]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/volumes.c
btrfs: drop redundant parameters from btrfs_map_sblock
[karo-tx-linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143                              enum btrfs_map_op op,
144                              u64 logical, u64 *length,
145                              struct btrfs_bio **bbio_ret,
146                              int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152         return &fs_uuids;
153 }
154
155 static struct btrfs_fs_devices *__alloc_fs_devices(void)
156 {
157         struct btrfs_fs_devices *fs_devs;
158
159         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
160         if (!fs_devs)
161                 return ERR_PTR(-ENOMEM);
162
163         mutex_init(&fs_devs->device_list_mutex);
164
165         INIT_LIST_HEAD(&fs_devs->devices);
166         INIT_LIST_HEAD(&fs_devs->resized_devices);
167         INIT_LIST_HEAD(&fs_devs->alloc_list);
168         INIT_LIST_HEAD(&fs_devs->list);
169
170         return fs_devs;
171 }
172
173 /**
174  * alloc_fs_devices - allocate struct btrfs_fs_devices
175  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
176  *              generated.
177  *
178  * Return: a pointer to a new &struct btrfs_fs_devices on success;
179  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
180  * can be destroyed with kfree() right away.
181  */
182 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
183 {
184         struct btrfs_fs_devices *fs_devs;
185
186         fs_devs = __alloc_fs_devices();
187         if (IS_ERR(fs_devs))
188                 return fs_devs;
189
190         if (fsid)
191                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
192         else
193                 generate_random_uuid(fs_devs->fsid);
194
195         return fs_devs;
196 }
197
198 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
199 {
200         struct btrfs_device *device;
201         WARN_ON(fs_devices->opened);
202         while (!list_empty(&fs_devices->devices)) {
203                 device = list_entry(fs_devices->devices.next,
204                                     struct btrfs_device, dev_list);
205                 list_del(&device->dev_list);
206                 rcu_string_free(device->name);
207                 kfree(device);
208         }
209         kfree(fs_devices);
210 }
211
212 static void btrfs_kobject_uevent(struct block_device *bdev,
213                                  enum kobject_action action)
214 {
215         int ret;
216
217         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
218         if (ret)
219                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
220                         action,
221                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
222                         &disk_to_dev(bdev->bd_disk)->kobj);
223 }
224
225 void btrfs_cleanup_fs_uuids(void)
226 {
227         struct btrfs_fs_devices *fs_devices;
228
229         while (!list_empty(&fs_uuids)) {
230                 fs_devices = list_entry(fs_uuids.next,
231                                         struct btrfs_fs_devices, list);
232                 list_del(&fs_devices->list);
233                 free_fs_devices(fs_devices);
234         }
235 }
236
237 static struct btrfs_device *__alloc_device(void)
238 {
239         struct btrfs_device *dev;
240
241         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
242         if (!dev)
243                 return ERR_PTR(-ENOMEM);
244
245         INIT_LIST_HEAD(&dev->dev_list);
246         INIT_LIST_HEAD(&dev->dev_alloc_list);
247         INIT_LIST_HEAD(&dev->resized_list);
248
249         spin_lock_init(&dev->io_lock);
250
251         spin_lock_init(&dev->reada_lock);
252         atomic_set(&dev->reada_in_flight, 0);
253         atomic_set(&dev->dev_stats_ccnt, 0);
254         btrfs_device_data_ordered_init(dev);
255         INIT_RADIX_TREE(&dev->reada_zones, GFP_KERNEL);
256         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
257
258         return dev;
259 }
260
261 static noinline struct btrfs_device *__find_device(struct list_head *head,
262                                                    u64 devid, u8 *uuid)
263 {
264         struct btrfs_device *dev;
265
266         list_for_each_entry(dev, head, dev_list) {
267                 if (dev->devid == devid &&
268                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
269                         return dev;
270                 }
271         }
272         return NULL;
273 }
274
275 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
276 {
277         struct btrfs_fs_devices *fs_devices;
278
279         list_for_each_entry(fs_devices, &fs_uuids, list) {
280                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
281                         return fs_devices;
282         }
283         return NULL;
284 }
285
286 static int
287 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
288                       int flush, struct block_device **bdev,
289                       struct buffer_head **bh)
290 {
291         int ret;
292
293         *bdev = blkdev_get_by_path(device_path, flags, holder);
294
295         if (IS_ERR(*bdev)) {
296                 ret = PTR_ERR(*bdev);
297                 goto error;
298         }
299
300         if (flush)
301                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
302         ret = set_blocksize(*bdev, 4096);
303         if (ret) {
304                 blkdev_put(*bdev, flags);
305                 goto error;
306         }
307         invalidate_bdev(*bdev);
308         *bh = btrfs_read_dev_super(*bdev);
309         if (IS_ERR(*bh)) {
310                 ret = PTR_ERR(*bh);
311                 blkdev_put(*bdev, flags);
312                 goto error;
313         }
314
315         return 0;
316
317 error:
318         *bdev = NULL;
319         *bh = NULL;
320         return ret;
321 }
322
323 static void requeue_list(struct btrfs_pending_bios *pending_bios,
324                         struct bio *head, struct bio *tail)
325 {
326
327         struct bio *old_head;
328
329         old_head = pending_bios->head;
330         pending_bios->head = head;
331         if (pending_bios->tail)
332                 tail->bi_next = old_head;
333         else
334                 pending_bios->tail = tail;
335 }
336
337 /*
338  * we try to collect pending bios for a device so we don't get a large
339  * number of procs sending bios down to the same device.  This greatly
340  * improves the schedulers ability to collect and merge the bios.
341  *
342  * But, it also turns into a long list of bios to process and that is sure
343  * to eventually make the worker thread block.  The solution here is to
344  * make some progress and then put this work struct back at the end of
345  * the list if the block device is congested.  This way, multiple devices
346  * can make progress from a single worker thread.
347  */
348 static noinline void run_scheduled_bios(struct btrfs_device *device)
349 {
350         struct btrfs_fs_info *fs_info = device->fs_info;
351         struct bio *pending;
352         struct backing_dev_info *bdi;
353         struct btrfs_pending_bios *pending_bios;
354         struct bio *tail;
355         struct bio *cur;
356         int again = 0;
357         unsigned long num_run;
358         unsigned long batch_run = 0;
359         unsigned long limit;
360         unsigned long last_waited = 0;
361         int force_reg = 0;
362         int sync_pending = 0;
363         struct blk_plug plug;
364
365         /*
366          * this function runs all the bios we've collected for
367          * a particular device.  We don't want to wander off to
368          * another device without first sending all of these down.
369          * So, setup a plug here and finish it off before we return
370          */
371         blk_start_plug(&plug);
372
373         bdi = device->bdev->bd_bdi;
374         limit = btrfs_async_submit_limit(fs_info);
375         limit = limit * 2 / 3;
376
377 loop:
378         spin_lock(&device->io_lock);
379
380 loop_lock:
381         num_run = 0;
382
383         /* take all the bios off the list at once and process them
384          * later on (without the lock held).  But, remember the
385          * tail and other pointers so the bios can be properly reinserted
386          * into the list if we hit congestion
387          */
388         if (!force_reg && device->pending_sync_bios.head) {
389                 pending_bios = &device->pending_sync_bios;
390                 force_reg = 1;
391         } else {
392                 pending_bios = &device->pending_bios;
393                 force_reg = 0;
394         }
395
396         pending = pending_bios->head;
397         tail = pending_bios->tail;
398         WARN_ON(pending && !tail);
399
400         /*
401          * if pending was null this time around, no bios need processing
402          * at all and we can stop.  Otherwise it'll loop back up again
403          * and do an additional check so no bios are missed.
404          *
405          * device->running_pending is used to synchronize with the
406          * schedule_bio code.
407          */
408         if (device->pending_sync_bios.head == NULL &&
409             device->pending_bios.head == NULL) {
410                 again = 0;
411                 device->running_pending = 0;
412         } else {
413                 again = 1;
414                 device->running_pending = 1;
415         }
416
417         pending_bios->head = NULL;
418         pending_bios->tail = NULL;
419
420         spin_unlock(&device->io_lock);
421
422         while (pending) {
423
424                 rmb();
425                 /* we want to work on both lists, but do more bios on the
426                  * sync list than the regular list
427                  */
428                 if ((num_run > 32 &&
429                     pending_bios != &device->pending_sync_bios &&
430                     device->pending_sync_bios.head) ||
431                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
432                     device->pending_bios.head)) {
433                         spin_lock(&device->io_lock);
434                         requeue_list(pending_bios, pending, tail);
435                         goto loop_lock;
436                 }
437
438                 cur = pending;
439                 pending = pending->bi_next;
440                 cur->bi_next = NULL;
441
442                 /*
443                  * atomic_dec_return implies a barrier for waitqueue_active
444                  */
445                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
446                     waitqueue_active(&fs_info->async_submit_wait))
447                         wake_up(&fs_info->async_submit_wait);
448
449                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
450
451                 /*
452                  * if we're doing the sync list, record that our
453                  * plug has some sync requests on it
454                  *
455                  * If we're doing the regular list and there are
456                  * sync requests sitting around, unplug before
457                  * we add more
458                  */
459                 if (pending_bios == &device->pending_sync_bios) {
460                         sync_pending = 1;
461                 } else if (sync_pending) {
462                         blk_finish_plug(&plug);
463                         blk_start_plug(&plug);
464                         sync_pending = 0;
465                 }
466
467                 btrfsic_submit_bio(cur);
468                 num_run++;
469                 batch_run++;
470
471                 cond_resched();
472
473                 /*
474                  * we made progress, there is more work to do and the bdi
475                  * is now congested.  Back off and let other work structs
476                  * run instead
477                  */
478                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
479                     fs_info->fs_devices->open_devices > 1) {
480                         struct io_context *ioc;
481
482                         ioc = current->io_context;
483
484                         /*
485                          * the main goal here is that we don't want to
486                          * block if we're going to be able to submit
487                          * more requests without blocking.
488                          *
489                          * This code does two great things, it pokes into
490                          * the elevator code from a filesystem _and_
491                          * it makes assumptions about how batching works.
492                          */
493                         if (ioc && ioc->nr_batch_requests > 0 &&
494                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
495                             (last_waited == 0 ||
496                              ioc->last_waited == last_waited)) {
497                                 /*
498                                  * we want to go through our batch of
499                                  * requests and stop.  So, we copy out
500                                  * the ioc->last_waited time and test
501                                  * against it before looping
502                                  */
503                                 last_waited = ioc->last_waited;
504                                 cond_resched();
505                                 continue;
506                         }
507                         spin_lock(&device->io_lock);
508                         requeue_list(pending_bios, pending, tail);
509                         device->running_pending = 1;
510
511                         spin_unlock(&device->io_lock);
512                         btrfs_queue_work(fs_info->submit_workers,
513                                          &device->work);
514                         goto done;
515                 }
516                 /* unplug every 64 requests just for good measure */
517                 if (batch_run % 64 == 0) {
518                         blk_finish_plug(&plug);
519                         blk_start_plug(&plug);
520                         sync_pending = 0;
521                 }
522         }
523
524         cond_resched();
525         if (again)
526                 goto loop;
527
528         spin_lock(&device->io_lock);
529         if (device->pending_bios.head || device->pending_sync_bios.head)
530                 goto loop_lock;
531         spin_unlock(&device->io_lock);
532
533 done:
534         blk_finish_plug(&plug);
535 }
536
537 static void pending_bios_fn(struct btrfs_work *work)
538 {
539         struct btrfs_device *device;
540
541         device = container_of(work, struct btrfs_device, work);
542         run_scheduled_bios(device);
543 }
544
545
546 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
547 {
548         struct btrfs_fs_devices *fs_devs;
549         struct btrfs_device *dev;
550
551         if (!cur_dev->name)
552                 return;
553
554         list_for_each_entry(fs_devs, &fs_uuids, list) {
555                 int del = 1;
556
557                 if (fs_devs->opened)
558                         continue;
559                 if (fs_devs->seeding)
560                         continue;
561
562                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
563
564                         if (dev == cur_dev)
565                                 continue;
566                         if (!dev->name)
567                                 continue;
568
569                         /*
570                          * Todo: This won't be enough. What if the same device
571                          * comes back (with new uuid and) with its mapper path?
572                          * But for now, this does help as mostly an admin will
573                          * either use mapper or non mapper path throughout.
574                          */
575                         rcu_read_lock();
576                         del = strcmp(rcu_str_deref(dev->name),
577                                                 rcu_str_deref(cur_dev->name));
578                         rcu_read_unlock();
579                         if (!del)
580                                 break;
581                 }
582
583                 if (!del) {
584                         /* delete the stale device */
585                         if (fs_devs->num_devices == 1) {
586                                 btrfs_sysfs_remove_fsid(fs_devs);
587                                 list_del(&fs_devs->list);
588                                 free_fs_devices(fs_devs);
589                         } else {
590                                 fs_devs->num_devices--;
591                                 list_del(&dev->dev_list);
592                                 rcu_string_free(dev->name);
593                                 kfree(dev);
594                         }
595                         break;
596                 }
597         }
598 }
599
600 /*
601  * Add new device to list of registered devices
602  *
603  * Returns:
604  * 1   - first time device is seen
605  * 0   - device already known
606  * < 0 - error
607  */
608 static noinline int device_list_add(const char *path,
609                            struct btrfs_super_block *disk_super,
610                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
611 {
612         struct btrfs_device *device;
613         struct btrfs_fs_devices *fs_devices;
614         struct rcu_string *name;
615         int ret = 0;
616         u64 found_transid = btrfs_super_generation(disk_super);
617
618         fs_devices = find_fsid(disk_super->fsid);
619         if (!fs_devices) {
620                 fs_devices = alloc_fs_devices(disk_super->fsid);
621                 if (IS_ERR(fs_devices))
622                         return PTR_ERR(fs_devices);
623
624                 list_add(&fs_devices->list, &fs_uuids);
625
626                 device = NULL;
627         } else {
628                 device = __find_device(&fs_devices->devices, devid,
629                                        disk_super->dev_item.uuid);
630         }
631
632         if (!device) {
633                 if (fs_devices->opened)
634                         return -EBUSY;
635
636                 device = btrfs_alloc_device(NULL, &devid,
637                                             disk_super->dev_item.uuid);
638                 if (IS_ERR(device)) {
639                         /* we can safely leave the fs_devices entry around */
640                         return PTR_ERR(device);
641                 }
642
643                 name = rcu_string_strdup(path, GFP_NOFS);
644                 if (!name) {
645                         kfree(device);
646                         return -ENOMEM;
647                 }
648                 rcu_assign_pointer(device->name, name);
649
650                 mutex_lock(&fs_devices->device_list_mutex);
651                 list_add_rcu(&device->dev_list, &fs_devices->devices);
652                 fs_devices->num_devices++;
653                 mutex_unlock(&fs_devices->device_list_mutex);
654
655                 ret = 1;
656                 device->fs_devices = fs_devices;
657         } else if (!device->name || strcmp(device->name->str, path)) {
658                 /*
659                  * When FS is already mounted.
660                  * 1. If you are here and if the device->name is NULL that
661                  *    means this device was missing at time of FS mount.
662                  * 2. If you are here and if the device->name is different
663                  *    from 'path' that means either
664                  *      a. The same device disappeared and reappeared with
665                  *         different name. or
666                  *      b. The missing-disk-which-was-replaced, has
667                  *         reappeared now.
668                  *
669                  * We must allow 1 and 2a above. But 2b would be a spurious
670                  * and unintentional.
671                  *
672                  * Further in case of 1 and 2a above, the disk at 'path'
673                  * would have missed some transaction when it was away and
674                  * in case of 2a the stale bdev has to be updated as well.
675                  * 2b must not be allowed at all time.
676                  */
677
678                 /*
679                  * For now, we do allow update to btrfs_fs_device through the
680                  * btrfs dev scan cli after FS has been mounted.  We're still
681                  * tracking a problem where systems fail mount by subvolume id
682                  * when we reject replacement on a mounted FS.
683                  */
684                 if (!fs_devices->opened && found_transid < device->generation) {
685                         /*
686                          * That is if the FS is _not_ mounted and if you
687                          * are here, that means there is more than one
688                          * disk with same uuid and devid.We keep the one
689                          * with larger generation number or the last-in if
690                          * generation are equal.
691                          */
692                         return -EEXIST;
693                 }
694
695                 name = rcu_string_strdup(path, GFP_NOFS);
696                 if (!name)
697                         return -ENOMEM;
698                 rcu_string_free(device->name);
699                 rcu_assign_pointer(device->name, name);
700                 if (device->missing) {
701                         fs_devices->missing_devices--;
702                         device->missing = 0;
703                 }
704         }
705
706         /*
707          * Unmount does not free the btrfs_device struct but would zero
708          * generation along with most of the other members. So just update
709          * it back. We need it to pick the disk with largest generation
710          * (as above).
711          */
712         if (!fs_devices->opened)
713                 device->generation = found_transid;
714
715         /*
716          * if there is new btrfs on an already registered device,
717          * then remove the stale device entry.
718          */
719         if (ret > 0)
720                 btrfs_free_stale_device(device);
721
722         *fs_devices_ret = fs_devices;
723
724         return ret;
725 }
726
727 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
728 {
729         struct btrfs_fs_devices *fs_devices;
730         struct btrfs_device *device;
731         struct btrfs_device *orig_dev;
732
733         fs_devices = alloc_fs_devices(orig->fsid);
734         if (IS_ERR(fs_devices))
735                 return fs_devices;
736
737         mutex_lock(&orig->device_list_mutex);
738         fs_devices->total_devices = orig->total_devices;
739
740         /* We have held the volume lock, it is safe to get the devices. */
741         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
742                 struct rcu_string *name;
743
744                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
745                                             orig_dev->uuid);
746                 if (IS_ERR(device))
747                         goto error;
748
749                 /*
750                  * This is ok to do without rcu read locked because we hold the
751                  * uuid mutex so nothing we touch in here is going to disappear.
752                  */
753                 if (orig_dev->name) {
754                         name = rcu_string_strdup(orig_dev->name->str,
755                                         GFP_KERNEL);
756                         if (!name) {
757                                 kfree(device);
758                                 goto error;
759                         }
760                         rcu_assign_pointer(device->name, name);
761                 }
762
763                 list_add(&device->dev_list, &fs_devices->devices);
764                 device->fs_devices = fs_devices;
765                 fs_devices->num_devices++;
766         }
767         mutex_unlock(&orig->device_list_mutex);
768         return fs_devices;
769 error:
770         mutex_unlock(&orig->device_list_mutex);
771         free_fs_devices(fs_devices);
772         return ERR_PTR(-ENOMEM);
773 }
774
775 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
776 {
777         struct btrfs_device *device, *next;
778         struct btrfs_device *latest_dev = NULL;
779
780         mutex_lock(&uuid_mutex);
781 again:
782         /* This is the initialized path, it is safe to release the devices. */
783         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
784                 if (device->in_fs_metadata) {
785                         if (!device->is_tgtdev_for_dev_replace &&
786                             (!latest_dev ||
787                              device->generation > latest_dev->generation)) {
788                                 latest_dev = device;
789                         }
790                         continue;
791                 }
792
793                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
794                         /*
795                          * In the first step, keep the device which has
796                          * the correct fsid and the devid that is used
797                          * for the dev_replace procedure.
798                          * In the second step, the dev_replace state is
799                          * read from the device tree and it is known
800                          * whether the procedure is really active or
801                          * not, which means whether this device is
802                          * used or whether it should be removed.
