]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/transaction.c
Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac80211
[karo-tx-linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39         WARN_ON(atomic_read(&transaction->use_count) == 0);
40         if (atomic_dec_and_test(&transaction->use_count)) {
41                 BUG_ON(!list_empty(&transaction->list));
42                 WARN_ON(transaction->delayed_refs.root.rb_node);
43                 kmem_cache_free(btrfs_transaction_cachep, transaction);
44         }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49         free_extent_buffer(root->commit_root);
50         root->commit_root = btrfs_root_node(root);
51 }
52
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54                                        int type)
55 {
56         return !(trans->in_commit &&
57                  type != TRANS_JOIN &&
58                  type != TRANS_JOIN_NOLOCK);
59 }
60
61 /*
62  * either allocate a new transaction or hop into the existing one
63  */
64 static noinline int join_transaction(struct btrfs_root *root, int type)
65 {
66         struct btrfs_transaction *cur_trans;
67         struct btrfs_fs_info *fs_info = root->fs_info;
68
69         spin_lock(&fs_info->trans_lock);
70 loop:
71         /* The file system has been taken offline. No new transactions. */
72         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73                 spin_unlock(&fs_info->trans_lock);
74                 return -EROFS;
75         }
76
77         if (fs_info->trans_no_join) {
78                 /* 
79                  * If we are JOIN_NOLOCK we're already committing a current
80                  * transaction, we just need a handle to deal with something
81                  * when committing the transaction, such as inode cache and
82                  * space cache. It is a special case.
83                  */
84                 if (type != TRANS_JOIN_NOLOCK) {
85                         spin_unlock(&fs_info->trans_lock);
86                         return -EBUSY;
87                 }
88         }
89
90         cur_trans = fs_info->running_transaction;
91         if (cur_trans) {
92                 if (cur_trans->aborted) {
93                         spin_unlock(&fs_info->trans_lock);
94                         return cur_trans->aborted;
95                 }
96                 if (!can_join_transaction(cur_trans, type)) {
97                         spin_unlock(&fs_info->trans_lock);
98                         return -EBUSY;
99                 }
100                 atomic_inc(&cur_trans->use_count);
101                 atomic_inc(&cur_trans->num_writers);
102                 cur_trans->num_joined++;
103                 spin_unlock(&fs_info->trans_lock);
104                 return 0;
105         }
106         spin_unlock(&fs_info->trans_lock);
107
108         /*
109          * If we are ATTACH, we just want to catch the current transaction,
110          * and commit it. If there is no transaction, just return ENOENT.
111          */
112         if (type == TRANS_ATTACH)
113                 return -ENOENT;
114
115         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
116         if (!cur_trans)
117                 return -ENOMEM;
118
119         spin_lock(&fs_info->trans_lock);
120         if (fs_info->running_transaction) {
121                 /*
122                  * someone started a transaction after we unlocked.  Make sure
123                  * to redo the trans_no_join checks above
124                  */
125                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
126                 goto loop;
127         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
128                 spin_unlock(&fs_info->trans_lock);
129                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
130                 return -EROFS;
131         }
132
133         atomic_set(&cur_trans->num_writers, 1);
134         cur_trans->num_joined = 0;
135         init_waitqueue_head(&cur_trans->writer_wait);
136         init_waitqueue_head(&cur_trans->commit_wait);
137         cur_trans->in_commit = 0;
138         cur_trans->blocked = 0;
139         /*
140          * One for this trans handle, one so it will live on until we
141          * commit the transaction.
142          */
143         atomic_set(&cur_trans->use_count, 2);
144         cur_trans->commit_done = 0;
145         cur_trans->start_time = get_seconds();
146
147         cur_trans->delayed_refs.root = RB_ROOT;
148         cur_trans->delayed_refs.num_entries = 0;
149         cur_trans->delayed_refs.num_heads_ready = 0;
150         cur_trans->delayed_refs.num_heads = 0;
151         cur_trans->delayed_refs.flushing = 0;
152         cur_trans->delayed_refs.run_delayed_start = 0;
153
154         /*
155          * although the tree mod log is per file system and not per transaction,
156          * the log must never go across transaction boundaries.
157          */
158         smp_mb();
159         if (!list_empty(&fs_info->tree_mod_seq_list))
160                 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
161                         "creating a fresh transaction\n");
162         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
163                 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
164                         "creating a fresh transaction\n");
165         atomic_set(&fs_info->tree_mod_seq, 0);
166
167         spin_lock_init(&cur_trans->commit_lock);
168         spin_lock_init(&cur_trans->delayed_refs.lock);
169         atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
170         atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
171         init_waitqueue_head(&cur_trans->delayed_refs.wait);
172
173         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
174         INIT_LIST_HEAD(&cur_trans->ordered_operations);
175         list_add_tail(&cur_trans->list, &fs_info->trans_list);
176         extent_io_tree_init(&cur_trans->dirty_pages,
177                              fs_info->btree_inode->i_mapping);
178         fs_info->generation++;
179         cur_trans->transid = fs_info->generation;
180         fs_info->running_transaction = cur_trans;
181         cur_trans->aborted = 0;
182         spin_unlock(&fs_info->trans_lock);
183
184         return 0;
185 }
186
187 /*
188  * this does all the record keeping required to make sure that a reference
189  * counted root is properly recorded in a given transaction.  This is required
190  * to make sure the old root from before we joined the transaction is deleted
191  * when the transaction commits
192  */
193 static int record_root_in_trans(struct btrfs_trans_handle *trans,
194                                struct btrfs_root *root)
195 {
196         if (root->ref_cows && root->last_trans < trans->transid) {
197                 WARN_ON(root == root->fs_info->extent_root);
198                 WARN_ON(root->commit_root != root->node);
199
200                 /*
201                  * see below for in_trans_setup usage rules
202                  * we have the reloc mutex held now, so there
203                  * is only one writer in this function
204                  */
205                 root->in_trans_setup = 1;
206
207                 /* make sure readers find in_trans_setup before
208                  * they find our root->last_trans update
209                  */
210                 smp_wmb();
211
212                 spin_lock(&root->fs_info->fs_roots_radix_lock);
213                 if (root->last_trans == trans->transid) {
214                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
215                         return 0;
216                 }
217                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
218                            (unsigned long)root->root_key.objectid,
219                            BTRFS_ROOT_TRANS_TAG);
220                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
221                 root->last_trans = trans->transid;
222
223                 /* this is pretty tricky.  We don't want to
224                  * take the relocation lock in btrfs_record_root_in_trans
225                  * unless we're really doing the first setup for this root in
226                  * this transaction.
227                  *
228                  * Normally we'd use root->last_trans as a flag to decide
229                  * if we want to take the expensive mutex.
230                  *
231                  * But, we have to set root->last_trans before we
232                  * init the relocation root, otherwise, we trip over warnings
233                  * in ctree.c.  The solution used here is to flag ourselves
234                  * with root->in_trans_setup.  When this is 1, we're still
235                  * fixing up the reloc trees and everyone must wait.
