 0;
349                 else
350                         len -= step;
351         }
352 }
353 #endif
354
355 /*
356  * this is only called by cache_block_group, since we could have freed extents
357  * we need to check the pinned_extents for any extents that can't be used yet
358  * since their free space will be released as soon as the transaction commits.
359  */
360 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
361                               struct btrfs_fs_info *info, u64 start, u64 end)
362 {
363         u64 extent_start, extent_end, size, total_added = 0;
364         int ret;
365
366         while (start < end) {
367                 ret = find_first_extent_bit(info->pinned_extents, start,
368                                             &extent_start, &extent_end,
369                                             EXTENT_DIRTY | EXTENT_UPTODATE,
370                                             NULL);
371                 if (ret)
372                         break;
373
374                 if (extent_start <= start) {
375                         start = extent_end + 1;
376                 } else if (extent_start > start && extent_start < end) {
377                         size = extent_start - start;
378                         total_added += size;
379                         ret = btrfs_add_free_space(block_group, start,
380                                                    size);
381                         BUG_ON(ret); /* -ENOMEM or logic error */
382                         start = extent_end + 1;
383                 } else {
384                         break;
385                 }
386         }
387
388         if (start < end) {
389                 size = end - start;
390                 total_added += size;
391                 ret = btrfs_add_free_space(block_group, start, size);
392                 BUG_ON(ret); /* -ENOMEM or logic error */
393         }
394
395         return total_added;
396 }
397
398 static noinline void caching_thread(struct btrfs_work *work)
399 {
400         struct btrfs_block_group_cache *block_group;
401         struct btrfs_fs_info *fs_info;
402         struct btrfs_caching_control *caching_ctl;
403         struct btrfs_root *extent_root;
404         struct btrfs_path *path;
405         struct extent_buffer *leaf;
406         struct btrfs_key key;
407         u64 total_found = 0;
408         u64 last = 0;
409         u32 nritems;
410         int ret = -ENOMEM;
411         bool wakeup = true;
412
413         caching_ctl = container_of(work, struct btrfs_caching_control, work);
414         block_group = caching_ctl->block_group;
415         fs_info = block_group->fs_info;
416         extent_root = fs_info->extent_root;
417
418         path = btrfs_alloc_path();
419         if (!path)
420                 goto out;
421
422         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423
424 #ifdef CONFIG_BTRFS_DEBUG
425         /*
426          * If we're fragmenting we don't want to make anybody think we can
427          * allocate from this block group until we've had a chance to fragment
428          * the free space.
429          */
430         if (btrfs_should_fragment_free_space(extent_root, block_group))
431                 wakeup = false;
432 #endif
433         /*
434          * We don't want to deadlock with somebody trying to allocate a new
435          * extent for the extent root while also trying to search the extent
436          * root to add free space.  So we skip locking and search the commit
437          * root, since its read-only
438          */
439         path->skip_locking = 1;
440         path->search_commit_root = 1;
441         path->reada = 1;
442
443         key.objectid = last;
444         key.offset = 0;
445         key.type = BTRFS_EXTENT_ITEM_KEY;
446 again:
447         mutex_lock(&caching_ctl->mutex);
448         /* need to make sure the commit_root doesn't disappear */
449         down_read(&fs_info->commit_root_sem);
450
451 next:
452         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
453         if (ret < 0)
454                 goto err;
455
456         leaf = path->nodes[0];
457         nritems = btrfs_header_nritems(leaf);
458
459         while (1) {
460                 if (btrfs_fs_closing(fs_info) > 1) {
461                         last = (u64)-1;
462                         break;
463                 }
464
465                 if (path->slots[0] < nritems) {
466                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
467                 } else {
468                         ret = find_next_key(path, 0, &key);
469                         if (ret)
470                                 break;
471
472                         if (need_resched() ||
473                             rwsem_is_contended(&fs_info->commit_root_sem)) {
474                                 if (wakeup)
475                                         caching_ctl->progress = last;
476                                 btrfs_release_path(path);
477                                 up_read(&fs_info->commit_root_sem);
478                                 mutex_unlock(&caching_ctl->mutex);
479                                 cond_resched();
480                                 goto again;
481                         }
482
483                         ret = btrfs_next_leaf(extent_root, path);
484                         if (ret < 0)
485                                 goto err;
486                         if (ret)
487                                 break;
488                         leaf = path->nodes[0];
489                         nritems = btrfs_header_nritems(leaf);
490                         continue;
491                 }
492
493                 if (key.objectid < last) {
494                         key.objectid = last;
495                         key.offset = 0;
496                         key.type = BTRFS_EXTENT_ITEM_KEY;
497
498                         if (wakeup)
499                                 caching_ctl->progress = last;
500                         btrfs_release_path(path);
501                         goto next;
502                 }
503
504                 if (key.objectid < block_group->key.objectid) {
505                         path->slots[0]++;
506                         continue;
507                 }
508
509                 if (key.objectid >= block_group->key.objectid +
510                     block_group->key.offset)
511                         break;
512
513                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
514                     key.type == BTRFS_METADATA_ITEM_KEY) {
515                         total_found += add_new_free_space(block_group,
516                                                           fs_info, last,
517                                                           key.objectid);
518                         if (key.type == BTRFS_METADATA_ITEM_KEY)
519                                 last = key.objectid +
520                                         fs_info->tree_root->nodesize;
521                         else
522                                 last = key.objectid + key.offset;
523
524                         if (total_found > (1024 * 1024 * 2)) {
525                                 total_found = 0;
526                                 if (wakeup)
527                                         wake_up(&caching_ctl->wait);
528                         }
529                 }
530                 path->slots[0]++;
531         }
532         ret = 0;
533
534         total_found += add_new_free_space(block_group, fs_info, last,
535                                           block_group->key.objectid +
536                                           block_group->key.offset);
537         spin_lock(&block_group->lock);
538         block_group->caching_ctl = NULL;
539         block_group->cached = BTRFS_CACHE_FINISHED;
540         spin_unlock(&block_group->lock);
541
542 #ifdef CONFIG_BTRFS_DEBUG
543         if (btrfs_should_fragment_free_space(extent_root, block_group)) {
544                 u64 bytes_used;
545
546                 spin_lock(&block_group->space_info->lock);
547                 spin_lock(&block_group->lock);
548                 bytes_used = block_group->key.offset -
549                         btrfs_block_group_used(&block_group->item);
550                 block_group->space_info->bytes_used += bytes_used >> 1;
551                 spin_unlock(&block_group->lock);
552                 spin_unlock(&block_group->space_info->lock);
553                 fragment_free_space(extent_root, block_group);
554         }
555 #endif
556
557         caching_ctl->progress = (u64)-1;
558 err:
559         btrfs_free_path(path);
560         up_read(&fs_info->commit_root_sem);
561
562         free_excluded_extents(extent_root, block_group);
563
564         mutex_unlock(&caching_ctl->mutex);
565 out:
566         if (ret) {
567                 spin_lock(&block_group->lock);
568                 block_group->caching_ctl = NULL;
569                 block_group->cached = BTRFS_CACHE_ERROR;
570                 spin_unlock(&block_group->lock);
571         }
572         wake_up(&caching_ctl->wait);
573
574         put_caching_control(caching_ctl);
575         btrfs_put_block_group(block_group);
576 }
577
578 static int cache_block_group(struct btrfs_block_group_cache *cache,
579                              int load_cache_only)
580 {
581         DEFINE_WAIT(wait);
582         struct btrfs_fs_info *fs_info = cache->fs_info;
583         struct btrfs_caching_control *caching_ctl;
584         int ret = 0;
585
586         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
587         if (!caching_ctl)
588                 return -ENOMEM;
589
590         INIT_LIST_HEAD(&caching_ctl->list);
591         mutex_init(&caching_ctl->mutex);
592         init_waitqueue_head(&caching_ctl->wait);
593         caching_ctl->block_group = cache;
594         caching_ctl->progress = cache->key.objectid;
595         atomic_set(&caching_ctl->count, 1);
596         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
597                         caching_thread, NULL, NULL);
598
599         spin_lock(&cache->lock);
600         /*
601          * This should be a rare occasion, but this could happen I think in the
602          * case where one thread starts to load the space cache info, and then
603          * some other thread starts a transaction commit which tries to do an
604          * allocation while the other thread is still loading the space cache
605          * info.  The previous loop should have kept us from choosing this block
606          * group, but if we've moved to the state where we will wait on caching
607          * block groups we need to first check if we're doing a fast load here,
608          * so we can wait for it to finish, otherwise we could end up allocating
609          * from a block group who's cache gets evicted for one reason or
610          * another.
611          */
612         while (cache->cached == BTRFS_CACHE_FAST) {
613                 struct btrfs_caching_control *ctl;
614
615                 ctl = cache->caching_ctl;
616                 atomic_inc(&ctl->count);
617                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
618                 spin_unlock(&cache->lock);
619
620                 schedule();
621
622                 finish_wait(&ctl->wait, &wait);
623                 put_caching_control(ctl);
624                 spin_lock(&cache->lock);
625         }
626
627         if (cache->cached != BTRFS_CACHE_NO) {
628                 spin_unlock(&cache->lock);
629                 kfree(caching_ctl);
630                 return 0;
631         }
632         WARN_ON(cache->caching_ctl);
633         cache->caching_ctl = caching_ctl;
634         cache->cached = BTRFS_CACHE_FAST;
635         spin_unlock(&cache->lock);
636
637         if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
638                 mutex_lock(&caching_ctl->mutex);
639                 ret = load_free_space_cache(fs_info, cache);
640
641                 spin_lock(&cache->lock);
642                 if (ret == 1) {
643                         cache->caching_ctl = NULL;
644                         cache->cached = BTRFS_CACHE_FINISHED;
645                         cache->last_byte_to_unpin = (u64)-1;
646                         caching_ctl->progress = (u64)-1;
647                 } else {
648                         if (load_cache_only) {
649                                 cache->caching_ctl = NULL;
650                                 cache->cached = BTRFS_CACHE_NO;
651                         } else {
652                                 cache->cached = BTRFS_CACHE_STARTED;
653                                 cache->has_caching_ctl = 1;
654                         }
655                 }
656                 spin_unlock(&cache->lock);
657 #ifdef CONFIG_BTRFS_DEBUG
658                 if (ret == 1 &&
659                     btrfs_should_fragment_free_space(fs_info->extent_root,
660                                                      cache)) {
661                         u64 bytes_used;
662
663                         spin_lock(&cache->space_info->lock);
664                         spin_lock(&cache->lock);
665                         bytes_used = cache->key.offset -
666                                 btrfs_block_group_used(&cache->item);
667                         cache->space_info->bytes_used += bytes_used >> 1;
668                         spin_unlock(&cache->lock);
669                         spin_unlock(&cache->space_info->lock);
670                         fragment_free_space(fs_info->extent_root, cache);
671                 }
672 #endif
673                 mutex_unlock(&caching_ctl->mutex);
674
675                 wake_up(&caching_ctl->wait);
676                 if (ret == 1) {
677                         put_caching_control(caching_ctl);
678                         free_excluded_extents(fs_info->extent_root, cache);
679                         return 0;
680                 }
681         } else {
682                 /*
683                  * We are not going to do the fast caching, set cached to the
684                  * appropriate value and wakeup any waiters.
685                  */
686                 spin_lock(&cache->lock);
687                 if (load_cache_only) {
688                         cache->caching_ctl = NULL;
689                         cache->cached = BTRFS_CACHE_NO;
690                 } else {
691                         cache->cached = BTRFS_CACHE_STARTED;
692                         cache->has_caching_ctl = 1;
693                 }
694                 spin_unlock(&cache->lock);
695                 wake_up(&caching_ctl->wait);
696         }
697
698         if (load_cache_only) {
699                 put_caching_control(caching_ctl);
700                 return 0;
701         }
702
703         down_write(&fs_info->commit_root_sem);
704         atomic_inc(&caching_ctl->count);
705         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
706         up_write(&fs_info->commit_root_sem);
707
708         btrfs_get_block_group(cache);
709
710         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
711
712         return ret;
713 }
714
715 /*
716  * return the block group that starts at or after bytenr
717  */
718 static struct btrfs_block_group_cache *
719 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
720 {
721         struct btrfs_block_group_cache *cache;
722
723         cache = block_group_cache_tree_search(info, bytenr, 0);
724
725         return cache;
726 }
727
728 /*
729  * return the block group that contains the given bytenr
730  */
731 struct btrfs_block_group_cache *btrfs_lookup_block_group(
732                                                  struct btrfs_fs_info *info,
733                                                  u64 bytenr)
734 {
735         struct btrfs_block_group_cache *cache;
736
737         cache = block_group_cache_tree_search(info, bytenr, 1);
738
739         return cache;
740 }
741
742 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
743                                                   u64 flags)
744 {
745         struct list_head *head = &info->space_info;
746         struct btrfs_space_info *found;
747
748         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
749
750         rcu_read_lock();
751         list_for_each_entry_rcu(found, head, list) {
752                 if (found->flags & flags) {
753                         rcu_read_unlock();
754                         return found;
755                 }
756         }
757         rcu_read_unlock();
758         return NULL;
759 }
760
761 /*
762  * after adding space to the filesystem, we need to clear the full flags
763  * on all the space infos.
764  */
765 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
766 {
767         struct list_head *head = &info->space_info;
768         struct btrfs_space_info *found;
769
770         rcu_read_lock();
771         list_for_each_entry_rcu(found, head, list)
772                 found->full = 0;
773         rcu_read_unlock();
774 }
775
776 /* simple helper to search for an existing data extent at a given offset */
777 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
778 {
779         int ret;
780         struct btrfs_key key;
781         struct btrfs_path *path;
782
783         path = btrfs_alloc_path();
784         if (!path)
785                 return -ENOMEM;
786
787         key.objectid = start;
788         key.offset = len;
789         key.type = BTRFS_EXTENT_ITEM_KEY;
790         ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
791                                 0, 0);
792         btrfs_free_path(path);
793         return ret;
794 }
795
796 /*
797  * helper function to lookup reference count and flags of a tree block.
798  *
799  * the head node for delayed ref is used to store the sum of all the
800  * reference count modifications queued up in the rbtree. the head
801  * node may also store the extent flags to set. This way you can check
802  * to see what the reference count and extent flags would be if all of
803  * the delayed refs are not processed.
804  */
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806                              struct btrfs_root *root, u64 bytenr,
807                              u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809         struct btrfs_delayed_ref_head *head;
810         struct btrfs_delayed_ref_root *delayed_refs;
811         struct btrfs_path *path;
812         struct btrfs_extent_item *ei;
813         struct extent_buffer *leaf;
814         struct btrfs_key key;
815         u32 item_size;
816         u64 num_refs;
817         u64 extent_flags;
818         int ret;
819
820         /*
821          * If we don't have skinny metadata, don't bother doing anything
822          * different
823          */
824         if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
825                 offset = root->nodesize;
826                 metadata = 0;
827         }
828
829         path = btrfs_alloc_path();
830         if (!path)
831                 return -ENOMEM;
832
833         if (!trans) {
834                 path->skip_locking = 1;
835                 path->search_commit_root = 1;
836         }
837
838 search_again:
839         key.objectid = bytenr;
840         key.offset = offset;
841         if (metadata)
842                 key.type = BTRFS_METADATA_ITEM_KEY;
843         else
844                 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846         ret = btrfs_search_slot(trans, root->fs_info->extent_root,
847                                 &key, path, 0, 0);
848         if (ret < 0)
849                 goto out_free;
850
851         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
852                 if (path->slots[0]) {
853                         path->slots[0]--;
854                         btrfs_item_key_to_cpu(path->nodes[0], &key,
855                                               path->slots[0]);
856                         if (key.objectid == bytenr &&
857                             key.type == BTRFS_EXTENT_ITEM_KEY &&
858                             key.offset == root->nodesize)
859                                 ret = 0;
860                 }
861         }
862
863         if (ret == 0) {
864                 leaf = path->nodes[0];
865                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
866                 if (item_size >= sizeof(*ei)) {
867                         ei = btrfs_item_ptr(leaf, path->slots[0],
868                                             struct btrfs_extent_item);
869                         num_refs = btrfs_extent_refs(leaf, ei);
870                         extent_flags = btrfs_extent_flags(leaf, ei);
871                 } else {
872 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
873                         struct btrfs_extent_item_v0 *ei0;
874                         BUG_ON(item_size != sizeof(*ei0));
875                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
876                                              struct btrfs_extent_item_v0);
877                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
878                         /* FIXME: this isn't correct for data */
879                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
880 #else
881                         BUG();
882 #endif
883                 }
884                 BUG_ON(num_refs == 0);
885         } else {
886                 num_refs = 0;
887                 extent_flags = 0;
888                 ret = 0;
889         }
890
891         if (!trans)
892                 goto out;
893
894         delayed_refs = &trans->transaction->delayed_refs;
895         spin_lock(&delayed_refs->lock);
896         head = btrfs_find_delayed_ref_head(trans, bytenr);
897         if (head) {
898                 if (!mutex_trylock(&head->mutex)) {
899                         atomic_inc(&head->node.refs);
900                         spin_unlock(&delayed_refs->lock);
901
902                         btrfs_release_path(path);
903
904                         /*
905                          * Mutex was contended, block until it's released and try
906                          * again
907                          */
908                         mutex_lock(&head->mutex);
909                         mutex_unlock(&head->mutex);
910                         btrfs_put_delayed_ref(&head->node);
911                         goto search_again;
912                 }
913                 spin_lock(&head->lock);
914                 if (head->extent_op && head->extent_op->update_flags)
915                         extent_flags |= head->extent_op->flags_to_set;
916                 else
917                         BUG_ON(num_refs == 0);
918
919                 num_refs += head->node.ref_mod;
920                 spin_unlock(&head->lock);
921                 mutex_unlock(&head->mutex);
922         }
923         spin_unlock(&delayed_refs->lock);
924 out:
925         WARN_ON(num_refs == 0);
926         if (refs)
927                 *refs = num_refs;
928         if (flags)
929                 *flags = extent_flags;
930 out_free:
931         btrfs_free_path(path);
932         return ret;
933 }
934
935 /*
936  * Back reference rules.  Back refs have three main goals:
937  *
938  * 1) differentiate between all holders of references to an extent so that
939  *    when a reference is dropped we can make sure it was a valid reference
940  *    before freeing the extent.
941  *
942  * 2) Provide enough information to quickly find the holders of an extent
943  *    if we notice a given block is corrupted or bad.
944  *
945  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
946  *    maintenance.  This is actually the same as #2, but with a slightly
947  *    different use case.
948  *
949  * There are two kinds of back refs. The implicit back refs is optimized
950  * for pointers in non-shared tree blocks. For a given pointer in a block,
951  * back refs of this kind provide information about the block's owner tree
952  * and the pointer's key. These information allow us to find the block by
953  * b-tree searching. The full back refs is for pointers in tree blocks not
954  * referenced by their owner trees. The location of tree block is recorded
955  * in the back refs. Actually the full back refs is generic, and can be
956  * used in all cases the implicit back refs is used. The major shortcoming
957  * of the full back refs is its overhead. Every time a tree block gets
958  * COWed, we have to update back refs entry for all pointers in it.
959  *
960  * For a newly allocated tree block, we use implicit back refs for
961  * pointers in it. This means most tree related operations only involve
962  * implicit back refs. For a tree block created in old transaction, the
963  * only way to drop a reference to it is COW it. So we can detect the
964  * event that tree block loses its owner tree's reference and do the
965  * back refs conversion.
966  *
967  * When a tree block is COW'd through a tree, there are four cases:
968  *
969  * The reference count of the block is one and the tree is the block's
970  * owner tree. Nothing to do in this case.
971  *
972  * The reference count of the block is one and the tree is not the
973  * block's owner tree. In this case, full back refs is used for pointers
974  * in the block. Remove these full back refs, add implicit back refs for
975  * every pointers in the new block.
976  *
977  * The reference count of the block is greater than one and the tree is
978  * the block's owner tree. In this case, implicit back refs is used for
979  * pointers in the block. Add full back refs for every pointers in the
980  * block, increase lower level extents' reference counts. The original
981  * implicit back refs are entailed to the new block.
982  *
983  * The reference count of the block is greater than one and the tree is
984  * not the block's owner tree. Add implicit back refs for every pointer in
985  * the new block, increase lower level extents' reference count.
986  *
987  * Back Reference Key composing:
988  *
989  * The key objectid corresponds to the first byte in the extent,
990  * The key type is used to differentiate between types of back refs.
991  * There are different meanings of the key offset for different types
992  * of back refs.
993  *
994  * File extents can be referenced by:
995  *
996  * - multiple snapshots, subvolumes, or different generations in one subvol
997  * - different files inside a single subvolume
998  * - different offsets inside a file (bookend extents in file.c)
999  *
1000  * The extent ref structure for the implicit back refs has fields for:
1001  *
1002  * - Objectid of the subvolume root
1003  * - objectid of the file holding the reference
1004  * - original offset in the file
1005  * - how many bookend extents
1006  *
1007  * The key offset for the implicit back refs is hash of the first
1008  * three fields.
1009  *
1010  * The extent ref structure for the full back refs has field for:
1011  *
1012  * - number of pointers in the tree leaf
1013  *
1014  * The key offset for the implicit back refs is the first byte of
1015  * the tree leaf
1016  *
1017  * When a file extent is allocated, The implicit back refs is used.
1018  * the fields are filled in:
1019  *
1020  *     (root_key.objectid, inode objectid, offset in file, 1)
1021  *
1022  * When a file extent is removed file truncation, we find the
1023  * corresponding implicit back refs and check the following fields:
1024  *
1025  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1026  *
1027  * Btree extents can be referenced by:
1028  *
1029  * - Different subvolumes
1030  *
1031  * Both the implicit back refs and the full back refs for tree blocks
1032  * only consist of key. The key offset for the implicit back refs is
1033  * objectid of block's owner tree. The key offset for the full back refs
1034  * is the first byte of parent block.
1035  *
1036  * When implicit back refs is used, information about the lowest key and
1037  * level of the tree block are required. These information are stored in
1038  * tree block info structure.
1039  */
1040
1041 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1042 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1043                                   struct btrfs_root *root,
1044                                   struct btrfs_path *path,
1045                                   u64 owner, u32 extra_size)
1046 {
1047         struct btrfs_extent_item *item;
1048         struct btrfs_extent_item_v0 *ei0;
1049         struct btrfs_extent_ref_v0 *ref0;
1050         struct btrfs_tree_block_info *bi;
1051         struct extent_buffer *leaf;
1052         struct btrfs_key key;
1053         struct btrfs_key found_key;
1054         u32 new_size = sizeof(*item);
1055         u64 refs;
1056         int ret;
1057
1058         leaf = path->nodes[0];
1059         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1060
1061         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1062         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1063                              struct btrfs_extent_item_v0);
1064         refs = btrfs_extent_refs_v0(leaf, ei0);
1065
1066         if (owner == (u64)-1) {
1067                 while (1) {
1068                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1069                                 ret = btrfs_next_leaf(root, path);
1070                                 if (ret < 0)
1071                                         return ret;
1072                                 BUG_ON(ret > 0); /* Corruption */
1073                                 leaf = path->nodes[0];
1074                         }
1075                         btrfs_item_key_to_cpu(leaf, &found_key,
1076                                               path->slots[0]);
1077                         BUG_ON(key.objectid != found_key.objectid);
1078                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1079                                 path->slots[0]++;
1080                                 continue;
1081                         }
1082                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1083                                               struct btrfs_extent_ref_v0);
1084                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1085                         break;
1086                 }
1087         }
1088         btrfs_release_path(path);
1089
1090         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1091                 new_size += sizeof(*bi);
1092
1093         new_size -= sizeof(*ei0);
1094         ret = btrfs_search_slot(trans, root, &key, path,
1095                                 new_size + extra_size, 1);
1096         if (ret < 0)
1097                 return ret;
1098         BUG_ON(ret); /* Corruption */
1099
1100         btrfs_extend_item(root, path, new_size);
1101
1102         leaf = path->nodes[0];
1103         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104         btrfs_set_extent_refs(leaf, item, refs);
1105         /* FIXME: get real generation */
1106         btrfs_set_extent_generation(leaf, item, 0);
1107         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1108                 btrfs_set_extent_flags(leaf, item,
1109                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1110                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1111                 bi = (struct btrfs_tree_block_info *)(item + 1);
1112                 /* FIXME: get first key of the block */
1113                 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1114                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1115         } else {
1116                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1117         }
1118         btrfs_mark_buffer_dirty(leaf);
1119         return 0;
1120 }
1121 #endif
1122
1123 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1124 {
1125         u32 high_crc = ~(u32)0;
1126         u32 low_crc = ~(u32)0;
1127         __le64 lenum;
1128
1129         lenum = cpu_to_le64(root_objectid);
1130         high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1131         lenum = cpu_to_le64(owner);
1132         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1133         lenum = cpu_to_le64(offset);
1134         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1135
1136         return ((u64)high_crc << 31) ^ (u64)low_crc;
1137 }
1138
1139 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1140                                      struct btrfs_extent_data_ref *ref)
1141 {
1142         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1143                                     btrfs_extent_data_ref_objectid(leaf, ref),
1144                                     btrfs_extent_data_ref_offset(leaf, ref));
1145 }
1146
1147 static int match_extent_data_ref(struct extent_buffer *leaf,
1148                                  struct btrfs_extent_data_ref *ref,
1149                                  u64 root_objectid, u64 owner, u64 offset)
1150 {
1151         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1152             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1153             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1154                 return 0;
1155         return 1;
1156 }
1157
1158 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1159                                            struct btrfs_root *root,
1160                                            struct btrfs_path *path,
1161                                            u64 bytenr, u64 parent,
1162                                            u64 root_objectid,
1163                                            u64 owner, u64 offset)
1164 {
1165         struct btrfs_key key;
1166         struct btrfs_extent_data_ref *ref;
1167         struct extent_buffer *leaf;
1168         u32 nritems;
1169         int ret;
1170         int recow;
1171         int err = -ENOENT;
1172
1173         key.objectid = bytenr;
1174         if (parent) {
1175                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1176                 key.offset = parent;
1177         } else {
1178                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179                 key.offset = hash_extent_data_ref(root_objectid,
1180                                                   owner, offset);
1181         }
1182 again:
1183         recow = 0;
1184         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1185         if (ret < 0) {
1186                 err = ret;
1187                 goto fail;
1188         }
1189
1190         if (parent) {
1191                 if (!ret)
1192                         return 0;
1193 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1194                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1195                 btrfs_release_path(path);
1196                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197                 if (ret < 0) {
1198                         err = ret;
1199                         goto fail;
1200                 }
1201                 if (!ret)
1202                         return 0;
1203 #endif
1204                 goto fail;
1205         }
1206
1207         leaf = path->nodes[0];
1208         nritems = btrfs_header_nritems(leaf);
1209         while (1) {
1210                 if (path->slots[0] >= nritems) {
1211                         ret = btrfs_next_leaf(root, path);
1212                         if (ret < 0)
1213                                 err = ret;
1214                         if (ret)
1215                                 goto fail;
1216
1217                         leaf = path->nodes[0];
1218                         nritems = btrfs_header_nritems(leaf);
1219                         recow = 1;
1220                 }
1221
1222                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1223                 if (key.objectid != bytenr ||
1224                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1225                         goto fail;
1226
1227                 ref = btrfs_item_ptr(leaf, path->slots[0],
1228                                      struct btrfs_extent_data_ref);
1229
1230                 if (match_extent_data_ref(leaf, ref, root_objectid,
1231                                           owner, offset)) {
1232                         if (recow) {
1233                                 btrfs_release_path(path);
1234                                 goto again;
1235                         }
1236                         err = 0;
1237                         break;
1238                 }
1239                 path->slots[0]++;
1240         }
1241 fail:
1242         return err;
1243 }
1244
1245 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1246                                            struct btrfs_root *root,
1247                                            struct btrfs_path *path,
1248                                            u64 bytenr, u64 parent,
1249                                            u64 root_objectid, u64 owner,
1250                                            u64 offset, int refs_to_add)
1251 {
1252         struct btrfs_key key;
1253         struct extent_buffer *leaf;
1254         u32 size;
1255         u32 num_refs;
1256         int ret;
1257
1258         key.objectid = bytenr;
1259         if (parent) {
1260                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1261                 key.offset = parent;
1262                 size = sizeof(struct btrfs_shared_data_ref);
1263         } else {
1264                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1265                 key.offset = hash_extent_data_ref(root_objectid,
1266                                                   owner, offset);
1267                 size = sizeof(struct btrfs_extent_data_ref);
1268         }
1269
1270         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1271         if (ret && ret != -EEXIST)
1272                 goto fail;
1273
1274         leaf = path->nodes[0];
1275         if (parent) {
1276                 struct btrfs_shared_data_ref *ref;
1277                 ref = btrfs_item_ptr(leaf, path->slots[0],
1278                                      struct btrfs_shared_data_ref);
1279                 if (ret == 0) {
1280                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1281                 } else {
1282                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1283                         num_refs += refs_to_add;
1284                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1285                 }
1286         } else {
1287                 struct btrfs_extent_data_ref *ref;
1288                 while (ret == -EEXIST) {
1289                         ref = btrfs_item_ptr(leaf, path->slots[0],
1290                                              struct btrfs_extent_data_ref);
1291                         if (match_extent_data_ref(leaf, ref, root_objectid,
1292                                                   owner, offset))
1293                                 break;
1294                         btrfs_release_path(path);
1295                         key.offset++;
1296                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1297                                                       size);
1298                         if (ret && ret != -EEXIST)
1299                                 goto fail;
1300
1301                         leaf = path->nodes[0];
1302                 }
1303                 ref = btrfs_item_ptr(leaf, path->slots[0],
1304                                      struct btrfs_extent_data_ref);
1305                 if (ret == 0) {
1306                         btrfs_set_extent_data_ref_root(leaf, ref,
1307                                                        root_objectid);
1308                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1309                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1310                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1311                 } else {
1312                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1313                         num_refs += refs_to_add;
1314                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1315                 }
1316         }
1317         btrfs_mark_buffer_dirty(leaf);
1318         ret = 0;
1319 fail:
1320         btrfs_release_path(path);
1321         return ret;
1322 }
1323
1324 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1325                                            struct btrfs_root *root,
1326                                            struct btrfs_path *path,
1327                                            int refs_to_drop, int *last_ref)
1328 {
1329         struct btrfs_key key;
1330         struct btrfs_extent_data_ref *ref1 = NULL;
1331         struct btrfs_shared_data_ref *ref2 = NULL;
1332         struct extent_buffer *leaf;
1333         u32 num_refs = 0;
1334         int ret = 0;
1335
1336         leaf = path->nodes[0];
1337         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1338
1339         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341                                       struct btrfs_extent_data_ref);
1342                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345                                       struct btrfs_shared_data_ref);
1346                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349                 struct btrfs_extent_ref_v0 *ref0;
1350                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351                                       struct btrfs_extent_ref_v0);
1352                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354         } else {
1355                 BUG();
1356         }
1357
1358         BUG_ON(num_refs < refs_to_drop);
1359         num_refs -= refs_to_drop;
1360
1361         if (num_refs == 0) {
1362                 ret = btrfs_del_item(trans, root, path);
1363                 *last_ref = 1;
1364         } else {
1365                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1366                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1367                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1368                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1369 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1370                 else {
1371                         struct btrfs_extent_ref_v0 *ref0;
1372                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1373                                         struct btrfs_extent_ref_v0);
1374                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1375                 }
1376 #endif
1377                 btrfs_mark_buffer_dirty(leaf);
1378         }
1379         return ret;
1380 }
1381
1382 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1383                                           struct btrfs_extent_inline_ref *iref)
1384 {
1385         struct btrfs_key key;
1386         struct extent_buffer *leaf;
1387         struct btrfs_extent_data_ref *ref1;
1388         struct btrfs_shared_data_ref *ref2;
1389         u32 num_refs = 0;
1390
1391         leaf = path->nodes[0];
1392         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1393         if (iref) {
1394                 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1395                     BTRFS_EXTENT_DATA_REF_KEY) {
1396                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1397                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1398                 } else {
1399                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1400                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1401                 }
1402         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1403                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1404                                       struct btrfs_extent_data_ref);
1405                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1406         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1407                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1408                                       struct btrfs_shared_data_ref);
1409                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1411         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1412                 struct btrfs_extent_ref_v0 *ref0;
1413                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1414                                       struct btrfs_extent_ref_v0);
1415                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1416 #endif
1417         } else {
1418                 WARN_ON(1);
1419         }
1420         return num_refs;
1421 }
1422
1423 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1424                                           struct btrfs_root *root,
1425                                           struct btrfs_path *path,
1426                                           u64 bytenr, u64 parent,
1427                                           u64 root_objectid)
1428 {
1429         struct btrfs_key key;
1430         int ret;
1431
1432         key.objectid = bytenr;
1433         if (parent) {
1434                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1435                 key.offset = parent;
1436         } else {
1437                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1438                 key.offset = root_objectid;
1439         }
1440
1441         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442         if (ret > 0)
1443                 ret = -ENOENT;
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445         if (ret == -ENOENT && parent) {
1446                 btrfs_release_path(path);
1447                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1448                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1449                 if (ret > 0)
1450                         ret = -ENOENT;
1451         }
1452 #endif
1453         return ret;
1454 }
1455
1456 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1457                                           struct btrfs_root *root,
1458                                           struct btrfs_path *path,
1459                                           u64 bytenr, u64 parent,
1460                                           u64 root_objectid)
1461 {
1462         struct btrfs_key key;
1463         int ret;
1464
1465         key.objectid = bytenr;
1466         if (parent) {
1467                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1468                 key.offset = parent;
1469         } else {
1470                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1471                 key.offset = root_objectid;
1472         }
1473
1474         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1475         btrfs_release_path(path);
1476         return ret;
1477 }
1478
1479 static inline int extent_ref_type(u64 parent, u64 owner)
1480 {
1481         int type;
1482         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1483                 if (parent > 0)
1484                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1485                 else
1486                         type = BTRFS_TREE_BLOCK_REF_KEY;
1487         } else {
1488                 if (parent > 0)
1489                         type = BTRFS_SHARED_DATA_REF_KEY;
1490                 else
1491                         type = BTRFS_EXTENT_DATA_REF_KEY;
1492         }
1493         return type;
1494 }
1495
1496 static int find_next_key(struct btrfs_path *path, int level,
1497                          struct btrfs_key *key)
1498
1499 {
1500         for (; level < BTRFS_MAX_LEVEL; level++) {
1501                 if (!path->nodes[level])
1502                         break;
1503                 if (path->slots[level] + 1 >=
1504                     btrfs_header_nritems(path->nodes[level]))
1505                         continue;
1506                 if (level == 0)
1507                         btrfs_item_key_to_cpu(path->nodes[level], key,
1508                                               path->slots[level] + 1);
1509                 else
1510                         btrfs_node_key_to_cpu(path->nodes[level], key,
1511                                               path->slots[level] + 1);
1512                 return 0;
1513         }
1514         return 1;
1515 }
1516
1517 /*
1518  * look for inline back ref. if back ref is found, *ref_ret is set
1519  * to the address of inline back ref, and 0 is returned.
1520  *
1521  * if back ref isn't found, *ref_ret is set to the address where it
1522  * should be inserted, and -ENOENT is returned.
1523  *
1524  * if insert is true and there are too many inline back refs, the path
1525  * points to the extent item, and -EAGAIN is returned.
1526  *
1527  * NOTE: inline back refs are ordered in the same way that back ref
1528  *       items in the tree are ordered.
1529  */
1530 static noinline_for_stack
1531 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1532                                  struct btrfs_root *root,
1533                                  struct btrfs_path *path,
1534                                  struct btrfs_extent_inline_ref **ref_ret,
1535                                  u64 bytenr, u64 num_bytes,
1536                                  u64 parent, u64 root_objectid,
1537                                  u64 owner, u64 offset, int insert)
1538 {
1539         struct btrfs_key key;
1540         struct extent_buffer *leaf;
1541         struct btrfs_extent_item *ei;
1542         struct btrfs_extent_inline_ref *iref;
1543         u64 flags;
1544         u64 item_size;
1545         unsigned long ptr;
1546         unsigned long end;
1547         int extra_size;
1548         int type;
1549         int want;
1550         int ret;
1551         int err = 0;
1552         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1553                                                  SKINNY_METADATA);
1554
1555         key.objectid = bytenr;
1556         key.type = BTRFS_EXTENT_ITEM_KEY;
1557         key.offset = num_bytes;
1558
1559         want = extent_ref_type(parent, owner);
1560         if (insert) {
1561                 extra_size = btrfs_extent_inline_ref_size(want);
1562                 path->keep_locks = 1;
1563         } else
1564                 extra_size = -1;
1565
1566         /*
1567          * Owner is our parent level, so we can just add one to get the level
1568          * for the block we are interested in.
1569          */
1570         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1571                 key.type = BTRFS_METADATA_ITEM_KEY;
1572                 key.offset = owner;
1573         }
1574
1575 again:
1576         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1577         if (ret < 0) {
1578                 err = ret;
1579                 goto out;
1580         }
1581
1582         /*
1583          * We may be a newly converted file system which still has the old fat
1584          * extent entries for metadata, so try and see if we have one of those.
1585          */
1586         if (ret > 0 && skinny_metadata) {
1587                 skinny_metadata = false;
1588                 if (path->slots[0]) {
1589                         path->slots[0]--;
1590                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1591                                               path->slots[0]);
1592                         if (key.objectid == bytenr &&
1593                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1594                             key.offset == num_bytes)
1595                                 ret = 0;
1596                 }
1597                 if (ret) {
1598                         key.objectid = bytenr;
1599                         key.type = BTRFS_EXTENT_ITEM_KEY;
1600                         key.offset = num_bytes;
1601                         btrfs_release_path(path);
1602                         goto again;
1603                 }
1604         }
1605
1606         if (ret && !insert) {
1607                 err = -ENOENT;
1608                 goto out;
1609         } else if (WARN_ON(ret)) {
1610                 err = -EIO;
1611                 goto out;
1612         }
1613
1614         leaf = path->nodes[0];
1615         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1616 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1617         if (item_size < sizeof(*ei)) {
1618                 if (!insert) {
1619                         err = -ENOENT;
1620                         goto out;
1621                 }
1622                 ret = convert_extent_item_v0(trans, root, path, owner,
1623                                              extra_size);
1624                 if (ret < 0) {
1625                         err = ret;
1626                         goto out;
1627                 }
1628                 leaf = path->nodes[0];
1629                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1630         }
1631 #endif
1632         BUG_ON(item_size < sizeof(*ei));
1633
1634         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635         flags = btrfs_extent_flags(leaf, ei);
1636
1637         ptr = (unsigned long)(ei + 1);
1638         end = (unsigned long)ei + item_size;
1639
1640         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1641                 ptr += sizeof(struct btrfs_tree_block_info);
1642                 BUG_ON(ptr > end);
1643         }
1644
1645         err = -ENOENT;
1646         while (1) {
1647                 if (ptr >= end) {
1648                         WARN_ON(ptr > end);
1649                         break;
1650                 }
1651                 iref = (struct btrfs_extent_inline_ref *)ptr;
1652                 type = btrfs_extent_inline_ref_type(leaf, iref);
1653                 if (want < type)
1654                         break;
1655                 if (want > type) {
1656                         ptr += btrfs_extent_inline_ref_size(type);
1657                         continue;
1658                 }
1659
1660                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1661                         struct btrfs_extent_data_ref *dref;
1662                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663                         if (match_extent_data_ref(leaf, dref, root_objectid,
1664                                                   owner, offset)) {
1665                                 err = 0;
1666                                 break;
1667                         }
1668                         if (hash_extent_data_ref_item(leaf, dref) <
1669                             hash_extent_data_ref(root_objectid, owner, offset))
1670                                 break;
1671                 } else {
1672                         u64 ref_offset;
1673                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1674                         if (parent > 0) {
1675                                 if (parent == ref_offset) {
1676                                         err = 0;
1677                                         break;
1678                                 }
1679                                 if (ref_offset < parent)
1680                                         break;
1681                         } else {
1682                                 if (root_objectid == ref_offset) {
1683                                         err = 0;
1684                                         break;
1685                                 }
1686                                 if (ref_offset < root_objectid)
1687                                         break;
1688                         }
1689                 }
1690                 ptr += btrfs_extent_inline_ref_size(type);
1691         }
1692         if (err == -ENOENT && insert) {
1693                 if (item_size + extra_size >=
1694                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1695                         err = -EAGAIN;
1696                         goto out;
1697                 }
1698                 /*
1699                  * To add new inline back ref, we have to make sure
1700                  * there is no corresponding back ref item.
