]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/extent-tree.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[karo-tx-linux.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45  * control flags for do_chunk_alloc's force field
46  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47  * if we really need one.
48  *
49  * CHUNK_ALLOC_LIMITED means to only try and allocate one
50  * if we have very few chunks already allocated.  This is
51  * used as part of the clustering code to help make sure
52  * we have a good pool of storage to cluster in, without
53  * filling the FS with empty chunks
54  *
55  * CHUNK_ALLOC_FORCE means it must try to allocate one
56  *
57  */
58 enum {
59         CHUNK_ALLOC_NO_FORCE = 0,
60         CHUNK_ALLOC_LIMITED = 1,
61         CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65                               struct btrfs_fs_info *fs_info, u64 bytenr,
66                               u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68                                struct btrfs_fs_info *fs_info,
69                                 struct btrfs_delayed_ref_node *node, u64 parent,
70                                 u64 root_objectid, u64 owner_objectid,
71                                 u64 owner_offset, int refs_to_drop,
72                                 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74                                     struct extent_buffer *leaf,
75                                     struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77                                       struct btrfs_fs_info *fs_info,
78                                       u64 parent, u64 root_objectid,
79                                       u64 flags, u64 owner, u64 offset,
80                                       struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82                                      struct btrfs_fs_info *fs_info,
83                                      u64 parent, u64 root_objectid,
84                                      u64 flags, struct btrfs_disk_key *key,
85                                      int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87                           struct btrfs_fs_info *fs_info, u64 flags,
88                           int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90                          struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92                             struct btrfs_space_info *info, u64 bytes,
93                             int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95                                     u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97                                      u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99                                u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101                                     struct btrfs_space_info *space_info,
102                                     u64 orig_bytes,
103                                     enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105                                      struct btrfs_space_info *space_info,
106                                      u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108                                      struct btrfs_space_info *space_info,
109                                      u64 num_bytes);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114         smp_mb();
115         return cache->cached == BTRFS_CACHE_FINISHED ||
116                 cache->cached == BTRFS_CACHE_ERROR;
117 }
118
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121         return (cache->flags & bits) == bits;
122 }
123
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126         atomic_inc(&cache->count);
127 }
128
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131         if (atomic_dec_and_test(&cache->count)) {
132                 WARN_ON(cache->pinned > 0);
133                 WARN_ON(cache->reserved > 0);
134                 kfree(cache->free_space_ctl);
135                 kfree(cache);
136         }
137 }
138
139 /*
140  * this adds the block group to the fs_info rb tree for the block group
141  * cache
142  */
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144                                 struct btrfs_block_group_cache *block_group)
145 {
146         struct rb_node **p;
147         struct rb_node *parent = NULL;
148         struct btrfs_block_group_cache *cache;
149
150         spin_lock(&info->block_group_cache_lock);
151         p = &info->block_group_cache_tree.rb_node;
152
153         while (*p) {
154                 parent = *p;
155                 cache = rb_entry(parent, struct btrfs_block_group_cache,
156                                  cache_node);
157                 if (block_group->key.objectid < cache->key.objectid) {
158                         p = &(*p)->rb_left;
159                 } else if (block_group->key.objectid > cache->key.objectid) {
160                         p = &(*p)->rb_right;
161                 } else {
162                         spin_unlock(&info->block_group_cache_lock);
163                         return -EEXIST;
164                 }
165         }
166
167         rb_link_node(&block_group->cache_node, parent, p);
168         rb_insert_color(&block_group->cache_node,
169                         &info->block_group_cache_tree);
170
171         if (info->first_logical_byte > block_group->key.objectid)
172                 info->first_logical_byte = block_group->key.objectid;
173
174         spin_unlock(&info->block_group_cache_lock);
175
176         return 0;
177 }
178
179 /*
180  * This will return the block group at or after bytenr if contains is 0, else
181  * it will return the block group that contains the bytenr
182  */
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185                               int contains)
186 {
187         struct btrfs_block_group_cache *cache, *ret = NULL;
188         struct rb_node *n;
189         u64 end, start;
190
191         spin_lock(&info->block_group_cache_lock);
192         n = info->block_group_cache_tree.rb_node;
193
194         while (n) {
195                 cache = rb_entry(n, struct btrfs_block_group_cache,
196                                  cache_node);
197                 end = cache->key.objectid + cache->key.offset - 1;
198                 start = cache->key.objectid;
199
200                 if (bytenr < start) {
201                         if (!contains && (!ret || start < ret->key.objectid))
202                                 ret = cache;
203                         n = n->rb_left;
204                 } else if (bytenr > start) {
205                         if (contains && bytenr <= end) {
206                                 ret = cache;
207                                 break;
208                         }
209                         n = n->rb_right;
210                 } else {
211                         ret = cache;
212                         break;
213                 }
214         }
215         if (ret) {
216                 btrfs_get_block_group(ret);
217                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218                         info->first_logical_byte = ret->key.objectid;
219         }
220         spin_unlock(&info->block_group_cache_lock);
221
222         return ret;
223 }
224
225 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
226                                u64 start, u64 num_bytes)
227 {
228         u64 end = start + num_bytes - 1;
229         set_extent_bits(&fs_info->freed_extents[0],
230                         start, end, EXTENT_UPTODATE);
231         set_extent_bits(&fs_info->freed_extents[1],
232                         start, end, EXTENT_UPTODATE);
233         return 0;
234 }
235
236 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
237                                   struct btrfs_block_group_cache *cache)
238 {
239         u64 start, end;
240
241         start = cache->key.objectid;
242         end = start + cache->key.offset - 1;
243
244         clear_extent_bits(&fs_info->freed_extents[0],
245                           start, end, EXTENT_UPTODATE);
246         clear_extent_bits(&fs_info->freed_extents[1],
247                           start, end, EXTENT_UPTODATE);
248 }
249
250 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
251                                  struct btrfs_block_group_cache *cache)
252 {
253         u64 bytenr;
254         u64 *logical;
255         int stripe_len;
256         int i, nr, ret;
257
258         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260                 cache->bytes_super += stripe_len;
261                 ret = add_excluded_extent(fs_info, cache->key.objectid,
262                                           stripe_len);
263                 if (ret)
264                         return ret;
265         }
266
267         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268                 bytenr = btrfs_sb_offset(i);
269                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
270                                        bytenr, 0, &logical, &nr, &stripe_len);
271                 if (ret)
272                         return ret;
273
274                 while (nr--) {
275                         u64 start, len;
276
277                         if (logical[nr] > cache->key.objectid +
278                             cache->key.offset)
279                                 continue;
280
281                         if (logical[nr] + stripe_len <= cache->key.objectid)
282                                 continue;
283
284                         start = logical[nr];
285                         if (start < cache->key.objectid) {
286                                 start = cache->key.objectid;
287                                 len = (logical[nr] + stripe_len) - start;
288                         } else {
289                                 len = min_t(u64, stripe_len,
290                                             cache->key.objectid +
291                                             cache->key.offset - start);
292                         }
293
294                         cache->bytes_super += len;
295                         ret = add_excluded_extent(fs_info, start, len);
296                         if (ret) {
297                                 kfree(logical);
298                                 return ret;
299                         }
300                 }
301
302                 kfree(logical);
303         }
304         return 0;
305 }
306
307 static struct btrfs_caching_control *
308 get_caching_control(struct btrfs_block_group_cache *cache)
309 {
310         struct btrfs_caching_control *ctl;
311
312         spin_lock(&cache->lock);
313         if (!cache->caching_ctl) {
314                 spin_unlock(&cache->lock);
315                 return NULL;
316         }
317
318         ctl = cache->caching_ctl;
319         atomic_inc(&ctl->count);
320         spin_unlock(&cache->lock);
321         return ctl;
322 }
323
324 static void put_caching_control(struct btrfs_caching_control *ctl)
325 {
326         if (atomic_dec_and_test(&ctl->count))
327                 kfree(ctl);
328 }
329
330 #ifdef CONFIG_BTRFS_DEBUG
331 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
332 {
333         struct btrfs_fs_info *fs_info = block_group->fs_info;
334         u64 start = block_group->key.objectid;
335         u64 len = block_group->key.offset;
336         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
337                 fs_info->nodesize : fs_info->sectorsize;
338         u64 step = chunk << 1;
339
340         while (len > chunk) {
341                 btrfs_remove_free_space(block_group, start, chunk);
342                 start += step;
343                 if (len < step)
344                         len = 0;
345                 else
346                         len -= step;
347         }
348 }
349 #endif
350
351 /*
352  * this is only called by cache_block_group, since we could have freed extents
353  * we need to check the pinned_extents for any extents that can't be used yet
354  * since their free space will be released as soon as the transaction commits.
355  */
356 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
357                        struct btrfs_fs_info *info, u64 start, u64 end)
358 {
359         u64 extent_start, extent_end, size, total_added = 0;
360         int ret;
361
362         while (start < end) {
363                 ret = find_first_extent_bit(info->pinned_extents, start,
364                                             &extent_start, &extent_end,
365                                             EXTENT_DIRTY | EXTENT_UPTODATE,
366                                             NULL);
367                 if (ret)
368                         break;
369
370                 if (extent_start <= start) {
371                         start = extent_end + 1;
372                 } else if (extent_start > start && extent_start < end) {
373                         size = extent_start - start;
374                         total_added += size;
375                         ret = btrfs_add_free_space(block_group, start,
376                                                    size);
377                         BUG_ON(ret); /* -ENOMEM or logic error */
378                         start = extent_end + 1;
379                 } else {
380                         break;
381                 }
382         }
383
384         if (start < end) {
385                 size = end - start;
386                 total_added += size;
387                 ret = btrfs_add_free_space(block_group, start, size);
388                 BUG_ON(ret); /* -ENOMEM or logic error */
389         }
390
391         return total_added;
392 }
393
394 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
395 {
396         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
397         struct btrfs_fs_info *fs_info = block_group->fs_info;
398         struct btrfs_root *extent_root = fs_info->extent_root;
399         struct btrfs_path *path;
400         struct extent_buffer *leaf;
401         struct btrfs_key key;
402         u64 total_found = 0;
403         u64 last = 0;
404         u32 nritems;
405         int ret;
406         bool wakeup = true;
407
408         path = btrfs_alloc_path();
409         if (!path)
410                 return -ENOMEM;
411
412         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
413
414 #ifdef CONFIG_BTRFS_DEBUG
415         /*
416          * If we're fragmenting we don't want to make anybody think we can
417          * allocate from this block group until we've had a chance to fragment
418          * the free space.
419          */
420         if (btrfs_should_fragment_free_space(block_group))
421                 wakeup = false;
422 #endif
423         /*
424          * We don't want to deadlock with somebody trying to allocate a new
425          * extent for the extent root while also trying to search the extent
426          * root to add free space.  So we skip locking and search the commit
427          * root, since its read-only
428          */
429         path->skip_locking = 1;
430         path->search_commit_root = 1;
431         path->reada = READA_FORWARD;
432
433         key.objectid = last;
434         key.offset = 0;
435         key.type = BTRFS_EXTENT_ITEM_KEY;
436
437 next:
438         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
439         if (ret < 0)
440                 goto out;
441
442         leaf = path->nodes[0];
443         nritems = btrfs_header_nritems(leaf);
444
445         while (1) {
446                 if (btrfs_fs_closing(fs_info) > 1) {
447                         last = (u64)-1;
448                         break;
449                 }
450
451                 if (path->slots[0] < nritems) {
452                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
453                 } else {
454                         ret = find_next_key(path, 0, &key);
455                         if (ret)
456                                 break;
457
458                         if (need_resched() ||
459                             rwsem_is_contended(&fs_info->commit_root_sem)) {
460                                 if (wakeup)
461                                         caching_ctl->progress = last;
462                                 btrfs_release_path(path);
463                                 up_read(&fs_info->commit_root_sem);
464                                 mutex_unlock(&caching_ctl->mutex);
465                                 cond_resched();
466                                 mutex_lock(&caching_ctl->mutex);
467                                 down_read(&fs_info->commit_root_sem);
468                                 goto next;
469                         }
470
471                         ret = btrfs_next_leaf(extent_root, path);
472                         if (ret < 0)
473                                 goto out;
474                         if (ret)
475                                 break;
476                         leaf = path->nodes[0];
477                         nritems = btrfs_header_nritems(leaf);
478                         continue;
479                 }
480
481                 if (key.objectid < last) {
482                         key.objectid = last;
483                         key.offset = 0;
484                         key.type = BTRFS_EXTENT_ITEM_KEY;
485
486                         if (wakeup)
487                                 caching_ctl->progress = last;
488                         btrfs_release_path(path);
489                         goto next;
490                 }
491
492                 if (key.objectid < block_group->key.objectid) {
493                         path->slots[0]++;
494                         continue;
495                 }
496
497                 if (key.objectid >= block_group->key.objectid +
498                     block_group->key.offset)
499                         break;
500
501                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
502                     key.type == BTRFS_METADATA_ITEM_KEY) {
503                         total_found += add_new_free_space(block_group,
504                                                           fs_info, last,
505                                                           key.objectid);
506                         if (key.type == BTRFS_METADATA_ITEM_KEY)
507                                 last = key.objectid +
508                                         fs_info->nodesize;
509                         else
510                                 last = key.objectid + key.offset;
511
512                         if (total_found > CACHING_CTL_WAKE_UP) {
513                                 total_found = 0;
514                                 if (wakeup)
515                                         wake_up(&caching_ctl->wait);
516                         }
517                 }
518                 path->slots[0]++;
519         }
520         ret = 0;
521
522         total_found += add_new_free_space(block_group, fs_info, last,
523                                           block_group->key.objectid +
524                                           block_group->key.offset);
525         caching_ctl->progress = (u64)-1;
526
527 out:
528         btrfs_free_path(path);
529         return ret;
530 }
531
532 static noinline void caching_thread(struct btrfs_work *work)
533 {
534         struct btrfs_block_group_cache *block_group;
535         struct btrfs_fs_info *fs_info;
536         struct btrfs_caching_control *caching_ctl;
537         struct btrfs_root *extent_root;
538         int ret;
539
540         caching_ctl = container_of(work, struct btrfs_caching_control, work);
541         block_group = caching_ctl->block_group;
542         fs_info = block_group->fs_info;
543         extent_root = fs_info->extent_root;
544
545         mutex_lock(&caching_ctl->mutex);
546         down_read(&fs_info->commit_root_sem);
547
548         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549                 ret = load_free_space_tree(caching_ctl);
550         else
551                 ret = load_extent_tree_free(caching_ctl);
552
553         spin_lock(&block_group->lock);
554         block_group->caching_ctl = NULL;
555         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
556         spin_unlock(&block_group->lock);
557
558 #ifdef CONFIG_BTRFS_DEBUG
559         if (btrfs_should_fragment_free_space(block_group)) {
560                 u64 bytes_used;
561
562                 spin_lock(&block_group->space_info->lock);
563                 spin_lock(&block_group->lock);
564                 bytes_used = block_group->key.offset -
565                         btrfs_block_group_used(&block_group->item);
566                 block_group->space_info->bytes_used += bytes_used >> 1;
567                 spin_unlock(&block_group->lock);
568                 spin_unlock(&block_group->space_info->lock);
569                 fragment_free_space(block_group);
570         }
571 #endif
572
573         caching_ctl->progress = (u64)-1;
574
575         up_read(&fs_info->commit_root_sem);
576         free_excluded_extents(fs_info, block_group);
577         mutex_unlock(&caching_ctl->mutex);
578
579         wake_up(&caching_ctl->wait);
580
581         put_caching_control(caching_ctl);
582         btrfs_put_block_group(block_group);
583 }
584
585 static int cache_block_group(struct btrfs_block_group_cache *cache,
586                              int load_cache_only)
587 {
588         DEFINE_WAIT(wait);
589         struct btrfs_fs_info *fs_info = cache->fs_info;
590         struct btrfs_caching_control *caching_ctl;
591         int ret = 0;
592
593         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
594         if (!caching_ctl)
595                 return -ENOMEM;
596
597         INIT_LIST_HEAD(&caching_ctl->list);
598         mutex_init(&caching_ctl->mutex);
599         init_waitqueue_head(&caching_ctl->wait);
600         caching_ctl->block_group = cache;
601         caching_ctl->progress = cache->key.objectid;
602         atomic_set(&caching_ctl->count, 1);
603         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604                         caching_thread, NULL, NULL);
605
606         spin_lock(&cache->lock);
607         /*
608          * This should be a rare occasion, but this could happen I think in the
609          * case where one thread starts to load the space cache info, and then
610          * some other thread starts a transaction commit which tries to do an
611          * allocation while the other thread is still loading the space cache
612          * info.  The previous loop should have kept us from choosing this block
613          * group, but if we've moved to the state where we will wait on caching
614          * block groups we need to first check if we're doing a fast load here,
615          * so we can wait for it to finish, otherwise we could end up allocating
616          * from a block group who's cache gets evicted for one reason or
617          * another.
618          */
619         while (cache->cached == BTRFS_CACHE_FAST) {
620                 struct btrfs_caching_control *ctl;
621
622                 ctl = cache->caching_ctl;
623                 atomic_inc(&ctl->count);
624                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625                 spin_unlock(&cache->lock);
626
627                 schedule();
628
629                 finish_wait(&ctl->wait, &wait);
630                 put_caching_control(ctl);
631                 spin_lock(&cache->lock);
632         }
633
634         if (cache->cached != BTRFS_CACHE_NO) {
635                 spin_unlock(&cache->lock);
636                 kfree(caching_ctl);
637                 return 0;
638         }
639         WARN_ON(cache->caching_ctl);
640         cache->caching_ctl = caching_ctl;
641         cache->cached = BTRFS_CACHE_FAST;
642         spin_unlock(&cache->lock);
643
644         if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
645                 mutex_lock(&caching_ctl->mutex);
646                 ret = load_free_space_cache(fs_info, cache);
647
648                 spin_lock(&cache->lock);
649                 if (ret == 1) {
650                         cache->caching_ctl = NULL;
651                         cache->cached = BTRFS_CACHE_FINISHED;
652                         cache->last_byte_to_unpin = (u64)-1;
653                         caching_ctl->progress = (u64)-1;
654                 } else {
655                         if (load_cache_only) {
656                                 cache->caching_ctl = NULL;
657                                 cache->cached = BTRFS_CACHE_NO;
658                         } else {
659                                 cache->cached = BTRFS_CACHE_STARTED;
660                                 cache->has_caching_ctl = 1;
661                         }
662                 }
663                 spin_unlock(&cache->lock);
664 #ifdef CONFIG_BTRFS_DEBUG
665                 if (ret == 1 &&
666                     btrfs_should_fragment_free_space(cache)) {
667                         u64 bytes_used;
668
669                         spin_lock(&cache->space_info->lock);
670                         spin_lock(&cache->lock);
671                         bytes_used = cache->key.offset -
672                                 btrfs_block_group_used(&cache->item);
673                         cache->space_info->bytes_used += bytes_used >> 1;
674                         spin_unlock(&cache->lock);
675                         spin_unlock(&cache->space_info->lock);
676                         fragment_free_space(cache);
677                 }
678 #endif
679                 mutex_unlock(&caching_ctl->mutex);
680
681                 wake_up(&caching_ctl->wait);
682                 if (ret == 1) {
683                         put_caching_control(caching_ctl);
684                         free_excluded_extents(fs_info, cache);
685                         return 0;
686                 }
687         } else {
688                 /*
689                  * We're either using the free space tree or no caching at all.
690                  * Set cached to the appropriate value and wakeup any waiters.
691                  */
692                 spin_lock(&cache->lock);
693                 if (load_cache_only) {
694                         cache->caching_ctl = NULL;
695                         cache->cached = BTRFS_CACHE_NO;
696                 } else {
697                         cache->cached = BTRFS_CACHE_STARTED;
698                         cache->has_caching_ctl = 1;
699                 }
700                 spin_unlock(&cache->lock);
701                 wake_up(&caching_ctl->wait);
702         }
703
704         if (load_cache_only) {
705                 put_caching_control(caching_ctl);
706                 return 0;
707         }
708
709         down_write(&fs_info->commit_root_sem);
710         atomic_inc(&caching_ctl->count);
711         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
712         up_write(&fs_info->commit_root_sem);
713
714         btrfs_get_block_group(cache);
715
716         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
717
718         return ret;
719 }
720
721 /*
722  * return the block group that starts at or after bytenr
723  */
724 static struct btrfs_block_group_cache *
725 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
726 {
727         return block_group_cache_tree_search(info, bytenr, 0);
728 }
729
730 /*
731  * return the block group that contains the given bytenr
732  */
733 struct btrfs_block_group_cache *btrfs_lookup_block_group(
734                                                  struct btrfs_fs_info *info,
735                                                  u64 bytenr)
736 {
737         return block_group_cache_tree_search(info, bytenr, 1);
738 }
739
740 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741                                                   u64 flags)
742 {
743         struct list_head *head = &info->space_info;
744         struct btrfs_space_info *found;
745
746         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
747
748         rcu_read_lock();
749         list_for_each_entry_rcu(found, head, list) {
750                 if (found->flags & flags) {
751                         rcu_read_unlock();
752                         return found;
753                 }
754         }
755         rcu_read_unlock();
756         return NULL;
757 }
758
759 /*
760  * after adding space to the filesystem, we need to clear the full flags
761  * on all the space infos.
762  */
763 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
764 {
765         struct list_head *head = &info->space_info;
766         struct btrfs_space_info *found;
767
768         rcu_read_lock();
769         list_for_each_entry_rcu(found, head, list)
770                 found->full = 0;
771         rcu_read_unlock();
772 }
773
774 /* simple helper to search for an existing data extent at a given offset */
775 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
776 {
777         int ret;
778         struct btrfs_key key;
779         struct btrfs_path *path;
780
781         path = btrfs_alloc_path();
782         if (!path)
783                 return -ENOMEM;
784
785         key.objectid = start;
786         key.offset = len;
787         key.type = BTRFS_EXTENT_ITEM_KEY;
788         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
789         btrfs_free_path(path);
790         return ret;
791 }
792
793 /*
794  * helper function to lookup reference count and flags of a tree block.
795  *
796  * the head node for delayed ref is used to store the sum of all the
797  * reference count modifications queued up in the rbtree. the head
798  * node may also store the extent flags to set. This way you can check
799  * to see what the reference count and extent flags would be if all of
800  * the delayed refs are not processed.
801  */
802 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
803                              struct btrfs_fs_info *fs_info, u64 bytenr,
804                              u64 offset, int metadata, u64 *refs, u64 *flags)
805 {
806         struct btrfs_delayed_ref_head *head;
807         struct btrfs_delayed_ref_root *delayed_refs;
808         struct btrfs_path *path;
809         struct btrfs_extent_item *ei;
810         struct extent_buffer *leaf;
811         struct btrfs_key key;
812         u32 item_size;
813         u64 num_refs;
814         u64 extent_flags;
815         int ret;
816
817         /*
818          * If we don't have skinny metadata, don't bother doing anything
819          * different
820          */
821         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
822                 offset = fs_info->nodesize;
823                 metadata = 0;
824         }
825
826         path = btrfs_alloc_path();
827         if (!path)
828                 return -ENOMEM;
829
830         if (!trans) {
831                 path->skip_locking = 1;
832                 path->search_commit_root = 1;
833         }
834
835 search_again:
836         key.objectid = bytenr;
837         key.offset = offset;
838         if (metadata)
839                 key.type = BTRFS_METADATA_ITEM_KEY;
840         else
841                 key.type = BTRFS_EXTENT_ITEM_KEY;
842
843         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
844         if (ret < 0)
845                 goto out_free;
846
847         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
848                 if (path->slots[0]) {
849                         path->slots[0]--;
850                         btrfs_item_key_to_cpu(path->nodes[0], &key,
851                                               path->slots[0]);
852                         if (key.objectid == bytenr &&
853                             key.type == BTRFS_EXTENT_ITEM_KEY &&
854                             key.offset == fs_info->nodesize)
855                                 ret = 0;
856                 }
857         }
858
859         if (ret == 0) {
860                 leaf = path->nodes[0];
861                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
862                 if (item_size >= sizeof(*ei)) {
863                         ei = btrfs_item_ptr(leaf, path->slots[0],
864                                             struct btrfs_extent_item);
865                         num_refs = btrfs_extent_refs(leaf, ei);
866                         extent_flags = btrfs_extent_flags(leaf, ei);
867                 } else {
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869                         struct btrfs_extent_item_v0 *ei0;
870                         BUG_ON(item_size != sizeof(*ei0));
871                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
872                                              struct btrfs_extent_item_v0);
873                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
874                         /* FIXME: this isn't correct for data */
875                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
876 #else
877                         BUG();
878 #endif
879                 }
880                 BUG_ON(num_refs == 0);
881         } else {
882                 num_refs = 0;
883                 extent_flags = 0;
884                 ret = 0;
885         }
886
887         if (!trans)
888                 goto out;
889
890         delayed_refs = &trans->transaction->delayed_refs;
891         spin_lock(&delayed_refs->lock);
892         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
893         if (head) {
894                 if (!mutex_trylock(&head->mutex)) {
895                         atomic_inc(&head->node.refs);
896                         spin_unlock(&delayed_refs->lock);
897
898                         btrfs_release_path(path);
899
900                         /*
901                          * Mutex was contended, block until it's released and try
902                          * again
903                          */
904                         mutex_lock(&head->mutex);
905                         mutex_unlock(&head->mutex);
906                         btrfs_put_delayed_ref(&head->node);
907                         goto search_again;
908                 }
909                 spin_lock(&head->lock);
910                 if (head->extent_op && head->extent_op->update_flags)
911                         extent_flags |= head->extent_op->flags_to_set;
912                 else
913                         BUG_ON(num_refs == 0);
914
915                 num_refs += head->node.ref_mod;
916                 spin_unlock(&head->lock);
917                 mutex_unlock(&head->mutex);
918         }
919         spin_unlock(&delayed_refs->lock);
920 out:
921         WARN_ON(num_refs == 0);
922         if (refs)
923                 *refs = num_refs;
924         if (flags)
925                 *flags = extent_flags;
926 out_free:
927         btrfs_free_path(path);
928         return ret;
929 }
930
931 /*
932  * Back reference rules.  Back refs have three main goals:
933  *
934  * 1) differentiate between all holders of references to an extent so that
935  *    when a reference is dropped we can make sure it was a valid reference
936  *    before freeing the extent.
937  *
938  * 2) Provide enough information to quickly find the holders of an extent
939  *    if we notice a given block is corrupted or bad.
940  *
941  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
942  *    maintenance.  This is actually the same as #2, but with a slightly
943  *    different use case.
944  *
945  * There are two kinds of back refs. The implicit back refs is optimized
946  * for pointers in non-shared tree blocks. For a given pointer in a block,
947  * back refs of this kind provide information about the block's owner tree
948  * and the pointer's key. These information allow us to find the block by
949  * b-tree searching. The full back refs is for pointers in tree blocks not
950  * referenced by their owner trees. The location of tree block is recorded
951  * in the back refs. Actually the full back refs is generic, and can be
952  * used in all cases the implicit back refs is used. The major shortcoming
953  * of the full back refs is its overhead. Every time a tree block gets
954  * COWed, we have to update back refs entry for all pointers in it.
955  *
956  * For a newly allocated tree block, we use implicit back refs for
957  * pointers in it. This means most tree related operations only involve
958  * implicit back refs. For a tree block created in old transaction, the
959  * only way to drop a reference to it is COW it. So we can detect the
960  * event that tree block loses its owner tree's reference and do the
961  * back refs conversion.
962  *
963  * When a tree block is COWed through a tree, there are four cases:
964  *
965  * The reference count of the block is one and the tree is the block's
966  * owner tree. Nothing to do in this case.
967  *
968  * The reference count of the block is one and the tree is not the
969  * block's owner tree. In this case, full back refs is used for pointers
970  * in the block. Remove these full back refs, add implicit back refs for
971  * every pointers in the new block.
972  *
973  * The reference count of the block is greater than one and the tree is
974  * the block's owner tree. In this case, implicit back refs is used for
975  * pointers in the block. Add full back refs for every pointers in the
976  * block, increase lower level extents' reference counts. The original
977  * implicit back refs are entailed to the new block.
978  *
979  * The reference count of the block is greater than one and the tree is
980  * not the block's owner tree. Add implicit back refs for every pointer in
981  * the new block, increase lower level extents' reference count.
982  *
983  * Back Reference Key composing:
984  *
985  * The key objectid corresponds to the first byte in the extent,
986  * The key type is used to differentiate between types of back refs.
987  * There are different meanings of the key offset for different types
988  * of back refs.
989  *
990  * File extents can be referenced by:
991  *
992  * - multiple snapshots, subvolumes, or different generations in one subvol
993  * - different files inside a single subvolume
994  * - different offsets inside a file (bookend extents in file.c)
995  *
996  * The extent ref structure for the implicit back refs has fields for:
997  *
998  * - Objectid of the subvolume root
999  * - objectid of the file holding the reference
1000  * - original offset in the file
1001  * - how many bookend extents
1002  *
1003  * The key offset for the implicit back refs is hash of the first
1004  * three fields.
1005  *
1006  * The extent ref structure for the full back refs has field for:
1007  *
1008  * - number of pointers in the tree leaf
1009  *
1010  * The key offset for the implicit back refs is the first byte of
1011  * the tree leaf
1012  *
1013  * When a file extent is allocated, The implicit back refs is used.
1014  * the fields are filled in:
1015  *
1016  *     (root_key.objectid, inode objectid, offset in file, 1)
1017  *
1018  * When a file extent is removed file truncation, we find the
1019  * corresponding implicit back refs and check the following fields:
1020  *
1021  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1022  *
1023  * Btree extents can be referenced by:
1024  *
1025  * - Different subvolumes
1026  *
1027  * Both the implicit back refs and the full back refs for tree blocks
1028  * only consist of key. The key offset for the implicit back refs is
1029  * objectid of block's owner tree. The key offset for the full back refs
1030  * is the first byte of parent block.
1031  *
1032  * When implicit back refs is used, information about the lowest key and
1033  * level of the tree block are required. These information are stored in
1034  * tree block info structure.
1035  */
1036
1037 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1038 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1039                                   struct btrfs_fs_info *fs_info,
1040                                   struct btrfs_path *path,
1041                                   u64 owner, u32 extra_size)
1042 {
1043         struct btrfs_root *root = fs_info->extent_root;
1044         struct btrfs_extent_item *item;
1045         struct btrfs_extent_item_v0 *ei0;
1046         struct btrfs_extent_ref_v0 *ref0;
1047         struct btrfs_tree_block_info *bi;
1048         struct extent_buffer *leaf;
1049         struct btrfs_key key;
1050         struct btrfs_key found_key;
1051         u32 new_size = sizeof(*item);
1052         u64 refs;
1053         int ret;
1054
1055         leaf = path->nodes[0];
1056         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1057
1058         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1059         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1060                              struct btrfs_extent_item_v0);
1061         refs = btrfs_extent_refs_v0(leaf, ei0);
1062
1063         if (owner == (u64)-1) {
1064                 while (1) {
1065                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1066                                 ret = btrfs_next_leaf(root, path);
1067                                 if (ret < 0)
1068                                         return ret;
1069                                 BUG_ON(ret > 0); /* Corruption */
1070                                 leaf = path->nodes[0];
1071                         }
1072                         btrfs_item_key_to_cpu(leaf, &found_key,
1073                                               path->slots[0]);
1074                         BUG_ON(key.objectid != found_key.objectid);
1075                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1076                                 path->slots[0]++;
1077                                 continue;
1078                         }
1079                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1080                                               struct btrfs_extent_ref_v0);
1081                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1082                         break;
1083                 }
1084         }
1085         btrfs_release_path(path);
1086
1087         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1088                 new_size += sizeof(*bi);
1089
1090         new_size -= sizeof(*ei0);
1091         ret = btrfs_search_slot(trans, root, &key, path,
1092                                 new_size + extra_size, 1);
1093         if (ret < 0)
1094                 return ret;
1095         BUG_ON(ret); /* Corruption */
1096
1097         btrfs_extend_item(fs_info, path, new_size);
1098
1099         leaf = path->nodes[0];
1100         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1101         btrfs_set_extent_refs(leaf, item, refs);
1102         /* FIXME: get real generation */
1103         btrfs_set_extent_generation(leaf, item, 0);
1104         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1105                 btrfs_set_extent_flags(leaf, item,
1106                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1107                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1108                 bi = (struct btrfs_tree_block_info *)(item + 1);
1109                 /* FIXME: get first key of the block */
1110                 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1111                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1112         } else {
1113                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1114         }
1115         btrfs_mark_buffer_dirty(leaf);
1116         return 0;
1117 }
1118 #endif
1119
1120 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1121 {
1122         u32 high_crc = ~(u32)0;
1123         u32 low_crc = ~(u32)0;
1124         __le64 lenum;
1125
1126         lenum = cpu_to_le64(root_objectid);
1127         high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1128         lenum = cpu_to_le64(owner);
1129         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1130         lenum = cpu_to_le64(offset);
1131         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1132
1133         return ((u64)high_crc << 31) ^ (u64)low_crc;
1134 }
1135
1136 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1137                                      struct btrfs_extent_data_ref *ref)
1138 {
1139         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1140                                     btrfs_extent_data_ref_objectid(leaf, ref),
1141                                     btrfs_extent_data_ref_offset(leaf, ref));
1142 }
1143
1144 static int match_extent_data_ref(struct extent_buffer *leaf,
1145                                  struct btrfs_extent_data_ref *ref,
1146                                  u64 root_objectid, u64 owner, u64 offset)
1147 {
1148         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1149             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1150             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1151                 return 0;
1152         return 1;
1153 }
1154
1155 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1156                                            struct btrfs_fs_info *fs_info,
1157                                            struct btrfs_path *path,
1158                                            u64 bytenr, u64 parent,
1159                                            u64 root_objectid,
1160                                            u64 owner, u64 offset)
1161 {
1162         struct btrfs_root *root = fs_info->extent_root;
1163         struct btrfs_key key;
1164         struct btrfs_extent_data_ref *ref;
1165         struct extent_buffer *leaf;
1166         u32 nritems;
1167         int ret;
1168         int recow;
1169         int err = -ENOENT;
1170
1171         key.objectid = bytenr;
1172         if (parent) {
1173                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1174                 key.offset = parent;
1175         } else {
1176                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177                 key.offset = hash_extent_data_ref(root_objectid,
1178                                                   owner, offset);
1179         }
1180 again:
1181         recow = 0;
1182         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1183         if (ret < 0) {
1184                 err = ret;
1185                 goto fail;
1186         }
1187
1188         if (parent) {
1189                 if (!ret)
1190                         return 0;
1191 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1192                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1193                 btrfs_release_path(path);
1194                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1195                 if (ret < 0) {
1196                         err = ret;
1197                         goto fail;
1198                 }
1199                 if (!ret)
1200                         return 0;
1201 #endif
1202                 goto fail;
1203         }
1204
1205         leaf = path->nodes[0];
1206         nritems = btrfs_header_nritems(leaf);
1207         while (1) {
1208                 if (path->slots[0] >= nritems) {
1209                         ret = btrfs_next_leaf(root, path);
1210                         if (ret < 0)
1211                                 err = ret;
1212                         if (ret)
1213                                 goto fail;
1214
1215                         leaf = path->nodes[0];
1216                         nritems = btrfs_header_nritems(leaf);
1217                         recow = 1;
1218                 }
1219
1220                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1221                 if (key.objectid != bytenr ||
1222                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1223                         goto fail;
1224
1225                 ref = btrfs_item_ptr(leaf, path->slots[0],
1226                                      struct btrfs_extent_data_ref);
1227
1228                 if (match_extent_data_ref(leaf, ref, root_objectid,
1229                                           owner, offset)) {
1230                         if (recow) {
1231                                 btrfs_release_path(path);
1232                                 goto again;
1233                         }
1234                         err = 0;
1235                         break;
1236                 }
1237                 path->slots[0]++;
1238         }
1239 fail:
1240         return err;
1241 }
1242
1243 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1244                                            struct btrfs_fs_info *fs_info,
1245                                            struct btrfs_path *path,
1246                                            u64 bytenr, u64 parent,
1247                                            u64 root_objectid, u64 owner,
1248                                            u64 offset, int refs_to_add)
1249 {
1250         struct btrfs_root *root = fs_info->extent_root;
1251         struct btrfs_key key;
1252         struct extent_buffer *leaf;
1253         u32 size;
1254         u32 num_refs;
1255         int ret;
1256
1257         key.objectid = bytenr;
1258         if (parent) {
1259                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1260                 key.offset = parent;
1261                 size = sizeof(struct btrfs_shared_data_ref);
1262         } else {
1263                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1264                 key.offset = hash_extent_data_ref(root_objectid,
1265                                                   owner, offset);
1266                 size = sizeof(struct btrfs_extent_data_ref);
1267         }
1268
1269         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1270         if (ret && ret != -EEXIST)
1271                 goto fail;
1272
1273         leaf = path->nodes[0];
1274         if (parent) {
1275                 struct btrfs_shared_data_ref *ref;
1276                 ref = btrfs_item_ptr(leaf, path->slots[0],
1277                                      struct btrfs_shared_data_ref);
1278                 if (ret == 0) {
1279                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1280                 } else {
1281                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1282                         num_refs += refs_to_add;
1283                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1284                 }
1285         } else {
1286                 struct btrfs_extent_data_ref *ref;
1287                 while (ret == -EEXIST) {
1288                         ref = btrfs_item_ptr(leaf, path->slots[0],
1289                                              struct btrfs_extent_data_ref);
1290                         if (match_extent_data_ref(leaf, ref, root_objectid,
1291                                                   owner, offset))
1292                                 break;
1293                         btrfs_release_path(path);
1294                         key.offset++;
1295                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1296                                                       size);
1297                         if (ret && ret != -EEXIST)
1298                                 goto fail;
1299
1300                         leaf = path->nodes[0];
1301                 }
1302                 ref = btrfs_item_ptr(leaf, path->slots[0],
1303                                      struct btrfs_extent_data_ref);
1304                 if (ret == 0) {
1305                         btrfs_set_extent_data_ref_root(leaf, ref,
1306                                                        root_objectid);
1307                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1308                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1309                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1310                 } else {
1311                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1312                         num_refs += refs_to_add;
1313                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1314                 }
1315         }
1316         btrfs_mark_buffer_dirty(leaf);
1317         ret = 0;
1318 fail:
1319         btrfs_release_path(path);
1320         return ret;
1321 }
1322
1323 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1324                                            struct btrfs_fs_info *fs_info,
1325                                            struct btrfs_path *path,
1326                                            int refs_to_drop, int *last_ref)
1327 {
1328         struct btrfs_key key;
1329         struct btrfs_extent_data_ref *ref1 = NULL;
1330         struct btrfs_shared_data_ref *ref2 = NULL;
1331         struct extent_buffer *leaf;
1332         u32 num_refs = 0;
1333         int ret = 0;
1334
1335         leaf = path->nodes[0];
1336         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1337
1338         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1339                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1340                                       struct btrfs_extent_data_ref);
1341                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1342         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1343                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1344                                       struct btrfs_shared_data_ref);
1345                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1346 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1347         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1348                 struct btrfs_extent_ref_v0 *ref0;
1349                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1350                                       struct btrfs_extent_ref_v0);
1351                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1352 #endif
1353         } else {
1354                 BUG();
1355         }
1356
1357         BUG_ON(num_refs < refs_to_drop);
1358         num_refs -= refs_to_drop;
1359
1360         if (num_refs == 0) {
1361                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1362                 *last_ref = 1;
1363         } else {
1364                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1365                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1366                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1367                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1368 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1369                 else {
1370                         struct btrfs_extent_ref_v0 *ref0;
1371                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1372                                         struct btrfs_extent_ref_v0);
1373                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1374                 }
1375 #endif
1376                 btrfs_mark_buffer_dirty(leaf);
1377         }
1378         return ret;
1379 }
1380
1381 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1382                                           struct btrfs_extent_inline_ref *iref)
1383 {
1384         struct btrfs_key key;
1385         struct extent_buffer *leaf;
1386         struct btrfs_extent_data_ref *ref1;
1387         struct btrfs_shared_data_ref *ref2;
1388         u32 num_refs = 0;
1389
1390         leaf = path->nodes[0];
1391         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1392         if (iref) {
1393                 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1394                     BTRFS_EXTENT_DATA_REF_KEY) {
1395                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1396                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1397                 } else {
1398                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1399                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1400                 }
1401         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1402                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1403                                       struct btrfs_extent_data_ref);
1404                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1405         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1406                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1407                                       struct btrfs_shared_data_ref);
1408                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1409 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1410         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1411                 struct btrfs_extent_ref_v0 *ref0;
1412                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1413                                       struct btrfs_extent_ref_v0);
1414                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1415 #endif
1416         } else {
1417                 WARN_ON(1);
1418         }
1419         return num_refs;
1420 }
1421
1422 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1423                                           struct btrfs_fs_info *fs_info,
1424                                           struct btrfs_path *path,
1425                                           u64 bytenr, u64 parent,
1426                                           u64 root_objectid)
1427 {
1428         struct btrfs_root *root = fs_info->extent_root;
1429         struct btrfs_key key;
1430         int ret;
1431
1432         key.objectid = bytenr;
1433         if (parent) {
1434                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1435                 key.offset = parent;
1436         } else {
1437                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1438                 key.offset = root_objectid;
1439         }
1440
1441         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442         if (ret > 0)
1443                 ret = -ENOENT;
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445         if (ret == -ENOENT && parent) {
1446                 btrfs_release_path(path);
1447                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1448                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1449                 if (ret > 0)
1450                         ret = -ENOENT;
1451         }
1452 #endif
1453         return ret;
1454 }
1455
1456 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1457                                           struct btrfs_fs_info *fs_info,
1458                                           struct btrfs_path *path,
1459                                           u64 bytenr, u64 parent,
1460                                           u64 root_objectid)
1461 {
1462         struct btrfs_key key;
1463         int ret;
1464
1465         key.objectid = bytenr;
1466         if (parent) {
1467                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1468                 key.offset = parent;
1469         } else {
1470                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1471                 key.offset = root_objectid;
1472         }
1473
1474         ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1475                                       path, &key, 0);
1476         btrfs_release_path(path);
1477         return ret;
1478 }
1479
1480 static inline int extent_ref_type(u64 parent, u64 owner)
1481 {
1482         int type;
1483         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1484                 if (parent > 0)
1485                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1486                 else
1487                         type = BTRFS_TREE_BLOCK_REF_KEY;
1488         } else {
1489                 if (parent > 0)
1490                         type = BTRFS_SHARED_DATA_REF_KEY;
1491                 else
1492                         type = BTRFS_EXTENT_DATA_REF_KEY;
1493         }
1494         return type;
1495 }
1496
1497 static int find_next_key(struct btrfs_path *path, int level,
1498                          struct btrfs_key *key)
1499
1500 {
1501         for (; level < BTRFS_MAX_LEVEL; level++) {
1502                 if (!path->nodes[level])
1503                         break;
1504                 if (path->slots[level] + 1 >=
1505                     btrfs_header_nritems(path->nodes[level]))
1506                         continue;
1507                 if (level == 0)
1508                         btrfs_item_key_to_cpu(path->nodes[level], key,
1509                                               path->slots[level] + 1);
1510                 else
1511                         btrfs_node_key_to_cpu(path->nodes[level], key,
1512                                               path->slots[level] + 1);
1513                 return 0;
1514         }
1515         return 1;
1516 }
1517
1518 /*
1519  * look for inline back ref. if back ref is found, *ref_ret is set
1520  * to the address of inline back ref, and 0 is returned.