236                  *
237                  * When this is zero, they can trust root->last_trans and fly
238                  * through btrfs_record_root_in_trans without having to take the
239                  * lock.  smp_wmb() makes sure that all the writes above are
240                  * done before we pop in the zero below
241                  */
242                 btrfs_init_reloc_root(trans, root);
243                 smp_wmb();
244                 root->in_trans_setup = 0;
245         }
246         return 0;
247 }
248
249
250 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
251                                struct btrfs_root *root)
252 {
253         if (!root->ref_cows)
254                 return 0;
255
256         /*
257          * see record_root_in_trans for comments about in_trans_setup usage
258          * and barriers
259          */
260         smp_rmb();
261         if (root->last_trans == trans->transid &&
262             !root->in_trans_setup)
263                 return 0;
264
265         mutex_lock(&root->fs_info->reloc_mutex);
266         record_root_in_trans(trans, root);
267         mutex_unlock(&root->fs_info->reloc_mutex);
268
269         return 0;
270 }
271
272 /* wait for commit against the current transaction to become unblocked
273  * when this is done, it is safe to start a new transaction, but the current
274  * transaction might not be fully on disk.
275  */
276 static void wait_current_trans(struct btrfs_root *root)
277 {
278         struct btrfs_transaction *cur_trans;
279
280         spin_lock(&root->fs_info->trans_lock);
281         cur_trans = root->fs_info->running_transaction;
282         if (cur_trans && cur_trans->blocked) {
283                 atomic_inc(&cur_trans->use_count);
284                 spin_unlock(&root->fs_info->trans_lock);
285
286                 wait_event(root->fs_info->transaction_wait,
287                            !cur_trans->blocked);
288                 put_transaction(cur_trans);
289         } else {
290                 spin_unlock(&root->fs_info->trans_lock);
291         }
292 }
293
294 static int may_wait_transaction(struct btrfs_root *root, int type)
295 {
296         if (root->fs_info->log_root_recovering)
297                 return 0;
298
299         if (type == TRANS_USERSPACE)
300                 return 1;
301
302         if (type == TRANS_START &&
303             !atomic_read(&root->fs_info->open_ioctl_trans))
304                 return 1;
305
306         return 0;
307 }
308
309 static struct btrfs_trans_handle *
310 start_transaction(struct btrfs_root *root, u64 num_items, int type,
311                   enum btrfs_reserve_flush_enum flush)
312 {
313         struct btrfs_trans_handle *h;
314         struct btrfs_transaction *cur_trans;
315         u64 num_bytes = 0;
316         int ret;
317         u64 qgroup_reserved = 0;
318
319         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
320                 return ERR_PTR(-EROFS);
321
322         if (current->journal_info) {
323                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
324                 h = current->journal_info;
325                 h->use_count++;
326                 WARN_ON(h->use_count > 2);
327                 h->orig_rsv = h->block_rsv;
328                 h->block_rsv = NULL;
329                 goto got_it;
330         }
331
332         /*
333          * Do the reservation before we join the transaction so we can do all
334          * the appropriate flushing if need be.
335          */
336         if (num_items > 0 && root != root->fs_info->chunk_root) {
337                 if (root->fs_info->quota_enabled &&
338                     is_fstree(root->root_key.objectid)) {
339                         qgroup_reserved = num_items * root->leafsize;
340                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
341                         if (ret)
342                                 return ERR_PTR(ret);
343                 }
344
345                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
346                 ret = btrfs_block_rsv_add(root,
347                                           &root->fs_info->trans_block_rsv,
348                                           num_bytes, flush);
349                 if (ret)
350                         goto reserve_fail;
351         }
352 again:
353         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
354         if (!h) {
355                 ret = -ENOMEM;
356                 goto alloc_fail;
357         }
358
359         /*
360          * If we are JOIN_NOLOCK we're already committing a transaction and
361          * waiting on this guy, so we don't need to do the sb_start_intwrite
362          * because we're already holding a ref.  We need this because we could
363          * have raced in and did an fsync() on a file which can kick a commit
364          * and then we deadlock with somebody doing a freeze.
365          *
366          * If we are ATTACH, it means we just want to catch the current
367          * transaction and commit it, so we needn't do sb_start_intwrite(). 
368          */
369         if (type < TRANS_JOIN_NOLOCK)
370                 sb_start_intwrite(root->fs_info->sb);
371
372         if (may_wait_transaction(root, type))
373                 wait_current_trans(root);
374
375         do {
376                 ret = join_transaction(root, type);
377                 if (ret == -EBUSY) {
378                         wait_current_trans(root);
379                         if (unlikely(type == TRANS_ATTACH))
380                                 ret = -ENOENT;
381                 }
382         } while (ret == -EBUSY);
383
384         if (ret < 0) {
385                 /* We must get the transaction if we are JOIN_NOLOCK. */
386                 BUG_ON(type == TRANS_JOIN_NOLOCK);
387                 goto join_fail;
388         }
389
390         cur_trans = root->fs_info->running_transaction;
391
392         h->transid = cur_trans->transid;
393         h->transaction = cur_trans;
394         h->blocks_used = 0;
395         h->bytes_reserved = 0;
396         h->root = root;
397         h->delayed_ref_updates = 0;
398         h->use_count = 1;
399         h->adding_csums = 0;
400         h->block_rsv = NULL;
401         h->orig_rsv = NULL;
402         h->aborted = 0;
403         h->qgroup_reserved = 0;
404         h->delayed_ref_elem.seq = 0;
405         h->type = type;
406         h->allocating_chunk = false;
407         INIT_LIST_HEAD(&h->qgroup_ref_list);
408         INIT_LIST_HEAD(&h->new_bgs);
409
410         smp_mb();
411         if (cur_trans->blocked && may_wait_transaction(root, type)) {
412                 btrfs_commit_transaction(h, root);
413                 goto again;
414         }
415
416         if (num_bytes) {
417                 trace_btrfs_space_reservation(root->fs_info, "transaction",
418                                               h->transid, num_bytes, 1);
419                 h->block_rsv = &root->fs_info->trans_block_rsv;
420                 h->bytes_reserved = num_bytes;
421         }
422         h->qgroup_reserved = qgroup_reserved;
423
424 got_it:
425         btrfs_record_root_in_trans(h, root);
426
427         if (!current->journal_info && type != TRANS_USERSPACE)
428                 current->journal_info = h;
429         return h;
430
431 join_fail:
432         if (type < TRANS_JOIN_NOLOCK)
433                 sb_end_intwrite(root->fs_info->sb);
434         kmem_cache_free(btrfs_trans_handle_cachep, h);
435 alloc_fail:
436         if (num_bytes)
437                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
438                                         num_bytes);
439 reserve_fail:
440         if (qgroup_reserved)
441                 btrfs_qgroup_free(root, qgroup_reserved);
442         return ERR_PTR(ret);
443 }
444
445 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
446                                                    int num_items)
447 {
448         return start_transaction(root, num_items, TRANS_START,
449                                  BTRFS_RESERVE_FLUSH_ALL);
450 }
451
452 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
453                                         struct btrfs_root *root, int num_items)
454 {
455         return start_transaction(root, num_items, TRANS_START,
456                                  BTRFS_RESERVE_FLUSH_LIMIT);
457 }
458
459 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
460 {
461         return start_transaction(root, 0, TRANS_JOIN, 0);
462 }
463
464 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
465 {
466         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
467 }
468
469 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
470 {
471         return start_transaction(root, 0, TRANS_USERSPACE, 0);
472 }
473
474 /*
475  * btrfs_attach_transaction() - catch the running transaction
476  *
477  * It is used when we want to commit the current the transaction, but
478  * don't want to start a new one.