1701                  * For simplicity, we just do not add new inline back
1702                  * ref if there is any kind of item for this block
1703                  */
1704                 if (find_next_key(path, 0, &key) == 0 &&
1705                     key.objectid == bytenr &&
1706                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1707                         err = -EAGAIN;
1708                         goto out;
1709                 }
1710         }
1711         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1712 out:
1713         if (insert) {
1714                 path->keep_locks = 0;
1715                 btrfs_unlock_up_safe(path, 1);
1716         }
1717         return err;
1718 }
1719
1720 /*
1721  * helper to add new inline back ref
1722  */
1723 static noinline_for_stack
1724 void setup_inline_extent_backref(struct btrfs_root *root,
1725                                  struct btrfs_path *path,
1726                                  struct btrfs_extent_inline_ref *iref,
1727                                  u64 parent, u64 root_objectid,
1728                                  u64 owner, u64 offset, int refs_to_add,
1729                                  struct btrfs_delayed_extent_op *extent_op)
1730 {
1731         struct extent_buffer *leaf;
1732         struct btrfs_extent_item *ei;
1733         unsigned long ptr;
1734         unsigned long end;
1735         unsigned long item_offset;
1736         u64 refs;
1737         int size;
1738         int type;
1739
1740         leaf = path->nodes[0];
1741         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1742         item_offset = (unsigned long)iref - (unsigned long)ei;
1743
1744         type = extent_ref_type(parent, owner);
1745         size = btrfs_extent_inline_ref_size(type);
1746
1747         btrfs_extend_item(root, path, size);
1748
1749         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1750         refs = btrfs_extent_refs(leaf, ei);
1751         refs += refs_to_add;
1752         btrfs_set_extent_refs(leaf, ei, refs);
1753         if (extent_op)
1754                 __run_delayed_extent_op(extent_op, leaf, ei);
1755
1756         ptr = (unsigned long)ei + item_offset;
1757         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1758         if (ptr < end - size)
1759                 memmove_extent_buffer(leaf, ptr + size, ptr,
1760                                       end - size - ptr);
1761
1762         iref = (struct btrfs_extent_inline_ref *)ptr;
1763         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1764         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1765                 struct btrfs_extent_data_ref *dref;
1766                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1767                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1768                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1769                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1770                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1771         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1772                 struct btrfs_shared_data_ref *sref;
1773                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1774                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1775                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1776         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1777                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1778         } else {
1779                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1780         }
1781         btrfs_mark_buffer_dirty(leaf);
1782 }
1783
1784 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1785                                  struct btrfs_root *root,
1786                                  struct btrfs_path *path,
1787                                  struct btrfs_extent_inline_ref **ref_ret,
1788                                  u64 bytenr, u64 num_bytes, u64 parent,
1789                                  u64 root_objectid, u64 owner, u64 offset)
1790 {
1791         int ret;
1792
1793         ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1794                                            bytenr, num_bytes, parent,
1795                                            root_objectid, owner, offset, 0);
1796         if (ret != -ENOENT)
1797                 return ret;
1798
1799         btrfs_release_path(path);
1800         *ref_ret = NULL;
1801
1802         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1803                 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1804                                             root_objectid);
1805         } else {
1806                 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1807                                              root_objectid, owner, offset);
1808         }
1809         return ret;
1810 }
1811
1812 /*
1813  * helper to update/remove inline back ref
1814  */
1815 static noinline_for_stack
1816 void update_inline_extent_backref(struct btrfs_root *root,
1817                                   struct btrfs_path *path,
1818                                   struct btrfs_extent_inline_ref *iref,
1819                                   int refs_to_mod,
1820                                   struct btrfs_delayed_extent_op *extent_op,
1821                                   int *last_ref)
1822 {
1823         struct extent_buffer *leaf;
1824         struct btrfs_extent_item *ei;
1825         struct btrfs_extent_data_ref *dref = NULL;
1826         struct btrfs_shared_data_ref *sref = NULL;
1827         unsigned long ptr;
1828         unsigned long end;
1829         u32 item_size;
1830         int size;
1831         int type;
1832         u64 refs;
1833
1834         leaf = path->nodes[0];
1835         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1836         refs = btrfs_extent_refs(leaf, ei);
1837         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1838         refs += refs_to_mod;
1839         btrfs_set_extent_refs(leaf, ei, refs);
1840         if (extent_op)
1841                 __run_delayed_extent_op(extent_op, leaf, ei);
1842
1843         type = btrfs_extent_inline_ref_type(leaf, iref);
1844
1845         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1846                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1847                 refs = btrfs_extent_data_ref_count(leaf, dref);
1848         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1849                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1850                 refs = btrfs_shared_data_ref_count(leaf, sref);
1851         } else {
1852                 refs = 1;
1853                 BUG_ON(refs_to_mod != -1);
1854         }
1855
1856         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1857         refs += refs_to_mod;
1858
1859         if (refs > 0) {
1860                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1861                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1862                 else
1863                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1864         } else {
1865                 *last_ref = 1;
1866                 size =  btrfs_extent_inline_ref_size(type);
1867                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1868                 ptr = (unsigned long)iref;
1869                 end = (unsigned long)ei + item_size;
1870                 if (ptr + size < end)
1871                         memmove_extent_buffer(leaf, ptr, ptr + size,
1872                                               end - ptr - size);
1873                 item_size -= size;
1874                 btrfs_truncate_item(root, path, item_size, 1);
1875         }
1876         btrfs_mark_buffer_dirty(leaf);
1877 }
1878
1879 static noinline_for_stack
1880 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1881                                  struct btrfs_root *root,
1882                                  struct btrfs_path *path,
1883                                  u64 bytenr, u64 num_bytes, u64 parent,
1884                                  u64 root_objectid, u64 owner,
1885                                  u64 offset, int refs_to_add,
1886                                  struct btrfs_delayed_extent_op *extent_op)
1887 {
1888         struct btrfs_extent_inline_ref *iref;
1889         int ret;
1890
1891         ret = lookup_inline_extent_backref(trans, root, path, &iref,
1892                                            bytenr, num_bytes, parent,
1893                                            root_objectid, owner, offset, 1);
1894         if (ret == 0) {
1895                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1896                 update_inline_extent_backref(root, path, iref,
1897                                              refs_to_add, extent_op, NULL);
1898         } else if (ret == -ENOENT) {
1899                 setup_inline_extent_backref(root, path, iref, parent,
1900                                             root_objectid, owner, offset,
1901                                             refs_to_add, extent_op);
1902                 ret = 0;
1903         }
1904         return ret;
1905 }
1906
1907 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1908                                  struct btrfs_root *root,
1909                                  struct btrfs_path *path,
1910                                  u64 bytenr, u64 parent, u64 root_objectid,
1911                                  u64 owner, u64 offset, int refs_to_add)
1912 {
1913         int ret;
1914         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1915                 BUG_ON(refs_to_add != 1);
1916                 ret = insert_tree_block_ref(trans, root, path, bytenr,
1917                                             parent, root_objectid);
1918         } else {
1919                 ret = insert_extent_data_ref(trans, root, path, bytenr,
1920                                              parent, root_objectid,
1921                                              owner, offset, refs_to_add);
1922         }
1923         return ret;
1924 }
1925
1926 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1927                                  struct btrfs_root *root,
1928                                  struct btrfs_path *path,
1929                                  struct btrfs_extent_inline_ref *iref,
1930                                  int refs_to_drop, int is_data, int *last_ref)
1931 {
1932         int ret = 0;
1933
1934         BUG_ON(!is_data && refs_to_drop != 1);
1935         if (iref) {
1936                 update_inline_extent_backref(root, path, iref,
1937                                              -refs_to_drop, NULL, last_ref);
1938         } else if (is_data) {
1939                 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1940                                              last_ref);
1941         } else {
1942                 *last_ref = 1;
1943                 ret = btrfs_del_item(trans, root, path);
1944         }
1945         return ret;
1946 }
1947
1948 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1949 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1950                                u64 *discarded_bytes)
1951 {
1952         int j, ret = 0;
1953         u64 bytes_left, end;
1954         u64 aligned_start = ALIGN(start, 1 << 9);
1955
1956         if (WARN_ON(start != aligned_start)) {
1957                 len -= aligned_start - start;
1958                 len = round_down(len, 1 << 9);
1959                 start = aligned_start;
1960         }
1961
1962         *discarded_bytes = 0;
1963
1964         if (!len)
1965                 return 0;
1966
1967         end = start + len;
1968         bytes_left = len;
1969
1970         /* Skip any superblocks on this device. */
1971         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1972                 u64 sb_start = btrfs_sb_offset(j);
1973                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1974                 u64 size = sb_start - start;
1975
1976                 if (!in_range(sb_start, start, bytes_left) &&
1977                     !in_range(sb_end, start, bytes_left) &&
1978                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1979                         continue;
1980
1981                 /*
1982                  * Superblock spans beginning of range.  Adjust start and
1983                  * try again.
1984                  */
1985                 if (sb_start <= start) {
1986                         start += sb_end - start;
1987                         if (start > end) {
1988                                 bytes_left = 0;
1989                                 break;
1990                         }
1991                         bytes_left = end - start;
1992                         continue;
1993                 }
1994
1995                 if (size) {
1996                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1997                                                    GFP_NOFS, 0);
1998                         if (!ret)
1999                                 *discarded_bytes += size;
2000                         else if (ret != -EOPNOTSUPP)
2001                                 return ret;
2002                 }
2003
2004                 start = sb_end;
2005                 if (start > end) {
2006                         bytes_left = 0;
2007                         break;
2008                 }
2009                 bytes_left = end - start;
2010         }
2011
2012         if (bytes_left) {
2013                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2014                                            GFP_NOFS, 0);
2015                 if (!ret)
2016                         *discarded_bytes += bytes_left;
2017         }
2018         return ret;
2019 }
2020
2021 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2022                          u64 num_bytes, u64 *actual_bytes)
2023 {
2024         int ret;
2025         u64 discarded_bytes = 0;
2026         struct btrfs_bio *bbio = NULL;
2027
2028
2029         /* Tell the block device(s) that the sectors can be discarded */
2030         ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2031                               bytenr, &num_bytes, &bbio, 0);
2032         /* Error condition is -ENOMEM */
2033         if (!ret) {
2034                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2035                 int i;
2036
2037
2038                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2039                         u64 bytes;
2040                         if (!stripe->dev->can_discard)
2041                                 continue;
2042
2043                         ret = btrfs_issue_discard(stripe->dev->bdev,
2044                                                   stripe->physical,
2045                                                   stripe->length,
2046                                                   &bytes);
2047                         if (!ret)
2048                                 discarded_bytes += bytes;
2049                         else if (ret != -EOPNOTSUPP)
2050                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2051
2052                         /*
2053                          * Just in case we get back EOPNOTSUPP for some reason,
2054                          * just ignore the return value so we don't screw up
2055                          * people calling discard_extent.
2056                          */
2057                         ret = 0;
2058                 }
2059                 btrfs_put_bbio(bbio);
2060         }
2061
2062         if (actual_bytes)
2063                 *actual_bytes = discarded_bytes;
2064
2065
2066         if (ret == -EOPNOTSUPP)
2067                 ret = 0;
2068         return ret;
2069 }
2070
2071 /* Can return -ENOMEM */
2072 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2073                          struct btrfs_root *root,
2074                          u64 bytenr, u64 num_bytes, u64 parent,
2075                          u64 root_objectid, u64 owner, u64 offset)
2076 {
2077         int ret;
2078         struct btrfs_fs_info *fs_info = root->fs_info;
2079
2080         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2081                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2082
2083         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2084                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2085                                         num_bytes,
2086                                         parent, root_objectid, (int)owner,
2087                                         BTRFS_ADD_DELAYED_REF, NULL);
2088         } else {
2089                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2090                                         num_bytes, parent, root_objectid,
2091                                         owner, offset, 0,
2092                                         BTRFS_ADD_DELAYED_REF, NULL);
2093         }
2094         return ret;
2095 }
2096
2097 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2098                                   struct btrfs_root *root,
2099                                   struct btrfs_delayed_ref_node *node,
2100                                   u64 parent, u64 root_objectid,
2101                                   u64 owner, u64 offset, int refs_to_add,
2102                                   struct btrfs_delayed_extent_op *extent_op)
2103 {
2104         struct btrfs_fs_info *fs_info = root->fs_info;
2105         struct btrfs_path *path;
2106         struct extent_buffer *leaf;
2107         struct btrfs_extent_item *item;
2108         struct btrfs_key key;
2109         u64 bytenr = node->bytenr;
2110         u64 num_bytes = node->num_bytes;
2111         u64 refs;
2112         int ret;
2113
2114         path = btrfs_alloc_path();
2115         if (!path)
2116                 return -ENOMEM;
2117
2118         path->reada = 1;
2119         path->leave_spinning = 1;
2120         /* this will setup the path even if it fails to insert the back ref */
2121         ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2122                                            bytenr, num_bytes, parent,
2123                                            root_objectid, owner, offset,
2124                                            refs_to_add, extent_op);
2125         if ((ret < 0 && ret != -EAGAIN) || !ret)
2126                 goto out;
2127
2128         /*
2129          * Ok we had -EAGAIN which means we didn't have space to insert and
2130          * inline extent ref, so just update the reference count and add a
2131          * normal backref.
2132          */
2133         leaf = path->nodes[0];
2134         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2135         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2136         refs = btrfs_extent_refs(leaf, item);
2137         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2138         if (extent_op)
2139                 __run_delayed_extent_op(extent_op, leaf, item);
2140
2141         btrfs_mark_buffer_dirty(leaf);
2142         btrfs_release_path(path);
2143
2144         path->reada = 1;
2145         path->leave_spinning = 1;
2146         /* now insert the actual backref */
2147         ret = insert_extent_backref(trans, root->fs_info->extent_root,
2148                                     path, bytenr, parent, root_objectid,
2149                                     owner, offset, refs_to_add);
2150         if (ret)
2151                 btrfs_abort_transaction(trans, root, ret);
2152 out:
2153         btrfs_free_path(path);
2154         return ret;
2155 }
2156
2157 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2158                                 struct btrfs_root *root,
2159                                 struct btrfs_delayed_ref_node *node,
2160                                 struct btrfs_delayed_extent_op *extent_op,
2161                                 int insert_reserved)
2162 {
2163         int ret = 0;
2164         struct btrfs_delayed_data_ref *ref;
2165         struct btrfs_key ins;
2166         u64 parent = 0;
2167         u64 ref_root = 0;
2168         u64 flags = 0;
2169
2170         ins.objectid = node->bytenr;
2171         ins.offset = node->num_bytes;
2172         ins.type = BTRFS_EXTENT_ITEM_KEY;
2173
2174         ref = btrfs_delayed_node_to_data_ref(node);
2175         trace_run_delayed_data_ref(node, ref, node->action);
2176
2177         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2178                 parent = ref->parent;
2179         ref_root = ref->root;
2180
2181         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2182                 if (extent_op)
2183                         flags |= extent_op->flags_to_set;
2184                 ret = alloc_reserved_file_extent(trans, root,
2185                                                  parent, ref_root, flags,
2186                                                  ref->objectid, ref->offset,
2187                                                  &ins, node->ref_mod);
2188         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2189                 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2190                                              ref_root, ref->objectid,
2191                                              ref->offset, node->ref_mod,
2192                                              extent_op);
2193         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2194                 ret = __btrfs_free_extent(trans, root, node, parent,
2195                                           ref_root, ref->objectid,
2196                                           ref->offset, node->ref_mod,
2197                                           extent_op);
2198         } else {
2199                 BUG();
2200         }
2201         return ret;
2202 }
2203
2204 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2205                                     struct extent_buffer *leaf,
2206                                     struct btrfs_extent_item *ei)
2207 {
2208         u64 flags = btrfs_extent_flags(leaf, ei);
2209         if (extent_op->update_flags) {
2210                 flags |= extent_op->flags_to_set;
2211                 btrfs_set_extent_flags(leaf, ei, flags);
2212         }
2213
2214         if (extent_op->update_key) {
2215                 struct btrfs_tree_block_info *bi;
2216                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2217                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2218                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2219         }
2220 }
2221
2222 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2223                                  struct btrfs_root *root,
2224                                  struct btrfs_delayed_ref_node *node,
2225                                  struct btrfs_delayed_extent_op *extent_op)
2226 {
2227         struct btrfs_key key;
2228         struct btrfs_path *path;
2229         struct btrfs_extent_item *ei;
2230         struct extent_buffer *leaf;
2231         u32 item_size;
2232         int ret;
2233         int err = 0;
2234         int metadata = !extent_op->is_data;
2235
2236         if (trans->aborted)
2237                 return 0;
2238
2239         if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2240                 metadata = 0;
2241
2242         path = btrfs_alloc_path();
2243         if (!path)
2244                 return -ENOMEM;
2245
2246         key.objectid = node->bytenr;
2247
2248         if (metadata) {
2249                 key.type = BTRFS_METADATA_ITEM_KEY;
2250                 key.offset = extent_op->level;
2251         } else {
2252                 key.type = BTRFS_EXTENT_ITEM_KEY;
2253                 key.offset = node->num_bytes;
2254         }
2255
2256 again:
2257         path->reada = 1;
2258         path->leave_spinning = 1;
2259         ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2260                                 path, 0, 1);
2261         if (ret < 0) {
2262                 err = ret;
2263                 goto out;
2264         }
2265         if (ret > 0) {
2266                 if (metadata) {
2267                         if (path->slots[0] > 0) {
2268                                 path->slots[0]--;
2269                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2270                                                       path->slots[0]);
2271                                 if (key.objectid == node->bytenr &&
2272                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2273                                     key.offset == node->num_bytes)
2274                                         ret = 0;
2275                         }
2276                         if (ret > 0) {
2277                                 btrfs_release_path(path);
2278                                 metadata = 0;
2279
2280                                 key.objectid = node->bytenr;
2281                                 key.offset = node->num_bytes;
2282                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2283                                 goto again;
2284                         }
2285                 } else {
2286                         err = -EIO;
2287                         goto out;
2288                 }
2289         }
2290
2291         leaf = path->nodes[0];
2292         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2294         if (item_size < sizeof(*ei)) {
2295                 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2296                                              path, (u64)-1, 0);
2297                 if (ret < 0) {
2298                         err = ret;
2299                         goto out;
2300                 }
2301                 leaf = path->nodes[0];
2302                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303         }
2304 #endif
2305         BUG_ON(item_size < sizeof(*ei));
2306         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2307         __run_delayed_extent_op(extent_op, leaf, ei);
2308
2309         btrfs_mark_buffer_dirty(leaf);
2310 out:
2311         btrfs_free_path(path);
2312         return err;
2313 }
2314
2315 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2316                                 struct btrfs_root *root,
2317                                 struct btrfs_delayed_ref_node *node,
2318                                 struct btrfs_delayed_extent_op *extent_op,
2319                                 int insert_reserved)
2320 {
2321         int ret = 0;
2322         struct btrfs_delayed_tree_ref *ref;
2323         struct btrfs_key ins;
2324         u64 parent = 0;
2325         u64 ref_root = 0;
2326         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2327                                                  SKINNY_METADATA);
2328
2329         ref = btrfs_delayed_node_to_tree_ref(node);
2330         trace_run_delayed_tree_ref(node, ref, node->action);
2331
2332         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2333                 parent = ref->parent;
2334         ref_root = ref->root;
2335
2336         ins.objectid = node->bytenr;
2337         if (skinny_metadata) {
2338                 ins.offset = ref->level;
2339                 ins.type = BTRFS_METADATA_ITEM_KEY;
2340         } else {
2341                 ins.offset = node->num_bytes;
2342                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2343         }
2344
2345         BUG_ON(node->ref_mod != 1);
2346         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2347                 BUG_ON(!extent_op || !extent_op->update_flags);
2348                 ret = alloc_reserved_tree_block(trans, root,
2349                                                 parent, ref_root,
2350                                                 extent_op->flags_to_set,
2351                                                 &extent_op->key,
2352                                                 ref->level, &ins);
2353         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2354                 ret = __btrfs_inc_extent_ref(trans, root, node,
2355                                              parent, ref_root,
2356                                              ref->level, 0, 1,
2357                                              extent_op);
2358         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2359                 ret = __btrfs_free_extent(trans, root, node,
2360                                           parent, ref_root,
2361                                           ref->level, 0, 1, extent_op);
2362         } else {
2363                 BUG();
2364         }
2365         return ret;
2366 }
2367
2368 /* helper function to actually process a single delayed ref entry */
2369 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2370                                struct btrfs_root *root,
2371                                struct btrfs_delayed_ref_node *node,
2372                                struct btrfs_delayed_extent_op *extent_op,
2373                                int insert_reserved)
2374 {
2375         int ret = 0;
2376
2377         if (trans->aborted) {
2378                 if (insert_reserved)
2379                         btrfs_pin_extent(root, node->bytenr,
2380                                          node->num_bytes, 1);
2381                 return 0;
2382         }
2383
2384         if (btrfs_delayed_ref_is_head(node)) {
2385                 struct btrfs_delayed_ref_head *head;
2386                 /*
2387                  * we've hit the end of the chain and we were supposed
2388                  * to insert this extent into the tree.  But, it got
2389                  * deleted before we ever needed to insert it, so all
2390                  * we have to do is clean up the accounting
2391                  */
2392                 BUG_ON(extent_op);
2393                 head = btrfs_delayed_node_to_head(node);
2394                 trace_run_delayed_ref_head(node, head, node->action);
2395
2396                 if (insert_reserved) {
2397                         btrfs_pin_extent(root, node->bytenr,
2398                                          node->num_bytes, 1);
2399                         if (head->is_data) {
2400                                 ret = btrfs_del_csums(trans, root,
2401                                                       node->bytenr,
2402                                                       node->num_bytes);
2403                         }
2404                 }
2405
2406                 /* Also free its reserved qgroup space */
2407                 btrfs_qgroup_free_delayed_ref(root->fs_info,
2408                                               head->qgroup_ref_root,
2409                                               head->qgroup_reserved);
2410                 return ret;
2411         }
2412
2413         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2414             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2415                 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2416                                            insert_reserved);
2417         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2418                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2419                 ret = run_delayed_data_ref(trans, root, node, extent_op,
2420                                            insert_reserved);
2421         else
2422                 BUG();
2423         return ret;
2424 }
2425
2426 static inline struct btrfs_delayed_ref_node *
2427 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2428 {
2429         struct btrfs_delayed_ref_node *ref;
2430
2431         if (list_empty(&head->ref_list))
2432                 return NULL;
2433
2434         /*
2435          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2436          * This is to prevent a ref count from going down to zero, which deletes
2437          * the extent item from the extent tree, when there still are references
2438          * to add, which would fail because they would not find the extent item.
2439          */
2440         list_for_each_entry(ref, &head->ref_list, list) {
2441                 if (ref->action == BTRFS_ADD_DELAYED_REF)
2442                         return ref;
2443         }
2444
2445         return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2446                           list);
2447 }
2448
2449 /*
2450  * Returns 0 on success or if called with an already aborted transaction.
2451  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2452  */
2453 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2454                                              struct btrfs_root *root,
2455                                              unsigned long nr)
2456 {
2457         struct btrfs_delayed_ref_root *delayed_refs;
2458         struct btrfs_delayed_ref_node *ref;
2459         struct btrfs_delayed_ref_head *locked_ref = NULL;
2460         struct btrfs_delayed_extent_op *extent_op;
2461         struct btrfs_fs_info *fs_info = root->fs_info;
2462         ktime_t start = ktime_get();
2463         int ret;
2464         unsigned long count = 0;
2465         unsigned long actual_count = 0;
2466         int must_insert_reserved = 0;
2467
2468         delayed_refs = &trans->transaction->delayed_refs;
2469         while (1) {
2470                 if (!locked_ref) {
2471                         if (count >= nr)
2472                                 break;
2473
2474                         spin_lock(&delayed_refs->lock);
2475                         locked_ref = btrfs_select_ref_head(trans);
2476                         if (!locked_ref) {
2477                                 spin_unlock(&delayed_refs->lock);
2478                                 break;
2479                         }
2480
2481                         /* grab the lock that says we are going to process
2482                          * all the refs for this head */
2483                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2484                         spin_unlock(&delayed_refs->lock);
2485                         /*
2486                          * we may have dropped the spin lock to get the head
2487                          * mutex lock, and that might have given someone else
2488                          * time to free the head.  If that's true, it has been
2489                          * removed from our list and we can move on.
2490                          */
2491                         if (ret == -EAGAIN) {
2492                                 locked_ref = NULL;
2493                                 count++;
2494                                 continue;
2495                         }
2496                 }
2497
2498                 /*
2499                  * We need to try and merge add/drops of the same ref since we
2500                  * can run into issues with relocate dropping the implicit ref
2501                  * and then it being added back again before the drop can
2502                  * finish.  If we merged anything we need to re-loop so we can
2503                  * get a good ref.
2504                  * Or we can get node references of the same type that weren't
2505                  * merged when created due to bumps in the tree mod seq, and
2506                  * we need to merge them to prevent adding an inline extent
2507                  * backref before dropping it (triggering a BUG_ON at
2508                  * insert_inline_extent_backref()).
2509                  */
2510                 spin_lock(&locked_ref->lock);
2511                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2512                                          locked_ref);
2513
2514                 /*
2515                  * locked_ref is the head node, so we have to go one
2516                  * node back for any delayed ref updates
2517                  */
2518                 ref = select_delayed_ref(locked_ref);
2519
2520                 if (ref && ref->seq &&
2521                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2522                         spin_unlock(&locked_ref->lock);
2523                         btrfs_delayed_ref_unlock(locked_ref);
2524                         spin_lock(&delayed_refs->lock);
2525                         locked_ref->processing = 0;
2526                         delayed_refs->num_heads_ready++;
2527                         spin_unlock(&delayed_refs->lock);
2528                         locked_ref = NULL;
2529                         cond_resched();
2530                         count++;
2531                         continue;
2532                 }
2533
2534                 /*
2535                  * record the must insert reserved flag before we
2536                  * drop the spin lock.
2537                  */
2538                 must_insert_reserved = locked_ref->must_insert_reserved;
2539                 locked_ref->must_insert_reserved = 0;
2540
2541                 extent_op = locked_ref->extent_op;
2542                 locked_ref->extent_op = NULL;
2543
2544                 if (!ref) {
2545
2546
2547                         /* All delayed refs have been processed, Go ahead
2548                          * and send the head node to run_one_delayed_ref,
2549                          * so that any accounting fixes can happen
2550                          */
2551                         ref = &locked_ref->node;
2552
2553                         if (extent_op && must_insert_reserved) {
2554                                 btrfs_free_delayed_extent_op(extent_op);
2555                                 extent_op = NULL;
2556                         }
2557
2558                         if (extent_op) {
2559                                 spin_unlock(&locked_ref->lock);
2560                                 ret = run_delayed_extent_op(trans, root,
2561                                                             ref, extent_op);
2562                                 btrfs_free_delayed_extent_op(extent_op);
2563
2564                                 if (ret) {
2565                                         /*
2566                                          * Need to reset must_insert_reserved if
2567                                          * there was an error so the abort stuff
2568                                          * can cleanup the reserved space
2569                                          * properly.
2570                                          */
2571                                         if (must_insert_reserved)
2572                                                 locked_ref->must_insert_reserved = 1;
2573                                         locked_ref->processing = 0;
2574                                         btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2575                                         btrfs_delayed_ref_unlock(locked_ref);
2576                                         return ret;
2577                                 }
2578                                 continue;
2579                         }
2580
2581                         /*
2582                          * Need to drop our head ref lock and re-aqcuire the
2583                          * delayed ref lock and then re-check to make sure
2584                          * nobody got added.
2585                          */
2586                         spin_unlock(&locked_ref->lock);
2587                         spin_lock(&delayed_refs->lock);
2588                         spin_lock(&locked_ref->lock);
2589                         if (!list_empty(&locked_ref->ref_list) ||
2590                             locked_ref->extent_op) {
2591                                 spin_unlock(&locked_ref->lock);
2592                                 spin_unlock(&delayed_refs->lock);
2593                                 continue;
2594                         }
2595                         ref->in_tree = 0;
2596                         delayed_refs->num_heads--;
2597                         rb_erase(&locked_ref->href_node,
2598                                  &delayed_refs->href_root);
2599                         spin_unlock(&delayed_refs->lock);
2600                 } else {
2601                         actual_count++;
2602                         ref->in_tree = 0;
2603                         list_del(&ref->list);
2604                 }
2605                 atomic_dec(&delayed_refs->num_entries);
2606
2607                 if (!btrfs_delayed_ref_is_head(ref)) {
2608                         /*
2609                          * when we play the delayed ref, also correct the
2610                          * ref_mod on head
2611                          */
2612                         switch (ref->action) {
2613                         case BTRFS_ADD_DELAYED_REF:
2614                         case BTRFS_ADD_DELAYED_EXTENT:
2615                                 locked_ref->node.ref_mod -= ref->ref_mod;
2616                                 break;
2617                         case BTRFS_DROP_DELAYED_REF:
2618                                 locked_ref->node.ref_mod += ref->ref_mod;
2619                                 break;
2620                         default:
2621                                 WARN_ON(1);
2622                         }
2623                 }
2624                 spin_unlock(&locked_ref->lock);
2625
2626                 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2627                                           must_insert_reserved);
2628
2629                 btrfs_free_delayed_extent_op(extent_op);
2630                 if (ret) {
2631                         locked_ref->processing = 0;
2632                         btrfs_delayed_ref_unlock(locked_ref);
2633                         btrfs_put_delayed_ref(ref);
2634                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2635                         return ret;
2636                 }
2637
2638                 /*
2639                  * If this node is a head, that means all the refs in this head
2640                  * have been dealt with, and we will pick the next head to deal
2641                  * with, so we must unlock the head and drop it from the cluster
2642                  * list before we release it.
2643                  */
2644                 if (btrfs_delayed_ref_is_head(ref)) {
2645                         if (locked_ref->is_data &&
2646                             locked_ref->total_ref_mod < 0) {
2647                                 spin_lock(&delayed_refs->lock);
2648                                 delayed_refs->pending_csums -= ref->num_bytes;
2649                                 spin_unlock(&delayed_refs->lock);
2650                         }
2651                         btrfs_delayed_ref_unlock(locked_ref);
2652                         locked_ref = NULL;
2653                 }
2654                 btrfs_put_delayed_ref(ref);
2655                 count++;
2656                 cond_resched();
2657         }
2658
2659         /*
2660          * We don't want to include ref heads since we can have empty ref heads
2661          * and those will drastically skew our runtime down since we just do
2662          * accounting, no actual extent tree updates.
2663          */
2664         if (actual_count > 0) {
2665                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2666                 u64 avg;
2667
2668                 /*
2669                  * We weigh the current average higher than our current runtime
2670                  * to avoid large swings in the average.
2671                  */
2672                 spin_lock(&delayed_refs->lock);
2673                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2674                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2675                 spin_unlock(&delayed_refs->lock);
2676         }
2677         return 0;
2678 }
2679
2680 #ifdef SCRAMBLE_DELAYED_REFS
2681 /*
2682  * Normally delayed refs get processed in ascending bytenr order. This
2683  * correlates in most cases to the order added. To expose dependencies on this
2684  * order, we start to process the tree in the middle instead of the beginning
2685  */
2686 static u64 find_middle(struct rb_root *root)
2687 {
2688         struct rb_node *n = root->rb_node;
2689         struct btrfs_delayed_ref_node *entry;
2690         int alt = 1;
2691         u64 middle;
2692         u64 first = 0, last = 0;
2693
2694         n = rb_first(root);
2695         if (n) {
2696                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2697                 first = entry->bytenr;
2698         }
2699         n = rb_last(root);
2700         if (n) {
2701                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2702                 last = entry->bytenr;
2703         }
2704         n = root->rb_node;
2705
2706         while (n) {
2707                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2708                 WARN_ON(!entry->in_tree);
2709
2710                 middle = entry->bytenr;
2711
2712                 if (alt)
2713                         n = n->rb_left;
2714                 else
2715                         n = n->rb_right;
2716
2717                 alt = 1 - alt;
2718         }
2719         return middle;
2720 }
2721 #endif
2722
2723 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2724 {
2725         u64 num_bytes;
2726
2727         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2728                              sizeof(struct btrfs_extent_inline_ref));
2729         if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2730                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2731
2732         /*
2733          * We don't ever fill up leaves all the way so multiply by 2 just to be
2734          * closer to what we're really going to want to ouse.
2735          */
2736         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2737 }
2738
2739 /*
2740  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2741  * would require to store the csums for that many bytes.
2742  */
2743 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2744 {
2745         u64 csum_size;
2746         u64 num_csums_per_leaf;
2747         u64 num_csums;
2748
2749         csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2750         num_csums_per_leaf = div64_u64(csum_size,
2751                         (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2752         num_csums = div64_u64(csum_bytes, root->sectorsize);
2753         num_csums += num_csums_per_leaf - 1;
2754         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2755         return num_csums;
2756 }
2757
2758 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2759                                        struct btrfs_root *root)
2760 {
2761         struct btrfs_block_rsv *global_rsv;
2762         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2763         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2764         u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2765         u64 num_bytes, num_dirty_bgs_bytes;
2766         int ret = 0;
2767
2768         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2769         num_heads = heads_to_leaves(root, num_heads);
2770         if (num_heads > 1)
2771                 num_bytes += (num_heads - 1) * root->nodesize;
2772         num_bytes <<= 1;
2773         num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2774         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2775                                                              num_dirty_bgs);
2776         global_rsv = &root->fs_info->global_block_rsv;
2777
2778         /*
2779          * If we can't allocate any more chunks lets make sure we have _lots_ of
2780          * wiggle room since running delayed refs can create more delayed refs.
2781          */
2782         if (global_rsv->space_info->full) {
2783                 num_dirty_bgs_bytes <<= 1;
2784                 num_bytes <<= 1;
2785         }
2786
2787         spin_lock(&global_rsv->lock);
2788         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2789                 ret = 1;
2790         spin_unlock(&global_rsv->lock);
2791         return ret;
2792 }
2793
2794 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2795                                        struct btrfs_root *root)
2796 {
2797         struct btrfs_fs_info *fs_info = root->fs_info;
2798         u64 num_entries =
2799                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2800         u64 avg_runtime;
2801         u64 val;
2802
2803         smp_mb();
2804         avg_runtime = fs_info->avg_delayed_ref_runtime;
2805         val = num_entries * avg_runtime;
2806         if (num_entries * avg_runtime >= NSEC_PER_SEC)
2807                 return 1;
2808         if (val >= NSEC_PER_SEC / 2)
2809                 return 2;
2810
2811         return btrfs_check_space_for_delayed_refs(trans, root);
2812 }
2813
2814 struct async_delayed_refs {
2815         struct btrfs_root *root;
2816         int count;
2817         int error;
2818         int sync;
2819         struct completion wait;
2820         struct btrfs_work work;
2821 };
2822
2823 static void delayed_ref_async_start(struct btrfs_work *work)
2824 {
2825         struct async_delayed_refs *async;
2826         struct btrfs_trans_handle *trans;
2827         int ret;
2828
2829         async = container_of(work, struct async_delayed_refs, work);
2830
2831         trans = btrfs_join_transaction(async->root);
2832         if (IS_ERR(trans)) {
2833                 async->error = PTR_ERR(trans);
2834                 goto done;
2835         }
2836
2837         /*
2838          * trans->sync means that when we call end_transaciton, we won't
2839          * wait on delayed refs
2840          */
2841         trans->sync = true;
2842         ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2843         if (ret)
2844                 async->error = ret;
2845
2846         ret = btrfs_end_transaction(trans, async->root);
2847         if (ret && !async->error)
2848                 async->error = ret;
2849 done:
2850         if (async->sync)
2851                 complete(&async->wait);
2852         else
2853                 kfree(async);
2854 }
2855
2856 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2857                                  unsigned long count, int wait)
2858 {
2859         struct async_delayed_refs *async;
2860         int ret;
2861
2862         async = kmalloc(sizeof(*async), GFP_NOFS);
2863         if (!async)
2864                 return -ENOMEM;
2865
2866         async->root = root->fs_info->tree_root;
2867         async->count = count;
2868         async->error = 0;
2869         if (wait)
2870                 async->sync = 1;
2871         else
2872                 async->sync = 0;
2873         init_completion(&async->wait);
2874
2875         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2876                         delayed_ref_async_start, NULL, NULL);
2877
2878         btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2879
2880         if (wait) {
2881                 wait_for_completion(&async->wait);
2882                 ret = async->error;
2883                 kfree(async);
2884                 return ret;
2885         }
2886         return 0;
2887 }
2888
2889 /*
2890  * this starts processing the delayed reference count updates and
2891  * extent insertions we have queued up so far.  count can be
2892  * 0, which means to process everything in the tree at the start
2893  * of the run (but not newly added entries), or it can be some target
2894  * number you'd like to process.
2895  *
2896  * Returns 0 on success or if called with an aborted transaction
2897  * Returns <0 on error and aborts the transaction
2898  */
2899 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2900                            struct btrfs_root *root, unsigned long count)
2901 {
2902         struct rb_node *node;
2903         struct btrfs_delayed_ref_root *delayed_refs;
2904         struct btrfs_delayed_ref_head *head;
2905         int ret;
2906         int run_all = count == (unsigned long)-1;
2907         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2908
2909         /* We'll clean this up in btrfs_cleanup_transaction */
2910         if (trans->aborted)
2911                 return 0;
2912
2913         if (root == root->fs_info->extent_root)
2914                 root = root->fs_info->tree_root;
2915
2916         delayed_refs = &trans->transaction->delayed_refs;
2917         if (count == 0)
2918                 count = atomic_read(&delayed_refs->num_entries) * 2;
2919
2920 again:
2921 #ifdef SCRAMBLE_DELAYED_REFS
2922         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2923 #endif
2924         trans->can_flush_pending_bgs = false;
2925         ret = __btrfs_run_delayed_refs(trans, root, count);
2926         if (ret < 0) {
2927                 btrfs_abort_transaction(trans, root, ret);
2928                 return ret;
2929         }
2930
2931         if (run_all) {
2932                 if (!list_empty(&trans->new_bgs))
2933                         btrfs_create_pending_block_groups(trans, root);
2934
2935                 spin_lock(&delayed_refs->lock);
2936                 node = rb_first(&delayed_refs->href_root);
2937                 if (!node) {
2938                         spin_unlock(&delayed_refs->lock);
2939                         goto out;
2940                 }
2941                 count = (unsigned long)-1;
2942
2943                 while (node) {
2944                         head = rb_entry(node, struct btrfs_delayed_ref_head,
2945                                         href_node);
2946                         if (btrfs_delayed_ref_is_head(&head->node)) {
2947                                 struct btrfs_delayed_ref_node *ref;
2948
2949                                 ref = &head->node;
2950                                 atomic_inc(&ref->refs);
2951
2952                                 spin_unlock(&delayed_refs->lock);
2953                                 /*
2954                                  * Mutex was contended, block until it's
2955                                  * released and try again
2956                                  */
2957                                 mutex_lock(&head->mutex);
2958                                 mutex_unlock(&head->mutex);
2959
2960                                 btrfs_put_delayed_ref(ref);
2961                                 cond_resched();
2962                                 goto again;
2963                         } else {
2964                                 WARN_ON(1);
2965                         }
2966                         node = rb_next(node);
2967                 }
2968                 spin_unlock(&delayed_refs->lock);
2969                 cond_resched();
2970                 goto again;
2971         }
2972 out:
2973         assert_qgroups_uptodate(trans);
2974         trans->can_flush_pending_bgs = can_flush_pending_bgs;
2975         return 0;
2976 }
2977
2978 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2979                                 struct btrfs_root *root,
2980                                 u64 bytenr, u64 num_bytes, u64 flags,
2981                                 int level, int is_data)
2982 {
2983         struct btrfs_delayed_extent_op *extent_op;
2984         int ret;
2985
2986         extent_op = btrfs_alloc_delayed_extent_op();
2987         if (!extent_op)
2988                 return -ENOMEM;
2989
2990         extent_op->flags_to_set = flags;
2991         extent_op->update_flags = 1;
2992         extent_op->update_key = 0;
2993         extent_op->is_data = is_data ? 1 : 0;
2994         extent_op->level = level;
2995
2996         ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2997                                           num_bytes, extent_op);
2998         if (ret)
2999                 btrfs_free_delayed_extent_op(extent_op);
3000         return ret;
3001 }
3002
3003 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3004                                       struct btrfs_root *root,
3005                                       struct btrfs_path *path,
3006                                       u64 objectid, u64 offset, u64 bytenr)
3007 {
3008         struct btrfs_delayed_ref_head *head;
3009         struct btrfs_delayed_ref_node *ref;
3010         struct btrfs_delayed_data_ref *data_ref;
3011         struct btrfs_delayed_ref_root *delayed_refs;
3012         int ret = 0;
3013
3014         delayed_refs = &trans->transaction->delayed_refs;
3015         spin_lock(&delayed_refs->lock);
3016         head = btrfs_find_delayed_ref_head(trans, bytenr);
3017         if (!head) {
3018                 spin_unlock(&delayed_refs->lock);
3019                 return 0;
3020         }
3021
3022         if (!mutex_trylock(&head->mutex)) {
3023                 atomic_inc(&head->node.refs);
3024                 spin_unlock(&delayed_refs->lock);
3025
3026                 btrfs_release_path(path);
3027
3028                 /*
3029                  * Mutex was contended, block until it's released and let
3030                  * caller try again
3031                  */
3032                 mutex_lock(&head->mutex);
3033                 mutex_unlock(&head->mutex);
3034                 btrfs_put_delayed_ref(&head->node);
3035                 return -EAGAIN;
3036         }
3037         spin_unlock(&delayed_refs->lock);
3038
3039         spin_lock(&head->lock);
3040         list_for_each_entry(ref, &head->ref_list, list) {
3041                 /* If it's a shared ref we know a cross reference exists */
3042                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3043                         ret = 1;
3044                         break;
3045                 }
3046
3047                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3048
3049                 /*
3050                  * If our ref doesn't match the one we're currently looking at
3051                  * then we have a cross reference.