1521  *
1522  * if back ref isn't found, *ref_ret is set to the address where it
1523  * should be inserted, and -ENOENT is returned.
1524  *
1525  * if insert is true and there are too many inline back refs, the path
1526  * points to the extent item, and -EAGAIN is returned.
1527  *
1528  * NOTE: inline back refs are ordered in the same way that back ref
1529  *       items in the tree are ordered.
1530  */
1531 static noinline_for_stack
1532 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1533                                  struct btrfs_fs_info *fs_info,
1534                                  struct btrfs_path *path,
1535                                  struct btrfs_extent_inline_ref **ref_ret,
1536                                  u64 bytenr, u64 num_bytes,
1537                                  u64 parent, u64 root_objectid,
1538                                  u64 owner, u64 offset, int insert)
1539 {
1540         struct btrfs_root *root = fs_info->extent_root;
1541         struct btrfs_key key;
1542         struct extent_buffer *leaf;
1543         struct btrfs_extent_item *ei;
1544         struct btrfs_extent_inline_ref *iref;
1545         u64 flags;
1546         u64 item_size;
1547         unsigned long ptr;
1548         unsigned long end;
1549         int extra_size;
1550         int type;
1551         int want;
1552         int ret;
1553         int err = 0;
1554         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1555
1556         key.objectid = bytenr;
1557         key.type = BTRFS_EXTENT_ITEM_KEY;
1558         key.offset = num_bytes;
1559
1560         want = extent_ref_type(parent, owner);
1561         if (insert) {
1562                 extra_size = btrfs_extent_inline_ref_size(want);
1563                 path->keep_locks = 1;
1564         } else
1565                 extra_size = -1;
1566
1567         /*
1568          * Owner is our parent level, so we can just add one to get the level
1569          * for the block we are interested in.
1570          */
1571         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1572                 key.type = BTRFS_METADATA_ITEM_KEY;
1573                 key.offset = owner;
1574         }
1575
1576 again:
1577         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1578         if (ret < 0) {
1579                 err = ret;
1580                 goto out;
1581         }
1582
1583         /*
1584          * We may be a newly converted file system which still has the old fat
1585          * extent entries for metadata, so try and see if we have one of those.
1586          */
1587         if (ret > 0 && skinny_metadata) {
1588                 skinny_metadata = false;
1589                 if (path->slots[0]) {
1590                         path->slots[0]--;
1591                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1592                                               path->slots[0]);
1593                         if (key.objectid == bytenr &&
1594                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1595                             key.offset == num_bytes)
1596                                 ret = 0;
1597                 }
1598                 if (ret) {
1599                         key.objectid = bytenr;
1600                         key.type = BTRFS_EXTENT_ITEM_KEY;
1601                         key.offset = num_bytes;
1602                         btrfs_release_path(path);
1603                         goto again;
1604                 }
1605         }
1606
1607         if (ret && !insert) {
1608                 err = -ENOENT;
1609                 goto out;
1610         } else if (WARN_ON(ret)) {
1611                 err = -EIO;
1612                 goto out;
1613         }
1614
1615         leaf = path->nodes[0];
1616         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1617 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1618         if (item_size < sizeof(*ei)) {
1619                 if (!insert) {
1620                         err = -ENOENT;
1621                         goto out;
1622                 }
1623                 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1624                                              extra_size);
1625                 if (ret < 0) {
1626                         err = ret;
1627                         goto out;
1628                 }
1629                 leaf = path->nodes[0];
1630                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1631         }
1632 #endif
1633         BUG_ON(item_size < sizeof(*ei));
1634
1635         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636         flags = btrfs_extent_flags(leaf, ei);
1637
1638         ptr = (unsigned long)(ei + 1);
1639         end = (unsigned long)ei + item_size;
1640
1641         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1642                 ptr += sizeof(struct btrfs_tree_block_info);
1643                 BUG_ON(ptr > end);
1644         }
1645
1646         err = -ENOENT;
1647         while (1) {
1648                 if (ptr >= end) {
1649                         WARN_ON(ptr > end);
1650                         break;
1651                 }
1652                 iref = (struct btrfs_extent_inline_ref *)ptr;
1653                 type = btrfs_extent_inline_ref_type(leaf, iref);
1654                 if (want < type)
1655                         break;
1656                 if (want > type) {
1657                         ptr += btrfs_extent_inline_ref_size(type);
1658                         continue;
1659                 }
1660
1661                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662                         struct btrfs_extent_data_ref *dref;
1663                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1664                         if (match_extent_data_ref(leaf, dref, root_objectid,
1665                                                   owner, offset)) {
1666                                 err = 0;
1667                                 break;
1668                         }
1669                         if (hash_extent_data_ref_item(leaf, dref) <
1670                             hash_extent_data_ref(root_objectid, owner, offset))
1671                                 break;
1672                 } else {
1673                         u64 ref_offset;
1674                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1675                         if (parent > 0) {
1676                                 if (parent == ref_offset) {
1677                                         err = 0;
1678                                         break;
1679                                 }
1680                                 if (ref_offset < parent)
1681                                         break;
1682                         } else {
1683                                 if (root_objectid == ref_offset) {
1684                                         err = 0;
1685                                         break;
1686                                 }
1687                                 if (ref_offset < root_objectid)
1688                                         break;
1689                         }
1690                 }
1691                 ptr += btrfs_extent_inline_ref_size(type);
1692         }
1693         if (err == -ENOENT && insert) {
1694                 if (item_size + extra_size >=
1695                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1696                         err = -EAGAIN;
1697                         goto out;
1698                 }
1699                 /*
1700                  * To add new inline back ref, we have to make sure
1701                  * there is no corresponding back ref item.
1702                  * For simplicity, we just do not add new inline back
1703                  * ref if there is any kind of item for this block
1704                  */
1705                 if (find_next_key(path, 0, &key) == 0 &&
1706                     key.objectid == bytenr &&
1707                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1708                         err = -EAGAIN;
1709                         goto out;
1710                 }
1711         }
1712         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1713 out:
1714         if (insert) {
1715                 path->keep_locks = 0;
1716                 btrfs_unlock_up_safe(path, 1);
1717         }
1718         return err;
1719 }
1720
1721 /*
1722  * helper to add new inline back ref
1723  */
1724 static noinline_for_stack
1725 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1726                                  struct btrfs_path *path,
1727                                  struct btrfs_extent_inline_ref *iref,
1728                                  u64 parent, u64 root_objectid,
1729                                  u64 owner, u64 offset, int refs_to_add,
1730                                  struct btrfs_delayed_extent_op *extent_op)
1731 {
1732         struct extent_buffer *leaf;
1733         struct btrfs_extent_item *ei;
1734         unsigned long ptr;
1735         unsigned long end;
1736         unsigned long item_offset;
1737         u64 refs;
1738         int size;
1739         int type;
1740
1741         leaf = path->nodes[0];
1742         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1743         item_offset = (unsigned long)iref - (unsigned long)ei;
1744
1745         type = extent_ref_type(parent, owner);
1746         size = btrfs_extent_inline_ref_size(type);
1747
1748         btrfs_extend_item(fs_info, path, size);
1749
1750         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1751         refs = btrfs_extent_refs(leaf, ei);
1752         refs += refs_to_add;
1753         btrfs_set_extent_refs(leaf, ei, refs);
1754         if (extent_op)
1755                 __run_delayed_extent_op(extent_op, leaf, ei);
1756
1757         ptr = (unsigned long)ei + item_offset;
1758         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1759         if (ptr < end - size)
1760                 memmove_extent_buffer(leaf, ptr + size, ptr,
1761                                       end - size - ptr);
1762
1763         iref = (struct btrfs_extent_inline_ref *)ptr;
1764         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1765         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1766                 struct btrfs_extent_data_ref *dref;
1767                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1768                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1769                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1770                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1771                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1772         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1773                 struct btrfs_shared_data_ref *sref;
1774                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1775                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1776                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1777         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1778                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1779         } else {
1780                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1781         }
1782         btrfs_mark_buffer_dirty(leaf);
1783 }
1784
1785 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1786                                  struct btrfs_fs_info *fs_info,
1787                                  struct btrfs_path *path,
1788                                  struct btrfs_extent_inline_ref **ref_ret,
1789                                  u64 bytenr, u64 num_bytes, u64 parent,
1790                                  u64 root_objectid, u64 owner, u64 offset)
1791 {
1792         int ret;
1793
1794         ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1795                                            bytenr, num_bytes, parent,
1796                                            root_objectid, owner, offset, 0);
1797         if (ret != -ENOENT)
1798                 return ret;
1799
1800         btrfs_release_path(path);
1801         *ref_ret = NULL;
1802
1803         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1804                 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1805                                             parent, root_objectid);
1806         } else {
1807                 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1808                                              parent, root_objectid, owner,
1809                                              offset);
1810         }
1811         return ret;
1812 }
1813
1814 /*
1815  * helper to update/remove inline back ref
1816  */
1817 static noinline_for_stack
1818 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1819                                   struct btrfs_path *path,
1820                                   struct btrfs_extent_inline_ref *iref,
1821                                   int refs_to_mod,
1822                                   struct btrfs_delayed_extent_op *extent_op,
1823                                   int *last_ref)
1824 {
1825         struct extent_buffer *leaf;
1826         struct btrfs_extent_item *ei;
1827         struct btrfs_extent_data_ref *dref = NULL;
1828         struct btrfs_shared_data_ref *sref = NULL;
1829         unsigned long ptr;
1830         unsigned long end;
1831         u32 item_size;
1832         int size;
1833         int type;
1834         u64 refs;
1835
1836         leaf = path->nodes[0];
1837         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1838         refs = btrfs_extent_refs(leaf, ei);
1839         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1840         refs += refs_to_mod;
1841         btrfs_set_extent_refs(leaf, ei, refs);
1842         if (extent_op)
1843                 __run_delayed_extent_op(extent_op, leaf, ei);
1844
1845         type = btrfs_extent_inline_ref_type(leaf, iref);
1846
1847         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1849                 refs = btrfs_extent_data_ref_count(leaf, dref);
1850         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1851                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1852                 refs = btrfs_shared_data_ref_count(leaf, sref);
1853         } else {
1854                 refs = 1;
1855                 BUG_ON(refs_to_mod != -1);
1856         }
1857
1858         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1859         refs += refs_to_mod;
1860
1861         if (refs > 0) {
1862                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1863                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1864                 else
1865                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1866         } else {
1867                 *last_ref = 1;
1868                 size =  btrfs_extent_inline_ref_size(type);
1869                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1870                 ptr = (unsigned long)iref;
1871                 end = (unsigned long)ei + item_size;
1872                 if (ptr + size < end)
1873                         memmove_extent_buffer(leaf, ptr, ptr + size,
1874                                               end - ptr - size);
1875                 item_size -= size;
1876                 btrfs_truncate_item(fs_info, path, item_size, 1);
1877         }
1878         btrfs_mark_buffer_dirty(leaf);
1879 }
1880
1881 static noinline_for_stack
1882 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1883                                  struct btrfs_fs_info *fs_info,
1884                                  struct btrfs_path *path,
1885                                  u64 bytenr, u64 num_bytes, u64 parent,
1886                                  u64 root_objectid, u64 owner,
1887                                  u64 offset, int refs_to_add,
1888                                  struct btrfs_delayed_extent_op *extent_op)
1889 {
1890         struct btrfs_extent_inline_ref *iref;
1891         int ret;
1892
1893         ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1894                                            bytenr, num_bytes, parent,
1895                                            root_objectid, owner, offset, 1);
1896         if (ret == 0) {
1897                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1898                 update_inline_extent_backref(fs_info, path, iref,
1899                                              refs_to_add, extent_op, NULL);
1900         } else if (ret == -ENOENT) {
1901                 setup_inline_extent_backref(fs_info, path, iref, parent,
1902                                             root_objectid, owner, offset,
1903                                             refs_to_add, extent_op);
1904                 ret = 0;
1905         }
1906         return ret;
1907 }
1908
1909 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1910                                  struct btrfs_fs_info *fs_info,
1911                                  struct btrfs_path *path,
1912                                  u64 bytenr, u64 parent, u64 root_objectid,
1913                                  u64 owner, u64 offset, int refs_to_add)
1914 {
1915         int ret;
1916         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1917                 BUG_ON(refs_to_add != 1);
1918                 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1919                                             parent, root_objectid);
1920         } else {
1921                 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1922                                              parent, root_objectid,
1923                                              owner, offset, refs_to_add);
1924         }
1925         return ret;
1926 }
1927
1928 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1929                                  struct btrfs_fs_info *fs_info,
1930                                  struct btrfs_path *path,
1931                                  struct btrfs_extent_inline_ref *iref,
1932                                  int refs_to_drop, int is_data, int *last_ref)
1933 {
1934         int ret = 0;
1935
1936         BUG_ON(!is_data && refs_to_drop != 1);
1937         if (iref) {
1938                 update_inline_extent_backref(fs_info, path, iref,
1939                                              -refs_to_drop, NULL, last_ref);
1940         } else if (is_data) {
1941                 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1942                                              last_ref);
1943         } else {
1944                 *last_ref = 1;
1945                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1946         }
1947         return ret;
1948 }
1949
1950 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1951 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1952                                u64 *discarded_bytes)
1953 {
1954         int j, ret = 0;
1955         u64 bytes_left, end;
1956         u64 aligned_start = ALIGN(start, 1 << 9);
1957
1958         if (WARN_ON(start != aligned_start)) {
1959                 len -= aligned_start - start;
1960                 len = round_down(len, 1 << 9);
1961                 start = aligned_start;
1962         }
1963
1964         *discarded_bytes = 0;
1965
1966         if (!len)
1967                 return 0;
1968
1969         end = start + len;
1970         bytes_left = len;
1971
1972         /* Skip any superblocks on this device. */
1973         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1974                 u64 sb_start = btrfs_sb_offset(j);
1975                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1976                 u64 size = sb_start - start;
1977
1978                 if (!in_range(sb_start, start, bytes_left) &&
1979                     !in_range(sb_end, start, bytes_left) &&
1980                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1981                         continue;
1982
1983                 /*
1984                  * Superblock spans beginning of range.  Adjust start and
1985                  * try again.
1986                  */
1987                 if (sb_start <= start) {
1988                         start += sb_end - start;
1989                         if (start > end) {
1990                                 bytes_left = 0;
1991                                 break;
1992                         }
1993                         bytes_left = end - start;
1994                         continue;
1995                 }
1996
1997                 if (size) {
1998                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1999                                                    GFP_NOFS, 0);
2000                         if (!ret)
2001                                 *discarded_bytes += size;
2002                         else if (ret != -EOPNOTSUPP)
2003                                 return ret;
2004                 }
2005
2006                 start = sb_end;
2007                 if (start > end) {
2008                         bytes_left = 0;
2009                         break;
2010                 }
2011                 bytes_left = end - start;
2012         }
2013
2014         if (bytes_left) {
2015                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2016                                            GFP_NOFS, 0);
2017                 if (!ret)
2018                         *discarded_bytes += bytes_left;
2019         }
2020         return ret;
2021 }
2022
2023 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2024                          u64 num_bytes, u64 *actual_bytes)
2025 {
2026         int ret;
2027         u64 discarded_bytes = 0;
2028         struct btrfs_bio *bbio = NULL;
2029
2030
2031         /*
2032          * Avoid races with device replace and make sure our bbio has devices
2033          * associated to its stripes that don't go away while we are discarding.
2034          */
2035         btrfs_bio_counter_inc_blocked(fs_info);
2036         /* Tell the block device(s) that the sectors can be discarded */
2037         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2038                               &bbio, 0);
2039         /* Error condition is -ENOMEM */
2040         if (!ret) {
2041                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2042                 int i;
2043
2044
2045                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2046                         u64 bytes;
2047                         if (!stripe->dev->can_discard)
2048                                 continue;
2049
2050                         ret = btrfs_issue_discard(stripe->dev->bdev,
2051                                                   stripe->physical,
2052                                                   stripe->length,
2053                                                   &bytes);
2054                         if (!ret)
2055                                 discarded_bytes += bytes;
2056                         else if (ret != -EOPNOTSUPP)
2057                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2058
2059                         /*
2060                          * Just in case we get back EOPNOTSUPP for some reason,
2061                          * just ignore the return value so we don't screw up
2062                          * people calling discard_extent.
2063                          */
2064                         ret = 0;
2065                 }
2066                 btrfs_put_bbio(bbio);
2067         }
2068         btrfs_bio_counter_dec(fs_info);
2069
2070         if (actual_bytes)
2071                 *actual_bytes = discarded_bytes;
2072
2073
2074         if (ret == -EOPNOTSUPP)
2075                 ret = 0;
2076         return ret;
2077 }
2078
2079 /* Can return -ENOMEM */
2080 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2081                          struct btrfs_fs_info *fs_info,
2082                          u64 bytenr, u64 num_bytes, u64 parent,
2083                          u64 root_objectid, u64 owner, u64 offset)
2084 {
2085         int ret;
2086
2087         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2088                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2089
2090         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2091                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2092                                         num_bytes,
2093                                         parent, root_objectid, (int)owner,
2094                                         BTRFS_ADD_DELAYED_REF, NULL);
2095         } else {
2096                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2097                                         num_bytes, parent, root_objectid,
2098                                         owner, offset, 0,
2099                                         BTRFS_ADD_DELAYED_REF);
2100         }
2101         return ret;
2102 }
2103
2104 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2105                                   struct btrfs_fs_info *fs_info,
2106                                   struct btrfs_delayed_ref_node *node,
2107                                   u64 parent, u64 root_objectid,
2108                                   u64 owner, u64 offset, int refs_to_add,
2109                                   struct btrfs_delayed_extent_op *extent_op)
2110 {
2111         struct btrfs_path *path;
2112         struct extent_buffer *leaf;
2113         struct btrfs_extent_item *item;
2114         struct btrfs_key key;
2115         u64 bytenr = node->bytenr;
2116         u64 num_bytes = node->num_bytes;
2117         u64 refs;
2118         int ret;
2119
2120         path = btrfs_alloc_path();
2121         if (!path)
2122                 return -ENOMEM;
2123
2124         path->reada = READA_FORWARD;
2125         path->leave_spinning = 1;
2126         /* this will setup the path even if it fails to insert the back ref */
2127         ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2128                                            num_bytes, parent, root_objectid,
2129                                            owner, offset,
2130                                            refs_to_add, extent_op);
2131         if ((ret < 0 && ret != -EAGAIN) || !ret)
2132                 goto out;
2133
2134         /*
2135          * Ok we had -EAGAIN which means we didn't have space to insert and
2136          * inline extent ref, so just update the reference count and add a
2137          * normal backref.
2138          */
2139         leaf = path->nodes[0];
2140         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2141         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2142         refs = btrfs_extent_refs(leaf, item);
2143         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2144         if (extent_op)
2145                 __run_delayed_extent_op(extent_op, leaf, item);
2146
2147         btrfs_mark_buffer_dirty(leaf);
2148         btrfs_release_path(path);
2149
2150         path->reada = READA_FORWARD;
2151         path->leave_spinning = 1;
2152         /* now insert the actual backref */
2153         ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2154                                     root_objectid, owner, offset, refs_to_add);
2155         if (ret)
2156                 btrfs_abort_transaction(trans, ret);
2157 out:
2158         btrfs_free_path(path);
2159         return ret;
2160 }
2161
2162 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2163                                 struct btrfs_fs_info *fs_info,
2164                                 struct btrfs_delayed_ref_node *node,
2165                                 struct btrfs_delayed_extent_op *extent_op,
2166                                 int insert_reserved)
2167 {
2168         int ret = 0;
2169         struct btrfs_delayed_data_ref *ref;
2170         struct btrfs_key ins;
2171         u64 parent = 0;
2172         u64 ref_root = 0;
2173         u64 flags = 0;
2174
2175         ins.objectid = node->bytenr;
2176         ins.offset = node->num_bytes;
2177         ins.type = BTRFS_EXTENT_ITEM_KEY;
2178
2179         ref = btrfs_delayed_node_to_data_ref(node);
2180         trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2181
2182         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2183                 parent = ref->parent;
2184         ref_root = ref->root;
2185
2186         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2187                 if (extent_op)
2188                         flags |= extent_op->flags_to_set;
2189                 ret = alloc_reserved_file_extent(trans, fs_info,
2190                                                  parent, ref_root, flags,
2191                                                  ref->objectid, ref->offset,
2192                                                  &ins, node->ref_mod);
2193         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2194                 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2195                                              ref_root, ref->objectid,
2196                                              ref->offset, node->ref_mod,
2197                                              extent_op);
2198         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2199                 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2200                                           ref_root, ref->objectid,
2201                                           ref->offset, node->ref_mod,
2202                                           extent_op);
2203         } else {
2204                 BUG();
2205         }
2206         return ret;
2207 }
2208
2209 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2210                                     struct extent_buffer *leaf,
2211                                     struct btrfs_extent_item *ei)
2212 {
2213         u64 flags = btrfs_extent_flags(leaf, ei);
2214         if (extent_op->update_flags) {
2215                 flags |= extent_op->flags_to_set;
2216                 btrfs_set_extent_flags(leaf, ei, flags);
2217         }
2218
2219         if (extent_op->update_key) {
2220                 struct btrfs_tree_block_info *bi;
2221                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2222                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2223                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2224         }
2225 }
2226
2227 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2228                                  struct btrfs_fs_info *fs_info,
2229                                  struct btrfs_delayed_ref_node *node,
2230                                  struct btrfs_delayed_extent_op *extent_op)
2231 {
2232         struct btrfs_key key;
2233         struct btrfs_path *path;
2234         struct btrfs_extent_item *ei;
2235         struct extent_buffer *leaf;
2236         u32 item_size;
2237         int ret;
2238         int err = 0;
2239         int metadata = !extent_op->is_data;
2240
2241         if (trans->aborted)
2242                 return 0;
2243
2244         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2245                 metadata = 0;
2246
2247         path = btrfs_alloc_path();
2248         if (!path)
2249                 return -ENOMEM;
2250
2251         key.objectid = node->bytenr;
2252
2253         if (metadata) {
2254                 key.type = BTRFS_METADATA_ITEM_KEY;
2255                 key.offset = extent_op->level;
2256         } else {
2257                 key.type = BTRFS_EXTENT_ITEM_KEY;
2258                 key.offset = node->num_bytes;
2259         }
2260
2261 again:
2262         path->reada = READA_FORWARD;
2263         path->leave_spinning = 1;
2264         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2265         if (ret < 0) {
2266                 err = ret;
2267                 goto out;
2268         }
2269         if (ret > 0) {
2270                 if (metadata) {
2271                         if (path->slots[0] > 0) {
2272                                 path->slots[0]--;
2273                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2274                                                       path->slots[0]);
2275                                 if (key.objectid == node->bytenr &&
2276                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2277                                     key.offset == node->num_bytes)
2278                                         ret = 0;
2279                         }
2280                         if (ret > 0) {
2281                                 btrfs_release_path(path);
2282                                 metadata = 0;
2283
2284                                 key.objectid = node->bytenr;
2285                                 key.offset = node->num_bytes;
2286                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2287                                 goto again;
2288                         }
2289                 } else {
2290                         err = -EIO;
2291                         goto out;
2292                 }
2293         }
2294
2295         leaf = path->nodes[0];
2296         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2297 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2298         if (item_size < sizeof(*ei)) {
2299                 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2300                 if (ret < 0) {
2301                         err = ret;
2302                         goto out;
2303                 }
2304                 leaf = path->nodes[0];
2305                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2306         }
2307 #endif
2308         BUG_ON(item_size < sizeof(*ei));
2309         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2310         __run_delayed_extent_op(extent_op, leaf, ei);
2311
2312         btrfs_mark_buffer_dirty(leaf);
2313 out:
2314         btrfs_free_path(path);
2315         return err;
2316 }
2317
2318 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2319                                 struct btrfs_fs_info *fs_info,
2320                                 struct btrfs_delayed_ref_node *node,
2321                                 struct btrfs_delayed_extent_op *extent_op,
2322                                 int insert_reserved)
2323 {
2324         int ret = 0;
2325         struct btrfs_delayed_tree_ref *ref;
2326         struct btrfs_key ins;
2327         u64 parent = 0;
2328         u64 ref_root = 0;
2329         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2330
2331         ref = btrfs_delayed_node_to_tree_ref(node);
2332         trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2333
2334         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2335                 parent = ref->parent;
2336         ref_root = ref->root;
2337
2338         ins.objectid = node->bytenr;
2339         if (skinny_metadata) {
2340                 ins.offset = ref->level;
2341                 ins.type = BTRFS_METADATA_ITEM_KEY;
2342         } else {
2343                 ins.offset = node->num_bytes;
2344                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2345         }
2346
2347         if (node->ref_mod != 1) {
2348                 btrfs_err(fs_info,
2349         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2350                           node->bytenr, node->ref_mod, node->action, ref_root,
2351                           parent);
2352                 return -EIO;
2353         }
2354         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2355                 BUG_ON(!extent_op || !extent_op->update_flags);
2356                 ret = alloc_reserved_tree_block(trans, fs_info,
2357                                                 parent, ref_root,
2358                                                 extent_op->flags_to_set,
2359                                                 &extent_op->key,
2360                                                 ref->level, &ins);
2361         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2362                 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2363                                              parent, ref_root,
2364                                              ref->level, 0, 1,
2365                                              extent_op);
2366         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2367                 ret = __btrfs_free_extent(trans, fs_info, node,
2368                                           parent, ref_root,
2369                                           ref->level, 0, 1, extent_op);
2370         } else {
2371                 BUG();
2372         }
2373         return ret;
2374 }
2375
2376 /* helper function to actually process a single delayed ref entry */
2377 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2378                                struct btrfs_fs_info *fs_info,
2379                                struct btrfs_delayed_ref_node *node,
2380                                struct btrfs_delayed_extent_op *extent_op,
2381                                int insert_reserved)
2382 {
2383         int ret = 0;
2384
2385         if (trans->aborted) {
2386                 if (insert_reserved)
2387                         btrfs_pin_extent(fs_info, node->bytenr,
2388                                          node->num_bytes, 1);
2389                 return 0;
2390         }
2391
2392         if (btrfs_delayed_ref_is_head(node)) {
2393                 struct btrfs_delayed_ref_head *head;
2394                 /*
2395                  * we've hit the end of the chain and we were supposed
2396                  * to insert this extent into the tree.  But, it got
2397                  * deleted before we ever needed to insert it, so all
2398                  * we have to do is clean up the accounting
2399                  */
2400                 BUG_ON(extent_op);
2401                 head = btrfs_delayed_node_to_head(node);
2402                 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2403
2404                 if (insert_reserved) {
2405                         btrfs_pin_extent(fs_info, node->bytenr,
2406                                          node->num_bytes, 1);
2407                         if (head->is_data) {
2408                                 ret = btrfs_del_csums(trans, fs_info,
2409                                                       node->bytenr,
2410                                                       node->num_bytes);
2411                         }
2412                 }
2413
2414                 /* Also free its reserved qgroup space */
2415                 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2416                                               head->qgroup_reserved);
2417                 return ret;
2418         }
2419
2420         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2421             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2422                 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2423                                            insert_reserved);
2424         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2425                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2426                 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2427                                            insert_reserved);
2428         else
2429                 BUG();
2430         return ret;
2431 }
2432
2433 static inline struct btrfs_delayed_ref_node *
2434 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2435 {
2436         struct btrfs_delayed_ref_node *ref;
2437
2438         if (list_empty(&head->ref_list))
2439                 return NULL;
2440
2441         /*
2442          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2443          * This is to prevent a ref count from going down to zero, which deletes
2444          * the extent item from the extent tree, when there still are references
2445          * to add, which would fail because they would not find the extent item.
2446          */
2447         if (!list_empty(&head->ref_add_list))
2448                 return list_first_entry(&head->ref_add_list,
2449                                 struct btrfs_delayed_ref_node, add_list);
2450
2451         ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2452                                list);
2453         ASSERT(list_empty(&ref->add_list));
2454         return ref;
2455 }
2456
2457 /*
2458  * Returns 0 on success or if called with an already aborted transaction.
2459  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2460  */
2461 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2462                                              struct btrfs_fs_info *fs_info,
2463                                              unsigned long nr)
2464 {
2465         struct btrfs_delayed_ref_root *delayed_refs;
2466         struct btrfs_delayed_ref_node *ref;
2467         struct btrfs_delayed_ref_head *locked_ref = NULL;
2468         struct btrfs_delayed_extent_op *extent_op;
2469         ktime_t start = ktime_get();
2470         int ret;
2471         unsigned long count = 0;
2472         unsigned long actual_count = 0;
2473         int must_insert_reserved = 0;
2474
2475         delayed_refs = &trans->transaction->delayed_refs;
2476         while (1) {
2477                 if (!locked_ref) {
2478                         if (count >= nr)
2479                                 break;
2480
2481                         spin_lock(&delayed_refs->lock);
2482                         locked_ref = btrfs_select_ref_head(trans);
2483                         if (!locked_ref) {
2484                                 spin_unlock(&delayed_refs->lock);
2485                                 break;
2486                         }
2487
2488                         /* grab the lock that says we are going to process
2489                          * all the refs for this head */
2490                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2491                         spin_unlock(&delayed_refs->lock);
2492                         /*
2493                          * we may have dropped the spin lock to get the head
2494                          * mutex lock, and that might have given someone else
2495                          * time to free the head.  If that's true, it has been
2496                          * removed from our list and we can move on.
2497                          */
2498                         if (ret == -EAGAIN) {
2499                                 locked_ref = NULL;
2500                                 count++;
2501                                 continue;
2502                         }
2503                 }
2504
2505                 /*
2506                  * We need to try and merge add/drops of the same ref since we
2507                  * can run into issues with relocate dropping the implicit ref
2508                  * and then it being added back again before the drop can
2509                  * finish.  If we merged anything we need to re-loop so we can
2510                  * get a good ref.
2511                  * Or we can get node references of the same type that weren't
2512                  * merged when created due to bumps in the tree mod seq, and
2513                  * we need to merge them to prevent adding an inline extent
2514                  * backref before dropping it (triggering a BUG_ON at
2515                  * insert_inline_extent_backref()).
2516                  */
2517                 spin_lock(&locked_ref->lock);
2518                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2519                                          locked_ref);
2520
2521                 /*
2522                  * locked_ref is the head node, so we have to go one
2523                  * node back for any delayed ref updates
2524                  */
2525                 ref = select_delayed_ref(locked_ref);
2526
2527                 if (ref && ref->seq &&
2528                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2529                         spin_unlock(&locked_ref->lock);
2530                         spin_lock(&delayed_refs->lock);
2531                         locked_ref->processing = 0;
2532                         delayed_refs->num_heads_ready++;
2533                         spin_unlock(&delayed_refs->lock);
2534                         btrfs_delayed_ref_unlock(locked_ref);
2535                         locked_ref = NULL;
2536                         cond_resched();
2537                         count++;
2538                         continue;
2539                 }
2540
2541                 /*
2542                  * record the must insert reserved flag before we
2543                  * drop the spin lock.
2544                  */
2545                 must_insert_reserved = locked_ref->must_insert_reserved;
2546                 locked_ref->must_insert_reserved = 0;
2547
2548                 extent_op = locked_ref->extent_op;
2549                 locked_ref->extent_op = NULL;
2550
2551                 if (!ref) {
2552
2553
2554                         /* All delayed refs have been processed, Go ahead
2555                          * and send the head node to run_one_delayed_ref,
2556                          * so that any accounting fixes can happen
2557                          */
2558                         ref = &locked_ref->node;
2559
2560                         if (extent_op && must_insert_reserved) {
2561                                 btrfs_free_delayed_extent_op(extent_op);
2562                                 extent_op = NULL;
2563                         }
2564
2565                         if (extent_op) {
2566                                 spin_unlock(&locked_ref->lock);
2567                                 ret = run_delayed_extent_op(trans, fs_info,
2568                                                             ref, extent_op);
2569                                 btrfs_free_delayed_extent_op(extent_op);
2570
2571                                 if (ret) {
2572                                         /*
2573                                          * Need to reset must_insert_reserved if
2574                                          * there was an error so the abort stuff
2575                                          * can cleanup the reserved space
2576                                          * properly.
2577                                          */
2578                                         if (must_insert_reserved)
2579                                                 locked_ref->must_insert_reserved = 1;
2580                                         spin_lock(&delayed_refs->lock);
2581                                         locked_ref->processing = 0;
2582                                         delayed_refs->num_heads_ready++;
2583                                         spin_unlock(&delayed_refs->lock);
2584                                         btrfs_debug(fs_info,
2585                                                     "run_delayed_extent_op returned %d",
2586                                                     ret);
2587                                         btrfs_delayed_ref_unlock(locked_ref);
2588                                         return ret;
2589                                 }
2590                                 continue;
2591                         }
2592
2593                         /*
2594                          * Need to drop our head ref lock and re-acquire the
2595                          * delayed ref lock and then re-check to make sure
2596                          * nobody got added.
2597                          */
2598                         spin_unlock(&locked_ref->lock);
2599                         spin_lock(&delayed_refs->lock);
2600                         spin_lock(&locked_ref->lock);
2601                         if (!list_empty(&locked_ref->ref_list) ||
2602                             locked_ref->extent_op) {
2603                                 spin_unlock(&locked_ref->lock);
2604                                 spin_unlock(&delayed_refs->lock);
2605                                 continue;
2606                         }
2607                         ref->in_tree = 0;
2608                         delayed_refs->num_heads--;
2609                         rb_erase(&locked_ref->href_node,
2610                                  &delayed_refs->href_root);
2611                         spin_unlock(&delayed_refs->lock);
2612                 } else {
2613                         actual_count++;
2614                         ref->in_tree = 0;
2615                         list_del(&ref->list);
2616                         if (!list_empty(&ref->add_list))
2617                                 list_del(&ref->add_list);
2618                 }
2619                 atomic_dec(&delayed_refs->num_entries);
2620
2621                 if (!btrfs_delayed_ref_is_head(ref)) {
2622                         /*
2623                          * when we play the delayed ref, also correct the
2624                          * ref_mod on head
2625                          */
2626                         switch (ref->action) {
2627                         case BTRFS_ADD_DELAYED_REF:
2628                         case BTRFS_ADD_DELAYED_EXTENT:
2629                                 locked_ref->node.ref_mod -= ref->ref_mod;
2630                                 break;
2631                         case BTRFS_DROP_DELAYED_REF:
2632                                 locked_ref->node.ref_mod += ref->ref_mod;
2633                                 break;
2634                         default:
2635                                 WARN_ON(1);
2636                         }
2637                 }
2638                 spin_unlock(&locked_ref->lock);
2639
2640                 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2641                                           must_insert_reserved);
2642
2643                 btrfs_free_delayed_extent_op(extent_op);
2644                 if (ret) {
2645                         spin_lock(&delayed_refs->lock);
2646                         locked_ref->processing = 0;
2647                         delayed_refs->num_heads_ready++;
2648                         spin_unlock(&delayed_refs->lock);
2649                         btrfs_delayed_ref_unlock(locked_ref);
2650                         btrfs_put_delayed_ref(ref);
2651                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2652                                     ret);
2653                         return ret;
2654                 }
2655
2656                 /*
2657                  * If this node is a head, that means all the refs in this head
2658                  * have been dealt with, and we will pick the next head to deal
2659                  * with, so we must unlock the head and drop it from the cluster
2660                  * list before we release it.
2661                  */
2662                 if (btrfs_delayed_ref_is_head(ref)) {
2663                         if (locked_ref->is_data &&
2664                             locked_ref->total_ref_mod < 0) {
2665                                 spin_lock(&delayed_refs->lock);
2666                                 delayed_refs->pending_csums -= ref->num_bytes;
2667                                 spin_unlock(&delayed_refs->lock);
2668                         }
2669                         btrfs_delayed_ref_unlock(locked_ref);
2670                         locked_ref = NULL;
2671                 }
2672                 btrfs_put_delayed_ref(ref);
2673                 count++;
2674                 cond_resched();
2675         }
2676
2677         /*
2678          * We don't want to include ref heads since we can have empty ref heads
2679          * and those will drastically skew our runtime down since we just do
2680          * accounting, no actual extent tree updates.
2681          */
2682         if (actual_count > 0) {
2683                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2684                 u64 avg;
2685
2686                 /*
2687                  * We weigh the current average higher than our current runtime
2688                  * to avoid large swings in the average.
2689                  */
2690                 spin_lock(&delayed_refs->lock);
2691                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2692                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2693                 spin_unlock(&delayed_refs->lock);
2694         }
2695         return 0;
2696 }
2697
2698 #ifdef SCRAMBLE_DELAYED_REFS
2699 /*
2700  * Normally delayed refs get processed in ascending bytenr order. This
2701  * correlates in most cases to the order added. To expose dependencies on this
2702  * order, we start to process the tree in the middle instead of the beginning
2703  */
2704 static u64 find_middle(struct rb_root *root)
2705 {
2706         struct rb_node *n = root->rb_node;
2707         struct btrfs_delayed_ref_node *entry;
2708         int alt = 1;
2709         u64 middle;
2710         u64 first = 0, last = 0;
2711
2712         n = rb_first(root);
2713         if (n) {
2714                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2715                 first = entry->bytenr;
2716         }
2717         n = rb_last(root);
2718         if (n) {
2719                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2720                 last = entry->bytenr;
2721         }
2722         n = root->rb_node;
2723
2724         while (n) {
2725                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2726                 WARN_ON(!entry->in_tree);
2727
2728                 middle = entry->bytenr;
2729
2730                 if (alt)
2731                         n = n->rb_left;
2732                 else
2733                         n = n->rb_right;
2734
2735                 alt = 1 - alt;
2736         }
2737         return middle;
2738 }
2739 #endif
2740
2741 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2742 {
2743         u64 num_bytes;
2744
2745         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2746                              sizeof(struct btrfs_extent_inline_ref));
2747         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2748                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2749
2750         /*
2751          * We don't ever fill up leaves all the way so multiply by 2 just to be
2752          * closer to what we're really going to want to use.
2753          */
2754         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2755 }
2756
2757 /*
2758  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2759  * would require to store the csums for that many bytes.
2760  */
2761 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2762 {
2763         u64 csum_size;
2764         u64 num_csums_per_leaf;
2765         u64 num_csums;
2766
2767         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2768         num_csums_per_leaf = div64_u64(csum_size,
2769                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2770         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2771         num_csums += num_csums_per_leaf - 1;
2772         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2773         return num_csums;
2774 }
2775
2776 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2777                                        struct btrfs_fs_info *fs_info)
2778 {
2779         struct btrfs_block_rsv *global_rsv;
2780         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2781         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2782         u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2783         u64 num_bytes, num_dirty_bgs_bytes;
2784         int ret = 0;
2785
2786         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2787         num_heads = heads_to_leaves(fs_info, num_heads);
2788         if (num_heads > 1)
2789                 num_bytes += (num_heads - 1) * fs_info->nodesize;
2790         num_bytes <<= 1;
2791         num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2792                                                         fs_info->nodesize;
2793         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2794                                                              num_dirty_bgs);
2795         global_rsv = &fs_info->global_block_rsv;
2796
2797         /*
2798          * If we can't allocate any more chunks lets make sure we have _lots_ of
2799          * wiggle room since running delayed refs can create more delayed refs.
2800          */
2801         if (global_rsv->space_info->full) {
2802                 num_dirty_bgs_bytes <<= 1;
2803                 num_bytes <<= 1;
2804         }
2805
2806         spin_lock(&global_rsv->lock);
2807         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2808                 ret = 1;
2809         spin_unlock(&global_rsv->lock);
2810         return ret;
2811 }
2812
2813 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2814                                        struct btrfs_fs_info *fs_info)
2815 {
2816         u64 num_entries =
2817                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2818         u64 avg_runtime;
2819         u64 val;
2820
2821         smp_mb();
2822         avg_runtime = fs_info->avg_delayed_ref_runtime;
2823         val = num_entries * avg_runtime;
2824         if (val >= NSEC_PER_SEC)
2825                 return 1;
2826         if (val >= NSEC_PER_SEC / 2)
2827                 return 2;
2828
2829         return btrfs_check_space_for_delayed_refs(trans, fs_info);
2830 }
2831
2832 struct async_delayed_refs {
2833         struct btrfs_root *root;
2834         u64 transid;
2835         int count;
2836         int error;
2837         int sync;
2838         struct completion wait;
2839         struct btrfs_work work;
2840 };
2841
2842 static inline struct async_delayed_refs *
2843 to_async_delayed_refs(struct btrfs_work *work)
2844 {
2845         return container_of(work, struct async_delayed_refs, work);
2846 }
2847
2848 static void delayed_ref_async_start(struct btrfs_work *work)
2849 {
2850         struct async_delayed_refs *async = to_async_delayed_refs(work);
2851         struct btrfs_trans_handle *trans;
2852         struct btrfs_fs_info *fs_info = async->root->fs_info;
2853         int ret;
2854
2855         /* if the commit is already started, we don't need to wait here */
2856         if (btrfs_transaction_blocked(fs_info))
2857                 goto done;
2858
2859         trans = btrfs_join_transaction(async->root);
2860         if (IS_ERR(trans)) {
2861                 async->error = PTR_ERR(trans);
2862                 goto done;
2863         }
2864
2865         /*
2866          * trans->sync means that when we call end_transaction, we won't
2867          * wait on delayed refs
2868          */
2869         trans->sync = true;
2870
2871         /* Don't bother flushing if we got into a different transaction */
2872         if (trans->transid > async->transid)
2873                 goto end;
2874
2875         ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2876         if (ret)
2877                 async->error = ret;
2878 end:
2879         ret = btrfs_end_transaction(trans);
2880         if (ret && !async->error)
2881                 async->error = ret;
2882 done:
2883         if (async->sync)
2884                 complete(&async->wait);
2885         else
2886                 kfree(async);
2887 }
2888
2889 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2890                                  unsigned long count, u64 transid, int wait)
2891 {
2892         struct async_delayed_refs *async;
2893         int ret;
2894
2895         async = kmalloc(sizeof(*async), GFP_NOFS);
2896         if (!async)
2897                 return -ENOMEM;
2898
2899         async->root = fs_info->tree_root;
2900         async->count = count;
2901         async->error = 0;
2902         async->transid = transid;
2903         if (wait)
2904                 async->sync = 1;
2905         else
2906                 async->sync = 0;
2907         init_completion(&async->wait);
2908
2909         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2910                         delayed_ref_async_start, NULL, NULL);
2911
2912         btrfs_queue_work(fs_info->extent_workers, &async->work);
2913
2914         if (wait) {
2915                 wait_for_completion(&async->wait);
2916                 ret = async->error;
2917                 kfree(async);
2918                 return ret;
2919         }
2920         return 0;
2921 }
2922
2923 /*
2924  * this starts processing the delayed reference count updates and
2925  * extent insertions we have queued up so far.  count can be
2926  * 0, which means to process everything in the tree at the start
2927  * of the run (but not newly added entries), or it can be some target
2928  * number you'd like to process.