803                          */
804                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
805                                 continue;
806                         }
807                 }
808                 if (device->bdev) {
809                         blkdev_put(device->bdev, device->mode);
810                         device->bdev = NULL;
811                         fs_devices->open_devices--;
812                 }
813                 if (device->writeable) {
814                         list_del_init(&device->dev_alloc_list);
815                         device->writeable = 0;
816                         if (!device->is_tgtdev_for_dev_replace)
817                                 fs_devices->rw_devices--;
818                 }
819                 list_del_init(&device->dev_list);
820                 fs_devices->num_devices--;
821                 rcu_string_free(device->name);
822                 kfree(device);
823         }
824
825         if (fs_devices->seed) {
826                 fs_devices = fs_devices->seed;
827                 goto again;
828         }
829
830         fs_devices->latest_bdev = latest_dev->bdev;
831
832         mutex_unlock(&uuid_mutex);
833 }
834
835 static void __free_device(struct work_struct *work)
836 {
837         struct btrfs_device *device;
838
839         device = container_of(work, struct btrfs_device, rcu_work);
840         rcu_string_free(device->name);
841         kfree(device);
842 }
843
844 static void free_device(struct rcu_head *head)
845 {
846         struct btrfs_device *device;
847
848         device = container_of(head, struct btrfs_device, rcu);
849
850         INIT_WORK(&device->rcu_work, __free_device);
851         schedule_work(&device->rcu_work);
852 }
853
854 static void btrfs_close_bdev(struct btrfs_device *device)
855 {
856         if (device->bdev && device->writeable) {
857                 sync_blockdev(device->bdev);
858                 invalidate_bdev(device->bdev);
859         }
860
861         if (device->bdev)
862                 blkdev_put(device->bdev, device->mode);
863 }
864
865 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
866 {
867         struct btrfs_fs_devices *fs_devices = device->fs_devices;
868         struct btrfs_device *new_device;
869         struct rcu_string *name;
870
871         if (device->bdev)
872                 fs_devices->open_devices--;
873
874         if (device->writeable &&
875             device->devid != BTRFS_DEV_REPLACE_DEVID) {
876                 list_del_init(&device->dev_alloc_list);
877                 fs_devices->rw_devices--;
878         }
879
880         if (device->missing)
881                 fs_devices->missing_devices--;
882
883         new_device = btrfs_alloc_device(NULL, &device->devid,
884                                         device->uuid);
885         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
886
887         /* Safe because we are under uuid_mutex */
888         if (device->name) {
889                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
890                 BUG_ON(!name); /* -ENOMEM */
891                 rcu_assign_pointer(new_device->name, name);
892         }
893
894         list_replace_rcu(&device->dev_list, &new_device->dev_list);
895         new_device->fs_devices = device->fs_devices;
896 }
897
898 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
899 {
900         struct btrfs_device *device, *tmp;
901         struct list_head pending_put;
902
903         INIT_LIST_HEAD(&pending_put);
904
905         if (--fs_devices->opened > 0)
906                 return 0;
907
908         mutex_lock(&fs_devices->device_list_mutex);
909         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
910                 btrfs_prepare_close_one_device(device);
911                 list_add(&device->dev_list, &pending_put);
912         }
913         mutex_unlock(&fs_devices->device_list_mutex);
914
915         /*
916          * btrfs_show_devname() is using the device_list_mutex,
917          * sometimes call to blkdev_put() leads vfs calling
918          * into this func. So do put outside of device_list_mutex,
919          * as of now.
920          */
921         while (!list_empty(&pending_put)) {
922                 device = list_first_entry(&pending_put,
923                                 struct btrfs_device, dev_list);
924                 list_del(&device->dev_list);
925                 btrfs_close_bdev(device);
926                 call_rcu(&device->rcu, free_device);
927         }
928
929         WARN_ON(fs_devices->open_devices);
930         WARN_ON(fs_devices->rw_devices);
931         fs_devices->opened = 0;
932         fs_devices->seeding = 0;
933
934         return 0;
935 }
936
937 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
938 {
939         struct btrfs_fs_devices *seed_devices = NULL;
940         int ret;
941
942         mutex_lock(&uuid_mutex);
943         ret = __btrfs_close_devices(fs_devices);
944         if (!fs_devices->opened) {
945                 seed_devices = fs_devices->seed;
946                 fs_devices->seed = NULL;
947         }
948         mutex_unlock(&uuid_mutex);
949
950         while (seed_devices) {
951                 fs_devices = seed_devices;
952                 seed_devices = fs_devices->seed;
953                 __btrfs_close_devices(fs_devices);
954                 free_fs_devices(fs_devices);
955         }
956         /*
957          * Wait for rcu kworkers under __btrfs_close_devices
958          * to finish all blkdev_puts so device is really
959          * free when umount is done.
960          */
961         rcu_barrier();
962         return ret;
963 }
964
965 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
966                                 fmode_t flags, void *holder)
967 {
968         struct request_queue *q;
969         struct block_device *bdev;
970         struct list_head *head = &fs_devices->devices;
971         struct btrfs_device *device;
972         struct btrfs_device *latest_dev = NULL;
973         struct buffer_head *bh;
974         struct btrfs_super_block *disk_super;
975         u64 devid;
976         int seeding = 1;
977         int ret = 0;
978
979         flags |= FMODE_EXCL;
980
981         list_for_each_entry(device, head, dev_list) {
982                 if (device->bdev)
983                         continue;
984                 if (!device->name)
985                         continue;
986
987                 /* Just open everything we can; ignore failures here */
988                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
989                                             &bdev, &bh))
990                         continue;
991
992                 disk_super = (struct btrfs_super_block *)bh->b_data;
993                 devid = btrfs_stack_device_id(&disk_super->dev_item);
994                 if (devid != device->devid)
995                         goto error_brelse;
996
997                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
998                            BTRFS_UUID_SIZE))
999                         goto error_brelse;
1000
1001                 device->generation = btrfs_super_generation(disk_super);
1002                 if (!latest_dev ||
1003                     device->generation > latest_dev->generation)
1004                         latest_dev = device;
1005
1006                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1007                         device->writeable = 0;
1008                 } else {
1009                         device->writeable = !bdev_read_only(bdev);
1010                         seeding = 0;
1011                 }
1012
1013                 q = bdev_get_queue(bdev);
1014                 if (blk_queue_discard(q))
1015                         device->can_discard = 1;
1016
1017                 device->bdev = bdev;
1018                 device->in_fs_metadata = 0;
1019                 device->mode = flags;
1020
1021                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1022                         fs_devices->rotating = 1;
1023
1024                 fs_devices->open_devices++;
1025                 if (device->writeable &&
1026                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
1027                         fs_devices->rw_devices++;
1028                         list_add(&device->dev_alloc_list,
1029                                  &fs_devices->alloc_list);
1030                 }
1031                 brelse(bh);
1032                 continue;
1033
1034 error_brelse:
1035                 brelse(bh);
1036                 blkdev_put(bdev, flags);
1037                 continue;
1038         }
1039         if (fs_devices->open_devices == 0) {
1040                 ret = -EINVAL;
1041                 goto out;
1042         }
1043         fs_devices->seeding = seeding;
1044         fs_devices->opened = 1;
1045         fs_devices->latest_bdev = latest_dev->bdev;
1046         fs_devices->total_rw_bytes = 0;
1047 out:
1048         return ret;
1049 }
1050
1051 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1052                        fmode_t flags, void *holder)
1053 {
1054         int ret;
1055
1056         mutex_lock(&uuid_mutex);
1057         if (fs_devices->opened) {
1058                 fs_devices->opened++;
1059                 ret = 0;
1060         } else {
1061                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1062         }
1063         mutex_unlock(&uuid_mutex);
1064         return ret;
1065 }
1066
1067 void btrfs_release_disk_super(struct page *page)
1068 {
1069         kunmap(page);
1070         put_page(page);
1071 }
1072
1073 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1074                 struct page **page, struct btrfs_super_block **disk_super)
1075 {
1076         void *p;
1077         pgoff_t index;
1078
1079         /* make sure our super fits in the device */
1080         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1081                 return 1;
1082
1083         /* make sure our super fits in the page */
1084         if (sizeof(**disk_super) > PAGE_SIZE)
1085                 return 1;
1086
1087         /* make sure our super doesn't straddle pages on disk */
1088         index = bytenr >> PAGE_SHIFT;
1089         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1090                 return 1;
1091
1092         /* pull in the page with our super */
1093         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1094                                    index, GFP_KERNEL);
1095
1096         if (IS_ERR_OR_NULL(*page))
1097                 return 1;
1098
1099         p = kmap(*page);
1100
1101         /* align our pointer to the offset of the super block */
1102         *disk_super = p + (bytenr & ~PAGE_MASK);
1103
1104         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1105             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1106                 btrfs_release_disk_super(*page);
1107                 return 1;
1108         }
1109
1110         if ((*disk_super)->label[0] &&
1111                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1112                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1113
1114         return 0;
1115 }
1116
1117 /*
1118  * Look for a btrfs signature on a device. This may be called out of the mount path
1119  * and we are not allowed to call set_blocksize during the scan. The superblock
1120  * is read via pagecache
1121  */
1122 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1123                           struct btrfs_fs_devices **fs_devices_ret)
1124 {
1125         struct btrfs_super_block *disk_super;
1126         struct block_device *bdev;
1127         struct page *page;
1128         int ret = -EINVAL;
1129         u64 devid;
1130         u64 transid;
1131         u64 total_devices;
1132         u64 bytenr;
1133
1134         /*
1135          * we would like to check all the supers, but that would make
1136          * a btrfs mount succeed after a mkfs from a different FS.
1137          * So, we need to add a special mount option to scan for
1138          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1139          */
1140         bytenr = btrfs_sb_offset(0);
1141         flags |= FMODE_EXCL;
1142         mutex_lock(&uuid_mutex);
1143
1144         bdev = blkdev_get_by_path(path, flags, holder);
1145         if (IS_ERR(bdev)) {
1146                 ret = PTR_ERR(bdev);
1147                 goto error;
1148         }
1149
1150         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1151                 goto error_bdev_put;
1152
1153         devid = btrfs_stack_device_id(&disk_super->dev_item);
1154         transid = btrfs_super_generation(disk_super);
1155         total_devices = btrfs_super_num_devices(disk_super);
1156
1157         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1158         if (ret > 0) {
1159                 if (disk_super->label[0]) {
1160                         pr_info("BTRFS: device label %s ", disk_super->label);
1161                 } else {
1162                         pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1163                 }
1164
1165                 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1166                 ret = 0;
1167         }
1168         if (!ret && fs_devices_ret)
1169                 (*fs_devices_ret)->total_devices = total_devices;
1170
1171         btrfs_release_disk_super(page);
1172
1173 error_bdev_put:
1174         blkdev_put(bdev, flags);
1175 error:
1176         mutex_unlock(&uuid_mutex);
1177         return ret;
1178 }
1179
1180 /* helper to account the used device space in the range */
1181 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1182                                    u64 end, u64 *length)
1183 {
1184         struct btrfs_key key;
1185         struct btrfs_root *root = device->fs_info->dev_root;
1186         struct btrfs_dev_extent *dev_extent;
1187         struct btrfs_path *path;
1188         u64 extent_end;
1189         int ret;
1190         int slot;
1191         struct extent_buffer *l;
1192
1193         *length = 0;
1194
1195         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1196                 return 0;
1197
1198         path = btrfs_alloc_path();
1199         if (!path)
1200                 return -ENOMEM;
1201         path->reada = READA_FORWARD;
1202
1203         key.objectid = device->devid;
1204         key.offset = start;
1205         key.type = BTRFS_DEV_EXTENT_KEY;
1206
1207         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1208         if (ret < 0)
1209                 goto out;
1210         if (ret > 0) {
1211                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1212                 if (ret < 0)
1213                         goto out;
1214         }
1215
1216         while (1) {
1217                 l = path->nodes[0];
1218                 slot = path->slots[0];
1219                 if (slot >= btrfs_header_nritems(l)) {
1220                         ret = btrfs_next_leaf(root, path);
1221                         if (ret == 0)
1222                                 continue;
1223                         if (ret < 0)
1224                                 goto out;
1225
1226                         break;
1227                 }
1228                 btrfs_item_key_to_cpu(l, &key, slot);
1229
1230                 if (key.objectid < device->devid)
1231                         goto next;
1232
1233                 if (key.objectid > device->devid)
1234                         break;
1235
1236                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1237                         goto next;
1238
1239                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1240                 extent_end = key.offset + btrfs_dev_extent_length(l,
1241                                                                   dev_extent);
1242                 if (key.offset <= start && extent_end > end) {
1243                         *length = end - start + 1;
1244                         break;
1245                 } else if (key.offset <= start && extent_end > start)
1246                         *length += extent_end - start;
1247                 else if (key.offset > start && extent_end <= end)
1248                         *length += extent_end - key.offset;
1249                 else if (key.offset > start && key.offset <= end) {
1250                         *length += end - key.offset + 1;
1251                         break;
1252                 } else if (key.offset > end)
1253                         break;
1254
1255 next:
1256                 path->slots[0]++;
1257         }
1258         ret = 0;
1259 out:
1260         btrfs_free_path(path);
1261         return ret;
1262 }
1263
1264 static int contains_pending_extent(struct btrfs_transaction *transaction,
1265                                    struct btrfs_device *device,
1266                                    u64 *start, u64 len)
1267 {
1268         struct btrfs_fs_info *fs_info = device->fs_info;
1269         struct extent_map *em;
1270         struct list_head *search_list = &fs_info->pinned_chunks;
1271         int ret = 0;
1272         u64 physical_start = *start;
1273
1274         if (transaction)
1275                 search_list = &transaction->pending_chunks;
1276 again:
1277         list_for_each_entry(em, search_list, list) {
1278                 struct map_lookup *map;
1279                 int i;
1280
1281                 map = em->map_lookup;
1282                 for (i = 0; i < map->num_stripes; i++) {
1283                         u64 end;
1284
1285                         if (map->stripes[i].dev != device)
1286                                 continue;
1287                         if (map->stripes[i].physical >= physical_start + len ||
1288                             map->stripes[i].physical + em->orig_block_len <=
1289                             physical_start)
1290                                 continue;
1291                         /*
1292                          * Make sure that while processing the pinned list we do
1293                          * not override our *start with a lower value, because
1294                          * we can have pinned chunks that fall within this
1295                          * device hole and that have lower physical addresses
1296                          * than the pending chunks we processed before. If we
1297                          * do not take this special care we can end up getting
1298                          * 2 pending chunks that start at the same physical
1299                          * device offsets because the end offset of a pinned
1300                          * chunk can be equal to the start offset of some
1301                          * pending chunk.
1302                          */
1303                         end = map->stripes[i].physical + em->orig_block_len;
1304                         if (end > *start) {
1305                                 *start = end;
1306                                 ret = 1;
1307                         }
1308                 }
1309         }
1310         if (search_list != &fs_info->pinned_chunks) {
1311                 search_list = &fs_info->pinned_chunks;
1312                 goto again;
1313         }
1314
1315         return ret;
1316 }
1317
1318
1319 /*
1320  * find_free_dev_extent_start - find free space in the specified device
1321  * @device:       the device which we search the free space in
1322  * @num_bytes:    the size of the free space that we need
1323  * @search_start: the position from which to begin the search
1324  * @start:        store the start of the free space.
1325  * @len:          the size of the free space. that we find, or the size
1326  *                of the max free space if we don't find suitable free space
1327  *
1328  * this uses a pretty simple search, the expectation is that it is
1329  * called very infrequently and that a given device has a small number
1330  * of extents
1331  *
1332  * @start is used to store the start of the free space if we find. But if we
1333  * don't find suitable free space, it will be used to store the start position
1334  * of the max free space.
1335  *
1336  * @len is used to store the size of the free space that we find.
1337  * But if we don't find suitable free space, it is used to store the size of
1338  * the max free space.
1339  */
1340 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1341                                struct btrfs_device *device, u64 num_bytes,
1342                                u64 search_start, u64 *start, u64 *len)
1343 {
1344         struct btrfs_fs_info *fs_info = device->fs_info;
1345         struct btrfs_root *root = fs_info->dev_root;
1346         struct btrfs_key key;
1347         struct btrfs_dev_extent *dev_extent;
1348         struct btrfs_path *path;
1349         u64 hole_size;
1350         u64 max_hole_start;
1351         u64 max_hole_size;
1352         u64 extent_end;
1353         u64 search_end = device->total_bytes;
1354         int ret;
1355         int slot;
1356         struct extent_buffer *l;
1357         u64 min_search_start;
1358
1359         /*
1360          * We don't want to overwrite the superblock on the drive nor any area
1361          * used by the boot loader (grub for example), so we make sure to start
1362          * at an offset of at least 1MB.
1363          */
1364         min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
1365         search_start = max(search_start, min_search_start);
1366
1367         path = btrfs_alloc_path();
1368         if (!path)
1369                 return -ENOMEM;
1370
1371         max_hole_start = search_start;
1372         max_hole_size = 0;
1373
1374 again:
1375         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1376                 ret = -ENOSPC;
1377                 goto out;
1378         }
1379
1380         path->reada = READA_FORWARD;
1381         path->search_commit_root = 1;
1382         path->skip_locking = 1;
1383
1384         key.objectid = device->devid;
1385         key.offset = search_start;
1386         key.type = BTRFS_DEV_EXTENT_KEY;
1387
1388         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1389         if (ret < 0)
1390                 goto out;
1391         if (ret > 0) {
1392                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1393                 if (ret < 0)
1394                         goto out;
1395         }
1396
1397         while (1) {
1398                 l = path->nodes[0];
1399                 slot = path->slots[0];
1400                 if (slot >= btrfs_header_nritems(l)) {
1401                         ret = btrfs_next_leaf(root, path);
1402                         if (ret == 0)
1403                                 continue;
1404                         if (ret < 0)
1405                                 goto out;
1406
1407                         break;
1408                 }
1409                 btrfs_item_key_to_cpu(l, &key, slot);
1410
1411                 if (key.objectid < device->devid)
1412                         goto next;
1413
1414                 if (key.objectid > device->devid)
1415                         break;
1416
1417                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1418                         goto next;
1419
1420                 if (key.offset > search_start) {
1421                         hole_size = key.offset - search_start;
1422
1423                         /*
1424                          * Have to check before we set max_hole_start, otherwise
1425                          * we could end up sending back this offset anyway.
1426                          */
1427                         if (contains_pending_extent(transaction, device,
1428                                                     &search_start,
1429                                                     hole_size)) {
1430                                 if (key.offset >= search_start) {
1431                                         hole_size = key.offset - search_start;
1432                                 } else {
1433                                         WARN_ON_ONCE(1);
1434                                         hole_size = 0;
1435                                 }
1436                         }
1437
1438                         if (hole_size > max_hole_size) {
1439                                 max_hole_start = search_start;
1440                                 max_hole_size = hole_size;
1441                         }
1442
1443                         /*
1444                          * If this free space is greater than which we need,
1445                          * it must be the max free space that we have found
1446                          * until now, so max_hole_start must point to the start
1447                          * of this free space and the length of this free space
1448                          * is stored in max_hole_size. Thus, we return
1449                          * max_hole_start and max_hole_size and go back to the
1450                          * caller.
1451                          */
1452                         if (hole_size >= num_bytes) {
1453                                 ret = 0;
1454                                 goto out;
1455                         }
1456                 }
1457
1458                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1459                 extent_end = key.offset + btrfs_dev_extent_length(l,
1460                                                                   dev_extent);
1461                 if (extent_end > search_start)
1462                         search_start = extent_end;
1463 next:
1464                 path->slots[0]++;
1465                 cond_resched();
1466         }
1467
1468         /*
1469          * At this point, search_start should be the end of
1470          * allocated dev extents, and when shrinking the device,
1471          * search_end may be smaller than search_start.