3052                  */
3053                 if (data_ref->root != root->root_key.objectid ||
3054                     data_ref->objectid != objectid ||
3055                     data_ref->offset != offset) {
3056                         ret = 1;
3057                         break;
3058                 }
3059         }
3060         spin_unlock(&head->lock);
3061         mutex_unlock(&head->mutex);
3062         return ret;
3063 }
3064
3065 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3066                                         struct btrfs_root *root,
3067                                         struct btrfs_path *path,
3068                                         u64 objectid, u64 offset, u64 bytenr)
3069 {
3070         struct btrfs_root *extent_root = root->fs_info->extent_root;
3071         struct extent_buffer *leaf;
3072         struct btrfs_extent_data_ref *ref;
3073         struct btrfs_extent_inline_ref *iref;
3074         struct btrfs_extent_item *ei;
3075         struct btrfs_key key;
3076         u32 item_size;
3077         int ret;
3078
3079         key.objectid = bytenr;
3080         key.offset = (u64)-1;
3081         key.type = BTRFS_EXTENT_ITEM_KEY;
3082
3083         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3084         if (ret < 0)
3085                 goto out;
3086         BUG_ON(ret == 0); /* Corruption */
3087
3088         ret = -ENOENT;
3089         if (path->slots[0] == 0)
3090                 goto out;
3091
3092         path->slots[0]--;
3093         leaf = path->nodes[0];
3094         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3095
3096         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3097                 goto out;
3098
3099         ret = 1;
3100         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3101 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3102         if (item_size < sizeof(*ei)) {
3103                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3104                 goto out;
3105         }
3106 #endif
3107         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3108
3109         if (item_size != sizeof(*ei) +
3110             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111                 goto out;
3112
3113         if (btrfs_extent_generation(leaf, ei) <=
3114             btrfs_root_last_snapshot(&root->root_item))
3115                 goto out;
3116
3117         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3118         if (btrfs_extent_inline_ref_type(leaf, iref) !=
3119             BTRFS_EXTENT_DATA_REF_KEY)
3120                 goto out;
3121
3122         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3123         if (btrfs_extent_refs(leaf, ei) !=
3124             btrfs_extent_data_ref_count(leaf, ref) ||
3125             btrfs_extent_data_ref_root(leaf, ref) !=
3126             root->root_key.objectid ||
3127             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3128             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3129                 goto out;
3130
3131         ret = 0;
3132 out:
3133         return ret;
3134 }
3135
3136 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3137                           struct btrfs_root *root,
3138                           u64 objectid, u64 offset, u64 bytenr)
3139 {
3140         struct btrfs_path *path;
3141         int ret;
3142         int ret2;
3143
3144         path = btrfs_alloc_path();
3145         if (!path)
3146                 return -ENOENT;
3147
3148         do {
3149                 ret = check_committed_ref(trans, root, path, objectid,
3150                                           offset, bytenr);
3151                 if (ret && ret != -ENOENT)
3152                         goto out;
3153
3154                 ret2 = check_delayed_ref(trans, root, path, objectid,
3155                                          offset, bytenr);
3156         } while (ret2 == -EAGAIN);
3157
3158         if (ret2 && ret2 != -ENOENT) {
3159                 ret = ret2;
3160                 goto out;
3161         }
3162
3163         if (ret != -ENOENT || ret2 != -ENOENT)
3164                 ret = 0;
3165 out:
3166         btrfs_free_path(path);
3167         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3168                 WARN_ON(ret > 0);
3169         return ret;
3170 }
3171
3172 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3173                            struct btrfs_root *root,
3174                            struct extent_buffer *buf,
3175                            int full_backref, int inc)
3176 {
3177         u64 bytenr;
3178         u64 num_bytes;
3179         u64 parent;
3180         u64 ref_root;
3181         u32 nritems;
3182         struct btrfs_key key;
3183         struct btrfs_file_extent_item *fi;
3184         int i;
3185         int level;
3186         int ret = 0;
3187         int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3188                             u64, u64, u64, u64, u64, u64);
3189
3190
3191         if (btrfs_test_is_dummy_root(root))
3192                 return 0;
3193
3194         ref_root = btrfs_header_owner(buf);
3195         nritems = btrfs_header_nritems(buf);
3196         level = btrfs_header_level(buf);
3197
3198         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3199                 return 0;
3200
3201         if (inc)
3202                 process_func = btrfs_inc_extent_ref;
3203         else
3204                 process_func = btrfs_free_extent;
3205
3206         if (full_backref)
3207                 parent = buf->start;
3208         else
3209                 parent = 0;
3210
3211         for (i = 0; i < nritems; i++) {
3212                 if (level == 0) {
3213                         btrfs_item_key_to_cpu(buf, &key, i);
3214                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3215                                 continue;
3216                         fi = btrfs_item_ptr(buf, i,
3217                                             struct btrfs_file_extent_item);
3218                         if (btrfs_file_extent_type(buf, fi) ==
3219                             BTRFS_FILE_EXTENT_INLINE)
3220                                 continue;
3221                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3222                         if (bytenr == 0)
3223                                 continue;
3224
3225                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3226                         key.offset -= btrfs_file_extent_offset(buf, fi);
3227                         ret = process_func(trans, root, bytenr, num_bytes,
3228                                            parent, ref_root, key.objectid,
3229                                            key.offset);
3230                         if (ret)
3231                                 goto fail;
3232                 } else {
3233                         bytenr = btrfs_node_blockptr(buf, i);
3234                         num_bytes = root->nodesize;
3235                         ret = process_func(trans, root, bytenr, num_bytes,
3236                                            parent, ref_root, level - 1, 0);
3237                         if (ret)
3238                                 goto fail;
3239                 }
3240         }
3241         return 0;
3242 fail:
3243         return ret;
3244 }
3245
3246 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3247                   struct extent_buffer *buf, int full_backref)
3248 {
3249         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3250 }
3251
3252 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3253                   struct extent_buffer *buf, int full_backref)
3254 {
3255         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3256 }
3257
3258 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3259                                  struct btrfs_root *root,
3260                                  struct btrfs_path *path,
3261                                  struct btrfs_block_group_cache *cache)
3262 {
3263         int ret;
3264         struct btrfs_root *extent_root = root->fs_info->extent_root;
3265         unsigned long bi;
3266         struct extent_buffer *leaf;
3267
3268         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3269         if (ret) {
3270                 if (ret > 0)
3271                         ret = -ENOENT;
3272                 goto fail;
3273         }
3274
3275         leaf = path->nodes[0];
3276         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3277         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3278         btrfs_mark_buffer_dirty(leaf);
3279 fail:
3280         btrfs_release_path(path);
3281         return ret;
3282
3283 }
3284
3285 static struct btrfs_block_group_cache *
3286 next_block_group(struct btrfs_root *root,
3287                  struct btrfs_block_group_cache *cache)
3288 {
3289         struct rb_node *node;
3290
3291         spin_lock(&root->fs_info->block_group_cache_lock);
3292
3293         /* If our block group was removed, we need a full search. */
3294         if (RB_EMPTY_NODE(&cache->cache_node)) {
3295                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3296
3297                 spin_unlock(&root->fs_info->block_group_cache_lock);
3298                 btrfs_put_block_group(cache);
3299                 cache = btrfs_lookup_first_block_group(root->fs_info,
3300                                                        next_bytenr);
3301                 return cache;
3302         }
3303         node = rb_next(&cache->cache_node);
3304         btrfs_put_block_group(cache);
3305         if (node) {
3306                 cache = rb_entry(node, struct btrfs_block_group_cache,
3307                                  cache_node);
3308                 btrfs_get_block_group(cache);
3309         } else
3310                 cache = NULL;
3311         spin_unlock(&root->fs_info->block_group_cache_lock);
3312         return cache;
3313 }
3314
3315 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3316                             struct btrfs_trans_handle *trans,
3317                             struct btrfs_path *path)
3318 {
3319         struct btrfs_root *root = block_group->fs_info->tree_root;
3320         struct inode *inode = NULL;
3321         u64 alloc_hint = 0;
3322         int dcs = BTRFS_DC_ERROR;
3323         u64 num_pages = 0;
3324         int retries = 0;
3325         int ret = 0;
3326
3327         /*
3328          * If this block group is smaller than 100 megs don't bother caching the
3329          * block group.
3330          */
3331         if (block_group->key.offset < (100 * 1024 * 1024)) {
3332                 spin_lock(&block_group->lock);
3333                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3334                 spin_unlock(&block_group->lock);
3335                 return 0;
3336         }
3337
3338         if (trans->aborted)
3339                 return 0;
3340 again:
3341         inode = lookup_free_space_inode(root, block_group, path);
3342         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3343                 ret = PTR_ERR(inode);
3344                 btrfs_release_path(path);
3345                 goto out;
3346         }
3347
3348         if (IS_ERR(inode)) {
3349                 BUG_ON(retries);
3350                 retries++;
3351
3352                 if (block_group->ro)
3353                         goto out_free;
3354
3355                 ret = create_free_space_inode(root, trans, block_group, path);
3356                 if (ret)
3357                         goto out_free;
3358                 goto again;
3359         }
3360
3361         /* We've already setup this transaction, go ahead and exit */
3362         if (block_group->cache_generation == trans->transid &&
3363             i_size_read(inode)) {
3364                 dcs = BTRFS_DC_SETUP;
3365                 goto out_put;
3366         }
3367
3368         /*
3369          * We want to set the generation to 0, that way if anything goes wrong
3370          * from here on out we know not to trust this cache when we load up next
3371          * time.
3372          */
3373         BTRFS_I(inode)->generation = 0;
3374         ret = btrfs_update_inode(trans, root, inode);
3375         if (ret) {
3376                 /*
3377                  * So theoretically we could recover from this, simply set the
3378                  * super cache generation to 0 so we know to invalidate the
3379                  * cache, but then we'd have to keep track of the block groups
3380                  * that fail this way so we know we _have_ to reset this cache
3381                  * before the next commit or risk reading stale cache.  So to
3382                  * limit our exposure to horrible edge cases lets just abort the
3383                  * transaction, this only happens in really bad situations
3384                  * anyway.
3385                  */
3386                 btrfs_abort_transaction(trans, root, ret);
3387                 goto out_put;
3388         }
3389         WARN_ON(ret);
3390
3391         if (i_size_read(inode) > 0) {
3392                 ret = btrfs_check_trunc_cache_free_space(root,
3393                                         &root->fs_info->global_block_rsv);
3394                 if (ret)
3395                         goto out_put;
3396
3397                 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3398                 if (ret)
3399                         goto out_put;
3400         }
3401
3402         spin_lock(&block_group->lock);
3403         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3404             !btrfs_test_opt(root, SPACE_CACHE)) {
3405                 /*
3406                  * don't bother trying to write stuff out _if_
3407                  * a) we're not cached,
3408                  * b) we're with nospace_cache mount option.
3409                  */
3410                 dcs = BTRFS_DC_WRITTEN;
3411                 spin_unlock(&block_group->lock);
3412                 goto out_put;
3413         }
3414         spin_unlock(&block_group->lock);
3415
3416         /*
3417          * We hit an ENOSPC when setting up the cache in this transaction, just
3418          * skip doing the setup, we've already cleared the cache so we're safe.
3419          */
3420         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3421                 ret = -ENOSPC;
3422                 goto out_put;
3423         }
3424
3425         /*
3426          * Try to preallocate enough space based on how big the block group is.
3427          * Keep in mind this has to include any pinned space which could end up
3428          * taking up quite a bit since it's not folded into the other space
3429          * cache.
3430          */
3431         num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3432         if (!num_pages)
3433                 num_pages = 1;
3434
3435         num_pages *= 16;
3436         num_pages *= PAGE_CACHE_SIZE;
3437
3438         ret = btrfs_check_data_free_space(inode, 0, num_pages);
3439         if (ret)
3440                 goto out_put;
3441
3442         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3443                                               num_pages, num_pages,
3444                                               &alloc_hint);
3445         /*
3446          * Our cache requires contiguous chunks so that we don't modify a bunch
3447          * of metadata or split extents when writing the cache out, which means
3448          * we can enospc if we are heavily fragmented in addition to just normal
3449          * out of space conditions.  So if we hit this just skip setting up any
3450          * other block groups for this transaction, maybe we'll unpin enough
3451          * space the next time around.
3452          */
3453         if (!ret)
3454                 dcs = BTRFS_DC_SETUP;
3455         else if (ret == -ENOSPC)
3456                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3457         btrfs_free_reserved_data_space(inode, 0, num_pages);
3458
3459 out_put:
3460         iput(inode);
3461 out_free:
3462         btrfs_release_path(path);
3463 out:
3464         spin_lock(&block_group->lock);
3465         if (!ret && dcs == BTRFS_DC_SETUP)
3466                 block_group->cache_generation = trans->transid;
3467         block_group->disk_cache_state = dcs;
3468         spin_unlock(&block_group->lock);
3469
3470         return ret;
3471 }
3472
3473 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3474                             struct btrfs_root *root)
3475 {
3476         struct btrfs_block_group_cache *cache, *tmp;
3477         struct btrfs_transaction *cur_trans = trans->transaction;
3478         struct btrfs_path *path;
3479
3480         if (list_empty(&cur_trans->dirty_bgs) ||
3481             !btrfs_test_opt(root, SPACE_CACHE))
3482                 return 0;
3483
3484         path = btrfs_alloc_path();
3485         if (!path)
3486                 return -ENOMEM;
3487
3488         /* Could add new block groups, use _safe just in case */
3489         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3490                                  dirty_list) {
3491                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3492                         cache_save_setup(cache, trans, path);
3493         }
3494
3495         btrfs_free_path(path);
3496         return 0;
3497 }
3498
3499 /*
3500  * transaction commit does final block group cache writeback during a
3501  * critical section where nothing is allowed to change the FS.  This is
3502  * required in order for the cache to actually match the block group,
3503  * but can introduce a lot of latency into the commit.
3504  *
3505  * So, btrfs_start_dirty_block_groups is here to kick off block group
3506  * cache IO.  There's a chance we'll have to redo some of it if the
3507  * block group changes again during the commit, but it greatly reduces
3508  * the commit latency by getting rid of the easy block groups while
3509  * we're still allowing others to join the commit.
3510  */
3511 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3512                                    struct btrfs_root *root)
3513 {
3514         struct btrfs_block_group_cache *cache;
3515         struct btrfs_transaction *cur_trans = trans->transaction;
3516         int ret = 0;
3517         int should_put;
3518         struct btrfs_path *path = NULL;
3519         LIST_HEAD(dirty);
3520         struct list_head *io = &cur_trans->io_bgs;
3521         int num_started = 0;
3522         int loops = 0;
3523
3524         spin_lock(&cur_trans->dirty_bgs_lock);
3525         if (list_empty(&cur_trans->dirty_bgs)) {
3526                 spin_unlock(&cur_trans->dirty_bgs_lock);
3527                 return 0;
3528         }
3529         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3530         spin_unlock(&cur_trans->dirty_bgs_lock);
3531
3532 again:
3533         /*
3534          * make sure all the block groups on our dirty list actually
3535          * exist
3536          */
3537         btrfs_create_pending_block_groups(trans, root);
3538
3539         if (!path) {
3540                 path = btrfs_alloc_path();
3541                 if (!path)
3542                         return -ENOMEM;
3543         }
3544
3545         /*
3546          * cache_write_mutex is here only to save us from balance or automatic
3547          * removal of empty block groups deleting this block group while we are
3548          * writing out the cache
3549          */
3550         mutex_lock(&trans->transaction->cache_write_mutex);
3551         while (!list_empty(&dirty)) {
3552                 cache = list_first_entry(&dirty,
3553                                          struct btrfs_block_group_cache,
3554                                          dirty_list);
3555                 /*
3556                  * this can happen if something re-dirties a block
3557                  * group that is already under IO.  Just wait for it to
3558                  * finish and then do it all again
3559                  */
3560                 if (!list_empty(&cache->io_list)) {
3561                         list_del_init(&cache->io_list);
3562                         btrfs_wait_cache_io(root, trans, cache,
3563                                             &cache->io_ctl, path,
3564                                             cache->key.objectid);
3565                         btrfs_put_block_group(cache);
3566                 }
3567
3568
3569                 /*
3570                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3571                  * if it should update the cache_state.  Don't delete
3572                  * until after we wait.
3573                  *
3574                  * Since we're not running in the commit critical section
3575                  * we need the dirty_bgs_lock to protect from update_block_group
3576                  */
3577                 spin_lock(&cur_trans->dirty_bgs_lock);
3578                 list_del_init(&cache->dirty_list);
3579                 spin_unlock(&cur_trans->dirty_bgs_lock);
3580
3581                 should_put = 1;
3582
3583                 cache_save_setup(cache, trans, path);
3584
3585                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3586                         cache->io_ctl.inode = NULL;
3587                         ret = btrfs_write_out_cache(root, trans, cache, path);
3588                         if (ret == 0 && cache->io_ctl.inode) {
3589                                 num_started++;
3590                                 should_put = 0;
3591
3592                                 /*
3593                                  * the cache_write_mutex is protecting
3594                                  * the io_list
3595                                  */
3596                                 list_add_tail(&cache->io_list, io);
3597                         } else {
3598                                 /*
3599                                  * if we failed to write the cache, the
3600                                  * generation will be bad and life goes on
3601                                  */
3602                                 ret = 0;
3603                         }
3604                 }
3605                 if (!ret) {
3606                         ret = write_one_cache_group(trans, root, path, cache);
3607                         /*
3608                          * Our block group might still be attached to the list
3609                          * of new block groups in the transaction handle of some
3610                          * other task (struct btrfs_trans_handle->new_bgs). This
3611                          * means its block group item isn't yet in the extent
3612                          * tree. If this happens ignore the error, as we will
3613                          * try again later in the critical section of the
3614                          * transaction commit.
3615                          */
3616                         if (ret == -ENOENT) {
3617                                 ret = 0;
3618                                 spin_lock(&cur_trans->dirty_bgs_lock);
3619                                 if (list_empty(&cache->dirty_list)) {
3620                                         list_add_tail(&cache->dirty_list,
3621                                                       &cur_trans->dirty_bgs);
3622                                         btrfs_get_block_group(cache);
3623                                 }
3624                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3625                         } else if (ret) {
3626                                 btrfs_abort_transaction(trans, root, ret);
3627                         }
3628                 }
3629
3630                 /* if its not on the io list, we need to put the block group */
3631                 if (should_put)
3632                         btrfs_put_block_group(cache);
3633
3634                 if (ret)
3635                         break;
3636
3637                 /*
3638                  * Avoid blocking other tasks for too long. It might even save
3639                  * us from writing caches for block groups that are going to be
3640                  * removed.
3641                  */
3642                 mutex_unlock(&trans->transaction->cache_write_mutex);
3643                 mutex_lock(&trans->transaction->cache_write_mutex);
3644         }
3645         mutex_unlock(&trans->transaction->cache_write_mutex);
3646
3647         /*
3648          * go through delayed refs for all the stuff we've just kicked off
3649          * and then loop back (just once)
3650          */
3651         ret = btrfs_run_delayed_refs(trans, root, 0);
3652         if (!ret && loops == 0) {
3653                 loops++;
3654                 spin_lock(&cur_trans->dirty_bgs_lock);
3655                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3656                 /*
3657                  * dirty_bgs_lock protects us from concurrent block group
3658                  * deletes too (not just cache_write_mutex).
3659                  */
3660                 if (!list_empty(&dirty)) {
3661                         spin_unlock(&cur_trans->dirty_bgs_lock);
3662                         goto again;
3663                 }
3664                 spin_unlock(&cur_trans->dirty_bgs_lock);
3665         }
3666
3667         btrfs_free_path(path);
3668         return ret;
3669 }
3670
3671 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3672                                    struct btrfs_root *root)
3673 {
3674         struct btrfs_block_group_cache *cache;
3675         struct btrfs_transaction *cur_trans = trans->transaction;
3676         int ret = 0;
3677         int should_put;
3678         struct btrfs_path *path;
3679         struct list_head *io = &cur_trans->io_bgs;
3680         int num_started = 0;
3681
3682         path = btrfs_alloc_path();
3683         if (!path)
3684                 return -ENOMEM;
3685
3686         /*
3687          * We don't need the lock here since we are protected by the transaction
3688          * commit.  We want to do the cache_save_setup first and then run the
3689          * delayed refs to make sure we have the best chance at doing this all
3690          * in one shot.
3691          */
3692         while (!list_empty(&cur_trans->dirty_bgs)) {
3693                 cache = list_first_entry(&cur_trans->dirty_bgs,
3694                                          struct btrfs_block_group_cache,
3695                                          dirty_list);
3696
3697                 /*
3698                  * this can happen if cache_save_setup re-dirties a block
3699                  * group that is already under IO.  Just wait for it to
3700                  * finish and then do it all again
3701                  */
3702                 if (!list_empty(&cache->io_list)) {
3703                         list_del_init(&cache->io_list);
3704                         btrfs_wait_cache_io(root, trans, cache,
3705                                             &cache->io_ctl, path,
3706                                             cache->key.objectid);
3707                         btrfs_put_block_group(cache);
3708                 }
3709
3710                 /*
3711                  * don't remove from the dirty list until after we've waited
3712                  * on any pending IO
3713                  */
3714                 list_del_init(&cache->dirty_list);
3715                 should_put = 1;
3716
3717                 cache_save_setup(cache, trans, path);
3718
3719                 if (!ret)
3720                         ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3721
3722                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3723                         cache->io_ctl.inode = NULL;
3724                         ret = btrfs_write_out_cache(root, trans, cache, path);
3725                         if (ret == 0 && cache->io_ctl.inode) {
3726                                 num_started++;
3727                                 should_put = 0;
3728                                 list_add_tail(&cache->io_list, io);
3729                         } else {
3730                                 /*
3731                                  * if we failed to write the cache, the
3732                                  * generation will be bad and life goes on
3733                                  */
3734                                 ret = 0;
3735                         }
3736                 }
3737                 if (!ret) {
3738                         ret = write_one_cache_group(trans, root, path, cache);
3739                         if (ret)
3740                                 btrfs_abort_transaction(trans, root, ret);
3741                 }
3742
3743                 /* if its not on the io list, we need to put the block group */
3744                 if (should_put)
3745                         btrfs_put_block_group(cache);
3746         }
3747
3748         while (!list_empty(io)) {
3749                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3750                                          io_list);
3751                 list_del_init(&cache->io_list);
3752                 btrfs_wait_cache_io(root, trans, cache,
3753                                     &cache->io_ctl, path, cache->key.objectid);
3754                 btrfs_put_block_group(cache);
3755         }
3756
3757         btrfs_free_path(path);
3758         return ret;
3759 }
3760
3761 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3762 {
3763         struct btrfs_block_group_cache *block_group;
3764         int readonly = 0;
3765
3766         block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3767         if (!block_group || block_group->ro)
3768                 readonly = 1;
3769         if (block_group)
3770                 btrfs_put_block_group(block_group);
3771         return readonly;
3772 }
3773
3774 static const char *alloc_name(u64 flags)
3775 {
3776         switch (flags) {
3777         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3778                 return "mixed";
3779         case BTRFS_BLOCK_GROUP_METADATA:
3780                 return "metadata";
3781         case BTRFS_BLOCK_GROUP_DATA:
3782                 return "data";
3783         case BTRFS_BLOCK_GROUP_SYSTEM:
3784                 return "system";
3785         default:
3786                 WARN_ON(1);
3787                 return "invalid-combination";
3788         };
3789 }
3790
3791 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3792                              u64 total_bytes, u64 bytes_used,
3793                              struct btrfs_space_info **space_info)
3794 {
3795         struct btrfs_space_info *found;
3796         int i;
3797         int factor;
3798         int ret;
3799
3800         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3801                      BTRFS_BLOCK_GROUP_RAID10))
3802                 factor = 2;
3803         else
3804                 factor = 1;
3805
3806         found = __find_space_info(info, flags);
3807         if (found) {
3808                 spin_lock(&found->lock);
3809                 found->total_bytes += total_bytes;
3810                 found->disk_total += total_bytes * factor;
3811                 found->bytes_used += bytes_used;
3812                 found->disk_used += bytes_used * factor;
3813                 if (total_bytes > 0)
3814                         found->full = 0;
3815                 spin_unlock(&found->lock);
3816                 *space_info = found;
3817                 return 0;
3818         }
3819         found = kzalloc(sizeof(*found), GFP_NOFS);
3820         if (!found)
3821                 return -ENOMEM;
3822
3823         ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3824         if (ret) {
3825                 kfree(found);
3826                 return ret;
3827         }
3828
3829         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3830                 INIT_LIST_HEAD(&found->block_groups[i]);
3831         init_rwsem(&found->groups_sem);
3832         spin_lock_init(&found->lock);
3833         found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3834         found->total_bytes = total_bytes;
3835         found->disk_total = total_bytes * factor;
3836         found->bytes_used = bytes_used;
3837         found->disk_used = bytes_used * factor;
3838         found->bytes_pinned = 0;
3839         found->bytes_reserved = 0;
3840         found->bytes_readonly = 0;
3841         found->bytes_may_use = 0;
3842         found->full = 0;
3843         found->max_extent_size = 0;
3844         found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3845         found->chunk_alloc = 0;
3846         found->flush = 0;
3847         init_waitqueue_head(&found->wait);
3848         INIT_LIST_HEAD(&found->ro_bgs);
3849
3850         ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3851                                     info->space_info_kobj, "%s",
3852                                     alloc_name(found->flags));
3853         if (ret) {
3854                 kfree(found);
3855                 return ret;
3856         }
3857
3858         *space_info = found;
3859         list_add_rcu(&found->list, &info->space_info);
3860         if (flags & BTRFS_BLOCK_GROUP_DATA)
3861                 info->data_sinfo = found;
3862
3863         return ret;
3864 }
3865
3866 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3867 {
3868         u64 extra_flags = chunk_to_extended(flags) &
3869                                 BTRFS_EXTENDED_PROFILE_MASK;
3870
3871         write_seqlock(&fs_info->profiles_lock);
3872         if (flags & BTRFS_BLOCK_GROUP_DATA)
3873                 fs_info->avail_data_alloc_bits |= extra_flags;
3874         if (flags & BTRFS_BLOCK_GROUP_METADATA)
3875                 fs_info->avail_metadata_alloc_bits |= extra_flags;
3876         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3877                 fs_info->avail_system_alloc_bits |= extra_flags;
3878         write_sequnlock(&fs_info->profiles_lock);
3879 }
3880
3881 /*
3882  * returns target flags in extended format or 0 if restripe for this
3883  * chunk_type is not in progress
3884  *
3885  * should be called with either volume_mutex or balance_lock held
3886  */
3887 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3888 {
3889         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3890         u64 target = 0;
3891
3892         if (!bctl)
3893                 return 0;
3894
3895         if (flags & BTRFS_BLOCK_GROUP_DATA &&
3896             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3897                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3898         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3899                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3900                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3901         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3902                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3903                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3904         }
3905
3906         return target;
3907 }
3908
3909 /*
3910  * @flags: available profiles in extended format (see ctree.h)
3911  *
3912  * Returns reduced profile in chunk format.  If profile changing is in
3913  * progress (either running or paused) picks the target profile (if it's
3914  * already available), otherwise falls back to plain reducing.
3915  */
3916 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3917 {
3918         u64 num_devices = root->fs_info->fs_devices->rw_devices;
3919         u64 target;
3920         u64 raid_type;
3921         u64 allowed = 0;
3922
3923         /*
3924          * see if restripe for this chunk_type is in progress, if so
3925          * try to reduce to the target profile
3926          */
3927         spin_lock(&root->fs_info->balance_lock);
3928         target = get_restripe_target(root->fs_info, flags);
3929         if (target) {
3930                 /* pick target profile only if it's already available */
3931                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3932                         spin_unlock(&root->fs_info->balance_lock);
3933                         return extended_to_chunk(target);
3934                 }
3935         }
3936         spin_unlock(&root->fs_info->balance_lock);
3937
3938         /* First, mask out the RAID levels which aren't possible */
3939         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3940                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3941                         allowed |= btrfs_raid_group[raid_type];
3942         }
3943         allowed &= flags;
3944
3945         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3946                 allowed = BTRFS_BLOCK_GROUP_RAID6;
3947         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3948                 allowed = BTRFS_BLOCK_GROUP_RAID5;
3949         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3950                 allowed = BTRFS_BLOCK_GROUP_RAID10;
3951         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3952                 allowed = BTRFS_BLOCK_GROUP_RAID1;
3953         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3954                 allowed = BTRFS_BLOCK_GROUP_RAID0;
3955
3956         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3957
3958         return extended_to_chunk(flags | allowed);
3959 }
3960
3961 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3962 {
3963         unsigned seq;
3964         u64 flags;
3965
3966         do {
3967                 flags = orig_flags;
3968                 seq = read_seqbegin(&root->fs_info->profiles_lock);
3969
3970                 if (flags & BTRFS_BLOCK_GROUP_DATA)
3971                         flags |= root->fs_info->avail_data_alloc_bits;
3972                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3973                         flags |= root->fs_info->avail_system_alloc_bits;
3974                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3975                         flags |= root->fs_info->avail_metadata_alloc_bits;
3976         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3977
3978         return btrfs_reduce_alloc_profile(root, flags);
3979 }
3980
3981 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3982 {
3983         u64 flags;
3984         u64 ret;
3985
3986         if (data)
3987                 flags = BTRFS_BLOCK_GROUP_DATA;
3988         else if (root == root->fs_info->chunk_root)
3989                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3990         else
3991                 flags = BTRFS_BLOCK_GROUP_METADATA;
3992
3993         ret = get_alloc_profile(root, flags);
3994         return ret;
3995 }
3996
3997 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
3998 {
3999         struct btrfs_space_info *data_sinfo;
4000         struct btrfs_root *root = BTRFS_I(inode)->root;
4001         struct btrfs_fs_info *fs_info = root->fs_info;
4002         u64 used;
4003         int ret = 0;
4004         int need_commit = 2;
4005         int have_pinned_space;
4006
4007         /* make sure bytes are sectorsize aligned */
4008         bytes = ALIGN(bytes, root->sectorsize);
4009
4010         if (btrfs_is_free_space_inode(inode)) {
4011                 need_commit = 0;
4012                 ASSERT(current->journal_info);
4013         }
4014
4015         data_sinfo = fs_info->data_sinfo;
4016         if (!data_sinfo)
4017                 goto alloc;
4018
4019 again:
4020         /* make sure we have enough space to handle the data first */
4021         spin_lock(&data_sinfo->lock);
4022         used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4023                 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4024                 data_sinfo->bytes_may_use;
4025
4026         if (used + bytes > data_sinfo->total_bytes) {
4027                 struct btrfs_trans_handle *trans;
4028
4029                 /*
4030                  * if we don't have enough free bytes in this space then we need
4031                  * to alloc a new chunk.
4032                  */
4033                 if (!data_sinfo->full) {
4034                         u64 alloc_target;
4035
4036                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4037                         spin_unlock(&data_sinfo->lock);
4038 alloc:
4039                         alloc_target = btrfs_get_alloc_profile(root, 1);
4040                         /*
4041                          * It is ugly that we don't call nolock join
4042                          * transaction for the free space inode case here.
4043                          * But it is safe because we only do the data space
4044                          * reservation for the free space cache in the
4045                          * transaction context, the common join transaction
4046                          * just increase the counter of the current transaction
4047                          * handler, doesn't try to acquire the trans_lock of
4048                          * the fs.
4049                          */
4050                         trans = btrfs_join_transaction(root);
4051                         if (IS_ERR(trans))
4052                                 return PTR_ERR(trans);
4053
4054                         ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4055                                              alloc_target,
4056                                              CHUNK_ALLOC_NO_FORCE);
4057                         btrfs_end_transaction(trans, root);
4058                         if (ret < 0) {
4059                                 if (ret != -ENOSPC)
4060                                         return ret;
4061                                 else {
4062                                         have_pinned_space = 1;
4063                                         goto commit_trans;
4064                                 }
4065                         }
4066
4067                         if (!data_sinfo)
4068                                 data_sinfo = fs_info->data_sinfo;
4069
4070                         goto again;
4071                 }
4072
4073                 /*
4074                  * If we don't have enough pinned space to deal with this
4075                  * allocation, and no removed chunk in current transaction,
4076                  * don't bother committing the transaction.
4077                  */
4078                 have_pinned_space = percpu_counter_compare(
4079                         &data_sinfo->total_bytes_pinned,
4080                         used + bytes - data_sinfo->total_bytes);
4081                 spin_unlock(&data_sinfo->lock);
4082
4083                 /* commit the current transaction and try again */
4084 commit_trans:
4085                 if (need_commit &&
4086                     !atomic_read(&root->fs_info->open_ioctl_trans)) {
4087                         need_commit--;
4088
4089                         if (need_commit > 0)
4090                                 btrfs_wait_ordered_roots(fs_info, -1);
4091
4092                         trans = btrfs_join_transaction(root);
4093                         if (IS_ERR(trans))
4094                                 return PTR_ERR(trans);
4095                         if (have_pinned_space >= 0 ||
4096                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4097                                      &trans->transaction->flags) ||
4098                             need_commit > 0) {
4099                                 ret = btrfs_commit_transaction(trans, root);
4100                                 if (ret)
4101                                         return ret;
4102                                 /*
4103                                  * The cleaner kthread might still be doing iput
4104                                  * operations. Wait for it to finish so that
4105                                  * more space is released.
4106                                  */
4107                                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4108                                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4109                                 goto again;
4110                         } else {
4111                                 btrfs_end_transaction(trans, root);
4112                         }
4113                 }
4114
4115                 trace_btrfs_space_reservation(root->fs_info,
4116                                               "space_info:enospc",
4117                                               data_sinfo->flags, bytes, 1);
4118                 return -ENOSPC;
4119         }
4120         data_sinfo->bytes_may_use += bytes;
4121         trace_btrfs_space_reservation(root->fs_info, "space_info",
4122                                       data_sinfo->flags, bytes, 1);
4123         spin_unlock(&data_sinfo->lock);
4124
4125         return ret;
4126 }
4127
4128 /*
4129  * New check_data_free_space() with ability for precious data reservation
4130  * Will replace old btrfs_check_data_free_space(), but for patch split,
4131  * add a new function first and then replace it.
4132  */
4133 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4134 {
4135         struct btrfs_root *root = BTRFS_I(inode)->root;
4136         int ret;
4137
4138         /* align the range */
4139         len = round_up(start + len, root->sectorsize) -
4140               round_down(start, root->sectorsize);
4141         start = round_down(start, root->sectorsize);
4142
4143         ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4144         if (ret < 0)
4145                 return ret;
4146
4147         /*
4148          * Use new btrfs_qgroup_reserve_data to reserve precious data space
4149          *
4150          * TODO: Find a good method to avoid reserve data space for NOCOW
4151          * range, but don't impact performance on quota disable case.
4152          */
4153         ret = btrfs_qgroup_reserve_data(inode, start, len);
4154         return ret;
4155 }
4156
4157 /*
4158  * Called if we need to clear a data reservation for this inode
4159  * Normally in a error case.
4160  *
4161  * This one will *NOT* use accurate qgroup reserved space API, just for case
4162  * which we can't sleep and is sure it won't affect qgroup reserved space.
4163  * Like clear_bit_hook().
4164  */
4165 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4166                                             u64 len)
4167 {
4168         struct btrfs_root *root = BTRFS_I(inode)->root;
4169         struct btrfs_space_info *data_sinfo;
4170
4171         /* Make sure the range is aligned to sectorsize */
4172         len = round_up(start + len, root->sectorsize) -
4173               round_down(start, root->sectorsize);
4174         start = round_down(start, root->sectorsize);
4175
4176         data_sinfo = root->fs_info->data_sinfo;
4177         spin_lock(&data_sinfo->lock);
4178         if (WARN_ON(data_sinfo->bytes_may_use < len))
4179                 data_sinfo->bytes_may_use = 0;
4180         else
4181                 data_sinfo->bytes_may_use -= len;
4182         trace_btrfs_space_reservation(root->fs_info, "space_info",
4183                                       data_sinfo->flags, len, 0);
4184         spin_unlock(&data_sinfo->lock);
4185 }
4186
4187 /*
4188  * Called if we need to clear a data reservation for this inode
4189  * Normally in a error case.
4190  *
4191  * This one will handle the per-indoe data rsv map for accurate reserved
4192  * space framework.
4193  */
4194 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4195 {
4196         btrfs_free_reserved_data_space_noquota(inode, start, len);
4197         btrfs_qgroup_free_data(inode, start, len);
4198 }
4199
4200 static void force_metadata_allocation(struct btrfs_fs_info *info)
4201 {
4202         struct list_head *head = &info->space_info;
4203         struct btrfs_space_info *found;
4204
4205         rcu_read_lock();
4206         list_for_each_entry_rcu(found, head, list) {
4207                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4208                         found->force_alloc = CHUNK_ALLOC_FORCE;
4209         }
4210         rcu_read_unlock();
4211 }
4212
4213 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4214 {
4215         return (global->size << 1);
4216 }
4217
4218 static int should_alloc_chunk(struct btrfs_root *root,
4219                               struct btrfs_space_info *sinfo, int force)
4220 {
4221         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4222         u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4223         u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4224         u64 thresh;
4225
4226         if (force == CHUNK_ALLOC_FORCE)
4227                 return 1;
4228
4229         /*
4230          * We need to take into account the global rsv because for all intents
4231          * and purposes it's used space.  Don't worry about locking the
4232          * global_rsv, it doesn't change except when the transaction commits.
4233          */
4234         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4235                 num_allocated += calc_global_rsv_need_space(global_rsv);
4236
4237         /*
4238          * in limited mode, we want to have some free space up to
4239          * about 1% of the FS size.
4240          */
4241         if (force == CHUNK_ALLOC_LIMITED) {
4242                 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4243                 thresh = max_t(u64, 64 * 1024 * 1024,
4244                                div_factor_fine(thresh, 1));
4245
4246                 if (num_bytes - num_allocated < thresh)
4247                         return 1;
4248         }
4249
4250         if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4251                 return 0;
4252         return 1;
4253 }
4254
4255 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4256 {
4257         u64 num_dev;
4258
4259         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4260                     BTRFS_BLOCK_GROUP_RAID0 |
4261                     BTRFS_BLOCK_GROUP_RAID5 |
4262                     BTRFS_BLOCK_GROUP_RAID6))
4263                 num_dev = root->fs_info->fs_devices->rw_devices;
4264         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4265                 num_dev = 2;
4266         else
4267                 num_dev = 1;    /* DUP or single */
4268
4269         return num_dev;
4270 }
4271
4272 /*
4273  * If @is_allocation is true, reserve space in the system space info necessary
4274  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4275  * removing a chunk.
4276  */
4277 void check_system_chunk(struct btrfs_trans_handle *trans,
4278                         struct btrfs_root *root,
4279                         u64 type)
4280 {
4281         struct btrfs_space_info *info;
4282         u64 left;
4283         u64 thresh;
4284         int ret = 0;
4285         u64 num_devs;
4286
4287         /*
4288          * Needed because we can end up allocating a system chunk and for an
4289          * atomic and race free space reservation in the chunk block reserve.
4290          */
4291         ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4292
4293         info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4294         spin_lock(&info->lock);
4295         left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4296                 info->bytes_reserved - info->bytes_readonly -
4297                 info->bytes_may_use;
4298         spin_unlock(&info->lock);
4299
4300         num_devs = get_profile_num_devs(root, type);
4301
4302         /* num_devs device items to update and 1 chunk item to add or remove */
4303         thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4304                 btrfs_calc_trans_metadata_size(root, 1);
4305
4306         if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4307                 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4308                         left, thresh, type);
4309                 dump_space_info(info, 0, 0);
4310         }
4311
4312         if (left < thresh) {
4313                 u64 flags;
4314
4315                 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4316                 /*
4317                  * Ignore failure to create system chunk. We might end up not
4318                  * needing it, as we might not need to COW all nodes/leafs from
4319                  * the paths we visit in the chunk tree (they were already COWed
4320                  * or created in the current transaction for example).
4321                  */
4322                 ret = btrfs_alloc_chunk(trans, root, flags);
4323         }
4324
4325         if (!ret) {
4326                 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4327                                           &root->fs_info->chunk_block_rsv,
4328                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4329                 if (!ret)
4330                         trans->chunk_bytes_reserved += thresh;
4331         }
4332 }
4333
4334 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4335                           struct btrfs_root *extent_root, u64 flags, int force)
4336 {
4337         struct btrfs_space_info *space_info;
4338         struct btrfs_fs_info *fs_info = extent_root->fs_info;
4339         int wait_for_alloc = 0;
4340         int ret = 0;
4341
4342         /* Don't re-enter if we're already allocating a chunk */
4343         if (trans->allocating_chunk)
4344                 return -ENOSPC;
4345
4346         space_info = __find_space_info(extent_root->fs_info, flags);
4347         if (!space_info) {
4348                 ret = update_space_info(extent_root->fs_info, flags,
4349                                         0, 0, &space_info);
4350                 BUG_ON(ret); /* -ENOMEM */
4351         }
4352         BUG_ON(!space_info); /* Logic error */
4353
4354 again:
4355         spin_lock(&space_info->lock);
4356         if (force < space_info->force_alloc)
4357                 force = space_info->force_alloc;
4358         if (space_info->full) {
4359                 if (should_alloc_chunk(extent_root, space_info, force))
4360                         ret = -ENOSPC;
4361                 else
4362                         ret = 0;
4363                 spin_unlock(&space_info->lock);
4364                 return ret;
4365         }
4366
4367         if (!should_alloc_chunk(extent_root, space_info, force)) {
4368                 spin_unlock(&space_info->lock);
4369                 return 0;
4370         } else if (space_info->chunk_alloc) {
4371                 wait_for_alloc = 1;
4372         } else {
4373                 space_info->chunk_alloc = 1;
4374         }
4375
4376         spin_unlock(&space_info->lock);
4377
4378         mutex_lock(&fs_info->chunk_mutex);
4379
4380         /*
4381          * The chunk_mutex is held throughout the entirety of a chunk
4382          * allocation, so once we've acquired the chunk_mutex we know that the
4383          * other guy is done and we need to recheck and see if we should
4384          * allocate.