2929  *
2930  * Returns 0 on success or if called with an aborted transaction
2931  * Returns <0 on error and aborts the transaction
2932  */
2933 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2934                            struct btrfs_fs_info *fs_info, unsigned long count)
2935 {
2936         struct rb_node *node;
2937         struct btrfs_delayed_ref_root *delayed_refs;
2938         struct btrfs_delayed_ref_head *head;
2939         int ret;
2940         int run_all = count == (unsigned long)-1;
2941         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2942
2943         /* We'll clean this up in btrfs_cleanup_transaction */
2944         if (trans->aborted)
2945                 return 0;
2946
2947         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2948                 return 0;
2949
2950         delayed_refs = &trans->transaction->delayed_refs;
2951         if (count == 0)
2952                 count = atomic_read(&delayed_refs->num_entries) * 2;
2953
2954 again:
2955 #ifdef SCRAMBLE_DELAYED_REFS
2956         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2957 #endif
2958         trans->can_flush_pending_bgs = false;
2959         ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2960         if (ret < 0) {
2961                 btrfs_abort_transaction(trans, ret);
2962                 return ret;
2963         }
2964
2965         if (run_all) {
2966                 if (!list_empty(&trans->new_bgs))
2967                         btrfs_create_pending_block_groups(trans, fs_info);
2968
2969                 spin_lock(&delayed_refs->lock);
2970                 node = rb_first(&delayed_refs->href_root);
2971                 if (!node) {
2972                         spin_unlock(&delayed_refs->lock);
2973                         goto out;
2974                 }
2975
2976                 while (node) {
2977                         head = rb_entry(node, struct btrfs_delayed_ref_head,
2978                                         href_node);
2979                         if (btrfs_delayed_ref_is_head(&head->node)) {
2980                                 struct btrfs_delayed_ref_node *ref;
2981
2982                                 ref = &head->node;
2983                                 atomic_inc(&ref->refs);
2984
2985                                 spin_unlock(&delayed_refs->lock);
2986                                 /*
2987                                  * Mutex was contended, block until it's
2988                                  * released and try again
2989                                  */
2990                                 mutex_lock(&head->mutex);
2991                                 mutex_unlock(&head->mutex);
2992
2993                                 btrfs_put_delayed_ref(ref);
2994                                 cond_resched();
2995                                 goto again;
2996                         } else {
2997                                 WARN_ON(1);
2998                         }
2999                         node = rb_next(node);
3000                 }
3001                 spin_unlock(&delayed_refs->lock);
3002                 cond_resched();
3003                 goto again;
3004         }
3005 out:
3006         assert_qgroups_uptodate(trans);
3007         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3008         return 0;
3009 }
3010
3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3012                                 struct btrfs_fs_info *fs_info,
3013                                 u64 bytenr, u64 num_bytes, u64 flags,
3014                                 int level, int is_data)
3015 {
3016         struct btrfs_delayed_extent_op *extent_op;
3017         int ret;
3018
3019         extent_op = btrfs_alloc_delayed_extent_op();
3020         if (!extent_op)
3021                 return -ENOMEM;
3022
3023         extent_op->flags_to_set = flags;
3024         extent_op->update_flags = true;
3025         extent_op->update_key = false;
3026         extent_op->is_data = is_data ? true : false;
3027         extent_op->level = level;
3028
3029         ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3030                                           num_bytes, extent_op);
3031         if (ret)
3032                 btrfs_free_delayed_extent_op(extent_op);
3033         return ret;
3034 }
3035
3036 static noinline int check_delayed_ref(struct btrfs_root *root,
3037                                       struct btrfs_path *path,
3038                                       u64 objectid, u64 offset, u64 bytenr)
3039 {
3040         struct btrfs_delayed_ref_head *head;
3041         struct btrfs_delayed_ref_node *ref;
3042         struct btrfs_delayed_data_ref *data_ref;
3043         struct btrfs_delayed_ref_root *delayed_refs;
3044         struct btrfs_transaction *cur_trans;
3045         int ret = 0;
3046
3047         cur_trans = root->fs_info->running_transaction;
3048         if (!cur_trans)
3049                 return 0;
3050
3051         delayed_refs = &cur_trans->delayed_refs;
3052         spin_lock(&delayed_refs->lock);
3053         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3054         if (!head) {
3055                 spin_unlock(&delayed_refs->lock);
3056                 return 0;
3057         }
3058
3059         if (!mutex_trylock(&head->mutex)) {
3060                 atomic_inc(&head->node.refs);
3061                 spin_unlock(&delayed_refs->lock);
3062
3063                 btrfs_release_path(path);
3064
3065                 /*
3066                  * Mutex was contended, block until it's released and let
3067                  * caller try again
3068                  */
3069                 mutex_lock(&head->mutex);
3070                 mutex_unlock(&head->mutex);
3071                 btrfs_put_delayed_ref(&head->node);
3072                 return -EAGAIN;
3073         }
3074         spin_unlock(&delayed_refs->lock);
3075
3076         spin_lock(&head->lock);
3077         list_for_each_entry(ref, &head->ref_list, list) {
3078                 /* If it's a shared ref we know a cross reference exists */
3079                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3080                         ret = 1;
3081                         break;
3082                 }
3083
3084                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3085
3086                 /*
3087                  * If our ref doesn't match the one we're currently looking at
3088                  * then we have a cross reference.
3089                  */
3090                 if (data_ref->root != root->root_key.objectid ||
3091                     data_ref->objectid != objectid ||
3092                     data_ref->offset != offset) {
3093                         ret = 1;
3094                         break;
3095                 }
3096         }
3097         spin_unlock(&head->lock);
3098         mutex_unlock(&head->mutex);
3099         return ret;
3100 }
3101
3102 static noinline int check_committed_ref(struct btrfs_root *root,
3103                                         struct btrfs_path *path,
3104                                         u64 objectid, u64 offset, u64 bytenr)
3105 {
3106         struct btrfs_fs_info *fs_info = root->fs_info;
3107         struct btrfs_root *extent_root = fs_info->extent_root;
3108         struct extent_buffer *leaf;
3109         struct btrfs_extent_data_ref *ref;
3110         struct btrfs_extent_inline_ref *iref;
3111         struct btrfs_extent_item *ei;
3112         struct btrfs_key key;
3113         u32 item_size;
3114         int ret;
3115
3116         key.objectid = bytenr;
3117         key.offset = (u64)-1;
3118         key.type = BTRFS_EXTENT_ITEM_KEY;
3119
3120         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3121         if (ret < 0)
3122                 goto out;
3123         BUG_ON(ret == 0); /* Corruption */
3124
3125         ret = -ENOENT;
3126         if (path->slots[0] == 0)
3127                 goto out;
3128
3129         path->slots[0]--;
3130         leaf = path->nodes[0];
3131         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3132
3133         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3134                 goto out;
3135
3136         ret = 1;
3137         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3139         if (item_size < sizeof(*ei)) {
3140                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3141                 goto out;
3142         }
3143 #endif
3144         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3145
3146         if (item_size != sizeof(*ei) +
3147             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3148                 goto out;
3149
3150         if (btrfs_extent_generation(leaf, ei) <=
3151             btrfs_root_last_snapshot(&root->root_item))
3152                 goto out;
3153
3154         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3155         if (btrfs_extent_inline_ref_type(leaf, iref) !=
3156             BTRFS_EXTENT_DATA_REF_KEY)
3157                 goto out;
3158
3159         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3160         if (btrfs_extent_refs(leaf, ei) !=
3161             btrfs_extent_data_ref_count(leaf, ref) ||
3162             btrfs_extent_data_ref_root(leaf, ref) !=
3163             root->root_key.objectid ||
3164             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3165             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3166                 goto out;
3167
3168         ret = 0;
3169 out:
3170         return ret;
3171 }
3172
3173 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3174                           u64 bytenr)
3175 {
3176         struct btrfs_path *path;
3177         int ret;
3178         int ret2;
3179
3180         path = btrfs_alloc_path();
3181         if (!path)
3182                 return -ENOENT;
3183
3184         do {
3185                 ret = check_committed_ref(root, path, objectid,
3186                                           offset, bytenr);
3187                 if (ret && ret != -ENOENT)
3188                         goto out;
3189
3190                 ret2 = check_delayed_ref(root, path, objectid,
3191                                          offset, bytenr);
3192         } while (ret2 == -EAGAIN);
3193
3194         if (ret2 && ret2 != -ENOENT) {
3195                 ret = ret2;
3196                 goto out;
3197         }
3198
3199         if (ret != -ENOENT || ret2 != -ENOENT)
3200                 ret = 0;
3201 out:
3202         btrfs_free_path(path);
3203         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204                 WARN_ON(ret > 0);
3205         return ret;
3206 }
3207
3208 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3209                            struct btrfs_root *root,
3210                            struct extent_buffer *buf,
3211                            int full_backref, int inc)
3212 {
3213         struct btrfs_fs_info *fs_info = root->fs_info;
3214         u64 bytenr;
3215         u64 num_bytes;
3216         u64 parent;
3217         u64 ref_root;
3218         u32 nritems;
3219         struct btrfs_key key;
3220         struct btrfs_file_extent_item *fi;
3221         int i;
3222         int level;
3223         int ret = 0;
3224         int (*process_func)(struct btrfs_trans_handle *,
3225                             struct btrfs_fs_info *,
3226                             u64, u64, u64, u64, u64, u64);
3227
3228
3229         if (btrfs_is_testing(fs_info))
3230                 return 0;
3231
3232         ref_root = btrfs_header_owner(buf);
3233         nritems = btrfs_header_nritems(buf);
3234         level = btrfs_header_level(buf);
3235
3236         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3237                 return 0;
3238
3239         if (inc)
3240                 process_func = btrfs_inc_extent_ref;
3241         else
3242                 process_func = btrfs_free_extent;
3243
3244         if (full_backref)
3245                 parent = buf->start;
3246         else
3247                 parent = 0;
3248
3249         for (i = 0; i < nritems; i++) {
3250                 if (level == 0) {
3251                         btrfs_item_key_to_cpu(buf, &key, i);
3252                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3253                                 continue;
3254                         fi = btrfs_item_ptr(buf, i,
3255                                             struct btrfs_file_extent_item);
3256                         if (btrfs_file_extent_type(buf, fi) ==
3257                             BTRFS_FILE_EXTENT_INLINE)
3258                                 continue;
3259                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3260                         if (bytenr == 0)
3261                                 continue;
3262
3263                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3264                         key.offset -= btrfs_file_extent_offset(buf, fi);
3265                         ret = process_func(trans, fs_info, bytenr, num_bytes,
3266                                            parent, ref_root, key.objectid,
3267                                            key.offset);
3268                         if (ret)
3269                                 goto fail;
3270                 } else {
3271                         bytenr = btrfs_node_blockptr(buf, i);
3272                         num_bytes = fs_info->nodesize;
3273                         ret = process_func(trans, fs_info, bytenr, num_bytes,
3274                                            parent, ref_root, level - 1, 0);
3275                         if (ret)
3276                                 goto fail;
3277                 }
3278         }
3279         return 0;
3280 fail:
3281         return ret;
3282 }
3283
3284 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3285                   struct extent_buffer *buf, int full_backref)
3286 {
3287         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3288 }
3289
3290 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3291                   struct extent_buffer *buf, int full_backref)
3292 {
3293         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3294 }
3295
3296 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3297                                  struct btrfs_fs_info *fs_info,
3298                                  struct btrfs_path *path,
3299                                  struct btrfs_block_group_cache *cache)
3300 {
3301         int ret;
3302         struct btrfs_root *extent_root = fs_info->extent_root;
3303         unsigned long bi;
3304         struct extent_buffer *leaf;
3305
3306         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3307         if (ret) {
3308                 if (ret > 0)
3309                         ret = -ENOENT;
3310                 goto fail;
3311         }
3312
3313         leaf = path->nodes[0];
3314         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3315         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3316         btrfs_mark_buffer_dirty(leaf);
3317 fail:
3318         btrfs_release_path(path);
3319         return ret;
3320
3321 }
3322
3323 static struct btrfs_block_group_cache *
3324 next_block_group(struct btrfs_fs_info *fs_info,
3325                  struct btrfs_block_group_cache *cache)
3326 {
3327         struct rb_node *node;
3328
3329         spin_lock(&fs_info->block_group_cache_lock);
3330
3331         /* If our block group was removed, we need a full search. */
3332         if (RB_EMPTY_NODE(&cache->cache_node)) {
3333                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3334
3335                 spin_unlock(&fs_info->block_group_cache_lock);
3336                 btrfs_put_block_group(cache);
3337                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3338         }
3339         node = rb_next(&cache->cache_node);
3340         btrfs_put_block_group(cache);
3341         if (node) {
3342                 cache = rb_entry(node, struct btrfs_block_group_cache,
3343                                  cache_node);
3344                 btrfs_get_block_group(cache);
3345         } else
3346                 cache = NULL;
3347         spin_unlock(&fs_info->block_group_cache_lock);
3348         return cache;
3349 }
3350
3351 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352                             struct btrfs_trans_handle *trans,
3353                             struct btrfs_path *path)
3354 {
3355         struct btrfs_fs_info *fs_info = block_group->fs_info;
3356         struct btrfs_root *root = fs_info->tree_root;
3357         struct inode *inode = NULL;
3358         u64 alloc_hint = 0;
3359         int dcs = BTRFS_DC_ERROR;
3360         u64 num_pages = 0;
3361         int retries = 0;
3362         int ret = 0;
3363
3364         /*
3365          * If this block group is smaller than 100 megs don't bother caching the
3366          * block group.
3367          */
3368         if (block_group->key.offset < (100 * SZ_1M)) {
3369                 spin_lock(&block_group->lock);
3370                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3371                 spin_unlock(&block_group->lock);
3372                 return 0;
3373         }
3374
3375         if (trans->aborted)
3376                 return 0;
3377 again:
3378         inode = lookup_free_space_inode(fs_info, block_group, path);
3379         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3380                 ret = PTR_ERR(inode);
3381                 btrfs_release_path(path);
3382                 goto out;
3383         }
3384
3385         if (IS_ERR(inode)) {
3386                 BUG_ON(retries);
3387                 retries++;
3388
3389                 if (block_group->ro)
3390                         goto out_free;
3391
3392                 ret = create_free_space_inode(fs_info, trans, block_group,
3393                                               path);
3394                 if (ret)
3395                         goto out_free;
3396                 goto again;
3397         }
3398
3399         /* We've already setup this transaction, go ahead and exit */
3400         if (block_group->cache_generation == trans->transid &&
3401             i_size_read(inode)) {
3402                 dcs = BTRFS_DC_SETUP;
3403                 goto out_put;
3404         }
3405
3406         /*
3407          * We want to set the generation to 0, that way if anything goes wrong
3408          * from here on out we know not to trust this cache when we load up next
3409          * time.
3410          */
3411         BTRFS_I(inode)->generation = 0;
3412         ret = btrfs_update_inode(trans, root, inode);
3413         if (ret) {
3414                 /*
3415                  * So theoretically we could recover from this, simply set the
3416                  * super cache generation to 0 so we know to invalidate the
3417                  * cache, but then we'd have to keep track of the block groups
3418                  * that fail this way so we know we _have_ to reset this cache
3419                  * before the next commit or risk reading stale cache.  So to
3420                  * limit our exposure to horrible edge cases lets just abort the
3421                  * transaction, this only happens in really bad situations
3422                  * anyway.
3423                  */
3424                 btrfs_abort_transaction(trans, ret);
3425                 goto out_put;
3426         }
3427         WARN_ON(ret);
3428
3429         if (i_size_read(inode) > 0) {
3430                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3431                                         &fs_info->global_block_rsv);
3432                 if (ret)
3433                         goto out_put;
3434
3435                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3436                 if (ret)
3437                         goto out_put;
3438         }
3439
3440         spin_lock(&block_group->lock);
3441         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3442             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3443                 /*
3444                  * don't bother trying to write stuff out _if_
3445                  * a) we're not cached,
3446                  * b) we're with nospace_cache mount option.
3447                  */
3448                 dcs = BTRFS_DC_WRITTEN;
3449                 spin_unlock(&block_group->lock);
3450                 goto out_put;
3451         }
3452         spin_unlock(&block_group->lock);
3453
3454         /*
3455          * We hit an ENOSPC when setting up the cache in this transaction, just
3456          * skip doing the setup, we've already cleared the cache so we're safe.
3457          */
3458         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3459                 ret = -ENOSPC;
3460                 goto out_put;
3461         }
3462
3463         /*
3464          * Try to preallocate enough space based on how big the block group is.
3465          * Keep in mind this has to include any pinned space which could end up
3466          * taking up quite a bit since it's not folded into the other space
3467          * cache.
3468          */
3469         num_pages = div_u64(block_group->key.offset, SZ_256M);
3470         if (!num_pages)
3471                 num_pages = 1;
3472
3473         num_pages *= 16;
3474         num_pages *= PAGE_SIZE;
3475
3476         ret = btrfs_check_data_free_space(inode, 0, num_pages);
3477         if (ret)
3478                 goto out_put;
3479
3480         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3481                                               num_pages, num_pages,
3482                                               &alloc_hint);
3483         /*
3484          * Our cache requires contiguous chunks so that we don't modify a bunch
3485          * of metadata or split extents when writing the cache out, which means
3486          * we can enospc if we are heavily fragmented in addition to just normal
3487          * out of space conditions.  So if we hit this just skip setting up any
3488          * other block groups for this transaction, maybe we'll unpin enough
3489          * space the next time around.
3490          */
3491         if (!ret)
3492                 dcs = BTRFS_DC_SETUP;
3493         else if (ret == -ENOSPC)
3494                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3495
3496 out_put:
3497         iput(inode);
3498 out_free:
3499         btrfs_release_path(path);
3500 out:
3501         spin_lock(&block_group->lock);
3502         if (!ret && dcs == BTRFS_DC_SETUP)
3503                 block_group->cache_generation = trans->transid;
3504         block_group->disk_cache_state = dcs;
3505         spin_unlock(&block_group->lock);
3506
3507         return ret;
3508 }
3509
3510 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3511                             struct btrfs_fs_info *fs_info)
3512 {
3513         struct btrfs_block_group_cache *cache, *tmp;
3514         struct btrfs_transaction *cur_trans = trans->transaction;
3515         struct btrfs_path *path;
3516
3517         if (list_empty(&cur_trans->dirty_bgs) ||
3518             !btrfs_test_opt(fs_info, SPACE_CACHE))
3519                 return 0;
3520
3521         path = btrfs_alloc_path();
3522         if (!path)
3523                 return -ENOMEM;
3524
3525         /* Could add new block groups, use _safe just in case */
3526         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3527                                  dirty_list) {
3528                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3529                         cache_save_setup(cache, trans, path);
3530         }
3531
3532         btrfs_free_path(path);
3533         return 0;
3534 }
3535
3536 /*
3537  * transaction commit does final block group cache writeback during a
3538  * critical section where nothing is allowed to change the FS.  This is
3539  * required in order for the cache to actually match the block group,
3540  * but can introduce a lot of latency into the commit.
3541  *
3542  * So, btrfs_start_dirty_block_groups is here to kick off block group
3543  * cache IO.  There's a chance we'll have to redo some of it if the
3544  * block group changes again during the commit, but it greatly reduces
3545  * the commit latency by getting rid of the easy block groups while
3546  * we're still allowing others to join the commit.
3547  */
3548 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3549                                    struct btrfs_fs_info *fs_info)
3550 {
3551         struct btrfs_block_group_cache *cache;
3552         struct btrfs_transaction *cur_trans = trans->transaction;
3553         int ret = 0;
3554         int should_put;
3555         struct btrfs_path *path = NULL;
3556         LIST_HEAD(dirty);
3557         struct list_head *io = &cur_trans->io_bgs;
3558         int num_started = 0;
3559         int loops = 0;
3560
3561         spin_lock(&cur_trans->dirty_bgs_lock);
3562         if (list_empty(&cur_trans->dirty_bgs)) {
3563                 spin_unlock(&cur_trans->dirty_bgs_lock);
3564                 return 0;
3565         }
3566         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3567         spin_unlock(&cur_trans->dirty_bgs_lock);
3568
3569 again:
3570         /*
3571          * make sure all the block groups on our dirty list actually
3572          * exist
3573          */
3574         btrfs_create_pending_block_groups(trans, fs_info);
3575
3576         if (!path) {
3577                 path = btrfs_alloc_path();
3578                 if (!path)
3579                         return -ENOMEM;
3580         }
3581
3582         /*
3583          * cache_write_mutex is here only to save us from balance or automatic
3584          * removal of empty block groups deleting this block group while we are
3585          * writing out the cache
3586          */
3587         mutex_lock(&trans->transaction->cache_write_mutex);
3588         while (!list_empty(&dirty)) {
3589                 cache = list_first_entry(&dirty,
3590                                          struct btrfs_block_group_cache,
3591                                          dirty_list);
3592                 /*
3593                  * this can happen if something re-dirties a block
3594                  * group that is already under IO.  Just wait for it to
3595                  * finish and then do it all again
3596                  */
3597                 if (!list_empty(&cache->io_list)) {
3598                         list_del_init(&cache->io_list);
3599                         btrfs_wait_cache_io(trans, cache, path);
3600                         btrfs_put_block_group(cache);
3601                 }
3602
3603
3604                 /*
3605                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3606                  * if it should update the cache_state.  Don't delete
3607                  * until after we wait.
3608                  *
3609                  * Since we're not running in the commit critical section
3610                  * we need the dirty_bgs_lock to protect from update_block_group
3611                  */
3612                 spin_lock(&cur_trans->dirty_bgs_lock);
3613                 list_del_init(&cache->dirty_list);
3614                 spin_unlock(&cur_trans->dirty_bgs_lock);
3615
3616                 should_put = 1;
3617
3618                 cache_save_setup(cache, trans, path);
3619
3620                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3621                         cache->io_ctl.inode = NULL;
3622                         ret = btrfs_write_out_cache(fs_info, trans,
3623                                                     cache, path);
3624                         if (ret == 0 && cache->io_ctl.inode) {
3625                                 num_started++;
3626                                 should_put = 0;
3627
3628                                 /*
3629                                  * the cache_write_mutex is protecting
3630                                  * the io_list
3631                                  */
3632                                 list_add_tail(&cache->io_list, io);
3633                         } else {
3634                                 /*
3635                                  * if we failed to write the cache, the
3636                                  * generation will be bad and life goes on
3637                                  */
3638                                 ret = 0;
3639                         }
3640                 }
3641                 if (!ret) {
3642                         ret = write_one_cache_group(trans, fs_info,
3643                                                     path, cache);
3644                         /*
3645                          * Our block group might still be attached to the list
3646                          * of new block groups in the transaction handle of some
3647                          * other task (struct btrfs_trans_handle->new_bgs). This
3648                          * means its block group item isn't yet in the extent
3649                          * tree. If this happens ignore the error, as we will
3650                          * try again later in the critical section of the
3651                          * transaction commit.
3652                          */
3653                         if (ret == -ENOENT) {
3654                                 ret = 0;
3655                                 spin_lock(&cur_trans->dirty_bgs_lock);
3656                                 if (list_empty(&cache->dirty_list)) {
3657                                         list_add_tail(&cache->dirty_list,
3658                                                       &cur_trans->dirty_bgs);
3659                                         btrfs_get_block_group(cache);
3660                                 }
3661                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3662                         } else if (ret) {
3663                                 btrfs_abort_transaction(trans, ret);
3664                         }
3665                 }
3666
3667                 /* if its not on the io list, we need to put the block group */
3668                 if (should_put)
3669                         btrfs_put_block_group(cache);
3670
3671                 if (ret)
3672                         break;
3673
3674                 /*
3675                  * Avoid blocking other tasks for too long. It might even save
3676                  * us from writing caches for block groups that are going to be
3677                  * removed.
3678                  */
3679                 mutex_unlock(&trans->transaction->cache_write_mutex);
3680                 mutex_lock(&trans->transaction->cache_write_mutex);
3681         }
3682         mutex_unlock(&trans->transaction->cache_write_mutex);
3683
3684         /*
3685          * go through delayed refs for all the stuff we've just kicked off
3686          * and then loop back (just once)
3687          */
3688         ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3689         if (!ret && loops == 0) {
3690                 loops++;
3691                 spin_lock(&cur_trans->dirty_bgs_lock);
3692                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3693                 /*
3694                  * dirty_bgs_lock protects us from concurrent block group
3695                  * deletes too (not just cache_write_mutex).
3696                  */
3697                 if (!list_empty(&dirty)) {
3698                         spin_unlock(&cur_trans->dirty_bgs_lock);
3699                         goto again;
3700                 }
3701                 spin_unlock(&cur_trans->dirty_bgs_lock);
3702         } else if (ret < 0) {
3703                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3704         }
3705
3706         btrfs_free_path(path);
3707         return ret;
3708 }
3709
3710 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3711                                    struct btrfs_fs_info *fs_info)
3712 {
3713         struct btrfs_block_group_cache *cache;
3714         struct btrfs_transaction *cur_trans = trans->transaction;
3715         int ret = 0;
3716         int should_put;
3717         struct btrfs_path *path;
3718         struct list_head *io = &cur_trans->io_bgs;
3719         int num_started = 0;
3720
3721         path = btrfs_alloc_path();
3722         if (!path)
3723                 return -ENOMEM;
3724
3725         /*
3726          * Even though we are in the critical section of the transaction commit,
3727          * we can still have concurrent tasks adding elements to this
3728          * transaction's list of dirty block groups. These tasks correspond to
3729          * endio free space workers started when writeback finishes for a
3730          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3731          * allocate new block groups as a result of COWing nodes of the root
3732          * tree when updating the free space inode. The writeback for the space
3733          * caches is triggered by an earlier call to
3734          * btrfs_start_dirty_block_groups() and iterations of the following
3735          * loop.
3736          * Also we want to do the cache_save_setup first and then run the
3737          * delayed refs to make sure we have the best chance at doing this all
3738          * in one shot.
3739          */
3740         spin_lock(&cur_trans->dirty_bgs_lock);
3741         while (!list_empty(&cur_trans->dirty_bgs)) {
3742                 cache = list_first_entry(&cur_trans->dirty_bgs,
3743                                          struct btrfs_block_group_cache,
3744                                          dirty_list);
3745
3746                 /*
3747                  * this can happen if cache_save_setup re-dirties a block
3748                  * group that is already under IO.  Just wait for it to
3749                  * finish and then do it all again
3750                  */
3751                 if (!list_empty(&cache->io_list)) {
3752                         spin_unlock(&cur_trans->dirty_bgs_lock);
3753                         list_del_init(&cache->io_list);
3754                         btrfs_wait_cache_io(trans, cache, path);
3755                         btrfs_put_block_group(cache);
3756                         spin_lock(&cur_trans->dirty_bgs_lock);
3757                 }
3758
3759                 /*
3760                  * don't remove from the dirty list until after we've waited
3761                  * on any pending IO
3762                  */
3763                 list_del_init(&cache->dirty_list);
3764                 spin_unlock(&cur_trans->dirty_bgs_lock);
3765                 should_put = 1;
3766
3767                 cache_save_setup(cache, trans, path);
3768
3769                 if (!ret)
3770                         ret = btrfs_run_delayed_refs(trans, fs_info,
3771                                                      (unsigned long) -1);
3772
3773                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3774                         cache->io_ctl.inode = NULL;
3775                         ret = btrfs_write_out_cache(fs_info, trans,
3776                                                     cache, path);
3777                         if (ret == 0 && cache->io_ctl.inode) {
3778                                 num_started++;
3779                                 should_put = 0;
3780                                 list_add_tail(&cache->io_list, io);
3781                         } else {
3782                                 /*
3783                                  * if we failed to write the cache, the
3784                                  * generation will be bad and life goes on
3785                                  */
3786                                 ret = 0;
3787                         }
3788                 }
3789                 if (!ret) {
3790                         ret = write_one_cache_group(trans, fs_info,
3791                                                     path, cache);
3792                         /*
3793                          * One of the free space endio workers might have
3794                          * created a new block group while updating a free space
3795                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3796                          * and hasn't released its transaction handle yet, in
3797                          * which case the new block group is still attached to
3798                          * its transaction handle and its creation has not
3799                          * finished yet (no block group item in the extent tree
3800                          * yet, etc). If this is the case, wait for all free
3801                          * space endio workers to finish and retry. This is a
3802                          * a very rare case so no need for a more efficient and
3803                          * complex approach.
3804                          */
3805                         if (ret == -ENOENT) {
3806                                 wait_event(cur_trans->writer_wait,
3807                                    atomic_read(&cur_trans->num_writers) == 1);
3808                                 ret = write_one_cache_group(trans, fs_info,
3809                                                             path, cache);
3810                         }
3811                         if (ret)
3812                                 btrfs_abort_transaction(trans, ret);
3813                 }
3814
3815                 /* if its not on the io list, we need to put the block group */
3816                 if (should_put)
3817                         btrfs_put_block_group(cache);
3818                 spin_lock(&cur_trans->dirty_bgs_lock);
3819         }
3820         spin_unlock(&cur_trans->dirty_bgs_lock);
3821
3822         while (!list_empty(io)) {
3823                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3824                                          io_list);
3825                 list_del_init(&cache->io_list);
3826                 btrfs_wait_cache_io(trans, cache, path);
3827                 btrfs_put_block_group(cache);
3828         }
3829
3830         btrfs_free_path(path);
3831         return ret;
3832 }
3833
3834 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3835 {
3836         struct btrfs_block_group_cache *block_group;
3837         int readonly = 0;
3838
3839         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3840         if (!block_group || block_group->ro)
3841                 readonly = 1;
3842         if (block_group)
3843                 btrfs_put_block_group(block_group);
3844         return readonly;
3845 }
3846
3847 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3848 {
3849         struct btrfs_block_group_cache *bg;
3850         bool ret = true;
3851
3852         bg = btrfs_lookup_block_group(fs_info, bytenr);
3853         if (!bg)
3854                 return false;
3855
3856         spin_lock(&bg->lock);
3857         if (bg->ro)
3858                 ret = false;
3859         else
3860                 atomic_inc(&bg->nocow_writers);
3861         spin_unlock(&bg->lock);
3862
3863         /* no put on block group, done by btrfs_dec_nocow_writers */
3864         if (!ret)
3865                 btrfs_put_block_group(bg);
3866
3867         return ret;
3868
3869 }
3870
3871 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3872 {
3873         struct btrfs_block_group_cache *bg;
3874
3875         bg = btrfs_lookup_block_group(fs_info, bytenr);
3876         ASSERT(bg);
3877         if (atomic_dec_and_test(&bg->nocow_writers))
3878                 wake_up_atomic_t(&bg->nocow_writers);
3879         /*
3880          * Once for our lookup and once for the lookup done by a previous call
3881          * to btrfs_inc_nocow_writers()
3882          */
3883         btrfs_put_block_group(bg);
3884         btrfs_put_block_group(bg);
3885 }
3886
3887 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3888 {
3889         schedule();
3890         return 0;
3891 }
3892
3893 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3894 {
3895         wait_on_atomic_t(&bg->nocow_writers,
3896                          btrfs_wait_nocow_writers_atomic_t,
3897                          TASK_UNINTERRUPTIBLE);
3898 }
3899
3900 static const char *alloc_name(u64 flags)
3901 {
3902         switch (flags) {
3903         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3904                 return "mixed";
3905         case BTRFS_BLOCK_GROUP_METADATA:
3906                 return "metadata";
3907         case BTRFS_BLOCK_GROUP_DATA:
3908                 return "data";
3909         case BTRFS_BLOCK_GROUP_SYSTEM:
3910                 return "system";
3911         default:
3912                 WARN_ON(1);
3913                 return "invalid-combination";
3914         };
3915 }
3916
3917 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3918                              u64 total_bytes, u64 bytes_used,
3919                              u64 bytes_readonly,
3920                              struct btrfs_space_info **space_info)
3921 {
3922         struct btrfs_space_info *found;
3923         int i;
3924         int factor;
3925         int ret;
3926
3927         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3928                      BTRFS_BLOCK_GROUP_RAID10))
3929                 factor = 2;
3930         else
3931                 factor = 1;
3932
3933         found = __find_space_info(info, flags);
3934         if (found) {
3935                 spin_lock(&found->lock);
3936                 found->total_bytes += total_bytes;
3937                 found->disk_total += total_bytes * factor;
3938                 found->bytes_used += bytes_used;
3939                 found->disk_used += bytes_used * factor;
3940                 found->bytes_readonly += bytes_readonly;
3941                 if (total_bytes > 0)
3942                         found->full = 0;
3943                 space_info_add_new_bytes(info, found, total_bytes -
3944                                          bytes_used - bytes_readonly);
3945                 spin_unlock(&found->lock);
3946                 *space_info = found;
3947                 return 0;
3948         }
3949         found = kzalloc(sizeof(*found), GFP_NOFS);
3950         if (!found)
3951                 return -ENOMEM;
3952
3953         ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3954         if (ret) {
3955                 kfree(found);
3956                 return ret;
3957         }
3958
3959         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3960                 INIT_LIST_HEAD(&found->block_groups[i]);
3961         init_rwsem(&found->groups_sem);
3962         spin_lock_init(&found->lock);
3963         found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3964         found->total_bytes = total_bytes;
3965         found->disk_total = total_bytes * factor;
3966         found->bytes_used = bytes_used;
3967         found->disk_used = bytes_used * factor;
3968         found->bytes_pinned = 0;
3969         found->bytes_reserved = 0;
3970         found->bytes_readonly = bytes_readonly;
3971         found->bytes_may_use = 0;
3972         found->full = 0;
3973         found->max_extent_size = 0;
3974         found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3975         found->chunk_alloc = 0;
3976         found->flush = 0;
3977         init_waitqueue_head(&found->wait);
3978         INIT_LIST_HEAD(&found->ro_bgs);
3979         INIT_LIST_HEAD(&found->tickets);
3980         INIT_LIST_HEAD(&found->priority_tickets);
3981
3982         ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3983                                     info->space_info_kobj, "%s",
3984                                     alloc_name(found->flags));
3985         if (ret) {
3986                 kfree(found);
3987                 return ret;
3988         }
3989
3990         *space_info = found;
3991         list_add_rcu(&found->list, &info->space_info);
3992         if (flags & BTRFS_BLOCK_GROUP_DATA)
3993                 info->data_sinfo = found;
3994
3995         return ret;
3996 }
3997
3998 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3999 {
4000         u64 extra_flags = chunk_to_extended(flags) &
4001                                 BTRFS_EXTENDED_PROFILE_MASK;
4002
4003         write_seqlock(&fs_info->profiles_lock);
4004         if (flags & BTRFS_BLOCK_GROUP_DATA)
4005                 fs_info->avail_data_alloc_bits |= extra_flags;
4006         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4007                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4008         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4009                 fs_info->avail_system_alloc_bits |= extra_flags;
4010         write_sequnlock(&fs_info->profiles_lock);
4011 }
4012
4013 /*
4014  * returns target flags in extended format or 0 if restripe for this
4015  * chunk_type is not in progress
4016  *
4017  * should be called with either volume_mutex or balance_lock held
4018  */
4019 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4020 {
4021         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4022         u64 target = 0;
4023
4024         if (!bctl)
4025                 return 0;
4026
4027         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4028             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4029                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4030         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4031                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4032                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4033         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4034                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4035                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4036         }
4037
4038         return target;
4039 }
4040
4041 /*
4042  * @flags: available profiles in extended format (see ctree.h)
4043  *
4044  * Returns reduced profile in chunk format.  If profile changing is in
4045  * progress (either running or paused) picks the target profile (if it's
4046  * already available), otherwise falls back to plain reducing.
4047  */
4048 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4049 {
4050         u64 num_devices = fs_info->fs_devices->rw_devices;
4051         u64 target;
4052         u64 raid_type;
4053         u64 allowed = 0;
4054
4055         /*
4056          * see if restripe for this chunk_type is in progress, if so
4057          * try to reduce to the target profile
4058          */
4059         spin_lock(&fs_info->balance_lock);
4060         target = get_restripe_target(fs_info, flags);
4061         if (target) {
4062                 /* pick target profile only if it's already available */
4063                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4064                         spin_unlock(&fs_info->balance_lock);
4065                         return extended_to_chunk(target);
4066                 }
4067         }
4068         spin_unlock(&fs_info->balance_lock);
4069
4070         /* First, mask out the RAID levels which aren't possible */
4071         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4072                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4073                         allowed |= btrfs_raid_group[raid_type];
4074         }
4075         allowed &= flags;
4076
4077         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4078                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4079         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4080                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4081         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4082                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4083         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4084                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4085         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4086                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4087
4088         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4089
4090         return extended_to_chunk(flags | allowed);
4091 }
4092
4093 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4094 {
4095         unsigned seq;
4096         u64 flags;
4097
4098         do {
4099                 flags = orig_flags;
4100                 seq = read_seqbegin(&fs_info->profiles_lock);
4101
4102                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4103                         flags |= fs_info->avail_data_alloc_bits;
4104                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4105                         flags |= fs_info->avail_system_alloc_bits;
4106                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4107                         flags |= fs_info->avail_metadata_alloc_bits;
4108         } while (read_seqretry(&fs_info->profiles_lock, seq));
4109
4110         return btrfs_reduce_alloc_profile(fs_info, flags);
4111 }
4112
4113 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4114 {
4115         struct btrfs_fs_info *fs_info = root->fs_info;
4116         u64 flags;
4117         u64 ret;
4118
4119         if (data)
4120                 flags = BTRFS_BLOCK_GROUP_DATA;
4121         else if (root == fs_info->chunk_root)
4122                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4123         else
4124                 flags = BTRFS_BLOCK_GROUP_METADATA;
4125
4126         ret = get_alloc_profile(fs_info, flags);
4127         return ret;
4128 }
4129
4130 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4131                                  bool may_use_included)
4132 {
4133         ASSERT(s_info);
4134         return s_info->bytes_used + s_info->bytes_reserved +
4135                 s_info->bytes_pinned + s_info->bytes_readonly +
4136                 (may_use_included ? s_info->bytes_may_use : 0);
4137 }
4138
4139 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4140 {
4141         struct btrfs_space_info *data_sinfo;
4142         struct btrfs_root *root = inode->root;
4143         struct btrfs_fs_info *fs_info = root->fs_info;
4144         u64 used;
4145         int ret = 0;
4146         int need_commit = 2;
4147         int have_pinned_space;
4148
4149         /* make sure bytes are sectorsize aligned */
4150         bytes = ALIGN(bytes, fs_info->sectorsize);
4151
4152         if (btrfs_is_free_space_inode(inode)) {
4153                 need_commit = 0;
4154                 ASSERT(current->journal_info);
4155         }
4156
4157         data_sinfo = fs_info->data_sinfo;
4158         if (!data_sinfo)
4159                 goto alloc;
4160
4161 again:
4162         /* make sure we have enough space to handle the data first */
4163         spin_lock(&data_sinfo->lock);
4164         used = btrfs_space_info_used(data_sinfo, true);
4165
4166         if (used + bytes > data_sinfo->total_bytes) {
4167                 struct btrfs_trans_handle *trans;
4168
4169                 /*
4170                  * if we don't have enough free bytes in this space then we need
4171                  * to alloc a new chunk.
4172                  */
4173                 if (!data_sinfo->full) {
4174                         u64 alloc_target;
4175
4176                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4177                         spin_unlock(&data_sinfo->lock);
4178 alloc:
4179                         alloc_target = btrfs_get_alloc_profile(root, 1);
4180                         /*
4181                          * It is ugly that we don't call nolock join
4182                          * transaction for the free space inode case here.
4183                          * But it is safe because we only do the data space
4184                          * reservation for the free space cache in the
4185                          * transaction context, the common join transaction
4186                          * just increase the counter of the current transaction
4187                          * handler, doesn't try to acquire the trans_lock of
4188                          * the fs.
4189                          */
4190                         trans = btrfs_join_transaction(root);
4191                         if (IS_ERR(trans))
4192                                 return PTR_ERR(trans);
4193
4194                         ret = do_chunk_alloc(trans, fs_info, alloc_target,
4195                                              CHUNK_ALLOC_NO_FORCE);
4196                         btrfs_end_transaction(trans);
4197                         if (ret < 0) {
4198                                 if (ret != -ENOSPC)
4199                                         return ret;
4200                                 else {
4201                                         have_pinned_space = 1;
4202                                         goto commit_trans;
4203                                 }
4204                         }
4205
4206                         if (!data_sinfo)
4207                                 data_sinfo = fs_info->data_sinfo;
4208
4209                         goto again;
4210                 }
4211
4212                 /*
4213                  * If we don't have enough pinned space to deal with this
4214                  * allocation, and no removed chunk in current transaction,
4215                  * don't bother committing the transaction.
4216                  */
4217                 have_pinned_space = percpu_counter_compare(
4218                         &data_sinfo->total_bytes_pinned,
4219                         used + bytes - data_sinfo->total_bytes);
4220                 spin_unlock(&data_sinfo->lock);
4221
4222                 /* commit the current transaction and try again */
4223 commit_trans:
4224                 if (need_commit &&
4225                     !atomic_read(&fs_info->open_ioctl_trans)) {
4226                         need_commit--;
4227
4228                         if (need_commit > 0) {
4229                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4230                                 btrfs_wait_ordered_roots(fs_info, -1, 0,
4231                                                          (u64)-1);
4232                         }
4233
4234                         trans = btrfs_join_transaction(root);
4235                         if (IS_ERR(trans))
4236                                 return PTR_ERR(trans);
4237                         if (have_pinned_space >= 0 ||
4238                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4239                                      &trans->transaction->flags) ||
4240                             need_commit > 0) {
4241                                 ret = btrfs_commit_transaction(trans);
4242                                 if (ret)
4243                                         return ret;
4244                                 /*
4245                                  * The cleaner kthread might still be doing iput
4246                                  * operations. Wait for it to finish so that
4247                                  * more space is released.
4248                                  */
4249                                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4250                                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4251                                 goto again;
4252                         } else {
4253                                 btrfs_end_transaction(trans);
4254                         }
4255                 }
4256
4257                 trace_btrfs_space_reservation(fs_info,
4258                                               "space_info:enospc",
4259                                               data_sinfo->flags, bytes, 1);
4260                 return -ENOSPC;
4261         }
4262         data_sinfo->bytes_may_use += bytes;
4263         trace_btrfs_space_reservation(fs_info, "space_info",
4264                                       data_sinfo->flags, bytes, 1);
4265         spin_unlock(&data_sinfo->lock);
4266
4267         return ret;
4268 }
4269
4270 /*
4271  * New check_data_free_space() with ability for precious data reservation
4272  * Will replace old btrfs_check_data_free_space(), but for patch split,
4273  * add a new function first and then replace it.