1472          */
1473         if (search_end > search_start) {
1474                 hole_size = search_end - search_start;
1475
1476                 if (contains_pending_extent(transaction, device, &search_start,
1477                                             hole_size)) {
1478                         btrfs_release_path(path);
1479                         goto again;
1480                 }
1481
1482                 if (hole_size > max_hole_size) {
1483                         max_hole_start = search_start;
1484                         max_hole_size = hole_size;
1485                 }
1486         }
1487
1488         /* See above. */
1489         if (max_hole_size < num_bytes)
1490                 ret = -ENOSPC;
1491         else
1492                 ret = 0;
1493
1494 out:
1495         btrfs_free_path(path);
1496         *start = max_hole_start;
1497         if (len)
1498                 *len = max_hole_size;
1499         return ret;
1500 }
1501
1502 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1503                          struct btrfs_device *device, u64 num_bytes,
1504                          u64 *start, u64 *len)
1505 {
1506         /* FIXME use last free of some kind */
1507         return find_free_dev_extent_start(trans->transaction, device,
1508                                           num_bytes, 0, start, len);
1509 }
1510
1511 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1512                           struct btrfs_device *device,
1513                           u64 start, u64 *dev_extent_len)
1514 {
1515         struct btrfs_fs_info *fs_info = device->fs_info;
1516         struct btrfs_root *root = fs_info->dev_root;
1517         int ret;
1518         struct btrfs_path *path;
1519         struct btrfs_key key;
1520         struct btrfs_key found_key;
1521         struct extent_buffer *leaf = NULL;
1522         struct btrfs_dev_extent *extent = NULL;
1523
1524         path = btrfs_alloc_path();
1525         if (!path)
1526                 return -ENOMEM;
1527
1528         key.objectid = device->devid;
1529         key.offset = start;
1530         key.type = BTRFS_DEV_EXTENT_KEY;
1531 again:
1532         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1533         if (ret > 0) {
1534                 ret = btrfs_previous_item(root, path, key.objectid,
1535                                           BTRFS_DEV_EXTENT_KEY);
1536                 if (ret)
1537                         goto out;
1538                 leaf = path->nodes[0];
1539                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1540                 extent = btrfs_item_ptr(leaf, path->slots[0],
1541                                         struct btrfs_dev_extent);
1542                 BUG_ON(found_key.offset > start || found_key.offset +
1543                        btrfs_dev_extent_length(leaf, extent) < start);
1544                 key = found_key;
1545                 btrfs_release_path(path);
1546                 goto again;
1547         } else if (ret == 0) {
1548                 leaf = path->nodes[0];
1549                 extent = btrfs_item_ptr(leaf, path->slots[0],
1550                                         struct btrfs_dev_extent);
1551         } else {
1552                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1553                 goto out;
1554         }
1555
1556         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1557
1558         ret = btrfs_del_item(trans, root, path);
1559         if (ret) {
1560                 btrfs_handle_fs_error(fs_info, ret,
1561                                       "Failed to remove dev extent item");
1562         } else {
1563                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1564         }
1565 out:
1566         btrfs_free_path(path);
1567         return ret;
1568 }
1569
1570 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1571                                   struct btrfs_device *device,
1572                                   u64 chunk_tree, u64 chunk_objectid,
1573                                   u64 chunk_offset, u64 start, u64 num_bytes)
1574 {
1575         int ret;
1576         struct btrfs_path *path;
1577         struct btrfs_fs_info *fs_info = device->fs_info;
1578         struct btrfs_root *root = fs_info->dev_root;
1579         struct btrfs_dev_extent *extent;
1580         struct extent_buffer *leaf;
1581         struct btrfs_key key;
1582
1583         WARN_ON(!device->in_fs_metadata);
1584         WARN_ON(device->is_tgtdev_for_dev_replace);
1585         path = btrfs_alloc_path();
1586         if (!path)
1587                 return -ENOMEM;
1588
1589         key.objectid = device->devid;
1590         key.offset = start;
1591         key.type = BTRFS_DEV_EXTENT_KEY;
1592         ret = btrfs_insert_empty_item(trans, root, path, &key,
1593                                       sizeof(*extent));
1594         if (ret)
1595                 goto out;
1596
1597         leaf = path->nodes[0];
1598         extent = btrfs_item_ptr(leaf, path->slots[0],
1599                                 struct btrfs_dev_extent);
1600         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1601         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1602         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1603
1604         write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1605
1606         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1607         btrfs_mark_buffer_dirty(leaf);
1608 out:
1609         btrfs_free_path(path);
1610         return ret;
1611 }
1612
1613 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1614 {
1615         struct extent_map_tree *em_tree;
1616         struct extent_map *em;
1617         struct rb_node *n;
1618         u64 ret = 0;
1619
1620         em_tree = &fs_info->mapping_tree.map_tree;
1621         read_lock(&em_tree->lock);
1622         n = rb_last(&em_tree->map);
1623         if (n) {
1624                 em = rb_entry(n, struct extent_map, rb_node);
1625                 ret = em->start + em->len;
1626         }
1627         read_unlock(&em_tree->lock);
1628
1629         return ret;
1630 }
1631
1632 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1633                                     u64 *devid_ret)
1634 {
1635         int ret;
1636         struct btrfs_key key;
1637         struct btrfs_key found_key;
1638         struct btrfs_path *path;
1639
1640         path = btrfs_alloc_path();
1641         if (!path)
1642                 return -ENOMEM;
1643
1644         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1645         key.type = BTRFS_DEV_ITEM_KEY;
1646         key.offset = (u64)-1;
1647
1648         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1649         if (ret < 0)
1650                 goto error;
1651
1652         BUG_ON(ret == 0); /* Corruption */
1653
1654         ret = btrfs_previous_item(fs_info->chunk_root, path,
1655                                   BTRFS_DEV_ITEMS_OBJECTID,
1656                                   BTRFS_DEV_ITEM_KEY);
1657         if (ret) {
1658                 *devid_ret = 1;
1659         } else {
1660                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1661                                       path->slots[0]);
1662                 *devid_ret = found_key.offset + 1;
1663         }
1664         ret = 0;
1665 error:
1666         btrfs_free_path(path);
1667         return ret;
1668 }
1669
1670 /*
1671  * the device information is stored in the chunk root
1672  * the btrfs_device struct should be fully filled in
1673  */
1674 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1675                             struct btrfs_fs_info *fs_info,
1676                             struct btrfs_device *device)
1677 {
1678         struct btrfs_root *root = fs_info->chunk_root;
1679         int ret;
1680         struct btrfs_path *path;
1681         struct btrfs_dev_item *dev_item;
1682         struct extent_buffer *leaf;
1683         struct btrfs_key key;
1684         unsigned long ptr;
1685
1686         path = btrfs_alloc_path();
1687         if (!path)
1688                 return -ENOMEM;
1689
1690         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1691         key.type = BTRFS_DEV_ITEM_KEY;
1692         key.offset = device->devid;
1693
1694         ret = btrfs_insert_empty_item(trans, root, path, &key,
1695                                       sizeof(*dev_item));
1696         if (ret)
1697                 goto out;
1698
1699         leaf = path->nodes[0];
1700         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1701
1702         btrfs_set_device_id(leaf, dev_item, device->devid);
1703         btrfs_set_device_generation(leaf, dev_item, 0);
1704         btrfs_set_device_type(leaf, dev_item, device->type);
1705         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1706         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1707         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1708         btrfs_set_device_total_bytes(leaf, dev_item,
1709                                      btrfs_device_get_disk_total_bytes(device));
1710         btrfs_set_device_bytes_used(leaf, dev_item,
1711                                     btrfs_device_get_bytes_used(device));
1712         btrfs_set_device_group(leaf, dev_item, 0);
1713         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1714         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1715         btrfs_set_device_start_offset(leaf, dev_item, 0);
1716
1717         ptr = btrfs_device_uuid(dev_item);
1718         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1719         ptr = btrfs_device_fsid(dev_item);
1720         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1721         btrfs_mark_buffer_dirty(leaf);
1722
1723         ret = 0;
1724 out:
1725         btrfs_free_path(path);
1726         return ret;
1727 }
1728
1729 /*
1730  * Function to update ctime/mtime for a given device path.
1731  * Mainly used for ctime/mtime based probe like libblkid.
1732  */
1733 static void update_dev_time(const char *path_name)
1734 {
1735         struct file *filp;
1736
1737         filp = filp_open(path_name, O_RDWR, 0);
1738         if (IS_ERR(filp))
1739                 return;
1740         file_update_time(filp);
1741         filp_close(filp, NULL);
1742 }
1743
1744 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1745                              struct btrfs_device *device)
1746 {
1747         struct btrfs_root *root = fs_info->chunk_root;
1748         int ret;
1749         struct btrfs_path *path;
1750         struct btrfs_key key;
1751         struct btrfs_trans_handle *trans;
1752
1753         path = btrfs_alloc_path();
1754         if (!path)
1755                 return -ENOMEM;
1756
1757         trans = btrfs_start_transaction(root, 0);
1758         if (IS_ERR(trans)) {
1759                 btrfs_free_path(path);
1760                 return PTR_ERR(trans);
1761         }
1762         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1763         key.type = BTRFS_DEV_ITEM_KEY;
1764         key.offset = device->devid;
1765
1766         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1767         if (ret < 0)
1768                 goto out;
1769
1770         if (ret > 0) {
1771                 ret = -ENOENT;
1772                 goto out;
1773         }
1774
1775         ret = btrfs_del_item(trans, root, path);
1776         if (ret)
1777                 goto out;
1778 out:
1779         btrfs_free_path(path);
1780         btrfs_commit_transaction(trans);
1781         return ret;
1782 }
1783
1784 /*
1785  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1786  * filesystem. It's up to the caller to adjust that number regarding eg. device
1787  * replace.
1788  */
1789 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1790                 u64 num_devices)
1791 {
1792         u64 all_avail;
1793         unsigned seq;
1794         int i;
1795
1796         do {
1797                 seq = read_seqbegin(&fs_info->profiles_lock);
1798
1799                 all_avail = fs_info->avail_data_alloc_bits |
1800                             fs_info->avail_system_alloc_bits |
1801                             fs_info->avail_metadata_alloc_bits;
1802         } while (read_seqretry(&fs_info->profiles_lock, seq));
1803
1804         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1805                 if (!(all_avail & btrfs_raid_group[i]))
1806                         continue;
1807
1808                 if (num_devices < btrfs_raid_array[i].devs_min) {
1809                         int ret = btrfs_raid_mindev_error[i];
1810
1811                         if (ret)
1812                                 return ret;
1813                 }
1814         }
1815
1816         return 0;
1817 }
1818
1819 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1820                                         struct btrfs_device *device)
1821 {
1822         struct btrfs_device *next_device;
1823
1824         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1825                 if (next_device != device &&
1826                         !next_device->missing && next_device->bdev)
1827                         return next_device;
1828         }
1829
1830         return NULL;
1831 }
1832
1833 /*
1834  * Helper function to check if the given device is part of s_bdev / latest_bdev
1835  * and replace it with the provided or the next active device, in the context
1836  * where this function called, there should be always be another device (or
1837  * this_dev) which is active.
1838  */
1839 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1840                 struct btrfs_device *device, struct btrfs_device *this_dev)
1841 {
1842         struct btrfs_device *next_device;
1843
1844         if (this_dev)
1845                 next_device = this_dev;
1846         else
1847                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1848                                                                 device);
1849         ASSERT(next_device);
1850
1851         if (fs_info->sb->s_bdev &&
1852                         (fs_info->sb->s_bdev == device->bdev))
1853                 fs_info->sb->s_bdev = next_device->bdev;
1854
1855         if (fs_info->fs_devices->latest_bdev == device->bdev)
1856                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1857 }
1858
1859 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1860                 u64 devid)
1861 {
1862         struct btrfs_device *device;
1863         struct btrfs_fs_devices *cur_devices;
1864         u64 num_devices;
1865         int ret = 0;
1866         bool clear_super = false;
1867
1868         mutex_lock(&uuid_mutex);
1869
1870         num_devices = fs_info->fs_devices->num_devices;
1871         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1872         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1873                 WARN_ON(num_devices < 1);
1874                 num_devices--;
1875         }
1876         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1877
1878         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1879         if (ret)
1880                 goto out;
1881
1882         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1883                                            &device);
1884         if (ret)
1885                 goto out;
1886
1887         if (device->is_tgtdev_for_dev_replace) {
1888                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1889                 goto out;
1890         }
1891
1892         if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1893                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1894                 goto out;
1895         }
1896
1897         if (device->writeable) {
1898                 mutex_lock(&fs_info->chunk_mutex);
1899                 list_del_init(&device->dev_alloc_list);
1900                 device->fs_devices->rw_devices--;
1901                 mutex_unlock(&fs_info->chunk_mutex);
1902                 clear_super = true;
1903         }
1904
1905         mutex_unlock(&uuid_mutex);
1906         ret = btrfs_shrink_device(device, 0);
1907         mutex_lock(&uuid_mutex);
1908         if (ret)
1909                 goto error_undo;
1910
1911         /*
1912          * TODO: the superblock still includes this device in its num_devices
1913          * counter although write_all_supers() is not locked out. This
1914          * could give a filesystem state which requires a degraded mount.
1915          */
1916         ret = btrfs_rm_dev_item(fs_info, device);
1917         if (ret)
1918                 goto error_undo;
1919
1920         device->in_fs_metadata = 0;
1921         btrfs_scrub_cancel_dev(fs_info, device);
1922
1923         /*
1924          * the device list mutex makes sure that we don't change
1925          * the device list while someone else is writing out all
1926          * the device supers. Whoever is writing all supers, should
1927          * lock the device list mutex before getting the number of
1928          * devices in the super block (super_copy). Conversely,
1929          * whoever updates the number of devices in the super block
1930          * (super_copy) should hold the device list mutex.
1931          */
1932
1933         cur_devices = device->fs_devices;
1934         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1935         list_del_rcu(&device->dev_list);
1936
1937         device->fs_devices->num_devices--;
1938         device->fs_devices->total_devices--;
1939
1940         if (device->missing)
1941                 device->fs_devices->missing_devices--;
1942
1943         btrfs_assign_next_active_device(fs_info, device, NULL);
1944
1945         if (device->bdev) {
1946                 device->fs_devices->open_devices--;
1947                 /* remove sysfs entry */
1948                 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1949         }
1950
1951         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1952         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1953         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1954
1955         /*
1956          * at this point, the device is zero sized and detached from
1957          * the devices list.  All that's left is to zero out the old
1958          * supers and free the device.
1959          */
1960         if (device->writeable)
1961                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1962
1963         btrfs_close_bdev(device);
1964         call_rcu(&device->rcu, free_device);
1965
1966         if (cur_devices->open_devices == 0) {
1967                 struct btrfs_fs_devices *fs_devices;
1968                 fs_devices = fs_info->fs_devices;
1969                 while (fs_devices) {
1970                         if (fs_devices->seed == cur_devices) {
1971                                 fs_devices->seed = cur_devices->seed;
1972                                 break;
1973                         }
1974                         fs_devices = fs_devices->seed;
1975                 }
1976                 cur_devices->seed = NULL;
1977                 __btrfs_close_devices(cur_devices);
1978                 free_fs_devices(cur_devices);
1979         }
1980
1981         fs_info->num_tolerated_disk_barrier_failures =
1982                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
1983
1984 out:
1985         mutex_unlock(&uuid_mutex);
1986         return ret;
1987
1988 error_undo:
1989         if (device->writeable) {
1990                 mutex_lock(&fs_info->chunk_mutex);
1991                 list_add(&device->dev_alloc_list,
1992                          &fs_info->fs_devices->alloc_list);
1993                 device->fs_devices->rw_devices++;
1994                 mutex_unlock(&fs_info->chunk_mutex);
1995         }
1996         goto out;
1997 }
1998
1999 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2000                                         struct btrfs_device *srcdev)
2001 {
2002         struct btrfs_fs_devices *fs_devices;
2003
2004         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2005
2006         /*
2007          * in case of fs with no seed, srcdev->fs_devices will point
2008          * to fs_devices of fs_info. However when the dev being replaced is
2009          * a seed dev it will point to the seed's local fs_devices. In short
2010          * srcdev will have its correct fs_devices in both the cases.
2011          */
2012         fs_devices = srcdev->fs_devices;
2013
2014         list_del_rcu(&srcdev->dev_list);
2015         list_del_rcu(&srcdev->dev_alloc_list);
2016         fs_devices->num_devices--;
2017         if (srcdev->missing)
2018                 fs_devices->missing_devices--;
2019
2020         if (srcdev->writeable)
2021                 fs_devices->rw_devices--;
2022
2023         if (srcdev->bdev)
2024                 fs_devices->open_devices--;
2025 }
2026
2027 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2028                                       struct btrfs_device *srcdev)
2029 {
2030         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2031
2032         if (srcdev->writeable) {
2033                 /* zero out the old super if it is writable */
2034                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2035         }
2036
2037         btrfs_close_bdev(srcdev);
2038
2039         call_rcu(&srcdev->rcu, free_device);
2040
2041         /*
2042          * unless fs_devices is seed fs, num_devices shouldn't go
2043          * zero
2044          */
2045         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2046
2047         /* if this is no devs we rather delete the fs_devices */
2048         if (!fs_devices->num_devices) {
2049                 struct btrfs_fs_devices *tmp_fs_devices;
2050
2051                 tmp_fs_devices = fs_info->fs_devices;
2052                 while (tmp_fs_devices) {
2053                         if (tmp_fs_devices->seed == fs_devices) {
2054                                 tmp_fs_devices->seed = fs_devices->seed;
2055                                 break;
2056                         }
2057                         tmp_fs_devices = tmp_fs_devices->seed;
2058                 }
2059                 fs_devices->seed = NULL;
2060                 __btrfs_close_devices(fs_devices);
2061                 free_fs_devices(fs_devices);
2062         }
2063 }
2064
2065 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2066                                       struct btrfs_device *tgtdev)
2067 {
2068         mutex_lock(&uuid_mutex);
2069         WARN_ON(!tgtdev);
2070         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2071
2072         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2073
2074         if (tgtdev->bdev)
2075                 fs_info->fs_devices->open_devices--;
2076
2077         fs_info->fs_devices->num_devices--;
2078
2079         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2080
2081         list_del_rcu(&tgtdev->dev_list);
2082
2083         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2084         mutex_unlock(&uuid_mutex);
2085
2086         /*
2087          * The update_dev_time() with in btrfs_scratch_superblocks()
2088          * may lead to a call to btrfs_show_devname() which will try
2089          * to hold device_list_mutex. And here this device
2090          * is already out of device list, so we don't have to hold
2091          * the device_list_mutex lock.
2092          */
2093         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2094
2095         btrfs_close_bdev(tgtdev);
2096         call_rcu(&tgtdev->rcu, free_device);
2097 }
2098
2099 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2100                                      const char *device_path,
2101                                      struct btrfs_device **device)
2102 {
2103         int ret = 0;
2104         struct btrfs_super_block *disk_super;
2105         u64 devid;
2106         u8 *dev_uuid;
2107         struct block_device *bdev;
2108         struct buffer_head *bh;
2109
2110         *device = NULL;
2111         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2112                                     fs_info->bdev_holder, 0, &bdev, &bh);
2113         if (ret)
2114                 return ret;
2115         disk_super = (struct btrfs_super_block *)bh->b_data;
2116         devid = btrfs_stack_device_id(&disk_super->dev_item);
2117         dev_uuid = disk_super->dev_item.uuid;
2118         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2119         brelse(bh);
2120         if (!*device)
2121                 ret = -ENOENT;
2122         blkdev_put(bdev, FMODE_READ);
2123         return ret;
2124 }
2125
2126 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2127                                          const char *device_path,
2128                                          struct btrfs_device **device)
2129 {
2130         *device = NULL;
2131         if (strcmp(device_path, "missing") == 0) {
2132                 struct list_head *devices;
2133                 struct btrfs_device *tmp;
2134
2135                 devices = &fs_info->fs_devices->devices;
2136                 /*
2137                  * It is safe to read the devices since the volume_mutex
2138                  * is held by the caller.
2139                  */
2140                 list_for_each_entry(tmp, devices, dev_list) {
2141                         if (tmp->in_fs_metadata && !tmp->bdev) {
2142                                 *device = tmp;
2143                                 break;
2144                         }
2145                 }
2146
2147                 if (!*device)
2148                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2149
2150                 return 0;
2151         } else {
2152                 return btrfs_find_device_by_path(fs_info, device_path, device);
2153         }
2154 }
2155
2156 /*
2157  * Lookup a device given by device id, or the path if the id is 0.
2158  */
2159 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2160                                  const char *devpath,
2161                                  struct btrfs_device **device)
2162 {
2163         int ret;
2164
2165         if (devid) {
2166                 ret = 0;
2167                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2168                 if (!*device)
2169                         ret = -ENOENT;
2170         } else {
2171                 if (!devpath || !devpath[0])
2172                         return -EINVAL;
2173
2174                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2175                                                            device);
2176         }
2177         return ret;
2178 }
2179
2180 /*
2181  * does all the dirty work required for changing file system's UUID.