4385          */
4386         if (wait_for_alloc) {
4387                 mutex_unlock(&fs_info->chunk_mutex);
4388                 wait_for_alloc = 0;
4389                 goto again;
4390         }
4391
4392         trans->allocating_chunk = true;
4393
4394         /*
4395          * If we have mixed data/metadata chunks we want to make sure we keep
4396          * allocating mixed chunks instead of individual chunks.
4397          */
4398         if (btrfs_mixed_space_info(space_info))
4399                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4400
4401         /*
4402          * if we're doing a data chunk, go ahead and make sure that
4403          * we keep a reasonable number of metadata chunks allocated in the
4404          * FS as well.
4405          */
4406         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4407                 fs_info->data_chunk_allocations++;
4408                 if (!(fs_info->data_chunk_allocations %
4409                       fs_info->metadata_ratio))
4410                         force_metadata_allocation(fs_info);
4411         }
4412
4413         /*
4414          * Check if we have enough space in SYSTEM chunk because we may need
4415          * to update devices.
4416          */
4417         check_system_chunk(trans, extent_root, flags);
4418
4419         ret = btrfs_alloc_chunk(trans, extent_root, flags);
4420         trans->allocating_chunk = false;
4421
4422         spin_lock(&space_info->lock);
4423         if (ret < 0 && ret != -ENOSPC)
4424                 goto out;
4425         if (ret)
4426                 space_info->full = 1;
4427         else
4428                 ret = 1;
4429
4430         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4431 out:
4432         space_info->chunk_alloc = 0;
4433         spin_unlock(&space_info->lock);
4434         mutex_unlock(&fs_info->chunk_mutex);
4435         /*
4436          * When we allocate a new chunk we reserve space in the chunk block
4437          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4438          * add new nodes/leafs to it if we end up needing to do it when
4439          * inserting the chunk item and updating device items as part of the
4440          * second phase of chunk allocation, performed by
4441          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4442          * large number of new block groups to create in our transaction
4443          * handle's new_bgs list to avoid exhausting the chunk block reserve
4444          * in extreme cases - like having a single transaction create many new
4445          * block groups when starting to write out the free space caches of all
4446          * the block groups that were made dirty during the lifetime of the
4447          * transaction.
4448          */
4449         if (trans->can_flush_pending_bgs &&
4450             trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4451                 btrfs_create_pending_block_groups(trans, trans->root);
4452                 btrfs_trans_release_chunk_metadata(trans);
4453         }
4454         return ret;
4455 }
4456
4457 static int can_overcommit(struct btrfs_root *root,
4458                           struct btrfs_space_info *space_info, u64 bytes,
4459                           enum btrfs_reserve_flush_enum flush)
4460 {
4461         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4462         u64 profile = btrfs_get_alloc_profile(root, 0);
4463         u64 space_size;
4464         u64 avail;
4465         u64 used;
4466
4467         used = space_info->bytes_used + space_info->bytes_reserved +
4468                 space_info->bytes_pinned + space_info->bytes_readonly;
4469
4470         /*
4471          * We only want to allow over committing if we have lots of actual space
4472          * free, but if we don't have enough space to handle the global reserve
4473          * space then we could end up having a real enospc problem when trying
4474          * to allocate a chunk or some other such important allocation.
4475          */
4476         spin_lock(&global_rsv->lock);
4477         space_size = calc_global_rsv_need_space(global_rsv);
4478         spin_unlock(&global_rsv->lock);
4479         if (used + space_size >= space_info->total_bytes)
4480                 return 0;
4481
4482         used += space_info->bytes_may_use;
4483
4484         spin_lock(&root->fs_info->free_chunk_lock);
4485         avail = root->fs_info->free_chunk_space;
4486         spin_unlock(&root->fs_info->free_chunk_lock);
4487
4488         /*
4489          * If we have dup, raid1 or raid10 then only half of the free
4490          * space is actually useable.  For raid56, the space info used
4491          * doesn't include the parity drive, so we don't have to
4492          * change the math
4493          */
4494         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4495                        BTRFS_BLOCK_GROUP_RAID1 |
4496                        BTRFS_BLOCK_GROUP_RAID10))
4497                 avail >>= 1;
4498
4499         /*
4500          * If we aren't flushing all things, let us overcommit up to
4501          * 1/2th of the space. If we can flush, don't let us overcommit
4502          * too much, let it overcommit up to 1/8 of the space.
4503          */
4504         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4505                 avail >>= 3;
4506         else
4507                 avail >>= 1;
4508
4509         if (used + bytes < space_info->total_bytes + avail)
4510                 return 1;
4511         return 0;
4512 }
4513
4514 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4515                                          unsigned long nr_pages, int nr_items)
4516 {
4517         struct super_block *sb = root->fs_info->sb;
4518
4519         if (down_read_trylock(&sb->s_umount)) {
4520                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4521                 up_read(&sb->s_umount);
4522         } else {
4523                 /*
4524                  * We needn't worry the filesystem going from r/w to r/o though
4525                  * we don't acquire ->s_umount mutex, because the filesystem
4526                  * should guarantee the delalloc inodes list be empty after
4527                  * the filesystem is readonly(all dirty pages are written to
4528                  * the disk).
4529                  */
4530                 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4531                 if (!current->journal_info)
4532                         btrfs_wait_ordered_roots(root->fs_info, nr_items);
4533         }
4534 }
4535
4536 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4537 {
4538         u64 bytes;
4539         int nr;
4540
4541         bytes = btrfs_calc_trans_metadata_size(root, 1);
4542         nr = (int)div64_u64(to_reclaim, bytes);
4543         if (!nr)
4544                 nr = 1;
4545         return nr;
4546 }
4547
4548 #define EXTENT_SIZE_PER_ITEM    (256 * 1024)
4549
4550 /*
4551  * shrink metadata reservation for delalloc
4552  */
4553 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4554                             bool wait_ordered)
4555 {
4556         struct btrfs_block_rsv *block_rsv;
4557         struct btrfs_space_info *space_info;
4558         struct btrfs_trans_handle *trans;
4559         u64 delalloc_bytes;
4560         u64 max_reclaim;
4561         long time_left;
4562         unsigned long nr_pages;
4563         int loops;
4564         int items;
4565         enum btrfs_reserve_flush_enum flush;
4566
4567         /* Calc the number of the pages we need flush for space reservation */
4568         items = calc_reclaim_items_nr(root, to_reclaim);
4569         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4570
4571         trans = (struct btrfs_trans_handle *)current->journal_info;
4572         block_rsv = &root->fs_info->delalloc_block_rsv;
4573         space_info = block_rsv->space_info;
4574
4575         delalloc_bytes = percpu_counter_sum_positive(
4576                                                 &root->fs_info->delalloc_bytes);
4577         if (delalloc_bytes == 0) {
4578                 if (trans)
4579                         return;
4580                 if (wait_ordered)
4581                         btrfs_wait_ordered_roots(root->fs_info, items);
4582                 return;
4583         }
4584
4585         loops = 0;
4586         while (delalloc_bytes && loops < 3) {
4587                 max_reclaim = min(delalloc_bytes, to_reclaim);
4588                 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4589                 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4590                 /*
4591                  * We need to wait for the async pages to actually start before
4592                  * we do anything.
4593                  */
4594                 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4595                 if (!max_reclaim)
4596                         goto skip_async;
4597
4598                 if (max_reclaim <= nr_pages)
4599                         max_reclaim = 0;
4600                 else
4601                         max_reclaim -= nr_pages;
4602
4603                 wait_event(root->fs_info->async_submit_wait,
4604                            atomic_read(&root->fs_info->async_delalloc_pages) <=
4605                            (int)max_reclaim);
4606 skip_async:
4607                 if (!trans)
4608                         flush = BTRFS_RESERVE_FLUSH_ALL;
4609                 else
4610                         flush = BTRFS_RESERVE_NO_FLUSH;
4611                 spin_lock(&space_info->lock);
4612                 if (can_overcommit(root, space_info, orig, flush)) {
4613                         spin_unlock(&space_info->lock);
4614                         break;
4615                 }
4616                 spin_unlock(&space_info->lock);
4617
4618                 loops++;
4619                 if (wait_ordered && !trans) {
4620                         btrfs_wait_ordered_roots(root->fs_info, items);
4621                 } else {
4622                         time_left = schedule_timeout_killable(1);
4623                         if (time_left)
4624                                 break;
4625                 }
4626                 delalloc_bytes = percpu_counter_sum_positive(
4627                                                 &root->fs_info->delalloc_bytes);
4628         }
4629 }
4630
4631 /**
4632  * maybe_commit_transaction - possibly commit the transaction if its ok to
4633  * @root - the root we're allocating for
4634  * @bytes - the number of bytes we want to reserve
4635  * @force - force the commit
4636  *
4637  * This will check to make sure that committing the transaction will actually
4638  * get us somewhere and then commit the transaction if it does.  Otherwise it
4639  * will return -ENOSPC.
4640  */
4641 static int may_commit_transaction(struct btrfs_root *root,
4642                                   struct btrfs_space_info *space_info,
4643                                   u64 bytes, int force)
4644 {
4645         struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4646         struct btrfs_trans_handle *trans;
4647
4648         trans = (struct btrfs_trans_handle *)current->journal_info;
4649         if (trans)
4650                 return -EAGAIN;
4651
4652         if (force)
4653                 goto commit;
4654
4655         /* See if there is enough pinned space to make this reservation */
4656         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4657                                    bytes) >= 0)
4658                 goto commit;
4659
4660         /*
4661          * See if there is some space in the delayed insertion reservation for
4662          * this reservation.
4663          */
4664         if (space_info != delayed_rsv->space_info)
4665                 return -ENOSPC;
4666
4667         spin_lock(&delayed_rsv->lock);
4668         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4669                                    bytes - delayed_rsv->size) >= 0) {
4670                 spin_unlock(&delayed_rsv->lock);
4671                 return -ENOSPC;
4672         }
4673         spin_unlock(&delayed_rsv->lock);
4674
4675 commit:
4676         trans = btrfs_join_transaction(root);
4677         if (IS_ERR(trans))
4678                 return -ENOSPC;
4679
4680         return btrfs_commit_transaction(trans, root);
4681 }
4682
4683 enum flush_state {
4684         FLUSH_DELAYED_ITEMS_NR  =       1,
4685         FLUSH_DELAYED_ITEMS     =       2,
4686         FLUSH_DELALLOC          =       3,
4687         FLUSH_DELALLOC_WAIT     =       4,
4688         ALLOC_CHUNK             =       5,
4689         COMMIT_TRANS            =       6,
4690 };
4691
4692 static int flush_space(struct btrfs_root *root,
4693                        struct btrfs_space_info *space_info, u64 num_bytes,
4694                        u64 orig_bytes, int state)
4695 {
4696         struct btrfs_trans_handle *trans;
4697         int nr;
4698         int ret = 0;
4699
4700         switch (state) {
4701         case FLUSH_DELAYED_ITEMS_NR:
4702         case FLUSH_DELAYED_ITEMS:
4703                 if (state == FLUSH_DELAYED_ITEMS_NR)
4704                         nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4705                 else
4706                         nr = -1;
4707
4708                 trans = btrfs_join_transaction(root);
4709                 if (IS_ERR(trans)) {
4710                         ret = PTR_ERR(trans);
4711                         break;
4712                 }
4713                 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4714                 btrfs_end_transaction(trans, root);
4715                 break;
4716         case FLUSH_DELALLOC:
4717         case FLUSH_DELALLOC_WAIT:
4718                 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4719                                 state == FLUSH_DELALLOC_WAIT);
4720                 break;
4721         case ALLOC_CHUNK:
4722                 trans = btrfs_join_transaction(root);
4723                 if (IS_ERR(trans)) {
4724                         ret = PTR_ERR(trans);
4725                         break;
4726                 }
4727                 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4728                                      btrfs_get_alloc_profile(root, 0),
4729                                      CHUNK_ALLOC_NO_FORCE);
4730                 btrfs_end_transaction(trans, root);
4731                 if (ret == -ENOSPC)
4732                         ret = 0;
4733                 break;
4734         case COMMIT_TRANS:
4735                 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4736                 break;
4737         default:
4738                 ret = -ENOSPC;
4739                 break;
4740         }
4741
4742         return ret;
4743 }
4744
4745 static inline u64
4746 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4747                                  struct btrfs_space_info *space_info)
4748 {
4749         u64 used;
4750         u64 expected;
4751         u64 to_reclaim;
4752
4753         to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4754                                 16 * 1024 * 1024);
4755         spin_lock(&space_info->lock);
4756         if (can_overcommit(root, space_info, to_reclaim,
4757                            BTRFS_RESERVE_FLUSH_ALL)) {
4758                 to_reclaim = 0;
4759                 goto out;
4760         }
4761
4762         used = space_info->bytes_used + space_info->bytes_reserved +
4763                space_info->bytes_pinned + space_info->bytes_readonly +
4764                space_info->bytes_may_use;
4765         if (can_overcommit(root, space_info, 1024 * 1024,
4766                            BTRFS_RESERVE_FLUSH_ALL))
4767                 expected = div_factor_fine(space_info->total_bytes, 95);
4768         else
4769                 expected = div_factor_fine(space_info->total_bytes, 90);
4770
4771         if (used > expected)
4772                 to_reclaim = used - expected;
4773         else
4774                 to_reclaim = 0;
4775         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4776                                      space_info->bytes_reserved);
4777 out:
4778         spin_unlock(&space_info->lock);
4779
4780         return to_reclaim;
4781 }
4782
4783 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4784                                         struct btrfs_fs_info *fs_info, u64 used)
4785 {
4786         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4787
4788         /* If we're just plain full then async reclaim just slows us down. */
4789         if (space_info->bytes_used >= thresh)
4790                 return 0;
4791
4792         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4793                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4794 }
4795
4796 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4797                                        struct btrfs_fs_info *fs_info,
4798                                        int flush_state)
4799 {
4800         u64 used;
4801
4802         spin_lock(&space_info->lock);
4803         /*
4804          * We run out of space and have not got any free space via flush_space,
4805          * so don't bother doing async reclaim.
4806          */
4807         if (flush_state > COMMIT_TRANS && space_info->full) {
4808                 spin_unlock(&space_info->lock);
4809                 return 0;
4810         }
4811
4812         used = space_info->bytes_used + space_info->bytes_reserved +
4813                space_info->bytes_pinned + space_info->bytes_readonly +
4814                space_info->bytes_may_use;
4815         if (need_do_async_reclaim(space_info, fs_info, used)) {
4816                 spin_unlock(&space_info->lock);
4817                 return 1;
4818         }
4819         spin_unlock(&space_info->lock);
4820
4821         return 0;
4822 }
4823
4824 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4825 {
4826         struct btrfs_fs_info *fs_info;
4827         struct btrfs_space_info *space_info;
4828         u64 to_reclaim;
4829         int flush_state;
4830
4831         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4832         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4833
4834         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4835                                                       space_info);
4836         if (!to_reclaim)
4837                 return;
4838
4839         flush_state = FLUSH_DELAYED_ITEMS_NR;
4840         do {
4841                 flush_space(fs_info->fs_root, space_info, to_reclaim,
4842                             to_reclaim, flush_state);
4843                 flush_state++;
4844                 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4845                                                  flush_state))
4846                         return;
4847         } while (flush_state < COMMIT_TRANS);
4848 }
4849
4850 void btrfs_init_async_reclaim_work(struct work_struct *work)
4851 {
4852         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4853 }
4854
4855 /**
4856  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4857  * @root - the root we're allocating for
4858  * @block_rsv - the block_rsv we're allocating for
4859  * @orig_bytes - the number of bytes we want
4860  * @flush - whether or not we can flush to make our reservation
4861  *
4862  * This will reserve orgi_bytes number of bytes from the space info associated
4863  * with the block_rsv.  If there is not enough space it will make an attempt to
4864  * flush out space to make room.  It will do this by flushing delalloc if
4865  * possible or committing the transaction.  If flush is 0 then no attempts to
4866  * regain reservations will be made and this will fail if there is not enough
4867  * space already.
4868  */
4869 static int reserve_metadata_bytes(struct btrfs_root *root,
4870                                   struct btrfs_block_rsv *block_rsv,
4871                                   u64 orig_bytes,
4872                                   enum btrfs_reserve_flush_enum flush)
4873 {
4874         struct btrfs_space_info *space_info = block_rsv->space_info;
4875         u64 used;
4876         u64 num_bytes = orig_bytes;
4877         int flush_state = FLUSH_DELAYED_ITEMS_NR;
4878         int ret = 0;
4879         bool flushing = false;
4880
4881 again:
4882         ret = 0;
4883         spin_lock(&space_info->lock);
4884         /*
4885          * We only want to wait if somebody other than us is flushing and we
4886          * are actually allowed to flush all things.
4887          */
4888         while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4889                space_info->flush) {
4890                 spin_unlock(&space_info->lock);
4891                 /*
4892                  * If we have a trans handle we can't wait because the flusher
4893                  * may have to commit the transaction, which would mean we would
4894                  * deadlock since we are waiting for the flusher to finish, but
4895                  * hold the current transaction open.
4896                  */
4897                 if (current->journal_info)
4898                         return -EAGAIN;
4899                 ret = wait_event_killable(space_info->wait, !space_info->flush);
4900                 /* Must have been killed, return */
4901                 if (ret)
4902                         return -EINTR;
4903
4904                 spin_lock(&space_info->lock);
4905         }
4906
4907         ret = -ENOSPC;
4908         used = space_info->bytes_used + space_info->bytes_reserved +
4909                 space_info->bytes_pinned + space_info->bytes_readonly +
4910                 space_info->bytes_may_use;
4911
4912         /*
4913          * The idea here is that we've not already over-reserved the block group
4914          * then we can go ahead and save our reservation first and then start
4915          * flushing if we need to.  Otherwise if we've already overcommitted
4916          * lets start flushing stuff first and then come back and try to make
4917          * our reservation.
4918          */
4919         if (used <= space_info->total_bytes) {
4920                 if (used + orig_bytes <= space_info->total_bytes) {
4921                         space_info->bytes_may_use += orig_bytes;
4922                         trace_btrfs_space_reservation(root->fs_info,
4923                                 "space_info", space_info->flags, orig_bytes, 1);
4924                         ret = 0;
4925                 } else {
4926                         /*
4927                          * Ok set num_bytes to orig_bytes since we aren't
4928                          * overocmmitted, this way we only try and reclaim what
4929                          * we need.
4930                          */
4931                         num_bytes = orig_bytes;
4932                 }
4933         } else {
4934                 /*
4935                  * Ok we're over committed, set num_bytes to the overcommitted
4936                  * amount plus the amount of bytes that we need for this
4937                  * reservation.
4938                  */
4939                 num_bytes = used - space_info->total_bytes +
4940                         (orig_bytes * 2);
4941         }
4942
4943         if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4944                 space_info->bytes_may_use += orig_bytes;
4945                 trace_btrfs_space_reservation(root->fs_info, "space_info",
4946                                               space_info->flags, orig_bytes,
4947                                               1);
4948                 ret = 0;
4949         }
4950
4951         /*
4952          * Couldn't make our reservation, save our place so while we're trying
4953          * to reclaim space we can actually use it instead of somebody else
4954          * stealing it from us.
4955          *
4956          * We make the other tasks wait for the flush only when we can flush
4957          * all things.
4958          */
4959         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4960                 flushing = true;
4961                 space_info->flush = 1;
4962         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4963                 used += orig_bytes;
4964                 /*
4965                  * We will do the space reservation dance during log replay,
4966                  * which means we won't have fs_info->fs_root set, so don't do
4967                  * the async reclaim as we will panic.
4968                  */
4969                 if (!root->fs_info->log_root_recovering &&
4970                     need_do_async_reclaim(space_info, root->fs_info, used) &&
4971                     !work_busy(&root->fs_info->async_reclaim_work))
4972                         queue_work(system_unbound_wq,
4973                                    &root->fs_info->async_reclaim_work);
4974         }
4975         spin_unlock(&space_info->lock);
4976
4977         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4978                 goto out;
4979
4980         ret = flush_space(root, space_info, num_bytes, orig_bytes,
4981                           flush_state);
4982         flush_state++;
4983
4984         /*
4985          * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4986          * would happen. So skip delalloc flush.
4987          */
4988         if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4989             (flush_state == FLUSH_DELALLOC ||
4990              flush_state == FLUSH_DELALLOC_WAIT))
4991                 flush_state = ALLOC_CHUNK;
4992
4993         if (!ret)
4994                 goto again;
4995         else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4996                  flush_state < COMMIT_TRANS)
4997                 goto again;
4998         else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4999                  flush_state <= COMMIT_TRANS)
5000                 goto again;
5001
5002 out:
5003         if (ret == -ENOSPC &&
5004             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5005                 struct btrfs_block_rsv *global_rsv =
5006                         &root->fs_info->global_block_rsv;
5007
5008                 if (block_rsv != global_rsv &&
5009                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5010                         ret = 0;
5011         }
5012         if (ret == -ENOSPC)
5013                 trace_btrfs_space_reservation(root->fs_info,
5014                                               "space_info:enospc",
5015                                               space_info->flags, orig_bytes, 1);
5016         if (flushing) {
5017                 spin_lock(&space_info->lock);
5018                 space_info->flush = 0;
5019                 wake_up_all(&space_info->wait);
5020                 spin_unlock(&space_info->lock);
5021         }
5022         return ret;
5023 }
5024
5025 static struct btrfs_block_rsv *get_block_rsv(
5026                                         const struct btrfs_trans_handle *trans,
5027                                         const struct btrfs_root *root)
5028 {
5029         struct btrfs_block_rsv *block_rsv = NULL;
5030
5031         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5032             (root == root->fs_info->csum_root && trans->adding_csums) ||
5033              (root == root->fs_info->uuid_root))
5034                 block_rsv = trans->block_rsv;
5035
5036         if (!block_rsv)
5037                 block_rsv = root->block_rsv;
5038
5039         if (!block_rsv)
5040                 block_rsv = &root->fs_info->empty_block_rsv;
5041
5042         return block_rsv;
5043 }
5044
5045 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5046                                u64 num_bytes)
5047 {
5048         int ret = -ENOSPC;
5049         spin_lock(&block_rsv->lock);
5050         if (block_rsv->reserved >= num_bytes) {
5051                 block_rsv->reserved -= num_bytes;
5052                 if (block_rsv->reserved < block_rsv->size)
5053                         block_rsv->full = 0;
5054                 ret = 0;
5055         }
5056         spin_unlock(&block_rsv->lock);
5057         return ret;
5058 }
5059
5060 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5061                                 u64 num_bytes, int update_size)
5062 {
5063         spin_lock(&block_rsv->lock);
5064         block_rsv->reserved += num_bytes;
5065         if (update_size)
5066                 block_rsv->size += num_bytes;
5067         else if (block_rsv->reserved >= block_rsv->size)
5068                 block_rsv->full = 1;
5069         spin_unlock(&block_rsv->lock);
5070 }
5071
5072 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5073                              struct btrfs_block_rsv *dest, u64 num_bytes,
5074                              int min_factor)
5075 {
5076         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5077         u64 min_bytes;
5078
5079         if (global_rsv->space_info != dest->space_info)
5080                 return -ENOSPC;
5081
5082         spin_lock(&global_rsv->lock);
5083         min_bytes = div_factor(global_rsv->size, min_factor);
5084         if (global_rsv->reserved < min_bytes + num_bytes) {
5085                 spin_unlock(&global_rsv->lock);
5086                 return -ENOSPC;
5087         }
5088         global_rsv->reserved -= num_bytes;
5089         if (global_rsv->reserved < global_rsv->size)
5090                 global_rsv->full = 0;
5091         spin_unlock(&global_rsv->lock);
5092
5093         block_rsv_add_bytes(dest, num_bytes, 1);
5094         return 0;
5095 }
5096
5097 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5098                                     struct btrfs_block_rsv *block_rsv,
5099                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5100 {
5101         struct btrfs_space_info *space_info = block_rsv->space_info;
5102
5103         spin_lock(&block_rsv->lock);
5104         if (num_bytes == (u64)-1)
5105                 num_bytes = block_rsv->size;
5106         block_rsv->size -= num_bytes;
5107         if (block_rsv->reserved >= block_rsv->size) {
5108                 num_bytes = block_rsv->reserved - block_rsv->size;
5109                 block_rsv->reserved = block_rsv->size;
5110                 block_rsv->full = 1;
5111         } else {
5112                 num_bytes = 0;
5113         }
5114         spin_unlock(&block_rsv->lock);
5115
5116         if (num_bytes > 0) {
5117                 if (dest) {
5118                         spin_lock(&dest->lock);
5119                         if (!dest->full) {
5120                                 u64 bytes_to_add;
5121
5122                                 bytes_to_add = dest->size - dest->reserved;
5123                                 bytes_to_add = min(num_bytes, bytes_to_add);
5124                                 dest->reserved += bytes_to_add;
5125                                 if (dest->reserved >= dest->size)
5126                                         dest->full = 1;
5127                                 num_bytes -= bytes_to_add;
5128                         }
5129                         spin_unlock(&dest->lock);
5130                 }
5131                 if (num_bytes) {
5132                         spin_lock(&space_info->lock);
5133                         space_info->bytes_may_use -= num_bytes;
5134                         trace_btrfs_space_reservation(fs_info, "space_info",
5135                                         space_info->flags, num_bytes, 0);
5136                         spin_unlock(&space_info->lock);
5137                 }
5138         }
5139 }
5140
5141 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5142                                    struct btrfs_block_rsv *dst, u64 num_bytes)
5143 {
5144         int ret;
5145
5146         ret = block_rsv_use_bytes(src, num_bytes);
5147         if (ret)
5148                 return ret;
5149
5150         block_rsv_add_bytes(dst, num_bytes, 1);
5151         return 0;
5152 }
5153
5154 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5155 {
5156         memset(rsv, 0, sizeof(*rsv));
5157         spin_lock_init(&rsv->lock);
5158         rsv->type = type;
5159 }
5160
5161 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5162                                               unsigned short type)
5163 {
5164         struct btrfs_block_rsv *block_rsv;
5165         struct btrfs_fs_info *fs_info = root->fs_info;
5166
5167         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5168         if (!block_rsv)
5169                 return NULL;
5170
5171         btrfs_init_block_rsv(block_rsv, type);
5172         block_rsv->space_info = __find_space_info(fs_info,
5173                                                   BTRFS_BLOCK_GROUP_METADATA);
5174         return block_rsv;
5175 }
5176
5177 void btrfs_free_block_rsv(struct btrfs_root *root,
5178                           struct btrfs_block_rsv *rsv)
5179 {
5180         if (!rsv)
5181                 return;
5182         btrfs_block_rsv_release(root, rsv, (u64)-1);
5183         kfree(rsv);
5184 }
5185
5186 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5187 {
5188         kfree(rsv);
5189 }
5190
5191 int btrfs_block_rsv_add(struct btrfs_root *root,
5192                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5193                         enum btrfs_reserve_flush_enum flush)
5194 {
5195         int ret;
5196
5197         if (num_bytes == 0)
5198                 return 0;
5199
5200         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5201         if (!ret) {
5202                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5203                 return 0;
5204         }
5205
5206         return ret;
5207 }
5208
5209 int btrfs_block_rsv_check(struct btrfs_root *root,
5210                           struct btrfs_block_rsv *block_rsv, int min_factor)
5211 {
5212         u64 num_bytes = 0;
5213         int ret = -ENOSPC;
5214
5215         if (!block_rsv)
5216                 return 0;
5217
5218         spin_lock(&block_rsv->lock);
5219         num_bytes = div_factor(block_rsv->size, min_factor);
5220         if (block_rsv->reserved >= num_bytes)
5221                 ret = 0;
5222         spin_unlock(&block_rsv->lock);
5223
5224         return ret;
5225 }
5226
5227 int btrfs_block_rsv_refill(struct btrfs_root *root,
5228                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5229                            enum btrfs_reserve_flush_enum flush)
5230 {
5231         u64 num_bytes = 0;
5232         int ret = -ENOSPC;
5233
5234         if (!block_rsv)
5235                 return 0;
5236
5237         spin_lock(&block_rsv->lock);
5238         num_bytes = min_reserved;
5239         if (block_rsv->reserved >= num_bytes)
5240                 ret = 0;
5241         else
5242                 num_bytes -= block_rsv->reserved;
5243         spin_unlock(&block_rsv->lock);
5244
5245         if (!ret)
5246                 return 0;
5247
5248         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5249         if (!ret) {
5250                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5251                 return 0;
5252         }
5253
5254         return ret;
5255 }
5256
5257 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5258                             struct btrfs_block_rsv *dst_rsv,
5259                             u64 num_bytes)
5260 {
5261         return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5262 }
5263
5264 void btrfs_block_rsv_release(struct btrfs_root *root,
5265                              struct btrfs_block_rsv *block_rsv,
5266                              u64 num_bytes)
5267 {
5268         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5269         if (global_rsv == block_rsv ||
5270             block_rsv->space_info != global_rsv->space_info)
5271                 global_rsv = NULL;
5272         block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5273                                 num_bytes);
5274 }
5275
5276 /*
5277  * helper to calculate size of global block reservation.
5278  * the desired value is sum of space used by extent tree,
5279  * checksum tree and root tree
5280  */
5281 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5282 {
5283         struct btrfs_space_info *sinfo;
5284         u64 num_bytes;
5285         u64 meta_used;
5286         u64 data_used;
5287         int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5288
5289         sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5290         spin_lock(&sinfo->lock);
5291         data_used = sinfo->bytes_used;
5292         spin_unlock(&sinfo->lock);
5293
5294         sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5295         spin_lock(&sinfo->lock);
5296         if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5297                 data_used = 0;
5298         meta_used = sinfo->bytes_used;
5299         spin_unlock(&sinfo->lock);
5300
5301         num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5302                     csum_size * 2;
5303         num_bytes += div_u64(data_used + meta_used, 50);
5304
5305         if (num_bytes * 3 > meta_used)
5306                 num_bytes = div_u64(meta_used, 3);
5307
5308         return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5309 }
5310
5311 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5312 {
5313         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5314         struct btrfs_space_info *sinfo = block_rsv->space_info;
5315         u64 num_bytes;
5316
5317         num_bytes = calc_global_metadata_size(fs_info);
5318
5319         spin_lock(&sinfo->lock);
5320         spin_lock(&block_rsv->lock);
5321
5322         block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5323
5324         num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5325                     sinfo->bytes_reserved + sinfo->bytes_readonly +
5326                     sinfo->bytes_may_use;
5327
5328         if (sinfo->total_bytes > num_bytes) {
5329                 num_bytes = sinfo->total_bytes - num_bytes;
5330                 block_rsv->reserved += num_bytes;
5331                 sinfo->bytes_may_use += num_bytes;
5332                 trace_btrfs_space_reservation(fs_info, "space_info",
5333                                       sinfo->flags, num_bytes, 1);
5334         }
5335
5336         if (block_rsv->reserved >= block_rsv->size) {
5337                 num_bytes = block_rsv->reserved - block_rsv->size;
5338                 sinfo->bytes_may_use -= num_bytes;
5339                 trace_btrfs_space_reservation(fs_info, "space_info",
5340                                       sinfo->flags, num_bytes, 0);
5341                 block_rsv->reserved = block_rsv->size;
5342                 block_rsv->full = 1;
5343         }
5344
5345         spin_unlock(&block_rsv->lock);
5346         spin_unlock(&sinfo->lock);
5347 }
5348
5349 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5350 {
5351         struct btrfs_space_info *space_info;
5352
5353         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5354         fs_info->chunk_block_rsv.space_info = space_info;
5355
5356         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5357         fs_info->global_block_rsv.space_info = space_info;
5358         fs_info->delalloc_block_rsv.space_info = space_info;
5359         fs_info->trans_block_rsv.space_info = space_info;
5360         fs_info->empty_block_rsv.space_info = space_info;
5361         fs_info->delayed_block_rsv.space_info = space_info;
5362
5363         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5364         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5365         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5366         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5367         if (fs_info->quota_root)
5368                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5369         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5370
5371         update_global_block_rsv(fs_info);
5372 }
5373
5374 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5375 {
5376         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5377                                 (u64)-1);
5378         WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5379         WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5380         WARN_ON(fs_info->trans_block_rsv.size > 0);
5381         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5382         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5383         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5384         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5385         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5386 }
5387
5388 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5389                                   struct btrfs_root *root)
5390 {
5391         if (!trans->block_rsv)
5392                 return;
5393
5394         if (!trans->bytes_reserved)
5395                 return;
5396
5397         trace_btrfs_space_reservation(root->fs_info, "transaction",
5398                                       trans->transid, trans->bytes_reserved, 0);
5399         btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5400         trans->bytes_reserved = 0;
5401 }
5402
5403 /*
5404  * To be called after all the new block groups attached to the transaction
5405  * handle have been created (btrfs_create_pending_block_groups()).
5406  */
5407 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5408 {
5409         struct btrfs_fs_info *fs_info = trans->root->fs_info;
5410
5411         if (!trans->chunk_bytes_reserved)
5412                 return;
5413
5414         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5415
5416         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5417                                 trans->chunk_bytes_reserved);
5418         trans->chunk_bytes_reserved = 0;
5419 }
5420
5421 /* Can only return 0 or -ENOSPC */
5422 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5423                                   struct inode *inode)
5424 {
5425         struct btrfs_root *root = BTRFS_I(inode)->root;
5426         struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5427         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5428
5429         /*
5430          * We need to hold space in order to delete our orphan item once we've
5431          * added it, so this takes the reservation so we can release it later
5432          * when we are truly done with the orphan item.
5433          */
5434         u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5435         trace_btrfs_space_reservation(root->fs_info, "orphan",
5436                                       btrfs_ino(inode), num_bytes, 1);
5437         return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5438 }
5439
5440 void btrfs_orphan_release_metadata(struct inode *inode)
5441 {
5442         struct btrfs_root *root = BTRFS_I(inode)->root;
5443         u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5444         trace_btrfs_space_reservation(root->fs_info, "orphan",
5445                                       btrfs_ino(inode), num_bytes, 0);
5446         btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5447 }
5448
5449 /*
5450  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5451  * root: the root of the parent directory
5452  * rsv: block reservation
5453  * items: the number of items that we need do reservation
5454  * qgroup_reserved: used to return the reserved size in qgroup
5455  *
5456  * This function is used to reserve the space for snapshot/subvolume
5457  * creation and deletion. Those operations are different with the
5458  * common file/directory operations, they change two fs/file trees
5459  * and root tree, the number of items that the qgroup reserves is
5460  * different with the free space reservation. So we can not use
5461  * the space reseravtion mechanism in start_transaction().
5462  */
5463 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5464                                      struct btrfs_block_rsv *rsv,
5465                                      int items,
5466                                      u64 *qgroup_reserved,
5467                                      bool use_global_rsv)
5468 {
5469         u64 num_bytes;
5470         int ret;
5471         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5472
5473         if (root->fs_info->quota_enabled) {
5474                 /* One for parent inode, two for dir entries */
5475                 num_bytes = 3 * root->nodesize;
5476                 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5477                 if (ret)
5478                         return ret;
5479         } else {
5480                 num_bytes = 0;
5481         }
5482
5483         *qgroup_reserved = num_bytes;
5484
5485         num_bytes = btrfs_calc_trans_metadata_size(root, items);
5486         rsv->space_info = __find_space_info(root->fs_info,
5487                                             BTRFS_BLOCK_GROUP_METADATA);
5488         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5489                                   BTRFS_RESERVE_FLUSH_ALL);
5490
5491         if (ret == -ENOSPC && use_global_rsv)
5492                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5493
5494         if (ret && *qgroup_reserved)
5495                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5496
5497         return ret;
5498 }
5499
5500 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5501                                       struct btrfs_block_rsv *rsv,
5502                                       u64 qgroup_reserved)
5503 {
5504         btrfs_block_rsv_release(root, rsv, (u64)-1);
5505 }
5506
5507 /**
5508  * drop_outstanding_extent - drop an outstanding extent
5509  * @inode: the inode we're dropping the extent for
5510  * @num_bytes: the number of bytes we're relaseing.
5511  *
5512  * This is called when we are freeing up an outstanding extent, either called
5513  * after an error or after an extent is written.  This will return the number of
5514  * reserved extents that need to be freed.  This must be called with
5515  * BTRFS_I(inode)->lock held.
5516  */
5517 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5518 {
5519         unsigned drop_inode_space = 0;
5520         unsigned dropped_extents = 0;
5521         unsigned num_extents = 0;
5522
5523         num_extents = (unsigned)div64_u64(num_bytes +
5524                                           BTRFS_MAX_EXTENT_SIZE - 1,
5525                                           BTRFS_MAX_EXTENT_SIZE);
5526         ASSERT(num_extents);
5527         ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5528         BTRFS_I(inode)->outstanding_extents -= num_extents;
5529
5530         if (BTRFS_I(inode)->outstanding_extents == 0 &&
5531             test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5532                                &BTRFS_I(inode)->runtime_flags))
5533                 drop_inode_space = 1;
5534
5535         /*
5536          * If we have more or the same amount of outsanding extents than we have
5537          * reserved then we need to leave the reserved extents count alone.
5538          */
5539         if (BTRFS_I(inode)->outstanding_extents >=
5540             BTRFS_I(inode)->reserved_extents)
5541                 return drop_inode_space;
5542
5543         dropped_extents = BTRFS_I(inode)->reserved_extents -
5544                 BTRFS_I(inode)->outstanding_extents;
5545         BTRFS_I(inode)->reserved_extents -= dropped_extents;
5546         return dropped_extents + drop_inode_space;
5547 }
5548
5549 /**
5550  * calc_csum_metadata_size - return the amount of metada space that must be
5551  *      reserved/free'd for the given bytes.
5552  * @inode: the inode we're manipulating
5553  * @num_bytes: the number of bytes in question
5554  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5555  *
5556  * This adjusts the number of csum_bytes in the inode and then returns the
5557  * correct amount of metadata that must either be reserved or freed.  We
5558  * calculate how many checksums we can fit into one leaf and then divide the
5559  * number of bytes that will need to be checksumed by this value to figure out
5560  * how many checksums will be required.  If we are adding bytes then the number
5561  * may go up and we will return the number of additional bytes that must be
5562  * reserved.  If it is going down we will return the number of bytes that must
5563  * be freed.
5564  *
5565  * This must be called with BTRFS_I(inode)->lock held.
5566  */
5567 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5568                                    int reserve)
5569 {
5570         struct btrfs_root *root = BTRFS_I(inode)->root;
5571         u64 old_csums, num_csums;
5572
5573         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5574             BTRFS_I(inode)->csum_bytes == 0)
5575                 return 0;
5576
5577         old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5578         if (reserve)
5579                 BTRFS_I(inode)->csum_bytes += num_bytes;
5580         else
5581                 BTRFS_I(inode)->csum_bytes -= num_bytes;
5582         num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5583
5584         /* No change, no need to reserve more */
5585         if (old_csums == num_csums)
5586                 return 0;
5587
5588         if (reserve)
5589                 return btrfs_calc_trans_metadata_size(root,
5590                                                       num_csums - old_csums);
5591
5592         return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5593 }
5594
5595 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5596 {
5597         struct btrfs_root *root = BTRFS_I(inode)->root;
5598         struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5599         u64 to_reserve = 0;
5600         u64 csum_bytes;
5601         unsigned nr_extents = 0;
5602         int extra_reserve = 0;
5603         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5604         int ret = 0;
5605         bool delalloc_lock = true;
5606         u64 to_free = 0;
5607         unsigned dropped;
5608
5609         /* If we are a free space inode we need to not flush since we will be in
5610          * the middle of a transaction commit.  We also don't need the delalloc
5611          * mutex since we won't race with anybody.  We need this mostly to make
5612          * lockdep shut its filthy mouth.
5613          */
5614         if (btrfs_is_free_space_inode(inode)) {
5615                 flush = BTRFS_RESERVE_NO_FLUSH;
5616                 delalloc_lock = false;
5617         }
5618
5619         if (flush != BTRFS_RESERVE_NO_FLUSH &&
5620             btrfs_transaction_in_commit(root->fs_info))
5621                 schedule_timeout(1);
5622
5623         if (delalloc_lock)
5624                 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5625
5626         num_bytes = ALIGN(num_bytes, root->sectorsize);
5627
5628         spin_lock(&BTRFS_I(inode)->lock);
5629         nr_extents = (unsigned)div64_u64(num_bytes +
5630                                          BTRFS_MAX_EXTENT_SIZE - 1,
5631                                          BTRFS_MAX_EXTENT_SIZE);
5632         BTRFS_I(inode)->outstanding_extents += nr_extents;
5633         nr_extents = 0;
5634
5635         if (BTRFS_I(inode)->outstanding_extents >
5636             BTRFS_I(inode)->reserved_extents)
5637                 nr_extents = BTRFS_I(inode)->outstanding_extents -
5638                         BTRFS_I(inode)->reserved_extents;
5639
5640         /*
5641          * Add an item to reserve for updating the inode when we complete the
5642          * delalloc io.