479  *
480  * Note: If this function return -ENOENT, it just means there is no
481  * running transaction. But it is possible that the inactive transaction
482  * is still in the memory, not fully on disk. If you hope there is no
483  * inactive transaction in the fs when -ENOENT is returned, you should
484  * invoke
485  *     btrfs_attach_transaction_barrier()
486  */
487 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
488 {
489         return start_transaction(root, 0, TRANS_ATTACH, 0);
490 }
491
492 /*
493  * btrfs_attach_transaction() - catch the running transaction
494  *
495  * It is similar to the above function, the differentia is this one
496  * will wait for all the inactive transactions until they fully
497  * complete.
498  */
499 struct btrfs_trans_handle *
500 btrfs_attach_transaction_barrier(struct btrfs_root *root)
501 {
502         struct btrfs_trans_handle *trans;
503
504         trans = start_transaction(root, 0, TRANS_ATTACH, 0);
505         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
506                 btrfs_wait_for_commit(root, 0);
507
508         return trans;
509 }
510
511 /* wait for a transaction commit to be fully complete */
512 static noinline void wait_for_commit(struct btrfs_root *root,
513                                     struct btrfs_transaction *commit)
514 {
515         wait_event(commit->commit_wait, commit->commit_done);
516 }
517
518 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
519 {
520         struct btrfs_transaction *cur_trans = NULL, *t;
521         int ret = 0;
522
523         if (transid) {
524                 if (transid <= root->fs_info->last_trans_committed)
525                         goto out;
526
527                 ret = -EINVAL;
528                 /* find specified transaction */
529                 spin_lock(&root->fs_info->trans_lock);
530                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
531                         if (t->transid == transid) {
532                                 cur_trans = t;
533                                 atomic_inc(&cur_trans->use_count);
534                                 ret = 0;
535                                 break;
536                         }
537                         if (t->transid > transid) {
538                                 ret = 0;
539                                 break;
540                         }
541                 }
542                 spin_unlock(&root->fs_info->trans_lock);
543                 /* The specified transaction doesn't exist */
544                 if (!cur_trans)
545                         goto out;
546         } else {
547                 /* find newest transaction that is committing | committed */
548                 spin_lock(&root->fs_info->trans_lock);
549                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
550                                             list) {
551                         if (t->in_commit) {
552                                 if (t->commit_done)
553                                         break;
554                                 cur_trans = t;
555                                 atomic_inc(&cur_trans->use_count);
556                                 break;
557                         }
558                 }
559                 spin_unlock(&root->fs_info->trans_lock);
560                 if (!cur_trans)
561                         goto out;  /* nothing committing|committed */
562         }
563
564         wait_for_commit(root, cur_trans);
565         put_transaction(cur_trans);
566 out:
567         return ret;
568 }
569
570 void btrfs_throttle(struct btrfs_root *root)
571 {
572         if (!atomic_read(&root->fs_info->open_ioctl_trans))
573                 wait_current_trans(root);
574 }
575
576 static int should_end_transaction(struct btrfs_trans_handle *trans,
577                                   struct btrfs_root *root)
578 {
579         int ret;
580
581         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
582         return ret ? 1 : 0;
583 }
584
585 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
586                                  struct btrfs_root *root)
587 {
588         struct btrfs_transaction *cur_trans = trans->transaction;
589         int updates;
590         int err;
591
592         smp_mb();
593         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
594                 return 1;
595
596         updates = trans->delayed_ref_updates;
597         trans->delayed_ref_updates = 0;
598         if (updates) {
599                 err = btrfs_run_delayed_refs(trans, root, updates);
600                 if (err) /* Error code will also eval true */
601                         return err;
602         }
603
604         return should_end_transaction(trans, root);
605 }
606
607 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
608                           struct btrfs_root *root, int throttle)
609 {
610         struct btrfs_transaction *cur_trans = trans->transaction;
611         struct btrfs_fs_info *info = root->fs_info;
612         int count = 0;
613         int lock = (trans->type != TRANS_JOIN_NOLOCK);
614         int err = 0;
615
616         if (--trans->use_count) {
617                 trans->block_rsv = trans->orig_rsv;
618                 return 0;
619         }
620
621         /*
622          * do the qgroup accounting as early as possible
623          */
624         err = btrfs_delayed_refs_qgroup_accounting(trans, info);
625
626         btrfs_trans_release_metadata(trans, root);
627         trans->block_rsv = NULL;
628         /*
629          * the same root has to be passed to start_transaction and
630          * end_transaction. Subvolume quota depends on this.
631          */
632         WARN_ON(trans->root != root);
633
634         if (trans->qgroup_reserved) {
635                 btrfs_qgroup_free(root, trans->qgroup_reserved);
636                 trans->qgroup_reserved = 0;
637         }
638
639         if (!list_empty(&trans->new_bgs))
640                 btrfs_create_pending_block_groups(trans, root);
641
642         while (count < 1) {
643                 unsigned long cur = trans->delayed_ref_updates;
644                 trans->delayed_ref_updates = 0;
645                 if (cur &&
646                     trans->transaction->delayed_refs.num_heads_ready > 64) {
647                         trans->delayed_ref_updates = 0;
648                         btrfs_run_delayed_refs(trans, root, cur);
649                 } else {
650                         break;
651                 }
652                 count++;
653         }
654
655         btrfs_trans_release_metadata(trans, root);
656         trans->block_rsv = NULL;
657
658         if (!list_empty(&trans->new_bgs))
659                 btrfs_create_pending_block_groups(trans, root);
660
661         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
662             should_end_transaction(trans, root)) {
663                 trans->transaction->blocked = 1;
664                 smp_wmb();
665         }
666
667         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
668                 if (throttle) {
669                         /*
670                          * We may race with somebody else here so end up having
671                          * to call end_transaction on ourselves again, so inc
672                          * our use_count.