2182  */
2183 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2184 {
2185         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2186         struct btrfs_fs_devices *old_devices;
2187         struct btrfs_fs_devices *seed_devices;
2188         struct btrfs_super_block *disk_super = fs_info->super_copy;
2189         struct btrfs_device *device;
2190         u64 super_flags;
2191
2192         BUG_ON(!mutex_is_locked(&uuid_mutex));
2193         if (!fs_devices->seeding)
2194                 return -EINVAL;
2195
2196         seed_devices = __alloc_fs_devices();
2197         if (IS_ERR(seed_devices))
2198                 return PTR_ERR(seed_devices);
2199
2200         old_devices = clone_fs_devices(fs_devices);
2201         if (IS_ERR(old_devices)) {
2202                 kfree(seed_devices);
2203                 return PTR_ERR(old_devices);
2204         }
2205
2206         list_add(&old_devices->list, &fs_uuids);
2207
2208         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2209         seed_devices->opened = 1;
2210         INIT_LIST_HEAD(&seed_devices->devices);
2211         INIT_LIST_HEAD(&seed_devices->alloc_list);
2212         mutex_init(&seed_devices->device_list_mutex);
2213
2214         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2215         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2216                               synchronize_rcu);
2217         list_for_each_entry(device, &seed_devices->devices, dev_list)
2218                 device->fs_devices = seed_devices;
2219
2220         mutex_lock(&fs_info->chunk_mutex);
2221         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2222         mutex_unlock(&fs_info->chunk_mutex);
2223
2224         fs_devices->seeding = 0;
2225         fs_devices->num_devices = 0;
2226         fs_devices->open_devices = 0;
2227         fs_devices->missing_devices = 0;
2228         fs_devices->rotating = 0;
2229         fs_devices->seed = seed_devices;
2230
2231         generate_random_uuid(fs_devices->fsid);
2232         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2233         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2234         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2235
2236         super_flags = btrfs_super_flags(disk_super) &
2237                       ~BTRFS_SUPER_FLAG_SEEDING;
2238         btrfs_set_super_flags(disk_super, super_flags);
2239
2240         return 0;
2241 }
2242
2243 /*
2244  * Store the expected generation for seed devices in device items.
2245  */
2246 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2247                                struct btrfs_fs_info *fs_info)
2248 {
2249         struct btrfs_root *root = fs_info->chunk_root;
2250         struct btrfs_path *path;
2251         struct extent_buffer *leaf;
2252         struct btrfs_dev_item *dev_item;
2253         struct btrfs_device *device;
2254         struct btrfs_key key;
2255         u8 fs_uuid[BTRFS_UUID_SIZE];
2256         u8 dev_uuid[BTRFS_UUID_SIZE];
2257         u64 devid;
2258         int ret;
2259
2260         path = btrfs_alloc_path();
2261         if (!path)
2262                 return -ENOMEM;
2263
2264         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2265         key.offset = 0;
2266         key.type = BTRFS_DEV_ITEM_KEY;
2267
2268         while (1) {
2269                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2270                 if (ret < 0)
2271                         goto error;
2272
2273                 leaf = path->nodes[0];
2274 next_slot:
2275                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2276                         ret = btrfs_next_leaf(root, path);
2277                         if (ret > 0)
2278                                 break;
2279                         if (ret < 0)
2280                                 goto error;
2281                         leaf = path->nodes[0];
2282                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2283                         btrfs_release_path(path);
2284                         continue;
2285                 }
2286
2287                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2288                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2289                     key.type != BTRFS_DEV_ITEM_KEY)
2290                         break;
2291
2292                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2293                                           struct btrfs_dev_item);
2294                 devid = btrfs_device_id(leaf, dev_item);
2295                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2296                                    BTRFS_UUID_SIZE);
2297                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2298                                    BTRFS_UUID_SIZE);
2299                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2300                 BUG_ON(!device); /* Logic error */
2301
2302                 if (device->fs_devices->seeding) {
2303                         btrfs_set_device_generation(leaf, dev_item,
2304                                                     device->generation);
2305                         btrfs_mark_buffer_dirty(leaf);
2306                 }
2307
2308                 path->slots[0]++;
2309                 goto next_slot;
2310         }
2311         ret = 0;
2312 error:
2313         btrfs_free_path(path);
2314         return ret;
2315 }
2316
2317 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2318 {
2319         struct btrfs_root *root = fs_info->dev_root;
2320         struct request_queue *q;
2321         struct btrfs_trans_handle *trans;
2322         struct btrfs_device *device;
2323         struct block_device *bdev;
2324         struct list_head *devices;
2325         struct super_block *sb = fs_info->sb;
2326         struct rcu_string *name;
2327         u64 tmp;
2328         int seeding_dev = 0;
2329         int ret = 0;
2330
2331         if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
2332                 return -EROFS;
2333
2334         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2335                                   fs_info->bdev_holder);
2336         if (IS_ERR(bdev))
2337                 return PTR_ERR(bdev);
2338
2339         if (fs_info->fs_devices->seeding) {
2340                 seeding_dev = 1;
2341                 down_write(&sb->s_umount);
2342                 mutex_lock(&uuid_mutex);
2343         }
2344
2345         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2346
2347         devices = &fs_info->fs_devices->devices;
2348
2349         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2350         list_for_each_entry(device, devices, dev_list) {
2351                 if (device->bdev == bdev) {
2352                         ret = -EEXIST;
2353                         mutex_unlock(
2354                                 &fs_info->fs_devices->device_list_mutex);
2355                         goto error;
2356                 }
2357         }
2358         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2359
2360         device = btrfs_alloc_device(fs_info, NULL, NULL);
2361         if (IS_ERR(device)) {
2362                 /* we can safely leave the fs_devices entry around */
2363                 ret = PTR_ERR(device);
2364                 goto error;
2365         }
2366
2367         name = rcu_string_strdup(device_path, GFP_KERNEL);
2368         if (!name) {
2369                 kfree(device);
2370                 ret = -ENOMEM;
2371                 goto error;
2372         }
2373         rcu_assign_pointer(device->name, name);
2374
2375         trans = btrfs_start_transaction(root, 0);
2376         if (IS_ERR(trans)) {
2377                 rcu_string_free(device->name);
2378                 kfree(device);
2379                 ret = PTR_ERR(trans);
2380                 goto error;
2381         }
2382
2383         q = bdev_get_queue(bdev);
2384         if (blk_queue_discard(q))
2385                 device->can_discard = 1;
2386         device->writeable = 1;
2387         device->generation = trans->transid;
2388         device->io_width = fs_info->sectorsize;
2389         device->io_align = fs_info->sectorsize;
2390         device->sector_size = fs_info->sectorsize;
2391         device->total_bytes = i_size_read(bdev->bd_inode);
2392         device->disk_total_bytes = device->total_bytes;
2393         device->commit_total_bytes = device->total_bytes;
2394         device->fs_info = fs_info;
2395         device->bdev = bdev;
2396         device->in_fs_metadata = 1;
2397         device->is_tgtdev_for_dev_replace = 0;
2398         device->mode = FMODE_EXCL;
2399         device->dev_stats_valid = 1;
2400         set_blocksize(device->bdev, 4096);
2401
2402         if (seeding_dev) {
2403                 sb->s_flags &= ~MS_RDONLY;
2404                 ret = btrfs_prepare_sprout(fs_info);
2405                 BUG_ON(ret); /* -ENOMEM */
2406         }
2407
2408         device->fs_devices = fs_info->fs_devices;
2409
2410         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2411         mutex_lock(&fs_info->chunk_mutex);
2412         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2413         list_add(&device->dev_alloc_list,
2414                  &fs_info->fs_devices->alloc_list);
2415         fs_info->fs_devices->num_devices++;
2416         fs_info->fs_devices->open_devices++;
2417         fs_info->fs_devices->rw_devices++;
2418         fs_info->fs_devices->total_devices++;
2419         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2420
2421         spin_lock(&fs_info->free_chunk_lock);
2422         fs_info->free_chunk_space += device->total_bytes;
2423         spin_unlock(&fs_info->free_chunk_lock);
2424
2425         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2426                 fs_info->fs_devices->rotating = 1;
2427
2428         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2429         btrfs_set_super_total_bytes(fs_info->super_copy,
2430                                     tmp + device->total_bytes);
2431
2432         tmp = btrfs_super_num_devices(fs_info->super_copy);
2433         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2434
2435         /* add sysfs device entry */
2436         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2437
2438         /*
2439          * we've got more storage, clear any full flags on the space
2440          * infos
2441          */
2442         btrfs_clear_space_info_full(fs_info);
2443
2444         mutex_unlock(&fs_info->chunk_mutex);
2445         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2446
2447         if (seeding_dev) {
2448                 mutex_lock(&fs_info->chunk_mutex);
2449                 ret = init_first_rw_device(trans, fs_info);
2450                 mutex_unlock(&fs_info->chunk_mutex);
2451                 if (ret) {
2452                         btrfs_abort_transaction(trans, ret);
2453                         goto error_trans;
2454                 }
2455         }
2456
2457         ret = btrfs_add_device(trans, fs_info, device);
2458         if (ret) {
2459                 btrfs_abort_transaction(trans, ret);
2460                 goto error_trans;
2461         }
2462
2463         if (seeding_dev) {
2464                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2465
2466                 ret = btrfs_finish_sprout(trans, fs_info);
2467                 if (ret) {
2468                         btrfs_abort_transaction(trans, ret);
2469                         goto error_trans;
2470                 }
2471
2472                 /* Sprouting would change fsid of the mounted root,
2473                  * so rename the fsid on the sysfs
2474                  */
2475                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2476                                                 fs_info->fsid);
2477                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2478                         btrfs_warn(fs_info,
2479                                    "sysfs: failed to create fsid for sprout");
2480         }
2481
2482         fs_info->num_tolerated_disk_barrier_failures =
2483                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2484         ret = btrfs_commit_transaction(trans);
2485
2486         if (seeding_dev) {
2487                 mutex_unlock(&uuid_mutex);
2488                 up_write(&sb->s_umount);
2489
2490                 if (ret) /* transaction commit */
2491                         return ret;
2492
2493                 ret = btrfs_relocate_sys_chunks(fs_info);
2494                 if (ret < 0)
2495                         btrfs_handle_fs_error(fs_info, ret,
2496                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2497                 trans = btrfs_attach_transaction(root);
2498                 if (IS_ERR(trans)) {
2499                         if (PTR_ERR(trans) == -ENOENT)
2500                                 return 0;
2501                         return PTR_ERR(trans);
2502                 }
2503                 ret = btrfs_commit_transaction(trans);
2504         }
2505
2506         /* Update ctime/mtime for libblkid */
2507         update_dev_time(device_path);
2508         return ret;
2509
2510 error_trans:
2511         btrfs_end_transaction(trans);
2512         rcu_string_free(device->name);
2513         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2514         kfree(device);
2515 error:
2516         blkdev_put(bdev, FMODE_EXCL);
2517         if (seeding_dev) {
2518                 mutex_unlock(&uuid_mutex);
2519                 up_write(&sb->s_umount);
2520         }
2521         return ret;
2522 }
2523
2524 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2525                                   const char *device_path,
2526                                   struct btrfs_device *srcdev,
2527                                   struct btrfs_device **device_out)
2528 {
2529         struct request_queue *q;
2530         struct btrfs_device *device;
2531         struct block_device *bdev;
2532         struct list_head *devices;
2533         struct rcu_string *name;
2534         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2535         int ret = 0;
2536
2537         *device_out = NULL;
2538         if (fs_info->fs_devices->seeding) {
2539                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2540                 return -EINVAL;
2541         }
2542
2543         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2544                                   fs_info->bdev_holder);
2545         if (IS_ERR(bdev)) {
2546                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2547                 return PTR_ERR(bdev);
2548         }
2549
2550         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2551
2552         devices = &fs_info->fs_devices->devices;
2553         list_for_each_entry(device, devices, dev_list) {
2554                 if (device->bdev == bdev) {
2555                         btrfs_err(fs_info,
2556                                   "target device is in the filesystem!");
2557                         ret = -EEXIST;
2558                         goto error;
2559                 }
2560         }
2561
2562
2563         if (i_size_read(bdev->bd_inode) <
2564             btrfs_device_get_total_bytes(srcdev)) {
2565                 btrfs_err(fs_info,
2566                           "target device is smaller than source device!");
2567                 ret = -EINVAL;
2568                 goto error;
2569         }
2570
2571
2572         device = btrfs_alloc_device(NULL, &devid, NULL);
2573         if (IS_ERR(device)) {
2574                 ret = PTR_ERR(device);
2575                 goto error;
2576         }
2577
2578         name = rcu_string_strdup(device_path, GFP_NOFS);
2579         if (!name) {
2580                 kfree(device);
2581                 ret = -ENOMEM;
2582                 goto error;
2583         }
2584         rcu_assign_pointer(device->name, name);
2585
2586         q = bdev_get_queue(bdev);
2587         if (blk_queue_discard(q))
2588                 device->can_discard = 1;
2589         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2590         device->writeable = 1;
2591         device->generation = 0;
2592         device->io_width = fs_info->sectorsize;
2593         device->io_align = fs_info->sectorsize;
2594         device->sector_size = fs_info->sectorsize;
2595         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2596         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2597         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2598         ASSERT(list_empty(&srcdev->resized_list));
2599         device->commit_total_bytes = srcdev->commit_total_bytes;
2600         device->commit_bytes_used = device->bytes_used;
2601         device->fs_info = fs_info;
2602         device->bdev = bdev;
2603         device->in_fs_metadata = 1;
2604         device->is_tgtdev_for_dev_replace = 1;
2605         device->mode = FMODE_EXCL;
2606         device->dev_stats_valid = 1;
2607         set_blocksize(device->bdev, 4096);
2608         device->fs_devices = fs_info->fs_devices;
2609         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2610         fs_info->fs_devices->num_devices++;
2611         fs_info->fs_devices->open_devices++;
2612         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2613
2614         *device_out = device;
2615         return ret;
2616
2617 error:
2618         blkdev_put(bdev, FMODE_EXCL);
2619         return ret;
2620 }
2621
2622 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2623                                               struct btrfs_device *tgtdev)
2624 {
2625         u32 sectorsize = fs_info->sectorsize;
2626
2627         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2628         tgtdev->io_width = sectorsize;
2629         tgtdev->io_align = sectorsize;
2630         tgtdev->sector_size = sectorsize;
2631         tgtdev->fs_info = fs_info;
2632         tgtdev->in_fs_metadata = 1;
2633 }
2634
2635 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2636                                         struct btrfs_device *device)
2637 {
2638         int ret;
2639         struct btrfs_path *path;
2640         struct btrfs_root *root = device->fs_info->chunk_root;
2641         struct btrfs_dev_item *dev_item;
2642         struct extent_buffer *leaf;
2643         struct btrfs_key key;
2644
2645         path = btrfs_alloc_path();
2646         if (!path)
2647                 return -ENOMEM;
2648
2649         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2650         key.type = BTRFS_DEV_ITEM_KEY;
2651         key.offset = device->devid;
2652
2653         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2654         if (ret < 0)
2655                 goto out;
2656
2657         if (ret > 0) {
2658                 ret = -ENOENT;
2659                 goto out;
2660         }
2661
2662         leaf = path->nodes[0];
2663         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2664
2665         btrfs_set_device_id(leaf, dev_item, device->devid);
2666         btrfs_set_device_type(leaf, dev_item, device->type);
2667         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2668         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2669         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2670         btrfs_set_device_total_bytes(leaf, dev_item,
2671                                      btrfs_device_get_disk_total_bytes(device));
2672         btrfs_set_device_bytes_used(leaf, dev_item,
2673                                     btrfs_device_get_bytes_used(device));
2674         btrfs_mark_buffer_dirty(leaf);
2675
2676 out:
2677         btrfs_free_path(path);
2678         return ret;
2679 }
2680
2681 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2682                       struct btrfs_device *device, u64 new_size)
2683 {
2684         struct btrfs_fs_info *fs_info = device->fs_info;
2685         struct btrfs_super_block *super_copy = fs_info->super_copy;
2686         struct btrfs_fs_devices *fs_devices;
2687         u64 old_total;
2688         u64 diff;
2689
2690         if (!device->writeable)
2691                 return -EACCES;
2692
2693         mutex_lock(&fs_info->chunk_mutex);
2694         old_total = btrfs_super_total_bytes(super_copy);
2695         diff = new_size - device->total_bytes;
2696
2697         if (new_size <= device->total_bytes ||
2698             device->is_tgtdev_for_dev_replace) {
2699                 mutex_unlock(&fs_info->chunk_mutex);
2700                 return -EINVAL;
2701         }
2702
2703         fs_devices = fs_info->fs_devices;
2704
2705         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2706         device->fs_devices->total_rw_bytes += diff;
2707
2708         btrfs_device_set_total_bytes(device, new_size);
2709         btrfs_device_set_disk_total_bytes(device, new_size);
2710         btrfs_clear_space_info_full(device->fs_info);
2711         if (list_empty(&device->resized_list))
2712                 list_add_tail(&device->resized_list,
2713                               &fs_devices->resized_devices);
2714         mutex_unlock(&fs_info->chunk_mutex);
2715
2716         return btrfs_update_device(trans, device);
2717 }
2718
2719 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2720                             struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2721                             u64 chunk_offset)
2722 {
2723         struct btrfs_root *root = fs_info->chunk_root;
2724         int ret;
2725         struct btrfs_path *path;
2726         struct btrfs_key key;
2727
2728         path = btrfs_alloc_path();
2729         if (!path)
2730                 return -ENOMEM;
2731
2732         key.objectid = chunk_objectid;
2733         key.offset = chunk_offset;
2734         key.type = BTRFS_CHUNK_ITEM_KEY;
2735
2736         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2737         if (ret < 0)
2738                 goto out;
2739         else if (ret > 0) { /* Logic error or corruption */
2740                 btrfs_handle_fs_error(fs_info, -ENOENT,
2741                                       "Failed lookup while freeing chunk.");
2742                 ret = -ENOENT;
2743                 goto out;
2744         }
2745
2746         ret = btrfs_del_item(trans, root, path);
2747         if (ret < 0)
2748                 btrfs_handle_fs_error(fs_info, ret,
2749                                       "Failed to delete chunk item.");
2750 out:
2751         btrfs_free_path(path);
2752         return ret;
2753 }
2754
2755 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2756                                u64 chunk_objectid, u64 chunk_offset)
2757 {
2758         struct btrfs_super_block *super_copy = fs_info->super_copy;
2759         struct btrfs_disk_key *disk_key;
2760         struct btrfs_chunk *chunk;
2761         u8 *ptr;
2762         int ret = 0;
2763         u32 num_stripes;
2764         u32 array_size;
2765         u32 len = 0;
2766         u32 cur;
2767         struct btrfs_key key;
2768
2769         mutex_lock(&fs_info->chunk_mutex);
2770         array_size = btrfs_super_sys_array_size(super_copy);
2771
2772         ptr = super_copy->sys_chunk_array;
2773         cur = 0;
2774
2775         while (cur < array_size) {
2776                 disk_key = (struct btrfs_disk_key *)ptr;
2777                 btrfs_disk_key_to_cpu(&key, disk_key);
2778
2779                 len = sizeof(*disk_key);
2780
2781                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2782                         chunk = (struct btrfs_chunk *)(ptr + len);
2783                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2784                         len += btrfs_chunk_item_size(num_stripes);
2785                 } else {
2786                         ret = -EIO;
2787                         break;
2788                 }
2789                 if (key.objectid == chunk_objectid &&
2790                     key.offset == chunk_offset) {
2791                         memmove(ptr, ptr + len, array_size - (cur + len));
2792                         array_size -= len;
2793                         btrfs_set_super_sys_array_size(super_copy, array_size);
2794                 } else {
2795                         ptr += len;
2796                         cur += len;
2797                 }
2798         }
2799         mutex_unlock(&fs_info->chunk_mutex);
2800         return ret;
2801 }
2802
2803 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2804                                         u64 logical, u64 length)
2805 {
2806         struct extent_map_tree *em_tree;
2807         struct extent_map *em;
2808
2809         em_tree = &fs_info->mapping_tree.map_tree;
2810         read_lock(&em_tree->lock);
2811         em = lookup_extent_mapping(em_tree, logical, length);
2812         read_unlock(&em_tree->lock);
2813
2814         if (!em) {
2815                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2816                            logical, length);
2817                 return ERR_PTR(-EINVAL);
2818         }
2819
2820         if (em->start > logical || em->start + em->len < logical) {
2821                 btrfs_crit(fs_info,
2822                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2823                            logical, length, em->start, em->start + em->len);
2824                 free_extent_map(em);
2825                 return ERR_PTR(-EINVAL);
2826         }
2827
2828         /* callers are responsible for dropping em's ref. */
2829         return em;
2830 }
2831
2832 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2833                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2834 {
2835         struct extent_map *em;
2836         struct map_lookup *map;
2837         u64 dev_extent_len = 0;
2838         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2839         int i, ret = 0;
2840         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2841
2842         em = get_chunk_map(fs_info, chunk_offset, 1);
2843         if (IS_ERR(em)) {
2844                 /*
2845                  * This is a logic error, but we don't want to just rely on the
2846                  * user having built with ASSERT enabled, so if ASSERT doesn't
2847                  * do anything we still error out.