5643          */
5644         if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5645                       &BTRFS_I(inode)->runtime_flags)) {
5646                 nr_extents++;
5647                 extra_reserve = 1;
5648         }
5649
5650         to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5651         to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5652         csum_bytes = BTRFS_I(inode)->csum_bytes;
5653         spin_unlock(&BTRFS_I(inode)->lock);
5654
5655         if (root->fs_info->quota_enabled) {
5656                 ret = btrfs_qgroup_reserve_meta(root,
5657                                 nr_extents * root->nodesize);
5658                 if (ret)
5659                         goto out_fail;
5660         }
5661
5662         ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5663         if (unlikely(ret)) {
5664                 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5665                 goto out_fail;
5666         }
5667
5668         spin_lock(&BTRFS_I(inode)->lock);
5669         if (extra_reserve) {
5670                 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5671                         &BTRFS_I(inode)->runtime_flags);
5672                 nr_extents--;
5673         }
5674         BTRFS_I(inode)->reserved_extents += nr_extents;
5675         spin_unlock(&BTRFS_I(inode)->lock);
5676
5677         if (delalloc_lock)
5678                 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5679
5680         if (to_reserve)
5681                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5682                                               btrfs_ino(inode), to_reserve, 1);
5683         block_rsv_add_bytes(block_rsv, to_reserve, 1);
5684
5685         return 0;
5686
5687 out_fail:
5688         spin_lock(&BTRFS_I(inode)->lock);
5689         dropped = drop_outstanding_extent(inode, num_bytes);
5690         /*
5691          * If the inodes csum_bytes is the same as the original
5692          * csum_bytes then we know we haven't raced with any free()ers
5693          * so we can just reduce our inodes csum bytes and carry on.
5694          */
5695         if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5696                 calc_csum_metadata_size(inode, num_bytes, 0);
5697         } else {
5698                 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5699                 u64 bytes;
5700
5701                 /*
5702                  * This is tricky, but first we need to figure out how much we
5703                  * free'd from any free-ers that occured during this
5704                  * reservation, so we reset ->csum_bytes to the csum_bytes
5705                  * before we dropped our lock, and then call the free for the
5706                  * number of bytes that were freed while we were trying our
5707                  * reservation.
5708                  */
5709                 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5710                 BTRFS_I(inode)->csum_bytes = csum_bytes;
5711                 to_free = calc_csum_metadata_size(inode, bytes, 0);
5712
5713
5714                 /*
5715                  * Now we need to see how much we would have freed had we not
5716                  * been making this reservation and our ->csum_bytes were not
5717                  * artificially inflated.
5718                  */
5719                 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5720                 bytes = csum_bytes - orig_csum_bytes;
5721                 bytes = calc_csum_metadata_size(inode, bytes, 0);
5722
5723                 /*
5724                  * Now reset ->csum_bytes to what it should be.  If bytes is
5725                  * more than to_free then we would have free'd more space had we
5726                  * not had an artificially high ->csum_bytes, so we need to free
5727                  * the remainder.  If bytes is the same or less then we don't
5728                  * need to do anything, the other free-ers did the correct
5729                  * thing.
5730                  */
5731                 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5732                 if (bytes > to_free)
5733                         to_free = bytes - to_free;
5734                 else
5735                         to_free = 0;
5736         }
5737         spin_unlock(&BTRFS_I(inode)->lock);
5738         if (dropped)
5739                 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5740
5741         if (to_free) {
5742                 btrfs_block_rsv_release(root, block_rsv, to_free);
5743                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5744                                               btrfs_ino(inode), to_free, 0);
5745         }
5746         if (delalloc_lock)
5747                 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5748         return ret;
5749 }
5750
5751 /**
5752  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5753  * @inode: the inode to release the reservation for
5754  * @num_bytes: the number of bytes we're releasing
5755  *
5756  * This will release the metadata reservation for an inode.  This can be called
5757  * once we complete IO for a given set of bytes to release their metadata
5758  * reservations.
5759  */
5760 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5761 {
5762         struct btrfs_root *root = BTRFS_I(inode)->root;
5763         u64 to_free = 0;
5764         unsigned dropped;
5765
5766         num_bytes = ALIGN(num_bytes, root->sectorsize);
5767         spin_lock(&BTRFS_I(inode)->lock);
5768         dropped = drop_outstanding_extent(inode, num_bytes);
5769
5770         if (num_bytes)
5771                 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5772         spin_unlock(&BTRFS_I(inode)->lock);
5773         if (dropped > 0)
5774                 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5775
5776         if (btrfs_test_is_dummy_root(root))
5777                 return;
5778
5779         trace_btrfs_space_reservation(root->fs_info, "delalloc",
5780                                       btrfs_ino(inode), to_free, 0);
5781
5782         btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5783                                 to_free);
5784 }
5785
5786 /**
5787  * btrfs_delalloc_reserve_space - reserve data and metadata space for
5788  * delalloc
5789  * @inode: inode we're writing to
5790  * @start: start range we are writing to
5791  * @len: how long the range we are writing to
5792  *
5793  * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5794  *
5795  * This will do the following things
5796  *
5797  * o reserve space in data space info for num bytes
5798  *   and reserve precious corresponding qgroup space
5799  *   (Done in check_data_free_space)
5800  *
5801  * o reserve space for metadata space, based on the number of outstanding
5802  *   extents and how much csums will be needed
5803  *   also reserve metadata space in a per root over-reserve method.
5804  * o add to the inodes->delalloc_bytes
5805  * o add it to the fs_info's delalloc inodes list.
5806  *   (Above 3 all done in delalloc_reserve_metadata)
5807  *
5808  * Return 0 for success
5809  * Return <0 for error(-ENOSPC or -EQUOT)
5810  */
5811 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5812 {
5813         int ret;
5814
5815         ret = btrfs_check_data_free_space(inode, start, len);
5816         if (ret < 0)
5817                 return ret;
5818         ret = btrfs_delalloc_reserve_metadata(inode, len);
5819         if (ret < 0)
5820                 btrfs_free_reserved_data_space(inode, start, len);
5821         return ret;
5822 }
5823
5824 /**
5825  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5826  * @inode: inode we're releasing space for
5827  * @start: start position of the space already reserved
5828  * @len: the len of the space already reserved
5829  *
5830  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5831  * called in the case that we don't need the metadata AND data reservations
5832  * anymore.  So if there is an error or we insert an inline extent.
5833  *
5834  * This function will release the metadata space that was not used and will
5835  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5836  * list if there are no delalloc bytes left.
5837  * Also it will handle the qgroup reserved space.
5838  */
5839 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5840 {
5841         btrfs_delalloc_release_metadata(inode, len);
5842         btrfs_free_reserved_data_space(inode, start, len);
5843 }
5844
5845 static int update_block_group(struct btrfs_trans_handle *trans,
5846                               struct btrfs_root *root, u64 bytenr,
5847                               u64 num_bytes, int alloc)
5848 {
5849         struct btrfs_block_group_cache *cache = NULL;
5850         struct btrfs_fs_info *info = root->fs_info;
5851         u64 total = num_bytes;
5852         u64 old_val;
5853         u64 byte_in_group;
5854         int factor;
5855
5856         /* block accounting for super block */
5857         spin_lock(&info->delalloc_root_lock);
5858         old_val = btrfs_super_bytes_used(info->super_copy);
5859         if (alloc)
5860                 old_val += num_bytes;
5861         else
5862                 old_val -= num_bytes;
5863         btrfs_set_super_bytes_used(info->super_copy, old_val);
5864         spin_unlock(&info->delalloc_root_lock);
5865
5866         while (total) {
5867                 cache = btrfs_lookup_block_group(info, bytenr);
5868                 if (!cache)
5869                         return -ENOENT;
5870                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5871                                     BTRFS_BLOCK_GROUP_RAID1 |
5872                                     BTRFS_BLOCK_GROUP_RAID10))
5873                         factor = 2;
5874                 else
5875                         factor = 1;
5876                 /*
5877                  * If this block group has free space cache written out, we
5878                  * need to make sure to load it if we are removing space.  This
5879                  * is because we need the unpinning stage to actually add the
5880                  * space back to the block group, otherwise we will leak space.
5881                  */
5882                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5883                         cache_block_group(cache, 1);
5884
5885                 byte_in_group = bytenr - cache->key.objectid;
5886                 WARN_ON(byte_in_group > cache->key.offset);
5887
5888                 spin_lock(&cache->space_info->lock);
5889                 spin_lock(&cache->lock);
5890
5891                 if (btrfs_test_opt(root, SPACE_CACHE) &&
5892                     cache->disk_cache_state < BTRFS_DC_CLEAR)
5893                         cache->disk_cache_state = BTRFS_DC_CLEAR;
5894
5895                 old_val = btrfs_block_group_used(&cache->item);
5896                 num_bytes = min(total, cache->key.offset - byte_in_group);
5897                 if (alloc) {
5898                         old_val += num_bytes;
5899                         btrfs_set_block_group_used(&cache->item, old_val);
5900                         cache->reserved -= num_bytes;
5901                         cache->space_info->bytes_reserved -= num_bytes;
5902                         cache->space_info->bytes_used += num_bytes;
5903                         cache->space_info->disk_used += num_bytes * factor;
5904                         spin_unlock(&cache->lock);
5905                         spin_unlock(&cache->space_info->lock);
5906                 } else {
5907                         old_val -= num_bytes;
5908                         btrfs_set_block_group_used(&cache->item, old_val);
5909                         cache->pinned += num_bytes;
5910                         cache->space_info->bytes_pinned += num_bytes;
5911                         cache->space_info->bytes_used -= num_bytes;
5912                         cache->space_info->disk_used -= num_bytes * factor;
5913                         spin_unlock(&cache->lock);
5914                         spin_unlock(&cache->space_info->lock);
5915
5916                         set_extent_dirty(info->pinned_extents,
5917                                          bytenr, bytenr + num_bytes - 1,
5918                                          GFP_NOFS | __GFP_NOFAIL);
5919                 }
5920
5921                 spin_lock(&trans->transaction->dirty_bgs_lock);
5922                 if (list_empty(&cache->dirty_list)) {
5923                         list_add_tail(&cache->dirty_list,
5924                                       &trans->transaction->dirty_bgs);
5925                                 trans->transaction->num_dirty_bgs++;
5926                         btrfs_get_block_group(cache);
5927                 }
5928                 spin_unlock(&trans->transaction->dirty_bgs_lock);
5929
5930                 /*
5931                  * No longer have used bytes in this block group, queue it for
5932                  * deletion. We do this after adding the block group to the
5933                  * dirty list to avoid races between cleaner kthread and space
5934                  * cache writeout.
5935                  */
5936                 if (!alloc && old_val == 0) {
5937                         spin_lock(&info->unused_bgs_lock);
5938                         if (list_empty(&cache->bg_list)) {
5939                                 btrfs_get_block_group(cache);
5940                                 list_add_tail(&cache->bg_list,
5941                                               &info->unused_bgs);
5942                         }
5943                         spin_unlock(&info->unused_bgs_lock);
5944                 }
5945
5946                 btrfs_put_block_group(cache);
5947                 total -= num_bytes;
5948                 bytenr += num_bytes;
5949         }
5950         return 0;
5951 }
5952
5953 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5954 {
5955         struct btrfs_block_group_cache *cache;
5956         u64 bytenr;
5957
5958         spin_lock(&root->fs_info->block_group_cache_lock);
5959         bytenr = root->fs_info->first_logical_byte;
5960         spin_unlock(&root->fs_info->block_group_cache_lock);
5961
5962         if (bytenr < (u64)-1)
5963                 return bytenr;
5964
5965         cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5966         if (!cache)
5967                 return 0;
5968
5969         bytenr = cache->key.objectid;
5970         btrfs_put_block_group(cache);
5971
5972         return bytenr;
5973 }
5974
5975 static int pin_down_extent(struct btrfs_root *root,
5976                            struct btrfs_block_group_cache *cache,
5977                            u64 bytenr, u64 num_bytes, int reserved)
5978 {
5979         spin_lock(&cache->space_info->lock);
5980         spin_lock(&cache->lock);
5981         cache->pinned += num_bytes;
5982         cache->space_info->bytes_pinned += num_bytes;
5983         if (reserved) {
5984                 cache->reserved -= num_bytes;
5985                 cache->space_info->bytes_reserved -= num_bytes;
5986         }
5987         spin_unlock(&cache->lock);
5988         spin_unlock(&cache->space_info->lock);
5989
5990         set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5991                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5992         if (reserved)
5993                 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5994         return 0;
5995 }
5996
5997 /*
5998  * this function must be called within transaction
5999  */
6000 int btrfs_pin_extent(struct btrfs_root *root,
6001                      u64 bytenr, u64 num_bytes, int reserved)
6002 {
6003         struct btrfs_block_group_cache *cache;
6004
6005         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6006         BUG_ON(!cache); /* Logic error */
6007
6008         pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6009
6010         btrfs_put_block_group(cache);
6011         return 0;
6012 }
6013
6014 /*
6015  * this function must be called within transaction
6016  */
6017 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6018                                     u64 bytenr, u64 num_bytes)
6019 {
6020         struct btrfs_block_group_cache *cache;
6021         int ret;
6022
6023         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6024         if (!cache)
6025                 return -EINVAL;
6026
6027         /*
6028          * pull in the free space cache (if any) so that our pin
6029          * removes the free space from the cache.  We have load_only set
6030          * to one because the slow code to read in the free extents does check
6031          * the pinned extents.
6032          */
6033         cache_block_group(cache, 1);
6034
6035         pin_down_extent(root, cache, bytenr, num_bytes, 0);
6036
6037         /* remove us from the free space cache (if we're there at all) */
6038         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6039         btrfs_put_block_group(cache);
6040         return ret;
6041 }
6042
6043 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6044 {
6045         int ret;
6046         struct btrfs_block_group_cache *block_group;
6047         struct btrfs_caching_control *caching_ctl;
6048
6049         block_group = btrfs_lookup_block_group(root->fs_info, start);
6050         if (!block_group)
6051                 return -EINVAL;
6052
6053         cache_block_group(block_group, 0);
6054         caching_ctl = get_caching_control(block_group);
6055
6056         if (!caching_ctl) {
6057                 /* Logic error */
6058                 BUG_ON(!block_group_cache_done(block_group));
6059                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6060         } else {
6061                 mutex_lock(&caching_ctl->mutex);
6062
6063                 if (start >= caching_ctl->progress) {
6064                         ret = add_excluded_extent(root, start, num_bytes);
6065                 } else if (start + num_bytes <= caching_ctl->progress) {
6066                         ret = btrfs_remove_free_space(block_group,
6067                                                       start, num_bytes);
6068                 } else {
6069                         num_bytes = caching_ctl->progress - start;
6070                         ret = btrfs_remove_free_space(block_group,
6071                                                       start, num_bytes);
6072                         if (ret)
6073                                 goto out_lock;
6074
6075                         num_bytes = (start + num_bytes) -
6076                                 caching_ctl->progress;
6077                         start = caching_ctl->progress;
6078                         ret = add_excluded_extent(root, start, num_bytes);
6079                 }
6080 out_lock:
6081                 mutex_unlock(&caching_ctl->mutex);
6082                 put_caching_control(caching_ctl);
6083         }
6084         btrfs_put_block_group(block_group);
6085         return ret;
6086 }
6087
6088 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6089                                  struct extent_buffer *eb)
6090 {
6091         struct btrfs_file_extent_item *item;
6092         struct btrfs_key key;
6093         int found_type;
6094         int i;
6095
6096         if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6097                 return 0;
6098
6099         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6100                 btrfs_item_key_to_cpu(eb, &key, i);
6101                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6102                         continue;
6103                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6104                 found_type = btrfs_file_extent_type(eb, item);
6105                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6106                         continue;
6107                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6108                         continue;
6109                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6110                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6111                 __exclude_logged_extent(log, key.objectid, key.offset);
6112         }
6113
6114         return 0;
6115 }
6116
6117 /**
6118  * btrfs_update_reserved_bytes - update the block_group and space info counters
6119  * @cache:      The cache we are manipulating
6120  * @num_bytes:  The number of bytes in question
6121  * @reserve:    One of the reservation enums
6122  * @delalloc:   The blocks are allocated for the delalloc write
6123  *
6124  * This is called by the allocator when it reserves space, or by somebody who is
6125  * freeing space that was never actually used on disk.  For example if you
6126  * reserve some space for a new leaf in transaction A and before transaction A
6127  * commits you free that leaf, you call this with reserve set to 0 in order to
6128  * clear the reservation.
6129  *
6130  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6131  * ENOSPC accounting.  For data we handle the reservation through clearing the
6132  * delalloc bits in the io_tree.  We have to do this since we could end up
6133  * allocating less disk space for the amount of data we have reserved in the
6134  * case of compression.
6135  *
6136  * If this is a reservation and the block group has become read only we cannot
6137  * make the reservation and return -EAGAIN, otherwise this function always
6138  * succeeds.
6139  */
6140 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6141                                        u64 num_bytes, int reserve, int delalloc)
6142 {
6143         struct btrfs_space_info *space_info = cache->space_info;
6144         int ret = 0;
6145
6146         spin_lock(&space_info->lock);
6147         spin_lock(&cache->lock);
6148         if (reserve != RESERVE_FREE) {
6149                 if (cache->ro) {
6150                         ret = -EAGAIN;
6151                 } else {
6152                         cache->reserved += num_bytes;
6153                         space_info->bytes_reserved += num_bytes;
6154                         if (reserve == RESERVE_ALLOC) {
6155                                 trace_btrfs_space_reservation(cache->fs_info,
6156                                                 "space_info", space_info->flags,
6157                                                 num_bytes, 0);
6158                                 space_info->bytes_may_use -= num_bytes;
6159                         }
6160
6161                         if (delalloc)
6162                                 cache->delalloc_bytes += num_bytes;
6163                 }
6164         } else {
6165                 if (cache->ro)
6166                         space_info->bytes_readonly += num_bytes;
6167                 cache->reserved -= num_bytes;
6168                 space_info->bytes_reserved -= num_bytes;
6169
6170                 if (delalloc)
6171                         cache->delalloc_bytes -= num_bytes;
6172         }
6173         spin_unlock(&cache->lock);
6174         spin_unlock(&space_info->lock);
6175         return ret;
6176 }
6177
6178 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6179                                 struct btrfs_root *root)
6180 {
6181         struct btrfs_fs_info *fs_info = root->fs_info;
6182         struct btrfs_caching_control *next;
6183         struct btrfs_caching_control *caching_ctl;
6184         struct btrfs_block_group_cache *cache;
6185
6186         down_write(&fs_info->commit_root_sem);
6187
6188         list_for_each_entry_safe(caching_ctl, next,
6189                                  &fs_info->caching_block_groups, list) {
6190                 cache = caching_ctl->block_group;
6191                 if (block_group_cache_done(cache)) {
6192                         cache->last_byte_to_unpin = (u64)-1;
6193                         list_del_init(&caching_ctl->list);
6194                         put_caching_control(caching_ctl);
6195                 } else {
6196                         cache->last_byte_to_unpin = caching_ctl->progress;
6197                 }
6198         }
6199
6200         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6201                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6202         else
6203                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6204
6205         up_write(&fs_info->commit_root_sem);
6206
6207         update_global_block_rsv(fs_info);
6208 }
6209
6210 /*
6211  * Returns the free cluster for the given space info and sets empty_cluster to
6212  * what it should be based on the mount options.
6213  */
6214 static struct btrfs_free_cluster *
6215 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6216                    u64 *empty_cluster)
6217 {
6218         struct btrfs_free_cluster *ret = NULL;
6219         bool ssd = btrfs_test_opt(root, SSD);
6220
6221         *empty_cluster = 0;
6222         if (btrfs_mixed_space_info(space_info))
6223                 return ret;
6224
6225         if (ssd)
6226                 *empty_cluster = 2 * 1024 * 1024;
6227         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6228                 ret = &root->fs_info->meta_alloc_cluster;
6229                 if (!ssd)
6230                         *empty_cluster = 64 * 1024;
6231         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6232                 ret = &root->fs_info->data_alloc_cluster;
6233         }
6234
6235         return ret;
6236 }
6237
6238 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6239                               const bool return_free_space)
6240 {
6241         struct btrfs_fs_info *fs_info = root->fs_info;
6242         struct btrfs_block_group_cache *cache = NULL;
6243         struct btrfs_space_info *space_info;
6244         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6245         struct btrfs_free_cluster *cluster = NULL;
6246         u64 len;
6247         u64 total_unpinned = 0;
6248         u64 empty_cluster = 0;
6249         bool readonly;
6250
6251         while (start <= end) {
6252                 readonly = false;
6253                 if (!cache ||
6254                     start >= cache->key.objectid + cache->key.offset) {
6255                         if (cache)
6256                                 btrfs_put_block_group(cache);
6257                         total_unpinned = 0;
6258                         cache = btrfs_lookup_block_group(fs_info, start);
6259                         BUG_ON(!cache); /* Logic error */
6260
6261                         cluster = fetch_cluster_info(root,
6262                                                      cache->space_info,
6263                                                      &empty_cluster);
6264                         empty_cluster <<= 1;
6265                 }
6266
6267                 len = cache->key.objectid + cache->key.offset - start;
6268                 len = min(len, end + 1 - start);
6269
6270                 if (start < cache->last_byte_to_unpin) {
6271                         len = min(len, cache->last_byte_to_unpin - start);
6272                         if (return_free_space)
6273                                 btrfs_add_free_space(cache, start, len);
6274                 }
6275
6276                 start += len;
6277                 total_unpinned += len;
6278                 space_info = cache->space_info;
6279
6280                 /*
6281                  * If this space cluster has been marked as fragmented and we've
6282                  * unpinned enough in this block group to potentially allow a
6283                  * cluster to be created inside of it go ahead and clear the
6284                  * fragmented check.
6285                  */
6286                 if (cluster && cluster->fragmented &&
6287                     total_unpinned > empty_cluster) {
6288                         spin_lock(&cluster->lock);
6289                         cluster->fragmented = 0;
6290                         spin_unlock(&cluster->lock);
6291                 }
6292
6293                 spin_lock(&space_info->lock);
6294                 spin_lock(&cache->lock);
6295                 cache->pinned -= len;
6296                 space_info->bytes_pinned -= len;
6297                 space_info->max_extent_size = 0;
6298                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6299                 if (cache->ro) {
6300                         space_info->bytes_readonly += len;
6301                         readonly = true;
6302                 }
6303                 spin_unlock(&cache->lock);
6304                 if (!readonly && global_rsv->space_info == space_info) {
6305                         spin_lock(&global_rsv->lock);
6306                         if (!global_rsv->full) {
6307                                 len = min(len, global_rsv->size -
6308                                           global_rsv->reserved);
6309                                 global_rsv->reserved += len;
6310                                 space_info->bytes_may_use += len;
6311                                 if (global_rsv->reserved >= global_rsv->size)
6312                                         global_rsv->full = 1;
6313                         }
6314                         spin_unlock(&global_rsv->lock);
6315                 }
6316                 spin_unlock(&space_info->lock);
6317         }
6318
6319         if (cache)
6320                 btrfs_put_block_group(cache);
6321         return 0;
6322 }
6323
6324 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6325                                struct btrfs_root *root)
6326 {
6327         struct btrfs_fs_info *fs_info = root->fs_info;
6328         struct btrfs_block_group_cache *block_group, *tmp;
6329         struct list_head *deleted_bgs;
6330         struct extent_io_tree *unpin;
6331         u64 start;
6332         u64 end;
6333         int ret;
6334
6335         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6336                 unpin = &fs_info->freed_extents[1];
6337         else
6338                 unpin = &fs_info->freed_extents[0];
6339
6340         while (!trans->aborted) {
6341                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6342                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6343                                             EXTENT_DIRTY, NULL);
6344                 if (ret) {
6345                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6346                         break;
6347                 }
6348
6349                 if (btrfs_test_opt(root, DISCARD))
6350                         ret = btrfs_discard_extent(root, start,
6351                                                    end + 1 - start, NULL);
6352
6353                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6354                 unpin_extent_range(root, start, end, true);
6355                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6356                 cond_resched();
6357         }
6358
6359         /*
6360          * Transaction is finished.  We don't need the lock anymore.  We
6361          * do need to clean up the block groups in case of a transaction
6362          * abort.
6363          */
6364         deleted_bgs = &trans->transaction->deleted_bgs;
6365         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6366                 u64 trimmed = 0;
6367
6368                 ret = -EROFS;
6369                 if (!trans->aborted)
6370                         ret = btrfs_discard_extent(root,
6371                                                    block_group->key.objectid,
6372                                                    block_group->key.offset,
6373                                                    &trimmed);
6374
6375                 list_del_init(&block_group->bg_list);
6376                 btrfs_put_block_group_trimming(block_group);
6377                 btrfs_put_block_group(block_group);
6378
6379                 if (ret) {
6380                         const char *errstr = btrfs_decode_error(ret);
6381                         btrfs_warn(fs_info,
6382                                    "Discard failed while removing blockgroup: errno=%d %s\n",
6383                                    ret, errstr);
6384                 }
6385         }
6386
6387         return 0;
6388 }
6389
6390 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6391                              u64 owner, u64 root_objectid)
6392 {
6393         struct btrfs_space_info *space_info;
6394         u64 flags;
6395
6396         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6397                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6398                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
6399                 else
6400                         flags = BTRFS_BLOCK_GROUP_METADATA;
6401         } else {
6402                 flags = BTRFS_BLOCK_GROUP_DATA;
6403         }
6404
6405         space_info = __find_space_info(fs_info, flags);
6406         BUG_ON(!space_info); /* Logic bug */
6407         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6408 }
6409
6410
6411 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6412                                 struct btrfs_root *root,
6413                                 struct btrfs_delayed_ref_node *node, u64 parent,
6414                                 u64 root_objectid, u64 owner_objectid,
6415                                 u64 owner_offset, int refs_to_drop,
6416                                 struct btrfs_delayed_extent_op *extent_op)
6417 {
6418         struct btrfs_key key;
6419         struct btrfs_path *path;
6420         struct btrfs_fs_info *info = root->fs_info;
6421         struct btrfs_root *extent_root = info->extent_root;
6422         struct extent_buffer *leaf;
6423         struct btrfs_extent_item *ei;
6424         struct btrfs_extent_inline_ref *iref;
6425         int ret;
6426         int is_data;
6427         int extent_slot = 0;
6428         int found_extent = 0;
6429         int num_to_del = 1;
6430         u32 item_size;
6431         u64 refs;
6432         u64 bytenr = node->bytenr;
6433         u64 num_bytes = node->num_bytes;
6434         int last_ref = 0;
6435         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6436                                                  SKINNY_METADATA);
6437
6438         path = btrfs_alloc_path();
6439         if (!path)
6440                 return -ENOMEM;
6441
6442         path->reada = 1;
6443         path->leave_spinning = 1;
6444
6445         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6446         BUG_ON(!is_data && refs_to_drop != 1);
6447
6448         if (is_data)
6449                 skinny_metadata = 0;
6450
6451         ret = lookup_extent_backref(trans, extent_root, path, &iref,
6452                                     bytenr, num_bytes, parent,
6453                                     root_objectid, owner_objectid,
6454                                     owner_offset);
6455         if (ret == 0) {
6456                 extent_slot = path->slots[0];
6457                 while (extent_slot >= 0) {
6458                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6459                                               extent_slot);
6460                         if (key.objectid != bytenr)
6461                                 break;
6462                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6463                             key.offset == num_bytes) {
6464                                 found_extent = 1;
6465                                 break;
6466                         }
6467                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6468                             key.offset == owner_objectid) {
6469                                 found_extent = 1;
6470                                 break;
6471                         }
6472                         if (path->slots[0] - extent_slot > 5)
6473                                 break;
6474                         extent_slot--;
6475                 }
6476 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6477                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6478                 if (found_extent && item_size < sizeof(*ei))
6479                         found_extent = 0;
6480 #endif
6481                 if (!found_extent) {
6482                         BUG_ON(iref);
6483                         ret = remove_extent_backref(trans, extent_root, path,
6484                                                     NULL, refs_to_drop,
6485                                                     is_data, &last_ref);
6486                         if (ret) {
6487                                 btrfs_abort_transaction(trans, extent_root, ret);
6488                                 goto out;
6489                         }
6490                         btrfs_release_path(path);
6491                         path->leave_spinning = 1;
6492
6493                         key.objectid = bytenr;
6494                         key.type = BTRFS_EXTENT_ITEM_KEY;
6495                         key.offset = num_bytes;
6496
6497                         if (!is_data && skinny_metadata) {
6498                                 key.type = BTRFS_METADATA_ITEM_KEY;
6499                                 key.offset = owner_objectid;
6500                         }
6501
6502                         ret = btrfs_search_slot(trans, extent_root,
6503                                                 &key, path, -1, 1);
6504                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6505                                 /*
6506                                  * Couldn't find our skinny metadata item,
6507                                  * see if we have ye olde extent item.
6508                                  */
6509                                 path->slots[0]--;
6510                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6511                                                       path->slots[0]);
6512                                 if (key.objectid == bytenr &&
6513                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6514                                     key.offset == num_bytes)
6515                                         ret = 0;
6516                         }
6517
6518                         if (ret > 0 && skinny_metadata) {
6519                                 skinny_metadata = false;
6520                                 key.objectid = bytenr;
6521                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6522                                 key.offset = num_bytes;
6523                                 btrfs_release_path(path);
6524                                 ret = btrfs_search_slot(trans, extent_root,
6525                                                         &key, path, -1, 1);
6526                         }
6527
6528                         if (ret) {
6529                                 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6530                                         ret, bytenr);
6531                                 if (ret > 0)
6532                                         btrfs_print_leaf(extent_root,
6533                                                          path->nodes[0]);
6534                         }
6535                         if (ret < 0) {
6536                                 btrfs_abort_transaction(trans, extent_root, ret);
6537                                 goto out;
6538                         }
6539                         extent_slot = path->slots[0];
6540                 }
6541         } else if (WARN_ON(ret == -ENOENT)) {
6542                 btrfs_print_leaf(extent_root, path->nodes[0]);
6543                 btrfs_err(info,
6544                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6545                         bytenr, parent, root_objectid, owner_objectid,
6546                         owner_offset);
6547                 btrfs_abort_transaction(trans, extent_root, ret);
6548                 goto out;
6549         } else {
6550                 btrfs_abort_transaction(trans, extent_root, ret);
6551                 goto out;
6552         }
6553
6554         leaf = path->nodes[0];
6555         item_size = btrfs_item_size_nr(leaf, extent_slot);
6556 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6557         if (item_size < sizeof(*ei)) {
6558                 BUG_ON(found_extent || extent_slot != path->slots[0]);
6559                 ret = convert_extent_item_v0(trans, extent_root, path,
6560                                              owner_objectid, 0);
6561                 if (ret < 0) {
6562                         btrfs_abort_transaction(trans, extent_root, ret);
6563                         goto out;
6564                 }
6565
6566                 btrfs_release_path(path);
6567                 path->leave_spinning = 1;
6568
6569                 key.objectid = bytenr;
6570                 key.type = BTRFS_EXTENT_ITEM_KEY;
6571                 key.offset = num_bytes;
6572
6573                 ret = btrfs_search_slot(trans, extent_root, &key, path,
6574                                         -1, 1);
6575                 if (ret) {
6576                         btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6577                                 ret, bytenr);
6578                         btrfs_print_leaf(extent_root, path->nodes[0]);
6579                 }
6580                 if (ret < 0) {
6581                         btrfs_abort_transaction(trans, extent_root, ret);
6582                         goto out;
6583                 }
6584
6585                 extent_slot = path->slots[0];
6586                 leaf = path->nodes[0];
6587                 item_size = btrfs_item_size_nr(leaf, extent_slot);
6588         }
6589 #endif
6590         BUG_ON(item_size < sizeof(*ei));
6591         ei = btrfs_item_ptr(leaf, extent_slot,
6592                             struct btrfs_extent_item);
6593         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6594             key.type == BTRFS_EXTENT_ITEM_KEY) {
6595                 struct btrfs_tree_block_info *bi;
6596                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6597                 bi = (struct btrfs_tree_block_info *)(ei + 1);
6598                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6599         }
6600
6601         refs = btrfs_extent_refs(leaf, ei);
6602         if (refs < refs_to_drop) {
6603                 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6604                           "for bytenr %Lu", refs_to_drop, refs, bytenr);
6605                 ret = -EINVAL;
6606                 btrfs_abort_transaction(trans, extent_root, ret);
6607                 goto out;
6608         }
6609         refs -= refs_to_drop;
6610
6611         if (refs > 0) {
6612                 if (extent_op)
6613                         __run_delayed_extent_op(extent_op, leaf, ei);
6614                 /*
6615                  * In the case of inline back ref, reference count will
6616                  * be updated by remove_extent_backref
6617                  */
6618                 if (iref) {
6619                         BUG_ON(!found_extent);
6620                 } else {
6621                         btrfs_set_extent_refs(leaf, ei, refs);
6622                         btrfs_mark_buffer_dirty(leaf);
6623                 }
6624                 if (found_extent) {
6625                         ret = remove_extent_backref(trans, extent_root, path,
6626                                                     iref, refs_to_drop,
6627                                                     is_data, &last_ref);
6628                         if (ret) {
6629                                 btrfs_abort_transaction(trans, extent_root, ret);
6630                                 goto out;
6631                         }
6632                 }
6633                 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6634                                  root_objectid);
6635         } else {
6636                 if (found_extent) {
6637                         BUG_ON(is_data && refs_to_drop !=
6638                                extent_data_ref_count(path, iref));
6639                         if (iref) {
6640                                 BUG_ON(path->slots[0] != extent_slot);
6641                         } else {
6642                                 BUG_ON(path->slots[0] != extent_slot + 1);
6643                                 path->slots[0] = extent_slot;
6644                                 num_to_del = 2;
6645                         }
6646                 }
6647
6648                 last_ref = 1;
6649                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6650                                       num_to_del);
6651                 if (ret) {
6652                         btrfs_abort_transaction(trans, extent_root, ret);
6653                         goto out;
6654                 }
6655                 btrfs_release_path(path);
6656
6657                 if (is_data) {
6658                         ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6659                         if (ret) {
6660                                 btrfs_abort_transaction(trans, extent_root, ret);
6661                                 goto out;
6662                         }
6663                 }
6664
6665                 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6666                 if (ret) {
6667                         btrfs_abort_transaction(trans, extent_root, ret);
6668                         goto out;
6669                 }
6670         }
6671         btrfs_release_path(path);
6672
6673 out:
6674         btrfs_free_path(path);
6675         return ret;
6676 }
6677
6678 /*
6679  * when we free an block, it is possible (and likely) that we free the last
6680  * delayed ref for that extent as well.  This searches the delayed ref tree for
6681  * a given extent, and if there are no other delayed refs to be processed, it
6682  * removes it from the tree.
6683  */
6684 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6685                                       struct btrfs_root *root, u64 bytenr)
6686 {
6687         struct btrfs_delayed_ref_head *head;
6688         struct btrfs_delayed_ref_root *delayed_refs;
6689         int ret = 0;
6690
6691         delayed_refs = &trans->transaction->delayed_refs;
6692         spin_lock(&delayed_refs->lock);
6693         head = btrfs_find_delayed_ref_head(trans, bytenr);
6694         if (!head)
6695                 goto out_delayed_unlock;
6696
6697         spin_lock(&head->lock);
6698         if (!list_empty(&head->ref_list))
6699                 goto out;
6700
6701         if (head->extent_op) {
6702                 if (!head->must_insert_reserved)
6703                         goto out;
6704                 btrfs_free_delayed_extent_op(head->extent_op);
6705                 head->extent_op = NULL;
6706         }
6707
6708         /*
6709          * waiting for the lock here would deadlock.  If someone else has it
6710          * locked they are already in the process of dropping it anyway
6711          */
6712         if (!mutex_trylock(&head->mutex))
6713                 goto out;
6714
6715         /*
6716          * at this point we have a head with no other entries.  Go
6717          * ahead and process it.
6718          */
6719         head->node.in_tree = 0;
6720         rb_erase(&head->href_node, &delayed_refs->href_root);
6721
6722         atomic_dec(&delayed_refs->num_entries);
6723
6724         /*
6725          * we don't take a ref on the node because we're removing it from the
6726          * tree, so we just steal the ref the tree was holding.
6727          */
6728         delayed_refs->num_heads--;
6729         if (head->processing == 0)
6730                 delayed_refs->num_heads_ready--;
6731         head->processing = 0;
6732         spin_unlock(&head->lock);
6733         spin_unlock(&delayed_refs->lock);
6734
6735         BUG_ON(head->extent_op);
6736         if (head->must_insert_reserved)
6737                 ret = 1;
6738
6739         mutex_unlock(&head->mutex);
6740         btrfs_put_delayed_ref(&head->node);
6741         return ret;
6742 out:
6743         spin_unlock(&head->lock);
6744
6745 out_delayed_unlock:
6746         spin_unlock(&delayed_refs->lock);
6747         return 0;
6748 }
6749
6750 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6751                            struct btrfs_root *root,
6752                            struct extent_buffer *buf,
6753                            u64 parent, int last_ref)
6754 {
6755         int pin = 1;
6756         int ret;
6757
6758         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6759                 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6760                                         buf->start, buf->len,
6761                                         parent, root->root_key.objectid,
6762                                         btrfs_header_level(buf),
6763                                         BTRFS_DROP_DELAYED_REF, NULL);
6764                 BUG_ON(ret); /* -ENOMEM */
6765         }
6766
6767         if (!last_ref)
6768                 return;
6769
6770         if (btrfs_header_generation(buf) == trans->transid) {
6771                 struct btrfs_block_group_cache *cache;
6772
6773                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6774                         ret = check_ref_cleanup(trans, root, buf->start);
6775                         if (!ret)
6776                                 goto out;
6777                 }
6778
6779                 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6780
6781                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6782                         pin_down_extent(root, cache, buf->start, buf->len, 1);
6783                         btrfs_put_block_group(cache);
6784                         goto out;
6785                 }
6786
6787                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6788
6789                 btrfs_add_free_space(cache, buf->start, buf->len);
6790                 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6791                 btrfs_put_block_group(cache);
6792                 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6793                 pin = 0;
6794         }
6795 out:
6796         if (pin)
6797                 add_pinned_bytes(root->fs_info, buf->len,
6798                                  btrfs_header_level(buf),
6799                                  root->root_key.objectid);
6800
6801         /*
6802          * Deleting the buffer, clear the corrupt flag since it doesn't matter
6803          * anymore.
6804          */
6805         clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6806 }
6807
6808 /* Can return -ENOMEM */
6809 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6810                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6811                       u64 owner, u64 offset)
6812 {
6813         int ret;
6814         struct btrfs_fs_info *fs_info = root->fs_info;
6815
6816         if (btrfs_test_is_dummy_root(root))
6817                 return 0;
6818
6819         add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6820
6821         /*
6822          * tree log blocks never actually go into the extent allocation
6823          * tree, just update pinning info and exit early.
6824          */
6825         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6826                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6827                 /* unlocks the pinned mutex */
6828                 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6829                 ret = 0;
6830         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6831                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6832                                         num_bytes,
6833                                         parent, root_objectid, (int)owner,
6834                                         BTRFS_DROP_DELAYED_REF, NULL);
6835         } else {
6836                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6837                                                 num_bytes,
6838                                                 parent, root_objectid, owner,
6839                                                 offset, 0,
6840                                                 BTRFS_DROP_DELAYED_REF, NULL);
6841         }
6842         return ret;
6843 }
6844
6845 /*
6846  * when we wait for progress in the block group caching, its because
6847  * our allocation attempt failed at least once.  So, we must sleep
6848  * and let some progress happen before we try again.
6849  *
6850  * This function will sleep at least once waiting for new free space to
6851  * show up, and then it will check the block group free space numbers
6852  * for our min num_bytes.  Another option is to have it go ahead
6853  * and look in the rbtree for a free extent of a given size, but this
6854  * is a good start.
6855  *
6856  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6857  * any of the information in this block group.