673                          */
674                         trans->use_count++;
675                         return btrfs_commit_transaction(trans, root);
676                 } else {
677                         wake_up_process(info->transaction_kthread);
678                 }
679         }
680
681         if (trans->type < TRANS_JOIN_NOLOCK)
682                 sb_end_intwrite(root->fs_info->sb);
683
684         WARN_ON(cur_trans != info->running_transaction);
685         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
686         atomic_dec(&cur_trans->num_writers);
687
688         smp_mb();
689         if (waitqueue_active(&cur_trans->writer_wait))
690                 wake_up(&cur_trans->writer_wait);
691         put_transaction(cur_trans);
692
693         if (current->journal_info == trans)
694                 current->journal_info = NULL;
695
696         if (throttle)
697                 btrfs_run_delayed_iputs(root);
698
699         if (trans->aborted ||
700             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
701                 err = -EIO;
702         assert_qgroups_uptodate(trans);
703
704         kmem_cache_free(btrfs_trans_handle_cachep, trans);
705         return err;
706 }
707
708 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
709                           struct btrfs_root *root)
710 {
711         int ret;
712
713         ret = __btrfs_end_transaction(trans, root, 0);
714         if (ret)
715                 return ret;
716         return 0;
717 }
718
719 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
720                                    struct btrfs_root *root)
721 {
722         int ret;
723
724         ret = __btrfs_end_transaction(trans, root, 1);
725         if (ret)
726                 return ret;
727         return 0;
728 }
729
730 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
731                                 struct btrfs_root *root)
732 {
733         return __btrfs_end_transaction(trans, root, 1);
734 }
735
736 /*
737  * when btree blocks are allocated, they have some corresponding bits set for
738  * them in one of two extent_io trees.  This is used to make sure all of
739  * those extents are sent to disk but does not wait on them
740  */
741 int btrfs_write_marked_extents(struct btrfs_root *root,
742                                struct extent_io_tree *dirty_pages, int mark)
743 {
744         int err = 0;
745         int werr = 0;
746         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
747         struct extent_state *cached_state = NULL;
748         u64 start = 0;
749         u64 end;
750         struct blk_plug plug;
751
752         blk_start_plug(&plug);
753         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
754                                       mark, &cached_state)) {
755                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
756                                    mark, &cached_state, GFP_NOFS);
757                 cached_state = NULL;
758                 err = filemap_fdatawrite_range(mapping, start, end);
759                 if (err)
760                         werr = err;
761                 cond_resched();
762                 start = end + 1;
763         }
764         if (err)
765                 werr = err;
766         blk_finish_plug(&plug);
767         return werr;
768 }
769
770 /*
771  * when btree blocks are allocated, they have some corresponding bits set for
772  * them in one of two extent_io trees.  This is used to make sure all of
773  * those extents are on disk for transaction or log commit.  We wait
774  * on all the pages and clear them from the dirty pages state tree
775  */
776 int btrfs_wait_marked_extents(struct btrfs_root *root,
777                               struct extent_io_tree *dirty_pages, int mark)
778 {
779         int err = 0;
780         int werr = 0;
781         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
782         struct extent_state *cached_state = NULL;
783         u64 start = 0;
784         u64 end;
785
786         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
787                                       EXTENT_NEED_WAIT, &cached_state)) {
788                 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
789                                  0, 0, &cached_state, GFP_NOFS);
790                 err = filemap_fdatawait_range(mapping, start, end);
791                 if (err)
792                         werr = err;
793                 cond_resched();
794                 start = end + 1;
795         }
796         if (err)
797                 werr = err;
798         return werr;
799 }
800
801 /*
802  * when btree blocks are allocated, they have some corresponding bits set for
803  * them in one of two extent_io trees.  This is used to make sure all of
804  * those extents are on disk for transaction or log commit
805  */
806 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
807                                 struct extent_io_tree *dirty_pages, int mark)
808 {
809         int ret;
810         int ret2;
811
812         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
813         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
814
815         if (ret)
816                 return ret;
817         if (ret2)
818                 return ret2;
819         return 0;
820 }
821
822 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
823                                      struct btrfs_root *root)
824 {
825         if (!trans || !trans->transaction) {
826                 struct inode *btree_inode;
827                 btree_inode = root->fs_info->btree_inode;
828                 return filemap_write_and_wait(btree_inode->i_mapping);
829         }
830         return btrfs_write_and_wait_marked_extents(root,
831                                            &trans->transaction->dirty_pages,
832                                            EXTENT_DIRTY);
833 }
834
835 /*
836  * this is used to update the root pointer in the tree of tree roots.
837  *
838  * But, in the case of the extent allocation tree, updating the root
839  * pointer may allocate blocks which may change the root of the extent
840  * allocation tree.
841  *
842  * So, this loops and repeats and makes sure the cowonly root didn't
843  * change while the root pointer was being updated in the metadata.
844  */
845 static int update_cowonly_root(struct btrfs_trans_handle *trans,
846                                struct btrfs_root *root)
847 {
848         int ret;
849         u64 old_root_bytenr;
850         u64 old_root_used;
851         struct btrfs_root *tree_root = root->fs_info->tree_root;
852
853         old_root_used = btrfs_root_used(&root->root_item);
854         btrfs_write_dirty_block_groups(trans, root);
855
856         while (1) {
857                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
858                 if (old_root_bytenr == root->node->start &&
859                     old_root_used == btrfs_root_used(&root->root_item))
860                         break;
861
862                 btrfs_set_root_node(&root->root_item, root->node);
863                 ret = btrfs_update_root(trans, tree_root,
864                                         &root->root_key,
865                                         &root->root_item);
866                 if (ret)
867                         return ret;
868
869                 old_root_used = btrfs_root_used(&root->root_item);
870                 ret = btrfs_write_dirty_block_groups(trans, root);
871                 if (ret)
872                         return ret;
873         }
874
875         if (root != root->fs_info->extent_root)
876                 switch_commit_root(root);
877
878         return 0;
879 }
880
881 /*
882  * update all the cowonly tree roots on disk
883  *
884  * The error handling in this function may not be obvious. Any of the
885  * failures will cause the file system to go offline. We still need
886  * to clean up the delayed refs.
887  */
888 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
889                                          struct btrfs_root *root)
890 {
891         struct btrfs_fs_info *fs_info = root->fs_info;
892         struct list_head *next;
893         struct extent_buffer *eb;
894         int ret;
895
896         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
897         if (ret)
898                 return ret;
899
900         eb = btrfs_lock_root_node(fs_info->tree_root);
901         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
902                               0, &eb);
903         btrfs_tree_unlock(eb);
904         free_extent_buffer(eb);
905
906         if (ret)
907                 return ret;
908
909         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
910         if (ret)
911                 return ret;
912
913         ret = btrfs_run_dev_stats(trans, root->fs_info);
914         WARN_ON(ret);
915         ret = btrfs_run_dev_replace(trans, root->fs_info);
916         WARN_ON(ret);
917
918         ret = btrfs_run_qgroups(trans, root->fs_info);
919         BUG_ON(ret);
920
921         /* run_qgroups might have added some more refs */
922         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
923         BUG_ON(ret);
924
925         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
926                 next = fs_info->dirty_cowonly_roots.next;
927                 list_del_init(next);
928                 root = list_entry(next, struct btrfs_root, dirty_list);
929
930                 ret = update_cowonly_root(trans, root);
931                 if (ret)
932                         return ret;
933         }
934
935         down_write(&fs_info->extent_commit_sem);
936         switch_commit_root(fs_info->extent_root);
937         up_write(&fs_info->extent_commit_sem);
938
939         btrfs_after_dev_replace_commit(fs_info);
940
941         return 0;
942 }
943
944 /*
945  * dead roots are old snapshots that need to be deleted.  This allocates
946  * a dirty root struct and adds it into the list of dead roots that need to
947  * be deleted
948  */
949 int btrfs_add_dead_root(struct btrfs_root *root)
950 {
951         spin_lock(&root->fs_info->trans_lock);
952         list_add(&root->root_list, &root->fs_info->dead_roots);
953         spin_unlock(&root->fs_info->trans_lock);
954         return 0;
955 }
956
957 /*
958  * update all the cowonly tree roots on disk
959  */
960 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
961                                     struct btrfs_root *root)
962 {
963         struct btrfs_root *gang[8];
964         struct btrfs_fs_info *fs_info = root->fs_info;
965         int i;
966         int ret;
967         int err = 0;
968
969         spin_lock(&fs_info->fs_roots_radix_lock);
970         while (1) {
971                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
972                                                  (void **)gang, 0,
973                                                  ARRAY_SIZE(gang),
974                                                  BTRFS_ROOT_TRANS_TAG);
975                 if (ret == 0)
976                         break;
977                 for (i = 0; i < ret; i++) {
978                         root = gang[i];
979                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
980                                         (unsigned long)root->root_key.objectid,
981                                         BTRFS_ROOT_TRANS_TAG);
982                         spin_unlock(&fs_info->fs_roots_radix_lock);
983
984                         btrfs_free_log(trans, root);
985                         btrfs_update_reloc_root(trans, root);
986                         btrfs_orphan_commit_root(trans, root);
987
988                         btrfs_save_ino_cache(root, trans);
989
990                         /* see comments in should_cow_block() */
991                         root->force_cow = 0;
992                         smp_wmb();
993
994                         if (root->commit_root != root->node) {
995                                 mutex_lock(&root->fs_commit_mutex);
996                                 switch_commit_root(root);
997                                 btrfs_unpin_free_ino(root);
998                                 mutex_unlock(&root->fs_commit_mutex);
999
1000                                 btrfs_set_root_node(&root->root_item,
1001                                                     root->node);
1002                         }
1003
1004                         err = btrfs_update_root(trans, fs_info->tree_root,
1005                                                 &root->root_key,
1006                                                 &root->root_item);
1007                         spin_lock(&fs_info->fs_roots_radix_lock);
1008                         if (err)
1009                                 break;
1010                 }
1011         }
1012         spin_unlock(&fs_info->fs_roots_radix_lock);
1013         return err;
1014 }
1015
1016 /*
1017  * defrag a given btree.