2848                  */
2849                 ASSERT(0);
2850                 return PTR_ERR(em);
2851         }
2852         map = em->map_lookup;
2853         mutex_lock(&fs_info->chunk_mutex);
2854         check_system_chunk(trans, fs_info, map->type);
2855         mutex_unlock(&fs_info->chunk_mutex);
2856
2857         /*
2858          * Take the device list mutex to prevent races with the final phase of
2859          * a device replace operation that replaces the device object associated
2860          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2861          */
2862         mutex_lock(&fs_devices->device_list_mutex);
2863         for (i = 0; i < map->num_stripes; i++) {
2864                 struct btrfs_device *device = map->stripes[i].dev;
2865                 ret = btrfs_free_dev_extent(trans, device,
2866                                             map->stripes[i].physical,
2867                                             &dev_extent_len);
2868                 if (ret) {
2869                         mutex_unlock(&fs_devices->device_list_mutex);
2870                         btrfs_abort_transaction(trans, ret);
2871                         goto out;
2872                 }
2873
2874                 if (device->bytes_used > 0) {
2875                         mutex_lock(&fs_info->chunk_mutex);
2876                         btrfs_device_set_bytes_used(device,
2877                                         device->bytes_used - dev_extent_len);
2878                         spin_lock(&fs_info->free_chunk_lock);
2879                         fs_info->free_chunk_space += dev_extent_len;
2880                         spin_unlock(&fs_info->free_chunk_lock);
2881                         btrfs_clear_space_info_full(fs_info);
2882                         mutex_unlock(&fs_info->chunk_mutex);
2883                 }
2884
2885                 if (map->stripes[i].dev) {
2886                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2887                         if (ret) {
2888                                 mutex_unlock(&fs_devices->device_list_mutex);
2889                                 btrfs_abort_transaction(trans, ret);
2890                                 goto out;
2891                         }
2892                 }
2893         }
2894         mutex_unlock(&fs_devices->device_list_mutex);
2895
2896         ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
2897         if (ret) {
2898                 btrfs_abort_transaction(trans, ret);
2899                 goto out;
2900         }
2901
2902         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2903
2904         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2905                 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2906                                           chunk_offset);
2907                 if (ret) {
2908                         btrfs_abort_transaction(trans, ret);
2909                         goto out;
2910                 }
2911         }
2912
2913         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2914         if (ret) {
2915                 btrfs_abort_transaction(trans, ret);
2916                 goto out;
2917         }
2918
2919 out:
2920         /* once for us */
2921         free_extent_map(em);
2922         return ret;
2923 }
2924
2925 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2926 {
2927         struct btrfs_root *root = fs_info->chunk_root;
2928         struct btrfs_trans_handle *trans;
2929         int ret;
2930
2931         /*
2932          * Prevent races with automatic removal of unused block groups.
2933          * After we relocate and before we remove the chunk with offset
2934          * chunk_offset, automatic removal of the block group can kick in,
2935          * resulting in a failure when calling btrfs_remove_chunk() below.
2936          *
2937          * Make sure to acquire this mutex before doing a tree search (dev
2938          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2939          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2940          * we release the path used to search the chunk/dev tree and before
2941          * the current task acquires this mutex and calls us.
2942          */
2943         ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2944
2945         ret = btrfs_can_relocate(fs_info, chunk_offset);
2946         if (ret)
2947                 return -ENOSPC;
2948
2949         /* step one, relocate all the extents inside this chunk */
2950         btrfs_scrub_pause(fs_info);
2951         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2952         btrfs_scrub_continue(fs_info);
2953         if (ret)
2954                 return ret;
2955
2956         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2957                                                      chunk_offset);
2958         if (IS_ERR(trans)) {
2959                 ret = PTR_ERR(trans);
2960                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2961                 return ret;
2962         }
2963
2964         /*
2965          * step two, delete the device extents and the
2966          * chunk tree entries
2967          */
2968         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2969         btrfs_end_transaction(trans);
2970         return ret;
2971 }
2972
2973 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2974 {
2975         struct btrfs_root *chunk_root = fs_info->chunk_root;
2976         struct btrfs_path *path;
2977         struct extent_buffer *leaf;
2978         struct btrfs_chunk *chunk;
2979         struct btrfs_key key;
2980         struct btrfs_key found_key;
2981         u64 chunk_type;
2982         bool retried = false;
2983         int failed = 0;
2984         int ret;
2985
2986         path = btrfs_alloc_path();
2987         if (!path)
2988                 return -ENOMEM;
2989
2990 again:
2991         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2992         key.offset = (u64)-1;
2993         key.type = BTRFS_CHUNK_ITEM_KEY;
2994
2995         while (1) {
2996                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2997                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2998                 if (ret < 0) {
2999                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3000                         goto error;
3001                 }
3002                 BUG_ON(ret == 0); /* Corruption */
3003
3004                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3005                                           key.type);
3006                 if (ret)
3007                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3008                 if (ret < 0)
3009                         goto error;
3010                 if (ret > 0)
3011                         break;
3012
3013                 leaf = path->nodes[0];
3014                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3015
3016                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3017                                        struct btrfs_chunk);
3018                 chunk_type = btrfs_chunk_type(leaf, chunk);
3019                 btrfs_release_path(path);
3020
3021                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3022                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3023                         if (ret == -ENOSPC)
3024                                 failed++;
3025                         else
3026                                 BUG_ON(ret);
3027                 }
3028                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3029
3030                 if (found_key.offset == 0)
3031                         break;
3032                 key.offset = found_key.offset - 1;
3033         }
3034         ret = 0;
3035         if (failed && !retried) {
3036                 failed = 0;
3037                 retried = true;
3038                 goto again;
3039         } else if (WARN_ON(failed && retried)) {
3040                 ret = -ENOSPC;
3041         }
3042 error:
3043         btrfs_free_path(path);
3044         return ret;
3045 }
3046
3047 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3048                                struct btrfs_balance_control *bctl)
3049 {
3050         struct btrfs_root *root = fs_info->tree_root;
3051         struct btrfs_trans_handle *trans;
3052         struct btrfs_balance_item *item;
3053         struct btrfs_disk_balance_args disk_bargs;
3054         struct btrfs_path *path;
3055         struct extent_buffer *leaf;
3056         struct btrfs_key key;
3057         int ret, err;
3058
3059         path = btrfs_alloc_path();
3060         if (!path)
3061                 return -ENOMEM;
3062
3063         trans = btrfs_start_transaction(root, 0);
3064         if (IS_ERR(trans)) {
3065                 btrfs_free_path(path);
3066                 return PTR_ERR(trans);
3067         }
3068
3069         key.objectid = BTRFS_BALANCE_OBJECTID;
3070         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3071         key.offset = 0;
3072
3073         ret = btrfs_insert_empty_item(trans, root, path, &key,
3074                                       sizeof(*item));
3075         if (ret)
3076                 goto out;
3077
3078         leaf = path->nodes[0];
3079         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3080
3081         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3082
3083         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3084         btrfs_set_balance_data(leaf, item, &disk_bargs);
3085         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3086         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3087         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3088         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3089
3090         btrfs_set_balance_flags(leaf, item, bctl->flags);
3091
3092         btrfs_mark_buffer_dirty(leaf);
3093 out:
3094         btrfs_free_path(path);
3095         err = btrfs_commit_transaction(trans);
3096         if (err && !ret)
3097                 ret = err;
3098         return ret;
3099 }
3100
3101 static int del_balance_item(struct btrfs_fs_info *fs_info)
3102 {
3103         struct btrfs_root *root = fs_info->tree_root;
3104         struct btrfs_trans_handle *trans;
3105         struct btrfs_path *path;
3106         struct btrfs_key key;
3107         int ret, err;
3108
3109         path = btrfs_alloc_path();
3110         if (!path)
3111                 return -ENOMEM;
3112
3113         trans = btrfs_start_transaction(root, 0);
3114         if (IS_ERR(trans)) {
3115                 btrfs_free_path(path);
3116                 return PTR_ERR(trans);
3117         }
3118
3119         key.objectid = BTRFS_BALANCE_OBJECTID;
3120         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3121         key.offset = 0;
3122
3123         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3124         if (ret < 0)
3125                 goto out;
3126         if (ret > 0) {
3127                 ret = -ENOENT;
3128                 goto out;
3129         }
3130
3131         ret = btrfs_del_item(trans, root, path);
3132 out:
3133         btrfs_free_path(path);
3134         err = btrfs_commit_transaction(trans);
3135         if (err && !ret)
3136                 ret = err;
3137         return ret;
3138 }
3139
3140 /*
3141  * This is a heuristic used to reduce the number of chunks balanced on
3142  * resume after balance was interrupted.
3143  */
3144 static void update_balance_args(struct btrfs_balance_control *bctl)
3145 {
3146         /*
3147          * Turn on soft mode for chunk types that were being converted.
3148          */
3149         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3150                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3151         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3152                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3153         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3154                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3155
3156         /*
3157          * Turn on usage filter if is not already used.  The idea is
3158          * that chunks that we have already balanced should be
3159          * reasonably full.  Don't do it for chunks that are being
3160          * converted - that will keep us from relocating unconverted
3161          * (albeit full) chunks.
3162          */
3163         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3164             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3165             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3166                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3167                 bctl->data.usage = 90;
3168         }
3169         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3170             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3171             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3172                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3173                 bctl->sys.usage = 90;
3174         }
3175         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3176             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3177             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3178                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3179                 bctl->meta.usage = 90;
3180         }
3181 }
3182
3183 /*
3184  * Should be called with both balance and volume mutexes held to
3185  * serialize other volume operations (add_dev/rm_dev/resize) with
3186  * restriper.  Same goes for unset_balance_control.
3187  */
3188 static void set_balance_control(struct btrfs_balance_control *bctl)
3189 {
3190         struct btrfs_fs_info *fs_info = bctl->fs_info;
3191
3192         BUG_ON(fs_info->balance_ctl);
3193
3194         spin_lock(&fs_info->balance_lock);
3195         fs_info->balance_ctl = bctl;
3196         spin_unlock(&fs_info->balance_lock);
3197 }
3198
3199 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3200 {
3201         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3202
3203         BUG_ON(!fs_info->balance_ctl);
3204
3205         spin_lock(&fs_info->balance_lock);
3206         fs_info->balance_ctl = NULL;
3207         spin_unlock(&fs_info->balance_lock);
3208
3209         kfree(bctl);
3210 }
3211
3212 /*
3213  * Balance filters.  Return 1 if chunk should be filtered out
3214  * (should not be balanced).
3215  */
3216 static int chunk_profiles_filter(u64 chunk_type,
3217                                  struct btrfs_balance_args *bargs)
3218 {
3219         chunk_type = chunk_to_extended(chunk_type) &
3220                                 BTRFS_EXTENDED_PROFILE_MASK;
3221
3222         if (bargs->profiles & chunk_type)
3223                 return 0;
3224
3225         return 1;
3226 }
3227
3228 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3229                               struct btrfs_balance_args *bargs)
3230 {
3231         struct btrfs_block_group_cache *cache;
3232         u64 chunk_used;
3233         u64 user_thresh_min;
3234         u64 user_thresh_max;
3235         int ret = 1;
3236
3237         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3238         chunk_used = btrfs_block_group_used(&cache->item);
3239
3240         if (bargs->usage_min == 0)
3241                 user_thresh_min = 0;
3242         else
3243                 user_thresh_min = div_factor_fine(cache->key.offset,
3244                                         bargs->usage_min);
3245
3246         if (bargs->usage_max == 0)
3247                 user_thresh_max = 1;
3248         else if (bargs->usage_max > 100)
3249                 user_thresh_max = cache->key.offset;
3250         else
3251                 user_thresh_max = div_factor_fine(cache->key.offset,
3252                                         bargs->usage_max);
3253
3254         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3255                 ret = 0;
3256
3257         btrfs_put_block_group(cache);
3258         return ret;
3259 }
3260
3261 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3262                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3263 {
3264         struct btrfs_block_group_cache *cache;
3265         u64 chunk_used, user_thresh;
3266         int ret = 1;
3267
3268         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3269         chunk_used = btrfs_block_group_used(&cache->item);
3270
3271         if (bargs->usage_min == 0)
3272                 user_thresh = 1;
3273         else if (bargs->usage > 100)
3274                 user_thresh = cache->key.offset;
3275         else
3276                 user_thresh = div_factor_fine(cache->key.offset,
3277                                               bargs->usage);
3278
3279         if (chunk_used < user_thresh)
3280                 ret = 0;
3281
3282         btrfs_put_block_group(cache);
3283         return ret;
3284 }
3285
3286 static int chunk_devid_filter(struct extent_buffer *leaf,
3287                               struct btrfs_chunk *chunk,
3288                               struct btrfs_balance_args *bargs)
3289 {
3290         struct btrfs_stripe *stripe;
3291         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3292         int i;
3293
3294         for (i = 0; i < num_stripes; i++) {
3295                 stripe = btrfs_stripe_nr(chunk, i);
3296                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3297                         return 0;
3298         }
3299
3300         return 1;
3301 }
3302
3303 /* [pstart, pend) */
3304 static int chunk_drange_filter(struct extent_buffer *leaf,
3305                                struct btrfs_chunk *chunk,
3306                                u64 chunk_offset,
3307                                struct btrfs_balance_args *bargs)
3308 {
3309         struct btrfs_stripe *stripe;
3310         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3311         u64 stripe_offset;
3312         u64 stripe_length;
3313         int factor;
3314         int i;
3315
3316         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3317                 return 0;
3318
3319         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3320              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3321                 factor = num_stripes / 2;
3322         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3323                 factor = num_stripes - 1;
3324         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3325                 factor = num_stripes - 2;
3326         } else {
3327                 factor = num_stripes;
3328         }
3329
3330         for (i = 0; i < num_stripes; i++) {
3331                 stripe = btrfs_stripe_nr(chunk, i);
3332                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3333                         continue;
3334
3335                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3336                 stripe_length = btrfs_chunk_length(leaf, chunk);
3337                 stripe_length = div_u64(stripe_length, factor);
3338
3339                 if (stripe_offset < bargs->pend &&
3340                     stripe_offset + stripe_length > bargs->pstart)
3341                         return 0;
3342         }
3343
3344         return 1;
3345 }
3346
3347 /* [vstart, vend) */
3348 static int chunk_vrange_filter(struct extent_buffer *leaf,
3349                                struct btrfs_chunk *chunk,
3350                                u64 chunk_offset,
3351                                struct btrfs_balance_args *bargs)
3352 {
3353         if (chunk_offset < bargs->vend &&
3354             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3355                 /* at least part of the chunk is inside this vrange */
3356                 return 0;
3357
3358         return 1;
3359 }
3360
3361 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3362                                struct btrfs_chunk *chunk,
3363                                struct btrfs_balance_args *bargs)
3364 {
3365         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3366
3367         if (bargs->stripes_min <= num_stripes
3368                         && num_stripes <= bargs->stripes_max)
3369                 return 0;
3370
3371         return 1;
3372 }
3373
3374 static int chunk_soft_convert_filter(u64 chunk_type,
3375                                      struct btrfs_balance_args *bargs)
3376 {
3377         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3378                 return 0;
3379
3380         chunk_type = chunk_to_extended(chunk_type) &
3381                                 BTRFS_EXTENDED_PROFILE_MASK;
3382
3383         if (bargs->target == chunk_type)
3384                 return 1;
3385
3386         return 0;
3387 }
3388
3389 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3390                                 struct extent_buffer *leaf,
3391                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3392 {
3393         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3394         struct btrfs_balance_args *bargs = NULL;
3395         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3396
3397         /* type filter */
3398         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3399               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3400                 return 0;
3401         }
3402
3403         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3404                 bargs = &bctl->data;
3405         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3406                 bargs = &bctl->sys;
3407         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3408                 bargs = &bctl->meta;
3409
3410         /* profiles filter */
3411         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3412             chunk_profiles_filter(chunk_type, bargs)) {
3413                 return 0;
3414         }
3415
3416         /* usage filter */
3417         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3418             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3419                 return 0;
3420         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3421             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3422                 return 0;
3423         }
3424
3425         /* devid filter */
3426         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3427             chunk_devid_filter(leaf, chunk, bargs)) {
3428                 return 0;
3429         }
3430
3431         /* drange filter, makes sense only with devid filter */
3432         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3433             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3434                 return 0;
3435         }
3436
3437         /* vrange filter */
3438         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3439             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3440                 return 0;
3441         }
3442
3443         /* stripes filter */
3444         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3445             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3446                 return 0;
3447         }
3448
3449         /* soft profile changing mode */
3450         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3451             chunk_soft_convert_filter(chunk_type, bargs)) {
3452                 return 0;
3453         }
3454
3455         /*
3456          * limited by count, must be the last filter
3457          */
3458         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3459                 if (bargs->limit == 0)
3460                         return 0;
3461                 else
3462                         bargs->limit--;
3463         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3464                 /*
3465                  * Same logic as the 'limit' filter; the minimum cannot be
3466                  * determined here because we do not have the global information
3467                  * about the count of all chunks that satisfy the filters.