4274  */
4275 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4276 {
4277         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4278         int ret;
4279
4280         /* align the range */
4281         len = round_up(start + len, fs_info->sectorsize) -
4282               round_down(start, fs_info->sectorsize);
4283         start = round_down(start, fs_info->sectorsize);
4284
4285         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4286         if (ret < 0)
4287                 return ret;
4288
4289         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4290         ret = btrfs_qgroup_reserve_data(inode, start, len);
4291         if (ret)
4292                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4293         return ret;
4294 }
4295
4296 /*
4297  * Called if we need to clear a data reservation for this inode
4298  * Normally in a error case.
4299  *
4300  * This one will *NOT* use accurate qgroup reserved space API, just for case
4301  * which we can't sleep and is sure it won't affect qgroup reserved space.
4302  * Like clear_bit_hook().
4303  */
4304 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4305                                             u64 len)
4306 {
4307         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4308         struct btrfs_space_info *data_sinfo;
4309
4310         /* Make sure the range is aligned to sectorsize */
4311         len = round_up(start + len, fs_info->sectorsize) -
4312               round_down(start, fs_info->sectorsize);
4313         start = round_down(start, fs_info->sectorsize);
4314
4315         data_sinfo = fs_info->data_sinfo;
4316         spin_lock(&data_sinfo->lock);
4317         if (WARN_ON(data_sinfo->bytes_may_use < len))
4318                 data_sinfo->bytes_may_use = 0;
4319         else
4320                 data_sinfo->bytes_may_use -= len;
4321         trace_btrfs_space_reservation(fs_info, "space_info",
4322                                       data_sinfo->flags, len, 0);
4323         spin_unlock(&data_sinfo->lock);
4324 }
4325
4326 /*
4327  * Called if we need to clear a data reservation for this inode
4328  * Normally in a error case.
4329  *
4330  * This one will handle the per-inode data rsv map for accurate reserved
4331  * space framework.
4332  */
4333 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4334 {
4335         struct btrfs_root *root = BTRFS_I(inode)->root;
4336
4337         /* Make sure the range is aligned to sectorsize */
4338         len = round_up(start + len, root->fs_info->sectorsize) -
4339               round_down(start, root->fs_info->sectorsize);
4340         start = round_down(start, root->fs_info->sectorsize);
4341
4342         btrfs_free_reserved_data_space_noquota(inode, start, len);
4343         btrfs_qgroup_free_data(inode, start, len);
4344 }
4345
4346 static void force_metadata_allocation(struct btrfs_fs_info *info)
4347 {
4348         struct list_head *head = &info->space_info;
4349         struct btrfs_space_info *found;
4350
4351         rcu_read_lock();
4352         list_for_each_entry_rcu(found, head, list) {
4353                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4354                         found->force_alloc = CHUNK_ALLOC_FORCE;
4355         }
4356         rcu_read_unlock();
4357 }
4358
4359 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4360 {
4361         return (global->size << 1);
4362 }
4363
4364 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4365                               struct btrfs_space_info *sinfo, int force)
4366 {
4367         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4368         u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4369         u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4370         u64 thresh;
4371
4372         if (force == CHUNK_ALLOC_FORCE)
4373                 return 1;
4374
4375         /*
4376          * We need to take into account the global rsv because for all intents
4377          * and purposes it's used space.  Don't worry about locking the
4378          * global_rsv, it doesn't change except when the transaction commits.
4379          */
4380         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4381                 num_allocated += calc_global_rsv_need_space(global_rsv);
4382
4383         /*
4384          * in limited mode, we want to have some free space up to
4385          * about 1% of the FS size.
4386          */
4387         if (force == CHUNK_ALLOC_LIMITED) {
4388                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4389                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4390
4391                 if (num_bytes - num_allocated < thresh)
4392                         return 1;
4393         }
4394
4395         if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4396                 return 0;
4397         return 1;
4398 }
4399
4400 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4401 {
4402         u64 num_dev;
4403
4404         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4405                     BTRFS_BLOCK_GROUP_RAID0 |
4406                     BTRFS_BLOCK_GROUP_RAID5 |
4407                     BTRFS_BLOCK_GROUP_RAID6))
4408                 num_dev = fs_info->fs_devices->rw_devices;
4409         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4410                 num_dev = 2;
4411         else
4412                 num_dev = 1;    /* DUP or single */
4413
4414         return num_dev;
4415 }
4416
4417 /*
4418  * If @is_allocation is true, reserve space in the system space info necessary
4419  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4420  * removing a chunk.
4421  */
4422 void check_system_chunk(struct btrfs_trans_handle *trans,
4423                         struct btrfs_fs_info *fs_info, u64 type)
4424 {
4425         struct btrfs_space_info *info;
4426         u64 left;
4427         u64 thresh;
4428         int ret = 0;
4429         u64 num_devs;
4430
4431         /*
4432          * Needed because we can end up allocating a system chunk and for an
4433          * atomic and race free space reservation in the chunk block reserve.
4434          */
4435         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4436
4437         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4438         spin_lock(&info->lock);
4439         left = info->total_bytes - btrfs_space_info_used(info, true);
4440         spin_unlock(&info->lock);
4441
4442         num_devs = get_profile_num_devs(fs_info, type);
4443
4444         /* num_devs device items to update and 1 chunk item to add or remove */
4445         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4446                 btrfs_calc_trans_metadata_size(fs_info, 1);
4447
4448         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4449                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4450                            left, thresh, type);
4451                 dump_space_info(fs_info, info, 0, 0);
4452         }
4453
4454         if (left < thresh) {
4455                 u64 flags;
4456
4457                 flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4458                 /*
4459                  * Ignore failure to create system chunk. We might end up not
4460                  * needing it, as we might not need to COW all nodes/leafs from
4461                  * the paths we visit in the chunk tree (they were already COWed
4462                  * or created in the current transaction for example).
4463                  */
4464                 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4465         }
4466
4467         if (!ret) {
4468                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4469                                           &fs_info->chunk_block_rsv,
4470                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4471                 if (!ret)
4472                         trans->chunk_bytes_reserved += thresh;
4473         }
4474 }
4475
4476 /*
4477  * If force is CHUNK_ALLOC_FORCE:
4478  *    - return 1 if it successfully allocates a chunk,
4479  *    - return errors including -ENOSPC otherwise.
4480  * If force is NOT CHUNK_ALLOC_FORCE:
4481  *    - return 0 if it doesn't need to allocate a new chunk,
4482  *    - return 1 if it successfully allocates a chunk,
4483  *    - return errors including -ENOSPC otherwise.
4484  */
4485 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4486                           struct btrfs_fs_info *fs_info, u64 flags, int force)
4487 {
4488         struct btrfs_space_info *space_info;
4489         int wait_for_alloc = 0;
4490         int ret = 0;
4491
4492         /* Don't re-enter if we're already allocating a chunk */
4493         if (trans->allocating_chunk)
4494                 return -ENOSPC;
4495
4496         space_info = __find_space_info(fs_info, flags);
4497         if (!space_info) {
4498                 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
4499                 BUG_ON(ret); /* -ENOMEM */
4500         }
4501         BUG_ON(!space_info); /* Logic error */
4502
4503 again:
4504         spin_lock(&space_info->lock);
4505         if (force < space_info->force_alloc)
4506                 force = space_info->force_alloc;
4507         if (space_info->full) {
4508                 if (should_alloc_chunk(fs_info, space_info, force))
4509                         ret = -ENOSPC;
4510                 else
4511                         ret = 0;
4512                 spin_unlock(&space_info->lock);
4513                 return ret;
4514         }
4515
4516         if (!should_alloc_chunk(fs_info, space_info, force)) {
4517                 spin_unlock(&space_info->lock);
4518                 return 0;
4519         } else if (space_info->chunk_alloc) {
4520                 wait_for_alloc = 1;
4521         } else {
4522                 space_info->chunk_alloc = 1;
4523         }
4524
4525         spin_unlock(&space_info->lock);
4526
4527         mutex_lock(&fs_info->chunk_mutex);
4528
4529         /*
4530          * The chunk_mutex is held throughout the entirety of a chunk
4531          * allocation, so once we've acquired the chunk_mutex we know that the
4532          * other guy is done and we need to recheck and see if we should
4533          * allocate.
4534          */
4535         if (wait_for_alloc) {
4536                 mutex_unlock(&fs_info->chunk_mutex);
4537                 wait_for_alloc = 0;
4538                 goto again;
4539         }
4540
4541         trans->allocating_chunk = true;
4542
4543         /*
4544          * If we have mixed data/metadata chunks we want to make sure we keep
4545          * allocating mixed chunks instead of individual chunks.
4546          */
4547         if (btrfs_mixed_space_info(space_info))
4548                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4549
4550         /*
4551          * if we're doing a data chunk, go ahead and make sure that
4552          * we keep a reasonable number of metadata chunks allocated in the
4553          * FS as well.
4554          */
4555         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4556                 fs_info->data_chunk_allocations++;
4557                 if (!(fs_info->data_chunk_allocations %
4558                       fs_info->metadata_ratio))
4559                         force_metadata_allocation(fs_info);
4560         }
4561
4562         /*
4563          * Check if we have enough space in SYSTEM chunk because we may need
4564          * to update devices.
4565          */
4566         check_system_chunk(trans, fs_info, flags);
4567
4568         ret = btrfs_alloc_chunk(trans, fs_info, flags);
4569         trans->allocating_chunk = false;
4570
4571         spin_lock(&space_info->lock);
4572         if (ret < 0 && ret != -ENOSPC)
4573                 goto out;
4574         if (ret)
4575                 space_info->full = 1;
4576         else
4577                 ret = 1;
4578
4579         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4580 out:
4581         space_info->chunk_alloc = 0;
4582         spin_unlock(&space_info->lock);
4583         mutex_unlock(&fs_info->chunk_mutex);
4584         /*
4585          * When we allocate a new chunk we reserve space in the chunk block
4586          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4587          * add new nodes/leafs to it if we end up needing to do it when
4588          * inserting the chunk item and updating device items as part of the
4589          * second phase of chunk allocation, performed by
4590          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4591          * large number of new block groups to create in our transaction
4592          * handle's new_bgs list to avoid exhausting the chunk block reserve
4593          * in extreme cases - like having a single transaction create many new
4594          * block groups when starting to write out the free space caches of all
4595          * the block groups that were made dirty during the lifetime of the
4596          * transaction.
4597          */
4598         if (trans->can_flush_pending_bgs &&
4599             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4600                 btrfs_create_pending_block_groups(trans, fs_info);
4601                 btrfs_trans_release_chunk_metadata(trans);
4602         }
4603         return ret;
4604 }
4605
4606 static int can_overcommit(struct btrfs_root *root,
4607                           struct btrfs_space_info *space_info, u64 bytes,
4608                           enum btrfs_reserve_flush_enum flush)
4609 {
4610         struct btrfs_fs_info *fs_info = root->fs_info;
4611         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4612         u64 profile;
4613         u64 space_size;
4614         u64 avail;
4615         u64 used;
4616
4617         /* Don't overcommit when in mixed mode. */
4618         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4619                 return 0;
4620
4621         profile = btrfs_get_alloc_profile(root, 0);
4622         used = btrfs_space_info_used(space_info, false);
4623
4624         /*
4625          * We only want to allow over committing if we have lots of actual space
4626          * free, but if we don't have enough space to handle the global reserve
4627          * space then we could end up having a real enospc problem when trying
4628          * to allocate a chunk or some other such important allocation.
4629          */
4630         spin_lock(&global_rsv->lock);
4631         space_size = calc_global_rsv_need_space(global_rsv);
4632         spin_unlock(&global_rsv->lock);
4633         if (used + space_size >= space_info->total_bytes)
4634                 return 0;
4635
4636         used += space_info->bytes_may_use;
4637
4638         spin_lock(&fs_info->free_chunk_lock);
4639         avail = fs_info->free_chunk_space;
4640         spin_unlock(&fs_info->free_chunk_lock);
4641
4642         /*
4643          * If we have dup, raid1 or raid10 then only half of the free
4644          * space is actually useable.  For raid56, the space info used
4645          * doesn't include the parity drive, so we don't have to
4646          * change the math
4647          */
4648         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4649                        BTRFS_BLOCK_GROUP_RAID1 |
4650                        BTRFS_BLOCK_GROUP_RAID10))
4651                 avail >>= 1;
4652
4653         /*
4654          * If we aren't flushing all things, let us overcommit up to
4655          * 1/2th of the space. If we can flush, don't let us overcommit
4656          * too much, let it overcommit up to 1/8 of the space.
4657          */
4658         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4659                 avail >>= 3;
4660         else
4661                 avail >>= 1;
4662
4663         if (used + bytes < space_info->total_bytes + avail)
4664                 return 1;
4665         return 0;
4666 }
4667
4668 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4669                                          unsigned long nr_pages, int nr_items)
4670 {
4671         struct super_block *sb = fs_info->sb;
4672
4673         if (down_read_trylock(&sb->s_umount)) {
4674                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4675                 up_read(&sb->s_umount);
4676         } else {
4677                 /*
4678                  * We needn't worry the filesystem going from r/w to r/o though
4679                  * we don't acquire ->s_umount mutex, because the filesystem
4680                  * should guarantee the delalloc inodes list be empty after
4681                  * the filesystem is readonly(all dirty pages are written to
4682                  * the disk).
4683                  */
4684                 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4685                 if (!current->journal_info)
4686                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4687         }
4688 }
4689
4690 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4691                                         u64 to_reclaim)
4692 {
4693         u64 bytes;
4694         int nr;
4695
4696         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4697         nr = (int)div64_u64(to_reclaim, bytes);
4698         if (!nr)
4699                 nr = 1;
4700         return nr;
4701 }
4702
4703 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4704
4705 /*
4706  * shrink metadata reservation for delalloc
4707  */
4708 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4709                             bool wait_ordered)
4710 {
4711         struct btrfs_fs_info *fs_info = root->fs_info;
4712         struct btrfs_block_rsv *block_rsv;
4713         struct btrfs_space_info *space_info;
4714         struct btrfs_trans_handle *trans;
4715         u64 delalloc_bytes;
4716         u64 max_reclaim;
4717         long time_left;
4718         unsigned long nr_pages;
4719         int loops;
4720         int items;
4721         enum btrfs_reserve_flush_enum flush;
4722
4723         /* Calc the number of the pages we need flush for space reservation */
4724         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4725         to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4726
4727         trans = (struct btrfs_trans_handle *)current->journal_info;
4728         block_rsv = &fs_info->delalloc_block_rsv;
4729         space_info = block_rsv->space_info;
4730
4731         delalloc_bytes = percpu_counter_sum_positive(
4732                                                 &fs_info->delalloc_bytes);
4733         if (delalloc_bytes == 0) {
4734                 if (trans)
4735                         return;
4736                 if (wait_ordered)
4737                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4738                 return;
4739         }
4740
4741         loops = 0;
4742         while (delalloc_bytes && loops < 3) {
4743                 max_reclaim = min(delalloc_bytes, to_reclaim);
4744                 nr_pages = max_reclaim >> PAGE_SHIFT;
4745                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4746                 /*
4747                  * We need to wait for the async pages to actually start before
4748                  * we do anything.
4749                  */
4750                 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4751                 if (!max_reclaim)
4752                         goto skip_async;
4753
4754                 if (max_reclaim <= nr_pages)
4755                         max_reclaim = 0;
4756                 else
4757                         max_reclaim -= nr_pages;
4758
4759                 wait_event(fs_info->async_submit_wait,
4760                            atomic_read(&fs_info->async_delalloc_pages) <=
4761                            (int)max_reclaim);
4762 skip_async:
4763                 if (!trans)
4764                         flush = BTRFS_RESERVE_FLUSH_ALL;
4765                 else
4766                         flush = BTRFS_RESERVE_NO_FLUSH;
4767                 spin_lock(&space_info->lock);
4768                 if (can_overcommit(root, space_info, orig, flush)) {
4769                         spin_unlock(&space_info->lock);
4770                         break;
4771                 }
4772                 if (list_empty(&space_info->tickets) &&
4773                     list_empty(&space_info->priority_tickets)) {
4774                         spin_unlock(&space_info->lock);
4775                         break;
4776                 }
4777                 spin_unlock(&space_info->lock);
4778
4779                 loops++;
4780                 if (wait_ordered && !trans) {
4781                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4782                 } else {
4783                         time_left = schedule_timeout_killable(1);
4784                         if (time_left)
4785                                 break;
4786                 }
4787                 delalloc_bytes = percpu_counter_sum_positive(
4788                                                 &fs_info->delalloc_bytes);
4789         }
4790 }
4791
4792 /**
4793  * maybe_commit_transaction - possibly commit the transaction if its ok to
4794  * @root - the root we're allocating for
4795  * @bytes - the number of bytes we want to reserve
4796  * @force - force the commit
4797  *
4798  * This will check to make sure that committing the transaction will actually
4799  * get us somewhere and then commit the transaction if it does.  Otherwise it
4800  * will return -ENOSPC.
4801  */
4802 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4803                                   struct btrfs_space_info *space_info,
4804                                   u64 bytes, int force)
4805 {
4806         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4807         struct btrfs_trans_handle *trans;
4808
4809         trans = (struct btrfs_trans_handle *)current->journal_info;
4810         if (trans)
4811                 return -EAGAIN;
4812
4813         if (force)
4814                 goto commit;
4815
4816         /* See if there is enough pinned space to make this reservation */
4817         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4818                                    bytes) >= 0)
4819                 goto commit;
4820
4821         /*
4822          * See if there is some space in the delayed insertion reservation for
4823          * this reservation.
4824          */
4825         if (space_info != delayed_rsv->space_info)
4826                 return -ENOSPC;
4827
4828         spin_lock(&delayed_rsv->lock);
4829         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4830                                    bytes - delayed_rsv->size) >= 0) {
4831                 spin_unlock(&delayed_rsv->lock);
4832                 return -ENOSPC;
4833         }
4834         spin_unlock(&delayed_rsv->lock);
4835
4836 commit:
4837         trans = btrfs_join_transaction(fs_info->fs_root);
4838         if (IS_ERR(trans))
4839                 return -ENOSPC;
4840
4841         return btrfs_commit_transaction(trans);
4842 }
4843
4844 struct reserve_ticket {
4845         u64 bytes;
4846         int error;
4847         struct list_head list;
4848         wait_queue_head_t wait;
4849 };
4850
4851 static int flush_space(struct btrfs_fs_info *fs_info,
4852                        struct btrfs_space_info *space_info, u64 num_bytes,
4853                        u64 orig_bytes, int state)
4854 {
4855         struct btrfs_root *root = fs_info->fs_root;
4856         struct btrfs_trans_handle *trans;
4857         int nr;
4858         int ret = 0;
4859
4860         switch (state) {
4861         case FLUSH_DELAYED_ITEMS_NR:
4862         case FLUSH_DELAYED_ITEMS:
4863                 if (state == FLUSH_DELAYED_ITEMS_NR)
4864                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4865                 else
4866                         nr = -1;
4867
4868                 trans = btrfs_join_transaction(root);
4869                 if (IS_ERR(trans)) {
4870                         ret = PTR_ERR(trans);
4871                         break;
4872                 }
4873                 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4874                 btrfs_end_transaction(trans);
4875                 break;
4876         case FLUSH_DELALLOC:
4877         case FLUSH_DELALLOC_WAIT:
4878                 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4879                                 state == FLUSH_DELALLOC_WAIT);
4880                 break;
4881         case ALLOC_CHUNK:
4882                 trans = btrfs_join_transaction(root);
4883                 if (IS_ERR(trans)) {
4884                         ret = PTR_ERR(trans);
4885                         break;
4886                 }
4887                 ret = do_chunk_alloc(trans, fs_info,
4888                                      btrfs_get_alloc_profile(root, 0),
4889                                      CHUNK_ALLOC_NO_FORCE);
4890                 btrfs_end_transaction(trans);
4891                 if (ret > 0 || ret == -ENOSPC)
4892                         ret = 0;
4893                 break;
4894         case COMMIT_TRANS:
4895                 ret = may_commit_transaction(fs_info, space_info,
4896                                              orig_bytes, 0);
4897                 break;
4898         default:
4899                 ret = -ENOSPC;
4900                 break;
4901         }
4902
4903         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4904                                 orig_bytes, state, ret);
4905         return ret;
4906 }
4907
4908 static inline u64
4909 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4910                                  struct btrfs_space_info *space_info)
4911 {
4912         struct reserve_ticket *ticket;
4913         u64 used;
4914         u64 expected;
4915         u64 to_reclaim = 0;
4916
4917         list_for_each_entry(ticket, &space_info->tickets, list)
4918                 to_reclaim += ticket->bytes;
4919         list_for_each_entry(ticket, &space_info->priority_tickets, list)
4920                 to_reclaim += ticket->bytes;
4921         if (to_reclaim)
4922                 return to_reclaim;
4923
4924         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4925         if (can_overcommit(root, space_info, to_reclaim,
4926                            BTRFS_RESERVE_FLUSH_ALL))
4927                 return 0;
4928
4929         used = space_info->bytes_used + space_info->bytes_reserved +
4930                space_info->bytes_pinned + space_info->bytes_readonly +
4931                space_info->bytes_may_use;
4932         if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4933                 expected = div_factor_fine(space_info->total_bytes, 95);
4934         else
4935                 expected = div_factor_fine(space_info->total_bytes, 90);
4936
4937         if (used > expected)
4938                 to_reclaim = used - expected;
4939         else
4940                 to_reclaim = 0;
4941         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4942                                      space_info->bytes_reserved);
4943         return to_reclaim;
4944 }
4945
4946 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4947                                         struct btrfs_root *root, u64 used)
4948 {
4949         struct btrfs_fs_info *fs_info = root->fs_info;
4950         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4951
4952         /* If we're just plain full then async reclaim just slows us down. */
4953         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4954                 return 0;
4955
4956         if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4957                 return 0;
4958
4959         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4960                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4961 }
4962
4963 static void wake_all_tickets(struct list_head *head)
4964 {
4965         struct reserve_ticket *ticket;
4966
4967         while (!list_empty(head)) {
4968                 ticket = list_first_entry(head, struct reserve_ticket, list);
4969                 list_del_init(&ticket->list);
4970                 ticket->error = -ENOSPC;
4971                 wake_up(&ticket->wait);
4972         }
4973 }
4974
4975 /*
4976  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4977  * will loop and continuously try to flush as long as we are making progress.
4978  * We count progress as clearing off tickets each time we have to loop.
4979  */
4980 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4981 {
4982         struct btrfs_fs_info *fs_info;
4983         struct btrfs_space_info *space_info;
4984         u64 to_reclaim;
4985         int flush_state;
4986         int commit_cycles = 0;
4987         u64 last_tickets_id;
4988
4989         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4990         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4991
4992         spin_lock(&space_info->lock);
4993         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4994                                                       space_info);
4995         if (!to_reclaim) {
4996                 space_info->flush = 0;
4997                 spin_unlock(&space_info->lock);
4998                 return;
4999         }
5000         last_tickets_id = space_info->tickets_id;
5001         spin_unlock(&space_info->lock);
5002
5003         flush_state = FLUSH_DELAYED_ITEMS_NR;
5004         do {
5005                 struct reserve_ticket *ticket;
5006                 int ret;
5007
5008                 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5009                                   flush_state);
5010                 spin_lock(&space_info->lock);
5011                 if (list_empty(&space_info->tickets)) {
5012                         space_info->flush = 0;
5013                         spin_unlock(&space_info->lock);
5014                         return;
5015                 }
5016                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5017                                                               space_info);
5018                 ticket = list_first_entry(&space_info->tickets,
5019                                           struct reserve_ticket, list);
5020                 if (last_tickets_id == space_info->tickets_id) {
5021                         flush_state++;
5022                 } else {
5023                         last_tickets_id = space_info->tickets_id;
5024                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5025                         if (commit_cycles)
5026                                 commit_cycles--;
5027                 }
5028
5029                 if (flush_state > COMMIT_TRANS) {
5030                         commit_cycles++;
5031                         if (commit_cycles > 2) {
5032                                 wake_all_tickets(&space_info->tickets);
5033                                 space_info->flush = 0;
5034                         } else {
5035                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5036                         }
5037                 }
5038                 spin_unlock(&space_info->lock);
5039         } while (flush_state <= COMMIT_TRANS);
5040 }
5041
5042 void btrfs_init_async_reclaim_work(struct work_struct *work)
5043 {
5044         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5045 }
5046
5047 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5048                                             struct btrfs_space_info *space_info,
5049                                             struct reserve_ticket *ticket)
5050 {
5051         u64 to_reclaim;
5052         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5053
5054         spin_lock(&space_info->lock);
5055         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5056                                                       space_info);
5057         if (!to_reclaim) {
5058                 spin_unlock(&space_info->lock);
5059                 return;
5060         }
5061         spin_unlock(&space_info->lock);
5062
5063         do {
5064                 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5065                             flush_state);
5066                 flush_state++;
5067                 spin_lock(&space_info->lock);
5068                 if (ticket->bytes == 0) {
5069                         spin_unlock(&space_info->lock);
5070                         return;
5071                 }
5072                 spin_unlock(&space_info->lock);
5073
5074                 /*
5075                  * Priority flushers can't wait on delalloc without
5076                  * deadlocking.
5077                  */
5078                 if (flush_state == FLUSH_DELALLOC ||
5079                     flush_state == FLUSH_DELALLOC_WAIT)
5080                         flush_state = ALLOC_CHUNK;
5081         } while (flush_state < COMMIT_TRANS);
5082 }
5083
5084 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5085                                struct btrfs_space_info *space_info,
5086                                struct reserve_ticket *ticket, u64 orig_bytes)
5087
5088 {
5089         DEFINE_WAIT(wait);
5090         int ret = 0;
5091
5092         spin_lock(&space_info->lock);
5093         while (ticket->bytes > 0 && ticket->error == 0) {
5094                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5095                 if (ret) {
5096                         ret = -EINTR;
5097                         break;
5098                 }
5099                 spin_unlock(&space_info->lock);
5100
5101                 schedule();
5102
5103                 finish_wait(&ticket->wait, &wait);
5104                 spin_lock(&space_info->lock);
5105         }
5106         if (!ret)
5107                 ret = ticket->error;
5108         if (!list_empty(&ticket->list))
5109                 list_del_init(&ticket->list);
5110         if (ticket->bytes && ticket->bytes < orig_bytes) {
5111                 u64 num_bytes = orig_bytes - ticket->bytes;
5112                 space_info->bytes_may_use -= num_bytes;
5113                 trace_btrfs_space_reservation(fs_info, "space_info",
5114                                               space_info->flags, num_bytes, 0);
5115         }
5116         spin_unlock(&space_info->lock);
5117
5118         return ret;
5119 }
5120
5121 /**
5122  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5123  * @root - the root we're allocating for
5124  * @space_info - the space info we want to allocate from
5125  * @orig_bytes - the number of bytes we want
5126  * @flush - whether or not we can flush to make our reservation
5127  *
5128  * This will reserve orig_bytes number of bytes from the space info associated
5129  * with the block_rsv.  If there is not enough space it will make an attempt to
5130  * flush out space to make room.  It will do this by flushing delalloc if
5131  * possible or committing the transaction.  If flush is 0 then no attempts to
5132  * regain reservations will be made and this will fail if there is not enough
5133  * space already.
5134  */
5135 static int __reserve_metadata_bytes(struct btrfs_root *root,
5136                                     struct btrfs_space_info *space_info,
5137                                     u64 orig_bytes,
5138                                     enum btrfs_reserve_flush_enum flush)
5139 {
5140         struct btrfs_fs_info *fs_info = root->fs_info;
5141         struct reserve_ticket ticket;
5142         u64 used;
5143         int ret = 0;
5144
5145         ASSERT(orig_bytes);
5146         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5147
5148         spin_lock(&space_info->lock);
5149         ret = -ENOSPC;
5150         used = btrfs_space_info_used(space_info, true);
5151
5152         /*
5153          * If we have enough space then hooray, make our reservation and carry
5154          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5155          * If not things get more complicated.
5156          */
5157         if (used + orig_bytes <= space_info->total_bytes) {
5158                 space_info->bytes_may_use += orig_bytes;
5159                 trace_btrfs_space_reservation(fs_info, "space_info",
5160                                               space_info->flags, orig_bytes, 1);
5161                 ret = 0;
5162         } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5163                 space_info->bytes_may_use += orig_bytes;
5164                 trace_btrfs_space_reservation(fs_info, "space_info",
5165                                               space_info->flags, orig_bytes, 1);
5166                 ret = 0;
5167         }
5168
5169         /*
5170          * If we couldn't make a reservation then setup our reservation ticket
5171          * and kick the async worker if it's not already running.
5172          *
5173          * If we are a priority flusher then we just need to add our ticket to
5174          * the list and we will do our own flushing further down.
5175          */
5176         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5177                 ticket.bytes = orig_bytes;
5178                 ticket.error = 0;
5179                 init_waitqueue_head(&ticket.wait);
5180                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5181                         list_add_tail(&ticket.list, &space_info->tickets);
5182                         if (!space_info->flush) {
5183                                 space_info->flush = 1;
5184                                 trace_btrfs_trigger_flush(fs_info,
5185                                                           space_info->flags,
5186                                                           orig_bytes, flush,
5187                                                           "enospc");
5188                                 queue_work(system_unbound_wq,
5189                                            &root->fs_info->async_reclaim_work);
5190                         }
5191                 } else {
5192                         list_add_tail(&ticket.list,
5193                                       &space_info->priority_tickets);
5194                 }
5195         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5196                 used += orig_bytes;
5197                 /*
5198                  * We will do the space reservation dance during log replay,
5199                  * which means we won't have fs_info->fs_root set, so don't do
5200                  * the async reclaim as we will panic.
5201                  */
5202                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5203                     need_do_async_reclaim(space_info, root, used) &&
5204                     !work_busy(&fs_info->async_reclaim_work)) {
5205                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5206                                                   orig_bytes, flush, "preempt");
5207                         queue_work(system_unbound_wq,
5208                                    &fs_info->async_reclaim_work);
5209                 }
5210         }
5211         spin_unlock(&space_info->lock);
5212         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5213                 return ret;
5214
5215         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5216                 return wait_reserve_ticket(fs_info, space_info, &ticket,
5217                                            orig_bytes);
5218
5219         ret = 0;
5220         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5221         spin_lock(&space_info->lock);
5222         if (ticket.bytes) {
5223                 if (ticket.bytes < orig_bytes) {
5224                         u64 num_bytes = orig_bytes - ticket.bytes;
5225                         space_info->bytes_may_use -= num_bytes;
5226                         trace_btrfs_space_reservation(fs_info, "space_info",
5227                                                       space_info->flags,
5228                                                       num_bytes, 0);
5229
5230                 }
5231                 list_del_init(&ticket.list);
5232                 ret = -ENOSPC;
5233         }
5234         spin_unlock(&space_info->lock);
5235         ASSERT(list_empty(&ticket.list));
5236         return ret;
5237 }
5238
5239 /**
5240  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5241  * @root - the root we're allocating for
5242  * @block_rsv - the block_rsv we're allocating for
5243  * @orig_bytes - the number of bytes we want
5244  * @flush - whether or not we can flush to make our reservation
5245  *
5246  * This will reserve orgi_bytes number of bytes from the space info associated
5247  * with the block_rsv.  If there is not enough space it will make an attempt to
5248  * flush out space to make room.  It will do this by flushing delalloc if
5249  * possible or committing the transaction.  If flush is 0 then no attempts to
5250  * regain reservations will be made and this will fail if there is not enough
5251  * space already.
5252  */
5253 static int reserve_metadata_bytes(struct btrfs_root *root,
5254                                   struct btrfs_block_rsv *block_rsv,
5255                                   u64 orig_bytes,
5256                                   enum btrfs_reserve_flush_enum flush)
5257 {
5258         struct btrfs_fs_info *fs_info = root->fs_info;
5259         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5260         int ret;
5261
5262         ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5263                                        flush);
5264         if (ret == -ENOSPC &&
5265             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5266                 if (block_rsv != global_rsv &&
5267                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5268                         ret = 0;
5269         }
5270         if (ret == -ENOSPC)
5271                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5272                                               block_rsv->space_info->flags,
5273                                               orig_bytes, 1);
5274         return ret;
5275 }
5276
5277 static struct btrfs_block_rsv *get_block_rsv(
5278                                         const struct btrfs_trans_handle *trans,
5279                                         const struct btrfs_root *root)
5280 {
5281         struct btrfs_fs_info *fs_info = root->fs_info;
5282         struct btrfs_block_rsv *block_rsv = NULL;
5283
5284         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5285             (root == fs_info->csum_root && trans->adding_csums) ||
5286             (root == fs_info->uuid_root))
5287                 block_rsv = trans->block_rsv;
5288
5289         if (!block_rsv)
5290                 block_rsv = root->block_rsv;
5291
5292         if (!block_rsv)
5293                 block_rsv = &fs_info->empty_block_rsv;
5294
5295         return block_rsv;
5296 }
5297
5298 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5299                                u64 num_bytes)
5300 {
5301         int ret = -ENOSPC;
5302         spin_lock(&block_rsv->lock);
5303         if (block_rsv->reserved >= num_bytes) {
5304                 block_rsv->reserved -= num_bytes;
5305                 if (block_rsv->reserved < block_rsv->size)
5306                         block_rsv->full = 0;
5307                 ret = 0;
5308         }
5309         spin_unlock(&block_rsv->lock);
5310         return ret;
5311 }
5312
5313 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5314                                 u64 num_bytes, int update_size)
5315 {
5316         spin_lock(&block_rsv->lock);
5317         block_rsv->reserved += num_bytes;
5318         if (update_size)
5319                 block_rsv->size += num_bytes;
5320         else if (block_rsv->reserved >= block_rsv->size)
5321                 block_rsv->full = 1;
5322         spin_unlock(&block_rsv->lock);
5323 }
5324
5325 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5326                              struct btrfs_block_rsv *dest, u64 num_bytes,
5327                              int min_factor)
5328 {
5329         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5330         u64 min_bytes;
5331
5332         if (global_rsv->space_info != dest->space_info)
5333                 return -ENOSPC;
5334
5335         spin_lock(&global_rsv->lock);
5336         min_bytes = div_factor(global_rsv->size, min_factor);
5337         if (global_rsv->reserved < min_bytes + num_bytes) {
5338                 spin_unlock(&global_rsv->lock);
5339                 return -ENOSPC;
5340         }
5341         global_rsv->reserved -= num_bytes;
5342         if (global_rsv->reserved < global_rsv->size)
5343                 global_rsv->full = 0;
5344         spin_unlock(&global_rsv->lock);
5345
5346         block_rsv_add_bytes(dest, num_bytes, 1);
5347         return 0;
5348 }
5349
5350 /*
5351  * This is for space we already have accounted in space_info->bytes_may_use, so
5352  * basically when we're returning space from block_rsv's.
5353  */
5354 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5355                                      struct btrfs_space_info *space_info,
5356                                      u64 num_bytes)
5357 {
5358         struct reserve_ticket *ticket;
5359         struct list_head *head;
5360         u64 used;
5361         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5362         bool check_overcommit = false;
5363
5364         spin_lock(&space_info->lock);
5365         head = &space_info->priority_tickets;
5366
5367         /*
5368          * If we are over our limit then we need to check and see if we can
5369          * overcommit, and if we can't then we just need to free up our space
5370          * and not satisfy any requests.
5371          */
5372         used = space_info->bytes_used + space_info->bytes_reserved +
5373                 space_info->bytes_pinned + space_info->bytes_readonly +
5374                 space_info->bytes_may_use;
5375         if (used - num_bytes >= space_info->total_bytes)
5376                 check_overcommit = true;
5377 again:
5378         while (!list_empty(head) && num_bytes) {
5379                 ticket = list_first_entry(head, struct reserve_ticket,
5380                                           list);
5381                 /*
5382                  * We use 0 bytes because this space is already reserved, so
5383                  * adding the ticket space would be a double count.
5384                  */
5385                 if (check_overcommit &&
5386                     !can_overcommit(fs_info->extent_root, space_info, 0,
5387                                     flush))
5388                         break;
5389                 if (num_bytes >= ticket->bytes) {
5390                         list_del_init(&ticket->list);
5391                         num_bytes -= ticket->bytes;
5392                         ticket->bytes = 0;
5393                         space_info->tickets_id++;
5394                         wake_up(&ticket->wait);
5395                 } else {
5396                         ticket->bytes -= num_bytes;
5397                         num_bytes = 0;
5398                 }
5399         }
5400
5401         if (num_bytes && head == &space_info->priority_tickets) {
5402                 head = &space_info->tickets;
5403                 flush = BTRFS_RESERVE_FLUSH_ALL;
5404                 goto again;
5405         }
5406         space_info->bytes_may_use -= num_bytes;
5407         trace_btrfs_space_reservation(fs_info, "space_info",
5408                                       space_info->flags, num_bytes, 0);
5409         spin_unlock(&space_info->lock);
5410 }
5411
5412 /*
5413  * This is for newly allocated space that isn't accounted in
5414  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5415  * we use this helper.
5416  */
5417 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5418                                      struct btrfs_space_info *space_info,
5419                                      u64 num_bytes)
5420 {
5421         struct reserve_ticket *ticket;
5422         struct list_head *head = &space_info->priority_tickets;
5423
5424 again:
5425         while (!list_empty(head) && num_bytes) {
5426                 ticket = list_first_entry(head, struct reserve_ticket,
5427                                           list);
5428                 if (num_bytes >= ticket->bytes) {
5429                         trace_btrfs_space_reservation(fs_info, "space_info",
5430                                                       space_info->flags,
5431                                                       ticket->bytes, 1);
5432                         list_del_init(&ticket->list);
5433                         num_bytes -= ticket->bytes;
5434                         space_info->bytes_may_use += ticket->bytes;
5435                         ticket->bytes = 0;
5436                         space_info->tickets_id++;
5437                         wake_up(&ticket->wait);
5438                 } else {
5439                         trace_btrfs_space_reservation(fs_info, "space_info",
5440                                                       space_info->flags,
5441                                                       num_bytes, 1);
5442                         space_info->bytes_may_use += num_bytes;
5443                         ticket->bytes -= num_bytes;
5444                         num_bytes = 0;
5445                 }
5446         }
5447
5448         if (num_bytes && head == &space_info->priority_tickets) {
5449                 head = &space_info->tickets;
5450                 goto again;
5451         }
5452 }
5453
5454 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5455                                     struct btrfs_block_rsv *block_rsv,
5456                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5457 {
5458         struct btrfs_space_info *space_info = block_rsv->space_info;
5459
5460         spin_lock(&block_rsv->lock);
5461         if (num_bytes == (u64)-1)
5462                 num_bytes = block_rsv->size;
5463         block_rsv->size -= num_bytes;
5464         if (block_rsv->reserved >= block_rsv->size) {
5465                 num_bytes = block_rsv->reserved - block_rsv->size;
5466                 block_rsv->reserved = block_rsv->size;
5467                 block_rsv->full = 1;
5468         } else {
5469                 num_bytes = 0;
5470         }
5471         spin_unlock(&block_rsv->lock);
5472
5473         if (num_bytes > 0) {
5474                 if (dest) {
5475                         spin_lock(&dest->lock);
5476                         if (!dest->full) {
5477                                 u64 bytes_to_add;
5478
5479                                 bytes_to_add = dest->size - dest->reserved;
5480                                 bytes_to_add = min(num_bytes, bytes_to_add);
5481                                 dest->reserved += bytes_to_add;
5482                                 if (dest->reserved >= dest->size)
5483                                         dest->full = 1;
5484                                 num_bytes -= bytes_to_add;
5485                         }
5486                         spin_unlock(&dest->lock);
5487                 }
5488                 if (num_bytes)
5489                         space_info_add_old_bytes(fs_info, space_info,
5490                                                  num_bytes);
5491         }
5492 }
5493
5494 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5495                             struct btrfs_block_rsv *dst, u64 num_bytes,
5496                             int update_size)
5497 {
5498         int ret;
5499
5500         ret = block_rsv_use_bytes(src, num_bytes);
5501         if (ret)
5502                 return ret;
5503
5504         block_rsv_add_bytes(dst, num_bytes, update_size);
5505         return 0;
5506 }
5507
5508 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5509 {
5510         memset(rsv, 0, sizeof(*rsv));
5511         spin_lock_init(&rsv->lock);
5512         rsv->type = type;
5513 }
5514
5515 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5516                                               unsigned short type)
5517 {
5518         struct btrfs_block_rsv *block_rsv;
5519
5520         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5521         if (!block_rsv)
5522                 return NULL;
5523
5524         btrfs_init_block_rsv(block_rsv, type);
5525         block_rsv->space_info = __find_space_info(fs_info,
5526                                                   BTRFS_BLOCK_GROUP_METADATA);
5527         return block_rsv;
5528 }
5529
5530 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5531                           struct btrfs_block_rsv *rsv)
5532 {
5533         if (!rsv)
5534                 return;
5535         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5536         kfree(rsv);
5537 }
5538
5539 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5540 {
5541         kfree(rsv);
5542 }
5543
5544 int btrfs_block_rsv_add(struct btrfs_root *root,
5545                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5546                         enum btrfs_reserve_flush_enum flush)
5547 {
5548         int ret;
5549
5550         if (num_bytes == 0)
5551                 return 0;
5552
5553         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5554         if (!ret) {
5555                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5556                 return 0;
5557         }
5558
5559         return ret;
5560 }
5561
5562 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5563 {
5564         u64 num_bytes = 0;
5565         int ret = -ENOSPC;
5566
5567         if (!block_rsv)
5568                 return 0;
5569
5570         spin_lock(&block_rsv->lock);
5571         num_bytes = div_factor(block_rsv->size, min_factor);
5572         if (block_rsv->reserved >= num_bytes)
5573                 ret = 0;
5574         spin_unlock(&block_rsv->lock);
5575
5576         return ret;
5577 }
5578
5579 int btrfs_block_rsv_refill(struct btrfs_root *root,
5580                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5581                            enum btrfs_reserve_flush_enum flush)
5582 {
5583         u64 num_bytes = 0;
5584         int ret = -ENOSPC;
5585
5586         if (!block_rsv)
5587                 return 0;
5588
5589         spin_lock(&block_rsv->lock);
5590         num_bytes = min_reserved;
5591         if (block_rsv->reserved >= num_bytes)
5592                 ret = 0;
5593         else
5594                 num_bytes -= block_rsv->reserved;
5595         spin_unlock(&block_rsv->lock);
5596
5597         if (!ret)
5598                 return 0;
5599
5600         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5601         if (!ret) {
5602                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5603                 return 0;
5604         }
5605
5606         return ret;
5607 }
5608
5609 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5610                              struct btrfs_block_rsv *block_rsv,
5611                              u64 num_bytes)
5612 {
5613         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5614
5615         if (global_rsv == block_rsv ||
5616             block_rsv->space_info != global_rsv->space_info)
5617                 global_rsv = NULL;
5618         block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5619 }
5620
5621 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5622 {
5623         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5624         struct btrfs_space_info *sinfo = block_rsv->space_info;
5625         u64 num_bytes;
5626
5627         /*
5628          * The global block rsv is based on the size of the extent tree, the
5629          * checksum tree and the root tree.  If the fs is empty we want to set
5630          * it to a minimal amount for safety.