6858  */
6859 static noinline void
6860 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6861                                 u64 num_bytes)
6862 {
6863         struct btrfs_caching_control *caching_ctl;
6864
6865         caching_ctl = get_caching_control(cache);
6866         if (!caching_ctl)
6867                 return;
6868
6869         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6870                    (cache->free_space_ctl->free_space >= num_bytes));
6871
6872         put_caching_control(caching_ctl);
6873 }
6874
6875 static noinline int
6876 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6877 {
6878         struct btrfs_caching_control *caching_ctl;
6879         int ret = 0;
6880
6881         caching_ctl = get_caching_control(cache);
6882         if (!caching_ctl)
6883                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6884
6885         wait_event(caching_ctl->wait, block_group_cache_done(cache));
6886         if (cache->cached == BTRFS_CACHE_ERROR)
6887                 ret = -EIO;
6888         put_caching_control(caching_ctl);
6889         return ret;
6890 }
6891
6892 int __get_raid_index(u64 flags)
6893 {
6894         if (flags & BTRFS_BLOCK_GROUP_RAID10)
6895                 return BTRFS_RAID_RAID10;
6896         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6897                 return BTRFS_RAID_RAID1;
6898         else if (flags & BTRFS_BLOCK_GROUP_DUP)
6899                 return BTRFS_RAID_DUP;
6900         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6901                 return BTRFS_RAID_RAID0;
6902         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6903                 return BTRFS_RAID_RAID5;
6904         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6905                 return BTRFS_RAID_RAID6;
6906
6907         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6908 }
6909
6910 int get_block_group_index(struct btrfs_block_group_cache *cache)
6911 {
6912         return __get_raid_index(cache->flags);
6913 }
6914
6915 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6916         [BTRFS_RAID_RAID10]     = "raid10",
6917         [BTRFS_RAID_RAID1]      = "raid1",
6918         [BTRFS_RAID_DUP]        = "dup",
6919         [BTRFS_RAID_RAID0]      = "raid0",
6920         [BTRFS_RAID_SINGLE]     = "single",
6921         [BTRFS_RAID_RAID5]      = "raid5",
6922         [BTRFS_RAID_RAID6]      = "raid6",
6923 };
6924
6925 static const char *get_raid_name(enum btrfs_raid_types type)
6926 {
6927         if (type >= BTRFS_NR_RAID_TYPES)
6928                 return NULL;
6929
6930         return btrfs_raid_type_names[type];
6931 }
6932
6933 enum btrfs_loop_type {
6934         LOOP_CACHING_NOWAIT = 0,
6935         LOOP_CACHING_WAIT = 1,
6936         LOOP_ALLOC_CHUNK = 2,
6937         LOOP_NO_EMPTY_SIZE = 3,
6938 };
6939
6940 static inline void
6941 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6942                        int delalloc)
6943 {
6944         if (delalloc)
6945                 down_read(&cache->data_rwsem);
6946 }
6947
6948 static inline void
6949 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6950                        int delalloc)
6951 {
6952         btrfs_get_block_group(cache);
6953         if (delalloc)
6954                 down_read(&cache->data_rwsem);
6955 }
6956
6957 static struct btrfs_block_group_cache *
6958 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6959                    struct btrfs_free_cluster *cluster,
6960                    int delalloc)
6961 {
6962         struct btrfs_block_group_cache *used_bg;
6963         bool locked = false;
6964 again:
6965         spin_lock(&cluster->refill_lock);
6966         if (locked) {
6967                 if (used_bg == cluster->block_group)
6968                         return used_bg;
6969
6970                 up_read(&used_bg->data_rwsem);
6971                 btrfs_put_block_group(used_bg);
6972         }
6973
6974         used_bg = cluster->block_group;
6975         if (!used_bg)
6976                 return NULL;
6977
6978         if (used_bg == block_group)
6979                 return used_bg;
6980
6981         btrfs_get_block_group(used_bg);
6982
6983         if (!delalloc)
6984                 return used_bg;
6985
6986         if (down_read_trylock(&used_bg->data_rwsem))
6987                 return used_bg;
6988
6989         spin_unlock(&cluster->refill_lock);
6990         down_read(&used_bg->data_rwsem);
6991         locked = true;
6992         goto again;
6993 }
6994
6995 static inline void
6996 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6997                          int delalloc)
6998 {
6999         if (delalloc)
7000                 up_read(&cache->data_rwsem);
7001         btrfs_put_block_group(cache);
7002 }
7003
7004 /*
7005  * walks the btree of allocated extents and find a hole of a given size.
7006  * The key ins is changed to record the hole:
7007  * ins->objectid == start position
7008  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7009  * ins->offset == the size of the hole.
7010  * Any available blocks before search_start are skipped.
7011  *
7012  * If there is no suitable free space, we will record the max size of
7013  * the free space extent currently.
7014  */
7015 static noinline int find_free_extent(struct btrfs_root *orig_root,
7016                                      u64 num_bytes, u64 empty_size,
7017                                      u64 hint_byte, struct btrfs_key *ins,
7018                                      u64 flags, int delalloc)
7019 {
7020         int ret = 0;
7021         struct btrfs_root *root = orig_root->fs_info->extent_root;
7022         struct btrfs_free_cluster *last_ptr = NULL;
7023         struct btrfs_block_group_cache *block_group = NULL;
7024         u64 search_start = 0;
7025         u64 max_extent_size = 0;
7026         u64 empty_cluster = 0;
7027         struct btrfs_space_info *space_info;
7028         int loop = 0;
7029         int index = __get_raid_index(flags);
7030         int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7031                 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7032         bool failed_cluster_refill = false;
7033         bool failed_alloc = false;
7034         bool use_cluster = true;
7035         bool have_caching_bg = false;
7036         bool orig_have_caching_bg = false;
7037         bool full_search = false;
7038
7039         WARN_ON(num_bytes < root->sectorsize);
7040         ins->type = BTRFS_EXTENT_ITEM_KEY;
7041         ins->objectid = 0;
7042         ins->offset = 0;
7043
7044         trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7045
7046         space_info = __find_space_info(root->fs_info, flags);
7047         if (!space_info) {
7048                 btrfs_err(root->fs_info, "No space info for %llu", flags);
7049                 return -ENOSPC;
7050         }
7051
7052         /*
7053          * If our free space is heavily fragmented we may not be able to make
7054          * big contiguous allocations, so instead of doing the expensive search
7055          * for free space, simply return ENOSPC with our max_extent_size so we
7056          * can go ahead and search for a more manageable chunk.
7057          *
7058          * If our max_extent_size is large enough for our allocation simply
7059          * disable clustering since we will likely not be able to find enough
7060          * space to create a cluster and induce latency trying.
7061          */
7062         if (unlikely(space_info->max_extent_size)) {
7063                 spin_lock(&space_info->lock);
7064                 if (space_info->max_extent_size &&
7065                     num_bytes > space_info->max_extent_size) {
7066                         ins->offset = space_info->max_extent_size;
7067                         spin_unlock(&space_info->lock);
7068                         return -ENOSPC;
7069                 } else if (space_info->max_extent_size) {
7070                         use_cluster = false;
7071                 }
7072                 spin_unlock(&space_info->lock);
7073         }
7074
7075         last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7076         if (last_ptr) {
7077                 spin_lock(&last_ptr->lock);
7078                 if (last_ptr->block_group)
7079                         hint_byte = last_ptr->window_start;
7080                 if (last_ptr->fragmented) {
7081                         /*
7082                          * We still set window_start so we can keep track of the
7083                          * last place we found an allocation to try and save
7084                          * some time.
7085                          */
7086                         hint_byte = last_ptr->window_start;
7087                         use_cluster = false;
7088                 }
7089                 spin_unlock(&last_ptr->lock);
7090         }
7091
7092         search_start = max(search_start, first_logical_byte(root, 0));
7093         search_start = max(search_start, hint_byte);
7094         if (search_start == hint_byte) {
7095                 block_group = btrfs_lookup_block_group(root->fs_info,
7096                                                        search_start);
7097                 /*
7098                  * we don't want to use the block group if it doesn't match our
7099                  * allocation bits, or if its not cached.
7100                  *
7101                  * However if we are re-searching with an ideal block group
7102                  * picked out then we don't care that the block group is cached.
7103                  */
7104                 if (block_group && block_group_bits(block_group, flags) &&
7105                     block_group->cached != BTRFS_CACHE_NO) {
7106                         down_read(&space_info->groups_sem);
7107                         if (list_empty(&block_group->list) ||
7108                             block_group->ro) {
7109                                 /*
7110                                  * someone is removing this block group,
7111                                  * we can't jump into the have_block_group
7112                                  * target because our list pointers are not
7113                                  * valid
7114                                  */
7115                                 btrfs_put_block_group(block_group);
7116                                 up_read(&space_info->groups_sem);
7117                         } else {
7118                                 index = get_block_group_index(block_group);
7119                                 btrfs_lock_block_group(block_group, delalloc);
7120                                 goto have_block_group;
7121                         }
7122                 } else if (block_group) {
7123                         btrfs_put_block_group(block_group);
7124                 }
7125         }
7126 search:
7127         have_caching_bg = false;
7128         if (index == 0 || index == __get_raid_index(flags))
7129                 full_search = true;
7130         down_read(&space_info->groups_sem);
7131         list_for_each_entry(block_group, &space_info->block_groups[index],
7132                             list) {
7133                 u64 offset;
7134                 int cached;
7135
7136                 btrfs_grab_block_group(block_group, delalloc);
7137                 search_start = block_group->key.objectid;
7138
7139                 /*
7140                  * this can happen if we end up cycling through all the
7141                  * raid types, but we want to make sure we only allocate
7142                  * for the proper type.
7143                  */
7144                 if (!block_group_bits(block_group, flags)) {
7145                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7146                                 BTRFS_BLOCK_GROUP_RAID1 |
7147                                 BTRFS_BLOCK_GROUP_RAID5 |
7148                                 BTRFS_BLOCK_GROUP_RAID6 |
7149                                 BTRFS_BLOCK_GROUP_RAID10;
7150
7151                         /*
7152                          * if they asked for extra copies and this block group
7153                          * doesn't provide them, bail.  This does allow us to
7154                          * fill raid0 from raid1.
7155                          */
7156                         if ((flags & extra) && !(block_group->flags & extra))
7157                                 goto loop;
7158                 }
7159
7160 have_block_group:
7161                 cached = block_group_cache_done(block_group);
7162                 if (unlikely(!cached)) {
7163                         have_caching_bg = true;
7164                         ret = cache_block_group(block_group, 0);
7165                         BUG_ON(ret < 0);
7166                         ret = 0;
7167                 }
7168
7169                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7170                         goto loop;
7171                 if (unlikely(block_group->ro))
7172                         goto loop;
7173
7174                 /*
7175                  * Ok we want to try and use the cluster allocator, so
7176                  * lets look there
7177                  */
7178                 if (last_ptr && use_cluster) {
7179                         struct btrfs_block_group_cache *used_block_group;
7180                         unsigned long aligned_cluster;
7181                         /*
7182                          * the refill lock keeps out other
7183                          * people trying to start a new cluster
7184                          */
7185                         used_block_group = btrfs_lock_cluster(block_group,
7186                                                               last_ptr,
7187                                                               delalloc);
7188                         if (!used_block_group)
7189                                 goto refill_cluster;
7190
7191                         if (used_block_group != block_group &&
7192                             (used_block_group->ro ||
7193                              !block_group_bits(used_block_group, flags)))
7194                                 goto release_cluster;
7195
7196                         offset = btrfs_alloc_from_cluster(used_block_group,
7197                                                 last_ptr,
7198                                                 num_bytes,
7199                                                 used_block_group->key.objectid,
7200                                                 &max_extent_size);
7201                         if (offset) {
7202                                 /* we have a block, we're done */
7203                                 spin_unlock(&last_ptr->refill_lock);
7204                                 trace_btrfs_reserve_extent_cluster(root,
7205                                                 used_block_group,
7206                                                 search_start, num_bytes);
7207                                 if (used_block_group != block_group) {
7208                                         btrfs_release_block_group(block_group,
7209                                                                   delalloc);
7210                                         block_group = used_block_group;
7211                                 }
7212                                 goto checks;
7213                         }
7214
7215                         WARN_ON(last_ptr->block_group != used_block_group);
7216 release_cluster:
7217                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7218                          * set up a new clusters, so lets just skip it
7219                          * and let the allocator find whatever block
7220                          * it can find.  If we reach this point, we
7221                          * will have tried the cluster allocator
7222                          * plenty of times and not have found
7223                          * anything, so we are likely way too
7224                          * fragmented for the clustering stuff to find
7225                          * anything.
7226                          *
7227                          * However, if the cluster is taken from the
7228                          * current block group, release the cluster
7229                          * first, so that we stand a better chance of
7230                          * succeeding in the unclustered
7231                          * allocation.  */
7232                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7233                             used_block_group != block_group) {
7234                                 spin_unlock(&last_ptr->refill_lock);
7235                                 btrfs_release_block_group(used_block_group,
7236                                                           delalloc);
7237                                 goto unclustered_alloc;
7238                         }
7239
7240                         /*
7241                          * this cluster didn't work out, free it and
7242                          * start over
7243                          */
7244                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7245
7246                         if (used_block_group != block_group)
7247                                 btrfs_release_block_group(used_block_group,
7248                                                           delalloc);
7249 refill_cluster:
7250                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7251                                 spin_unlock(&last_ptr->refill_lock);
7252                                 goto unclustered_alloc;
7253                         }
7254
7255                         aligned_cluster = max_t(unsigned long,
7256                                                 empty_cluster + empty_size,
7257                                               block_group->full_stripe_len);
7258
7259                         /* allocate a cluster in this block group */
7260                         ret = btrfs_find_space_cluster(root, block_group,
7261                                                        last_ptr, search_start,
7262                                                        num_bytes,
7263                                                        aligned_cluster);
7264                         if (ret == 0) {
7265                                 /*
7266                                  * now pull our allocation out of this
7267                                  * cluster
7268                                  */
7269                                 offset = btrfs_alloc_from_cluster(block_group,
7270                                                         last_ptr,
7271                                                         num_bytes,
7272                                                         search_start,
7273                                                         &max_extent_size);
7274                                 if (offset) {
7275                                         /* we found one, proceed */
7276                                         spin_unlock(&last_ptr->refill_lock);
7277                                         trace_btrfs_reserve_extent_cluster(root,
7278                                                 block_group, search_start,
7279                                                 num_bytes);
7280                                         goto checks;
7281                                 }
7282                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7283                                    && !failed_cluster_refill) {
7284                                 spin_unlock(&last_ptr->refill_lock);
7285
7286                                 failed_cluster_refill = true;
7287                                 wait_block_group_cache_progress(block_group,
7288                                        num_bytes + empty_cluster + empty_size);
7289                                 goto have_block_group;
7290                         }
7291
7292                         /*
7293                          * at this point we either didn't find a cluster
7294                          * or we weren't able to allocate a block from our
7295                          * cluster.  Free the cluster we've been trying
7296                          * to use, and go to the next block group
7297                          */
7298                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7299                         spin_unlock(&last_ptr->refill_lock);
7300                         goto loop;
7301                 }
7302
7303 unclustered_alloc:
7304                 /*
7305                  * We are doing an unclustered alloc, set the fragmented flag so
7306                  * we don't bother trying to setup a cluster again until we get
7307                  * more space.
7308                  */
7309                 if (unlikely(last_ptr)) {
7310                         spin_lock(&last_ptr->lock);
7311                         last_ptr->fragmented = 1;
7312                         spin_unlock(&last_ptr->lock);
7313                 }
7314                 spin_lock(&block_group->free_space_ctl->tree_lock);
7315                 if (cached &&
7316                     block_group->free_space_ctl->free_space <
7317                     num_bytes + empty_cluster + empty_size) {
7318                         if (block_group->free_space_ctl->free_space >
7319                             max_extent_size)
7320                                 max_extent_size =
7321                                         block_group->free_space_ctl->free_space;
7322                         spin_unlock(&block_group->free_space_ctl->tree_lock);
7323                         goto loop;
7324                 }
7325                 spin_unlock(&block_group->free_space_ctl->tree_lock);
7326
7327                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7328                                                     num_bytes, empty_size,
7329                                                     &max_extent_size);
7330                 /*
7331                  * If we didn't find a chunk, and we haven't failed on this
7332                  * block group before, and this block group is in the middle of
7333                  * caching and we are ok with waiting, then go ahead and wait
7334                  * for progress to be made, and set failed_alloc to true.
7335                  *
7336                  * If failed_alloc is true then we've already waited on this
7337                  * block group once and should move on to the next block group.
7338                  */
7339                 if (!offset && !failed_alloc && !cached &&
7340                     loop > LOOP_CACHING_NOWAIT) {
7341                         wait_block_group_cache_progress(block_group,
7342                                                 num_bytes + empty_size);
7343                         failed_alloc = true;
7344                         goto have_block_group;
7345                 } else if (!offset) {
7346                         goto loop;
7347                 }
7348 checks:
7349                 search_start = ALIGN(offset, root->stripesize);
7350
7351                 /* move on to the next group */
7352                 if (search_start + num_bytes >
7353                     block_group->key.objectid + block_group->key.offset) {
7354                         btrfs_add_free_space(block_group, offset, num_bytes);
7355                         goto loop;
7356                 }
7357
7358                 if (offset < search_start)
7359                         btrfs_add_free_space(block_group, offset,
7360                                              search_start - offset);
7361                 BUG_ON(offset > search_start);
7362
7363                 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7364                                                   alloc_type, delalloc);
7365                 if (ret == -EAGAIN) {
7366                         btrfs_add_free_space(block_group, offset, num_bytes);
7367                         goto loop;
7368                 }
7369
7370                 /* we are all good, lets return */
7371                 ins->objectid = search_start;
7372                 ins->offset = num_bytes;
7373
7374                 trace_btrfs_reserve_extent(orig_root, block_group,
7375                                            search_start, num_bytes);
7376                 btrfs_release_block_group(block_group, delalloc);
7377                 break;
7378 loop:
7379                 failed_cluster_refill = false;
7380                 failed_alloc = false;
7381                 BUG_ON(index != get_block_group_index(block_group));
7382                 btrfs_release_block_group(block_group, delalloc);
7383         }
7384         up_read(&space_info->groups_sem);
7385
7386         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7387                 && !orig_have_caching_bg)
7388                 orig_have_caching_bg = true;
7389
7390         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7391                 goto search;
7392
7393         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7394                 goto search;
7395
7396         /*
7397          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7398          *                      caching kthreads as we move along
7399          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7400          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7401          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7402          *                      again
7403          */
7404         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7405                 index = 0;
7406                 if (loop == LOOP_CACHING_NOWAIT) {
7407                         /*
7408                          * We want to skip the LOOP_CACHING_WAIT step if we
7409                          * don't have any unached bgs and we've alrelady done a
7410                          * full search through.
7411                          */
7412                         if (orig_have_caching_bg || !full_search)
7413                                 loop = LOOP_CACHING_WAIT;
7414                         else
7415                                 loop = LOOP_ALLOC_CHUNK;
7416                 } else {
7417                         loop++;
7418                 }
7419
7420                 if (loop == LOOP_ALLOC_CHUNK) {
7421                         struct btrfs_trans_handle *trans;
7422                         int exist = 0;
7423
7424                         trans = current->journal_info;
7425                         if (trans)
7426                                 exist = 1;
7427                         else
7428                                 trans = btrfs_join_transaction(root);
7429
7430                         if (IS_ERR(trans)) {
7431                                 ret = PTR_ERR(trans);
7432                                 goto out;
7433                         }
7434
7435                         ret = do_chunk_alloc(trans, root, flags,
7436                                              CHUNK_ALLOC_FORCE);
7437
7438                         /*
7439                          * If we can't allocate a new chunk we've already looped
7440                          * through at least once, move on to the NO_EMPTY_SIZE
7441                          * case.
7442                          */
7443                         if (ret == -ENOSPC)
7444                                 loop = LOOP_NO_EMPTY_SIZE;
7445
7446                         /*
7447                          * Do not bail out on ENOSPC since we
7448                          * can do more things.
7449                          */
7450                         if (ret < 0 && ret != -ENOSPC)
7451                                 btrfs_abort_transaction(trans,
7452                                                         root, ret);
7453                         else
7454                                 ret = 0;
7455                         if (!exist)
7456                                 btrfs_end_transaction(trans, root);
7457                         if (ret)
7458                                 goto out;
7459                 }
7460
7461                 if (loop == LOOP_NO_EMPTY_SIZE) {
7462                         /*
7463                          * Don't loop again if we already have no empty_size and
7464                          * no empty_cluster.
7465                          */
7466                         if (empty_size == 0 &&
7467                             empty_cluster == 0) {
7468                                 ret = -ENOSPC;
7469                                 goto out;
7470                         }
7471                         empty_size = 0;
7472                         empty_cluster = 0;
7473                 }
7474
7475                 goto search;
7476         } else if (!ins->objectid) {
7477                 ret = -ENOSPC;
7478         } else if (ins->objectid) {
7479                 if (!use_cluster && last_ptr) {
7480                         spin_lock(&last_ptr->lock);
7481                         last_ptr->window_start = ins->objectid;
7482                         spin_unlock(&last_ptr->lock);
7483                 }
7484                 ret = 0;
7485         }
7486 out:
7487         if (ret == -ENOSPC) {
7488                 spin_lock(&space_info->lock);
7489                 space_info->max_extent_size = max_extent_size;
7490                 spin_unlock(&space_info->lock);
7491                 ins->offset = max_extent_size;
7492         }
7493         return ret;
7494 }
7495
7496 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7497                             int dump_block_groups)
7498 {
7499         struct btrfs_block_group_cache *cache;
7500         int index = 0;
7501
7502         spin_lock(&info->lock);
7503         printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7504                info->flags,
7505                info->total_bytes - info->bytes_used - info->bytes_pinned -
7506                info->bytes_reserved - info->bytes_readonly,
7507                (info->full) ? "" : "not ");
7508         printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7509                "reserved=%llu, may_use=%llu, readonly=%llu\n",
7510                info->total_bytes, info->bytes_used, info->bytes_pinned,
7511                info->bytes_reserved, info->bytes_may_use,
7512                info->bytes_readonly);
7513         spin_unlock(&info->lock);
7514
7515         if (!dump_block_groups)
7516                 return;
7517
7518         down_read(&info->groups_sem);
7519 again:
7520         list_for_each_entry(cache, &info->block_groups[index], list) {
7521                 spin_lock(&cache->lock);
7522                 printk(KERN_INFO "BTRFS: "
7523                            "block group %llu has %llu bytes, "
7524                            "%llu used %llu pinned %llu reserved %s\n",
7525                        cache->key.objectid, cache->key.offset,
7526                        btrfs_block_group_used(&cache->item), cache->pinned,
7527                        cache->reserved, cache->ro ? "[readonly]" : "");
7528                 btrfs_dump_free_space(cache, bytes);
7529                 spin_unlock(&cache->lock);
7530         }
7531         if (++index < BTRFS_NR_RAID_TYPES)
7532                 goto again;
7533         up_read(&info->groups_sem);
7534 }
7535
7536 int btrfs_reserve_extent(struct btrfs_root *root,
7537                          u64 num_bytes, u64 min_alloc_size,
7538                          u64 empty_size, u64 hint_byte,
7539                          struct btrfs_key *ins, int is_data, int delalloc)
7540 {
7541         bool final_tried = num_bytes == min_alloc_size;
7542         u64 flags;
7543         int ret;
7544
7545         flags = btrfs_get_alloc_profile(root, is_data);
7546 again:
7547         WARN_ON(num_bytes < root->sectorsize);
7548         ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7549                                flags, delalloc);
7550
7551         if (ret == -ENOSPC) {
7552                 if (!final_tried && ins->offset) {
7553                         num_bytes = min(num_bytes >> 1, ins->offset);
7554                         num_bytes = round_down(num_bytes, root->sectorsize);
7555                         num_bytes = max(num_bytes, min_alloc_size);
7556                         if (num_bytes == min_alloc_size)
7557                                 final_tried = true;
7558                         goto again;
7559                 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7560                         struct btrfs_space_info *sinfo;
7561
7562                         sinfo = __find_space_info(root->fs_info, flags);
7563                         btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7564                                 flags, num_bytes);
7565                         if (sinfo)
7566                                 dump_space_info(sinfo, num_bytes, 1);
7567                 }
7568         }
7569
7570         return ret;
7571 }
7572
7573 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7574                                         u64 start, u64 len,
7575                                         int pin, int delalloc)
7576 {
7577         struct btrfs_block_group_cache *cache;
7578         int ret = 0;
7579
7580         cache = btrfs_lookup_block_group(root->fs_info, start);
7581         if (!cache) {
7582                 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7583                         start);
7584                 return -ENOSPC;
7585         }
7586
7587         if (pin)
7588                 pin_down_extent(root, cache, start, len, 1);
7589         else {
7590                 if (btrfs_test_opt(root, DISCARD))
7591                         ret = btrfs_discard_extent(root, start, len, NULL);
7592                 btrfs_add_free_space(cache, start, len);
7593                 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7594         }
7595
7596         btrfs_put_block_group(cache);
7597
7598         trace_btrfs_reserved_extent_free(root, start, len);
7599
7600         return ret;
7601 }
7602
7603 int btrfs_free_reserved_extent(struct btrfs_root *root,
7604                                u64 start, u64 len, int delalloc)
7605 {
7606         return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7607 }
7608
7609 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7610                                        u64 start, u64 len)
7611 {
7612         return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7613 }
7614
7615 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7616                                       struct btrfs_root *root,
7617                                       u64 parent, u64 root_objectid,
7618                                       u64 flags, u64 owner, u64 offset,
7619                                       struct btrfs_key *ins, int ref_mod)
7620 {
7621         int ret;
7622         struct btrfs_fs_info *fs_info = root->fs_info;
7623         struct btrfs_extent_item *extent_item;
7624         struct btrfs_extent_inline_ref *iref;
7625         struct btrfs_path *path;
7626         struct extent_buffer *leaf;
7627         int type;
7628         u32 size;
7629
7630         if (parent > 0)
7631                 type = BTRFS_SHARED_DATA_REF_KEY;
7632         else
7633                 type = BTRFS_EXTENT_DATA_REF_KEY;
7634
7635         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7636
7637         path = btrfs_alloc_path();
7638         if (!path)
7639                 return -ENOMEM;
7640
7641         path->leave_spinning = 1;
7642         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7643                                       ins, size);
7644         if (ret) {
7645                 btrfs_free_path(path);
7646                 return ret;
7647         }
7648
7649         leaf = path->nodes[0];
7650         extent_item = btrfs_item_ptr(leaf, path->slots[0],
7651                                      struct btrfs_extent_item);
7652         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7653         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7654         btrfs_set_extent_flags(leaf, extent_item,
7655                                flags | BTRFS_EXTENT_FLAG_DATA);
7656
7657         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7658         btrfs_set_extent_inline_ref_type(leaf, iref, type);
7659         if (parent > 0) {
7660                 struct btrfs_shared_data_ref *ref;
7661                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7662                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7663                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7664         } else {
7665                 struct btrfs_extent_data_ref *ref;
7666                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7667                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7668                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7669                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7670                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7671         }
7672
7673         btrfs_mark_buffer_dirty(path->nodes[0]);
7674         btrfs_free_path(path);
7675
7676         ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7677         if (ret) { /* -ENOENT, logic error */
7678                 btrfs_err(fs_info, "update block group failed for %llu %llu",
7679                         ins->objectid, ins->offset);
7680                 BUG();
7681         }
7682         trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7683         return ret;
7684 }
7685
7686 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7687                                      struct btrfs_root *root,
7688                                      u64 parent, u64 root_objectid,
7689                                      u64 flags, struct btrfs_disk_key *key,
7690                                      int level, struct btrfs_key *ins)
7691 {
7692         int ret;
7693         struct btrfs_fs_info *fs_info = root->fs_info;
7694         struct btrfs_extent_item *extent_item;
7695         struct btrfs_tree_block_info *block_info;
7696         struct btrfs_extent_inline_ref *iref;
7697         struct btrfs_path *path;
7698         struct extent_buffer *leaf;
7699         u32 size = sizeof(*extent_item) + sizeof(*iref);
7700         u64 num_bytes = ins->offset;
7701         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7702                                                  SKINNY_METADATA);
7703
7704         if (!skinny_metadata)
7705                 size += sizeof(*block_info);
7706
7707         path = btrfs_alloc_path();
7708         if (!path) {
7709                 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7710                                                    root->nodesize);
7711                 return -ENOMEM;
7712         }
7713
7714         path->leave_spinning = 1;
7715         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7716                                       ins, size);
7717         if (ret) {
7718                 btrfs_free_path(path);
7719                 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7720                                                    root->nodesize);
7721                 return ret;
7722         }
7723
7724         leaf = path->nodes[0];
7725         extent_item = btrfs_item_ptr(leaf, path->slots[0],
7726                                      struct btrfs_extent_item);
7727         btrfs_set_extent_refs(leaf, extent_item, 1);
7728         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7729         btrfs_set_extent_flags(leaf, extent_item,
7730                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7731
7732         if (skinny_metadata) {
7733                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7734                 num_bytes = root->nodesize;
7735         } else {
7736                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7737                 btrfs_set_tree_block_key(leaf, block_info, key);
7738                 btrfs_set_tree_block_level(leaf, block_info, level);
7739                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7740         }
7741
7742         if (parent > 0) {
7743                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7744                 btrfs_set_extent_inline_ref_type(leaf, iref,
7745                                                  BTRFS_SHARED_BLOCK_REF_KEY);
7746                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7747         } else {
7748                 btrfs_set_extent_inline_ref_type(leaf, iref,
7749                                                  BTRFS_TREE_BLOCK_REF_KEY);
7750                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7751         }
7752
7753         btrfs_mark_buffer_dirty(leaf);
7754         btrfs_free_path(path);
7755
7756         ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7757                                  1);
7758         if (ret) { /* -ENOENT, logic error */
7759                 btrfs_err(fs_info, "update block group failed for %llu %llu",
7760                         ins->objectid, ins->offset);
7761                 BUG();
7762         }
7763
7764         trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7765         return ret;
7766 }
7767
7768 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7769                                      struct btrfs_root *root,
7770                                      u64 root_objectid, u64 owner,
7771                                      u64 offset, u64 ram_bytes,
7772                                      struct btrfs_key *ins)
7773 {
7774         int ret;
7775
7776         BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7777
7778         ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7779                                          ins->offset, 0,
7780                                          root_objectid, owner, offset,
7781                                          ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7782                                          NULL);
7783         return ret;
7784 }
7785
7786 /*
7787  * this is used by the tree logging recovery code.  It records that
7788  * an extent has been allocated and makes sure to clear the free
7789  * space cache bits as well
7790  */
7791 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7792                                    struct btrfs_root *root,
7793                                    u64 root_objectid, u64 owner, u64 offset,
7794                                    struct btrfs_key *ins)
7795 {
7796         int ret;
7797         struct btrfs_block_group_cache *block_group;
7798
7799         /*
7800          * Mixed block groups will exclude before processing the log so we only
7801          * need to do the exlude dance if this fs isn't mixed.
7802          */
7803         if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7804                 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7805                 if (ret)
7806                         return ret;
7807         }
7808
7809         block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7810         if (!block_group)
7811                 return -EINVAL;
7812
7813         ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7814                                           RESERVE_ALLOC_NO_ACCOUNT, 0);
7815         BUG_ON(ret); /* logic error */
7816         ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7817                                          0, owner, offset, ins, 1);
7818         btrfs_put_block_group(block_group);
7819         return ret;
7820 }
7821
7822 static struct extent_buffer *
7823 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7824                       u64 bytenr, int level)
7825 {
7826         struct extent_buffer *buf;
7827
7828         buf = btrfs_find_create_tree_block(root, bytenr);
7829         if (!buf)
7830                 return ERR_PTR(-ENOMEM);
7831         btrfs_set_header_generation(buf, trans->transid);
7832         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7833         btrfs_tree_lock(buf);
7834         clean_tree_block(trans, root->fs_info, buf);
7835         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7836
7837         btrfs_set_lock_blocking(buf);
7838         btrfs_set_buffer_uptodate(buf);
7839
7840         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7841                 buf->log_index = root->log_transid % 2;
7842                 /*
7843                  * we allow two log transactions at a time, use different
7844                  * EXENT bit to differentiate dirty pages.
7845                  */
7846                 if (buf->log_index == 0)
7847                         set_extent_dirty(&root->dirty_log_pages, buf->start,
7848                                         buf->start + buf->len - 1, GFP_NOFS);
7849                 else
7850                         set_extent_new(&root->dirty_log_pages, buf->start,
7851                                         buf->start + buf->len - 1, GFP_NOFS);
7852         } else {
7853                 buf->log_index = -1;
7854                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7855                          buf->start + buf->len - 1, GFP_NOFS);
7856         }
7857         trans->blocks_used++;
7858         /* this returns a buffer locked for blocking */
7859         return buf;
7860 }
7861
7862 static struct btrfs_block_rsv *
7863 use_block_rsv(struct btrfs_trans_handle *trans,
7864               struct btrfs_root *root, u32 blocksize)
7865 {
7866         struct btrfs_block_rsv *block_rsv;
7867         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7868         int ret;
7869         bool global_updated = false;
7870
7871         block_rsv = get_block_rsv(trans, root);
7872
7873         if (unlikely(block_rsv->size == 0))
7874                 goto try_reserve;
7875 again:
7876         ret = block_rsv_use_bytes(block_rsv, blocksize);
7877         if (!ret)
7878                 return block_rsv;
7879
7880         if (block_rsv->failfast)
7881                 return ERR_PTR(ret);
7882
7883         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7884                 global_updated = true;
7885                 update_global_block_rsv(root->fs_info);
7886                 goto again;
7887         }
7888
7889         if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7890                 static DEFINE_RATELIMIT_STATE(_rs,
7891                                 DEFAULT_RATELIMIT_INTERVAL * 10,
7892                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
7893                 if (__ratelimit(&_rs))
7894                         WARN(1, KERN_DEBUG
7895                                 "BTRFS: block rsv returned %d\n", ret);
7896         }
7897 try_reserve:
7898         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7899                                      BTRFS_RESERVE_NO_FLUSH);
7900         if (!ret)
7901                 return block_rsv;
7902         /*
7903          * If we couldn't reserve metadata bytes try and use some from
7904          * the global reserve if its space type is the same as the global
7905          * reservation.
7906          */
7907         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7908             block_rsv->space_info == global_rsv->space_info) {
7909                 ret = block_rsv_use_bytes(global_rsv, blocksize);
7910                 if (!ret)
7911                         return global_rsv;
7912         }
7913         return ERR_PTR(ret);
7914 }
7915
7916 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7917                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
7918 {
7919         block_rsv_add_bytes(block_rsv, blocksize, 0);
7920         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7921 }
7922
7923 /*
7924  * finds a free extent and does all the dirty work required for allocation
7925  * returns the tree buffer or an ERR_PTR on error.
7926  */
7927 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7928                                         struct btrfs_root *root,
7929                                         u64 parent, u64 root_objectid,
7930                                         struct btrfs_disk_key *key, int level,
7931                                         u64 hint, u64 empty_size)
7932 {
7933         struct btrfs_key ins;
7934         struct btrfs_block_rsv *block_rsv;
7935         struct extent_buffer *buf;
7936         struct btrfs_delayed_extent_op *extent_op;
7937         u64 flags = 0;
7938         int ret;
7939         u32 blocksize = root->nodesize;
7940         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7941                                                  SKINNY_METADATA);
7942
7943         if (btrfs_test_is_dummy_root(root)) {
7944                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7945                                             level);
7946                 if (!IS_ERR(buf))
7947                         root->alloc_bytenr += blocksize;
7948                 return buf;
7949         }
7950
7951         block_rsv = use_block_rsv(trans, root, blocksize);
7952         if (IS_ERR(block_rsv))
7953                 return ERR_CAST(block_rsv);
7954
7955         ret = btrfs_reserve_extent(root, blocksize, blocksize,
7956                                    empty_size, hint, &ins, 0, 0);
7957         if (ret)
7958                 goto out_unuse;
7959
7960         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7961         if (IS_ERR(buf)) {
7962                 ret = PTR_ERR(buf);
7963                 goto out_free_reserved;
7964         }
7965
7966         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7967                 if (parent == 0)
7968                         parent = ins.objectid;
7969                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7970         } else
7971                 BUG_ON(parent > 0);
7972
7973         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7974                 extent_op = btrfs_alloc_delayed_extent_op();
7975                 if (!extent_op) {
7976                         ret = -ENOMEM;
7977                         goto out_free_buf;
7978                 }
7979                 if (key)
7980                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
7981                 else
7982                         memset(&extent_op->key, 0, sizeof(extent_op->key));
7983                 extent_op->flags_to_set = flags;
7984                 if (skinny_metadata)
7985                         extent_op->update_key = 0;
7986                 else
7987                         extent_op->update_key = 1;
7988                 extent_op->update_flags = 1;
7989                 extent_op->is_data = 0;
7990                 extent_op->level = level;
7991
7992                 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7993                                                  ins.objectid, ins.offset,
7994                                                  parent, root_objectid, level,
7995                                                  BTRFS_ADD_DELAYED_EXTENT,
7996                                                  extent_op);
7997                 if (ret)
7998                         goto out_free_delayed;
7999         }
8000         return buf;
8001
8002 out_free_delayed:
8003         btrfs_free_delayed_extent_op(extent_op);
8004 out_free_buf:
8005         free_extent_buffer(buf);
8006 out_free_reserved:
8007         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8008 out_unuse:
8009         unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8010         return ERR_PTR(ret);
8011 }
8012
8013 struct walk_control {
8014         u64 refs[BTRFS_MAX_LEVEL];
8015         u64 flags[BTRFS_MAX_LEVEL];
8016         struct btrfs_key update_progress;
8017         int stage;
8018         int level;
8019         int shared_level;
8020         int update_ref;
8021         int keep_locks;
8022         int reada_slot;
8023         int reada_count;
8024         int for_reloc;
8025 };
8026
8027 #define DROP_REFERENCE  1
8028 #define UPDATE_BACKREF  2
8029
8030 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8031                                      struct btrfs_root *root,
8032                                      struct walk_control *wc,
8033                                      struct btrfs_path *path)
8034 {
8035         u64 bytenr;
8036         u64 generation;
8037         u64 refs;
8038         u64 flags;
8039         u32 nritems;
8040         u32 blocksize;
8041         struct btrfs_key key;
8042         struct extent_buffer *eb;
8043         int ret;
8044         int slot;
8045         int nread = 0;
8046
8047         if (path->slots[wc->level] < wc->reada_slot) {
8048                 wc->reada_count = wc->reada_count * 2 / 3;
8049                 wc->reada_count = max(wc->reada_count, 2);
8050         } else {
8051                 wc->reada_count = wc->reada_count * 3 / 2;
8052                 wc->reada_count = min_t(int, wc->reada_count,
8053                                         BTRFS_NODEPTRS_PER_BLOCK(root));
8054         }
8055
8056         eb = path->nodes[wc->level];
8057         nritems = btrfs_header_nritems(eb);
8058         blocksize = root->nodesize;
8059
8060         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8061                 if (nread >= wc->reada_count)
8062                         break;
8063
8064                 cond_resched();
8065                 bytenr = btrfs_node_blockptr(eb, slot);
8066                 generation = btrfs_node_ptr_generation(eb, slot);
8067
8068                 if (slot == path->slots[wc->level])
8069                         goto reada;
8070
8071                 if (wc->stage == UPDATE_BACKREF &&
8072                     generation <= root->root_key.offset)
8073                         continue;
8074
8075                 /* We don't lock the tree block, it's OK to be racy here */
8076                 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8077                                                wc->level - 1, 1, &refs,
8078                                                &flags);
8079                 /* We don't care about errors in readahead. */
8080                 if (ret < 0)
8081                         continue;
8082                 BUG_ON(refs == 0);
8083
8084                 if (wc->stage == DROP_REFERENCE) {
8085                         if (refs == 1)
8086                                 goto reada;
8087
8088                         if (wc->level == 1 &&
8089                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8090                                 continue;
8091                         if (!wc->update_ref ||
8092                             generation <= root->root_key.offset)
8093                                 continue;
8094                         btrfs_node_key_to_cpu(eb, &key, slot);
8095                         ret = btrfs_comp_cpu_keys(&key,
8096                                                   &wc->update_progress);
8097                         if (ret < 0)
8098                                 continue;
8099                 } else {
8100                         if (wc->level == 1 &&
8101                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8102                                 continue;
8103                 }
8104 reada:
8105                 readahead_tree_block(root, bytenr);
8106                 nread++;
8107         }
8108         wc->reada_slot = slot;
8109 }
8110
8111 /*
8112  * These may not be seen by the usual inc/dec ref code so we have to
8113  * add them here.
8114  */
8115 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8116                                      struct btrfs_root *root, u64 bytenr,
8117                                      u64 num_bytes)
8118 {
8119         struct btrfs_qgroup_extent_record *qrecord;
8120         struct btrfs_delayed_ref_root *delayed_refs;
8121
8122         qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8123         if (!qrecord)
8124                 return -ENOMEM;
8125
8126         qrecord->bytenr = bytenr;
8127         qrecord->num_bytes = num_bytes;
8128         qrecord->old_roots = NULL;
8129
8130         delayed_refs = &trans->transaction->delayed_refs;
8131         spin_lock(&delayed_refs->lock);
8132         if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8133                 kfree(qrecord);
8134         spin_unlock(&delayed_refs->lock);
8135
8136         return 0;
8137 }
8138
8139 static int account_leaf_items(struct btrfs_trans_handle *trans,
8140                               struct btrfs_root *root,
8141                               struct extent_buffer *eb)
8142 {
8143         int nr = btrfs_header_nritems(eb);
8144         int i, extent_type, ret;
8145         struct btrfs_key key;
8146         struct btrfs_file_extent_item *fi;
8147         u64 bytenr, num_bytes;
8148
8149         /* We can be called directly from walk_up_proc() */
8150         if (!root->fs_info->quota_enabled)
8151                 return 0;
8152
8153         for (i = 0; i < nr; i++) {
8154                 btrfs_item_key_to_cpu(eb, &key, i);
8155
8156                 if (key.type != BTRFS_EXTENT_DATA_KEY)
8157                         continue;
8158
8159                 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8160                 /* filter out non qgroup-accountable extents  */
8161                 extent_type = btrfs_file_extent_type(eb, fi);
8162
8163                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8164                         continue;
8165
8166                 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8167                 if (!bytenr)
8168                         continue;
8169
8170                 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8171
8172                 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8173                 if (ret)
8174                         return ret;
8175         }
8176         return 0;
8177 }
8178
8179 /*
8180  * Walk up the tree from the bottom, freeing leaves and any interior
8181  * nodes which have had all slots visited. If a node (leaf or
8182  * interior) is freed, the node above it will have it's slot
8183  * incremented. The root node will never be freed.