3468                  */
3469                 if (bargs->limit_max == 0)
3470                         return 0;
3471                 else
3472                         bargs->limit_max--;
3473         }
3474
3475         return 1;
3476 }
3477
3478 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3479 {
3480         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3481         struct btrfs_root *chunk_root = fs_info->chunk_root;
3482         struct btrfs_root *dev_root = fs_info->dev_root;
3483         struct list_head *devices;
3484         struct btrfs_device *device;
3485         u64 old_size;
3486         u64 size_to_free;
3487         u64 chunk_type;
3488         struct btrfs_chunk *chunk;
3489         struct btrfs_path *path = NULL;
3490         struct btrfs_key key;
3491         struct btrfs_key found_key;
3492         struct btrfs_trans_handle *trans;
3493         struct extent_buffer *leaf;
3494         int slot;
3495         int ret;
3496         int enospc_errors = 0;
3497         bool counting = true;
3498         /* The single value limit and min/max limits use the same bytes in the */
3499         u64 limit_data = bctl->data.limit;
3500         u64 limit_meta = bctl->meta.limit;
3501         u64 limit_sys = bctl->sys.limit;
3502         u32 count_data = 0;
3503         u32 count_meta = 0;
3504         u32 count_sys = 0;
3505         int chunk_reserved = 0;
3506         u64 bytes_used = 0;
3507
3508         /* step one make some room on all the devices */
3509         devices = &fs_info->fs_devices->devices;
3510         list_for_each_entry(device, devices, dev_list) {
3511                 old_size = btrfs_device_get_total_bytes(device);
3512                 size_to_free = div_factor(old_size, 1);
3513                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3514                 if (!device->writeable ||
3515                     btrfs_device_get_total_bytes(device) -
3516                     btrfs_device_get_bytes_used(device) > size_to_free ||
3517                     device->is_tgtdev_for_dev_replace)
3518                         continue;
3519
3520                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3521                 if (ret == -ENOSPC)
3522                         break;
3523                 if (ret) {
3524                         /* btrfs_shrink_device never returns ret > 0 */
3525                         WARN_ON(ret > 0);
3526                         goto error;
3527                 }
3528
3529                 trans = btrfs_start_transaction(dev_root, 0);
3530                 if (IS_ERR(trans)) {
3531                         ret = PTR_ERR(trans);
3532                         btrfs_info_in_rcu(fs_info,
3533                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3534                                           rcu_str_deref(device->name), ret,
3535                                           old_size, old_size - size_to_free);
3536                         goto error;
3537                 }
3538
3539                 ret = btrfs_grow_device(trans, device, old_size);
3540                 if (ret) {
3541                         btrfs_end_transaction(trans);
3542                         /* btrfs_grow_device never returns ret > 0 */
3543                         WARN_ON(ret > 0);
3544                         btrfs_info_in_rcu(fs_info,
3545                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3546                                           rcu_str_deref(device->name), ret,
3547                                           old_size, old_size - size_to_free);
3548                         goto error;
3549                 }
3550
3551                 btrfs_end_transaction(trans);
3552         }
3553
3554         /* step two, relocate all the chunks */
3555         path = btrfs_alloc_path();
3556         if (!path) {
3557                 ret = -ENOMEM;
3558                 goto error;
3559         }
3560
3561         /* zero out stat counters */
3562         spin_lock(&fs_info->balance_lock);
3563         memset(&bctl->stat, 0, sizeof(bctl->stat));
3564         spin_unlock(&fs_info->balance_lock);
3565 again:
3566         if (!counting) {
3567                 /*
3568                  * The single value limit and min/max limits use the same bytes
3569                  * in the
3570                  */
3571                 bctl->data.limit = limit_data;
3572                 bctl->meta.limit = limit_meta;
3573                 bctl->sys.limit = limit_sys;
3574         }
3575         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3576         key.offset = (u64)-1;
3577         key.type = BTRFS_CHUNK_ITEM_KEY;
3578
3579         while (1) {
3580                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3581                     atomic_read(&fs_info->balance_cancel_req)) {
3582                         ret = -ECANCELED;
3583                         goto error;
3584                 }
3585
3586                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3587                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3588                 if (ret < 0) {
3589                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3590                         goto error;
3591                 }
3592
3593                 /*
3594                  * this shouldn't happen, it means the last relocate
3595                  * failed
3596                  */
3597                 if (ret == 0)
3598                         BUG(); /* FIXME break ? */
3599
3600                 ret = btrfs_previous_item(chunk_root, path, 0,
3601                                           BTRFS_CHUNK_ITEM_KEY);
3602                 if (ret) {
3603                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3604                         ret = 0;
3605                         break;
3606                 }
3607
3608                 leaf = path->nodes[0];
3609                 slot = path->slots[0];
3610                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3611
3612                 if (found_key.objectid != key.objectid) {
3613                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3614                         break;
3615                 }
3616
3617                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3618                 chunk_type = btrfs_chunk_type(leaf, chunk);
3619
3620                 if (!counting) {
3621                         spin_lock(&fs_info->balance_lock);
3622                         bctl->stat.considered++;
3623                         spin_unlock(&fs_info->balance_lock);
3624                 }
3625
3626                 ret = should_balance_chunk(fs_info, leaf, chunk,
3627                                            found_key.offset);
3628
3629                 btrfs_release_path(path);
3630                 if (!ret) {
3631                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3632                         goto loop;
3633                 }
3634
3635                 if (counting) {
3636                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3637                         spin_lock(&fs_info->balance_lock);
3638                         bctl->stat.expected++;
3639                         spin_unlock(&fs_info->balance_lock);
3640
3641                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3642                                 count_data++;
3643                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3644                                 count_sys++;
3645                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3646                                 count_meta++;
3647
3648                         goto loop;
3649                 }
3650
3651                 /*
3652                  * Apply limit_min filter, no need to check if the LIMITS
3653                  * filter is used, limit_min is 0 by default
3654                  */
3655                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3656                                         count_data < bctl->data.limit_min)
3657                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3658                                         count_meta < bctl->meta.limit_min)
3659                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3660                                         count_sys < bctl->sys.limit_min)) {
3661                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3662                         goto loop;
3663                 }
3664
3665                 ASSERT(fs_info->data_sinfo);
3666                 spin_lock(&fs_info->data_sinfo->lock);
3667                 bytes_used = fs_info->data_sinfo->bytes_used;
3668                 spin_unlock(&fs_info->data_sinfo->lock);
3669
3670                 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3671                     !chunk_reserved && !bytes_used) {
3672                         trans = btrfs_start_transaction(chunk_root, 0);
3673                         if (IS_ERR(trans)) {
3674                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675                                 ret = PTR_ERR(trans);
3676                                 goto error;
3677                         }
3678
3679                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3680                                                       BTRFS_BLOCK_GROUP_DATA);
3681                         btrfs_end_transaction(trans);
3682                         if (ret < 0) {
3683                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3684                                 goto error;
3685                         }
3686                         chunk_reserved = 1;
3687                 }
3688
3689                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3690                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3691                 if (ret && ret != -ENOSPC)
3692                         goto error;
3693                 if (ret == -ENOSPC) {
3694                         enospc_errors++;
3695                 } else {
3696                         spin_lock(&fs_info->balance_lock);
3697                         bctl->stat.completed++;
3698                         spin_unlock(&fs_info->balance_lock);
3699                 }
3700 loop:
3701                 if (found_key.offset == 0)
3702                         break;
3703                 key.offset = found_key.offset - 1;
3704         }
3705
3706         if (counting) {
3707                 btrfs_release_path(path);
3708                 counting = false;
3709                 goto again;
3710         }
3711 error:
3712         btrfs_free_path(path);
3713         if (enospc_errors) {
3714                 btrfs_info(fs_info, "%d enospc errors during balance",
3715                            enospc_errors);
3716                 if (!ret)
3717                         ret = -ENOSPC;
3718         }
3719
3720         return ret;
3721 }
3722
3723 /**
3724  * alloc_profile_is_valid - see if a given profile is valid and reduced
3725  * @flags: profile to validate
3726  * @extended: if true @flags is treated as an extended profile
3727  */
3728 static int alloc_profile_is_valid(u64 flags, int extended)
3729 {
3730         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3731                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3732
3733         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3734
3735         /* 1) check that all other bits are zeroed */
3736         if (flags & ~mask)
3737                 return 0;
3738
3739         /* 2) see if profile is reduced */
3740         if (flags == 0)
3741                 return !extended; /* "0" is valid for usual profiles */
3742
3743         /* true if exactly one bit set */
3744         return (flags & (flags - 1)) == 0;
3745 }
3746
3747 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3748 {
3749         /* cancel requested || normal exit path */
3750         return atomic_read(&fs_info->balance_cancel_req) ||
3751                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3752                  atomic_read(&fs_info->balance_cancel_req) == 0);
3753 }
3754
3755 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3756 {
3757         int ret;
3758
3759         unset_balance_control(fs_info);
3760         ret = del_balance_item(fs_info);
3761         if (ret)
3762                 btrfs_handle_fs_error(fs_info, ret, NULL);
3763
3764         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3765 }
3766
3767 /* Non-zero return value signifies invalidity */
3768 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3769                 u64 allowed)
3770 {
3771         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3772                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3773                  (bctl_arg->target & ~allowed)));
3774 }
3775
3776 /*
3777  * Should be called with both balance and volume mutexes held
3778  */
3779 int btrfs_balance(struct btrfs_balance_control *bctl,
3780                   struct btrfs_ioctl_balance_args *bargs)
3781 {
3782         struct btrfs_fs_info *fs_info = bctl->fs_info;
3783         u64 meta_target, data_target;
3784         u64 allowed;
3785         int mixed = 0;
3786         int ret;
3787         u64 num_devices;
3788         unsigned seq;
3789
3790         if (btrfs_fs_closing(fs_info) ||
3791             atomic_read(&fs_info->balance_pause_req) ||
3792             atomic_read(&fs_info->balance_cancel_req)) {
3793                 ret = -EINVAL;
3794                 goto out;
3795         }
3796
3797         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3798         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3799                 mixed = 1;
3800
3801         /*
3802          * In case of mixed groups both data and meta should be picked,
3803          * and identical options should be given for both of them.
3804          */
3805         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3806         if (mixed && (bctl->flags & allowed)) {
3807                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3808                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3809                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3810                         btrfs_err(fs_info,
3811                                   "with mixed groups data and metadata balance options must be the same");
3812                         ret = -EINVAL;
3813                         goto out;
3814                 }
3815         }
3816
3817         num_devices = fs_info->fs_devices->num_devices;
3818         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3819         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3820                 BUG_ON(num_devices < 1);
3821                 num_devices--;
3822         }
3823         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3824         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3825         if (num_devices > 1)
3826                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3827         if (num_devices > 2)
3828                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3829         if (num_devices > 3)
3830                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3831                             BTRFS_BLOCK_GROUP_RAID6);
3832         if (validate_convert_profile(&bctl->data, allowed)) {
3833                 btrfs_err(fs_info,
3834                           "unable to start balance with target data profile %llu",
3835                           bctl->data.target);
3836                 ret = -EINVAL;
3837                 goto out;
3838         }
3839         if (validate_convert_profile(&bctl->meta, allowed)) {
3840                 btrfs_err(fs_info,
3841                           "unable to start balance with target metadata profile %llu",
3842                           bctl->meta.target);
3843                 ret = -EINVAL;
3844                 goto out;
3845         }
3846         if (validate_convert_profile(&bctl->sys, allowed)) {
3847                 btrfs_err(fs_info,
3848                           "unable to start balance with target system profile %llu",
3849                           bctl->sys.target);
3850                 ret = -EINVAL;
3851                 goto out;
3852         }
3853
3854         /* allow to reduce meta or sys integrity only if force set */
3855         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3856                         BTRFS_BLOCK_GROUP_RAID10 |
3857                         BTRFS_BLOCK_GROUP_RAID5 |
3858                         BTRFS_BLOCK_GROUP_RAID6;
3859         do {
3860                 seq = read_seqbegin(&fs_info->profiles_lock);
3861
3862                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3863                      (fs_info->avail_system_alloc_bits & allowed) &&
3864                      !(bctl->sys.target & allowed)) ||
3865                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3866                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3867                      !(bctl->meta.target & allowed))) {
3868                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3869                                 btrfs_info(fs_info,
3870                                            "force reducing metadata integrity");
3871                         } else {
3872                                 btrfs_err(fs_info,
3873                                           "balance will reduce metadata integrity, use force if you want this");
3874                                 ret = -EINVAL;
3875                                 goto out;
3876                         }
3877                 }
3878         } while (read_seqretry(&fs_info->profiles_lock, seq));
3879
3880         /* if we're not converting, the target field is uninitialized */
3881         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3882                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3883         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3884                 bctl->data.target : fs_info->avail_data_alloc_bits;
3885         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3886                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3887                 btrfs_warn(fs_info,
3888                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3889                            meta_target, data_target);
3890         }
3891
3892         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3893                 fs_info->num_tolerated_disk_barrier_failures = min(
3894                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3895                         btrfs_get_num_tolerated_disk_barrier_failures(
3896                                 bctl->sys.target));
3897         }
3898
3899         ret = insert_balance_item(fs_info, bctl);
3900         if (ret && ret != -EEXIST)
3901                 goto out;
3902
3903         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3904                 BUG_ON(ret == -EEXIST);
3905                 set_balance_control(bctl);
3906         } else {
3907                 BUG_ON(ret != -EEXIST);
3908                 spin_lock(&fs_info->balance_lock);
3909                 update_balance_args(bctl);
3910                 spin_unlock(&fs_info->balance_lock);
3911         }
3912
3913         atomic_inc(&fs_info->balance_running);
3914         mutex_unlock(&fs_info->balance_mutex);
3915
3916         ret = __btrfs_balance(fs_info);
3917
3918         mutex_lock(&fs_info->balance_mutex);
3919         atomic_dec(&fs_info->balance_running);
3920
3921         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3922                 fs_info->num_tolerated_disk_barrier_failures =
3923                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3924         }
3925
3926         if (bargs) {
3927                 memset(bargs, 0, sizeof(*bargs));
3928                 update_ioctl_balance_args(fs_info, 0, bargs);
3929         }
3930
3931         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3932             balance_need_close(fs_info)) {
3933                 __cancel_balance(fs_info);
3934         }
3935
3936         wake_up(&fs_info->balance_wait_q);
3937
3938         return ret;
3939 out:
3940         if (bctl->flags & BTRFS_BALANCE_RESUME)
3941                 __cancel_balance(fs_info);
3942         else {
3943                 kfree(bctl);
3944                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3945         }
3946         return ret;
3947 }
3948
3949 static int balance_kthread(void *data)
3950 {
3951         struct btrfs_fs_info *fs_info = data;
3952         int ret = 0;
3953
3954         mutex_lock(&fs_info->volume_mutex);
3955         mutex_lock(&fs_info->balance_mutex);
3956
3957         if (fs_info->balance_ctl) {
3958                 btrfs_info(fs_info, "continuing balance");
3959                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3960         }
3961
3962         mutex_unlock(&fs_info->balance_mutex);
3963         mutex_unlock(&fs_info->volume_mutex);
3964
3965         return ret;
3966 }
3967
3968 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3969 {
3970         struct task_struct *tsk;
3971
3972         spin_lock(&fs_info->balance_lock);
3973         if (!fs_info->balance_ctl) {
3974                 spin_unlock(&fs_info->balance_lock);
3975                 return 0;
3976         }
3977         spin_unlock(&fs_info->balance_lock);
3978
3979         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3980                 btrfs_info(fs_info, "force skipping balance");
3981                 return 0;
3982         }
3983
3984         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3985         return PTR_ERR_OR_ZERO(tsk);
3986 }
3987
3988 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3989 {
3990         struct btrfs_balance_control *bctl;
3991         struct btrfs_balance_item *item;
3992         struct btrfs_disk_balance_args disk_bargs;
3993         struct btrfs_path *path;
3994         struct extent_buffer *leaf;
3995         struct btrfs_key key;
3996         int ret;
3997
3998         path = btrfs_alloc_path();
3999         if (!path)
4000                 return -ENOMEM;
4001
4002         key.objectid = BTRFS_BALANCE_OBJECTID;
4003         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4004         key.offset = 0;
4005
4006         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4007         if (ret < 0)
4008                 goto out;
4009         if (ret > 0) { /* ret = -ENOENT; */
4010                 ret = 0;
4011                 goto out;
4012         }
4013
4014         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4015         if (!bctl) {
4016                 ret = -ENOMEM;
4017                 goto out;
4018         }
4019
4020         leaf = path->nodes[0];
4021         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4022
4023         bctl->fs_info = fs_info;
4024         bctl->flags = btrfs_balance_flags(leaf, item);
4025         bctl->flags |= BTRFS_BALANCE_RESUME;
4026
4027         btrfs_balance_data(leaf, item, &disk_bargs);
4028         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4029         btrfs_balance_meta(leaf, item, &disk_bargs);
4030         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4031         btrfs_balance_sys(leaf, item, &disk_bargs);
4032         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4033
4034         WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4035
4036         mutex_lock(&fs_info->volume_mutex);
4037         mutex_lock(&fs_info->balance_mutex);
4038
4039         set_balance_control(bctl);
4040
4041         mutex_unlock(&fs_info->balance_mutex);
4042         mutex_unlock(&fs_info->volume_mutex);
4043 out:
4044         btrfs_free_path(path);
4045         return ret;
4046 }
4047
4048 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4049 {
4050         int ret = 0;
4051
4052         mutex_lock(&fs_info->balance_mutex);
4053         if (!fs_info->balance_ctl) {
4054                 mutex_unlock(&fs_info->balance_mutex);
4055                 return -ENOTCONN;
4056         }
4057
4058         if (atomic_read(&fs_info->balance_running)) {
4059                 atomic_inc(&fs_info->balance_pause_req);
4060                 mutex_unlock(&fs_info->balance_mutex);
4061
4062                 wait_event(fs_info->balance_wait_q,
4063                            atomic_read(&fs_info->balance_running) == 0);
4064
4065                 mutex_lock(&fs_info->balance_mutex);
4066                 /* we are good with balance_ctl ripped off from under us */
4067                 BUG_ON(atomic_read(&fs_info->balance_running));
4068                 atomic_dec(&fs_info->balance_pause_req);
4069         } else {
4070                 ret = -ENOTCONN;
4071         }
4072
4073         mutex_unlock(&fs_info->balance_mutex);
4074         return ret;
4075 }
4076
4077 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4078 {
4079         if (fs_info->sb->s_flags & MS_RDONLY)
4080                 return -EROFS;
4081
4082         mutex_lock(&fs_info->balance_mutex);
4083         if (!fs_info->balance_ctl) {
4084                 mutex_unlock(&fs_info->balance_mutex);
4085                 return -ENOTCONN;
4086         }
4087
4088         atomic_inc(&fs_info->balance_cancel_req);
4089         /*
4090          * if we are running just wait and return, balance item is
4091          * deleted in btrfs_balance in this case
4092          */
4093         if (atomic_read(&fs_info->balance_running)) {
4094                 mutex_unlock(&fs_info->balance_mutex);
4095                 wait_event(fs_info->balance_wait_q,
4096                            atomic_read(&fs_info->balance_running) == 0);
4097                 mutex_lock(&fs_info->balance_mutex);
4098         } else {
4099                 /* __cancel_balance needs volume_mutex */
4100                 mutex_unlock(&fs_info->balance_mutex);
4101                 mutex_lock(&fs_info->volume_mutex);
4102                 mutex_lock(&fs_info->balance_mutex);
4103
4104                 if (fs_info->balance_ctl)
4105                         __cancel_balance(fs_info);
4106
4107                 mutex_unlock(&fs_info->volume_mutex);
4108         }
4109
4110         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4111         atomic_dec(&fs_info->balance_cancel_req);
4112         mutex_unlock(&fs_info->balance_mutex);
4113         return 0;
4114 }
4115
4116 static int btrfs_uuid_scan_kthread(void *data)
4117 {
4118         struct btrfs_fs_info *fs_info = data;
4119         struct btrfs_root *root = fs_info->tree_root;
4120         struct btrfs_key key;
4121         struct btrfs_key max_key;
4122         struct btrfs_path *path = NULL;
4123         int ret = 0;
4124         struct extent_buffer *eb;
4125         int slot;
4126         struct btrfs_root_item root_item;
4127         u32 item_size;
4128         struct btrfs_trans_handle *trans = NULL;
4129
4130         path = btrfs_alloc_path();
4131         if (!path) {
4132                 ret = -ENOMEM;
4133                 goto out;
4134         }
4135
4136         key.objectid = 0;
4137         key.type = BTRFS_ROOT_ITEM_KEY;
4138         key.offset = 0;
4139
4140         max_key.objectid = (u64)-1;
4141         max_key.type = BTRFS_ROOT_ITEM_KEY;
4142         max_key.offset = (u64)-1;
4143
4144         while (1) {
4145                 ret = btrfs_search_forward(root, &key, path, 0);
4146                 if (ret) {
4147                         if (ret > 0)
4148                                 ret = 0;
4149                         break;
4150                 }
4151
4152                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4153                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4154                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4155                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4156                         goto skip;
4157
4158                 eb = path->nodes[0];
4159                 slot = path->slots[0];
4160                 item_size = btrfs_item_size_nr(eb, slot);
4161                 if (item_size < sizeof(root_item))
4162                         goto skip;
4163
4164                 read_extent_buffer(eb, &root_item,
4165                                    btrfs_item_ptr_offset(eb, slot),
4166                                    (int)sizeof(root_item));
4167                 if (btrfs_root_refs(&root_item) == 0)
4168                         goto skip;
4169
4170                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4171                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4172                         if (trans)
4173                                 goto update_tree;
4174
4175                         btrfs_release_path(path);
4176                         /*
4177                          * 1 - subvol uuid item
4178                          * 1 - received_subvol uuid item
4179                          */
4180                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4181                         if (IS_ERR(trans)) {
4182                                 ret = PTR_ERR(trans);
4183                                 break;
4184                         }
4185                         continue;
4186                 } else {
4187                         goto skip;
4188                 }
4189 update_tree:
4190                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4191                         ret = btrfs_uuid_tree_add(trans, fs_info,
4192                                                   root_item.uuid,
4193                                                   BTRFS_UUID_KEY_SUBVOL,
4194                                                   key.objectid);
4195                         if (ret < 0) {
4196                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4197                                         ret);
4198                                 break;
4199                         }
4200                 }
4201
4202                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4203                         ret = btrfs_uuid_tree_add(trans, fs_info,
4204                                                   root_item.received_uuid,
4205                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4206                                                   key.objectid);
4207                         if (ret < 0) {
4208                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4209                                         ret);
4210                                 break;
4211                         }
4212                 }
4213
4214 skip:
4215                 if (trans) {
4216                         ret = btrfs_end_transaction(trans);
4217                         trans = NULL;
4218                         if (ret)
4219                                 break;
4220                 }
4221
4222                 btrfs_release_path(path);
4223                 if (key.offset < (u64)-1) {
4224                         key.offset++;
4225                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4226                         key.offset = 0;
4227                         key.type = BTRFS_ROOT_ITEM_KEY;
4228                 } else if (key.objectid < (u64)-1) {
4229                         key.offset = 0;
4230                         key.type = BTRFS_ROOT_ITEM_KEY;
4231                         key.objectid++;
4232                 } else {
4233                         break;
4234                 }
4235                 cond_resched();
4236         }
4237
4238 out:
4239         btrfs_free_path(path);
4240         if (trans && !IS_ERR(trans))
4241                 btrfs_end_transaction(trans);
4242         if (ret)
4243                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4244         else
4245                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4246         up(&fs_info->uuid_tree_rescan_sem);
4247         return 0;
4248 }
4249
4250 /*
4251  * Callback for btrfs_uuid_tree_iterate().