5631          */
5632         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5633                 btrfs_root_used(&fs_info->csum_root->root_item) +
5634                 btrfs_root_used(&fs_info->tree_root->root_item);
5635         num_bytes = max_t(u64, num_bytes, SZ_16M);
5636
5637         spin_lock(&sinfo->lock);
5638         spin_lock(&block_rsv->lock);
5639
5640         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5641
5642         if (block_rsv->reserved < block_rsv->size) {
5643                 num_bytes = btrfs_space_info_used(sinfo, true);
5644                 if (sinfo->total_bytes > num_bytes) {
5645                         num_bytes = sinfo->total_bytes - num_bytes;
5646                         num_bytes = min(num_bytes,
5647                                         block_rsv->size - block_rsv->reserved);
5648                         block_rsv->reserved += num_bytes;
5649                         sinfo->bytes_may_use += num_bytes;
5650                         trace_btrfs_space_reservation(fs_info, "space_info",
5651                                                       sinfo->flags, num_bytes,
5652                                                       1);
5653                 }
5654         } else if (block_rsv->reserved > block_rsv->size) {
5655                 num_bytes = block_rsv->reserved - block_rsv->size;
5656                 sinfo->bytes_may_use -= num_bytes;
5657                 trace_btrfs_space_reservation(fs_info, "space_info",
5658                                       sinfo->flags, num_bytes, 0);
5659                 block_rsv->reserved = block_rsv->size;
5660         }
5661
5662         if (block_rsv->reserved == block_rsv->size)
5663                 block_rsv->full = 1;
5664         else
5665                 block_rsv->full = 0;
5666
5667         spin_unlock(&block_rsv->lock);
5668         spin_unlock(&sinfo->lock);
5669 }
5670
5671 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5672 {
5673         struct btrfs_space_info *space_info;
5674
5675         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5676         fs_info->chunk_block_rsv.space_info = space_info;
5677
5678         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5679         fs_info->global_block_rsv.space_info = space_info;
5680         fs_info->delalloc_block_rsv.space_info = space_info;
5681         fs_info->trans_block_rsv.space_info = space_info;
5682         fs_info->empty_block_rsv.space_info = space_info;
5683         fs_info->delayed_block_rsv.space_info = space_info;
5684
5685         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5686         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5687         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5688         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5689         if (fs_info->quota_root)
5690                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5691         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5692
5693         update_global_block_rsv(fs_info);
5694 }
5695
5696 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5697 {
5698         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5699                                 (u64)-1);
5700         WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5701         WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5702         WARN_ON(fs_info->trans_block_rsv.size > 0);
5703         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5704         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5705         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5706         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5707         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5708 }
5709
5710 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5711                                   struct btrfs_fs_info *fs_info)
5712 {
5713         if (!trans->block_rsv)
5714                 return;
5715
5716         if (!trans->bytes_reserved)
5717                 return;
5718
5719         trace_btrfs_space_reservation(fs_info, "transaction",
5720                                       trans->transid, trans->bytes_reserved, 0);
5721         btrfs_block_rsv_release(fs_info, trans->block_rsv,
5722                                 trans->bytes_reserved);
5723         trans->bytes_reserved = 0;
5724 }
5725
5726 /*
5727  * To be called after all the new block groups attached to the transaction
5728  * handle have been created (btrfs_create_pending_block_groups()).
5729  */
5730 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5731 {
5732         struct btrfs_fs_info *fs_info = trans->fs_info;
5733
5734         if (!trans->chunk_bytes_reserved)
5735                 return;
5736
5737         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5738
5739         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5740                                 trans->chunk_bytes_reserved);
5741         trans->chunk_bytes_reserved = 0;
5742 }
5743
5744 /* Can only return 0 or -ENOSPC */
5745 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5746                                   struct btrfs_inode *inode)
5747 {
5748         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5749         struct btrfs_root *root = inode->root;
5750         /*
5751          * We always use trans->block_rsv here as we will have reserved space
5752          * for our orphan when starting the transaction, using get_block_rsv()
5753          * here will sometimes make us choose the wrong block rsv as we could be
5754          * doing a reloc inode for a non refcounted root.
5755          */
5756         struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5757         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5758
5759         /*
5760          * We need to hold space in order to delete our orphan item once we've
5761          * added it, so this takes the reservation so we can release it later
5762          * when we are truly done with the orphan item.
5763          */
5764         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5765
5766         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 
5767                         num_bytes, 1);
5768         return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5769 }
5770
5771 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5772 {
5773         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5774         struct btrfs_root *root = inode->root;
5775         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5776
5777         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5778                         num_bytes, 0);
5779         btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5780 }
5781
5782 /*
5783  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5784  * root: the root of the parent directory
5785  * rsv: block reservation
5786  * items: the number of items that we need do reservation
5787  * qgroup_reserved: used to return the reserved size in qgroup
5788  *
5789  * This function is used to reserve the space for snapshot/subvolume
5790  * creation and deletion. Those operations are different with the
5791  * common file/directory operations, they change two fs/file trees
5792  * and root tree, the number of items that the qgroup reserves is
5793  * different with the free space reservation. So we can not use
5794  * the space reservation mechanism in start_transaction().
5795  */
5796 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5797                                      struct btrfs_block_rsv *rsv,
5798                                      int items,
5799                                      u64 *qgroup_reserved,
5800                                      bool use_global_rsv)
5801 {
5802         u64 num_bytes;
5803         int ret;
5804         struct btrfs_fs_info *fs_info = root->fs_info;
5805         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5806
5807         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5808                 /* One for parent inode, two for dir entries */
5809                 num_bytes = 3 * fs_info->nodesize;
5810                 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5811                 if (ret)
5812                         return ret;
5813         } else {
5814                 num_bytes = 0;
5815         }
5816
5817         *qgroup_reserved = num_bytes;
5818
5819         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5820         rsv->space_info = __find_space_info(fs_info,
5821                                             BTRFS_BLOCK_GROUP_METADATA);
5822         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5823                                   BTRFS_RESERVE_FLUSH_ALL);
5824
5825         if (ret == -ENOSPC && use_global_rsv)
5826                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5827
5828         if (ret && *qgroup_reserved)
5829                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5830
5831         return ret;
5832 }
5833
5834 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5835                                       struct btrfs_block_rsv *rsv)
5836 {
5837         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5838 }
5839
5840 /**
5841  * drop_outstanding_extent - drop an outstanding extent
5842  * @inode: the inode we're dropping the extent for
5843  * @num_bytes: the number of bytes we're releasing.
5844  *
5845  * This is called when we are freeing up an outstanding extent, either called
5846  * after an error or after an extent is written.  This will return the number of
5847  * reserved extents that need to be freed.  This must be called with
5848  * BTRFS_I(inode)->lock held.
5849  */
5850 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5851                 u64 num_bytes)
5852 {
5853         unsigned drop_inode_space = 0;
5854         unsigned dropped_extents = 0;
5855         unsigned num_extents;
5856
5857         num_extents = count_max_extents(num_bytes);
5858         ASSERT(num_extents);
5859         ASSERT(inode->outstanding_extents >= num_extents);
5860         inode->outstanding_extents -= num_extents;
5861
5862         if (inode->outstanding_extents == 0 &&
5863             test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5864                                &inode->runtime_flags))
5865                 drop_inode_space = 1;
5866
5867         /*
5868          * If we have more or the same amount of outstanding extents than we have
5869          * reserved then we need to leave the reserved extents count alone.
5870          */
5871         if (inode->outstanding_extents >= inode->reserved_extents)
5872                 return drop_inode_space;
5873
5874         dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5875         inode->reserved_extents -= dropped_extents;
5876         return dropped_extents + drop_inode_space;
5877 }
5878
5879 /**
5880  * calc_csum_metadata_size - return the amount of metadata space that must be
5881  *      reserved/freed for the given bytes.
5882  * @inode: the inode we're manipulating
5883  * @num_bytes: the number of bytes in question
5884  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5885  *
5886  * This adjusts the number of csum_bytes in the inode and then returns the
5887  * correct amount of metadata that must either be reserved or freed.  We
5888  * calculate how many checksums we can fit into one leaf and then divide the
5889  * number of bytes that will need to be checksumed by this value to figure out
5890  * how many checksums will be required.  If we are adding bytes then the number
5891  * may go up and we will return the number of additional bytes that must be
5892  * reserved.  If it is going down we will return the number of bytes that must
5893  * be freed.
5894  *
5895  * This must be called with BTRFS_I(inode)->lock held.
5896  */
5897 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5898                                    int reserve)
5899 {
5900         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5901         u64 old_csums, num_csums;
5902
5903         if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5904                 return 0;
5905
5906         old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5907         if (reserve)
5908                 inode->csum_bytes += num_bytes;
5909         else
5910                 inode->csum_bytes -= num_bytes;
5911         num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5912
5913         /* No change, no need to reserve more */
5914         if (old_csums == num_csums)
5915                 return 0;
5916
5917         if (reserve)
5918                 return btrfs_calc_trans_metadata_size(fs_info,
5919                                                       num_csums - old_csums);
5920
5921         return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5922 }
5923
5924 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5925 {
5926         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5927         struct btrfs_root *root = inode->root;
5928         struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5929         u64 to_reserve = 0;
5930         u64 csum_bytes;
5931         unsigned nr_extents;
5932         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5933         int ret = 0;
5934         bool delalloc_lock = true;
5935         u64 to_free = 0;
5936         unsigned dropped;
5937         bool release_extra = false;
5938
5939         /* If we are a free space inode we need to not flush since we will be in
5940          * the middle of a transaction commit.  We also don't need the delalloc
5941          * mutex since we won't race with anybody.  We need this mostly to make
5942          * lockdep shut its filthy mouth.
5943          *
5944          * If we have a transaction open (can happen if we call truncate_block
5945          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5946          */
5947         if (btrfs_is_free_space_inode(inode)) {
5948                 flush = BTRFS_RESERVE_NO_FLUSH;
5949                 delalloc_lock = false;
5950         } else if (current->journal_info) {
5951                 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5952         }
5953
5954         if (flush != BTRFS_RESERVE_NO_FLUSH &&
5955             btrfs_transaction_in_commit(fs_info))
5956                 schedule_timeout(1);
5957
5958         if (delalloc_lock)
5959                 mutex_lock(&inode->delalloc_mutex);
5960
5961         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5962
5963         spin_lock(&inode->lock);
5964         nr_extents = count_max_extents(num_bytes);
5965         inode->outstanding_extents += nr_extents;
5966
5967         nr_extents = 0;
5968         if (inode->outstanding_extents > inode->reserved_extents)
5969                 nr_extents += inode->outstanding_extents -
5970                         inode->reserved_extents;
5971
5972         /* We always want to reserve a slot for updating the inode. */
5973         to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
5974         to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5975         csum_bytes = inode->csum_bytes;
5976         spin_unlock(&inode->lock);
5977
5978         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5979                 ret = btrfs_qgroup_reserve_meta(root,
5980                                 nr_extents * fs_info->nodesize, true);
5981                 if (ret)
5982                         goto out_fail;
5983         }
5984
5985         ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5986         if (unlikely(ret)) {
5987                 btrfs_qgroup_free_meta(root,
5988                                        nr_extents * fs_info->nodesize);
5989                 goto out_fail;
5990         }
5991
5992         spin_lock(&inode->lock);
5993         if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5994                              &inode->runtime_flags)) {
5995                 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
5996                 release_extra = true;
5997         }
5998         inode->reserved_extents += nr_extents;
5999         spin_unlock(&inode->lock);
6000
6001         if (delalloc_lock)
6002                 mutex_unlock(&inode->delalloc_mutex);
6003
6004         if (to_reserve)
6005                 trace_btrfs_space_reservation(fs_info, "delalloc",
6006                                               btrfs_ino(inode), to_reserve, 1);
6007         if (release_extra)
6008                 btrfs_block_rsv_release(fs_info, block_rsv,
6009                                 btrfs_calc_trans_metadata_size(fs_info, 1));
6010         return 0;
6011
6012 out_fail:
6013         spin_lock(&inode->lock);
6014         dropped = drop_outstanding_extent(inode, num_bytes);
6015         /*
6016          * If the inodes csum_bytes is the same as the original
6017          * csum_bytes then we know we haven't raced with any free()ers
6018          * so we can just reduce our inodes csum bytes and carry on.
6019          */
6020         if (inode->csum_bytes == csum_bytes) {
6021                 calc_csum_metadata_size(inode, num_bytes, 0);
6022         } else {
6023                 u64 orig_csum_bytes = inode->csum_bytes;
6024                 u64 bytes;
6025
6026                 /*
6027                  * This is tricky, but first we need to figure out how much we
6028                  * freed from any free-ers that occurred during this
6029                  * reservation, so we reset ->csum_bytes to the csum_bytes
6030                  * before we dropped our lock, and then call the free for the
6031                  * number of bytes that were freed while we were trying our
6032                  * reservation.
6033                  */
6034                 bytes = csum_bytes - inode->csum_bytes;
6035                 inode->csum_bytes = csum_bytes;
6036                 to_free = calc_csum_metadata_size(inode, bytes, 0);
6037
6038
6039                 /*
6040                  * Now we need to see how much we would have freed had we not
6041                  * been making this reservation and our ->csum_bytes were not
6042                  * artificially inflated.
6043                  */
6044                 inode->csum_bytes = csum_bytes - num_bytes;
6045                 bytes = csum_bytes - orig_csum_bytes;
6046                 bytes = calc_csum_metadata_size(inode, bytes, 0);
6047
6048                 /*
6049                  * Now reset ->csum_bytes to what it should be.  If bytes is
6050                  * more than to_free then we would have freed more space had we
6051                  * not had an artificially high ->csum_bytes, so we need to free
6052                  * the remainder.  If bytes is the same or less then we don't
6053                  * need to do anything, the other free-ers did the correct
6054                  * thing.
6055                  */
6056                 inode->csum_bytes = orig_csum_bytes - num_bytes;
6057                 if (bytes > to_free)
6058                         to_free = bytes - to_free;
6059                 else
6060                         to_free = 0;
6061         }
6062         spin_unlock(&inode->lock);
6063         if (dropped)
6064                 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6065
6066         if (to_free) {
6067                 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6068                 trace_btrfs_space_reservation(fs_info, "delalloc",
6069                                               btrfs_ino(inode), to_free, 0);
6070         }
6071         if (delalloc_lock)
6072                 mutex_unlock(&inode->delalloc_mutex);
6073         return ret;
6074 }
6075
6076 /**
6077  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6078  * @inode: the inode to release the reservation for
6079  * @num_bytes: the number of bytes we're releasing
6080  *
6081  * This will release the metadata reservation for an inode.  This can be called
6082  * once we complete IO for a given set of bytes to release their metadata
6083  * reservations.
6084  */
6085 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6086 {
6087         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6088         u64 to_free = 0;
6089         unsigned dropped;
6090
6091         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6092         spin_lock(&inode->lock);
6093         dropped = drop_outstanding_extent(inode, num_bytes);
6094
6095         if (num_bytes)
6096                 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6097         spin_unlock(&inode->lock);
6098         if (dropped > 0)
6099                 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6100
6101         if (btrfs_is_testing(fs_info))
6102                 return;
6103
6104         trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6105                                       to_free, 0);
6106
6107         btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6108 }
6109
6110 /**
6111  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6112  * delalloc
6113  * @inode: inode we're writing to
6114  * @start: start range we are writing to
6115  * @len: how long the range we are writing to
6116  *
6117  * This will do the following things
6118  *
6119  * o reserve space in data space info for num bytes
6120  *   and reserve precious corresponding qgroup space
6121  *   (Done in check_data_free_space)
6122  *
6123  * o reserve space for metadata space, based on the number of outstanding
6124  *   extents and how much csums will be needed
6125  *   also reserve metadata space in a per root over-reserve method.
6126  * o add to the inodes->delalloc_bytes
6127  * o add it to the fs_info's delalloc inodes list.
6128  *   (Above 3 all done in delalloc_reserve_metadata)
6129  *
6130  * Return 0 for success
6131  * Return <0 for error(-ENOSPC or -EQUOT)
6132  */
6133 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6134 {
6135         int ret;
6136
6137         ret = btrfs_check_data_free_space(inode, start, len);
6138         if (ret < 0)
6139                 return ret;
6140         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6141         if (ret < 0)
6142                 btrfs_free_reserved_data_space(inode, start, len);
6143         return ret;
6144 }
6145
6146 /**
6147  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6148  * @inode: inode we're releasing space for
6149  * @start: start position of the space already reserved
6150  * @len: the len of the space already reserved
6151  *
6152  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6153  * called in the case that we don't need the metadata AND data reservations
6154  * anymore.  So if there is an error or we insert an inline extent.
6155  *
6156  * This function will release the metadata space that was not used and will
6157  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6158  * list if there are no delalloc bytes left.
6159  * Also it will handle the qgroup reserved space.
6160  */
6161 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6162 {
6163         btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6164         btrfs_free_reserved_data_space(inode, start, len);
6165 }
6166
6167 static int update_block_group(struct btrfs_trans_handle *trans,
6168                               struct btrfs_fs_info *info, u64 bytenr,
6169                               u64 num_bytes, int alloc)
6170 {
6171         struct btrfs_block_group_cache *cache = NULL;
6172         u64 total = num_bytes;
6173         u64 old_val;
6174         u64 byte_in_group;
6175         int factor;
6176
6177         /* block accounting for super block */
6178         spin_lock(&info->delalloc_root_lock);
6179         old_val = btrfs_super_bytes_used(info->super_copy);
6180         if (alloc)
6181                 old_val += num_bytes;
6182         else
6183                 old_val -= num_bytes;
6184         btrfs_set_super_bytes_used(info->super_copy, old_val);
6185         spin_unlock(&info->delalloc_root_lock);
6186
6187         while (total) {
6188                 cache = btrfs_lookup_block_group(info, bytenr);
6189                 if (!cache)
6190                         return -ENOENT;
6191                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6192                                     BTRFS_BLOCK_GROUP_RAID1 |
6193                                     BTRFS_BLOCK_GROUP_RAID10))
6194                         factor = 2;
6195                 else
6196                         factor = 1;
6197                 /*
6198                  * If this block group has free space cache written out, we
6199                  * need to make sure to load it if we are removing space.  This
6200                  * is because we need the unpinning stage to actually add the
6201                  * space back to the block group, otherwise we will leak space.
6202                  */
6203                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6204                         cache_block_group(cache, 1);
6205
6206                 byte_in_group = bytenr - cache->key.objectid;
6207                 WARN_ON(byte_in_group > cache->key.offset);
6208
6209                 spin_lock(&cache->space_info->lock);
6210                 spin_lock(&cache->lock);
6211
6212                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6213                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6214                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6215
6216                 old_val = btrfs_block_group_used(&cache->item);
6217                 num_bytes = min(total, cache->key.offset - byte_in_group);
6218                 if (alloc) {
6219                         old_val += num_bytes;
6220                         btrfs_set_block_group_used(&cache->item, old_val);
6221                         cache->reserved -= num_bytes;
6222                         cache->space_info->bytes_reserved -= num_bytes;
6223                         cache->space_info->bytes_used += num_bytes;
6224                         cache->space_info->disk_used += num_bytes * factor;
6225                         spin_unlock(&cache->lock);
6226                         spin_unlock(&cache->space_info->lock);
6227                 } else {
6228                         old_val -= num_bytes;
6229                         btrfs_set_block_group_used(&cache->item, old_val);
6230                         cache->pinned += num_bytes;
6231                         cache->space_info->bytes_pinned += num_bytes;
6232                         cache->space_info->bytes_used -= num_bytes;
6233                         cache->space_info->disk_used -= num_bytes * factor;
6234                         spin_unlock(&cache->lock);
6235                         spin_unlock(&cache->space_info->lock);
6236
6237                         trace_btrfs_space_reservation(info, "pinned",
6238                                                       cache->space_info->flags,
6239                                                       num_bytes, 1);
6240                         set_extent_dirty(info->pinned_extents,
6241                                          bytenr, bytenr + num_bytes - 1,
6242                                          GFP_NOFS | __GFP_NOFAIL);
6243                 }
6244
6245                 spin_lock(&trans->transaction->dirty_bgs_lock);
6246                 if (list_empty(&cache->dirty_list)) {
6247                         list_add_tail(&cache->dirty_list,
6248                                       &trans->transaction->dirty_bgs);
6249                                 trans->transaction->num_dirty_bgs++;
6250                         btrfs_get_block_group(cache);
6251                 }
6252                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6253
6254                 /*
6255                  * No longer have used bytes in this block group, queue it for
6256                  * deletion. We do this after adding the block group to the
6257                  * dirty list to avoid races between cleaner kthread and space
6258                  * cache writeout.
6259                  */
6260                 if (!alloc && old_val == 0) {
6261                         spin_lock(&info->unused_bgs_lock);
6262                         if (list_empty(&cache->bg_list)) {
6263                                 btrfs_get_block_group(cache);
6264                                 list_add_tail(&cache->bg_list,
6265                                               &info->unused_bgs);
6266                         }
6267                         spin_unlock(&info->unused_bgs_lock);
6268                 }
6269
6270                 btrfs_put_block_group(cache);
6271                 total -= num_bytes;
6272                 bytenr += num_bytes;
6273         }
6274         return 0;
6275 }
6276
6277 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6278 {
6279         struct btrfs_block_group_cache *cache;
6280         u64 bytenr;
6281
6282         spin_lock(&fs_info->block_group_cache_lock);
6283         bytenr = fs_info->first_logical_byte;
6284         spin_unlock(&fs_info->block_group_cache_lock);
6285
6286         if (bytenr < (u64)-1)
6287                 return bytenr;
6288
6289         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6290         if (!cache)
6291                 return 0;
6292
6293         bytenr = cache->key.objectid;
6294         btrfs_put_block_group(cache);
6295
6296         return bytenr;
6297 }
6298
6299 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6300                            struct btrfs_block_group_cache *cache,
6301                            u64 bytenr, u64 num_bytes, int reserved)
6302 {
6303         spin_lock(&cache->space_info->lock);
6304         spin_lock(&cache->lock);
6305         cache->pinned += num_bytes;
6306         cache->space_info->bytes_pinned += num_bytes;
6307         if (reserved) {
6308                 cache->reserved -= num_bytes;
6309                 cache->space_info->bytes_reserved -= num_bytes;
6310         }
6311         spin_unlock(&cache->lock);
6312         spin_unlock(&cache->space_info->lock);
6313
6314         trace_btrfs_space_reservation(fs_info, "pinned",
6315                                       cache->space_info->flags, num_bytes, 1);
6316         set_extent_dirty(fs_info->pinned_extents, bytenr,
6317                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6318         return 0;
6319 }
6320
6321 /*
6322  * this function must be called within transaction
6323  */
6324 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6325                      u64 bytenr, u64 num_bytes, int reserved)
6326 {
6327         struct btrfs_block_group_cache *cache;
6328
6329         cache = btrfs_lookup_block_group(fs_info, bytenr);
6330         BUG_ON(!cache); /* Logic error */
6331
6332         pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6333
6334         btrfs_put_block_group(cache);
6335         return 0;
6336 }
6337
6338 /*
6339  * this function must be called within transaction
6340  */
6341 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6342                                     u64 bytenr, u64 num_bytes)
6343 {
6344         struct btrfs_block_group_cache *cache;
6345         int ret;
6346
6347         cache = btrfs_lookup_block_group(fs_info, bytenr);
6348         if (!cache)
6349                 return -EINVAL;
6350
6351         /*
6352          * pull in the free space cache (if any) so that our pin
6353          * removes the free space from the cache.  We have load_only set
6354          * to one because the slow code to read in the free extents does check
6355          * the pinned extents.
6356          */
6357         cache_block_group(cache, 1);
6358
6359         pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6360
6361         /* remove us from the free space cache (if we're there at all) */
6362         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6363         btrfs_put_block_group(cache);
6364         return ret;
6365 }
6366
6367 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6368                                    u64 start, u64 num_bytes)
6369 {
6370         int ret;
6371         struct btrfs_block_group_cache *block_group;
6372         struct btrfs_caching_control *caching_ctl;
6373
6374         block_group = btrfs_lookup_block_group(fs_info, start);
6375         if (!block_group)
6376                 return -EINVAL;
6377
6378         cache_block_group(block_group, 0);
6379         caching_ctl = get_caching_control(block_group);
6380
6381         if (!caching_ctl) {
6382                 /* Logic error */
6383                 BUG_ON(!block_group_cache_done(block_group));
6384                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6385         } else {
6386                 mutex_lock(&caching_ctl->mutex);
6387
6388                 if (start >= caching_ctl->progress) {
6389                         ret = add_excluded_extent(fs_info, start, num_bytes);
6390                 } else if (start + num_bytes <= caching_ctl->progress) {
6391                         ret = btrfs_remove_free_space(block_group,
6392                                                       start, num_bytes);
6393                 } else {
6394                         num_bytes = caching_ctl->progress - start;
6395                         ret = btrfs_remove_free_space(block_group,
6396                                                       start, num_bytes);
6397                         if (ret)
6398                                 goto out_lock;
6399
6400                         num_bytes = (start + num_bytes) -
6401                                 caching_ctl->progress;
6402                         start = caching_ctl->progress;
6403                         ret = add_excluded_extent(fs_info, start, num_bytes);
6404                 }
6405 out_lock:
6406                 mutex_unlock(&caching_ctl->mutex);
6407                 put_caching_control(caching_ctl);
6408         }
6409         btrfs_put_block_group(block_group);
6410         return ret;
6411 }
6412
6413 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6414                                  struct extent_buffer *eb)
6415 {
6416         struct btrfs_file_extent_item *item;
6417         struct btrfs_key key;
6418         int found_type;
6419         int i;
6420
6421         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6422                 return 0;
6423
6424         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6425                 btrfs_item_key_to_cpu(eb, &key, i);
6426                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6427                         continue;
6428                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6429                 found_type = btrfs_file_extent_type(eb, item);
6430                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6431                         continue;
6432                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6433                         continue;
6434                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6435                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6436                 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6437         }
6438
6439         return 0;
6440 }
6441
6442 static void
6443 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6444 {
6445         atomic_inc(&bg->reservations);
6446 }
6447
6448 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6449                                         const u64 start)
6450 {
6451         struct btrfs_block_group_cache *bg;
6452
6453         bg = btrfs_lookup_block_group(fs_info, start);
6454         ASSERT(bg);
6455         if (atomic_dec_and_test(&bg->reservations))
6456                 wake_up_atomic_t(&bg->reservations);
6457         btrfs_put_block_group(bg);
6458 }
6459
6460 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6461 {
6462         schedule();
6463         return 0;
6464 }
6465
6466 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6467 {
6468         struct btrfs_space_info *space_info = bg->space_info;
6469
6470         ASSERT(bg->ro);
6471
6472         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6473                 return;
6474
6475         /*
6476          * Our block group is read only but before we set it to read only,
6477          * some task might have had allocated an extent from it already, but it
6478          * has not yet created a respective ordered extent (and added it to a
6479          * root's list of ordered extents).
6480          * Therefore wait for any task currently allocating extents, since the
6481          * block group's reservations counter is incremented while a read lock
6482          * on the groups' semaphore is held and decremented after releasing
6483          * the read access on that semaphore and creating the ordered extent.
6484          */
6485         down_write(&space_info->groups_sem);
6486         up_write(&space_info->groups_sem);
6487
6488         wait_on_atomic_t(&bg->reservations,
6489                          btrfs_wait_bg_reservations_atomic_t,
6490                          TASK_UNINTERRUPTIBLE);
6491 }
6492
6493 /**
6494  * btrfs_add_reserved_bytes - update the block_group and space info counters
6495  * @cache:      The cache we are manipulating
6496  * @ram_bytes:  The number of bytes of file content, and will be same to
6497  *              @num_bytes except for the compress path.
6498  * @num_bytes:  The number of bytes in question
6499  * @delalloc:   The blocks are allocated for the delalloc write
6500  *
6501  * This is called by the allocator when it reserves space. If this is a
6502  * reservation and the block group has become read only we cannot make the
6503  * reservation and return -EAGAIN, otherwise this function always succeeds.
6504  */
6505 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6506                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6507 {
6508         struct btrfs_space_info *space_info = cache->space_info;
6509         int ret = 0;
6510
6511         spin_lock(&space_info->lock);
6512         spin_lock(&cache->lock);
6513         if (cache->ro) {
6514                 ret = -EAGAIN;
6515         } else {
6516                 cache->reserved += num_bytes;
6517                 space_info->bytes_reserved += num_bytes;
6518
6519                 trace_btrfs_space_reservation(cache->fs_info,
6520                                 "space_info", space_info->flags,
6521                                 ram_bytes, 0);
6522                 space_info->bytes_may_use -= ram_bytes;
6523                 if (delalloc)
6524                         cache->delalloc_bytes += num_bytes;
6525         }
6526         spin_unlock(&cache->lock);
6527         spin_unlock(&space_info->lock);
6528         return ret;
6529 }
6530
6531 /**
6532  * btrfs_free_reserved_bytes - update the block_group and space info counters
6533  * @cache:      The cache we are manipulating
6534  * @num_bytes:  The number of bytes in question
6535  * @delalloc:   The blocks are allocated for the delalloc write
6536  *
6537  * This is called by somebody who is freeing space that was never actually used
6538  * on disk.  For example if you reserve some space for a new leaf in transaction
6539  * A and before transaction A commits you free that leaf, you call this with
6540  * reserve set to 0 in order to clear the reservation.
6541  */
6542
6543 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6544                                      u64 num_bytes, int delalloc)
6545 {
6546         struct btrfs_space_info *space_info = cache->space_info;
6547         int ret = 0;
6548
6549         spin_lock(&space_info->lock);
6550         spin_lock(&cache->lock);
6551         if (cache->ro)
6552                 space_info->bytes_readonly += num_bytes;
6553         cache->reserved -= num_bytes;
6554         space_info->bytes_reserved -= num_bytes;
6555
6556         if (delalloc)
6557                 cache->delalloc_bytes -= num_bytes;
6558         spin_unlock(&cache->lock);
6559         spin_unlock(&space_info->lock);
6560         return ret;
6561 }
6562 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6563 {
6564         struct btrfs_caching_control *next;
6565         struct btrfs_caching_control *caching_ctl;
6566         struct btrfs_block_group_cache *cache;
6567
6568         down_write(&fs_info->commit_root_sem);
6569
6570         list_for_each_entry_safe(caching_ctl, next,
6571                                  &fs_info->caching_block_groups, list) {
6572                 cache = caching_ctl->block_group;
6573                 if (block_group_cache_done(cache)) {
6574                         cache->last_byte_to_unpin = (u64)-1;
6575                         list_del_init(&caching_ctl->list);
6576                         put_caching_control(caching_ctl);
6577                 } else {
6578                         cache->last_byte_to_unpin = caching_ctl->progress;
6579                 }
6580         }
6581
6582         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6583                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6584         else
6585                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6586
6587         up_write(&fs_info->commit_root_sem);
6588
6589         update_global_block_rsv(fs_info);
6590 }
6591
6592 /*
6593  * Returns the free cluster for the given space info and sets empty_cluster to
6594  * what it should be based on the mount options.
6595  */
6596 static struct btrfs_free_cluster *
6597 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6598                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6599 {
6600         struct btrfs_free_cluster *ret = NULL;
6601         bool ssd = btrfs_test_opt(fs_info, SSD);
6602
6603         *empty_cluster = 0;
6604         if (btrfs_mixed_space_info(space_info))
6605                 return ret;
6606
6607         if (ssd)
6608                 *empty_cluster = SZ_2M;
6609         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6610                 ret = &fs_info->meta_alloc_cluster;
6611                 if (!ssd)
6612                         *empty_cluster = SZ_64K;
6613         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6614                 ret = &fs_info->data_alloc_cluster;
6615         }
6616
6617         return ret;
6618 }
6619
6620 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6621                               u64 start, u64 end,
6622                               const bool return_free_space)
6623 {
6624         struct btrfs_block_group_cache *cache = NULL;
6625         struct btrfs_space_info *space_info;
6626         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6627         struct btrfs_free_cluster *cluster = NULL;
6628         u64 len;
6629         u64 total_unpinned = 0;
6630         u64 empty_cluster = 0;
6631         bool readonly;
6632
6633         while (start <= end) {
6634                 readonly = false;
6635                 if (!cache ||
6636                     start >= cache->key.objectid + cache->key.offset) {
6637                         if (cache)
6638                                 btrfs_put_block_group(cache);
6639                         total_unpinned = 0;
6640                         cache = btrfs_lookup_block_group(fs_info, start);
6641                         BUG_ON(!cache); /* Logic error */
6642
6643                         cluster = fetch_cluster_info(fs_info,
6644                                                      cache->space_info,
6645                                                      &empty_cluster);
6646                         empty_cluster <<= 1;
6647                 }
6648
6649                 len = cache->key.objectid + cache->key.offset - start;
6650                 len = min(len, end + 1 - start);
6651
6652                 if (start < cache->last_byte_to_unpin) {
6653                         len = min(len, cache->last_byte_to_unpin - start);
6654                         if (return_free_space)
6655                                 btrfs_add_free_space(cache, start, len);
6656                 }
6657
6658                 start += len;
6659                 total_unpinned += len;
6660                 space_info = cache->space_info;
6661
6662                 /*
6663                  * If this space cluster has been marked as fragmented and we've
6664                  * unpinned enough in this block group to potentially allow a
6665                  * cluster to be created inside of it go ahead and clear the
6666                  * fragmented check.
6667                  */
6668                 if (cluster && cluster->fragmented &&
6669                     total_unpinned > empty_cluster) {
6670                         spin_lock(&cluster->lock);
6671                         cluster->fragmented = 0;
6672                         spin_unlock(&cluster->lock);
6673                 }
6674
6675                 spin_lock(&space_info->lock);
6676                 spin_lock(&cache->lock);
6677                 cache->pinned -= len;
6678                 space_info->bytes_pinned -= len;
6679
6680                 trace_btrfs_space_reservation(fs_info, "pinned",
6681                                               space_info->flags, len, 0);
6682                 space_info->max_extent_size = 0;
6683                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6684                 if (cache->ro) {
6685                         space_info->bytes_readonly += len;
6686                         readonly = true;
6687                 }
6688                 spin_unlock(&cache->lock);
6689                 if (!readonly && return_free_space &&
6690                     global_rsv->space_info == space_info) {
6691                         u64 to_add = len;
6692                         WARN_ON(!return_free_space);
6693                         spin_lock(&global_rsv->lock);
6694                         if (!global_rsv->full) {
6695                                 to_add = min(len, global_rsv->size -
6696                                              global_rsv->reserved);
6697                                 global_rsv->reserved += to_add;
6698                                 space_info->bytes_may_use += to_add;
6699                                 if (global_rsv->reserved >= global_rsv->size)
6700                                         global_rsv->full = 1;
6701                                 trace_btrfs_space_reservation(fs_info,
6702                                                               "space_info",
6703                                                               space_info->flags,
6704                                                               to_add, 1);
6705                                 len -= to_add;
6706                         }
6707                         spin_unlock(&global_rsv->lock);
6708                         /* Add to any tickets we may have */
6709                         if (len)
6710                                 space_info_add_new_bytes(fs_info, space_info,
6711                                                          len);
6712                 }
6713                 spin_unlock(&space_info->lock);
6714         }
6715
6716         if (cache)
6717                 btrfs_put_block_group(cache);
6718         return 0;
6719 }
6720
6721 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6722                                struct btrfs_fs_info *fs_info)
6723 {
6724         struct btrfs_block_group_cache *block_group, *tmp;
6725         struct list_head *deleted_bgs;
6726         struct extent_io_tree *unpin;
6727         u64 start;
6728         u64 end;
6729         int ret;
6730
6731         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6732                 unpin = &fs_info->freed_extents[1];
6733         else
6734                 unpin = &fs_info->freed_extents[0];
6735
6736         while (!trans->aborted) {
6737                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6738                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6739                                             EXTENT_DIRTY, NULL);
6740                 if (ret) {
6741                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6742                         break;
6743                 }
6744
6745                 if (btrfs_test_opt(fs_info, DISCARD))
6746                         ret = btrfs_discard_extent(fs_info, start,
6747                                                    end + 1 - start, NULL);
6748
6749                 clear_extent_dirty(unpin, start, end);
6750                 unpin_extent_range(fs_info, start, end, true);
6751                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6752                 cond_resched();
6753         }
6754
6755         /*
6756          * Transaction is finished.  We don't need the lock anymore.  We
6757          * do need to clean up the block groups in case of a transaction
6758          * abort.
6759          */
6760         deleted_bgs = &trans->transaction->deleted_bgs;
6761         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6762                 u64 trimmed = 0;
6763
6764                 ret = -EROFS;
6765                 if (!trans->aborted)
6766                         ret = btrfs_discard_extent(fs_info,
6767                                                    block_group->key.objectid,
6768                                                    block_group->key.offset,
6769                                                    &trimmed);
6770
6771                 list_del_init(&block_group->bg_list);
6772                 btrfs_put_block_group_trimming(block_group);
6773                 btrfs_put_block_group(block_group);
6774
6775                 if (ret) {
6776                         const char *errstr = btrfs_decode_error(ret);
6777                         btrfs_warn(fs_info,
6778                                    "Discard failed while removing blockgroup: errno=%d %s\n",
6779                                    ret, errstr);
6780                 }
6781         }
6782
6783         return 0;
6784 }
6785
6786 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6787                              u64 owner, u64 root_objectid)
6788 {
6789         struct btrfs_space_info *space_info;
6790         u64 flags;
6791
6792         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6793                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6794                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
6795                 else
6796                         flags = BTRFS_BLOCK_GROUP_METADATA;
6797         } else {
6798                 flags = BTRFS_BLOCK_GROUP_DATA;
6799         }
6800
6801         space_info = __find_space_info(fs_info, flags);
6802         BUG_ON(!space_info); /* Logic bug */
6803         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6804 }
6805
6806
6807 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6808                                 struct btrfs_fs_info *info,
6809                                 struct btrfs_delayed_ref_node *node, u64 parent,
6810                                 u64 root_objectid, u64 owner_objectid,
6811                                 u64 owner_offset, int refs_to_drop,
6812                                 struct btrfs_delayed_extent_op *extent_op)
6813 {
6814         struct btrfs_key key;
6815         struct btrfs_path *path;
6816         struct btrfs_root *extent_root = info->extent_root;
6817         struct extent_buffer *leaf;
6818         struct btrfs_extent_item *ei;
6819         struct btrfs_extent_inline_ref *iref;
6820         int ret;
6821         int is_data;
6822         int extent_slot = 0;
6823         int found_extent = 0;
6824         int num_to_del = 1;
6825         u32 item_size;
6826         u64 refs;
6827         u64 bytenr = node->bytenr;
6828         u64 num_bytes = node->num_bytes;
6829         int last_ref = 0;
6830         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6831
6832         path = btrfs_alloc_path();
6833         if (!path)
6834                 return -ENOMEM;
6835
6836         path->reada = READA_FORWARD;
6837         path->leave_spinning = 1;
6838
6839         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6840         BUG_ON(!is_data && refs_to_drop != 1);
6841
6842         if (is_data)
6843                 skinny_metadata = 0;
6844
6845         ret = lookup_extent_backref(trans, info, path, &iref,
6846                                     bytenr, num_bytes, parent,
6847                                     root_objectid, owner_objectid,
6848                                     owner_offset);
6849         if (ret == 0) {
6850                 extent_slot = path->slots[0];
6851                 while (extent_slot >= 0) {
6852                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6853                                               extent_slot);
6854                         if (key.objectid != bytenr)
6855                                 break;
6856                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6857                             key.offset == num_bytes) {
6858                                 found_extent = 1;
6859                                 break;
6860                         }
6861                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6862                             key.offset == owner_objectid) {
6863                                 found_extent = 1;
6864                                 break;
6865                         }
6866                         if (path->slots[0] - extent_slot > 5)
6867                                 break;
6868                         extent_slot--;
6869                 }
6870 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6871                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6872                 if (found_extent && item_size < sizeof(*ei))
6873                         found_extent = 0;
6874 #endif
6875                 if (!found_extent) {
6876                         BUG_ON(iref);
6877                         ret = remove_extent_backref(trans, info, path, NULL,
6878                                                     refs_to_drop,
6879                                                     is_data, &last_ref);
6880                         if (ret) {
6881                                 btrfs_abort_transaction(trans, ret);
6882                                 goto out;
6883                         }
6884                         btrfs_release_path(path);
6885                         path->leave_spinning = 1;
6886
6887                         key.objectid = bytenr;
6888                         key.type = BTRFS_EXTENT_ITEM_KEY;
6889                         key.offset = num_bytes;
6890
6891                         if (!is_data && skinny_metadata) {
6892                                 key.type = BTRFS_METADATA_ITEM_KEY;
6893                                 key.offset = owner_objectid;
6894                         }
6895
6896                         ret = btrfs_search_slot(trans, extent_root,
6897                                                 &key, path, -1, 1);
6898                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6899                                 /*
6900                                  * Couldn't find our skinny metadata item,
6901                                  * see if we have ye olde extent item.