1018  * Every leaf in the btree is read and defragged.
1019  */
1020 int btrfs_defrag_root(struct btrfs_root *root)
1021 {
1022         struct btrfs_fs_info *info = root->fs_info;
1023         struct btrfs_trans_handle *trans;
1024         int ret;
1025
1026         if (xchg(&root->defrag_running, 1))
1027                 return 0;
1028
1029         while (1) {
1030                 trans = btrfs_start_transaction(root, 0);
1031                 if (IS_ERR(trans))
1032                         return PTR_ERR(trans);
1033
1034                 ret = btrfs_defrag_leaves(trans, root);
1035
1036                 btrfs_end_transaction(trans, root);
1037                 btrfs_btree_balance_dirty(info->tree_root);
1038                 cond_resched();
1039
1040                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1041                         break;
1042
1043                 if (btrfs_defrag_cancelled(root->fs_info)) {
1044                         printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1045                         ret = -EAGAIN;
1046                         break;
1047                 }
1048         }
1049         root->defrag_running = 0;
1050         return ret;
1051 }
1052
1053 /*
1054  * new snapshots need to be created at a very specific time in the
1055  * transaction commit.  This does the actual creation
1056  */
1057 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1058                                    struct btrfs_fs_info *fs_info,
1059                                    struct btrfs_pending_snapshot *pending)
1060 {
1061         struct btrfs_key key;
1062         struct btrfs_root_item *new_root_item;
1063         struct btrfs_root *tree_root = fs_info->tree_root;
1064         struct btrfs_root *root = pending->root;
1065         struct btrfs_root *parent_root;
1066         struct btrfs_block_rsv *rsv;
1067         struct inode *parent_inode;
1068         struct btrfs_path *path;
1069         struct btrfs_dir_item *dir_item;
1070         struct dentry *dentry;
1071         struct extent_buffer *tmp;
1072         struct extent_buffer *old;
1073         struct timespec cur_time = CURRENT_TIME;
1074         int ret;
1075         u64 to_reserve = 0;
1076         u64 index = 0;
1077         u64 objectid;
1078         u64 root_flags;
1079         uuid_le new_uuid;
1080
1081         path = btrfs_alloc_path();
1082         if (!path) {
1083                 ret = pending->error = -ENOMEM;
1084                 return ret;
1085         }
1086
1087         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1088         if (!new_root_item) {
1089                 ret = pending->error = -ENOMEM;
1090                 goto root_item_alloc_fail;
1091         }
1092
1093         ret = btrfs_find_free_objectid(tree_root, &objectid);
1094         if (ret) {
1095                 pending->error = ret;
1096                 goto no_free_objectid;
1097         }
1098
1099         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1100
1101         if (to_reserve > 0) {
1102                 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1103                                           to_reserve,
1104                                           BTRFS_RESERVE_NO_FLUSH);
1105                 if (ret) {
1106                         pending->error = ret;
1107                         goto no_free_objectid;
1108                 }
1109         }
1110
1111         ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1112                                    objectid, pending->inherit);
1113         if (ret) {
1114                 pending->error = ret;
1115                 goto no_free_objectid;
1116         }
1117
1118         key.objectid = objectid;
1119         key.offset = (u64)-1;
1120         key.type = BTRFS_ROOT_ITEM_KEY;
1121
1122         rsv = trans->block_rsv;
1123         trans->block_rsv = &pending->block_rsv;
1124         trans->bytes_reserved = trans->block_rsv->reserved;
1125
1126         dentry = pending->dentry;
1127         parent_inode = pending->dir;
1128         parent_root = BTRFS_I(parent_inode)->root;
1129         record_root_in_trans(trans, parent_root);
1130
1131         /*
1132          * insert the directory item
1133          */
1134         ret = btrfs_set_inode_index(parent_inode, &index);
1135         BUG_ON(ret); /* -ENOMEM */
1136
1137         /* check if there is a file/dir which has the same name. */
1138         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1139                                          btrfs_ino(parent_inode),
1140                                          dentry->d_name.name,
1141                                          dentry->d_name.len, 0);
1142         if (dir_item != NULL && !IS_ERR(dir_item)) {
1143                 pending->error = -EEXIST;
1144                 goto fail;
1145         } else if (IS_ERR(dir_item)) {
1146                 ret = PTR_ERR(dir_item);
1147                 btrfs_abort_transaction(trans, root, ret);
1148                 goto fail;
1149         }
1150         btrfs_release_path(path);
1151
1152         /*
1153          * pull in the delayed directory update
1154          * and the delayed inode item
1155          * otherwise we corrupt the FS during
1156          * snapshot
1157          */
1158         ret = btrfs_run_delayed_items(trans, root);
1159         if (ret) {      /* Transaction aborted */
1160                 btrfs_abort_transaction(trans, root, ret);
1161                 goto fail;
1162         }
1163
1164         record_root_in_trans(trans, root);
1165         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1166         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1167         btrfs_check_and_init_root_item(new_root_item);
1168
1169         root_flags = btrfs_root_flags(new_root_item);
1170         if (pending->readonly)
1171                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1172         else
1173                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1174         btrfs_set_root_flags(new_root_item, root_flags);
1175
1176         btrfs_set_root_generation_v2(new_root_item,
1177                         trans->transid);
1178         uuid_le_gen(&new_uuid);
1179         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1180         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1181                         BTRFS_UUID_SIZE);
1182         new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1183         new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1184         btrfs_set_root_otransid(new_root_item, trans->transid);
1185         memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1186         memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1187         btrfs_set_root_stransid(new_root_item, 0);
1188         btrfs_set_root_rtransid(new_root_item, 0);
1189
1190         old = btrfs_lock_root_node(root);
1191         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1192         if (ret) {
1193                 btrfs_tree_unlock(old);
1194                 free_extent_buffer(old);
1195                 btrfs_abort_transaction(trans, root, ret);
1196                 goto fail;
1197         }
1198
1199         btrfs_set_lock_blocking(old);
1200
1201         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1202         /* clean up in any case */
1203         btrfs_tree_unlock(old);
1204         free_extent_buffer(old);
1205         if (ret) {
1206                 btrfs_abort_transaction(trans, root, ret);
1207                 goto fail;
1208         }
1209
1210         /* see comments in should_cow_block() */
1211         root->force_cow = 1;
1212         smp_wmb();
1213
1214         btrfs_set_root_node(new_root_item, tmp);