4252  * returns:
4253  * 0    check succeeded, the entry is not outdated.
4254  * < 0  if an error occurred.
4255  * > 0  if the check failed, which means the caller shall remove the entry.
4256  */
4257 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4258                                        u8 *uuid, u8 type, u64 subid)
4259 {
4260         struct btrfs_key key;
4261         int ret = 0;
4262         struct btrfs_root *subvol_root;
4263
4264         if (type != BTRFS_UUID_KEY_SUBVOL &&
4265             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4266                 goto out;
4267
4268         key.objectid = subid;
4269         key.type = BTRFS_ROOT_ITEM_KEY;
4270         key.offset = (u64)-1;
4271         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4272         if (IS_ERR(subvol_root)) {
4273                 ret = PTR_ERR(subvol_root);
4274                 if (ret == -ENOENT)
4275                         ret = 1;
4276                 goto out;
4277         }
4278
4279         switch (type) {
4280         case BTRFS_UUID_KEY_SUBVOL:
4281                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4282                         ret = 1;
4283                 break;
4284         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4285                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4286                            BTRFS_UUID_SIZE))
4287                         ret = 1;
4288                 break;
4289         }
4290
4291 out:
4292         return ret;
4293 }
4294
4295 static int btrfs_uuid_rescan_kthread(void *data)
4296 {
4297         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4298         int ret;
4299
4300         /*
4301          * 1st step is to iterate through the existing UUID tree and
4302          * to delete all entries that contain outdated data.
4303          * 2nd step is to add all missing entries to the UUID tree.
4304          */
4305         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4306         if (ret < 0) {
4307                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4308                 up(&fs_info->uuid_tree_rescan_sem);
4309                 return ret;
4310         }
4311         return btrfs_uuid_scan_kthread(data);
4312 }
4313
4314 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4315 {
4316         struct btrfs_trans_handle *trans;
4317         struct btrfs_root *tree_root = fs_info->tree_root;
4318         struct btrfs_root *uuid_root;
4319         struct task_struct *task;
4320         int ret;
4321
4322         /*
4323          * 1 - root node
4324          * 1 - root item
4325          */
4326         trans = btrfs_start_transaction(tree_root, 2);
4327         if (IS_ERR(trans))
4328                 return PTR_ERR(trans);
4329
4330         uuid_root = btrfs_create_tree(trans, fs_info,
4331                                       BTRFS_UUID_TREE_OBJECTID);
4332         if (IS_ERR(uuid_root)) {
4333                 ret = PTR_ERR(uuid_root);
4334                 btrfs_abort_transaction(trans, ret);
4335                 btrfs_end_transaction(trans);
4336                 return ret;
4337         }
4338
4339         fs_info->uuid_root = uuid_root;
4340
4341         ret = btrfs_commit_transaction(trans);
4342         if (ret)
4343                 return ret;
4344
4345         down(&fs_info->uuid_tree_rescan_sem);
4346         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4347         if (IS_ERR(task)) {
4348                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4349                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4350                 up(&fs_info->uuid_tree_rescan_sem);
4351                 return PTR_ERR(task);
4352         }
4353
4354         return 0;
4355 }
4356
4357 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4358 {
4359         struct task_struct *task;
4360
4361         down(&fs_info->uuid_tree_rescan_sem);
4362         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4363         if (IS_ERR(task)) {
4364                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4365                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4366                 up(&fs_info->uuid_tree_rescan_sem);
4367                 return PTR_ERR(task);
4368         }
4369
4370         return 0;
4371 }
4372
4373 /*
4374  * shrinking a device means finding all of the device extents past
4375  * the new size, and then following the back refs to the chunks.
4376  * The chunk relocation code actually frees the device extent
4377  */
4378 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4379 {
4380         struct btrfs_fs_info *fs_info = device->fs_info;
4381         struct btrfs_root *root = fs_info->dev_root;
4382         struct btrfs_trans_handle *trans;
4383         struct btrfs_dev_extent *dev_extent = NULL;
4384         struct btrfs_path *path;
4385         u64 length;
4386         u64 chunk_offset;
4387         int ret;
4388         int slot;
4389         int failed = 0;
4390         bool retried = false;
4391         bool checked_pending_chunks = false;
4392         struct extent_buffer *l;
4393         struct btrfs_key key;
4394         struct btrfs_super_block *super_copy = fs_info->super_copy;
4395         u64 old_total = btrfs_super_total_bytes(super_copy);
4396         u64 old_size = btrfs_device_get_total_bytes(device);
4397         u64 diff = old_size - new_size;
4398
4399         if (device->is_tgtdev_for_dev_replace)
4400                 return -EINVAL;
4401
4402         path = btrfs_alloc_path();
4403         if (!path)
4404                 return -ENOMEM;
4405
4406         path->reada = READA_FORWARD;
4407
4408         mutex_lock(&fs_info->chunk_mutex);
4409
4410         btrfs_device_set_total_bytes(device, new_size);
4411         if (device->writeable) {
4412                 device->fs_devices->total_rw_bytes -= diff;
4413                 spin_lock(&fs_info->free_chunk_lock);
4414                 fs_info->free_chunk_space -= diff;
4415                 spin_unlock(&fs_info->free_chunk_lock);
4416         }
4417         mutex_unlock(&fs_info->chunk_mutex);
4418
4419 again:
4420         key.objectid = device->devid;
4421         key.offset = (u64)-1;
4422         key.type = BTRFS_DEV_EXTENT_KEY;
4423
4424         do {
4425                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4426                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4427                 if (ret < 0) {
4428                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4429                         goto done;
4430                 }
4431
4432                 ret = btrfs_previous_item(root, path, 0, key.type);
4433                 if (ret)
4434                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4435                 if (ret < 0)
4436                         goto done;
4437                 if (ret) {
4438                         ret = 0;
4439                         btrfs_release_path(path);
4440                         break;
4441                 }
4442
4443                 l = path->nodes[0];
4444                 slot = path->slots[0];
4445                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4446
4447                 if (key.objectid != device->devid) {
4448                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4449                         btrfs_release_path(path);
4450                         break;
4451                 }
4452
4453                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4454                 length = btrfs_dev_extent_length(l, dev_extent);
4455
4456                 if (key.offset + length <= new_size) {
4457                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4458                         btrfs_release_path(path);
4459                         break;
4460                 }
4461
4462                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4463                 btrfs_release_path(path);
4464
4465                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4466                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4467                 if (ret && ret != -ENOSPC)
4468                         goto done;
4469                 if (ret == -ENOSPC)
4470                         failed++;
4471         } while (key.offset-- > 0);
4472
4473         if (failed && !retried) {
4474                 failed = 0;
4475                 retried = true;
4476                 goto again;
4477         } else if (failed && retried) {
4478                 ret = -ENOSPC;
4479                 goto done;
4480         }
4481
4482         /* Shrinking succeeded, else we would be at "done". */
4483         trans = btrfs_start_transaction(root, 0);
4484         if (IS_ERR(trans)) {
4485                 ret = PTR_ERR(trans);
4486                 goto done;
4487         }
4488
4489         mutex_lock(&fs_info->chunk_mutex);
4490
4491         /*
4492          * We checked in the above loop all device extents that were already in
4493          * the device tree. However before we have updated the device's
4494          * total_bytes to the new size, we might have had chunk allocations that
4495          * have not complete yet (new block groups attached to transaction
4496          * handles), and therefore their device extents were not yet in the
4497          * device tree and we missed them in the loop above. So if we have any
4498          * pending chunk using a device extent that overlaps the device range
4499          * that we can not use anymore, commit the current transaction and
4500          * repeat the search on the device tree - this way we guarantee we will
4501          * not have chunks using device extents that end beyond 'new_size'.
4502          */
4503         if (!checked_pending_chunks) {
4504                 u64 start = new_size;
4505                 u64 len = old_size - new_size;
4506
4507                 if (contains_pending_extent(trans->transaction, device,
4508                                             &start, len)) {
4509                         mutex_unlock(&fs_info->chunk_mutex);
4510                         checked_pending_chunks = true;
4511                         failed = 0;
4512                         retried = false;
4513                         ret = btrfs_commit_transaction(trans);
4514                         if (ret)
4515                                 goto done;
4516                         goto again;
4517                 }
4518         }
4519
4520         btrfs_device_set_disk_total_bytes(device, new_size);
4521         if (list_empty(&device->resized_list))
4522                 list_add_tail(&device->resized_list,
4523                               &fs_info->fs_devices->resized_devices);
4524
4525         WARN_ON(diff > old_total);
4526         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4527         mutex_unlock(&fs_info->chunk_mutex);
4528
4529         /* Now btrfs_update_device() will change the on-disk size. */
4530         ret = btrfs_update_device(trans, device);
4531         btrfs_end_transaction(trans);
4532 done:
4533         btrfs_free_path(path);
4534         if (ret) {
4535                 mutex_lock(&fs_info->chunk_mutex);
4536                 btrfs_device_set_total_bytes(device, old_size);
4537                 if (device->writeable)
4538                         device->fs_devices->total_rw_bytes += diff;
4539                 spin_lock(&fs_info->free_chunk_lock);
4540                 fs_info->free_chunk_space += diff;
4541                 spin_unlock(&fs_info->free_chunk_lock);
4542                 mutex_unlock(&fs_info->chunk_mutex);
4543         }
4544         return ret;
4545 }
4546
4547 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4548                            struct btrfs_key *key,
4549                            struct btrfs_chunk *chunk, int item_size)
4550 {
4551         struct btrfs_super_block *super_copy = fs_info->super_copy;
4552         struct btrfs_disk_key disk_key;
4553         u32 array_size;
4554         u8 *ptr;
4555
4556         mutex_lock(&fs_info->chunk_mutex);
4557         array_size = btrfs_super_sys_array_size(super_copy);
4558         if (array_size + item_size + sizeof(disk_key)
4559                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4560                 mutex_unlock(&fs_info->chunk_mutex);
4561                 return -EFBIG;
4562         }
4563
4564         ptr = super_copy->sys_chunk_array + array_size;
4565         btrfs_cpu_key_to_disk(&disk_key, key);
4566         memcpy(ptr, &disk_key, sizeof(disk_key));
4567         ptr += sizeof(disk_key);
4568         memcpy(ptr, chunk, item_size);
4569         item_size += sizeof(disk_key);
4570         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4571         mutex_unlock(&fs_info->chunk_mutex);
4572
4573         return 0;
4574 }
4575
4576 /*
4577  * sort the devices in descending order by max_avail, total_avail
4578  */
4579 static int btrfs_cmp_device_info(const void *a, const void *b)
4580 {
4581         const struct btrfs_device_info *di_a = a;
4582         const struct btrfs_device_info *di_b = b;
4583
4584         if (di_a->max_avail > di_b->max_avail)
4585                 return -1;
4586         if (di_a->max_avail < di_b->max_avail)
4587                 return 1;
4588         if (di_a->total_avail > di_b->total_avail)
4589                 return -1;
4590         if (di_a->total_avail < di_b->total_avail)
4591                 return 1;
4592         return 0;
4593 }
4594
4595 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4596 {
4597         /* TODO allow them to set a preferred stripe size */
4598         return SZ_64K;
4599 }
4600
4601 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4602 {
4603         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4604                 return;
4605
4606         btrfs_set_fs_incompat(info, RAID56);
4607 }
4608
4609 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)             \
4610                         - sizeof(struct btrfs_chunk))           \
4611                         / sizeof(struct btrfs_stripe) + 1)
4612
4613 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4614                                 - 2 * sizeof(struct btrfs_disk_key)     \
4615                                 - 2 * sizeof(struct btrfs_chunk))       \
4616                                 / sizeof(struct btrfs_stripe) + 1)
4617
4618 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4619                                u64 start, u64 type)
4620 {
4621         struct btrfs_fs_info *info = trans->fs_info;
4622         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4623         struct list_head *cur;
4624         struct map_lookup *map = NULL;
4625         struct extent_map_tree *em_tree;
4626         struct extent_map *em;
4627         struct btrfs_device_info *devices_info = NULL;
4628         u64 total_avail;
4629         int num_stripes;        /* total number of stripes to allocate */
4630         int data_stripes;       /* number of stripes that count for
4631                                    block group size */
4632         int sub_stripes;        /* sub_stripes info for map */
4633         int dev_stripes;        /* stripes per dev */
4634         int devs_max;           /* max devs to use */
4635         int devs_min;           /* min devs needed */
4636         int devs_increment;     /* ndevs has to be a multiple of this */
4637         int ncopies;            /* how many copies to data has */
4638         int ret;
4639         u64 max_stripe_size;
4640         u64 max_chunk_size;
4641         u64 stripe_size;
4642         u64 num_bytes;
4643         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4644         int ndevs;
4645         int i;
4646         int j;
4647         int index;
4648
4649         BUG_ON(!alloc_profile_is_valid(type, 0));
4650
4651         if (list_empty(&fs_devices->alloc_list))
4652                 return -ENOSPC;
4653
4654         index = __get_raid_index(type);
4655
4656         sub_stripes = btrfs_raid_array[index].sub_stripes;
4657         dev_stripes = btrfs_raid_array[index].dev_stripes;
4658         devs_max = btrfs_raid_array[index].devs_max;
4659         devs_min = btrfs_raid_array[index].devs_min;
4660         devs_increment = btrfs_raid_array[index].devs_increment;
4661         ncopies = btrfs_raid_array[index].ncopies;
4662
4663         if (type & BTRFS_BLOCK_GROUP_DATA) {
4664                 max_stripe_size = SZ_1G;
4665                 max_chunk_size = 10 * max_stripe_size;
4666                 if (!devs_max)
4667                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4668         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4669                 /* for larger filesystems, use larger metadata chunks */
4670                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4671                         max_stripe_size = SZ_1G;
4672                 else
4673                         max_stripe_size = SZ_256M;
4674                 max_chunk_size = max_stripe_size;
4675                 if (!devs_max)
4676                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4677         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4678                 max_stripe_size = SZ_32M;
4679                 max_chunk_size = 2 * max_stripe_size;
4680                 if (!devs_max)
4681                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4682         } else {
4683                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4684                        type);
4685                 BUG_ON(1);
4686         }
4687
4688         /* we don't want a chunk larger than 10% of writeable space */
4689         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4690                              max_chunk_size);
4691
4692         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4693                                GFP_NOFS);
4694         if (!devices_info)
4695                 return -ENOMEM;
4696
4697         cur = fs_devices->alloc_list.next;
4698
4699         /*
4700          * in the first pass through the devices list, we gather information
4701          * about the available holes on each device.
4702          */
4703         ndevs = 0;
4704         while (cur != &fs_devices->alloc_list) {
4705                 struct btrfs_device *device;
4706                 u64 max_avail;
4707                 u64 dev_offset;
4708
4709                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4710
4711                 cur = cur->next;
4712
4713                 if (!device->writeable) {
4714                         WARN(1, KERN_ERR
4715                                "BTRFS: read-only device in alloc_list\n");
4716                         continue;
4717                 }
4718
4719                 if (!device->in_fs_metadata ||
4720                     device->is_tgtdev_for_dev_replace)
4721                         continue;
4722
4723                 if (device->total_bytes > device->bytes_used)
4724                         total_avail = device->total_bytes - device->bytes_used;
4725                 else
4726                         total_avail = 0;
4727
4728                 /* If there is no space on this device, skip it. */
4729                 if (total_avail == 0)
4730                         continue;
4731
4732                 ret = find_free_dev_extent(trans, device,
4733                                            max_stripe_size * dev_stripes,
4734                                            &dev_offset, &max_avail);
4735                 if (ret && ret != -ENOSPC)
4736                         goto error;
4737
4738                 if (ret == 0)
4739                         max_avail = max_stripe_size * dev_stripes;
4740
4741                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4742                         continue;
4743
4744                 if (ndevs == fs_devices->rw_devices) {
4745                         WARN(1, "%s: found more than %llu devices\n",
4746                              __func__, fs_devices->rw_devices);
4747                         break;
4748                 }
4749                 devices_info[ndevs].dev_offset = dev_offset;
4750                 devices_info[ndevs].max_avail = max_avail;
4751                 devices_info[ndevs].total_avail = total_avail;
4752                 devices_info[ndevs].dev = device;
4753                 ++ndevs;
4754         }
4755
4756         /*
4757          * now sort the devices by hole size / available space
4758          */
4759         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4760              btrfs_cmp_device_info, NULL);
4761
4762         /* round down to number of usable stripes */
4763         ndevs -= ndevs % devs_increment;
4764
4765         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4766                 ret = -ENOSPC;
4767                 goto error;
4768         }
4769
4770         if (devs_max && ndevs > devs_max)
4771                 ndevs = devs_max;
4772         /*
4773          * the primary goal is to maximize the number of stripes, so use as many
4774          * devices as possible, even if the stripes are not maximum sized.