6902                                  */
6903                                 path->slots[0]--;
6904                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6905                                                       path->slots[0]);
6906                                 if (key.objectid == bytenr &&
6907                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6908                                     key.offset == num_bytes)
6909                                         ret = 0;
6910                         }
6911
6912                         if (ret > 0 && skinny_metadata) {
6913                                 skinny_metadata = false;
6914                                 key.objectid = bytenr;
6915                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6916                                 key.offset = num_bytes;
6917                                 btrfs_release_path(path);
6918                                 ret = btrfs_search_slot(trans, extent_root,
6919                                                         &key, path, -1, 1);
6920                         }
6921
6922                         if (ret) {
6923                                 btrfs_err(info,
6924                                           "umm, got %d back from search, was looking for %llu",
6925                                           ret, bytenr);
6926                                 if (ret > 0)
6927                                         btrfs_print_leaf(info, path->nodes[0]);
6928                         }
6929                         if (ret < 0) {
6930                                 btrfs_abort_transaction(trans, ret);
6931                                 goto out;
6932                         }
6933                         extent_slot = path->slots[0];
6934                 }
6935         } else if (WARN_ON(ret == -ENOENT)) {
6936                 btrfs_print_leaf(info, path->nodes[0]);
6937                 btrfs_err(info,
6938                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6939                         bytenr, parent, root_objectid, owner_objectid,
6940                         owner_offset);
6941                 btrfs_abort_transaction(trans, ret);
6942                 goto out;
6943         } else {
6944                 btrfs_abort_transaction(trans, ret);
6945                 goto out;
6946         }
6947
6948         leaf = path->nodes[0];
6949         item_size = btrfs_item_size_nr(leaf, extent_slot);
6950 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6951         if (item_size < sizeof(*ei)) {
6952                 BUG_ON(found_extent || extent_slot != path->slots[0]);
6953                 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6954                                              0);
6955                 if (ret < 0) {
6956                         btrfs_abort_transaction(trans, ret);
6957                         goto out;
6958                 }
6959
6960                 btrfs_release_path(path);
6961                 path->leave_spinning = 1;
6962
6963                 key.objectid = bytenr;
6964                 key.type = BTRFS_EXTENT_ITEM_KEY;
6965                 key.offset = num_bytes;
6966
6967                 ret = btrfs_search_slot(trans, extent_root, &key, path,
6968                                         -1, 1);
6969                 if (ret) {
6970                         btrfs_err(info,
6971                                   "umm, got %d back from search, was looking for %llu",
6972                                 ret, bytenr);
6973                         btrfs_print_leaf(info, path->nodes[0]);
6974                 }
6975                 if (ret < 0) {
6976                         btrfs_abort_transaction(trans, ret);
6977                         goto out;
6978                 }
6979
6980                 extent_slot = path->slots[0];
6981                 leaf = path->nodes[0];
6982                 item_size = btrfs_item_size_nr(leaf, extent_slot);
6983         }
6984 #endif
6985         BUG_ON(item_size < sizeof(*ei));
6986         ei = btrfs_item_ptr(leaf, extent_slot,
6987                             struct btrfs_extent_item);
6988         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6989             key.type == BTRFS_EXTENT_ITEM_KEY) {
6990                 struct btrfs_tree_block_info *bi;
6991                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6992                 bi = (struct btrfs_tree_block_info *)(ei + 1);
6993                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6994         }
6995
6996         refs = btrfs_extent_refs(leaf, ei);
6997         if (refs < refs_to_drop) {
6998                 btrfs_err(info,
6999                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7000                           refs_to_drop, refs, bytenr);
7001                 ret = -EINVAL;
7002                 btrfs_abort_transaction(trans, ret);
7003                 goto out;
7004         }
7005         refs -= refs_to_drop;
7006
7007         if (refs > 0) {
7008                 if (extent_op)
7009                         __run_delayed_extent_op(extent_op, leaf, ei);
7010                 /*
7011                  * In the case of inline back ref, reference count will
7012                  * be updated by remove_extent_backref
7013                  */
7014                 if (iref) {
7015                         BUG_ON(!found_extent);
7016                 } else {
7017                         btrfs_set_extent_refs(leaf, ei, refs);
7018                         btrfs_mark_buffer_dirty(leaf);
7019                 }
7020                 if (found_extent) {
7021                         ret = remove_extent_backref(trans, info, path,
7022                                                     iref, refs_to_drop,
7023                                                     is_data, &last_ref);
7024                         if (ret) {
7025                                 btrfs_abort_transaction(trans, ret);
7026                                 goto out;
7027                         }
7028                 }
7029                 add_pinned_bytes(info, -num_bytes, owner_objectid,
7030                                  root_objectid);
7031         } else {
7032                 if (found_extent) {
7033                         BUG_ON(is_data && refs_to_drop !=
7034                                extent_data_ref_count(path, iref));
7035                         if (iref) {
7036                                 BUG_ON(path->slots[0] != extent_slot);
7037                         } else {
7038                                 BUG_ON(path->slots[0] != extent_slot + 1);
7039                                 path->slots[0] = extent_slot;
7040                                 num_to_del = 2;
7041                         }
7042                 }
7043
7044                 last_ref = 1;
7045                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7046                                       num_to_del);
7047                 if (ret) {
7048                         btrfs_abort_transaction(trans, ret);
7049                         goto out;
7050                 }
7051                 btrfs_release_path(path);
7052
7053                 if (is_data) {
7054                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7055                         if (ret) {
7056                                 btrfs_abort_transaction(trans, ret);
7057                                 goto out;
7058                         }
7059                 }
7060
7061                 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7062                 if (ret) {
7063                         btrfs_abort_transaction(trans, ret);
7064                         goto out;
7065                 }
7066
7067                 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7068                 if (ret) {
7069                         btrfs_abort_transaction(trans, ret);
7070                         goto out;
7071                 }
7072         }
7073         btrfs_release_path(path);
7074
7075 out:
7076         btrfs_free_path(path);
7077         return ret;
7078 }
7079
7080 /*
7081  * when we free an block, it is possible (and likely) that we free the last
7082  * delayed ref for that extent as well.  This searches the delayed ref tree for
7083  * a given extent, and if there are no other delayed refs to be processed, it
7084  * removes it from the tree.
7085  */
7086 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7087                                       u64 bytenr)
7088 {
7089         struct btrfs_delayed_ref_head *head;
7090         struct btrfs_delayed_ref_root *delayed_refs;
7091         int ret = 0;
7092
7093         delayed_refs = &trans->transaction->delayed_refs;
7094         spin_lock(&delayed_refs->lock);
7095         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7096         if (!head)
7097                 goto out_delayed_unlock;
7098
7099         spin_lock(&head->lock);
7100         if (!list_empty(&head->ref_list))
7101                 goto out;
7102
7103         if (head->extent_op) {
7104                 if (!head->must_insert_reserved)
7105                         goto out;
7106                 btrfs_free_delayed_extent_op(head->extent_op);
7107                 head->extent_op = NULL;
7108         }
7109
7110         /*
7111          * waiting for the lock here would deadlock.  If someone else has it
7112          * locked they are already in the process of dropping it anyway
7113          */
7114         if (!mutex_trylock(&head->mutex))
7115                 goto out;
7116
7117         /*
7118          * at this point we have a head with no other entries.  Go
7119          * ahead and process it.
7120          */
7121         head->node.in_tree = 0;
7122         rb_erase(&head->href_node, &delayed_refs->href_root);
7123
7124         atomic_dec(&delayed_refs->num_entries);
7125
7126         /*
7127          * we don't take a ref on the node because we're removing it from the
7128          * tree, so we just steal the ref the tree was holding.
7129          */
7130         delayed_refs->num_heads--;
7131         if (head->processing == 0)
7132                 delayed_refs->num_heads_ready--;
7133         head->processing = 0;
7134         spin_unlock(&head->lock);
7135         spin_unlock(&delayed_refs->lock);
7136
7137         BUG_ON(head->extent_op);
7138         if (head->must_insert_reserved)
7139                 ret = 1;
7140
7141         mutex_unlock(&head->mutex);
7142         btrfs_put_delayed_ref(&head->node);
7143         return ret;
7144 out:
7145         spin_unlock(&head->lock);
7146
7147 out_delayed_unlock:
7148         spin_unlock(&delayed_refs->lock);
7149         return 0;
7150 }
7151
7152 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7153                            struct btrfs_root *root,
7154                            struct extent_buffer *buf,
7155                            u64 parent, int last_ref)
7156 {
7157         struct btrfs_fs_info *fs_info = root->fs_info;
7158         int pin = 1;
7159         int ret;
7160
7161         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7162                 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7163                                                  buf->start, buf->len,
7164                                                  parent,
7165                                                  root->root_key.objectid,
7166                                                  btrfs_header_level(buf),
7167                                                  BTRFS_DROP_DELAYED_REF, NULL);
7168                 BUG_ON(ret); /* -ENOMEM */
7169         }
7170
7171         if (!last_ref)
7172                 return;
7173
7174         if (btrfs_header_generation(buf) == trans->transid) {
7175                 struct btrfs_block_group_cache *cache;
7176
7177                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7178                         ret = check_ref_cleanup(trans, buf->start);
7179                         if (!ret)
7180                                 goto out;
7181                 }
7182
7183                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7184
7185                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7186                         pin_down_extent(fs_info, cache, buf->start,
7187                                         buf->len, 1);
7188                         btrfs_put_block_group(cache);
7189                         goto out;
7190                 }
7191
7192                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7193
7194                 btrfs_add_free_space(cache, buf->start, buf->len);
7195                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7196                 btrfs_put_block_group(cache);
7197                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7198                 pin = 0;
7199         }
7200 out:
7201         if (pin)
7202                 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7203                                  root->root_key.objectid);
7204
7205         /*
7206          * Deleting the buffer, clear the corrupt flag since it doesn't matter
7207          * anymore.
7208          */
7209         clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7210 }
7211
7212 /* Can return -ENOMEM */
7213 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7214                       struct btrfs_fs_info *fs_info,
7215                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7216                       u64 owner, u64 offset)
7217 {
7218         int ret;
7219
7220         if (btrfs_is_testing(fs_info))
7221                 return 0;
7222
7223         add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7224
7225         /*
7226          * tree log blocks never actually go into the extent allocation
7227          * tree, just update pinning info and exit early.
7228          */
7229         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7230                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7231                 /* unlocks the pinned mutex */
7232                 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7233                 ret = 0;
7234         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7235                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7236                                         num_bytes,
7237                                         parent, root_objectid, (int)owner,
7238                                         BTRFS_DROP_DELAYED_REF, NULL);
7239         } else {
7240                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7241                                                 num_bytes,
7242                                                 parent, root_objectid, owner,
7243                                                 offset, 0,
7244                                                 BTRFS_DROP_DELAYED_REF);
7245         }
7246         return ret;
7247 }
7248
7249 /*
7250  * when we wait for progress in the block group caching, its because
7251  * our allocation attempt failed at least once.  So, we must sleep
7252  * and let some progress happen before we try again.
7253  *
7254  * This function will sleep at least once waiting for new free space to
7255  * show up, and then it will check the block group free space numbers
7256  * for our min num_bytes.  Another option is to have it go ahead
7257  * and look in the rbtree for a free extent of a given size, but this
7258  * is a good start.
7259  *
7260  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7261  * any of the information in this block group.
7262  */
7263 static noinline void
7264 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7265                                 u64 num_bytes)
7266 {
7267         struct btrfs_caching_control *caching_ctl;
7268
7269         caching_ctl = get_caching_control(cache);
7270         if (!caching_ctl)
7271                 return;
7272
7273         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7274                    (cache->free_space_ctl->free_space >= num_bytes));
7275
7276         put_caching_control(caching_ctl);
7277 }
7278
7279 static noinline int
7280 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7281 {
7282         struct btrfs_caching_control *caching_ctl;
7283         int ret = 0;
7284
7285         caching_ctl = get_caching_control(cache);
7286         if (!caching_ctl)
7287                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7288
7289         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7290         if (cache->cached == BTRFS_CACHE_ERROR)
7291                 ret = -EIO;
7292         put_caching_control(caching_ctl);
7293         return ret;
7294 }
7295
7296 int __get_raid_index(u64 flags)
7297 {
7298         if (flags & BTRFS_BLOCK_GROUP_RAID10)
7299                 return BTRFS_RAID_RAID10;
7300         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7301                 return BTRFS_RAID_RAID1;
7302         else if (flags & BTRFS_BLOCK_GROUP_DUP)
7303                 return BTRFS_RAID_DUP;
7304         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7305                 return BTRFS_RAID_RAID0;
7306         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7307                 return BTRFS_RAID_RAID5;
7308         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7309                 return BTRFS_RAID_RAID6;
7310
7311         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7312 }
7313
7314 int get_block_group_index(struct btrfs_block_group_cache *cache)
7315 {
7316         return __get_raid_index(cache->flags);
7317 }
7318
7319 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7320         [BTRFS_RAID_RAID10]     = "raid10",
7321         [BTRFS_RAID_RAID1]      = "raid1",
7322         [BTRFS_RAID_DUP]        = "dup",
7323         [BTRFS_RAID_RAID0]      = "raid0",
7324         [BTRFS_RAID_SINGLE]     = "single",
7325         [BTRFS_RAID_RAID5]      = "raid5",
7326         [BTRFS_RAID_RAID6]      = "raid6",
7327 };
7328
7329 static const char *get_raid_name(enum btrfs_raid_types type)
7330 {
7331         if (type >= BTRFS_NR_RAID_TYPES)
7332                 return NULL;
7333
7334         return btrfs_raid_type_names[type];
7335 }
7336
7337 enum btrfs_loop_type {
7338         LOOP_CACHING_NOWAIT = 0,
7339         LOOP_CACHING_WAIT = 1,
7340         LOOP_ALLOC_CHUNK = 2,
7341         LOOP_NO_EMPTY_SIZE = 3,
7342 };
7343
7344 static inline void
7345 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7346                        int delalloc)
7347 {
7348         if (delalloc)
7349                 down_read(&cache->data_rwsem);
7350 }
7351
7352 static inline void
7353 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7354                        int delalloc)
7355 {
7356         btrfs_get_block_group(cache);
7357         if (delalloc)
7358                 down_read(&cache->data_rwsem);
7359 }
7360
7361 static struct btrfs_block_group_cache *
7362 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7363                    struct btrfs_free_cluster *cluster,
7364                    int delalloc)
7365 {
7366         struct btrfs_block_group_cache *used_bg = NULL;
7367
7368         spin_lock(&cluster->refill_lock);
7369         while (1) {
7370                 used_bg = cluster->block_group;
7371                 if (!used_bg)
7372                         return NULL;
7373
7374                 if (used_bg == block_group)
7375                         return used_bg;
7376
7377                 btrfs_get_block_group(used_bg);
7378
7379                 if (!delalloc)
7380                         return used_bg;
7381
7382                 if (down_read_trylock(&used_bg->data_rwsem))
7383                         return used_bg;
7384
7385                 spin_unlock(&cluster->refill_lock);
7386
7387                 /* We should only have one-level nested. */
7388                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7389
7390                 spin_lock(&cluster->refill_lock);
7391                 if (used_bg == cluster->block_group)
7392                         return used_bg;
7393
7394                 up_read(&used_bg->data_rwsem);
7395                 btrfs_put_block_group(used_bg);
7396         }
7397 }
7398
7399 static inline void
7400 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7401                          int delalloc)
7402 {
7403         if (delalloc)
7404                 up_read(&cache->data_rwsem);
7405         btrfs_put_block_group(cache);
7406 }
7407
7408 /*
7409  * walks the btree of allocated extents and find a hole of a given size.
7410  * The key ins is changed to record the hole:
7411  * ins->objectid == start position
7412  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7413  * ins->offset == the size of the hole.
7414  * Any available blocks before search_start are skipped.
7415  *
7416  * If there is no suitable free space, we will record the max size of
7417  * the free space extent currently.
7418  */
7419 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7420                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7421                                 u64 hint_byte, struct btrfs_key *ins,
7422                                 u64 flags, int delalloc)
7423 {
7424         int ret = 0;
7425         struct btrfs_root *root = fs_info->extent_root;
7426         struct btrfs_free_cluster *last_ptr = NULL;
7427         struct btrfs_block_group_cache *block_group = NULL;
7428         u64 search_start = 0;
7429         u64 max_extent_size = 0;
7430         u64 empty_cluster = 0;
7431         struct btrfs_space_info *space_info;
7432         int loop = 0;
7433         int index = __get_raid_index(flags);
7434         bool failed_cluster_refill = false;
7435         bool failed_alloc = false;
7436         bool use_cluster = true;
7437         bool have_caching_bg = false;
7438         bool orig_have_caching_bg = false;
7439         bool full_search = false;
7440
7441         WARN_ON(num_bytes < fs_info->sectorsize);
7442         ins->type = BTRFS_EXTENT_ITEM_KEY;
7443         ins->objectid = 0;
7444         ins->offset = 0;
7445
7446         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7447
7448         space_info = __find_space_info(fs_info, flags);
7449         if (!space_info) {
7450                 btrfs_err(fs_info, "No space info for %llu", flags);
7451                 return -ENOSPC;
7452         }
7453
7454         /*
7455          * If our free space is heavily fragmented we may not be able to make
7456          * big contiguous allocations, so instead of doing the expensive search
7457          * for free space, simply return ENOSPC with our max_extent_size so we
7458          * can go ahead and search for a more manageable chunk.
7459          *
7460          * If our max_extent_size is large enough for our allocation simply
7461          * disable clustering since we will likely not be able to find enough
7462          * space to create a cluster and induce latency trying.
7463          */
7464         if (unlikely(space_info->max_extent_size)) {
7465                 spin_lock(&space_info->lock);
7466                 if (space_info->max_extent_size &&
7467                     num_bytes > space_info->max_extent_size) {
7468                         ins->offset = space_info->max_extent_size;
7469                         spin_unlock(&space_info->lock);
7470                         return -ENOSPC;
7471                 } else if (space_info->max_extent_size) {
7472                         use_cluster = false;
7473                 }
7474                 spin_unlock(&space_info->lock);
7475         }
7476
7477         last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7478         if (last_ptr) {
7479                 spin_lock(&last_ptr->lock);
7480                 if (last_ptr->block_group)
7481                         hint_byte = last_ptr->window_start;
7482                 if (last_ptr->fragmented) {
7483                         /*
7484                          * We still set window_start so we can keep track of the
7485                          * last place we found an allocation to try and save
7486                          * some time.
7487                          */
7488                         hint_byte = last_ptr->window_start;
7489                         use_cluster = false;
7490                 }
7491                 spin_unlock(&last_ptr->lock);
7492         }
7493
7494         search_start = max(search_start, first_logical_byte(fs_info, 0));
7495         search_start = max(search_start, hint_byte);
7496         if (search_start == hint_byte) {
7497                 block_group = btrfs_lookup_block_group(fs_info, search_start);
7498                 /*
7499                  * we don't want to use the block group if it doesn't match our
7500                  * allocation bits, or if its not cached.
7501                  *
7502                  * However if we are re-searching with an ideal block group
7503                  * picked out then we don't care that the block group is cached.
7504                  */
7505                 if (block_group && block_group_bits(block_group, flags) &&
7506                     block_group->cached != BTRFS_CACHE_NO) {
7507                         down_read(&space_info->groups_sem);
7508                         if (list_empty(&block_group->list) ||
7509                             block_group->ro) {
7510                                 /*
7511                                  * someone is removing this block group,
7512                                  * we can't jump into the have_block_group
7513                                  * target because our list pointers are not
7514                                  * valid
7515                                  */
7516                                 btrfs_put_block_group(block_group);
7517                                 up_read(&space_info->groups_sem);
7518                         } else {
7519                                 index = get_block_group_index(block_group);
7520                                 btrfs_lock_block_group(block_group, delalloc);
7521                                 goto have_block_group;
7522                         }
7523                 } else if (block_group) {
7524                         btrfs_put_block_group(block_group);
7525                 }
7526         }
7527 search:
7528         have_caching_bg = false;
7529         if (index == 0 || index == __get_raid_index(flags))
7530                 full_search = true;
7531         down_read(&space_info->groups_sem);
7532         list_for_each_entry(block_group, &space_info->block_groups[index],
7533                             list) {
7534                 u64 offset;
7535                 int cached;
7536
7537                 btrfs_grab_block_group(block_group, delalloc);
7538                 search_start = block_group->key.objectid;
7539
7540                 /*
7541                  * this can happen if we end up cycling through all the
7542                  * raid types, but we want to make sure we only allocate
7543                  * for the proper type.
7544                  */
7545                 if (!block_group_bits(block_group, flags)) {
7546                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7547                                 BTRFS_BLOCK_GROUP_RAID1 |
7548                                 BTRFS_BLOCK_GROUP_RAID5 |
7549                                 BTRFS_BLOCK_GROUP_RAID6 |
7550                                 BTRFS_BLOCK_GROUP_RAID10;
7551
7552                         /*
7553                          * if they asked for extra copies and this block group
7554                          * doesn't provide them, bail.  This does allow us to
7555                          * fill raid0 from raid1.
7556                          */
7557                         if ((flags & extra) && !(block_group->flags & extra))
7558                                 goto loop;
7559                 }
7560
7561 have_block_group:
7562                 cached = block_group_cache_done(block_group);
7563                 if (unlikely(!cached)) {
7564                         have_caching_bg = true;
7565                         ret = cache_block_group(block_group, 0);
7566                         BUG_ON(ret < 0);
7567                         ret = 0;
7568                 }
7569
7570                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7571                         goto loop;
7572                 if (unlikely(block_group->ro))
7573                         goto loop;
7574
7575                 /*
7576                  * Ok we want to try and use the cluster allocator, so
7577                  * lets look there
7578                  */
7579                 if (last_ptr && use_cluster) {
7580                         struct btrfs_block_group_cache *used_block_group;
7581                         unsigned long aligned_cluster;
7582                         /*
7583                          * the refill lock keeps out other
7584                          * people trying to start a new cluster
7585                          */
7586                         used_block_group = btrfs_lock_cluster(block_group,
7587                                                               last_ptr,
7588                                                               delalloc);
7589                         if (!used_block_group)
7590                                 goto refill_cluster;
7591
7592                         if (used_block_group != block_group &&
7593                             (used_block_group->ro ||
7594                              !block_group_bits(used_block_group, flags)))
7595                                 goto release_cluster;
7596
7597                         offset = btrfs_alloc_from_cluster(used_block_group,
7598                                                 last_ptr,
7599                                                 num_bytes,
7600                                                 used_block_group->key.objectid,
7601                                                 &max_extent_size);
7602                         if (offset) {
7603                                 /* we have a block, we're done */
7604                                 spin_unlock(&last_ptr->refill_lock);
7605                                 trace_btrfs_reserve_extent_cluster(fs_info,
7606                                                 used_block_group,
7607                                                 search_start, num_bytes);
7608                                 if (used_block_group != block_group) {
7609                                         btrfs_release_block_group(block_group,
7610                                                                   delalloc);
7611                                         block_group = used_block_group;
7612                                 }
7613                                 goto checks;
7614                         }
7615
7616                         WARN_ON(last_ptr->block_group != used_block_group);
7617 release_cluster:
7618                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7619                          * set up a new clusters, so lets just skip it
7620                          * and let the allocator find whatever block
7621                          * it can find.  If we reach this point, we
7622                          * will have tried the cluster allocator
7623                          * plenty of times and not have found
7624                          * anything, so we are likely way too
7625                          * fragmented for the clustering stuff to find
7626                          * anything.
7627                          *
7628                          * However, if the cluster is taken from the
7629                          * current block group, release the cluster
7630                          * first, so that we stand a better chance of
7631                          * succeeding in the unclustered
7632                          * allocation.  */
7633                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7634                             used_block_group != block_group) {
7635                                 spin_unlock(&last_ptr->refill_lock);
7636                                 btrfs_release_block_group(used_block_group,
7637                                                           delalloc);
7638                                 goto unclustered_alloc;
7639                         }
7640
7641                         /*
7642                          * this cluster didn't work out, free it and
7643                          * start over
7644                          */
7645                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7646
7647                         if (used_block_group != block_group)
7648                                 btrfs_release_block_group(used_block_group,
7649                                                           delalloc);
7650 refill_cluster:
7651                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7652                                 spin_unlock(&last_ptr->refill_lock);
7653                                 goto unclustered_alloc;
7654                         }
7655
7656                         aligned_cluster = max_t(unsigned long,
7657                                                 empty_cluster + empty_size,
7658                                               block_group->full_stripe_len);
7659
7660                         /* allocate a cluster in this block group */
7661                         ret = btrfs_find_space_cluster(fs_info, block_group,
7662                                                        last_ptr, search_start,
7663                                                        num_bytes,
7664                                                        aligned_cluster);
7665                         if (ret == 0) {
7666                                 /*
7667                                  * now pull our allocation out of this
7668                                  * cluster
7669                                  */
7670                                 offset = btrfs_alloc_from_cluster(block_group,
7671                                                         last_ptr,
7672                                                         num_bytes,
7673                                                         search_start,
7674                                                         &max_extent_size);
7675                                 if (offset) {
7676                                         /* we found one, proceed */
7677                                         spin_unlock(&last_ptr->refill_lock);
7678                                         trace_btrfs_reserve_extent_cluster(fs_info,
7679                                                 block_group, search_start,
7680                                                 num_bytes);
7681                                         goto checks;
7682                                 }
7683                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7684                                    && !failed_cluster_refill) {
7685                                 spin_unlock(&last_ptr->refill_lock);
7686
7687                                 failed_cluster_refill = true;
7688                                 wait_block_group_cache_progress(block_group,
7689                                        num_bytes + empty_cluster + empty_size);
7690                                 goto have_block_group;
7691                         }
7692
7693                         /*
7694                          * at this point we either didn't find a cluster
7695                          * or we weren't able to allocate a block from our
7696                          * cluster.  Free the cluster we've been trying
7697                          * to use, and go to the next block group
7698                          */
7699                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7700                         spin_unlock(&last_ptr->refill_lock);
7701                         goto loop;
7702                 }
7703
7704 unclustered_alloc:
7705                 /*
7706                  * We are doing an unclustered alloc, set the fragmented flag so
7707                  * we don't bother trying to setup a cluster again until we get
7708                  * more space.
7709                  */
7710                 if (unlikely(last_ptr)) {
7711                         spin_lock(&last_ptr->lock);
7712                         last_ptr->fragmented = 1;
7713                         spin_unlock(&last_ptr->lock);
7714                 }
7715                 if (cached) {
7716                         struct btrfs_free_space_ctl *ctl =
7717                                 block_group->free_space_ctl;
7718
7719                         spin_lock(&ctl->tree_lock);
7720                         if (ctl->free_space <
7721                             num_bytes + empty_cluster + empty_size) {
7722                                 if (ctl->free_space > max_extent_size)
7723                                         max_extent_size = ctl->free_space;
7724                                 spin_unlock(&ctl->tree_lock);
7725                                 goto loop;
7726                         }
7727                         spin_unlock(&ctl->tree_lock);
7728                 }
7729
7730                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7731                                                     num_bytes, empty_size,
7732                                                     &max_extent_size);
7733                 /*
7734                  * If we didn't find a chunk, and we haven't failed on this
7735                  * block group before, and this block group is in the middle of
7736                  * caching and we are ok with waiting, then go ahead and wait
7737                  * for progress to be made, and set failed_alloc to true.
7738                  *
7739                  * If failed_alloc is true then we've already waited on this
7740                  * block group once and should move on to the next block group.
7741                  */
7742                 if (!offset && !failed_alloc && !cached &&
7743                     loop > LOOP_CACHING_NOWAIT) {
7744                         wait_block_group_cache_progress(block_group,
7745                                                 num_bytes + empty_size);
7746                         failed_alloc = true;
7747                         goto have_block_group;
7748                 } else if (!offset) {
7749                         goto loop;
7750                 }
7751 checks:
7752                 search_start = ALIGN(offset, fs_info->stripesize);
7753
7754                 /* move on to the next group */
7755                 if (search_start + num_bytes >
7756                     block_group->key.objectid + block_group->key.offset) {
7757                         btrfs_add_free_space(block_group, offset, num_bytes);
7758                         goto loop;
7759                 }
7760
7761                 if (offset < search_start)
7762                         btrfs_add_free_space(block_group, offset,
7763                                              search_start - offset);
7764                 BUG_ON(offset > search_start);
7765
7766                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7767                                 num_bytes, delalloc);
7768                 if (ret == -EAGAIN) {
7769                         btrfs_add_free_space(block_group, offset, num_bytes);
7770                         goto loop;
7771                 }
7772                 btrfs_inc_block_group_reservations(block_group);
7773
7774                 /* we are all good, lets return */
7775                 ins->objectid = search_start;
7776                 ins->offset = num_bytes;
7777
7778                 trace_btrfs_reserve_extent(fs_info, block_group,
7779                                            search_start, num_bytes);
7780                 btrfs_release_block_group(block_group, delalloc);
7781                 break;
7782 loop:
7783                 failed_cluster_refill = false;
7784                 failed_alloc = false;
7785                 BUG_ON(index != get_block_group_index(block_group));
7786                 btrfs_release_block_group(block_group, delalloc);
7787         }
7788         up_read(&space_info->groups_sem);
7789
7790         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7791                 && !orig_have_caching_bg)
7792                 orig_have_caching_bg = true;
7793
7794         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7795                 goto search;
7796
7797         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7798                 goto search;
7799
7800         /*
7801          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7802          *                      caching kthreads as we move along
7803          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7804          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7805          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7806          *                      again
7807          */
7808         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7809                 index = 0;
7810                 if (loop == LOOP_CACHING_NOWAIT) {
7811                         /*
7812                          * We want to skip the LOOP_CACHING_WAIT step if we
7813                          * don't have any uncached bgs and we've already done a
7814                          * full search through.
7815                          */
7816                         if (orig_have_caching_bg || !full_search)
7817                                 loop = LOOP_CACHING_WAIT;
7818                         else
7819                                 loop = LOOP_ALLOC_CHUNK;
7820                 } else {
7821                         loop++;
7822                 }
7823
7824                 if (loop == LOOP_ALLOC_CHUNK) {
7825                         struct btrfs_trans_handle *trans;
7826                         int exist = 0;
7827
7828                         trans = current->journal_info;
7829                         if (trans)
7830                                 exist = 1;
7831                         else
7832                                 trans = btrfs_join_transaction(root);
7833
7834                         if (IS_ERR(trans)) {
7835                                 ret = PTR_ERR(trans);
7836                                 goto out;
7837                         }
7838
7839                         ret = do_chunk_alloc(trans, fs_info, flags,
7840                                              CHUNK_ALLOC_FORCE);
7841
7842                         /*
7843                          * If we can't allocate a new chunk we've already looped
7844                          * through at least once, move on to the NO_EMPTY_SIZE
7845                          * case.
7846                          */
7847                         if (ret == -ENOSPC)
7848                                 loop = LOOP_NO_EMPTY_SIZE;
7849
7850                         /*
7851                          * Do not bail out on ENOSPC since we
7852                          * can do more things.
7853                          */
7854                         if (ret < 0 && ret != -ENOSPC)
7855                                 btrfs_abort_transaction(trans, ret);
7856                         else
7857                                 ret = 0;
7858                         if (!exist)
7859                                 btrfs_end_transaction(trans);
7860                         if (ret)
7861                                 goto out;
7862                 }
7863
7864                 if (loop == LOOP_NO_EMPTY_SIZE) {
7865                         /*
7866                          * Don't loop again if we already have no empty_size and
7867                          * no empty_cluster.
7868                          */
7869                         if (empty_size == 0 &&
7870                             empty_cluster == 0) {
7871                                 ret = -ENOSPC;
7872                                 goto out;
7873                         }
7874                         empty_size = 0;
7875                         empty_cluster = 0;
7876                 }
7877
7878                 goto search;
7879         } else if (!ins->objectid) {
7880                 ret = -ENOSPC;
7881         } else if (ins->objectid) {
7882                 if (!use_cluster && last_ptr) {
7883                         spin_lock(&last_ptr->lock);
7884                         last_ptr->window_start = ins->objectid;
7885                         spin_unlock(&last_ptr->lock);
7886                 }
7887                 ret = 0;
7888         }
7889 out:
7890         if (ret == -ENOSPC) {
7891                 spin_lock(&space_info->lock);
7892                 space_info->max_extent_size = max_extent_size;
7893                 spin_unlock(&space_info->lock);
7894                 ins->offset = max_extent_size;
7895         }
7896         return ret;
7897 }
7898
7899 static void dump_space_info(struct btrfs_fs_info *fs_info,
7900                             struct btrfs_space_info *info, u64 bytes,
7901                             int dump_block_groups)
7902 {
7903         struct btrfs_block_group_cache *cache;
7904         int index = 0;
7905
7906         spin_lock(&info->lock);
7907         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7908                    info->flags,
7909                    info->total_bytes - btrfs_space_info_used(info, true),
7910                    info->full ? "" : "not ");
7911         btrfs_info(fs_info,
7912                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7913                 info->total_bytes, info->bytes_used, info->bytes_pinned,
7914                 info->bytes_reserved, info->bytes_may_use,
7915                 info->bytes_readonly);
7916         spin_unlock(&info->lock);
7917
7918         if (!dump_block_groups)
7919                 return;
7920
7921         down_read(&info->groups_sem);
7922 again:
7923         list_for_each_entry(cache, &info->block_groups[index], list) {
7924                 spin_lock(&cache->lock);
7925                 btrfs_info(fs_info,
7926                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7927                         cache->key.objectid, cache->key.offset,
7928                         btrfs_block_group_used(&cache->item), cache->pinned,
7929                         cache->reserved, cache->ro ? "[readonly]" : "");
7930                 btrfs_dump_free_space(cache, bytes);
7931                 spin_unlock(&cache->lock);
7932         }
7933         if (++index < BTRFS_NR_RAID_TYPES)
7934                 goto again;
7935         up_read(&info->groups_sem);
7936 }
7937
7938 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7939                          u64 num_bytes, u64 min_alloc_size,
7940                          u64 empty_size, u64 hint_byte,
7941                          struct btrfs_key *ins, int is_data, int delalloc)
7942 {
7943         struct btrfs_fs_info *fs_info = root->fs_info;
7944         bool final_tried = num_bytes == min_alloc_size;
7945         u64 flags;
7946         int ret;
7947
7948         flags = btrfs_get_alloc_profile(root, is_data);
7949 again:
7950         WARN_ON(num_bytes < fs_info->sectorsize);
7951         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7952                                hint_byte, ins, flags, delalloc);
7953         if (!ret && !is_data) {
7954                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7955         } else if (ret == -ENOSPC) {
7956                 if (!final_tried && ins->offset) {
7957                         num_bytes = min(num_bytes >> 1, ins->offset);
7958                         num_bytes = round_down(num_bytes,
7959                                                fs_info->sectorsize);
7960                         num_bytes = max(num_bytes, min_alloc_size);
7961                         ram_bytes = num_bytes;
7962                         if (num_bytes == min_alloc_size)
7963                                 final_tried = true;
7964                         goto again;
7965                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7966                         struct btrfs_space_info *sinfo;
7967
7968                         sinfo = __find_space_info(fs_info, flags);
7969                         btrfs_err(fs_info,
7970                                   "allocation failed flags %llu, wanted %llu",
7971                                   flags, num_bytes);
7972                         if (sinfo)
7973                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
7974                 }
7975         }
7976
7977         return ret;
7978 }
7979
7980 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7981                                         u64 start, u64 len,
7982                                         int pin, int delalloc)
7983 {
7984         struct btrfs_block_group_cache *cache;
7985         int ret = 0;
7986
7987         cache = btrfs_lookup_block_group(fs_info, start);
7988         if (!cache) {
7989                 btrfs_err(fs_info, "Unable to find block group for %llu",
7990                           start);
7991                 return -ENOSPC;
7992         }
7993
7994         if (pin)
7995                 pin_down_extent(fs_info, cache, start, len, 1);
7996         else {
7997                 if (btrfs_test_opt(fs_info, DISCARD))
7998                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
7999                 btrfs_add_free_space(cache, start, len);
8000                 btrfs_free_reserved_bytes(cache, len, delalloc);
8001                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8002         }
8003
8004         btrfs_put_block_group(cache);
8005         return ret;
8006 }
8007
8008 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8009                                u64 start, u64 len, int delalloc)
8010 {
8011         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8012 }
8013
8014 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8015                                        u64 start, u64 len)
8016 {
8017         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8018 }
8019
8020 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8021                                       struct btrfs_fs_info *fs_info,
8022                                       u64 parent, u64 root_objectid,
8023                                       u64 flags, u64 owner, u64 offset,
8024                                       struct btrfs_key *ins, int ref_mod)
8025 {
8026         int ret;
8027         struct btrfs_extent_item *extent_item;
8028         struct btrfs_extent_inline_ref *iref;
8029         struct btrfs_path *path;
8030         struct extent_buffer *leaf;
8031         int type;
8032         u32 size;
8033
8034         if (parent > 0)
8035                 type = BTRFS_SHARED_DATA_REF_KEY;
8036         else
8037                 type = BTRFS_EXTENT_DATA_REF_KEY;
8038
8039         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8040
8041         path = btrfs_alloc_path();
8042         if (!path)
8043                 return -ENOMEM;
8044
8045         path->leave_spinning = 1;
8046         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8047                                       ins, size);
8048         if (ret) {
8049                 btrfs_free_path(path);
8050                 return ret;
8051         }
8052
8053         leaf = path->nodes[0];
8054         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8055                                      struct btrfs_extent_item);
8056         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8057         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8058         btrfs_set_extent_flags(leaf, extent_item,
8059                                flags | BTRFS_EXTENT_FLAG_DATA);
8060
8061         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8062         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8063         if (parent > 0) {
8064                 struct btrfs_shared_data_ref *ref;
8065                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8066                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8067                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8068         } else {
8069                 struct btrfs_extent_data_ref *ref;
8070                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8071                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8072                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8073                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8074                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8075         }
8076
8077         btrfs_mark_buffer_dirty(path->nodes[0]);
8078         btrfs_free_path(path);
8079
8080         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8081                                           ins->offset);
8082         if (ret)
8083                 return ret;
8084
8085         ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8086         if (ret) { /* -ENOENT, logic error */
8087                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8088                         ins->objectid, ins->offset);
8089                 BUG();
8090         }
8091         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8092         return ret;
8093 }
8094
8095 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8096                                      struct btrfs_fs_info *fs_info,
8097                                      u64 parent, u64 root_objectid,
8098                                      u64 flags, struct btrfs_disk_key *key,
8099                                      int level, struct btrfs_key *ins)
8100 {
8101         int ret;
8102         struct btrfs_extent_item *extent_item;
8103         struct btrfs_tree_block_info *block_info;
8104         struct btrfs_extent_inline_ref *iref;
8105         struct btrfs_path *path;
8106         struct extent_buffer *leaf;
8107         u32 size = sizeof(*extent_item) + sizeof(*iref);
8108         u64 num_bytes = ins->offset;
8109         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8110
8111         if (!skinny_metadata)
8112                 size += sizeof(*block_info);
8113
8114         path = btrfs_alloc_path();
8115         if (!path) {
8116                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8117                                                    fs_info->nodesize);
8118                 return -ENOMEM;
8119         }
8120
8121         path->leave_spinning = 1;
8122         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8123                                       ins, size);
8124         if (ret) {
8125                 btrfs_free_path(path);
8126                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8127                                                    fs_info->nodesize);
8128                 return ret;
8129         }
8130
8131         leaf = path->nodes[0];
8132         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8133                                      struct btrfs_extent_item);
8134         btrfs_set_extent_refs(leaf, extent_item, 1);
8135         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8136         btrfs_set_extent_flags(leaf, extent_item,
8137                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8138
8139         if (skinny_metadata) {
8140                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8141                 num_bytes = fs_info->nodesize;
8142         } else {
8143                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8144                 btrfs_set_tree_block_key(leaf, block_info, key);
8145                 btrfs_set_tree_block_level(leaf, block_info, level);
8146                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8147         }
8148
8149         if (parent > 0) {
8150                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8151                 btrfs_set_extent_inline_ref_type(leaf, iref,
8152                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8153                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8154         } else {
8155                 btrfs_set_extent_inline_ref_type(leaf, iref,
8156                                                  BTRFS_TREE_BLOCK_REF_KEY);
8157                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8158         }
8159
8160         btrfs_mark_buffer_dirty(leaf);
8161         btrfs_free_path(path);
8162
8163         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8164                                           num_bytes);
8165         if (ret)
8166                 return ret;
8167
8168         ret = update_block_group(trans, fs_info, ins->objectid,
8169                                  fs_info->nodesize, 1);
8170         if (ret) { /* -ENOENT, logic error */
8171                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8172                         ins->objectid, ins->offset);
8173                 BUG();
8174         }
8175
8176         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8177                                           fs_info->nodesize);
8178         return ret;
8179 }
8180
8181 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8182                                      u64 root_objectid, u64 owner,
8183                                      u64 offset, u64 ram_bytes,
8184                                      struct btrfs_key *ins)
8185 {
8186         struct btrfs_fs_info *fs_info = trans->fs_info;
8187         int ret;
8188
8189         BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8190
8191         ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8192                                          ins->offset, 0,
8193                                          root_objectid, owner, offset,
8194                                          ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
8195         return ret;
8196 }
8197
8198 /*
8199  * this is used by the tree logging recovery code.  It records that
8200  * an extent has been allocated and makes sure to clear the free
8201  * space cache bits as well
8202  */
8203 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8204                                    struct btrfs_fs_info *fs_info,
8205                                    u64 root_objectid, u64 owner, u64 offset,
8206                                    struct btrfs_key *ins)
8207 {
8208         int ret;
8209         struct btrfs_block_group_cache *block_group;
8210         struct btrfs_space_info *space_info;
8211
8212         /*
8213          * Mixed block groups will exclude before processing the log so we only
8214          * need to do the exclude dance if this fs isn't mixed.
8215          */
8216         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8217                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8218                                               ins->offset);
8219                 if (ret)
8220                         return ret;
8221         }
8222
8223         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8224         if (!block_group)
8225                 return -EINVAL;
8226
8227         space_info = block_group->space_info;
8228         spin_lock(&space_info->lock);
8229         spin_lock(&block_group->lock);
8230         space_info->bytes_reserved += ins->offset;
8231         block_group->reserved += ins->offset;
8232         spin_unlock(&block_group->lock);
8233         spin_unlock(&space_info->lock);
8234
8235         ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8236                                          0, owner, offset, ins, 1);
8237         btrfs_put_block_group(block_group);
8238         return ret;
8239 }
8240
8241 static struct extent_buffer *
8242 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8243                       u64 bytenr, int level)
8244 {
8245         struct btrfs_fs_info *fs_info = root->fs_info;
8246         struct extent_buffer *buf;
8247
8248         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8249         if (IS_ERR(buf))
8250                 return buf;
8251
8252         btrfs_set_header_generation(buf, trans->transid);
8253         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8254         btrfs_tree_lock(buf);
8255         clean_tree_block(fs_info, buf);
8256         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8257
8258         btrfs_set_lock_blocking(buf);
8259         set_extent_buffer_uptodate(buf);
8260
8261         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8262                 buf->log_index = root->log_transid % 2;
8263                 /*
8264                  * we allow two log transactions at a time, use different
8265                  * EXENT bit to differentiate dirty pages.
8266                  */
8267                 if (buf->log_index == 0)
8268                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8269                                         buf->start + buf->len - 1, GFP_NOFS);
8270                 else
8271                         set_extent_new(&root->dirty_log_pages, buf->start,
8272                                         buf->start + buf->len - 1);
8273         } else {
8274                 buf->log_index = -1;
8275                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8276                          buf->start + buf->len - 1, GFP_NOFS);
8277         }
8278         trans->dirty = true;
8279         /* this returns a buffer locked for blocking */
8280         return buf;
8281 }
8282
8283 static struct btrfs_block_rsv *
8284 use_block_rsv(struct btrfs_trans_handle *trans,
8285               struct btrfs_root *root, u32 blocksize)
8286 {
8287         struct btrfs_fs_info *fs_info = root->fs_info;
8288         struct btrfs_block_rsv *block_rsv;
8289         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8290         int ret;
8291         bool global_updated = false;
8292
8293         block_rsv = get_block_rsv(trans, root);
8294
8295         if (unlikely(block_rsv->size == 0))
8296                 goto try_reserve;
8297 again:
8298         ret = block_rsv_use_bytes(block_rsv, blocksize);
8299         if (!ret)
8300                 return block_rsv;
8301
8302         if (block_rsv->failfast)
8303                 return ERR_PTR(ret);
8304
8305         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8306                 global_updated = true;
8307                 update_global_block_rsv(fs_info);
8308                 goto again;
8309         }
8310
8311         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8312                 static DEFINE_RATELIMIT_STATE(_rs,
8313                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8314                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8315                 if (__ratelimit(&_rs))
8316                         WARN(1, KERN_DEBUG
8317                                 "BTRFS: block rsv returned %d\n", ret);
8318         }
8319 try_reserve:
8320         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8321                                      BTRFS_RESERVE_NO_FLUSH);
8322         if (!ret)
8323                 return block_rsv;
8324         /*
8325          * If we couldn't reserve metadata bytes try and use some from
8326          * the global reserve if its space type is the same as the global
8327          * reservation.