1215         /* record when the snapshot was created in key.offset */
1216         key.offset = trans->transid;
1217         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1218         btrfs_tree_unlock(tmp);
1219         free_extent_buffer(tmp);
1220         if (ret) {
1221                 btrfs_abort_transaction(trans, root, ret);
1222                 goto fail;
1223         }
1224
1225         /*
1226          * insert root back/forward references
1227          */
1228         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1229                                  parent_root->root_key.objectid,
1230                                  btrfs_ino(parent_inode), index,
1231                                  dentry->d_name.name, dentry->d_name.len);
1232         if (ret) {
1233                 btrfs_abort_transaction(trans, root, ret);
1234                 goto fail;
1235         }
1236
1237         key.offset = (u64)-1;
1238         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1239         if (IS_ERR(pending->snap)) {
1240                 ret = PTR_ERR(pending->snap);
1241                 btrfs_abort_transaction(trans, root, ret);
1242                 goto fail;
1243         }
1244
1245         ret = btrfs_reloc_post_snapshot(trans, pending);
1246         if (ret) {
1247                 btrfs_abort_transaction(trans, root, ret);
1248                 goto fail;
1249         }
1250
1251         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1252         if (ret) {
1253                 btrfs_abort_transaction(trans, root, ret);
1254                 goto fail;
1255         }
1256
1257         ret = btrfs_insert_dir_item(trans, parent_root,
1258                                     dentry->d_name.name, dentry->d_name.len,
1259                                     parent_inode, &key,
1260                                     BTRFS_FT_DIR, index);
1261         /* We have check then name at the beginning, so it is impossible. */
1262         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1263         if (ret) {
1264                 btrfs_abort_transaction(trans, root, ret);
1265                 goto fail;
1266         }
1267
1268         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1269                                          dentry->d_name.len * 2);
1270         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1271         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1272         if (ret)
1273                 btrfs_abort_transaction(trans, root, ret);
1274 fail:
1275         trans->block_rsv = rsv;
1276         trans->bytes_reserved = 0;
1277 no_free_objectid:
1278         kfree(new_root_item);
1279 root_item_alloc_fail:
1280         btrfs_free_path(path);
1281         return ret;
1282 }
1283
1284 /*
1285  * create all the snapshots we've scheduled for creation
1286  */
1287 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1288                                              struct btrfs_fs_info *fs_info)
1289 {
1290         struct btrfs_pending_snapshot *pending;
1291         struct list_head *head = &trans->transaction->pending_snapshots;
1292
1293         list_for_each_entry(pending, head, list)
1294                 create_pending_snapshot(trans, fs_info, pending);
1295         return 0;
1296 }
1297
1298 static void update_super_roots(struct btrfs_root *root)
1299 {
1300         struct btrfs_root_item *root_item;
1301         struct btrfs_super_block *super;
1302
1303         super = root->fs_info->super_copy;
1304
1305         root_item = &root->fs_info->chunk_root->root_item;
1306         super->chunk_root = root_item->bytenr;
1307         super->chunk_root_generation = root_item->generation;
1308         super->chunk_root_level = root_item->level;
1309
1310         root_item = &root->fs_info->tree_root->root_item;
1311         super->root = root_item->bytenr;
1312         super->generation = root_item->generation;
1313         super->root_level = root_item->level;
1314         if (btrfs_test_opt(root, SPACE_CACHE))
1315                 super->cache_generation = root_item->generation;
1316 }
1317
1318 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1319 {
1320         int ret = 0;
1321         spin_lock(&info->trans_lock);
1322         if (info->running_transaction)
1323                 ret = info->running_transaction->in_commit;
1324         spin_unlock(&info->trans_lock);
1325         return ret;
1326 }
1327
1328 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1329 {
1330         int ret = 0;
1331         spin_lock(&info->trans_lock);
1332         if (info->running_transaction)
1333                 ret = info->running_transaction->blocked;
1334         spin_unlock(&info->trans_lock);
1335         return ret;
1336 }
1337
1338 /*
1339  * wait for the current transaction commit to start and block subsequent
1340  * transaction joins
1341  */
1342 static void wait_current_trans_commit_start(struct btrfs_root *root,
1343                                             struct btrfs_transaction *trans)
1344 {
1345         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1346 }
1347
1348 /*
1349  * wait for the current transaction to start and then become unblocked.
1350  * caller holds ref.
1351  */
1352 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1353                                          struct btrfs_transaction *trans)
1354 {
1355         wait_event(root->fs_info->transaction_wait,
1356                    trans->commit_done || (trans->in_commit && !trans->blocked));
1357 }
1358
1359 /*
1360  * commit transactions asynchronously. once btrfs_commit_transaction_async
1361  * returns, any subsequent transaction will not be allowed to join.
1362  */
1363 struct btrfs_async_commit {
1364         struct btrfs_trans_handle *newtrans;
1365         struct btrfs_root *root;
1366         struct work_struct work;
1367 };
1368
1369 static void do_async_commit(struct work_struct *work)
1370 {
1371         struct btrfs_async_commit *ac =
1372                 container_of(work, struct btrfs_async_commit, work);
1373
1374         /*
1375          * We've got freeze protection passed with the transaction.
1376          * Tell lockdep about it.
1377          */
1378         if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1379                 rwsem_acquire_read(
1380                      &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1381                      0, 1, _THIS_IP_);
1382
1383         current->journal_info = ac->newtrans;
1384
1385         btrfs_commit_transaction(ac->newtrans, ac->root);
1386         kfree(ac);
1387 }
1388
1389 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1390                                    struct btrfs_root *root,
1391                                    int wait_for_unblock)
1392 {
1393         struct btrfs_async_commit *ac;
1394         struct btrfs_transaction *cur_trans;
1395
1396         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1397         if (!ac)
1398                 return -ENOMEM;
1399
1400         INIT_WORK(&ac->work, do_async_commit);
1401         ac->root = root;
1402         ac->newtrans = btrfs_join_transaction(root);
1403         if (IS_ERR(ac->newtrans)) {
1404                 int err = PTR_ERR(ac->newtrans);
1405                 kfree(ac);
1406                 return err;
1407         }
1408
1409         /* take transaction reference */
1410         cur_trans = trans->transaction;
1411         atomic_inc(&cur_trans->use_count);
1412
1413         btrfs_end_transaction(trans, root);
1414
1415         /*
1416          * Tell lockdep we've released the freeze rwsem, since the
1417          * async commit thread will be the one to unlock it.