8184  *
8185  * At the end of this function, we should have a path which has all
8186  * slots incremented to the next position for a search. If we need to
8187  * read a new node it will be NULL and the node above it will have the
8188  * correct slot selected for a later read.
8189  *
8190  * If we increment the root nodes slot counter past the number of
8191  * elements, 1 is returned to signal completion of the search.
8192  */
8193 static int adjust_slots_upwards(struct btrfs_root *root,
8194                                 struct btrfs_path *path, int root_level)
8195 {
8196         int level = 0;
8197         int nr, slot;
8198         struct extent_buffer *eb;
8199
8200         if (root_level == 0)
8201                 return 1;
8202
8203         while (level <= root_level) {
8204                 eb = path->nodes[level];
8205                 nr = btrfs_header_nritems(eb);
8206                 path->slots[level]++;
8207                 slot = path->slots[level];
8208                 if (slot >= nr || level == 0) {
8209                         /*
8210                          * Don't free the root -  we will detect this
8211                          * condition after our loop and return a
8212                          * positive value for caller to stop walking the tree.
8213                          */
8214                         if (level != root_level) {
8215                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8216                                 path->locks[level] = 0;
8217
8218                                 free_extent_buffer(eb);
8219                                 path->nodes[level] = NULL;
8220                                 path->slots[level] = 0;
8221                         }
8222                 } else {
8223                         /*
8224                          * We have a valid slot to walk back down
8225                          * from. Stop here so caller can process these
8226                          * new nodes.
8227                          */
8228                         break;
8229                 }
8230
8231                 level++;
8232         }
8233
8234         eb = path->nodes[root_level];
8235         if (path->slots[root_level] >= btrfs_header_nritems(eb))
8236                 return 1;
8237
8238         return 0;
8239 }
8240
8241 /*
8242  * root_eb is the subtree root and is locked before this function is called.
8243  */
8244 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8245                                   struct btrfs_root *root,
8246                                   struct extent_buffer *root_eb,
8247                                   u64 root_gen,
8248                                   int root_level)
8249 {
8250         int ret = 0;
8251         int level;
8252         struct extent_buffer *eb = root_eb;
8253         struct btrfs_path *path = NULL;
8254
8255         BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8256         BUG_ON(root_eb == NULL);
8257
8258         if (!root->fs_info->quota_enabled)
8259                 return 0;
8260
8261         if (!extent_buffer_uptodate(root_eb)) {
8262                 ret = btrfs_read_buffer(root_eb, root_gen);
8263                 if (ret)
8264                         goto out;
8265         }
8266
8267         if (root_level == 0) {
8268                 ret = account_leaf_items(trans, root, root_eb);
8269                 goto out;
8270         }
8271
8272         path = btrfs_alloc_path();
8273         if (!path)
8274                 return -ENOMEM;
8275
8276         /*
8277          * Walk down the tree.  Missing extent blocks are filled in as
8278          * we go. Metadata is accounted every time we read a new
8279          * extent block.
8280          *
8281          * When we reach a leaf, we account for file extent items in it,
8282          * walk back up the tree (adjusting slot pointers as we go)
8283          * and restart the search process.
8284          */
8285         extent_buffer_get(root_eb); /* For path */
8286         path->nodes[root_level] = root_eb;
8287         path->slots[root_level] = 0;
8288         path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8289 walk_down:
8290         level = root_level;
8291         while (level >= 0) {
8292                 if (path->nodes[level] == NULL) {
8293                         int parent_slot;
8294                         u64 child_gen;
8295                         u64 child_bytenr;
8296
8297                         /* We need to get child blockptr/gen from
8298                          * parent before we can read it. */
8299                         eb = path->nodes[level + 1];
8300                         parent_slot = path->slots[level + 1];
8301                         child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8302                         child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8303
8304                         eb = read_tree_block(root, child_bytenr, child_gen);
8305                         if (IS_ERR(eb)) {
8306                                 ret = PTR_ERR(eb);
8307                                 goto out;
8308                         } else if (!extent_buffer_uptodate(eb)) {
8309                                 free_extent_buffer(eb);
8310                                 ret = -EIO;
8311                                 goto out;
8312                         }
8313
8314                         path->nodes[level] = eb;
8315                         path->slots[level] = 0;
8316
8317                         btrfs_tree_read_lock(eb);
8318                         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8319                         path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8320
8321                         ret = record_one_subtree_extent(trans, root, child_bytenr,
8322                                                         root->nodesize);
8323                         if (ret)
8324                                 goto out;
8325                 }
8326
8327                 if (level == 0) {
8328                         ret = account_leaf_items(trans, root, path->nodes[level]);
8329                         if (ret)
8330                                 goto out;
8331
8332                         /* Nonzero return here means we completed our search */
8333                         ret = adjust_slots_upwards(root, path, root_level);
8334                         if (ret)
8335                                 break;
8336
8337                         /* Restart search with new slots */
8338                         goto walk_down;
8339                 }
8340
8341                 level--;
8342         }
8343
8344         ret = 0;
8345 out:
8346         btrfs_free_path(path);
8347
8348         return ret;
8349 }
8350
8351 /*
8352  * helper to process tree block while walking down the tree.
8353  *
8354  * when wc->stage == UPDATE_BACKREF, this function updates
8355  * back refs for pointers in the block.
8356  *
8357  * NOTE: return value 1 means we should stop walking down.
8358  */
8359 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8360                                    struct btrfs_root *root,
8361                                    struct btrfs_path *path,
8362                                    struct walk_control *wc, int lookup_info)
8363 {
8364         int level = wc->level;
8365         struct extent_buffer *eb = path->nodes[level];
8366         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8367         int ret;
8368
8369         if (wc->stage == UPDATE_BACKREF &&
8370             btrfs_header_owner(eb) != root->root_key.objectid)
8371                 return 1;
8372
8373         /*
8374          * when reference count of tree block is 1, it won't increase
8375          * again. once full backref flag is set, we never clear it.
8376          */
8377         if (lookup_info &&
8378             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8379              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8380                 BUG_ON(!path->locks[level]);
8381                 ret = btrfs_lookup_extent_info(trans, root,
8382                                                eb->start, level, 1,
8383                                                &wc->refs[level],
8384                                                &wc->flags[level]);
8385                 BUG_ON(ret == -ENOMEM);
8386                 if (ret)
8387                         return ret;
8388                 BUG_ON(wc->refs[level] == 0);
8389         }
8390
8391         if (wc->stage == DROP_REFERENCE) {
8392                 if (wc->refs[level] > 1)
8393                         return 1;
8394
8395                 if (path->locks[level] && !wc->keep_locks) {
8396                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8397                         path->locks[level] = 0;
8398                 }
8399                 return 0;
8400         }
8401
8402         /* wc->stage == UPDATE_BACKREF */
8403         if (!(wc->flags[level] & flag)) {
8404                 BUG_ON(!path->locks[level]);
8405                 ret = btrfs_inc_ref(trans, root, eb, 1);
8406                 BUG_ON(ret); /* -ENOMEM */
8407                 ret = btrfs_dec_ref(trans, root, eb, 0);
8408                 BUG_ON(ret); /* -ENOMEM */
8409                 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8410                                                   eb->len, flag,
8411                                                   btrfs_header_level(eb), 0);
8412                 BUG_ON(ret); /* -ENOMEM */
8413                 wc->flags[level] |= flag;
8414         }
8415
8416         /*
8417          * the block is shared by multiple trees, so it's not good to
8418          * keep the tree lock
8419          */
8420         if (path->locks[level] && level > 0) {
8421                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8422                 path->locks[level] = 0;
8423         }
8424         return 0;
8425 }
8426
8427 /*
8428  * helper to process tree block pointer.
8429  *
8430  * when wc->stage == DROP_REFERENCE, this function checks
8431  * reference count of the block pointed to. if the block
8432  * is shared and we need update back refs for the subtree
8433  * rooted at the block, this function changes wc->stage to
8434  * UPDATE_BACKREF. if the block is shared and there is no
8435  * need to update back, this function drops the reference
8436  * to the block.
8437  *
8438  * NOTE: return value 1 means we should stop walking down.
8439  */
8440 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8441                                  struct btrfs_root *root,
8442                                  struct btrfs_path *path,
8443                                  struct walk_control *wc, int *lookup_info)
8444 {
8445         u64 bytenr;
8446         u64 generation;
8447         u64 parent;
8448         u32 blocksize;
8449         struct btrfs_key key;
8450         struct extent_buffer *next;
8451         int level = wc->level;
8452         int reada = 0;
8453         int ret = 0;
8454         bool need_account = false;
8455
8456         generation = btrfs_node_ptr_generation(path->nodes[level],
8457                                                path->slots[level]);
8458         /*
8459          * if the lower level block was created before the snapshot
8460          * was created, we know there is no need to update back refs
8461          * for the subtree
8462          */
8463         if (wc->stage == UPDATE_BACKREF &&
8464             generation <= root->root_key.offset) {
8465                 *lookup_info = 1;
8466                 return 1;
8467         }
8468
8469         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8470         blocksize = root->nodesize;
8471
8472         next = btrfs_find_tree_block(root->fs_info, bytenr);
8473         if (!next) {
8474                 next = btrfs_find_create_tree_block(root, bytenr);
8475                 if (!next)
8476                         return -ENOMEM;
8477                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8478                                                level - 1);
8479                 reada = 1;
8480         }
8481         btrfs_tree_lock(next);
8482         btrfs_set_lock_blocking(next);
8483
8484         ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8485                                        &wc->refs[level - 1],
8486                                        &wc->flags[level - 1]);
8487         if (ret < 0) {
8488                 btrfs_tree_unlock(next);
8489                 return ret;
8490         }
8491
8492         if (unlikely(wc->refs[level - 1] == 0)) {
8493                 btrfs_err(root->fs_info, "Missing references.");
8494                 BUG();
8495         }
8496         *lookup_info = 0;
8497
8498         if (wc->stage == DROP_REFERENCE) {
8499                 if (wc->refs[level - 1] > 1) {
8500                         need_account = true;
8501                         if (level == 1 &&
8502                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8503                                 goto skip;
8504
8505                         if (!wc->update_ref ||
8506                             generation <= root->root_key.offset)
8507                                 goto skip;
8508
8509                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8510                                               path->slots[level]);
8511                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8512                         if (ret < 0)
8513                                 goto skip;
8514
8515                         wc->stage = UPDATE_BACKREF;
8516                         wc->shared_level = level - 1;
8517                 }
8518         } else {
8519                 if (level == 1 &&
8520                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8521                         goto skip;
8522         }
8523
8524         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8525                 btrfs_tree_unlock(next);
8526                 free_extent_buffer(next);
8527                 next = NULL;
8528                 *lookup_info = 1;
8529         }
8530
8531         if (!next) {
8532                 if (reada && level == 1)
8533                         reada_walk_down(trans, root, wc, path);
8534                 next = read_tree_block(root, bytenr, generation);
8535                 if (IS_ERR(next)) {
8536                         return PTR_ERR(next);
8537                 } else if (!extent_buffer_uptodate(next)) {
8538                         free_extent_buffer(next);
8539                         return -EIO;
8540                 }
8541                 btrfs_tree_lock(next);
8542                 btrfs_set_lock_blocking(next);
8543         }
8544
8545         level--;
8546         BUG_ON(level != btrfs_header_level(next));
8547         path->nodes[level] = next;
8548         path->slots[level] = 0;
8549         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8550         wc->level = level;
8551         if (wc->level == 1)
8552                 wc->reada_slot = 0;
8553         return 0;
8554 skip:
8555         wc->refs[level - 1] = 0;
8556         wc->flags[level - 1] = 0;
8557         if (wc->stage == DROP_REFERENCE) {
8558                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8559                         parent = path->nodes[level]->start;
8560                 } else {
8561                         BUG_ON(root->root_key.objectid !=
8562                                btrfs_header_owner(path->nodes[level]));
8563                         parent = 0;
8564                 }
8565
8566                 if (need_account) {
8567                         ret = account_shared_subtree(trans, root, next,
8568                                                      generation, level - 1);
8569                         if (ret) {
8570                                 btrfs_err_rl(root->fs_info,
8571                                         "Error "
8572                                         "%d accounting shared subtree. Quota "
8573                                         "is out of sync, rescan required.",
8574                                         ret);
8575                         }
8576                 }
8577                 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8578                                 root->root_key.objectid, level - 1, 0);
8579                 BUG_ON(ret); /* -ENOMEM */
8580         }
8581         btrfs_tree_unlock(next);
8582         free_extent_buffer(next);
8583         *lookup_info = 1;
8584         return 1;
8585 }
8586
8587 /*
8588  * helper to process tree block while walking up the tree.
8589  *
8590  * when wc->stage == DROP_REFERENCE, this function drops
8591  * reference count on the block.
8592  *
8593  * when wc->stage == UPDATE_BACKREF, this function changes
8594  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8595  * to UPDATE_BACKREF previously while processing the block.
8596  *
8597  * NOTE: return value 1 means we should stop walking up.
8598  */
8599 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8600                                  struct btrfs_root *root,
8601                                  struct btrfs_path *path,
8602                                  struct walk_control *wc)
8603 {
8604         int ret;
8605         int level = wc->level;
8606         struct extent_buffer *eb = path->nodes[level];
8607         u64 parent = 0;
8608
8609         if (wc->stage == UPDATE_BACKREF) {
8610                 BUG_ON(wc->shared_level < level);
8611                 if (level < wc->shared_level)
8612                         goto out;
8613
8614                 ret = find_next_key(path, level + 1, &wc->update_progress);
8615                 if (ret > 0)
8616                         wc->update_ref = 0;
8617
8618                 wc->stage = DROP_REFERENCE;
8619                 wc->shared_level = -1;
8620                 path->slots[level] = 0;
8621
8622                 /*
8623                  * check reference count again if the block isn't locked.
8624                  * we should start walking down the tree again if reference
8625                  * count is one.
8626                  */
8627                 if (!path->locks[level]) {
8628                         BUG_ON(level == 0);
8629                         btrfs_tree_lock(eb);
8630                         btrfs_set_lock_blocking(eb);
8631                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8632
8633                         ret = btrfs_lookup_extent_info(trans, root,
8634                                                        eb->start, level, 1,
8635                                                        &wc->refs[level],
8636                                                        &wc->flags[level]);
8637                         if (ret < 0) {
8638                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8639                                 path->locks[level] = 0;
8640                                 return ret;
8641                         }
8642                         BUG_ON(wc->refs[level] == 0);
8643                         if (wc->refs[level] == 1) {
8644                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8645                                 path->locks[level] = 0;
8646                                 return 1;
8647                         }
8648                 }
8649         }
8650
8651         /* wc->stage == DROP_REFERENCE */
8652         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8653
8654         if (wc->refs[level] == 1) {
8655                 if (level == 0) {
8656                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8657                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8658                         else
8659                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8660                         BUG_ON(ret); /* -ENOMEM */
8661                         ret = account_leaf_items(trans, root, eb);
8662                         if (ret) {
8663                                 btrfs_err_rl(root->fs_info,
8664                                         "error "
8665                                         "%d accounting leaf items. Quota "
8666                                         "is out of sync, rescan required.",
8667                                         ret);
8668                         }
8669                 }
8670                 /* make block locked assertion in clean_tree_block happy */
8671                 if (!path->locks[level] &&
8672                     btrfs_header_generation(eb) == trans->transid) {
8673                         btrfs_tree_lock(eb);
8674                         btrfs_set_lock_blocking(eb);
8675                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8676                 }
8677                 clean_tree_block(trans, root->fs_info, eb);
8678         }
8679
8680         if (eb == root->node) {
8681                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8682                         parent = eb->start;
8683                 else
8684                         BUG_ON(root->root_key.objectid !=
8685                                btrfs_header_owner(eb));
8686         } else {
8687                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8688                         parent = path->nodes[level + 1]->start;
8689                 else
8690                         BUG_ON(root->root_key.objectid !=
8691                                btrfs_header_owner(path->nodes[level + 1]));
8692         }
8693
8694         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8695 out:
8696         wc->refs[level] = 0;
8697         wc->flags[level] = 0;
8698         return 0;
8699 }
8700
8701 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8702                                    struct btrfs_root *root,
8703                                    struct btrfs_path *path,
8704                                    struct walk_control *wc)
8705 {
8706         int level = wc->level;
8707         int lookup_info = 1;
8708         int ret;
8709
8710         while (level >= 0) {
8711                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8712                 if (ret > 0)
8713                         break;
8714
8715                 if (level == 0)
8716                         break;
8717
8718                 if (path->slots[level] >=
8719                     btrfs_header_nritems(path->nodes[level]))
8720                         break;
8721
8722                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8723                 if (ret > 0) {
8724                         path->slots[level]++;
8725                         continue;
8726                 } else if (ret < 0)
8727                         return ret;
8728                 level = wc->level;
8729         }
8730         return 0;
8731 }
8732
8733 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8734                                  struct btrfs_root *root,
8735                                  struct btrfs_path *path,
8736                                  struct walk_control *wc, int max_level)
8737 {
8738         int level = wc->level;
8739         int ret;
8740
8741         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8742         while (level < max_level && path->nodes[level]) {
8743                 wc->level = level;
8744                 if (path->slots[level] + 1 <
8745                     btrfs_header_nritems(path->nodes[level])) {
8746                         path->slots[level]++;
8747                         return 0;
8748                 } else {
8749                         ret = walk_up_proc(trans, root, path, wc);
8750                         if (ret > 0)
8751                                 return 0;
8752
8753                         if (path->locks[level]) {
8754                                 btrfs_tree_unlock_rw(path->nodes[level],
8755                                                      path->locks[level]);
8756                                 path->locks[level] = 0;
8757                         }
8758                         free_extent_buffer(path->nodes[level]);
8759                         path->nodes[level] = NULL;
8760                         level++;
8761                 }
8762         }
8763         return 1;
8764 }
8765
8766 /*
8767  * drop a subvolume tree.
8768  *
8769  * this function traverses the tree freeing any blocks that only
8770  * referenced by the tree.
8771  *
8772  * when a shared tree block is found. this function decreases its
8773  * reference count by one. if update_ref is true, this function
8774  * also make sure backrefs for the shared block and all lower level
8775  * blocks are properly updated.
8776  *
8777  * If called with for_reloc == 0, may exit early with -EAGAIN
8778  */
8779 int btrfs_drop_snapshot(struct btrfs_root *root,
8780                          struct btrfs_block_rsv *block_rsv, int update_ref,
8781                          int for_reloc)
8782 {
8783         struct btrfs_path *path;
8784         struct btrfs_trans_handle *trans;
8785         struct btrfs_root *tree_root = root->fs_info->tree_root;
8786         struct btrfs_root_item *root_item = &root->root_item;
8787         struct walk_control *wc;
8788         struct btrfs_key key;
8789         int err = 0;
8790         int ret;
8791         int level;
8792         bool root_dropped = false;
8793
8794         btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8795
8796         path = btrfs_alloc_path();
8797         if (!path) {
8798                 err = -ENOMEM;
8799                 goto out;
8800         }
8801
8802         wc = kzalloc(sizeof(*wc), GFP_NOFS);
8803         if (!wc) {
8804                 btrfs_free_path(path);
8805                 err = -ENOMEM;
8806                 goto out;
8807         }
8808
8809         trans = btrfs_start_transaction(tree_root, 0);
8810         if (IS_ERR(trans)) {
8811                 err = PTR_ERR(trans);
8812                 goto out_free;
8813         }
8814
8815         if (block_rsv)
8816                 trans->block_rsv = block_rsv;
8817
8818         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8819                 level = btrfs_header_level(root->node);
8820                 path->nodes[level] = btrfs_lock_root_node(root);
8821                 btrfs_set_lock_blocking(path->nodes[level]);
8822                 path->slots[level] = 0;
8823                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8824                 memset(&wc->update_progress, 0,
8825                        sizeof(wc->update_progress));
8826         } else {
8827                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8828                 memcpy(&wc->update_progress, &key,
8829                        sizeof(wc->update_progress));
8830
8831                 level = root_item->drop_level;
8832                 BUG_ON(level == 0);
8833                 path->lowest_level = level;
8834                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8835                 path->lowest_level = 0;
8836                 if (ret < 0) {
8837                         err = ret;
8838                         goto out_end_trans;
8839                 }
8840                 WARN_ON(ret > 0);
8841
8842                 /*
8843                  * unlock our path, this is safe because only this
8844                  * function is allowed to delete this snapshot
8845                  */
8846                 btrfs_unlock_up_safe(path, 0);
8847
8848                 level = btrfs_header_level(root->node);
8849                 while (1) {
8850                         btrfs_tree_lock(path->nodes[level]);
8851                         btrfs_set_lock_blocking(path->nodes[level]);
8852                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8853
8854                         ret = btrfs_lookup_extent_info(trans, root,
8855                                                 path->nodes[level]->start,
8856                                                 level, 1, &wc->refs[level],
8857                                                 &wc->flags[level]);
8858                         if (ret < 0) {
8859                                 err = ret;
8860                                 goto out_end_trans;
8861                         }
8862                         BUG_ON(wc->refs[level] == 0);
8863
8864                         if (level == root_item->drop_level)
8865                                 break;
8866
8867                         btrfs_tree_unlock(path->nodes[level]);
8868                         path->locks[level] = 0;
8869                         WARN_ON(wc->refs[level] != 1);
8870                         level--;
8871                 }
8872         }
8873
8874         wc->level = level;
8875         wc->shared_level = -1;
8876         wc->stage = DROP_REFERENCE;
8877         wc->update_ref = update_ref;
8878         wc->keep_locks = 0;
8879         wc->for_reloc = for_reloc;
8880         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8881
8882         while (1) {
8883
8884                 ret = walk_down_tree(trans, root, path, wc);
8885                 if (ret < 0) {
8886                         err = ret;
8887                         break;
8888                 }
8889
8890                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8891                 if (ret < 0) {
8892                         err = ret;
8893                         break;
8894                 }
8895
8896                 if (ret > 0) {
8897                         BUG_ON(wc->stage != DROP_REFERENCE);
8898                         break;
8899                 }
8900
8901                 if (wc->stage == DROP_REFERENCE) {
8902                         level = wc->level;
8903                         btrfs_node_key(path->nodes[level],
8904                                        &root_item->drop_progress,
8905                                        path->slots[level]);
8906                         root_item->drop_level = level;
8907                 }
8908
8909                 BUG_ON(wc->level == 0);
8910                 if (btrfs_should_end_transaction(trans, tree_root) ||
8911                     (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8912                         ret = btrfs_update_root(trans, tree_root,
8913                                                 &root->root_key,
8914                                                 root_item);
8915                         if (ret) {
8916                                 btrfs_abort_transaction(trans, tree_root, ret);
8917                                 err = ret;
8918                                 goto out_end_trans;
8919                         }
8920
8921                         btrfs_end_transaction_throttle(trans, tree_root);
8922                         if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8923                                 pr_debug("BTRFS: drop snapshot early exit\n");
8924                                 err = -EAGAIN;
8925                                 goto out_free;
8926                         }
8927
8928                         trans = btrfs_start_transaction(tree_root, 0);
8929                         if (IS_ERR(trans)) {
8930                                 err = PTR_ERR(trans);
8931                                 goto out_free;
8932                         }
8933                         if (block_rsv)
8934                                 trans->block_rsv = block_rsv;
8935                 }
8936         }
8937         btrfs_release_path(path);
8938         if (err)
8939                 goto out_end_trans;
8940
8941         ret = btrfs_del_root(trans, tree_root, &root->root_key);
8942         if (ret) {
8943                 btrfs_abort_transaction(trans, tree_root, ret);
8944                 goto out_end_trans;
8945         }
8946
8947         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8948                 ret = btrfs_find_root(tree_root, &root->root_key, path,
8949                                       NULL, NULL);
8950                 if (ret < 0) {
8951                         btrfs_abort_transaction(trans, tree_root, ret);
8952                         err = ret;
8953                         goto out_end_trans;
8954                 } else if (ret > 0) {
8955                         /* if we fail to delete the orphan item this time
8956                          * around, it'll get picked up the next time.
8957                          *
8958                          * The most common failure here is just -ENOENT.
8959                          */
8960                         btrfs_del_orphan_item(trans, tree_root,
8961                                               root->root_key.objectid);
8962                 }
8963         }
8964
8965         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8966                 btrfs_add_dropped_root(trans, root);
8967         } else {
8968                 free_extent_buffer(root->node);
8969                 free_extent_buffer(root->commit_root);
8970                 btrfs_put_fs_root(root);
8971         }
8972         root_dropped = true;
8973 out_end_trans:
8974         btrfs_end_transaction_throttle(trans, tree_root);
8975 out_free:
8976         kfree(wc);
8977         btrfs_free_path(path);
8978 out:
8979         /*
8980          * So if we need to stop dropping the snapshot for whatever reason we
8981          * need to make sure to add it back to the dead root list so that we
8982          * keep trying to do the work later.  This also cleans up roots if we
8983          * don't have it in the radix (like when we recover after a power fail
8984          * or unmount) so we don't leak memory.
8985          */
8986         if (!for_reloc && root_dropped == false)
8987                 btrfs_add_dead_root(root);
8988         if (err && err != -EAGAIN)
8989                 btrfs_std_error(root->fs_info, err, NULL);
8990         return err;
8991 }
8992
8993 /*
8994  * drop subtree rooted at tree block 'node'.
8995  *
8996  * NOTE: this function will unlock and release tree block 'node'
8997  * only used by relocation code
8998  */
8999 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9000                         struct btrfs_root *root,
9001                         struct extent_buffer *node,
9002                         struct extent_buffer *parent)
9003 {
9004         struct btrfs_path *path;
9005         struct walk_control *wc;
9006         int level;
9007         int parent_level;
9008         int ret = 0;
9009         int wret;
9010
9011         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9012
9013         path = btrfs_alloc_path();
9014         if (!path)
9015                 return -ENOMEM;
9016
9017         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9018         if (!wc) {
9019                 btrfs_free_path(path);
9020                 return -ENOMEM;
9021         }
9022
9023         btrfs_assert_tree_locked(parent);
9024         parent_level = btrfs_header_level(parent);
9025         extent_buffer_get(parent);
9026         path->nodes[parent_level] = parent;
9027         path->slots[parent_level] = btrfs_header_nritems(parent);
9028
9029         btrfs_assert_tree_locked(node);
9030         level = btrfs_header_level(node);
9031         path->nodes[level] = node;
9032         path->slots[level] = 0;
9033         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9034
9035         wc->refs[parent_level] = 1;
9036         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9037         wc->level = level;
9038         wc->shared_level = -1;
9039         wc->stage = DROP_REFERENCE;
9040         wc->update_ref = 0;
9041         wc->keep_locks = 1;
9042         wc->for_reloc = 1;
9043         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9044
9045         while (1) {
9046                 wret = walk_down_tree(trans, root, path, wc);
9047                 if (wret < 0) {
9048                         ret = wret;
9049                         break;
9050                 }
9051
9052                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9053                 if (wret < 0)
9054                         ret = wret;
9055                 if (wret != 0)
9056                         break;
9057         }
9058
9059         kfree(wc);
9060         btrfs_free_path(path);
9061         return ret;
9062 }
9063
9064 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9065 {
9066         u64 num_devices;
9067         u64 stripped;
9068
9069         /*
9070          * if restripe for this chunk_type is on pick target profile and
9071          * return, otherwise do the usual balance
9072          */
9073         stripped = get_restripe_target(root->fs_info, flags);
9074         if (stripped)
9075                 return extended_to_chunk(stripped);
9076
9077         num_devices = root->fs_info->fs_devices->rw_devices;
9078
9079         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9080                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9081                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9082
9083         if (num_devices == 1) {
9084                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9085                 stripped = flags & ~stripped;
9086
9087                 /* turn raid0 into single device chunks */
9088                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9089                         return stripped;
9090
9091                 /* turn mirroring into duplication */
9092                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9093                              BTRFS_BLOCK_GROUP_RAID10))
9094                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9095         } else {
9096                 /* they already had raid on here, just return */
9097                 if (flags & stripped)
9098                         return flags;
9099
9100                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9101                 stripped = flags & ~stripped;
9102
9103                 /* switch duplicated blocks with raid1 */
9104                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9105                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9106
9107                 /* this is drive concat, leave it alone */
9108         }
9109
9110         return flags;
9111 }
9112
9113 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9114 {
9115         struct btrfs_space_info *sinfo = cache->space_info;
9116         u64 num_bytes;
9117         u64 min_allocable_bytes;
9118         int ret = -ENOSPC;
9119
9120         /*
9121          * We need some metadata space and system metadata space for
9122          * allocating chunks in some corner cases until we force to set
9123          * it to be readonly.
9124          */
9125         if ((sinfo->flags &
9126              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9127             !force)
9128                 min_allocable_bytes = 1 * 1024 * 1024;
9129         else
9130                 min_allocable_bytes = 0;
9131
9132         spin_lock(&sinfo->lock);
9133         spin_lock(&cache->lock);
9134
9135         if (cache->ro) {
9136                 cache->ro++;
9137                 ret = 0;
9138                 goto out;
9139         }
9140
9141         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9142                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9143
9144         if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9145             sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9146             min_allocable_bytes <= sinfo->total_bytes) {
9147                 sinfo->bytes_readonly += num_bytes;
9148                 cache->ro++;
9149                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9150                 ret = 0;
9151         }
9152 out:
9153         spin_unlock(&cache->lock);
9154         spin_unlock(&sinfo->lock);
9155         return ret;
9156 }
9157
9158 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9159                              struct btrfs_block_group_cache *cache)
9160
9161 {
9162         struct btrfs_trans_handle *trans;
9163         u64 alloc_flags;
9164         int ret;
9165
9166 again:
9167         trans = btrfs_join_transaction(root);
9168         if (IS_ERR(trans))
9169                 return PTR_ERR(trans);
9170
9171         /*
9172          * we're not allowed to set block groups readonly after the dirty
9173          * block groups cache has started writing.  If it already started,
9174          * back off and let this transaction commit
9175          */
9176         mutex_lock(&root->fs_info->ro_block_group_mutex);
9177         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9178                 u64 transid = trans->transid;
9179
9180                 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9181                 btrfs_end_transaction(trans, root);
9182
9183                 ret = btrfs_wait_for_commit(root, transid);
9184                 if (ret)
9185                         return ret;
9186                 goto again;
9187         }
9188
9189         /*
9190          * if we are changing raid levels, try to allocate a corresponding
9191          * block group with the new raid level.
9192          */
9193         alloc_flags = update_block_group_flags(root, cache->flags);
9194         if (alloc_flags != cache->flags) {
9195                 ret = do_chunk_alloc(trans, root, alloc_flags,
9196                                      CHUNK_ALLOC_FORCE);
9197                 /*
9198                  * ENOSPC is allowed here, we may have enough space
9199                  * already allocated at the new raid level to
9200                  * carry on
9201                  */
9202                 if (ret == -ENOSPC)
9203                         ret = 0;
9204                 if (ret < 0)
9205                         goto out;
9206         }
9207
9208         ret = inc_block_group_ro(cache, 0);
9209         if (!ret)
9210                 goto out;
9211         alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9212         ret = do_chunk_alloc(trans, root, alloc_flags,
9213                              CHUNK_ALLOC_FORCE);
9214         if (ret < 0)
9215                 goto out;
9216         ret = inc_block_group_ro(cache, 0);
9217 out:
9218         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9219                 alloc_flags = update_block_group_flags(root, cache->flags);
9220                 lock_chunks(root->fs_info->chunk_root);
9221                 check_system_chunk(trans, root, alloc_flags);
9222                 unlock_chunks(root->fs_info->chunk_root);
9223         }
9224         mutex_unlock(&root->fs_info->ro_block_group_mutex);
9225
9226         btrfs_end_transaction(trans, root);
9227         return ret;
9228 }
9229
9230 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9231                             struct btrfs_root *root, u64 type)
9232 {
9233         u64 alloc_flags = get_alloc_profile(root, type);
9234         return do_chunk_alloc(trans, root, alloc_flags,
9235                               CHUNK_ALLOC_FORCE);
9236 }
9237
9238 /*
9239  * helper to account the unused space of all the readonly block group in the
9240  * space_info. takes mirrors into account.
9241  */
9242 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9243 {
9244         struct btrfs_block_group_cache *block_group;
9245         u64 free_bytes = 0;
9246         int factor;
9247
9248         /* It's df, we don't care if it's racey */
9249         if (list_empty(&sinfo->ro_bgs))
9250                 return 0;
9251
9252         spin_lock(&sinfo->lock);
9253         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9254                 spin_lock(&block_group->lock);
9255
9256                 if (!block_group->ro) {
9257                         spin_unlock(&block_group->lock);
9258                         continue;
9259                 }
9260
9261                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9262                                           BTRFS_BLOCK_GROUP_RAID10 |
9263                                           BTRFS_BLOCK_GROUP_DUP))
9264                         factor = 2;
9265                 else
9266                         factor = 1;
9267
9268                 free_bytes += (block_group->key.offset -
9269                                btrfs_block_group_used(&block_group->item)) *
9270                                factor;
9271
9272                 spin_unlock(&block_group->lock);
9273         }
9274         spin_unlock(&sinfo->lock);
9275
9276         return free_bytes;
9277 }
9278
9279 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9280                               struct btrfs_block_group_cache *cache)
9281 {
9282         struct btrfs_space_info *sinfo = cache->space_info;
9283         u64 num_bytes;
9284
9285         BUG_ON(!cache->ro);
9286
9287         spin_lock(&sinfo->lock);
9288         spin_lock(&cache->lock);
9289         if (!--cache->ro) {
9290                 num_bytes = cache->key.offset - cache->reserved -
9291                             cache->pinned - cache->bytes_super -
9292                             btrfs_block_group_used(&cache->item);
9293                 sinfo->bytes_readonly -= num_bytes;
9294                 list_del_init(&cache->ro_list);
9295         }
9296         spin_unlock(&cache->lock);
9297         spin_unlock(&sinfo->lock);
9298 }
9299
9300 /*
9301  * checks to see if its even possible to relocate this block group.
9302  *
9303  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9304  * ok to go ahead and try.
9305  */
9306 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9307 {
9308         struct btrfs_block_group_cache *block_group;
9309         struct btrfs_space_info *space_info;
9310         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9311         struct btrfs_device *device;
9312         struct btrfs_trans_handle *trans;
9313         u64 min_free;
9314         u64 dev_min = 1;
9315         u64 dev_nr = 0;
9316         u64 target;
9317         int index;
9318         int full = 0;
9319         int ret = 0;
9320
9321         block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9322
9323         /* odd, couldn't find the block group, leave it alone */
9324         if (!block_group)
9325                 return -1;
9326
9327         min_free = btrfs_block_group_used(&block_group->item);
9328
9329         /* no bytes used, we're good */
9330         if (!min_free)
9331                 goto out;
9332
9333         space_info = block_group->space_info;
9334         spin_lock(&space_info->lock);
9335
9336         full = space_info->full;
9337
9338         /*
9339          * if this is the last block group we have in this space, we can't
9340          * relocate it unless we're able to allocate a new chunk below.
9341          *
9342          * Otherwise, we need to make sure we have room in the space to handle
9343          * all of the extents from this block group.  If we can, we're good
9344          */
9345         if ((space_info->total_bytes != block_group->key.offset) &&
9346             (space_info->bytes_used + space_info->bytes_reserved +
9347              space_info->bytes_pinned + space_info->bytes_readonly +
9348              min_free < space_info->total_bytes)) {
9349                 spin_unlock(&space_info->lock);
9350                 goto out;
9351         }
9352         spin_unlock(&space_info->lock);
9353
9354         /*
9355          * ok we don't have enough space, but maybe we have free space on our
9356          * devices to allocate new chunks for relocation, so loop through our
9357          * alloc devices and guess if we have enough space.  if this block
9358          * group is going to be restriped, run checks against the target
9359          * profile instead of the current one.
9360          */
9361         ret = -1;
9362
9363         /*
9364          * index:
9365          *      0: raid10
9366          *      1: raid1
9367          *      2: dup
9368          *      3: raid0
9369          *      4: single
9370          */
9371         target = get_restripe_target(root->fs_info, block_group->flags);
9372         if (target) {
9373                 index = __get_raid_index(extended_to_chunk(target));
9374         } else {
9375                 /*
9376                  * this is just a balance, so if we were marked as full
9377                  * we know there is no space for a new chunk
9378                  */
9379                 if (full)
9380                         goto out;
9381
9382                 index = get_block_group_index(block_group);
9383         }
9384
9385         if (index == BTRFS_RAID_RAID10) {
9386                 dev_min = 4;
9387                 /* Divide by 2 */
9388                 min_free >>= 1;
9389         } else if (index == BTRFS_RAID_RAID1) {
9390                 dev_min = 2;
9391         } else if (index == BTRFS_RAID_DUP) {
9392                 /* Multiply by 2 */
9393                 min_free <<= 1;
9394         } else if (index == BTRFS_RAID_RAID0) {
9395                 dev_min = fs_devices->rw_devices;
9396                 min_free = div64_u64(min_free, dev_min);
9397         }
9398
9399         /* We need to do this so that we can look at pending chunks */
9400         trans = btrfs_join_transaction(root);
9401         if (IS_ERR(trans)) {
9402                 ret = PTR_ERR(trans);
9403                 goto out;
9404         }
9405
9406         mutex_lock(&root->fs_info->chunk_mutex);
9407         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9408                 u64 dev_offset;
9409
9410                 /*
9411                  * check to make sure we can actually find a chunk with enough
9412                  * space to fit our block group in.
9413                  */
9414                 if (device->total_bytes > device->bytes_used + min_free &&
9415                     !device->is_tgtdev_for_dev_replace) {
9416                         ret = find_free_dev_extent(trans, device, min_free,
9417                                                    &dev_offset, NULL);
9418                         if (!ret)
9419                                 dev_nr++;
9420
9421                         if (dev_nr >= dev_min)
9422                                 break;
9423
9424                         ret = -1;
9425                 }
9426         }
9427         mutex_unlock(&root->fs_info->chunk_mutex);
9428         btrfs_end_transaction(trans, root);
9429 out:
9430         btrfs_put_block_group(block_group);
9431         return ret;
9432 }
9433
9434 static int find_first_block_group(struct btrfs_root *root,
9435                 struct btrfs_path *path, struct btrfs_key *key)
9436 {
9437         int ret = 0;
9438         struct btrfs_key found_key;
9439         struct extent_buffer *leaf;
9440         int slot;
9441
9442         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9443         if (ret < 0)
9444                 goto out;
9445
9446         while (1) {
9447                 slot = path->slots[0];
9448                 leaf = path->nodes[0];
9449                 if (slot >= btrfs_header_nritems(leaf)) {
9450                         ret = btrfs_next_leaf(root, path);
9451                         if (ret == 0)
9452                                 continue;
9453                         if (ret < 0)
9454                                 goto out;
9455                         break;
9456                 }
9457                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9458
9459                 if (found_key.objectid >= key->objectid &&
9460                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9461                         ret = 0;
9462                         goto out;
9463                 }
9464                 path->slots[0]++;
9465         }
9466 out:
9467         return ret;
9468 }
9469
9470 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9471 {
9472         struct btrfs_block_group_cache *block_group;
9473         u64 last = 0;
9474
9475         while (1) {
9476                 struct inode *inode;
9477
9478                 block_group = btrfs_lookup_first_block_group(info, last);
9479                 while (block_group) {
9480                         spin_lock(&block_group->lock);
9481                         if (block_group->iref)
9482                                 break;
9483                         spin_unlock(&block_group->lock);
9484                         block_group = next_block_group(info->tree_root,
9485                                                        block_group);
9486                 }
9487                 if (!block_group) {
9488                         if (last == 0)
9489                                 break;
9490                         last = 0;
9491                         continue;
9492                 }
9493
9494                 inode = block_group->inode;
9495                 block_group->iref = 0;
9496                 block_group->inode = NULL;
9497                 spin_unlock(&block_group->lock);
9498                 iput(inode);
9499                 last = block_group->key.objectid + block_group->key.offset;
9500                 btrfs_put_block_group(block_group);
9501         }
9502 }
9503
9504 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9505 {
9506         struct btrfs_block_group_cache *block_group;
9507         struct btrfs_space_info *space_info;
9508         struct btrfs_caching_control *caching_ctl;
9509         struct rb_node *n;
9510
9511         down_write(&info->commit_root_sem);
9512         while (!list_empty(&info->caching_block_groups)) {
9513                 caching_ctl = list_entry(info->caching_block_groups.next,
9514                                          struct btrfs_caching_control, list);
9515                 list_del(&caching_ctl->list);
9516                 put_caching_control(caching_ctl);
9517         }
9518         up_write(&info->commit_root_sem);
9519
9520         spin_lock(&info->unused_bgs_lock);
9521         while (!list_empty(&info->unused_bgs)) {
9522                 block_group = list_first_entry(&info->unused_bgs,
9523                                                struct btrfs_block_group_cache,
9524                                                bg_list);
9525                 list_del_init(&block_group->bg_list);
9526                 btrfs_put_block_group(block_group);
9527         }
9528         spin_unlock(&info->unused_bgs_lock);
9529
9530         spin_lock(&info->block_group_cache_lock);
9531         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9532                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9533                                        cache_node);
9534                 rb_erase(&block_group->cache_node,
9535                          &info->block_group_cache_tree);
9536                 RB_CLEAR_NODE(&block_group->cache_node);
9537                 spin_unlock(&info->block_group_cache_lock);
9538
9539                 down_write(&block_group->space_info->groups_sem);
9540                 list_del(&block_group->list);
9541                 up_write(&block_group->space_info->groups_sem);
9542
9543                 if (block_group->cached == BTRFS_CACHE_STARTED)
9544                         wait_block_group_cache_done(block_group);
9545
9546                 /*
9547                  * We haven't cached this block group, which means we could
9548                  * possibly have excluded extents on this block group.