8328          */
8329         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8330             block_rsv->space_info == global_rsv->space_info) {
8331                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8332                 if (!ret)
8333                         return global_rsv;
8334         }
8335         return ERR_PTR(ret);
8336 }
8337
8338 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8339                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8340 {
8341         block_rsv_add_bytes(block_rsv, blocksize, 0);
8342         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8343 }
8344
8345 /*
8346  * finds a free extent and does all the dirty work required for allocation
8347  * returns the tree buffer or an ERR_PTR on error.
8348  */
8349 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8350                                              struct btrfs_root *root,
8351                                              u64 parent, u64 root_objectid,
8352                                              const struct btrfs_disk_key *key,
8353                                              int level, u64 hint,
8354                                              u64 empty_size)
8355 {
8356         struct btrfs_fs_info *fs_info = root->fs_info;
8357         struct btrfs_key ins;
8358         struct btrfs_block_rsv *block_rsv;
8359         struct extent_buffer *buf;
8360         struct btrfs_delayed_extent_op *extent_op;
8361         u64 flags = 0;
8362         int ret;
8363         u32 blocksize = fs_info->nodesize;
8364         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8365
8366 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8367         if (btrfs_is_testing(fs_info)) {
8368                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8369                                             level);
8370                 if (!IS_ERR(buf))
8371                         root->alloc_bytenr += blocksize;
8372                 return buf;
8373         }
8374 #endif
8375
8376         block_rsv = use_block_rsv(trans, root, blocksize);
8377         if (IS_ERR(block_rsv))
8378                 return ERR_CAST(block_rsv);
8379
8380         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8381                                    empty_size, hint, &ins, 0, 0);
8382         if (ret)
8383                 goto out_unuse;
8384
8385         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8386         if (IS_ERR(buf)) {
8387                 ret = PTR_ERR(buf);
8388                 goto out_free_reserved;
8389         }
8390
8391         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8392                 if (parent == 0)
8393                         parent = ins.objectid;
8394                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8395         } else
8396                 BUG_ON(parent > 0);
8397
8398         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8399                 extent_op = btrfs_alloc_delayed_extent_op();
8400                 if (!extent_op) {
8401                         ret = -ENOMEM;
8402                         goto out_free_buf;
8403                 }
8404                 if (key)
8405                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8406                 else
8407                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8408                 extent_op->flags_to_set = flags;
8409                 extent_op->update_key = skinny_metadata ? false : true;
8410                 extent_op->update_flags = true;
8411                 extent_op->is_data = false;
8412                 extent_op->level = level;
8413
8414                 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8415                                                  ins.objectid, ins.offset,
8416                                                  parent, root_objectid, level,
8417                                                  BTRFS_ADD_DELAYED_EXTENT,
8418                                                  extent_op);
8419                 if (ret)
8420                         goto out_free_delayed;
8421         }
8422         return buf;
8423
8424 out_free_delayed:
8425         btrfs_free_delayed_extent_op(extent_op);
8426 out_free_buf:
8427         free_extent_buffer(buf);
8428 out_free_reserved:
8429         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8430 out_unuse:
8431         unuse_block_rsv(fs_info, block_rsv, blocksize);
8432         return ERR_PTR(ret);
8433 }
8434
8435 struct walk_control {
8436         u64 refs[BTRFS_MAX_LEVEL];
8437         u64 flags[BTRFS_MAX_LEVEL];
8438         struct btrfs_key update_progress;
8439         int stage;
8440         int level;
8441         int shared_level;
8442         int update_ref;
8443         int keep_locks;
8444         int reada_slot;
8445         int reada_count;
8446         int for_reloc;
8447 };
8448
8449 #define DROP_REFERENCE  1
8450 #define UPDATE_BACKREF  2
8451
8452 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8453                                      struct btrfs_root *root,
8454                                      struct walk_control *wc,
8455                                      struct btrfs_path *path)
8456 {
8457         struct btrfs_fs_info *fs_info = root->fs_info;
8458         u64 bytenr;
8459         u64 generation;
8460         u64 refs;
8461         u64 flags;
8462         u32 nritems;
8463         struct btrfs_key key;
8464         struct extent_buffer *eb;
8465         int ret;
8466         int slot;
8467         int nread = 0;
8468
8469         if (path->slots[wc->level] < wc->reada_slot) {
8470                 wc->reada_count = wc->reada_count * 2 / 3;
8471                 wc->reada_count = max(wc->reada_count, 2);
8472         } else {
8473                 wc->reada_count = wc->reada_count * 3 / 2;
8474                 wc->reada_count = min_t(int, wc->reada_count,
8475                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8476         }
8477
8478         eb = path->nodes[wc->level];
8479         nritems = btrfs_header_nritems(eb);
8480
8481         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8482                 if (nread >= wc->reada_count)
8483                         break;
8484
8485                 cond_resched();
8486                 bytenr = btrfs_node_blockptr(eb, slot);
8487                 generation = btrfs_node_ptr_generation(eb, slot);
8488
8489                 if (slot == path->slots[wc->level])
8490                         goto reada;
8491
8492                 if (wc->stage == UPDATE_BACKREF &&
8493                     generation <= root->root_key.offset)
8494                         continue;
8495
8496                 /* We don't lock the tree block, it's OK to be racy here */
8497                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8498                                                wc->level - 1, 1, &refs,
8499                                                &flags);
8500                 /* We don't care about errors in readahead. */
8501                 if (ret < 0)
8502                         continue;
8503                 BUG_ON(refs == 0);
8504
8505                 if (wc->stage == DROP_REFERENCE) {
8506                         if (refs == 1)
8507                                 goto reada;
8508
8509                         if (wc->level == 1 &&
8510                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8511                                 continue;
8512                         if (!wc->update_ref ||
8513                             generation <= root->root_key.offset)
8514                                 continue;
8515                         btrfs_node_key_to_cpu(eb, &key, slot);
8516                         ret = btrfs_comp_cpu_keys(&key,
8517                                                   &wc->update_progress);
8518                         if (ret < 0)
8519                                 continue;
8520                 } else {
8521                         if (wc->level == 1 &&
8522                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8523                                 continue;
8524                 }
8525 reada:
8526                 readahead_tree_block(fs_info, bytenr);
8527                 nread++;
8528         }
8529         wc->reada_slot = slot;
8530 }
8531
8532 /*
8533  * helper to process tree block while walking down the tree.
8534  *
8535  * when wc->stage == UPDATE_BACKREF, this function updates
8536  * back refs for pointers in the block.
8537  *
8538  * NOTE: return value 1 means we should stop walking down.
8539  */
8540 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8541                                    struct btrfs_root *root,
8542                                    struct btrfs_path *path,
8543                                    struct walk_control *wc, int lookup_info)
8544 {
8545         struct btrfs_fs_info *fs_info = root->fs_info;
8546         int level = wc->level;
8547         struct extent_buffer *eb = path->nodes[level];
8548         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8549         int ret;
8550
8551         if (wc->stage == UPDATE_BACKREF &&
8552             btrfs_header_owner(eb) != root->root_key.objectid)
8553                 return 1;
8554
8555         /*
8556          * when reference count of tree block is 1, it won't increase
8557          * again. once full backref flag is set, we never clear it.
8558          */
8559         if (lookup_info &&
8560             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8561              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8562                 BUG_ON(!path->locks[level]);
8563                 ret = btrfs_lookup_extent_info(trans, fs_info,
8564                                                eb->start, level, 1,
8565                                                &wc->refs[level],
8566                                                &wc->flags[level]);
8567                 BUG_ON(ret == -ENOMEM);
8568                 if (ret)
8569                         return ret;
8570                 BUG_ON(wc->refs[level] == 0);
8571         }
8572
8573         if (wc->stage == DROP_REFERENCE) {
8574                 if (wc->refs[level] > 1)
8575                         return 1;
8576
8577                 if (path->locks[level] && !wc->keep_locks) {
8578                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8579                         path->locks[level] = 0;
8580                 }
8581                 return 0;
8582         }
8583
8584         /* wc->stage == UPDATE_BACKREF */
8585         if (!(wc->flags[level] & flag)) {
8586                 BUG_ON(!path->locks[level]);
8587                 ret = btrfs_inc_ref(trans, root, eb, 1);
8588                 BUG_ON(ret); /* -ENOMEM */
8589                 ret = btrfs_dec_ref(trans, root, eb, 0);
8590                 BUG_ON(ret); /* -ENOMEM */
8591                 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8592                                                   eb->len, flag,
8593                                                   btrfs_header_level(eb), 0);
8594                 BUG_ON(ret); /* -ENOMEM */
8595                 wc->flags[level] |= flag;
8596         }
8597
8598         /*
8599          * the block is shared by multiple trees, so it's not good to
8600          * keep the tree lock
8601          */
8602         if (path->locks[level] && level > 0) {
8603                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8604                 path->locks[level] = 0;
8605         }
8606         return 0;
8607 }
8608
8609 /*
8610  * helper to process tree block pointer.
8611  *
8612  * when wc->stage == DROP_REFERENCE, this function checks
8613  * reference count of the block pointed to. if the block
8614  * is shared and we need update back refs for the subtree
8615  * rooted at the block, this function changes wc->stage to
8616  * UPDATE_BACKREF. if the block is shared and there is no
8617  * need to update back, this function drops the reference
8618  * to the block.
8619  *
8620  * NOTE: return value 1 means we should stop walking down.
8621  */
8622 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8623                                  struct btrfs_root *root,
8624                                  struct btrfs_path *path,
8625                                  struct walk_control *wc, int *lookup_info)
8626 {
8627         struct btrfs_fs_info *fs_info = root->fs_info;
8628         u64 bytenr;
8629         u64 generation;
8630         u64 parent;
8631         u32 blocksize;
8632         struct btrfs_key key;
8633         struct extent_buffer *next;
8634         int level = wc->level;
8635         int reada = 0;
8636         int ret = 0;
8637         bool need_account = false;
8638
8639         generation = btrfs_node_ptr_generation(path->nodes[level],
8640                                                path->slots[level]);
8641         /*
8642          * if the lower level block was created before the snapshot
8643          * was created, we know there is no need to update back refs
8644          * for the subtree
8645          */
8646         if (wc->stage == UPDATE_BACKREF &&
8647             generation <= root->root_key.offset) {
8648                 *lookup_info = 1;
8649                 return 1;
8650         }
8651
8652         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8653         blocksize = fs_info->nodesize;
8654
8655         next = find_extent_buffer(fs_info, bytenr);
8656         if (!next) {
8657                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8658                 if (IS_ERR(next))
8659                         return PTR_ERR(next);
8660
8661                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8662                                                level - 1);
8663                 reada = 1;
8664         }
8665         btrfs_tree_lock(next);
8666         btrfs_set_lock_blocking(next);
8667
8668         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8669                                        &wc->refs[level - 1],
8670                                        &wc->flags[level - 1]);
8671         if (ret < 0)
8672                 goto out_unlock;
8673
8674         if (unlikely(wc->refs[level - 1] == 0)) {
8675                 btrfs_err(fs_info, "Missing references.");
8676                 ret = -EIO;
8677                 goto out_unlock;
8678         }
8679         *lookup_info = 0;
8680
8681         if (wc->stage == DROP_REFERENCE) {
8682                 if (wc->refs[level - 1] > 1) {
8683                         need_account = true;
8684                         if (level == 1 &&
8685                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8686                                 goto skip;
8687
8688                         if (!wc->update_ref ||
8689                             generation <= root->root_key.offset)
8690                                 goto skip;
8691
8692                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8693                                               path->slots[level]);
8694                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8695                         if (ret < 0)
8696                                 goto skip;
8697
8698                         wc->stage = UPDATE_BACKREF;
8699                         wc->shared_level = level - 1;
8700                 }
8701         } else {
8702                 if (level == 1 &&
8703                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8704                         goto skip;
8705         }
8706
8707         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8708                 btrfs_tree_unlock(next);
8709                 free_extent_buffer(next);
8710                 next = NULL;
8711                 *lookup_info = 1;
8712         }
8713
8714         if (!next) {
8715                 if (reada && level == 1)
8716                         reada_walk_down(trans, root, wc, path);
8717                 next = read_tree_block(fs_info, bytenr, generation);
8718                 if (IS_ERR(next)) {
8719                         return PTR_ERR(next);
8720                 } else if (!extent_buffer_uptodate(next)) {
8721                         free_extent_buffer(next);
8722                         return -EIO;
8723                 }
8724                 btrfs_tree_lock(next);
8725                 btrfs_set_lock_blocking(next);
8726         }
8727
8728         level--;
8729         ASSERT(level == btrfs_header_level(next));
8730         if (level != btrfs_header_level(next)) {
8731                 btrfs_err(root->fs_info, "mismatched level");
8732                 ret = -EIO;
8733                 goto out_unlock;
8734         }
8735         path->nodes[level] = next;
8736         path->slots[level] = 0;
8737         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8738         wc->level = level;
8739         if (wc->level == 1)
8740                 wc->reada_slot = 0;
8741         return 0;
8742 skip:
8743         wc->refs[level - 1] = 0;
8744         wc->flags[level - 1] = 0;
8745         if (wc->stage == DROP_REFERENCE) {
8746                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8747                         parent = path->nodes[level]->start;
8748                 } else {
8749                         ASSERT(root->root_key.objectid ==
8750                                btrfs_header_owner(path->nodes[level]));
8751                         if (root->root_key.objectid !=
8752                             btrfs_header_owner(path->nodes[level])) {
8753                                 btrfs_err(root->fs_info,
8754                                                 "mismatched block owner");
8755                                 ret = -EIO;
8756                                 goto out_unlock;
8757                         }
8758                         parent = 0;
8759                 }
8760
8761                 if (need_account) {
8762                         ret = btrfs_qgroup_trace_subtree(trans, root, next,
8763                                                          generation, level - 1);
8764                         if (ret) {
8765                                 btrfs_err_rl(fs_info,
8766                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8767                                              ret);
8768                         }
8769                 }
8770                 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8771                                         parent, root->root_key.objectid,
8772                                         level - 1, 0);
8773                 if (ret)
8774                         goto out_unlock;
8775         }
8776
8777         *lookup_info = 1;
8778         ret = 1;
8779
8780 out_unlock:
8781         btrfs_tree_unlock(next);
8782         free_extent_buffer(next);
8783
8784         return ret;
8785 }
8786
8787 /*
8788  * helper to process tree block while walking up the tree.
8789  *
8790  * when wc->stage == DROP_REFERENCE, this function drops
8791  * reference count on the block.
8792  *
8793  * when wc->stage == UPDATE_BACKREF, this function changes
8794  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8795  * to UPDATE_BACKREF previously while processing the block.
8796  *
8797  * NOTE: return value 1 means we should stop walking up.
8798  */
8799 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8800                                  struct btrfs_root *root,
8801                                  struct btrfs_path *path,
8802                                  struct walk_control *wc)
8803 {
8804         struct btrfs_fs_info *fs_info = root->fs_info;
8805         int ret;
8806         int level = wc->level;
8807         struct extent_buffer *eb = path->nodes[level];
8808         u64 parent = 0;
8809
8810         if (wc->stage == UPDATE_BACKREF) {
8811                 BUG_ON(wc->shared_level < level);
8812                 if (level < wc->shared_level)
8813                         goto out;
8814
8815                 ret = find_next_key(path, level + 1, &wc->update_progress);
8816                 if (ret > 0)
8817                         wc->update_ref = 0;
8818
8819                 wc->stage = DROP_REFERENCE;
8820                 wc->shared_level = -1;
8821                 path->slots[level] = 0;
8822
8823                 /*
8824                  * check reference count again if the block isn't locked.
8825                  * we should start walking down the tree again if reference
8826                  * count is one.
8827                  */
8828                 if (!path->locks[level]) {
8829                         BUG_ON(level == 0);
8830                         btrfs_tree_lock(eb);
8831                         btrfs_set_lock_blocking(eb);
8832                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8833
8834                         ret = btrfs_lookup_extent_info(trans, fs_info,
8835                                                        eb->start, level, 1,
8836                                                        &wc->refs[level],
8837                                                        &wc->flags[level]);
8838                         if (ret < 0) {
8839                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8840                                 path->locks[level] = 0;
8841                                 return ret;
8842                         }
8843                         BUG_ON(wc->refs[level] == 0);
8844                         if (wc->refs[level] == 1) {
8845                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8846                                 path->locks[level] = 0;
8847                                 return 1;
8848                         }
8849                 }
8850         }
8851
8852         /* wc->stage == DROP_REFERENCE */
8853         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8854
8855         if (wc->refs[level] == 1) {
8856                 if (level == 0) {
8857                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8858                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8859                         else
8860                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8861                         BUG_ON(ret); /* -ENOMEM */
8862                         ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8863                         if (ret) {
8864                                 btrfs_err_rl(fs_info,
8865                                              "error %d accounting leaf items. Quota is out of sync, rescan required.",
8866                                              ret);
8867                         }
8868                 }
8869                 /* make block locked assertion in clean_tree_block happy */
8870                 if (!path->locks[level] &&
8871                     btrfs_header_generation(eb) == trans->transid) {
8872                         btrfs_tree_lock(eb);
8873                         btrfs_set_lock_blocking(eb);
8874                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8875                 }
8876                 clean_tree_block(fs_info, eb);
8877         }
8878
8879         if (eb == root->node) {
8880                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8881                         parent = eb->start;
8882                 else
8883                         BUG_ON(root->root_key.objectid !=
8884                                btrfs_header_owner(eb));
8885         } else {
8886                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8887                         parent = path->nodes[level + 1]->start;
8888                 else
8889                         BUG_ON(root->root_key.objectid !=
8890                                btrfs_header_owner(path->nodes[level + 1]));
8891         }
8892
8893         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8894 out:
8895         wc->refs[level] = 0;
8896         wc->flags[level] = 0;
8897         return 0;
8898 }
8899
8900 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8901                                    struct btrfs_root *root,
8902                                    struct btrfs_path *path,
8903                                    struct walk_control *wc)
8904 {
8905         int level = wc->level;
8906         int lookup_info = 1;
8907         int ret;
8908
8909         while (level >= 0) {
8910                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8911                 if (ret > 0)
8912                         break;
8913
8914                 if (level == 0)
8915                         break;
8916
8917                 if (path->slots[level] >=
8918                     btrfs_header_nritems(path->nodes[level]))
8919                         break;
8920
8921                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8922                 if (ret > 0) {
8923                         path->slots[level]++;
8924                         continue;
8925                 } else if (ret < 0)
8926                         return ret;
8927                 level = wc->level;
8928         }
8929         return 0;
8930 }
8931
8932 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8933                                  struct btrfs_root *root,
8934                                  struct btrfs_path *path,
8935                                  struct walk_control *wc, int max_level)
8936 {
8937         int level = wc->level;
8938         int ret;
8939
8940         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8941         while (level < max_level && path->nodes[level]) {
8942                 wc->level = level;
8943                 if (path->slots[level] + 1 <
8944                     btrfs_header_nritems(path->nodes[level])) {
8945                         path->slots[level]++;
8946                         return 0;
8947                 } else {
8948                         ret = walk_up_proc(trans, root, path, wc);
8949                         if (ret > 0)
8950                                 return 0;
8951
8952                         if (path->locks[level]) {
8953                                 btrfs_tree_unlock_rw(path->nodes[level],
8954                                                      path->locks[level]);
8955                                 path->locks[level] = 0;
8956                         }
8957                         free_extent_buffer(path->nodes[level]);
8958                         path->nodes[level] = NULL;
8959                         level++;
8960                 }
8961         }
8962         return 1;
8963 }
8964
8965 /*
8966  * drop a subvolume tree.
8967  *
8968  * this function traverses the tree freeing any blocks that only
8969  * referenced by the tree.
8970  *
8971  * when a shared tree block is found. this function decreases its
8972  * reference count by one. if update_ref is true, this function
8973  * also make sure backrefs for the shared block and all lower level
8974  * blocks are properly updated.
8975  *
8976  * If called with for_reloc == 0, may exit early with -EAGAIN
8977  */
8978 int btrfs_drop_snapshot(struct btrfs_root *root,
8979                          struct btrfs_block_rsv *block_rsv, int update_ref,
8980                          int for_reloc)
8981 {
8982         struct btrfs_fs_info *fs_info = root->fs_info;
8983         struct btrfs_path *path;
8984         struct btrfs_trans_handle *trans;
8985         struct btrfs_root *tree_root = fs_info->tree_root;
8986         struct btrfs_root_item *root_item = &root->root_item;
8987         struct walk_control *wc;
8988         struct btrfs_key key;
8989         int err = 0;
8990         int ret;
8991         int level;
8992         bool root_dropped = false;
8993
8994         btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8995
8996         path = btrfs_alloc_path();
8997         if (!path) {
8998                 err = -ENOMEM;
8999                 goto out;
9000         }
9001
9002         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9003         if (!wc) {
9004                 btrfs_free_path(path);
9005                 err = -ENOMEM;
9006                 goto out;
9007         }
9008
9009         trans = btrfs_start_transaction(tree_root, 0);
9010         if (IS_ERR(trans)) {
9011                 err = PTR_ERR(trans);
9012                 goto out_free;
9013         }
9014
9015         if (block_rsv)
9016                 trans->block_rsv = block_rsv;
9017
9018         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9019                 level = btrfs_header_level(root->node);
9020                 path->nodes[level] = btrfs_lock_root_node(root);
9021                 btrfs_set_lock_blocking(path->nodes[level]);
9022                 path->slots[level] = 0;
9023                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9024                 memset(&wc->update_progress, 0,
9025                        sizeof(wc->update_progress));
9026         } else {
9027                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9028                 memcpy(&wc->update_progress, &key,
9029                        sizeof(wc->update_progress));
9030
9031                 level = root_item->drop_level;
9032                 BUG_ON(level == 0);
9033                 path->lowest_level = level;
9034                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9035                 path->lowest_level = 0;
9036                 if (ret < 0) {
9037                         err = ret;
9038                         goto out_end_trans;
9039                 }
9040                 WARN_ON(ret > 0);
9041
9042                 /*
9043                  * unlock our path, this is safe because only this
9044                  * function is allowed to delete this snapshot
9045                  */
9046                 btrfs_unlock_up_safe(path, 0);
9047
9048                 level = btrfs_header_level(root->node);
9049                 while (1) {
9050                         btrfs_tree_lock(path->nodes[level]);
9051                         btrfs_set_lock_blocking(path->nodes[level]);
9052                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9053
9054                         ret = btrfs_lookup_extent_info(trans, fs_info,
9055                                                 path->nodes[level]->start,
9056                                                 level, 1, &wc->refs[level],
9057                                                 &wc->flags[level]);
9058                         if (ret < 0) {
9059                                 err = ret;
9060                                 goto out_end_trans;
9061                         }
9062                         BUG_ON(wc->refs[level] == 0);
9063
9064                         if (level == root_item->drop_level)
9065                                 break;
9066
9067                         btrfs_tree_unlock(path->nodes[level]);
9068                         path->locks[level] = 0;
9069                         WARN_ON(wc->refs[level] != 1);
9070                         level--;
9071                 }
9072         }
9073
9074         wc->level = level;
9075         wc->shared_level = -1;
9076         wc->stage = DROP_REFERENCE;
9077         wc->update_ref = update_ref;
9078         wc->keep_locks = 0;
9079         wc->for_reloc = for_reloc;
9080         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9081
9082         while (1) {
9083
9084                 ret = walk_down_tree(trans, root, path, wc);
9085                 if (ret < 0) {
9086                         err = ret;
9087                         break;
9088                 }
9089
9090                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9091                 if (ret < 0) {
9092                         err = ret;
9093                         break;
9094                 }
9095
9096                 if (ret > 0) {
9097                         BUG_ON(wc->stage != DROP_REFERENCE);
9098                         break;
9099                 }
9100
9101                 if (wc->stage == DROP_REFERENCE) {
9102                         level = wc->level;
9103                         btrfs_node_key(path->nodes[level],
9104                                        &root_item->drop_progress,
9105                                        path->slots[level]);
9106                         root_item->drop_level = level;
9107                 }
9108
9109                 BUG_ON(wc->level == 0);
9110                 if (btrfs_should_end_transaction(trans) ||
9111                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9112                         ret = btrfs_update_root(trans, tree_root,
9113                                                 &root->root_key,
9114                                                 root_item);
9115                         if (ret) {
9116                                 btrfs_abort_transaction(trans, ret);
9117                                 err = ret;
9118                                 goto out_end_trans;
9119                         }
9120
9121                         btrfs_end_transaction_throttle(trans);
9122                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9123                                 btrfs_debug(fs_info,
9124                                             "drop snapshot early exit");
9125                                 err = -EAGAIN;
9126                                 goto out_free;
9127                         }
9128
9129                         trans = btrfs_start_transaction(tree_root, 0);
9130                         if (IS_ERR(trans)) {
9131                                 err = PTR_ERR(trans);
9132                                 goto out_free;
9133                         }
9134                         if (block_rsv)
9135                                 trans->block_rsv = block_rsv;
9136                 }
9137         }
9138         btrfs_release_path(path);
9139         if (err)
9140                 goto out_end_trans;
9141
9142         ret = btrfs_del_root(trans, tree_root, &root->root_key);
9143         if (ret) {
9144                 btrfs_abort_transaction(trans, ret);
9145                 goto out_end_trans;
9146         }
9147
9148         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9149                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9150                                       NULL, NULL);
9151                 if (ret < 0) {
9152                         btrfs_abort_transaction(trans, ret);
9153                         err = ret;
9154                         goto out_end_trans;
9155                 } else if (ret > 0) {
9156                         /* if we fail to delete the orphan item this time
9157                          * around, it'll get picked up the next time.
9158                          *
9159                          * The most common failure here is just -ENOENT.
9160                          */
9161                         btrfs_del_orphan_item(trans, tree_root,
9162                                               root->root_key.objectid);
9163                 }
9164         }
9165
9166         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9167                 btrfs_add_dropped_root(trans, root);
9168         } else {
9169                 free_extent_buffer(root->node);
9170                 free_extent_buffer(root->commit_root);
9171                 btrfs_put_fs_root(root);
9172         }
9173         root_dropped = true;
9174 out_end_trans:
9175         btrfs_end_transaction_throttle(trans);
9176 out_free:
9177         kfree(wc);
9178         btrfs_free_path(path);
9179 out:
9180         /*
9181          * So if we need to stop dropping the snapshot for whatever reason we
9182          * need to make sure to add it back to the dead root list so that we
9183          * keep trying to do the work later.  This also cleans up roots if we
9184          * don't have it in the radix (like when we recover after a power fail
9185          * or unmount) so we don't leak memory.
9186          */
9187         if (!for_reloc && root_dropped == false)
9188                 btrfs_add_dead_root(root);
9189         if (err && err != -EAGAIN)
9190                 btrfs_handle_fs_error(fs_info, err, NULL);
9191         return err;
9192 }
9193
9194 /*
9195  * drop subtree rooted at tree block 'node'.
9196  *
9197  * NOTE: this function will unlock and release tree block 'node'
9198  * only used by relocation code
9199  */
9200 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9201                         struct btrfs_root *root,
9202                         struct extent_buffer *node,
9203                         struct extent_buffer *parent)
9204 {
9205         struct btrfs_fs_info *fs_info = root->fs_info;
9206         struct btrfs_path *path;
9207         struct walk_control *wc;
9208         int level;
9209         int parent_level;
9210         int ret = 0;
9211         int wret;
9212
9213         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9214
9215         path = btrfs_alloc_path();
9216         if (!path)
9217                 return -ENOMEM;
9218
9219         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9220         if (!wc) {
9221                 btrfs_free_path(path);
9222                 return -ENOMEM;
9223         }
9224
9225         btrfs_assert_tree_locked(parent);
9226         parent_level = btrfs_header_level(parent);
9227         extent_buffer_get(parent);
9228         path->nodes[parent_level] = parent;
9229         path->slots[parent_level] = btrfs_header_nritems(parent);
9230
9231         btrfs_assert_tree_locked(node);
9232         level = btrfs_header_level(node);
9233         path->nodes[level] = node;
9234         path->slots[level] = 0;
9235         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9236
9237         wc->refs[parent_level] = 1;
9238         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9239         wc->level = level;
9240         wc->shared_level = -1;
9241         wc->stage = DROP_REFERENCE;
9242         wc->update_ref = 0;
9243         wc->keep_locks = 1;
9244         wc->for_reloc = 1;
9245         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9246
9247         while (1) {
9248                 wret = walk_down_tree(trans, root, path, wc);
9249                 if (wret < 0) {
9250                         ret = wret;
9251                         break;
9252                 }
9253
9254                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9255                 if (wret < 0)
9256                         ret = wret;
9257                 if (wret != 0)
9258                         break;
9259         }
9260
9261         kfree(wc);
9262         btrfs_free_path(path);
9263         return ret;
9264 }
9265
9266 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9267 {
9268         u64 num_devices;
9269         u64 stripped;
9270
9271         /*
9272          * if restripe for this chunk_type is on pick target profile and
9273          * return, otherwise do the usual balance
9274          */
9275         stripped = get_restripe_target(fs_info, flags);
9276         if (stripped)
9277                 return extended_to_chunk(stripped);
9278
9279         num_devices = fs_info->fs_devices->rw_devices;
9280
9281         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9282                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9283                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9284
9285         if (num_devices == 1) {
9286                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9287                 stripped = flags & ~stripped;
9288
9289                 /* turn raid0 into single device chunks */
9290                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9291                         return stripped;
9292
9293                 /* turn mirroring into duplication */
9294                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9295                              BTRFS_BLOCK_GROUP_RAID10))
9296                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9297         } else {
9298                 /* they already had raid on here, just return */
9299                 if (flags & stripped)
9300                         return flags;
9301
9302                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9303                 stripped = flags & ~stripped;
9304
9305                 /* switch duplicated blocks with raid1 */
9306                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9307                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9308
9309                 /* this is drive concat, leave it alone */
9310         }
9311
9312         return flags;
9313 }
9314
9315 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9316 {
9317         struct btrfs_space_info *sinfo = cache->space_info;
9318         u64 num_bytes;
9319         u64 min_allocable_bytes;
9320         int ret = -ENOSPC;
9321
9322         /*
9323          * We need some metadata space and system metadata space for
9324          * allocating chunks in some corner cases until we force to set
9325          * it to be readonly.
9326          */
9327         if ((sinfo->flags &
9328              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9329             !force)
9330                 min_allocable_bytes = SZ_1M;
9331         else
9332                 min_allocable_bytes = 0;
9333
9334         spin_lock(&sinfo->lock);
9335         spin_lock(&cache->lock);
9336
9337         if (cache->ro) {
9338                 cache->ro++;
9339                 ret = 0;
9340                 goto out;
9341         }
9342
9343         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9344                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9345
9346         if (btrfs_space_info_used(sinfo, true) + num_bytes +
9347             min_allocable_bytes <= sinfo->total_bytes) {
9348                 sinfo->bytes_readonly += num_bytes;
9349                 cache->ro++;
9350                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9351                 ret = 0;
9352         }
9353 out:
9354         spin_unlock(&cache->lock);
9355         spin_unlock(&sinfo->lock);
9356         return ret;
9357 }
9358
9359 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9360                              struct btrfs_block_group_cache *cache)
9361
9362 {
9363         struct btrfs_trans_handle *trans;
9364         u64 alloc_flags;
9365         int ret;
9366
9367 again:
9368         trans = btrfs_join_transaction(fs_info->extent_root);
9369         if (IS_ERR(trans))
9370                 return PTR_ERR(trans);
9371
9372         /*
9373          * we're not allowed to set block groups readonly after the dirty
9374          * block groups cache has started writing.  If it already started,
9375          * back off and let this transaction commit
9376          */
9377         mutex_lock(&fs_info->ro_block_group_mutex);
9378         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9379                 u64 transid = trans->transid;
9380
9381                 mutex_unlock(&fs_info->ro_block_group_mutex);
9382                 btrfs_end_transaction(trans);
9383
9384                 ret = btrfs_wait_for_commit(fs_info, transid);
9385                 if (ret)
9386                         return ret;
9387                 goto again;
9388         }
9389
9390         /*
9391          * if we are changing raid levels, try to allocate a corresponding
9392          * block group with the new raid level.
9393          */
9394         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9395         if (alloc_flags != cache->flags) {
9396                 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9397                                      CHUNK_ALLOC_FORCE);
9398                 /*
9399                  * ENOSPC is allowed here, we may have enough space
9400                  * already allocated at the new raid level to
9401                  * carry on
9402                  */
9403                 if (ret == -ENOSPC)
9404                         ret = 0;
9405                 if (ret < 0)
9406                         goto out;
9407         }
9408
9409         ret = inc_block_group_ro(cache, 0);
9410         if (!ret)
9411                 goto out;
9412         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9413         ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9414                              CHUNK_ALLOC_FORCE);
9415         if (ret < 0)
9416                 goto out;
9417         ret = inc_block_group_ro(cache, 0);
9418 out:
9419         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9420                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9421                 mutex_lock(&fs_info->chunk_mutex);
9422                 check_system_chunk(trans, fs_info, alloc_flags);
9423                 mutex_unlock(&fs_info->chunk_mutex);
9424         }
9425         mutex_unlock(&fs_info->ro_block_group_mutex);
9426
9427         btrfs_end_transaction(trans);
9428         return ret;
9429 }
9430
9431 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9432                             struct btrfs_fs_info *fs_info, u64 type)
9433 {
9434         u64 alloc_flags = get_alloc_profile(fs_info, type);
9435
9436         return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9437 }
9438
9439 /*
9440  * helper to account the unused space of all the readonly block group in the
9441  * space_info. takes mirrors into account.
9442  */
9443 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9444 {
9445         struct btrfs_block_group_cache *block_group;
9446         u64 free_bytes = 0;
9447         int factor;
9448
9449         /* It's df, we don't care if it's racy */
9450         if (list_empty(&sinfo->ro_bgs))
9451                 return 0;
9452
9453         spin_lock(&sinfo->lock);
9454         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9455                 spin_lock(&block_group->lock);
9456
9457                 if (!block_group->ro) {
9458                         spin_unlock(&block_group->lock);
9459                         continue;
9460                 }
9461
9462                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9463                                           BTRFS_BLOCK_GROUP_RAID10 |
9464                                           BTRFS_BLOCK_GROUP_DUP))
9465                         factor = 2;
9466                 else
9467                         factor = 1;
9468
9469                 free_bytes += (block_group->key.offset -
9470                                btrfs_block_group_used(&block_group->item)) *
9471                                factor;
9472
9473                 spin_unlock(&block_group->lock);
9474         }
9475         spin_unlock(&sinfo->lock);
9476
9477         return free_bytes;
9478 }
9479
9480 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9481 {
9482         struct btrfs_space_info *sinfo = cache->space_info;
9483         u64 num_bytes;
9484
9485         BUG_ON(!cache->ro);
9486
9487         spin_lock(&sinfo->lock);
9488         spin_lock(&cache->lock);
9489         if (!--cache->ro) {
9490                 num_bytes = cache->key.offset - cache->reserved -
9491                             cache->pinned - cache->bytes_super -
9492                             btrfs_block_group_used(&cache->item);
9493                 sinfo->bytes_readonly -= num_bytes;
9494                 list_del_init(&cache->ro_list);
9495         }
9496         spin_unlock(&cache->lock);
9497         spin_unlock(&sinfo->lock);
9498 }
9499
9500 /*
9501  * checks to see if its even possible to relocate this block group.
9502  *
9503  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9504  * ok to go ahead and try.
9505  */
9506 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9507 {
9508         struct btrfs_root *root = fs_info->extent_root;
9509         struct btrfs_block_group_cache *block_group;
9510         struct btrfs_space_info *space_info;
9511         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9512         struct btrfs_device *device;
9513         struct btrfs_trans_handle *trans;
9514         u64 min_free;
9515         u64 dev_min = 1;
9516         u64 dev_nr = 0;
9517         u64 target;
9518         int debug;
9519         int index;
9520         int full = 0;
9521         int ret = 0;
9522
9523         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9524
9525         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9526
9527         /* odd, couldn't find the block group, leave it alone */
9528         if (!block_group) {
9529                 if (debug)
9530                         btrfs_warn(fs_info,
9531                                    "can't find block group for bytenr %llu",
9532                                    bytenr);
9533                 return -1;
9534         }
9535
9536         min_free = btrfs_block_group_used(&block_group->item);
9537
9538         /* no bytes used, we're good */
9539         if (!min_free)
9540                 goto out;
9541
9542         space_info = block_group->space_info;
9543         spin_lock(&space_info->lock);
9544
9545         full = space_info->full;
9546
9547         /*
9548          * if this is the last block group we have in this space, we can't
9549          * relocate it unless we're able to allocate a new chunk below.
9550          *
9551          * Otherwise, we need to make sure we have room in the space to handle
9552          * all of the extents from this block group.  If we can, we're good
9553          */
9554         if ((space_info->total_bytes != block_group->key.offset) &&
9555             (btrfs_space_info_used(space_info, false) + min_free <
9556              space_info->total_bytes)) {
9557                 spin_unlock(&space_info->lock);
9558                 goto out;
9559         }
9560         spin_unlock(&space_info->lock);
9561
9562         /*
9563          * ok we don't have enough space, but maybe we have free space on our
9564          * devices to allocate new chunks for relocation, so loop through our
9565          * alloc devices and guess if we have enough space.  if this block
9566          * group is going to be restriped, run checks against the target
9567          * profile instead of the current one.
9568          */
9569         ret = -1;
9570
9571         /*
9572          * index:
9573          *      0: raid10
9574          *      1: raid1
9575          *      2: dup
9576          *      3: raid0
9577          *      4: single
9578          */
9579         target = get_restripe_target(fs_info, block_group->flags);
9580         if (target) {
9581                 index = __get_raid_index(extended_to_chunk(target));
9582         } else {
9583                 /*
9584                  * this is just a balance, so if we were marked as full
9585                  * we know there is no space for a new chunk
9586                  */
9587                 if (full) {
9588                         if (debug)
9589                                 btrfs_warn(fs_info,
9590                                            "no space to alloc new chunk for block group %llu",
9591                                            block_group->key.objectid);
9592                         goto out;
9593                 }
9594
9595                 index = get_block_group_index(block_group);
9596         }
9597
9598         if (index == BTRFS_RAID_RAID10) {
9599                 dev_min = 4;
9600                 /* Divide by 2 */
9601                 min_free >>= 1;
9602         } else if (index == BTRFS_RAID_RAID1) {
9603                 dev_min = 2;
9604         } else if (index == BTRFS_RAID_DUP) {
9605                 /* Multiply by 2 */
9606                 min_free <<= 1;
9607         } else if (index == BTRFS_RAID_RAID0) {
9608                 dev_min = fs_devices->rw_devices;
9609                 min_free = div64_u64(min_free, dev_min);
9610         }
9611
9612         /* We need to do this so that we can look at pending chunks */
9613         trans = btrfs_join_transaction(root);
9614         if (IS_ERR(trans)) {
9615                 ret = PTR_ERR(trans);
9616                 goto out;
9617         }
9618
9619         mutex_lock(&fs_info->chunk_mutex);
9620         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9621                 u64 dev_offset;
9622
9623                 /*
9624                  * check to make sure we can actually find a chunk with enough
9625                  * space to fit our block group in.
9626                  */
9627                 if (device->total_bytes > device->bytes_used + min_free &&
9628                     !device->is_tgtdev_for_dev_replace) {
9629                         ret = find_free_dev_extent(trans, device, min_free,
9630                                                    &dev_offset, NULL);
9631                         if (!ret)
9632                                 dev_nr++;
9633
9634                         if (dev_nr >= dev_min)
9635                                 break;
9636
9637                         ret = -1;
9638                 }
9639         }
9640         if (debug && ret == -1)
9641                 btrfs_warn(fs_info,
9642                            "no space to allocate a new chunk for block group %llu",
9643                            block_group->key.objectid);
9644         mutex_unlock(&fs_info->chunk_mutex);
9645         btrfs_end_transaction(trans);
9646 out:
9647         btrfs_put_block_group(block_group);
9648         return ret;
9649 }
9650
9651 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9652                                   struct btrfs_path *path,
9653                                   struct btrfs_key *key)
9654 {
9655         struct btrfs_root *root = fs_info->extent_root;
9656         int ret = 0;
9657         struct btrfs_key found_key;
9658         struct extent_buffer *leaf;
9659         int slot;
9660
9661         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9662         if (ret < 0)
9663                 goto out;
9664
9665         while (1) {
9666                 slot = path->slots[0];
9667                 leaf = path->nodes[0];
9668                 if (slot >= btrfs_header_nritems(leaf)) {
9669                         ret = btrfs_next_leaf(root, path);
9670                         if (ret == 0)
9671                                 continue;
9672                         if (ret < 0)
9673                                 goto out;
9674                         break;
9675                 }
9676                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9677
9678                 if (found_key.objectid >= key->objectid &&
9679                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9680                         struct extent_map_tree *em_tree;
9681                         struct extent_map *em;
9682
9683                         em_tree = &root->fs_info->mapping_tree.map_tree;
9684                         read_lock(&em_tree->lock);
9685                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9686                                                    found_key.offset);
9687                         read_unlock(&em_tree->lock);
9688                         if (!em) {
9689                                 btrfs_err(fs_info,
9690                         "logical %llu len %llu found bg but no related chunk",
9691                                           found_key.objectid, found_key.offset);
9692                                 ret = -ENOENT;
9693                         } else {
9694                                 ret = 0;
9695                         }
9696                         free_extent_map(em);
9697                         goto out;
9698                 }
9699                 path->slots[0]++;
9700         }
9701 out:
9702         return ret;
9703 }
9704
9705 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9706 {
9707         struct btrfs_block_group_cache *block_group;
9708         u64 last = 0;
9709
9710         while (1) {
9711                 struct inode *inode;
9712
9713                 block_group = btrfs_lookup_first_block_group(info, last);
9714                 while (block_group) {
9715                         spin_lock(&block_group->lock);
9716                         if (block_group->iref)
9717                                 break;
9718                         spin_unlock(&block_group->lock);
9719                         block_group = next_block_group(info, block_group);
9720                 }
9721                 if (!block_group) {
9722                         if (last == 0)
9723                                 break;
9724                         last = 0;
9725                         continue;
9726                 }
9727
9728                 inode = block_group->inode;
9729                 block_group->iref = 0;
9730                 block_group->inode = NULL;
9731                 spin_unlock(&block_group->lock);
9732                 ASSERT(block_group->io_ctl.inode == NULL);
9733                 iput(inode);
9734                 last = block_group->key.objectid + block_group->key.offset;
9735                 btrfs_put_block_group(block_group);
9736         }
9737 }
9738
9739 /*
9740  * Must be called only after stopping all workers, since we could have block
9741  * group caching kthreads running, and therefore they could race with us if we
9742  * freed the block groups before stopping them.