1418          */
1419         if (trans->type < TRANS_JOIN_NOLOCK)
1420                 rwsem_release(
1421                         &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1422                         1, _THIS_IP_);
1423
1424         schedule_work(&ac->work);
1425
1426         /* wait for transaction to start and unblock */
1427         if (wait_for_unblock)
1428                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1429         else
1430                 wait_current_trans_commit_start(root, cur_trans);
1431
1432         if (current->journal_info == trans)
1433                 current->journal_info = NULL;
1434
1435         put_transaction(cur_trans);
1436         return 0;
1437 }
1438
1439
1440 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1441                                 struct btrfs_root *root, int err)
1442 {
1443         struct btrfs_transaction *cur_trans = trans->transaction;
1444         DEFINE_WAIT(wait);
1445
1446         WARN_ON(trans->use_count > 1);
1447
1448         btrfs_abort_transaction(trans, root, err);
1449
1450         spin_lock(&root->fs_info->trans_lock);
1451         list_del_init(&cur_trans->list);
1452         if (cur_trans == root->fs_info->running_transaction) {
1453                 root->fs_info->trans_no_join = 1;
1454                 spin_unlock(&root->fs_info->trans_lock);
1455                 wait_event(cur_trans->writer_wait,
1456                            atomic_read(&cur_trans->num_writers) == 1);
1457
1458                 spin_lock(&root->fs_info->trans_lock);
1459                 root->fs_info->running_transaction = NULL;
1460         }
1461         spin_unlock(&root->fs_info->trans_lock);
1462
1463         btrfs_cleanup_one_transaction(trans->transaction, root);
1464
1465         put_transaction(cur_trans);
1466         put_transaction(cur_trans);
1467
1468         trace_btrfs_transaction_commit(root);
1469
1470         btrfs_scrub_continue(root);
1471
1472         if (current->journal_info == trans)
1473                 current->journal_info = NULL;
1474
1475         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1476 }
1477
1478 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1479                                           struct btrfs_root *root)
1480 {
1481         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1482         int snap_pending = 0;
1483         int ret;
1484
1485         if (!flush_on_commit) {
1486                 spin_lock(&root->fs_info->trans_lock);
1487                 if (!list_empty(&trans->transaction->pending_snapshots))
1488                         snap_pending = 1;
1489                 spin_unlock(&root->fs_info->trans_lock);
1490         }
1491
1492         if (flush_on_commit || snap_pending) {
1493                 ret = btrfs_start_delalloc_inodes(root, 1);
1494                 if (ret)
1495                         return ret;
1496                 btrfs_wait_ordered_extents(root, 1);
1497         }
1498
1499         ret = btrfs_run_delayed_items(trans, root);
1500         if (ret)
1501                 return ret;
1502
1503         /*
1504          * running the delayed items may have added new refs. account
1505          * them now so that they hinder processing of more delayed refs
1506          * as little as possible.
1507          */
1508         btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1509
1510         /*
1511          * rename don't use btrfs_join_transaction, so, once we
1512          * set the transaction to blocked above, we aren't going
1513          * to get any new ordered operations.  We can safely run
1514          * it here and no for sure that nothing new will be added
1515          * to the list
1516          */
1517         ret = btrfs_run_ordered_operations(trans, root, 1);
1518
1519         return ret;
1520 }
1521
1522 /*
1523  * btrfs_transaction state sequence:
1524  *    in_commit = 0, blocked = 0  (initial)
1525  *    in_commit = 1, blocked = 1
1526  *    blocked = 0
1527  *    commit_done = 1
1528  */
1529 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1530                              struct btrfs_root *root)
1531 {
1532         unsigned long joined = 0;
1533         struct btrfs_transaction *cur_trans = trans->transaction;
1534         struct btrfs_transaction *prev_trans = NULL;
1535         DEFINE_WAIT(wait);
1536         int ret;
1537         int should_grow = 0;
1538         unsigned long now = get_seconds();
1539
1540         ret = btrfs_run_ordered_operations(trans, root, 0);
1541         if (ret) {
1542                 btrfs_abort_transaction(trans, root, ret);
1543                 btrfs_end_transaction(trans, root);
1544                 return ret;
1545         }
1546
1547         /* Stop the commit early if ->aborted is set */
1548         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1549                 ret = cur_trans->aborted;
1550                 btrfs_end_transaction(trans, root);
1551                 return ret;
1552         }
1553
1554         /* make a pass through all the delayed refs we have so far
1555          * any runnings procs may add more while we are here
1556          */
1557         ret = btrfs_run_delayed_refs(trans, root, 0);
1558         if (ret) {
1559                 btrfs_end_transaction(trans, root);
1560                 return ret;
1561         }
1562
1563         btrfs_trans_release_metadata(trans, root);
1564         trans->block_rsv = NULL;
1565         if (trans->qgroup_reserved) {
1566                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1567                 trans->qgroup_reserved = 0;
1568         }
1569
1570         cur_trans = trans->transaction;
1571
1572         /*
1573          * set the flushing flag so procs in this transaction have to
1574          * start sending their work down.
1575          */
1576         cur_trans->delayed_refs.flushing = 1;
1577
1578         if (!list_empty(&trans->new_bgs))
1579                 btrfs_create_pending_block_groups(trans, root);
1580
1581         ret = btrfs_run_delayed_refs(trans, root, 0);
1582         if (ret) {
1583                 btrfs_end_transaction(trans, root);
1584                 return ret;
1585         }
1586
1587         spin_lock(&cur_trans->commit_lock);
1588         if (cur_trans->in_commit) {
1589                 spin_unlock(&cur_trans->commit_lock);
1590                 atomic_inc(&cur_trans->use_count);
1591                 ret = btrfs_end_transaction(trans, root);
1592
1593                 wait_for_commit(root, cur_trans);
1594
1595                 put_transaction(cur_trans);
1596
1597                 return ret;
1598         }
1599
1600         trans->transaction->in_commit = 1;
1601         trans->transaction->blocked = 1;
1602         spin_unlock(&cur_trans->commit_lock);
1603         wake_up(&root->fs_info->transaction_blocked_wait);
1604
1605         spin_lock(&root->fs_info->trans_lock);
1606         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1607                 prev_trans = list_entry(cur_trans->list.prev,
1608                                         struct btrfs_transaction, list);
1609                 if (!prev_trans->commit_done) {
1610                         atomic_inc(&prev_trans->use_count);
1611                         spin_unlock(&root->fs_info->trans_lock);
1612
1613                         wait_for_commit(root, prev_trans);
1614
1615                         put_transaction(prev_trans);
1616                 } else {
1617                         spin_unlock(&root->fs_info->trans_lock);
1618                 }
1619         } else {
1620                 spin_unlock(&root->fs_info->trans_lock);
1621         }
1622
1623         if (!btrfs_test_opt(root, SSD) &&
1624             (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1625                 should_grow = 1;
1626
1627         do {
1628                 joined = cur_trans->num_joined;
1629
1630                 WARN_ON(cur_trans != trans->transaction);
1631
1632                 ret = btrfs_flush_all_pending_stuffs(trans, root);
1633                 if (ret)
1634                         goto cleanup_transaction;
1635
1636                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1637                                 TASK_UNINTERRUPTIBLE);
1638
1639                 if (atomic_read(&cur_trans->num_writers) > 1)
1640                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1641                 else if (should_grow)
1642                         schedule_timeout(1);
1643
1644                 finish_wait(&cur_trans->writer_wait, &wait);
1645         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1646                  (should_grow && cur_trans->num_joined != joined));
1647
1648         ret = btrfs_flush_all_pending_stuffs(trans, root);
1649         if (ret)
1650                 goto cleanup_transaction;
1651
1652         /*
1653          * Ok now we need to make sure to block out any other joins while we
1654          * commit the transaction.  We could have started a join before setting
1655          * no_join so make sure to wait for num_writers to == 1 again.
1656          */
1657         spin_lock(&root->fs_info->trans_lock);
1658         root->fs_info->trans_no_join = 1;
1659         spin_unlock(&root->fs_info->trans_lock);
1660         wait_event(cur_trans->writer_wait,
1661                    atomic_read(&cur_trans->num_writers) == 1);
1662
1663         /* ->aborted might be set after the previous check, so check it */
1664         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1665                 ret = cur_trans->aborted;
1666                 goto cleanup_transaction;
1667         }
1668         /*
1669          * the reloc mutex makes sure that we stop
1670          * the balancing code from coming in and moving
1671          * extents around in the middle of the commit
1672          */
1673         mutex_lock(&root->fs_info->reloc_mutex);
1674
1675         /*
1676          * We needn't worry about the delayed items because we will
1677          * deal with them in create_pending_snapshot(), which is the
1678          * core function of the snapshot creation.