9549                  */
9550                 if (block_group->cached == BTRFS_CACHE_NO ||
9551                     block_group->cached == BTRFS_CACHE_ERROR)
9552                         free_excluded_extents(info->extent_root, block_group);
9553
9554                 btrfs_remove_free_space_cache(block_group);
9555                 btrfs_put_block_group(block_group);
9556
9557                 spin_lock(&info->block_group_cache_lock);
9558         }
9559         spin_unlock(&info->block_group_cache_lock);
9560
9561         /* now that all the block groups are freed, go through and
9562          * free all the space_info structs.  This is only called during
9563          * the final stages of unmount, and so we know nobody is
9564          * using them.  We call synchronize_rcu() once before we start,
9565          * just to be on the safe side.
9566          */
9567         synchronize_rcu();
9568
9569         release_global_block_rsv(info);
9570
9571         while (!list_empty(&info->space_info)) {
9572                 int i;
9573
9574                 space_info = list_entry(info->space_info.next,
9575                                         struct btrfs_space_info,
9576                                         list);
9577                 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9578                         if (WARN_ON(space_info->bytes_pinned > 0 ||
9579                             space_info->bytes_reserved > 0 ||
9580                             space_info->bytes_may_use > 0)) {
9581                                 dump_space_info(space_info, 0, 0);
9582                         }
9583                 }
9584                 list_del(&space_info->list);
9585                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9586                         struct kobject *kobj;
9587                         kobj = space_info->block_group_kobjs[i];
9588                         space_info->block_group_kobjs[i] = NULL;
9589                         if (kobj) {
9590                                 kobject_del(kobj);
9591                                 kobject_put(kobj);
9592                         }
9593                 }
9594                 kobject_del(&space_info->kobj);
9595                 kobject_put(&space_info->kobj);
9596         }
9597         return 0;
9598 }
9599
9600 static void __link_block_group(struct btrfs_space_info *space_info,
9601                                struct btrfs_block_group_cache *cache)
9602 {
9603         int index = get_block_group_index(cache);
9604         bool first = false;
9605
9606         down_write(&space_info->groups_sem);
9607         if (list_empty(&space_info->block_groups[index]))
9608                 first = true;
9609         list_add_tail(&cache->list, &space_info->block_groups[index]);
9610         up_write(&space_info->groups_sem);
9611
9612         if (first) {
9613                 struct raid_kobject *rkobj;
9614                 int ret;
9615
9616                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9617                 if (!rkobj)
9618                         goto out_err;
9619                 rkobj->raid_type = index;
9620                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9621                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9622                                   "%s", get_raid_name(index));
9623                 if (ret) {
9624                         kobject_put(&rkobj->kobj);
9625                         goto out_err;
9626                 }
9627                 space_info->block_group_kobjs[index] = &rkobj->kobj;
9628         }
9629
9630         return;
9631 out_err:
9632         pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9633 }
9634
9635 static struct btrfs_block_group_cache *
9636 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9637 {
9638         struct btrfs_block_group_cache *cache;
9639
9640         cache = kzalloc(sizeof(*cache), GFP_NOFS);
9641         if (!cache)
9642                 return NULL;
9643
9644         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9645                                         GFP_NOFS);
9646         if (!cache->free_space_ctl) {
9647                 kfree(cache);
9648                 return NULL;
9649         }
9650
9651         cache->key.objectid = start;
9652         cache->key.offset = size;
9653         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9654
9655         cache->sectorsize = root->sectorsize;
9656         cache->fs_info = root->fs_info;
9657         cache->full_stripe_len = btrfs_full_stripe_len(root,
9658                                                &root->fs_info->mapping_tree,
9659                                                start);
9660         atomic_set(&cache->count, 1);
9661         spin_lock_init(&cache->lock);
9662         init_rwsem(&cache->data_rwsem);
9663         INIT_LIST_HEAD(&cache->list);
9664         INIT_LIST_HEAD(&cache->cluster_list);
9665         INIT_LIST_HEAD(&cache->bg_list);
9666         INIT_LIST_HEAD(&cache->ro_list);
9667         INIT_LIST_HEAD(&cache->dirty_list);
9668         INIT_LIST_HEAD(&cache->io_list);
9669         btrfs_init_free_space_ctl(cache);
9670         atomic_set(&cache->trimming, 0);
9671
9672         return cache;
9673 }
9674
9675 int btrfs_read_block_groups(struct btrfs_root *root)
9676 {
9677         struct btrfs_path *path;
9678         int ret;
9679         struct btrfs_block_group_cache *cache;
9680         struct btrfs_fs_info *info = root->fs_info;
9681         struct btrfs_space_info *space_info;
9682         struct btrfs_key key;
9683         struct btrfs_key found_key;
9684         struct extent_buffer *leaf;
9685         int need_clear = 0;
9686         u64 cache_gen;
9687
9688         root = info->extent_root;
9689         key.objectid = 0;
9690         key.offset = 0;
9691         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9692         path = btrfs_alloc_path();
9693         if (!path)
9694                 return -ENOMEM;
9695         path->reada = 1;
9696
9697         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9698         if (btrfs_test_opt(root, SPACE_CACHE) &&
9699             btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9700                 need_clear = 1;
9701         if (btrfs_test_opt(root, CLEAR_CACHE))
9702                 need_clear = 1;
9703
9704         while (1) {
9705                 ret = find_first_block_group(root, path, &key);
9706                 if (ret > 0)
9707                         break;
9708                 if (ret != 0)
9709                         goto error;
9710
9711                 leaf = path->nodes[0];
9712                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9713
9714                 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9715                                                        found_key.offset);
9716                 if (!cache) {
9717                         ret = -ENOMEM;
9718                         goto error;
9719                 }
9720
9721                 if (need_clear) {
9722                         /*
9723                          * When we mount with old space cache, we need to
9724                          * set BTRFS_DC_CLEAR and set dirty flag.
9725                          *
9726                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9727                          *    truncate the old free space cache inode and
9728                          *    setup a new one.
9729                          * b) Setting 'dirty flag' makes sure that we flush
9730                          *    the new space cache info onto disk.
9731                          */
9732                         if (btrfs_test_opt(root, SPACE_CACHE))
9733                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
9734                 }
9735
9736                 read_extent_buffer(leaf, &cache->item,
9737                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
9738                                    sizeof(cache->item));
9739                 cache->flags = btrfs_block_group_flags(&cache->item);
9740
9741                 key.objectid = found_key.objectid + found_key.offset;
9742                 btrfs_release_path(path);
9743
9744                 /*
9745                  * We need to exclude the super stripes now so that the space
9746                  * info has super bytes accounted for, otherwise we'll think
9747                  * we have more space than we actually do.
9748                  */
9749                 ret = exclude_super_stripes(root, cache);
9750                 if (ret) {
9751                         /*
9752                          * We may have excluded something, so call this just in
9753                          * case.
9754                          */
9755                         free_excluded_extents(root, cache);
9756                         btrfs_put_block_group(cache);
9757                         goto error;
9758                 }
9759
9760                 /*
9761                  * check for two cases, either we are full, and therefore
9762                  * don't need to bother with the caching work since we won't
9763                  * find any space, or we are empty, and we can just add all
9764                  * the space in and be done with it.  This saves us _alot_ of
9765                  * time, particularly in the full case.
9766                  */
9767                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9768                         cache->last_byte_to_unpin = (u64)-1;
9769                         cache->cached = BTRFS_CACHE_FINISHED;
9770                         free_excluded_extents(root, cache);
9771                 } else if (btrfs_block_group_used(&cache->item) == 0) {
9772                         cache->last_byte_to_unpin = (u64)-1;
9773                         cache->cached = BTRFS_CACHE_FINISHED;
9774                         add_new_free_space(cache, root->fs_info,
9775                                            found_key.objectid,
9776                                            found_key.objectid +
9777                                            found_key.offset);
9778                         free_excluded_extents(root, cache);
9779                 }
9780
9781                 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9782                 if (ret) {
9783                         btrfs_remove_free_space_cache(cache);
9784                         btrfs_put_block_group(cache);
9785                         goto error;
9786                 }
9787
9788                 ret = update_space_info(info, cache->flags, found_key.offset,
9789                                         btrfs_block_group_used(&cache->item),
9790                                         &space_info);
9791                 if (ret) {
9792                         btrfs_remove_free_space_cache(cache);
9793                         spin_lock(&info->block_group_cache_lock);
9794                         rb_erase(&cache->cache_node,
9795                                  &info->block_group_cache_tree);
9796                         RB_CLEAR_NODE(&cache->cache_node);
9797                         spin_unlock(&info->block_group_cache_lock);
9798                         btrfs_put_block_group(cache);
9799                         goto error;
9800                 }
9801
9802                 cache->space_info = space_info;
9803                 spin_lock(&cache->space_info->lock);
9804                 cache->space_info->bytes_readonly += cache->bytes_super;
9805                 spin_unlock(&cache->space_info->lock);
9806
9807                 __link_block_group(space_info, cache);
9808
9809                 set_avail_alloc_bits(root->fs_info, cache->flags);
9810                 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9811                         inc_block_group_ro(cache, 1);
9812                 } else if (btrfs_block_group_used(&cache->item) == 0) {
9813                         spin_lock(&info->unused_bgs_lock);
9814                         /* Should always be true but just in case. */
9815                         if (list_empty(&cache->bg_list)) {
9816                                 btrfs_get_block_group(cache);
9817                                 list_add_tail(&cache->bg_list,
9818                                               &info->unused_bgs);
9819                         }
9820                         spin_unlock(&info->unused_bgs_lock);
9821                 }
9822         }
9823
9824         list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9825                 if (!(get_alloc_profile(root, space_info->flags) &
9826                       (BTRFS_BLOCK_GROUP_RAID10 |
9827                        BTRFS_BLOCK_GROUP_RAID1 |
9828                        BTRFS_BLOCK_GROUP_RAID5 |
9829                        BTRFS_BLOCK_GROUP_RAID6 |
9830                        BTRFS_BLOCK_GROUP_DUP)))
9831                         continue;
9832                 /*
9833                  * avoid allocating from un-mirrored block group if there are
9834                  * mirrored block groups.
9835                  */
9836                 list_for_each_entry(cache,
9837                                 &space_info->block_groups[BTRFS_RAID_RAID0],
9838                                 list)
9839                         inc_block_group_ro(cache, 1);
9840                 list_for_each_entry(cache,
9841                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
9842                                 list)
9843                         inc_block_group_ro(cache, 1);
9844         }
9845
9846         init_global_block_rsv(info);
9847         ret = 0;
9848 error:
9849         btrfs_free_path(path);
9850         return ret;
9851 }
9852
9853 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9854                                        struct btrfs_root *root)
9855 {
9856         struct btrfs_block_group_cache *block_group, *tmp;
9857         struct btrfs_root *extent_root = root->fs_info->extent_root;
9858         struct btrfs_block_group_item item;
9859         struct btrfs_key key;
9860         int ret = 0;
9861         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9862
9863         trans->can_flush_pending_bgs = false;
9864         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9865                 if (ret)
9866                         goto next;
9867
9868                 spin_lock(&block_group->lock);
9869                 memcpy(&item, &block_group->item, sizeof(item));
9870                 memcpy(&key, &block_group->key, sizeof(key));
9871                 spin_unlock(&block_group->lock);
9872
9873                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9874                                         sizeof(item));
9875                 if (ret)
9876                         btrfs_abort_transaction(trans, extent_root, ret);
9877                 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9878                                                key.objectid, key.offset);
9879                 if (ret)
9880                         btrfs_abort_transaction(trans, extent_root, ret);
9881 next:
9882                 list_del_init(&block_group->bg_list);
9883         }
9884         trans->can_flush_pending_bgs = can_flush_pending_bgs;
9885 }
9886
9887 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9888                            struct btrfs_root *root, u64 bytes_used,
9889                            u64 type, u64 chunk_objectid, u64 chunk_offset,
9890                            u64 size)
9891 {
9892         int ret;
9893         struct btrfs_root *extent_root;
9894         struct btrfs_block_group_cache *cache;
9895
9896         extent_root = root->fs_info->extent_root;
9897
9898         btrfs_set_log_full_commit(root->fs_info, trans);
9899
9900         cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9901         if (!cache)
9902                 return -ENOMEM;
9903
9904         btrfs_set_block_group_used(&cache->item, bytes_used);
9905         btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9906         btrfs_set_block_group_flags(&cache->item, type);
9907
9908         cache->flags = type;
9909         cache->last_byte_to_unpin = (u64)-1;
9910         cache->cached = BTRFS_CACHE_FINISHED;
9911         ret = exclude_super_stripes(root, cache);
9912         if (ret) {
9913                 /*
9914                  * We may have excluded something, so call this just in
9915                  * case.
9916                  */
9917                 free_excluded_extents(root, cache);
9918                 btrfs_put_block_group(cache);
9919                 return ret;
9920         }
9921
9922         add_new_free_space(cache, root->fs_info, chunk_offset,
9923                            chunk_offset + size);
9924
9925         free_excluded_extents(root, cache);
9926
9927 #ifdef CONFIG_BTRFS_DEBUG
9928         if (btrfs_should_fragment_free_space(root, cache)) {
9929                 u64 new_bytes_used = size - bytes_used;
9930
9931                 bytes_used += new_bytes_used >> 1;
9932                 fragment_free_space(root, cache);
9933         }
9934 #endif
9935         /*
9936          * Call to ensure the corresponding space_info object is created and
9937          * assigned to our block group, but don't update its counters just yet.
9938          * We want our bg to be added to the rbtree with its ->space_info set.
9939          */
9940         ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9941                                 &cache->space_info);
9942         if (ret) {
9943                 btrfs_remove_free_space_cache(cache);
9944                 btrfs_put_block_group(cache);
9945                 return ret;
9946         }
9947
9948         ret = btrfs_add_block_group_cache(root->fs_info, cache);
9949         if (ret) {
9950                 btrfs_remove_free_space_cache(cache);
9951                 btrfs_put_block_group(cache);
9952                 return ret;
9953         }
9954
9955         /*
9956          * Now that our block group has its ->space_info set and is inserted in
9957          * the rbtree, update the space info's counters.
9958          */
9959         ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9960                                 &cache->space_info);
9961         if (ret) {
9962                 btrfs_remove_free_space_cache(cache);
9963                 spin_lock(&root->fs_info->block_group_cache_lock);
9964                 rb_erase(&cache->cache_node,
9965                          &root->fs_info->block_group_cache_tree);
9966                 RB_CLEAR_NODE(&cache->cache_node);
9967                 spin_unlock(&root->fs_info->block_group_cache_lock);
9968                 btrfs_put_block_group(cache);
9969                 return ret;
9970         }
9971         update_global_block_rsv(root->fs_info);
9972
9973         spin_lock(&cache->space_info->lock);
9974         cache->space_info->bytes_readonly += cache->bytes_super;
9975         spin_unlock(&cache->space_info->lock);
9976
9977         __link_block_group(cache->space_info, cache);
9978
9979         list_add_tail(&cache->bg_list, &trans->new_bgs);
9980
9981         set_avail_alloc_bits(extent_root->fs_info, type);
9982
9983         return 0;
9984 }
9985
9986 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9987 {
9988         u64 extra_flags = chunk_to_extended(flags) &
9989                                 BTRFS_EXTENDED_PROFILE_MASK;
9990
9991         write_seqlock(&fs_info->profiles_lock);
9992         if (flags & BTRFS_BLOCK_GROUP_DATA)
9993                 fs_info->avail_data_alloc_bits &= ~extra_flags;
9994         if (flags & BTRFS_BLOCK_GROUP_METADATA)
9995                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9996         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9997                 fs_info->avail_system_alloc_bits &= ~extra_flags;
9998         write_sequnlock(&fs_info->profiles_lock);
9999 }
10000
10001 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10002                              struct btrfs_root *root, u64 group_start,
10003                              struct extent_map *em)
10004 {
10005         struct btrfs_path *path;
10006         struct btrfs_block_group_cache *block_group;
10007         struct btrfs_free_cluster *cluster;
10008         struct btrfs_root *tree_root = root->fs_info->tree_root;
10009         struct btrfs_key key;
10010         struct inode *inode;
10011         struct kobject *kobj = NULL;
10012         int ret;
10013         int index;
10014         int factor;
10015         struct btrfs_caching_control *caching_ctl = NULL;
10016         bool remove_em;
10017
10018         root = root->fs_info->extent_root;
10019
10020         block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10021         BUG_ON(!block_group);
10022         BUG_ON(!block_group->ro);
10023
10024         /*
10025          * Free the reserved super bytes from this block group before
10026          * remove it.
10027          */
10028         free_excluded_extents(root, block_group);
10029
10030         memcpy(&key, &block_group->key, sizeof(key));
10031         index = get_block_group_index(block_group);
10032         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10033                                   BTRFS_BLOCK_GROUP_RAID1 |
10034                                   BTRFS_BLOCK_GROUP_RAID10))
10035                 factor = 2;
10036         else
10037                 factor = 1;
10038
10039         /* make sure this block group isn't part of an allocation cluster */
10040         cluster = &root->fs_info->data_alloc_cluster;
10041         spin_lock(&cluster->refill_lock);
10042         btrfs_return_cluster_to_free_space(block_group, cluster);
10043         spin_unlock(&cluster->refill_lock);
10044
10045         /*
10046          * make sure this block group isn't part of a metadata
10047          * allocation cluster
10048          */
10049         cluster = &root->fs_info->meta_alloc_cluster;
10050         spin_lock(&cluster->refill_lock);
10051         btrfs_return_cluster_to_free_space(block_group, cluster);
10052         spin_unlock(&cluster->refill_lock);
10053
10054         path = btrfs_alloc_path();
10055         if (!path) {
10056                 ret = -ENOMEM;
10057                 goto out;
10058         }
10059
10060         /*
10061          * get the inode first so any iput calls done for the io_list
10062          * aren't the final iput (no unlinks allowed now)
10063          */
10064         inode = lookup_free_space_inode(tree_root, block_group, path);
10065
10066         mutex_lock(&trans->transaction->cache_write_mutex);
10067         /*
10068          * make sure our free spache cache IO is done before remove the
10069          * free space inode
10070          */
10071         spin_lock(&trans->transaction->dirty_bgs_lock);
10072         if (!list_empty(&block_group->io_list)) {
10073                 list_del_init(&block_group->io_list);
10074
10075                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10076
10077                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10078                 btrfs_wait_cache_io(root, trans, block_group,
10079                                     &block_group->io_ctl, path,
10080                                     block_group->key.objectid);
10081                 btrfs_put_block_group(block_group);
10082                 spin_lock(&trans->transaction->dirty_bgs_lock);
10083         }
10084
10085         if (!list_empty(&block_group->dirty_list)) {
10086                 list_del_init(&block_group->dirty_list);
10087                 btrfs_put_block_group(block_group);
10088         }
10089         spin_unlock(&trans->transaction->dirty_bgs_lock);
10090         mutex_unlock(&trans->transaction->cache_write_mutex);
10091
10092         if (!IS_ERR(inode)) {
10093                 ret = btrfs_orphan_add(trans, inode);
10094                 if (ret) {
10095                         btrfs_add_delayed_iput(inode);
10096                         goto out;
10097                 }
10098                 clear_nlink(inode);
10099                 /* One for the block groups ref */
10100                 spin_lock(&block_group->lock);
10101                 if (block_group->iref) {
10102                         block_group->iref = 0;
10103                         block_group->inode = NULL;
10104                         spin_unlock(&block_group->lock);
10105                         iput(inode);
10106                 } else {
10107                         spin_unlock(&block_group->lock);
10108                 }
10109                 /* One for our lookup ref */
10110                 btrfs_add_delayed_iput(inode);
10111         }
10112
10113         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10114         key.offset = block_group->key.objectid;
10115         key.type = 0;
10116
10117         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10118         if (ret < 0)
10119                 goto out;
10120         if (ret > 0)
10121                 btrfs_release_path(path);
10122         if (ret == 0) {
10123                 ret = btrfs_del_item(trans, tree_root, path);
10124                 if (ret)
10125                         goto out;
10126                 btrfs_release_path(path);
10127         }
10128
10129         spin_lock(&root->fs_info->block_group_cache_lock);
10130         rb_erase(&block_group->cache_node,
10131                  &root->fs_info->block_group_cache_tree);
10132         RB_CLEAR_NODE(&block_group->cache_node);
10133
10134         if (root->fs_info->first_logical_byte == block_group->key.objectid)
10135                 root->fs_info->first_logical_byte = (u64)-1;
10136         spin_unlock(&root->fs_info->block_group_cache_lock);
10137
10138         down_write(&block_group->space_info->groups_sem);
10139         /*
10140          * we must use list_del_init so people can check to see if they
10141          * are still on the list after taking the semaphore
10142          */
10143         list_del_init(&block_group->list);
10144         if (list_empty(&block_group->space_info->block_groups[index])) {
10145                 kobj = block_group->space_info->block_group_kobjs[index];
10146                 block_group->space_info->block_group_kobjs[index] = NULL;
10147                 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10148         }
10149         up_write(&block_group->space_info->groups_sem);
10150         if (kobj) {
10151                 kobject_del(kobj);
10152                 kobject_put(kobj);
10153         }
10154
10155         if (block_group->has_caching_ctl)
10156                 caching_ctl = get_caching_control(block_group);
10157         if (block_group->cached == BTRFS_CACHE_STARTED)
10158                 wait_block_group_cache_done(block_group);
10159         if (block_group->has_caching_ctl) {
10160                 down_write(&root->fs_info->commit_root_sem);
10161                 if (!caching_ctl) {
10162                         struct btrfs_caching_control *ctl;
10163
10164                         list_for_each_entry(ctl,
10165                                     &root->fs_info->caching_block_groups, list)
10166                                 if (ctl->block_group == block_group) {
10167                                         caching_ctl = ctl;
10168                                         atomic_inc(&caching_ctl->count);
10169                                         break;
10170                                 }
10171                 }
10172                 if (caching_ctl)
10173                         list_del_init(&caching_ctl->list);
10174                 up_write(&root->fs_info->commit_root_sem);
10175                 if (caching_ctl) {
10176                         /* Once for the caching bgs list and once for us. */
10177                         put_caching_control(caching_ctl);
10178                         put_caching_control(caching_ctl);
10179                 }
10180         }
10181
10182         spin_lock(&trans->transaction->dirty_bgs_lock);
10183         if (!list_empty(&block_group->dirty_list)) {
10184                 WARN_ON(1);
10185         }
10186         if (!list_empty(&block_group->io_list)) {
10187                 WARN_ON(1);
10188         }
10189         spin_unlock(&trans->transaction->dirty_bgs_lock);
10190         btrfs_remove_free_space_cache(block_group);
10191
10192         spin_lock(&block_group->space_info->lock);
10193         list_del_init(&block_group->ro_list);
10194
10195         if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10196                 WARN_ON(block_group->space_info->total_bytes
10197                         < block_group->key.offset);
10198                 WARN_ON(block_group->space_info->bytes_readonly
10199                         < block_group->key.offset);
10200                 WARN_ON(block_group->space_info->disk_total
10201                         < block_group->key.offset * factor);
10202         }
10203         block_group->space_info->total_bytes -= block_group->key.offset;
10204         block_group->space_info->bytes_readonly -= block_group->key.offset;
10205         block_group->space_info->disk_total -= block_group->key.offset * factor;
10206
10207         spin_unlock(&block_group->space_info->lock);
10208
10209         memcpy(&key, &block_group->key, sizeof(key));
10210
10211         lock_chunks(root);
10212         if (!list_empty(&em->list)) {
10213                 /* We're in the transaction->pending_chunks list. */
10214                 free_extent_map(em);
10215         }
10216         spin_lock(&block_group->lock);
10217         block_group->removed = 1;
10218         /*
10219          * At this point trimming can't start on this block group, because we
10220          * removed the block group from the tree fs_info->block_group_cache_tree
10221          * so no one can't find it anymore and even if someone already got this
10222          * block group before we removed it from the rbtree, they have already
10223          * incremented block_group->trimming - if they didn't, they won't find
10224          * any free space entries because we already removed them all when we
10225          * called btrfs_remove_free_space_cache().
10226          *
10227          * And we must not remove the extent map from the fs_info->mapping_tree
10228          * to prevent the same logical address range and physical device space
10229          * ranges from being reused for a new block group. This is because our
10230          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10231          * completely transactionless, so while it is trimming a range the
10232          * currently running transaction might finish and a new one start,
10233          * allowing for new block groups to be created that can reuse the same
10234          * physical device locations unless we take this special care.
10235          *
10236          * There may also be an implicit trim operation if the file system
10237          * is mounted with -odiscard. The same protections must remain
10238          * in place until the extents have been discarded completely when
10239          * the transaction commit has completed.
10240          */
10241         remove_em = (atomic_read(&block_group->trimming) == 0);
10242         /*
10243          * Make sure a trimmer task always sees the em in the pinned_chunks list
10244          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10245          * before checking block_group->removed).
10246          */
10247         if (!remove_em) {
10248                 /*
10249                  * Our em might be in trans->transaction->pending_chunks which
10250                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10251                  * and so is the fs_info->pinned_chunks list.
10252                  *
10253                  * So at this point we must be holding the chunk_mutex to avoid
10254                  * any races with chunk allocation (more specifically at
10255                  * volumes.c:contains_pending_extent()), to ensure it always
10256                  * sees the em, either in the pending_chunks list or in the
10257                  * pinned_chunks list.
10258                  */
10259                 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10260         }
10261         spin_unlock(&block_group->lock);
10262
10263         if (remove_em) {
10264                 struct extent_map_tree *em_tree;
10265
10266                 em_tree = &root->fs_info->mapping_tree.map_tree;
10267                 write_lock(&em_tree->lock);
10268                 /*
10269                  * The em might be in the pending_chunks list, so make sure the
10270                  * chunk mutex is locked, since remove_extent_mapping() will
10271                  * delete us from that list.
10272                  */
10273                 remove_extent_mapping(em_tree, em);
10274                 write_unlock(&em_tree->lock);
10275                 /* once for the tree */
10276                 free_extent_map(em);
10277         }
10278
10279         unlock_chunks(root);
10280
10281         btrfs_put_block_group(block_group);
10282         btrfs_put_block_group(block_group);
10283
10284         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10285         if (ret > 0)
10286                 ret = -EIO;
10287         if (ret < 0)
10288                 goto out;
10289
10290         ret = btrfs_del_item(trans, root, path);
10291 out:
10292         btrfs_free_path(path);
10293         return ret;
10294 }
10295
10296 struct btrfs_trans_handle *
10297 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10298                                      const u64 chunk_offset)
10299 {
10300         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10301         struct extent_map *em;
10302         struct map_lookup *map;
10303         unsigned int num_items;
10304
10305         read_lock(&em_tree->lock);
10306         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10307         read_unlock(&em_tree->lock);
10308         ASSERT(em && em->start == chunk_offset);
10309
10310         /*
10311          * We need to reserve 3 + N units from the metadata space info in order
10312          * to remove a block group (done at btrfs_remove_chunk() and at
10313          * btrfs_remove_block_group()), which are used for:
10314          *
10315          * 1 unit for adding the free space inode's orphan (located in the tree
10316          * of tree roots).
10317          * 1 unit for deleting the block group item (located in the extent
10318          * tree).
10319          * 1 unit for deleting the free space item (located in tree of tree
10320          * roots).
10321          * N units for deleting N device extent items corresponding to each
10322          * stripe (located in the device tree).
10323          *
10324          * In order to remove a block group we also need to reserve units in the
10325          * system space info in order to update the chunk tree (update one or
10326          * more device items and remove one chunk item), but this is done at
10327          * btrfs_remove_chunk() through a call to check_system_chunk().
10328          */
10329         map = (struct map_lookup *)em->bdev;
10330         num_items = 3 + map->num_stripes;
10331         free_extent_map(em);
10332
10333         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10334                                                            num_items, 1);
10335 }
10336
10337 /*
10338  * Process the unused_bgs list and remove any that don't have any allocated
10339  * space inside of them.
10340  */
10341 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10342 {
10343         struct btrfs_block_group_cache *block_group;
10344         struct btrfs_space_info *space_info;
10345         struct btrfs_root *root = fs_info->extent_root;
10346         struct btrfs_trans_handle *trans;
10347         int ret = 0;
10348
10349         if (!fs_info->open)
10350                 return;
10351
10352         spin_lock(&fs_info->unused_bgs_lock);
10353         while (!list_empty(&fs_info->unused_bgs)) {
10354                 u64 start, end;
10355                 int trimming;
10356
10357                 block_group = list_first_entry(&fs_info->unused_bgs,
10358                                                struct btrfs_block_group_cache,
10359                                                bg_list);
10360                 list_del_init(&block_group->bg_list);
10361
10362                 space_info = block_group->space_info;
10363
10364                 if (ret || btrfs_mixed_space_info(space_info)) {
10365                         btrfs_put_block_group(block_group);
10366                         continue;
10367                 }
10368                 spin_unlock(&fs_info->unused_bgs_lock);
10369
10370                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10371
10372                 /* Don't want to race with allocators so take the groups_sem */
10373                 down_write(&space_info->groups_sem);
10374                 spin_lock(&block_group->lock);
10375                 if (block_group->reserved ||
10376                     btrfs_block_group_used(&block_group->item) ||
10377                     block_group->ro ||
10378                     list_is_singular(&block_group->list)) {
10379                         /*
10380                          * We want to bail if we made new allocations or have
10381                          * outstanding allocations in this block group.  We do
10382                          * the ro check in case balance is currently acting on
10383                          * this block group.
10384                          */
10385                         spin_unlock(&block_group->lock);
10386                         up_write(&space_info->groups_sem);
10387                         goto next;
10388                 }
10389                 spin_unlock(&block_group->lock);
10390
10391                 /* We don't want to force the issue, only flip if it's ok. */
10392                 ret = inc_block_group_ro(block_group, 0);
10393                 up_write(&space_info->groups_sem);
10394                 if (ret < 0) {
10395                         ret = 0;
10396                         goto next;
10397                 }
10398
10399                 /*
10400                  * Want to do this before we do anything else so we can recover
10401                  * properly if we fail to join the transaction.
10402                  */
10403                 trans = btrfs_start_trans_remove_block_group(fs_info,
10404                                                      block_group->key.objectid);
10405                 if (IS_ERR(trans)) {
10406                         btrfs_dec_block_group_ro(root, block_group);
10407                         ret = PTR_ERR(trans);
10408                         goto next;
10409                 }
10410
10411                 /*
10412                  * We could have pending pinned extents for this block group,
10413                  * just delete them, we don't care about them anymore.
10414                  */
10415                 start = block_group->key.objectid;
10416                 end = start + block_group->key.offset - 1;
10417                 /*
10418                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10419                  * btrfs_finish_extent_commit(). If we are at transaction N,
10420                  * another task might be running finish_extent_commit() for the
10421                  * previous transaction N - 1, and have seen a range belonging
10422                  * to the block group in freed_extents[] before we were able to
10423                  * clear the whole block group range from freed_extents[]. This
10424                  * means that task can lookup for the block group after we
10425                  * unpinned it from freed_extents[] and removed it, leading to
10426                  * a BUG_ON() at btrfs_unpin_extent_range().
10427                  */
10428                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10429                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10430                                   EXTENT_DIRTY, GFP_NOFS);
10431                 if (ret) {
10432                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10433                         btrfs_dec_block_group_ro(root, block_group);
10434                         goto end_trans;
10435                 }
10436                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10437                                   EXTENT_DIRTY, GFP_NOFS);
10438                 if (ret) {
10439                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10440                         btrfs_dec_block_group_ro(root, block_group);
10441                         goto end_trans;
10442                 }
10443                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10444
10445                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10446                 spin_lock(&space_info->lock);
10447                 spin_lock(&block_group->lock);
10448
10449                 space_info->bytes_pinned -= block_group->pinned;
10450                 space_info->bytes_readonly += block_group->pinned;
10451                 percpu_counter_add(&space_info->total_bytes_pinned,
10452                                    -block_group->pinned);
10453                 block_group->pinned = 0;
10454
10455                 spin_unlock(&block_group->lock);
10456                 spin_unlock(&space_info->lock);
10457
10458                 /* DISCARD can flip during remount */
10459                 trimming = btrfs_test_opt(root, DISCARD);
10460
10461                 /* Implicit trim during transaction commit. */
10462                 if (trimming)
10463                         btrfs_get_block_group_trimming(block_group);
10464
10465                 /*
10466                  * Btrfs_remove_chunk will abort the transaction if things go
10467                  * horribly wrong.
10468                  */
10469                 ret = btrfs_remove_chunk(trans, root,
10470                                          block_group->key.objectid);
10471
10472                 if (ret) {
10473                         if (trimming)
10474                                 btrfs_put_block_group_trimming(block_group);
10475                         goto end_trans;
10476                 }
10477
10478                 /*
10479                  * If we're not mounted with -odiscard, we can just forget
10480                  * about this block group. Otherwise we'll need to wait
10481                  * until transaction commit to do the actual discard.
10482                  */
10483                 if (trimming) {
10484                         spin_lock(&fs_info->unused_bgs_lock);
10485                         /*
10486                          * A concurrent scrub might have added us to the list
10487                          * fs_info->unused_bgs, so use a list_move operation
10488                          * to add the block group to the deleted_bgs list.
10489                          */
10490                         list_move(&block_group->bg_list,
10491                                   &trans->transaction->deleted_bgs);
10492                         spin_unlock(&fs_info->unused_bgs_lock);
10493                         btrfs_get_block_group(block_group);
10494                 }
10495 end_trans:
10496                 btrfs_end_transaction(trans, root);
10497 next:
10498                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10499                 btrfs_put_block_group(block_group);
10500                 spin_lock(&fs_info->unused_bgs_lock);
10501         }
10502         spin_unlock(&fs_info->unused_bgs_lock);
10503 }
10504
10505 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10506 {
10507         struct btrfs_space_info *space_info;
10508         struct btrfs_super_block *disk_super;
10509         u64 features;
10510         u64 flags;
10511         int mixed = 0;
10512         int ret;
10513
10514         disk_super = fs_info->super_copy;
10515         if (!btrfs_super_root(disk_super))
10516                 return 1;
10517
10518         features = btrfs_super_incompat_flags(disk_super);
10519         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10520                 mixed = 1;
10521
10522         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10523         ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10524         if (ret)
10525                 goto out;
10526
10527         if (mixed) {
10528                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10529                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10530         } else {
10531                 flags = BTRFS_BLOCK_GROUP_METADATA;
10532                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10533                 if (ret)
10534                         goto out;
10535
10536                 flags = BTRFS_BLOCK_GROUP_DATA;
10537                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10538         }
10539 out:
10540         return ret;
10541 }
10542
10543 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10544 {
10545         return unpin_extent_range(root, start, end, false);
10546 }
10547
10548 /*
10549  * It used to be that old block groups would be left around forever.
10550  * Iterating over them would be enough to trim unused space.  Since we
10551  * now automatically remove them, we also need to iterate over unallocated
10552  * space.
10553  *
10554  * We don't want a transaction for this since the discard may take a
10555  * substantial amount of time.  We don't require that a transaction be
10556  * running, but we do need to take a running transaction into account
10557  * to ensure that we're not discarding chunks that were released in
10558  * the current transaction.
10559  *
10560  * Holding the chunks lock will prevent other threads from allocating
10561  * or releasing chunks, but it won't prevent a running transaction
10562  * from committing and releasing the memory that the pending chunks
10563  * list head uses.  For that, we need to take a reference to the
10564  * transaction.
10565  */
10566 static int btrfs_trim_free_extents(struct btrfs_device *device,
10567                                    u64 minlen, u64 *trimmed)
10568 {
10569         u64 start = 0, len = 0;
10570         int ret;
10571
10572         *trimmed = 0;
10573
10574         /* Not writeable = nothing to do. */
10575         if (!device->writeable)
10576                 return 0;
10577
10578         /* No free space = nothing to do. */
10579         if (device->total_bytes <= device->bytes_used)
10580                 return 0;
10581
10582         ret = 0;
10583
10584         while (1) {
10585                 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10586                 struct btrfs_transaction *trans;
10587                 u64 bytes;
10588
10589                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10590                 if (ret)
10591                         return ret;
10592
10593                 down_read(&fs_info->commit_root_sem);
10594
10595                 spin_lock(&fs_info->trans_lock);
10596                 trans = fs_info->running_transaction;
10597                 if (trans)
10598                         atomic_inc(&trans->use_count);
10599                 spin_unlock(&fs_info->trans_lock);
10600
10601                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10602                                                  &start, &len);
10603                 if (trans)
10604                         btrfs_put_transaction(trans);
10605
10606                 if (ret) {
10607                         up_read(&fs_info->commit_root_sem);
10608                         mutex_unlock(&fs_info->chunk_mutex);
10609                         if (ret == -ENOSPC)
10610                                 ret = 0;
10611                         break;
10612                 }
10613
10614                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10615                 up_read(&fs_info->commit_root_sem);
10616                 mutex_unlock(&fs_info->chunk_mutex);
10617
10618                 if (ret)
10619                         break;
10620
10621                 start += len;
10622                 *trimmed += bytes;
10623
10624                 if (fatal_signal_pending(current)) {
10625                         ret = -ERESTARTSYS;
10626                         break;
10627                 }
10628
10629                 cond_resched();
10630         }
10631
10632         return ret;
10633 }
10634
10635 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10636 {
10637         struct btrfs_fs_info *fs_info = root->fs_info;
10638         struct btrfs_block_group_cache *cache = NULL;
10639         struct btrfs_device *device;
10640         struct list_head *devices;
10641         u64 group_trimmed;
10642         u64 start;
10643         u64 end;
10644         u64 trimmed = 0;
10645         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10646         int ret = 0;
10647
10648         /*
10649          * try to trim all FS space, our block group may start from non-zero.
10650          */
10651         if (range->len == total_bytes)
10652                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10653         else
10654                 cache = btrfs_lookup_block_group(fs_info, range->start);
10655
10656         while (cache) {
10657                 if (cache->key.objectid >= (range->start + range->len)) {
10658                         btrfs_put_block_group(cache);
10659                         break;
10660                 }
10661
10662                 start = max(range->start, cache->key.objectid);
10663                 end = min(range->start + range->len,
10664                                 cache->key.objectid + cache->key.offset);
10665
10666                 if (end - start >= range->minlen) {
10667                         if (!block_group_cache_done(cache)) {
10668                                 ret = cache_block_group(cache, 0);
10669                                 if (ret) {
10670                                         btrfs_put_block_group(cache);
10671                                         break;
10672                                 }
10673                                 ret = wait_block_group_cache_done(cache);
10674                                 if (ret) {
10675                                         btrfs_put_block_group(cache);
10676                                         break;
10677                                 }
10678                         }
10679                         ret = btrfs_trim_block_group(cache,
10680                                                      &group_trimmed,
10681                                                      start,
10682                                                      end,
10683                                                      range->minlen);
10684
10685                         trimmed += group_trimmed;
10686                         if (ret) {
10687                                 btrfs_put_block_group(cache);
10688                                 break;
10689                         }
10690                 }
10691
10692                 cache = next_block_group(fs_info->tree_root, cache);
10693         }
10694
10695         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10696         devices = &root->fs_info->fs_devices->alloc_list;
10697         list_for_each_entry(device, devices, dev_alloc_list) {
10698                 ret = btrfs_trim_free_extents(device, range->minlen,
10699                                               &group_trimmed);
10700                 if (ret)
10701                         break;
10702
10703                 trimmed += group_trimmed;
10704         }
10705         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10706
10707         range->len = trimmed;
10708         return ret;
10709 }
10710
10711 /*
10712  * btrfs_{start,end}_write_no_snapshoting() are similar to
10713  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10714  * data into the page cache through nocow before the subvolume is snapshoted,
10715  * but flush the data into disk after the snapshot creation, or to prevent
10716  * operations while snapshoting is ongoing and that cause the snapshot to be
10717  * inconsistent (writes followed by expanding truncates for example).
10718  */
10719 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10720 {
10721         percpu_counter_dec(&root->subv_writers->counter);
10722         /*
10723          * Make sure counter is updated before we wake up waiters.
10724          */
10725         smp_mb();
10726         if (waitqueue_active(&root->subv_writers->wait))
10727                 wake_up(&root->subv_writers->wait);
10728 }
10729
10730 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10731 {
10732         if (atomic_read(&root->will_be_snapshoted))
10733                 return 0;
10734
10735         percpu_counter_inc(&root->subv_writers->counter);
10736         /*
10737          * Make sure counter is updated before we check for snapshot creation.
10738          */
10739         smp_mb();
10740         if (atomic_read(&root->will_be_snapshoted)) {
10741                 btrfs_end_write_no_snapshoting(root);
10742                 return 0;
10743         }
10744         return 1;
10745 }