9743  */
9744 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9745 {
9746         struct btrfs_block_group_cache *block_group;
9747         struct btrfs_space_info *space_info;
9748         struct btrfs_caching_control *caching_ctl;
9749         struct rb_node *n;
9750
9751         down_write(&info->commit_root_sem);
9752         while (!list_empty(&info->caching_block_groups)) {
9753                 caching_ctl = list_entry(info->caching_block_groups.next,
9754                                          struct btrfs_caching_control, list);
9755                 list_del(&caching_ctl->list);
9756                 put_caching_control(caching_ctl);
9757         }
9758         up_write(&info->commit_root_sem);
9759
9760         spin_lock(&info->unused_bgs_lock);
9761         while (!list_empty(&info->unused_bgs)) {
9762                 block_group = list_first_entry(&info->unused_bgs,
9763                                                struct btrfs_block_group_cache,
9764                                                bg_list);
9765                 list_del_init(&block_group->bg_list);
9766                 btrfs_put_block_group(block_group);
9767         }
9768         spin_unlock(&info->unused_bgs_lock);
9769
9770         spin_lock(&info->block_group_cache_lock);
9771         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9772                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9773                                        cache_node);
9774                 rb_erase(&block_group->cache_node,
9775                          &info->block_group_cache_tree);
9776                 RB_CLEAR_NODE(&block_group->cache_node);
9777                 spin_unlock(&info->block_group_cache_lock);
9778
9779                 down_write(&block_group->space_info->groups_sem);
9780                 list_del(&block_group->list);
9781                 up_write(&block_group->space_info->groups_sem);
9782
9783                 /*
9784                  * We haven't cached this block group, which means we could
9785                  * possibly have excluded extents on this block group.
9786                  */
9787                 if (block_group->cached == BTRFS_CACHE_NO ||
9788                     block_group->cached == BTRFS_CACHE_ERROR)
9789                         free_excluded_extents(info, block_group);
9790
9791                 btrfs_remove_free_space_cache(block_group);
9792                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9793                 ASSERT(list_empty(&block_group->dirty_list));
9794                 ASSERT(list_empty(&block_group->io_list));
9795                 ASSERT(list_empty(&block_group->bg_list));
9796                 ASSERT(atomic_read(&block_group->count) == 1);
9797                 btrfs_put_block_group(block_group);
9798
9799                 spin_lock(&info->block_group_cache_lock);
9800         }
9801         spin_unlock(&info->block_group_cache_lock);
9802
9803         /* now that all the block groups are freed, go through and
9804          * free all the space_info structs.  This is only called during
9805          * the final stages of unmount, and so we know nobody is
9806          * using them.  We call synchronize_rcu() once before we start,
9807          * just to be on the safe side.
9808          */
9809         synchronize_rcu();
9810
9811         release_global_block_rsv(info);
9812
9813         while (!list_empty(&info->space_info)) {
9814                 int i;
9815
9816                 space_info = list_entry(info->space_info.next,
9817                                         struct btrfs_space_info,
9818                                         list);
9819
9820                 /*
9821                  * Do not hide this behind enospc_debug, this is actually
9822                  * important and indicates a real bug if this happens.
9823                  */
9824                 if (WARN_ON(space_info->bytes_pinned > 0 ||
9825                             space_info->bytes_reserved > 0 ||
9826                             space_info->bytes_may_use > 0))
9827                         dump_space_info(info, space_info, 0, 0);
9828                 list_del(&space_info->list);
9829                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9830                         struct kobject *kobj;
9831                         kobj = space_info->block_group_kobjs[i];
9832                         space_info->block_group_kobjs[i] = NULL;
9833                         if (kobj) {
9834                                 kobject_del(kobj);
9835                                 kobject_put(kobj);
9836                         }
9837                 }
9838                 kobject_del(&space_info->kobj);
9839                 kobject_put(&space_info->kobj);
9840         }
9841         return 0;
9842 }
9843
9844 static void __link_block_group(struct btrfs_space_info *space_info,
9845                                struct btrfs_block_group_cache *cache)
9846 {
9847         int index = get_block_group_index(cache);
9848         bool first = false;
9849
9850         down_write(&space_info->groups_sem);
9851         if (list_empty(&space_info->block_groups[index]))
9852                 first = true;
9853         list_add_tail(&cache->list, &space_info->block_groups[index]);
9854         up_write(&space_info->groups_sem);
9855
9856         if (first) {
9857                 struct raid_kobject *rkobj;
9858                 int ret;
9859
9860                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9861                 if (!rkobj)
9862                         goto out_err;
9863                 rkobj->raid_type = index;
9864                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9865                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9866                                   "%s", get_raid_name(index));
9867                 if (ret) {
9868                         kobject_put(&rkobj->kobj);
9869                         goto out_err;
9870                 }
9871                 space_info->block_group_kobjs[index] = &rkobj->kobj;
9872         }
9873
9874         return;
9875 out_err:
9876         btrfs_warn(cache->fs_info,
9877                    "failed to add kobject for block cache, ignoring");
9878 }
9879
9880 static struct btrfs_block_group_cache *
9881 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9882                                u64 start, u64 size)
9883 {
9884         struct btrfs_block_group_cache *cache;
9885
9886         cache = kzalloc(sizeof(*cache), GFP_NOFS);
9887         if (!cache)
9888                 return NULL;
9889
9890         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9891                                         GFP_NOFS);
9892         if (!cache->free_space_ctl) {
9893                 kfree(cache);
9894                 return NULL;
9895         }
9896
9897         cache->key.objectid = start;
9898         cache->key.offset = size;
9899         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9900
9901         cache->sectorsize = fs_info->sectorsize;
9902         cache->fs_info = fs_info;
9903         cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9904                                                        &fs_info->mapping_tree,
9905                                                        start);
9906         set_free_space_tree_thresholds(cache);
9907
9908         atomic_set(&cache->count, 1);
9909         spin_lock_init(&cache->lock);
9910         init_rwsem(&cache->data_rwsem);
9911         INIT_LIST_HEAD(&cache->list);
9912         INIT_LIST_HEAD(&cache->cluster_list);
9913         INIT_LIST_HEAD(&cache->bg_list);
9914         INIT_LIST_HEAD(&cache->ro_list);
9915         INIT_LIST_HEAD(&cache->dirty_list);
9916         INIT_LIST_HEAD(&cache->io_list);
9917         btrfs_init_free_space_ctl(cache);
9918         atomic_set(&cache->trimming, 0);
9919         mutex_init(&cache->free_space_lock);
9920
9921         return cache;
9922 }
9923
9924 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9925 {
9926         struct btrfs_path *path;
9927         int ret;
9928         struct btrfs_block_group_cache *cache;
9929         struct btrfs_space_info *space_info;
9930         struct btrfs_key key;
9931         struct btrfs_key found_key;
9932         struct extent_buffer *leaf;
9933         int need_clear = 0;
9934         u64 cache_gen;
9935         u64 feature;
9936         int mixed;
9937
9938         feature = btrfs_super_incompat_flags(info->super_copy);
9939         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9940
9941         key.objectid = 0;
9942         key.offset = 0;
9943         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9944         path = btrfs_alloc_path();
9945         if (!path)
9946                 return -ENOMEM;
9947         path->reada = READA_FORWARD;
9948
9949         cache_gen = btrfs_super_cache_generation(info->super_copy);
9950         if (btrfs_test_opt(info, SPACE_CACHE) &&
9951             btrfs_super_generation(info->super_copy) != cache_gen)
9952                 need_clear = 1;
9953         if (btrfs_test_opt(info, CLEAR_CACHE))
9954                 need_clear = 1;
9955
9956         while (1) {
9957                 ret = find_first_block_group(info, path, &key);
9958                 if (ret > 0)
9959                         break;
9960                 if (ret != 0)
9961                         goto error;
9962
9963                 leaf = path->nodes[0];
9964                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9965
9966                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9967                                                        found_key.offset);
9968                 if (!cache) {
9969                         ret = -ENOMEM;
9970                         goto error;
9971                 }
9972
9973                 if (need_clear) {
9974                         /*
9975                          * When we mount with old space cache, we need to
9976                          * set BTRFS_DC_CLEAR and set dirty flag.
9977                          *
9978                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9979                          *    truncate the old free space cache inode and
9980                          *    setup a new one.
9981                          * b) Setting 'dirty flag' makes sure that we flush
9982                          *    the new space cache info onto disk.
9983                          */
9984                         if (btrfs_test_opt(info, SPACE_CACHE))
9985                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
9986                 }
9987
9988                 read_extent_buffer(leaf, &cache->item,
9989                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
9990                                    sizeof(cache->item));
9991                 cache->flags = btrfs_block_group_flags(&cache->item);
9992                 if (!mixed &&
9993                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9994                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9995                         btrfs_err(info,
9996 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9997                                   cache->key.objectid);
9998                         ret = -EINVAL;
9999                         goto error;
10000                 }
10001
10002                 key.objectid = found_key.objectid + found_key.offset;
10003                 btrfs_release_path(path);
10004
10005                 /*
10006                  * We need to exclude the super stripes now so that the space
10007                  * info has super bytes accounted for, otherwise we'll think
10008                  * we have more space than we actually do.
10009                  */
10010                 ret = exclude_super_stripes(info, cache);
10011                 if (ret) {
10012                         /*
10013                          * We may have excluded something, so call this just in
10014                          * case.
10015                          */
10016                         free_excluded_extents(info, cache);
10017                         btrfs_put_block_group(cache);
10018                         goto error;
10019                 }
10020
10021                 /*
10022                  * check for two cases, either we are full, and therefore
10023                  * don't need to bother with the caching work since we won't
10024                  * find any space, or we are empty, and we can just add all
10025                  * the space in and be done with it.  This saves us _alot_ of
10026                  * time, particularly in the full case.
10027                  */
10028                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10029                         cache->last_byte_to_unpin = (u64)-1;
10030                         cache->cached = BTRFS_CACHE_FINISHED;
10031                         free_excluded_extents(info, cache);
10032                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10033                         cache->last_byte_to_unpin = (u64)-1;
10034                         cache->cached = BTRFS_CACHE_FINISHED;
10035                         add_new_free_space(cache, info,
10036                                            found_key.objectid,
10037                                            found_key.objectid +
10038                                            found_key.offset);
10039                         free_excluded_extents(info, cache);
10040                 }
10041
10042                 ret = btrfs_add_block_group_cache(info, cache);
10043                 if (ret) {
10044                         btrfs_remove_free_space_cache(cache);
10045                         btrfs_put_block_group(cache);
10046                         goto error;
10047                 }
10048
10049                 trace_btrfs_add_block_group(info, cache, 0);
10050                 ret = update_space_info(info, cache->flags, found_key.offset,
10051                                         btrfs_block_group_used(&cache->item),
10052                                         cache->bytes_super, &space_info);
10053                 if (ret) {
10054                         btrfs_remove_free_space_cache(cache);
10055                         spin_lock(&info->block_group_cache_lock);
10056                         rb_erase(&cache->cache_node,
10057                                  &info->block_group_cache_tree);
10058                         RB_CLEAR_NODE(&cache->cache_node);
10059                         spin_unlock(&info->block_group_cache_lock);
10060                         btrfs_put_block_group(cache);
10061                         goto error;
10062                 }
10063
10064                 cache->space_info = space_info;
10065
10066                 __link_block_group(space_info, cache);
10067
10068                 set_avail_alloc_bits(info, cache->flags);
10069                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10070                         inc_block_group_ro(cache, 1);
10071                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10072                         spin_lock(&info->unused_bgs_lock);
10073                         /* Should always be true but just in case. */
10074                         if (list_empty(&cache->bg_list)) {
10075                                 btrfs_get_block_group(cache);
10076                                 list_add_tail(&cache->bg_list,
10077                                               &info->unused_bgs);
10078                         }
10079                         spin_unlock(&info->unused_bgs_lock);
10080                 }
10081         }
10082
10083         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10084                 if (!(get_alloc_profile(info, space_info->flags) &
10085                       (BTRFS_BLOCK_GROUP_RAID10 |
10086                        BTRFS_BLOCK_GROUP_RAID1 |
10087                        BTRFS_BLOCK_GROUP_RAID5 |
10088                        BTRFS_BLOCK_GROUP_RAID6 |
10089                        BTRFS_BLOCK_GROUP_DUP)))
10090                         continue;
10091                 /*
10092                  * avoid allocating from un-mirrored block group if there are
10093                  * mirrored block groups.
10094                  */
10095                 list_for_each_entry(cache,
10096                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10097                                 list)
10098                         inc_block_group_ro(cache, 1);
10099                 list_for_each_entry(cache,
10100                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10101                                 list)
10102                         inc_block_group_ro(cache, 1);
10103         }
10104
10105         init_global_block_rsv(info);
10106         ret = 0;
10107 error:
10108         btrfs_free_path(path);
10109         return ret;
10110 }
10111
10112 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10113                                        struct btrfs_fs_info *fs_info)
10114 {
10115         struct btrfs_block_group_cache *block_group, *tmp;
10116         struct btrfs_root *extent_root = fs_info->extent_root;
10117         struct btrfs_block_group_item item;
10118         struct btrfs_key key;
10119         int ret = 0;
10120         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10121
10122         trans->can_flush_pending_bgs = false;
10123         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10124                 if (ret)
10125                         goto next;
10126
10127                 spin_lock(&block_group->lock);
10128                 memcpy(&item, &block_group->item, sizeof(item));
10129                 memcpy(&key, &block_group->key, sizeof(key));
10130                 spin_unlock(&block_group->lock);
10131
10132                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10133                                         sizeof(item));
10134                 if (ret)
10135                         btrfs_abort_transaction(trans, ret);
10136                 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10137                                                key.offset);
10138                 if (ret)
10139                         btrfs_abort_transaction(trans, ret);
10140                 add_block_group_free_space(trans, fs_info, block_group);
10141                 /* already aborted the transaction if it failed. */
10142 next:
10143                 list_del_init(&block_group->bg_list);
10144         }
10145         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10146 }
10147
10148 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10149                            struct btrfs_fs_info *fs_info, u64 bytes_used,
10150                            u64 type, u64 chunk_objectid, u64 chunk_offset,
10151                            u64 size)
10152 {
10153         struct btrfs_block_group_cache *cache;
10154         int ret;
10155
10156         btrfs_set_log_full_commit(fs_info, trans);
10157
10158         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10159         if (!cache)
10160                 return -ENOMEM;
10161
10162         btrfs_set_block_group_used(&cache->item, bytes_used);
10163         btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10164         btrfs_set_block_group_flags(&cache->item, type);
10165
10166         cache->flags = type;
10167         cache->last_byte_to_unpin = (u64)-1;
10168         cache->cached = BTRFS_CACHE_FINISHED;
10169         cache->needs_free_space = 1;
10170         ret = exclude_super_stripes(fs_info, cache);
10171         if (ret) {
10172                 /*
10173                  * We may have excluded something, so call this just in
10174                  * case.
10175                  */
10176                 free_excluded_extents(fs_info, cache);
10177                 btrfs_put_block_group(cache);
10178                 return ret;
10179         }
10180
10181         add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10182
10183         free_excluded_extents(fs_info, cache);
10184
10185 #ifdef CONFIG_BTRFS_DEBUG
10186         if (btrfs_should_fragment_free_space(cache)) {
10187                 u64 new_bytes_used = size - bytes_used;
10188
10189                 bytes_used += new_bytes_used >> 1;
10190                 fragment_free_space(cache);
10191         }
10192 #endif
10193         /*
10194          * Call to ensure the corresponding space_info object is created and
10195          * assigned to our block group, but don't update its counters just yet.
10196          * We want our bg to be added to the rbtree with its ->space_info set.
10197          */
10198         ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10199                                 &cache->space_info);
10200         if (ret) {
10201                 btrfs_remove_free_space_cache(cache);
10202                 btrfs_put_block_group(cache);
10203                 return ret;
10204         }
10205
10206         ret = btrfs_add_block_group_cache(fs_info, cache);
10207         if (ret) {
10208                 btrfs_remove_free_space_cache(cache);
10209                 btrfs_put_block_group(cache);
10210                 return ret;
10211         }
10212
10213         /*
10214          * Now that our block group has its ->space_info set and is inserted in
10215          * the rbtree, update the space info's counters.
10216          */
10217         trace_btrfs_add_block_group(fs_info, cache, 1);
10218         ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10219                                 cache->bytes_super, &cache->space_info);
10220         if (ret) {
10221                 btrfs_remove_free_space_cache(cache);
10222                 spin_lock(&fs_info->block_group_cache_lock);
10223                 rb_erase(&cache->cache_node,
10224                          &fs_info->block_group_cache_tree);
10225                 RB_CLEAR_NODE(&cache->cache_node);
10226                 spin_unlock(&fs_info->block_group_cache_lock);
10227                 btrfs_put_block_group(cache);
10228                 return ret;
10229         }
10230         update_global_block_rsv(fs_info);
10231
10232         __link_block_group(cache->space_info, cache);
10233
10234         list_add_tail(&cache->bg_list, &trans->new_bgs);
10235
10236         set_avail_alloc_bits(fs_info, type);
10237         return 0;
10238 }
10239
10240 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10241 {
10242         u64 extra_flags = chunk_to_extended(flags) &
10243                                 BTRFS_EXTENDED_PROFILE_MASK;
10244
10245         write_seqlock(&fs_info->profiles_lock);
10246         if (flags & BTRFS_BLOCK_GROUP_DATA)
10247                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10248         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10249                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10250         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10251                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10252         write_sequnlock(&fs_info->profiles_lock);
10253 }
10254
10255 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10256                              struct btrfs_fs_info *fs_info, u64 group_start,
10257                              struct extent_map *em)
10258 {
10259         struct btrfs_root *root = fs_info->extent_root;
10260         struct btrfs_path *path;
10261         struct btrfs_block_group_cache *block_group;
10262         struct btrfs_free_cluster *cluster;
10263         struct btrfs_root *tree_root = fs_info->tree_root;
10264         struct btrfs_key key;
10265         struct inode *inode;
10266         struct kobject *kobj = NULL;
10267         int ret;
10268         int index;
10269         int factor;
10270         struct btrfs_caching_control *caching_ctl = NULL;
10271         bool remove_em;
10272
10273         block_group = btrfs_lookup_block_group(fs_info, group_start);
10274         BUG_ON(!block_group);
10275         BUG_ON(!block_group->ro);
10276
10277         /*
10278          * Free the reserved super bytes from this block group before
10279          * remove it.
10280          */
10281         free_excluded_extents(fs_info, block_group);
10282
10283         memcpy(&key, &block_group->key, sizeof(key));
10284         index = get_block_group_index(block_group);
10285         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10286                                   BTRFS_BLOCK_GROUP_RAID1 |
10287                                   BTRFS_BLOCK_GROUP_RAID10))
10288                 factor = 2;
10289         else
10290                 factor = 1;
10291
10292         /* make sure this block group isn't part of an allocation cluster */
10293         cluster = &fs_info->data_alloc_cluster;
10294         spin_lock(&cluster->refill_lock);
10295         btrfs_return_cluster_to_free_space(block_group, cluster);
10296         spin_unlock(&cluster->refill_lock);
10297
10298         /*
10299          * make sure this block group isn't part of a metadata
10300          * allocation cluster
10301          */
10302         cluster = &fs_info->meta_alloc_cluster;
10303         spin_lock(&cluster->refill_lock);
10304         btrfs_return_cluster_to_free_space(block_group, cluster);
10305         spin_unlock(&cluster->refill_lock);
10306
10307         path = btrfs_alloc_path();
10308         if (!path) {
10309                 ret = -ENOMEM;
10310                 goto out;
10311         }
10312
10313         /*
10314          * get the inode first so any iput calls done for the io_list
10315          * aren't the final iput (no unlinks allowed now)
10316          */
10317         inode = lookup_free_space_inode(fs_info, block_group, path);
10318
10319         mutex_lock(&trans->transaction->cache_write_mutex);
10320         /*
10321          * make sure our free spache cache IO is done before remove the
10322          * free space inode
10323          */
10324         spin_lock(&trans->transaction->dirty_bgs_lock);
10325         if (!list_empty(&block_group->io_list)) {
10326                 list_del_init(&block_group->io_list);
10327
10328                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10329
10330                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10331                 btrfs_wait_cache_io(trans, block_group, path);
10332                 btrfs_put_block_group(block_group);
10333                 spin_lock(&trans->transaction->dirty_bgs_lock);
10334         }
10335
10336         if (!list_empty(&block_group->dirty_list)) {
10337                 list_del_init(&block_group->dirty_list);
10338                 btrfs_put_block_group(block_group);
10339         }
10340         spin_unlock(&trans->transaction->dirty_bgs_lock);
10341         mutex_unlock(&trans->transaction->cache_write_mutex);
10342
10343         if (!IS_ERR(inode)) {
10344                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10345                 if (ret) {
10346                         btrfs_add_delayed_iput(inode);
10347                         goto out;
10348                 }
10349                 clear_nlink(inode);
10350                 /* One for the block groups ref */
10351                 spin_lock(&block_group->lock);
10352                 if (block_group->iref) {
10353                         block_group->iref = 0;
10354                         block_group->inode = NULL;
10355                         spin_unlock(&block_group->lock);
10356                         iput(inode);
10357                 } else {
10358                         spin_unlock(&block_group->lock);
10359                 }
10360                 /* One for our lookup ref */
10361                 btrfs_add_delayed_iput(inode);
10362         }
10363
10364         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10365         key.offset = block_group->key.objectid;
10366         key.type = 0;
10367
10368         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10369         if (ret < 0)
10370                 goto out;
10371         if (ret > 0)
10372                 btrfs_release_path(path);
10373         if (ret == 0) {
10374                 ret = btrfs_del_item(trans, tree_root, path);
10375                 if (ret)
10376                         goto out;
10377                 btrfs_release_path(path);
10378         }
10379
10380         spin_lock(&fs_info->block_group_cache_lock);
10381         rb_erase(&block_group->cache_node,
10382                  &fs_info->block_group_cache_tree);
10383         RB_CLEAR_NODE(&block_group->cache_node);
10384
10385         if (fs_info->first_logical_byte == block_group->key.objectid)
10386                 fs_info->first_logical_byte = (u64)-1;
10387         spin_unlock(&fs_info->block_group_cache_lock);
10388
10389         down_write(&block_group->space_info->groups_sem);
10390         /*
10391          * we must use list_del_init so people can check to see if they
10392          * are still on the list after taking the semaphore
10393          */
10394         list_del_init(&block_group->list);
10395         if (list_empty(&block_group->space_info->block_groups[index])) {
10396                 kobj = block_group->space_info->block_group_kobjs[index];
10397                 block_group->space_info->block_group_kobjs[index] = NULL;
10398                 clear_avail_alloc_bits(fs_info, block_group->flags);
10399         }
10400         up_write(&block_group->space_info->groups_sem);
10401         if (kobj) {
10402                 kobject_del(kobj);
10403                 kobject_put(kobj);
10404         }
10405
10406         if (block_group->has_caching_ctl)
10407                 caching_ctl = get_caching_control(block_group);
10408         if (block_group->cached == BTRFS_CACHE_STARTED)
10409                 wait_block_group_cache_done(block_group);
10410         if (block_group->has_caching_ctl) {
10411                 down_write(&fs_info->commit_root_sem);
10412                 if (!caching_ctl) {
10413                         struct btrfs_caching_control *ctl;
10414
10415                         list_for_each_entry(ctl,
10416                                     &fs_info->caching_block_groups, list)
10417                                 if (ctl->block_group == block_group) {
10418                                         caching_ctl = ctl;
10419                                         atomic_inc(&caching_ctl->count);
10420                                         break;
10421                                 }
10422                 }
10423                 if (caching_ctl)
10424                         list_del_init(&caching_ctl->list);
10425                 up_write(&fs_info->commit_root_sem);
10426                 if (caching_ctl) {
10427                         /* Once for the caching bgs list and once for us. */
10428                         put_caching_control(caching_ctl);
10429                         put_caching_control(caching_ctl);
10430                 }
10431         }
10432
10433         spin_lock(&trans->transaction->dirty_bgs_lock);
10434         if (!list_empty(&block_group->dirty_list)) {
10435                 WARN_ON(1);
10436         }
10437         if (!list_empty(&block_group->io_list)) {
10438                 WARN_ON(1);
10439         }
10440         spin_unlock(&trans->transaction->dirty_bgs_lock);
10441         btrfs_remove_free_space_cache(block_group);
10442
10443         spin_lock(&block_group->space_info->lock);
10444         list_del_init(&block_group->ro_list);
10445
10446         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10447                 WARN_ON(block_group->space_info->total_bytes
10448                         < block_group->key.offset);
10449                 WARN_ON(block_group->space_info->bytes_readonly
10450                         < block_group->key.offset);
10451                 WARN_ON(block_group->space_info->disk_total
10452                         < block_group->key.offset * factor);
10453         }
10454         block_group->space_info->total_bytes -= block_group->key.offset;
10455         block_group->space_info->bytes_readonly -= block_group->key.offset;
10456         block_group->space_info->disk_total -= block_group->key.offset * factor;
10457
10458         spin_unlock(&block_group->space_info->lock);
10459
10460         memcpy(&key, &block_group->key, sizeof(key));
10461
10462         mutex_lock(&fs_info->chunk_mutex);
10463         if (!list_empty(&em->list)) {
10464                 /* We're in the transaction->pending_chunks list. */
10465                 free_extent_map(em);
10466         }
10467         spin_lock(&block_group->lock);
10468         block_group->removed = 1;
10469         /*
10470          * At this point trimming can't start on this block group, because we
10471          * removed the block group from the tree fs_info->block_group_cache_tree
10472          * so no one can't find it anymore and even if someone already got this
10473          * block group before we removed it from the rbtree, they have already
10474          * incremented block_group->trimming - if they didn't, they won't find
10475          * any free space entries because we already removed them all when we
10476          * called btrfs_remove_free_space_cache().
10477          *
10478          * And we must not remove the extent map from the fs_info->mapping_tree
10479          * to prevent the same logical address range and physical device space
10480          * ranges from being reused for a new block group. This is because our
10481          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10482          * completely transactionless, so while it is trimming a range the
10483          * currently running transaction might finish and a new one start,
10484          * allowing for new block groups to be created that can reuse the same
10485          * physical device locations unless we take this special care.
10486          *
10487          * There may also be an implicit trim operation if the file system
10488          * is mounted with -odiscard. The same protections must remain
10489          * in place until the extents have been discarded completely when
10490          * the transaction commit has completed.
10491          */
10492         remove_em = (atomic_read(&block_group->trimming) == 0);
10493         /*
10494          * Make sure a trimmer task always sees the em in the pinned_chunks list
10495          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10496          * before checking block_group->removed).
10497          */
10498         if (!remove_em) {
10499                 /*
10500                  * Our em might be in trans->transaction->pending_chunks which
10501                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10502                  * and so is the fs_info->pinned_chunks list.
10503                  *
10504                  * So at this point we must be holding the chunk_mutex to avoid
10505                  * any races with chunk allocation (more specifically at
10506                  * volumes.c:contains_pending_extent()), to ensure it always
10507                  * sees the em, either in the pending_chunks list or in the
10508                  * pinned_chunks list.
10509                  */
10510                 list_move_tail(&em->list, &fs_info->pinned_chunks);
10511         }
10512         spin_unlock(&block_group->lock);
10513
10514         if (remove_em) {
10515                 struct extent_map_tree *em_tree;
10516
10517                 em_tree = &fs_info->mapping_tree.map_tree;
10518                 write_lock(&em_tree->lock);
10519                 /*
10520                  * The em might be in the pending_chunks list, so make sure the
10521                  * chunk mutex is locked, since remove_extent_mapping() will
10522                  * delete us from that list.
10523                  */
10524                 remove_extent_mapping(em_tree, em);
10525                 write_unlock(&em_tree->lock);
10526                 /* once for the tree */
10527                 free_extent_map(em);
10528         }
10529
10530         mutex_unlock(&fs_info->chunk_mutex);
10531
10532         ret = remove_block_group_free_space(trans, fs_info, block_group);
10533         if (ret)
10534                 goto out;
10535
10536         btrfs_put_block_group(block_group);
10537         btrfs_put_block_group(block_group);
10538
10539         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10540         if (ret > 0)
10541                 ret = -EIO;
10542         if (ret < 0)
10543                 goto out;
10544
10545         ret = btrfs_del_item(trans, root, path);
10546 out:
10547         btrfs_free_path(path);
10548         return ret;
10549 }
10550
10551 struct btrfs_trans_handle *
10552 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10553                                      const u64 chunk_offset)
10554 {
10555         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10556         struct extent_map *em;
10557         struct map_lookup *map;
10558         unsigned int num_items;
10559
10560         read_lock(&em_tree->lock);
10561         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10562         read_unlock(&em_tree->lock);
10563         ASSERT(em && em->start == chunk_offset);
10564
10565         /*
10566          * We need to reserve 3 + N units from the metadata space info in order
10567          * to remove a block group (done at btrfs_remove_chunk() and at
10568          * btrfs_remove_block_group()), which are used for:
10569          *
10570          * 1 unit for adding the free space inode's orphan (located in the tree
10571          * of tree roots).
10572          * 1 unit for deleting the block group item (located in the extent
10573          * tree).
10574          * 1 unit for deleting the free space item (located in tree of tree
10575          * roots).
10576          * N units for deleting N device extent items corresponding to each
10577          * stripe (located in the device tree).
10578          *
10579          * In order to remove a block group we also need to reserve units in the
10580          * system space info in order to update the chunk tree (update one or
10581          * more device items and remove one chunk item), but this is done at
10582          * btrfs_remove_chunk() through a call to check_system_chunk().
10583          */
10584         map = em->map_lookup;
10585         num_items = 3 + map->num_stripes;
10586         free_extent_map(em);
10587
10588         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10589                                                            num_items, 1);
10590 }
10591
10592 /*
10593  * Process the unused_bgs list and remove any that don't have any allocated
10594  * space inside of them.
10595  */
10596 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10597 {
10598         struct btrfs_block_group_cache *block_group;
10599         struct btrfs_space_info *space_info;
10600         struct btrfs_trans_handle *trans;
10601         int ret = 0;
10602
10603         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10604                 return;
10605
10606         spin_lock(&fs_info->unused_bgs_lock);
10607         while (!list_empty(&fs_info->unused_bgs)) {
10608                 u64 start, end;
10609                 int trimming;
10610
10611                 block_group = list_first_entry(&fs_info->unused_bgs,
10612                                                struct btrfs_block_group_cache,
10613                                                bg_list);
10614                 list_del_init(&block_group->bg_list);
10615
10616                 space_info = block_group->space_info;
10617
10618                 if (ret || btrfs_mixed_space_info(space_info)) {
10619                         btrfs_put_block_group(block_group);
10620                         continue;
10621                 }
10622                 spin_unlock(&fs_info->unused_bgs_lock);
10623
10624                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10625
10626                 /* Don't want to race with allocators so take the groups_sem */
10627                 down_write(&space_info->groups_sem);
10628                 spin_lock(&block_group->lock);
10629                 if (block_group->reserved ||
10630                     btrfs_block_group_used(&block_group->item) ||
10631                     block_group->ro ||
10632                     list_is_singular(&block_group->list)) {
10633                         /*
10634                          * We want to bail if we made new allocations or have
10635                          * outstanding allocations in this block group.  We do
10636                          * the ro check in case balance is currently acting on
10637                          * this block group.
10638                          */
10639                         spin_unlock(&block_group->lock);
10640                         up_write(&space_info->groups_sem);
10641                         goto next;
10642                 }
10643                 spin_unlock(&block_group->lock);
10644
10645                 /* We don't want to force the issue, only flip if it's ok. */
10646                 ret = inc_block_group_ro(block_group, 0);
10647                 up_write(&space_info->groups_sem);
10648                 if (ret < 0) {
10649                         ret = 0;
10650                         goto next;
10651                 }
10652
10653                 /*
10654                  * Want to do this before we do anything else so we can recover
10655                  * properly if we fail to join the transaction.
10656                  */
10657                 trans = btrfs_start_trans_remove_block_group(fs_info,
10658                                                      block_group->key.objectid);
10659                 if (IS_ERR(trans)) {
10660                         btrfs_dec_block_group_ro(block_group);
10661                         ret = PTR_ERR(trans);
10662                         goto next;
10663                 }
10664
10665                 /*
10666                  * We could have pending pinned extents for this block group,
10667                  * just delete them, we don't care about them anymore.
10668                  */
10669                 start = block_group->key.objectid;
10670                 end = start + block_group->key.offset - 1;
10671                 /*
10672                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10673                  * btrfs_finish_extent_commit(). If we are at transaction N,
10674                  * another task might be running finish_extent_commit() for the
10675                  * previous transaction N - 1, and have seen a range belonging
10676                  * to the block group in freed_extents[] before we were able to
10677                  * clear the whole block group range from freed_extents[]. This
10678                  * means that task can lookup for the block group after we
10679                  * unpinned it from freed_extents[] and removed it, leading to
10680                  * a BUG_ON() at btrfs_unpin_extent_range().
10681                  */
10682                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10683                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10684                                   EXTENT_DIRTY);
10685                 if (ret) {
10686                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10687                         btrfs_dec_block_group_ro(block_group);
10688                         goto end_trans;
10689                 }
10690                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10691                                   EXTENT_DIRTY);
10692                 if (ret) {
10693                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10694                         btrfs_dec_block_group_ro(block_group);
10695                         goto end_trans;
10696                 }
10697                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10698
10699                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10700                 spin_lock(&space_info->lock);
10701                 spin_lock(&block_group->lock);
10702
10703                 space_info->bytes_pinned -= block_group->pinned;
10704                 space_info->bytes_readonly += block_group->pinned;
10705                 percpu_counter_add(&space_info->total_bytes_pinned,
10706                                    -block_group->pinned);
10707                 block_group->pinned = 0;
10708
10709                 spin_unlock(&block_group->lock);
10710                 spin_unlock(&space_info->lock);
10711
10712                 /* DISCARD can flip during remount */
10713                 trimming = btrfs_test_opt(fs_info, DISCARD);
10714
10715                 /* Implicit trim during transaction commit. */
10716                 if (trimming)
10717                         btrfs_get_block_group_trimming(block_group);
10718
10719                 /*
10720                  * Btrfs_remove_chunk will abort the transaction if things go
10721                  * horribly wrong.
10722                  */
10723                 ret = btrfs_remove_chunk(trans, fs_info,
10724                                          block_group->key.objectid);
10725
10726                 if (ret) {
10727                         if (trimming)
10728                                 btrfs_put_block_group_trimming(block_group);
10729                         goto end_trans;
10730                 }
10731
10732                 /*
10733                  * If we're not mounted with -odiscard, we can just forget
10734                  * about this block group. Otherwise we'll need to wait
10735                  * until transaction commit to do the actual discard.
10736                  */
10737                 if (trimming) {
10738                         spin_lock(&fs_info->unused_bgs_lock);
10739                         /*
10740                          * A concurrent scrub might have added us to the list
10741                          * fs_info->unused_bgs, so use a list_move operation
10742                          * to add the block group to the deleted_bgs list.
10743                          */
10744                         list_move(&block_group->bg_list,
10745                                   &trans->transaction->deleted_bgs);
10746                         spin_unlock(&fs_info->unused_bgs_lock);
10747                         btrfs_get_block_group(block_group);
10748                 }
10749 end_trans:
10750                 btrfs_end_transaction(trans);
10751 next:
10752                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10753                 btrfs_put_block_group(block_group);
10754                 spin_lock(&fs_info->unused_bgs_lock);
10755         }
10756         spin_unlock(&fs_info->unused_bgs_lock);
10757 }
10758
10759 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10760 {
10761         struct btrfs_space_info *space_info;
10762         struct btrfs_super_block *disk_super;
10763         u64 features;
10764         u64 flags;
10765         int mixed = 0;
10766         int ret;
10767
10768         disk_super = fs_info->super_copy;
10769         if (!btrfs_super_root(disk_super))
10770                 return -EINVAL;
10771
10772         features = btrfs_super_incompat_flags(disk_super);
10773         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10774                 mixed = 1;
10775
10776         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10777         ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10778         if (ret)
10779                 goto out;
10780
10781         if (mixed) {
10782                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10783                 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10784         } else {
10785                 flags = BTRFS_BLOCK_GROUP_METADATA;
10786                 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10787                 if (ret)
10788                         goto out;
10789
10790                 flags = BTRFS_BLOCK_GROUP_DATA;
10791                 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10792         }
10793 out:
10794         return ret;
10795 }
10796
10797 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10798                                    u64 start, u64 end)
10799 {
10800         return unpin_extent_range(fs_info, start, end, false);
10801 }
10802
10803 /*
10804  * It used to be that old block groups would be left around forever.
10805  * Iterating over them would be enough to trim unused space.  Since we
10806  * now automatically remove them, we also need to iterate over unallocated
10807  * space.
10808  *
10809  * We don't want a transaction for this since the discard may take a
10810  * substantial amount of time.  We don't require that a transaction be
10811  * running, but we do need to take a running transaction into account
10812  * to ensure that we're not discarding chunks that were released in
10813  * the current transaction.
10814  *
10815  * Holding the chunks lock will prevent other threads from allocating
10816  * or releasing chunks, but it won't prevent a running transaction
10817  * from committing and releasing the memory that the pending chunks
10818  * list head uses.  For that, we need to take a reference to the
10819  * transaction.
10820  */
10821 static int btrfs_trim_free_extents(struct btrfs_device *device,
10822                                    u64 minlen, u64 *trimmed)
10823 {
10824         u64 start = 0, len = 0;
10825         int ret;
10826
10827         *trimmed = 0;
10828
10829         /* Not writeable = nothing to do. */
10830         if (!device->writeable)
10831                 return 0;
10832
10833         /* No free space = nothing to do. */
10834         if (device->total_bytes <= device->bytes_used)
10835                 return 0;
10836
10837         ret = 0;
10838
10839         while (1) {
10840                 struct btrfs_fs_info *fs_info = device->fs_info;
10841                 struct btrfs_transaction *trans;
10842                 u64 bytes;
10843
10844                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10845                 if (ret)
10846                         return ret;
10847
10848                 down_read(&fs_info->commit_root_sem);
10849
10850                 spin_lock(&fs_info->trans_lock);
10851                 trans = fs_info->running_transaction;
10852                 if (trans)
10853                         atomic_inc(&trans->use_count);
10854                 spin_unlock(&fs_info->trans_lock);
10855
10856                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10857                                                  &start, &len);
10858                 if (trans)
10859                         btrfs_put_transaction(trans);
10860
10861                 if (ret) {
10862                         up_read(&fs_info->commit_root_sem);
10863                         mutex_unlock(&fs_info->chunk_mutex);
10864                         if (ret == -ENOSPC)
10865                                 ret = 0;
10866                         break;
10867                 }
10868
10869                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10870                 up_read(&fs_info->commit_root_sem);
10871                 mutex_unlock(&fs_info->chunk_mutex);
10872
10873                 if (ret)
10874                         break;
10875
10876                 start += len;
10877                 *trimmed += bytes;
10878
10879                 if (fatal_signal_pending(current)) {
10880                         ret = -ERESTARTSYS;
10881                         break;
10882                 }
10883
10884                 cond_resched();
10885         }
10886
10887         return ret;
10888 }
10889
10890 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10891 {
10892         struct btrfs_block_group_cache *cache = NULL;
10893         struct btrfs_device *device;
10894         struct list_head *devices;
10895         u64 group_trimmed;
10896         u64 start;
10897         u64 end;
10898         u64 trimmed = 0;
10899         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10900         int ret = 0;
10901
10902         /*
10903          * try to trim all FS space, our block group may start from non-zero.
10904          */
10905         if (range->len == total_bytes)
10906                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10907         else
10908                 cache = btrfs_lookup_block_group(fs_info, range->start);
10909
10910         while (cache) {
10911                 if (cache->key.objectid >= (range->start + range->len)) {
10912                         btrfs_put_block_group(cache);
10913                         break;
10914                 }
10915
10916                 start = max(range->start, cache->key.objectid);
10917                 end = min(range->start + range->len,
10918                                 cache->key.objectid + cache->key.offset);
10919
10920                 if (end - start >= range->minlen) {
10921                         if (!block_group_cache_done(cache)) {
10922                                 ret = cache_block_group(cache, 0);
10923                                 if (ret) {
10924                                         btrfs_put_block_group(cache);
10925                                         break;
10926                                 }
10927                                 ret = wait_block_group_cache_done(cache);
10928                                 if (ret) {
10929                                         btrfs_put_block_group(cache);
10930                                         break;
10931                                 }
10932                         }
10933                         ret = btrfs_trim_block_group(cache,
10934                                                      &group_trimmed,
10935                                                      start,
10936                                                      end,
10937                                                      range->minlen);
10938
10939                         trimmed += group_trimmed;
10940                         if (ret) {
10941                                 btrfs_put_block_group(cache);
10942                                 break;
10943                         }
10944                 }
10945
10946                 cache = next_block_group(fs_info, cache);
10947         }
10948
10949         mutex_lock(&fs_info->fs_devices->device_list_mutex);
10950         devices = &fs_info->fs_devices->alloc_list;
10951         list_for_each_entry(device, devices, dev_alloc_list) {
10952                 ret = btrfs_trim_free_extents(device, range->minlen,
10953                                               &group_trimmed);
10954                 if (ret)
10955                         break;
10956
10957                 trimmed += group_trimmed;
10958         }
10959         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10960
10961         range->len = trimmed;
10962         return ret;
10963 }
10964
10965 /*
10966  * btrfs_{start,end}_write_no_snapshoting() are similar to
10967  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10968  * data into the page cache through nocow before the subvolume is snapshoted,
10969  * but flush the data into disk after the snapshot creation, or to prevent
10970  * operations while snapshoting is ongoing and that cause the snapshot to be
10971  * inconsistent (writes followed by expanding truncates for example).
10972  */
10973 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10974 {
10975         percpu_counter_dec(&root->subv_writers->counter);
10976         /*
10977          * Make sure counter is updated before we wake up waiters.
10978          */
10979         smp_mb();
10980         if (waitqueue_active(&root->subv_writers->wait))
10981                 wake_up(&root->subv_writers->wait);
10982 }
10983
10984 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10985 {
10986         if (atomic_read(&root->will_be_snapshoted))
10987                 return 0;
10988
10989         percpu_counter_inc(&root->subv_writers->counter);
10990         /*
10991          * Make sure counter is updated before we check for snapshot creation.
10992          */
10993         smp_mb();
10994         if (atomic_read(&root->will_be_snapshoted)) {
10995                 btrfs_end_write_no_snapshoting(root);
10996                 return 0;
10997         }
10998         return 1;
10999 }
11000
11001 static int wait_snapshoting_atomic_t(atomic_t *a)
11002 {
11003         schedule();
11004         return 0;
11005 }
11006
11007 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11008 {
11009         while (true) {
11010                 int ret;
11011
11012                 ret = btrfs_start_write_no_snapshoting(root);
11013                 if (ret)
11014                         break;
11015                 wait_on_atomic_t(&root->will_be_snapshoted,
11016                                  wait_snapshoting_atomic_t,
11017                                  TASK_UNINTERRUPTIBLE);
11018         }
11019 }