1679          */
1680         ret = create_pending_snapshots(trans, root->fs_info);
1681         if (ret) {
1682                 mutex_unlock(&root->fs_info->reloc_mutex);
1683                 goto cleanup_transaction;
1684         }
1685
1686         /*
1687          * We insert the dir indexes of the snapshots and update the inode
1688          * of the snapshots' parents after the snapshot creation, so there
1689          * are some delayed items which are not dealt with. Now deal with
1690          * them.
1691          *
1692          * We needn't worry that this operation will corrupt the snapshots,
1693          * because all the tree which are snapshoted will be forced to COW
1694          * the nodes and leaves.
1695          */
1696         ret = btrfs_run_delayed_items(trans, root);
1697         if (ret) {
1698                 mutex_unlock(&root->fs_info->reloc_mutex);
1699                 goto cleanup_transaction;
1700         }
1701
1702         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1703         if (ret) {
1704                 mutex_unlock(&root->fs_info->reloc_mutex);
1705                 goto cleanup_transaction;
1706         }
1707
1708         /*
1709          * make sure none of the code above managed to slip in a
1710          * delayed item
1711          */
1712         btrfs_assert_delayed_root_empty(root);
1713
1714         WARN_ON(cur_trans != trans->transaction);
1715
1716         btrfs_scrub_pause(root);
1717         /* btrfs_commit_tree_roots is responsible for getting the
1718          * various roots consistent with each other.  Every pointer
1719          * in the tree of tree roots has to point to the most up to date
1720          * root for every subvolume and other tree.  So, we have to keep
1721          * the tree logging code from jumping in and changing any
1722          * of the trees.
1723          *
1724          * At this point in the commit, there can't be any tree-log
1725          * writers, but a little lower down we drop the trans mutex
1726          * and let new people in.  By holding the tree_log_mutex
1727          * from now until after the super is written, we avoid races
1728          * with the tree-log code.
1729          */
1730         mutex_lock(&root->fs_info->tree_log_mutex);
1731
1732         ret = commit_fs_roots(trans, root);
1733         if (ret) {
1734                 mutex_unlock(&root->fs_info->tree_log_mutex);
1735                 mutex_unlock(&root->fs_info->reloc_mutex);
1736                 goto cleanup_transaction;
1737         }
1738
1739         /* commit_fs_roots gets rid of all the tree log roots, it is now
1740          * safe to free the root of tree log roots
1741          */
1742         btrfs_free_log_root_tree(trans, root->fs_info);
1743
1744         ret = commit_cowonly_roots(trans, root);
1745         if (ret) {
1746                 mutex_unlock(&root->fs_info->tree_log_mutex);
1747                 mutex_unlock(&root->fs_info->reloc_mutex);
1748                 goto cleanup_transaction;
1749         }
1750
1751         /*
1752          * The tasks which save the space cache and inode cache may also
1753          * update ->aborted, check it.
1754          */
1755         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1756                 ret = cur_trans->aborted;
1757                 mutex_unlock(&root->fs_info->tree_log_mutex);
1758                 mutex_unlock(&root->fs_info->reloc_mutex);
1759                 goto cleanup_transaction;
1760         }
1761
1762         btrfs_prepare_extent_commit(trans, root);
1763
1764         cur_trans = root->fs_info->running_transaction;
1765
1766         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1767                             root->fs_info->tree_root->node);
1768         switch_commit_root(root->fs_info->tree_root);
1769
1770         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1771                             root->fs_info->chunk_root->node);
1772         switch_commit_root(root->fs_info->chunk_root);
1773
1774         assert_qgroups_uptodate(trans);
1775         update_super_roots(root);
1776
1777         if (!root->fs_info->log_root_recovering) {
1778                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1779                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1780         }
1781
1782         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1783                sizeof(*root->fs_info->super_copy));
1784
1785         trans->transaction->blocked = 0;
1786         spin_lock(&root->fs_info->trans_lock);
1787         root->fs_info->running_transaction = NULL;
1788         root->fs_info->trans_no_join = 0;
1789         spin_unlock(&root->fs_info->trans_lock);
1790         mutex_unlock(&root->fs_info->reloc_mutex);
1791
1792         wake_up(&root->fs_info->transaction_wait);
1793
1794         ret = btrfs_write_and_wait_transaction(trans, root);
1795         if (ret) {
1796                 btrfs_error(root->fs_info, ret,
1797                             "Error while writing out transaction.");
1798                 mutex_unlock(&root->fs_info->tree_log_mutex);
1799                 goto cleanup_transaction;
1800         }
1801
1802         ret = write_ctree_super(trans, root, 0);
1803         if (ret) {
1804                 mutex_unlock(&root->fs_info->tree_log_mutex);
1805                 goto cleanup_transaction;
1806         }
1807
1808         /*
1809          * the super is written, we can safely allow the tree-loggers
1810          * to go about their business
1811          */
1812         mutex_unlock(&root->fs_info->tree_log_mutex);
1813
1814         btrfs_finish_extent_commit(trans, root);
1815
1816         cur_trans->commit_done = 1;
1817
1818         root->fs_info->last_trans_committed = cur_trans->transid;
1819
1820         wake_up(&cur_trans->commit_wait);
1821
1822         spin_lock(&root->fs_info->trans_lock);
1823         list_del_init(&cur_trans->list);
1824         spin_unlock(&root->fs_info->trans_lock);
1825
1826         put_transaction(cur_trans);
1827         put_transaction(cur_trans);
1828
1829         if (trans->type < TRANS_JOIN_NOLOCK)
1830                 sb_end_intwrite(root->fs_info->sb);
1831
1832         trace_btrfs_transaction_commit(root);
1833
1834         btrfs_scrub_continue(root);
1835
1836         if (current->journal_info == trans)
1837                 current->journal_info = NULL;
1838
1839         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1840
1841         if (current != root->fs_info->transaction_kthread)
1842                 btrfs_run_delayed_iputs(root);
1843
1844         return ret;
1845
1846 cleanup_transaction:
1847         btrfs_trans_release_metadata(trans, root);
1848         trans->block_rsv = NULL;
1849         if (trans->qgroup_reserved) {
1850                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1851                 trans->qgroup_reserved = 0;
1852         }
1853         btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1854 //      WARN_ON(1);
1855         if (current->journal_info == trans)
1856                 current->journal_info = NULL;
1857         cleanup_transaction(trans, root, ret);
1858
1859         return ret;
1860 }
1861
1862 /*
1863  * interface function to delete all the snapshots we have scheduled for deletion
1864  */
1865 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1866 {
1867         LIST_HEAD(list);
1868         struct btrfs_fs_info *fs_info = root->fs_info;
1869
1870         spin_lock(&fs_info->trans_lock);
1871         list_splice_init(&fs_info->dead_roots, &list);
1872         spin_unlock(&fs_info->trans_lock);
1873
1874         while (!list_empty(&list)) {
1875                 int ret;
1876
1877                 root = list_entry(list.next, struct btrfs_root, root_list);
1878                 list_del(&root->root_list);
1879
1880                 btrfs_kill_all_delayed_nodes(root);
1881
1882                 if (btrfs_header_backref_rev(root->node) <
1883                     BTRFS_MIXED_BACKREF_REV)
1884                         ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1885                 else
1886                         ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1887                 BUG_ON(ret < 0);
1888         }
1889         return 0;
1890 }