4775          */
4776         stripe_size = devices_info[ndevs-1].max_avail;
4777         num_stripes = ndevs * dev_stripes;
4778
4779         /*
4780          * this will have to be fixed for RAID1 and RAID10 over
4781          * more drives
4782          */
4783         data_stripes = num_stripes / ncopies;
4784
4785         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4786                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4787                                                          info->stripesize);
4788                 data_stripes = num_stripes - 1;
4789         }
4790         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4791                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4792                                                          info->stripesize);
4793                 data_stripes = num_stripes - 2;
4794         }
4795
4796         /*
4797          * Use the number of data stripes to figure out how big this chunk
4798          * is really going to be in terms of logical address space,
4799          * and compare that answer with the max chunk size
4800          */
4801         if (stripe_size * data_stripes > max_chunk_size) {
4802                 u64 mask = (1ULL << 24) - 1;
4803
4804                 stripe_size = div_u64(max_chunk_size, data_stripes);
4805
4806                 /* bump the answer up to a 16MB boundary */
4807                 stripe_size = (stripe_size + mask) & ~mask;
4808
4809                 /* but don't go higher than the limits we found
4810                  * while searching for free extents
4811                  */
4812                 if (stripe_size > devices_info[ndevs-1].max_avail)
4813                         stripe_size = devices_info[ndevs-1].max_avail;
4814         }
4815
4816         stripe_size = div_u64(stripe_size, dev_stripes);
4817
4818         /* align to BTRFS_STRIPE_LEN */
4819         stripe_size = div_u64(stripe_size, raid_stripe_len);
4820         stripe_size *= raid_stripe_len;
4821
4822         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4823         if (!map) {
4824                 ret = -ENOMEM;
4825                 goto error;
4826         }
4827         map->num_stripes = num_stripes;
4828
4829         for (i = 0; i < ndevs; ++i) {
4830                 for (j = 0; j < dev_stripes; ++j) {
4831                         int s = i * dev_stripes + j;
4832                         map->stripes[s].dev = devices_info[i].dev;
4833                         map->stripes[s].physical = devices_info[i].dev_offset +
4834                                                    j * stripe_size;
4835                 }
4836         }
4837         map->sector_size = info->sectorsize;
4838         map->stripe_len = raid_stripe_len;
4839         map->io_align = raid_stripe_len;
4840         map->io_width = raid_stripe_len;
4841         map->type = type;
4842         map->sub_stripes = sub_stripes;
4843
4844         num_bytes = stripe_size * data_stripes;
4845
4846         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4847
4848         em = alloc_extent_map();
4849         if (!em) {
4850                 kfree(map);
4851                 ret = -ENOMEM;
4852                 goto error;
4853         }
4854         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4855         em->map_lookup = map;
4856         em->start = start;
4857         em->len = num_bytes;
4858         em->block_start = 0;
4859         em->block_len = em->len;
4860         em->orig_block_len = stripe_size;
4861
4862         em_tree = &info->mapping_tree.map_tree;
4863         write_lock(&em_tree->lock);
4864         ret = add_extent_mapping(em_tree, em, 0);
4865         if (!ret) {
4866                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4867                 refcount_inc(&em->refs);
4868         }
4869         write_unlock(&em_tree->lock);
4870         if (ret) {
4871                 free_extent_map(em);
4872                 goto error;
4873         }
4874
4875         ret = btrfs_make_block_group(trans, info, 0, type,
4876                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4877                                      start, num_bytes);
4878         if (ret)
4879                 goto error_del_extent;
4880
4881         for (i = 0; i < map->num_stripes; i++) {
4882                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4883                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4884         }
4885
4886         spin_lock(&info->free_chunk_lock);
4887         info->free_chunk_space -= (stripe_size * map->num_stripes);
4888         spin_unlock(&info->free_chunk_lock);
4889
4890         free_extent_map(em);
4891         check_raid56_incompat_flag(info, type);
4892
4893         kfree(devices_info);
4894         return 0;
4895
4896 error_del_extent:
4897         write_lock(&em_tree->lock);
4898         remove_extent_mapping(em_tree, em);
4899         write_unlock(&em_tree->lock);
4900
4901         /* One for our allocation */
4902         free_extent_map(em);
4903         /* One for the tree reference */
4904         free_extent_map(em);
4905         /* One for the pending_chunks list reference */
4906         free_extent_map(em);
4907 error:
4908         kfree(devices_info);
4909         return ret;
4910 }
4911
4912 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4913                                 struct btrfs_fs_info *fs_info,
4914                                 u64 chunk_offset, u64 chunk_size)
4915 {
4916         struct btrfs_root *extent_root = fs_info->extent_root;
4917         struct btrfs_root *chunk_root = fs_info->chunk_root;
4918         struct btrfs_key key;
4919         struct btrfs_device *device;
4920         struct btrfs_chunk *chunk;
4921         struct btrfs_stripe *stripe;
4922         struct extent_map *em;
4923         struct map_lookup *map;
4924         size_t item_size;
4925         u64 dev_offset;
4926         u64 stripe_size;
4927         int i = 0;
4928         int ret = 0;
4929
4930         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4931         if (IS_ERR(em))
4932                 return PTR_ERR(em);
4933
4934         map = em->map_lookup;
4935         item_size = btrfs_chunk_item_size(map->num_stripes);
4936         stripe_size = em->orig_block_len;
4937
4938         chunk = kzalloc(item_size, GFP_NOFS);
4939         if (!chunk) {
4940                 ret = -ENOMEM;
4941                 goto out;
4942         }
4943
4944         /*
4945          * Take the device list mutex to prevent races with the final phase of
4946          * a device replace operation that replaces the device object associated
4947          * with the map's stripes, because the device object's id can change
4948          * at any time during that final phase of the device replace operation
4949          * (dev-replace.c:btrfs_dev_replace_finishing()).
4950          */
4951         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4952         for (i = 0; i < map->num_stripes; i++) {
4953                 device = map->stripes[i].dev;
4954                 dev_offset = map->stripes[i].physical;
4955
4956                 ret = btrfs_update_device(trans, device);
4957                 if (ret)
4958                         break;
4959                 ret = btrfs_alloc_dev_extent(trans, device,
4960                                              chunk_root->root_key.objectid,
4961                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4962                                              chunk_offset, dev_offset,
4963                                              stripe_size);
4964                 if (ret)
4965                         break;
4966         }
4967         if (ret) {
4968                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4969                 goto out;
4970         }
4971
4972         stripe = &chunk->stripe;
4973         for (i = 0; i < map->num_stripes; i++) {
4974                 device = map->stripes[i].dev;
4975                 dev_offset = map->stripes[i].physical;
4976
4977                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4978                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4979                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4980                 stripe++;
4981         }
4982         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4983
4984         btrfs_set_stack_chunk_length(chunk, chunk_size);
4985         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4986         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4987         btrfs_set_stack_chunk_type(chunk, map->type);
4988         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4989         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4990         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4991         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4992         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4993
4994         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4995         key.type = BTRFS_CHUNK_ITEM_KEY;
4996         key.offset = chunk_offset;
4997
4998         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4999         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5000                 /*
5001                  * TODO: Cleanup of inserted chunk root in case of
5002                  * failure.
5003                  */
5004                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5005         }
5006
5007 out:
5008         kfree(chunk);
5009         free_extent_map(em);
5010         return ret;
5011 }
5012
5013 /*
5014  * Chunk allocation falls into two parts. The first part does works
5015  * that make the new allocated chunk useable, but not do any operation
5016  * that modifies the chunk tree. The second part does the works that
5017  * require modifying the chunk tree. This division is important for the
5018  * bootstrap process of adding storage to a seed btrfs.
5019  */
5020 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5021                       struct btrfs_fs_info *fs_info, u64 type)
5022 {
5023         u64 chunk_offset;
5024
5025         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5026         chunk_offset = find_next_chunk(fs_info);
5027         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5028 }
5029
5030 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5031                                          struct btrfs_fs_info *fs_info)
5032 {
5033         struct btrfs_root *extent_root = fs_info->extent_root;
5034         u64 chunk_offset;
5035         u64 sys_chunk_offset;
5036         u64 alloc_profile;
5037         int ret;
5038
5039         chunk_offset = find_next_chunk(fs_info);
5040         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5041         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5042         if (ret)
5043                 return ret;
5044
5045         sys_chunk_offset = find_next_chunk(fs_info);
5046         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5047         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5048         return ret;
5049 }
5050
5051 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5052 {
5053         int max_errors;
5054
5055         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5056                          BTRFS_BLOCK_GROUP_RAID10 |
5057                          BTRFS_BLOCK_GROUP_RAID5 |
5058                          BTRFS_BLOCK_GROUP_DUP)) {
5059                 max_errors = 1;
5060         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5061                 max_errors = 2;
5062         } else {
5063                 max_errors = 0;
5064         }
5065
5066         return max_errors;
5067 }
5068
5069 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5070 {
5071         struct extent_map *em;
5072         struct map_lookup *map;
5073         int readonly = 0;
5074         int miss_ndevs = 0;
5075         int i;
5076
5077         em = get_chunk_map(fs_info, chunk_offset, 1);
5078         if (IS_ERR(em))
5079                 return 1;
5080
5081         map = em->map_lookup;
5082         for (i = 0; i < map->num_stripes; i++) {
5083                 if (map->stripes[i].dev->missing) {
5084                         miss_ndevs++;
5085                         continue;
5086                 }
5087
5088                 if (!map->stripes[i].dev->writeable) {
5089                         readonly = 1;
5090                         goto end;
5091                 }
5092         }
5093
5094         /*
5095          * If the number of missing devices is larger than max errors,
5096          * we can not write the data into that chunk successfully, so
5097          * set it readonly.
5098          */
5099         if (miss_ndevs > btrfs_chunk_max_errors(map))
5100                 readonly = 1;
5101 end:
5102         free_extent_map(em);
5103         return readonly;
5104 }
5105
5106 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5107 {
5108         extent_map_tree_init(&tree->map_tree);
5109 }
5110
5111 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5112 {
5113         struct extent_map *em;
5114
5115         while (1) {
5116                 write_lock(&tree->map_tree.lock);
5117                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5118                 if (em)
5119                         remove_extent_mapping(&tree->map_tree, em);
5120                 write_unlock(&tree->map_tree.lock);
5121                 if (!em)
5122                         break;
5123                 /* once for us */
5124                 free_extent_map(em);
5125                 /* once for the tree */
5126                 free_extent_map(em);
5127         }
5128 }
5129
5130 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5131 {
5132         struct extent_map *em;
5133         struct map_lookup *map;
5134         int ret;
5135
5136         em = get_chunk_map(fs_info, logical, len);
5137         if (IS_ERR(em))
5138                 /*
5139                  * We could return errors for these cases, but that could get
5140                  * ugly and we'd probably do the same thing which is just not do
5141                  * anything else and exit, so return 1 so the callers don't try
5142                  * to use other copies.
5143                  */
5144                 return 1;
5145
5146         map = em->map_lookup;
5147         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5148                 ret = map->num_stripes;
5149         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5150                 ret = map->sub_stripes;
5151         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5152                 ret = 2;
5153         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5154                 ret = 3;
5155         else
5156                 ret = 1;
5157         free_extent_map(em);
5158
5159         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5160         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5161             fs_info->dev_replace.tgtdev)
5162                 ret++;
5163         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5164
5165         return ret;
5166 }
5167
5168 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5169                                     struct btrfs_mapping_tree *map_tree,
5170                                     u64 logical)
5171 {
5172         struct extent_map *em;
5173         struct map_lookup *map;
5174         unsigned long len = fs_info->sectorsize;
5175
5176         em = get_chunk_map(fs_info, logical, len);
5177         WARN_ON(IS_ERR(em));
5178
5179         map = em->map_lookup;
5180         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5181                 len = map->stripe_len * nr_data_stripes(map);
5182         free_extent_map(em);
5183         return len;
5184 }
5185
5186 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
5187                            u64 logical, u64 len, int mirror_num)
5188 {
5189         struct extent_map *em;
5190         struct map_lookup *map;
5191         int ret = 0;
5192
5193         em = get_chunk_map(fs_info, logical, len);
5194         WARN_ON(IS_ERR(em));
5195
5196         map = em->map_lookup;
5197         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5198                 ret = 1;
5199         free_extent_map(em);
5200         return ret;
5201 }
5202
5203 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5204                             struct map_lookup *map, int first, int num,
5205                             int optimal, int dev_replace_is_ongoing)
5206 {
5207         int i;
5208         int tolerance;
5209         struct btrfs_device *srcdev;
5210
5211         if (dev_replace_is_ongoing &&
5212             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5213              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5214                 srcdev = fs_info->dev_replace.srcdev;
5215         else
5216                 srcdev = NULL;
5217
5218         /*
5219          * try to avoid the drive that is the source drive for a
5220          * dev-replace procedure, only choose it if no other non-missing
5221          * mirror is available
5222          */
5223         for (tolerance = 0; tolerance < 2; tolerance++) {
5224                 if (map->stripes[optimal].dev->bdev &&
5225                     (tolerance || map->stripes[optimal].dev != srcdev))
5226                         return optimal;
5227                 for (i = first; i < first + num; i++) {
5228                         if (map->stripes[i].dev->bdev &&
5229                             (tolerance || map->stripes[i].dev != srcdev))
5230                                 return i;
5231                 }
5232         }
5233
5234         /* we couldn't find one that doesn't fail.  Just return something
5235          * and the io error handling code will clean up eventually
5236          */
5237         return optimal;
5238 }
5239
5240 static inline int parity_smaller(u64 a, u64 b)
5241 {
5242         return a > b;
5243 }
5244
5245 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5246 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5247 {
5248         struct btrfs_bio_stripe s;
5249         int i;
5250         u64 l;
5251         int again = 1;
5252
5253         while (again) {
5254                 again = 0;
5255                 for (i = 0; i < num_stripes - 1; i++) {
5256                         if (parity_smaller(bbio->raid_map[i],
5257                                            bbio->raid_map[i+1])) {
5258                                 s = bbio->stripes[i];
5259                                 l = bbio->raid_map[i];
5260                                 bbio->stripes[i] = bbio->stripes[i+1];
5261                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5262                                 bbio->stripes[i+1] = s;
5263                                 bbio->raid_map[i+1] = l;
5264
5265                                 again = 1;
5266                         }
5267                 }
5268         }
5269 }
5270
5271 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5272 {
5273         struct btrfs_bio *bbio = kzalloc(
5274                  /* the size of the btrfs_bio */
5275                 sizeof(struct btrfs_bio) +
5276                 /* plus the variable array for the stripes */
5277                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5278                 /* plus the variable array for the tgt dev */
5279                 sizeof(int) * (real_stripes) +
5280                 /*
5281                  * plus the raid_map, which includes both the tgt dev
5282                  * and the stripes
5283                  */
5284                 sizeof(u64) * (total_stripes),
5285                 GFP_NOFS|__GFP_NOFAIL);
5286
5287         atomic_set(&bbio->error, 0);
5288         refcount_set(&bbio->refs, 1);
5289
5290         return bbio;
5291 }
5292
5293 void btrfs_get_bbio(struct btrfs_bio *bbio)
5294 {
5295         WARN_ON(!refcount_read(&bbio->refs));
5296         refcount_inc(&bbio->refs);
5297 }
5298
5299 void btrfs_put_bbio(struct btrfs_bio *bbio)
5300 {
5301         if (!bbio)
5302                 return;
5303         if (refcount_dec_and_test(&bbio->refs))
5304                 kfree(bbio);
5305 }
5306
5307 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5308 /*
5309  * Please note that, discard won't be sent to target device of device
5310  * replace.
5311  */
5312 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5313                                          u64 logical, u64 length,
5314                                          struct btrfs_bio **bbio_ret)
5315 {
5316         struct extent_map *em;
5317         struct map_lookup *map;
5318         struct btrfs_bio *bbio;
5319         u64 offset;
5320         u64 stripe_nr;
5321         u64 stripe_nr_end;
5322         u64 stripe_end_offset;
5323         u64 stripe_cnt;
5324         u64 stripe_len;
5325         u64 stripe_offset;
5326         u64 num_stripes;
5327         u32 stripe_index;
5328         u32 factor = 0;
5329         u32 sub_stripes = 0;
5330         u64 stripes_per_dev = 0;
5331         u32 remaining_stripes = 0;
5332         u32 last_stripe = 0;
5333         int ret = 0;
5334         int i;
5335
5336         /* discard always return a bbio */
5337         ASSERT(bbio_ret);
5338
5339         em = get_chunk_map(fs_info, logical, length);
5340         if (IS_ERR(em))
5341                 return PTR_ERR(em);
5342
5343         map = em->map_lookup;
5344         /* we don't discard raid56 yet */
5345         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5346                 ret = -EOPNOTSUPP;
5347                 goto out;
5348         }
5349
5350         offset = logical - em->start;
5351         length = min_t(u64, em->len - offset, length);
5352
5353         stripe_len = map->stripe_len;
5354         /*
5355          * stripe_nr counts the total number of stripes we have to stride
5356          * to get to this block
5357          */
5358         stripe_nr = div64_u64(offset, stripe_len);
5359
5360         /* stripe_offset is the offset of this block in its stripe */
5361         stripe_offset = offset - stripe_nr * stripe_len;
5362
5363         stripe_nr_end = round_up(offset + length, map->stripe_len);
5364         stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5365         stripe_cnt = stripe_nr_end - stripe_nr;
5366         stripe_end_offset = stripe_nr_end * map->stripe_len -
5367                             (offset + length);
5368         /*
5369          * after this, stripe_nr is the number of stripes on this
5370          * device we have to walk to find the data, and stripe_index is
5371          * the number of our device in the stripe array
5372          */
5373         num_stripes = 1;
5374         stripe_index = 0;
5375         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5376                          BTRFS_BLOCK_GROUP_RAID10)) {
5377                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5378                         sub_stripes = 1;
5379                 else
5380                         sub_stripes = map->sub_stripes;
5381
5382                 factor = map->num_stripes / sub_stripes;
5383                 num_stripes = min_t(u64, map->num_stripes,
5384                                     sub_stripes * stripe_cnt);
5385                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5386                 stripe_index *= sub_stripes;
5387                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5388                                               &remaining_stripes);
5389                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5390                 last_stripe *= sub_stripes;
5391         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5392                                 BTRFS_BLOCK_GROUP_DUP)) {
5393                 num_stripes = map->num_stripes;
5394         } else {
5395                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5396                                         &stripe_index);
5397         }
5398
5399         bbio = alloc_btrfs_bio(num_stripes, 0);
5400         if (!bbio) {
5401                 ret = -ENOMEM;
5402                 goto out;
5403         }
5404
5405         for (i = 0; i < num_stripes; i++) {
5406                 bbio->stripes[i].physical =
5407                         map->stripes[stripe_index].physical +
5408                         stripe_offset + stripe_nr * map->stripe_len;
5409                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5410
5411                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5412                                  BTRFS_BLOCK_GROUP_RAID10)) {
5413                         bbio->stripes[i].length = stripes_per_dev *
5414                                 map->stripe_len;
5415
5416                         if (i / sub_stripes < remaining_stripes)
5417                                 bbio->stripes[i].length +=
5418                                         map->stripe_len;
5419
5420                         /*
5421                          * Special for the first stripe and
5422                          * the last stripe:
5423                          *
5424                          * |-------|...|-------|
5425                          *     |----------|
5426                          *    off     end_off
5427                          */
5428                         if (i < sub_stripes)
5429                                 bbio->stripes[i].length -=
5430                                         stripe_offset;
5431
5432                         if (stripe_index >= last_stripe &&
5433                             stripe_index <= (last_stripe +
5434                                              sub_stripes - 1))
5435                                 bbio->stripes[i].length -=
5436                                         stripe_end_offset;
5437
5438                         if (i == sub_stripes - 1)
5439                                 stripe_offset = 0;
5440                 } else {
5441                         bbio->stripes[i].length = length;
5442                 }
5443
5444                 stripe_index++;
5445                 if (stripe_index == map->num_stripes) {
5446                         stripe_index = 0;
5447                         stripe_nr++;
5448                 }
5449         }
5450
5451         *bbio_ret = bbio;
5452         bbio->map_type = map->type;
5453         bbio->num_stripes = num_stripes;
5454 out:
5455         free_extent_map(em);
5456         return ret;
5457 }
5458
5459 /*
5460  * In dev-replace case, for repair case (that's the only case where the mirror
5461  * is selected explicitly when calling btrfs_map_block), blocks left of the
5462  * left cursor can also be read from the target drive.
5463  *
5464  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5465  * array of stripes.
5466  * For READ, it also needs to be supported using the same mirror number.
5467  *
5468  * If the requested block is not left of the left cursor, EIO is returned. This
5469  * can happen because btrfs_num_copies() returns one more in the dev-replace
5470  * case.
5471  */
5472 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5473                                          u64 logical, u64 length,
5474                                          u64 srcdev_devid, int *mirror_num,
5475                                          u64 *physical)
5476 {
5477         struct btrfs_bio *bbio = NULL;
5478         int num_stripes;
5479         int index_srcdev = 0;
5480         int found = 0;
5481         u64 physical_of_found = 0;
5482         int i;
5483         int ret = 0;
5484
5485         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5486                                 logical, &length, &bbio, 0, 0);
5487         if (ret) {
5488                 ASSERT(bbio == NULL);
5489                 return ret;
5490         }
5491
5492         num_stripes = bbio->num_stripes;
5493         if (*mirror_num > num_stripes) {
5494                 /*
5495                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5496                  * that means that the requested area is not left of the left
5497                  * cursor
5498                  */
5499                 btrfs_put_bbio(bbio);
5500                 return -EIO;
5501         }
5502
5503         /*
5504          * process the rest of the function using the mirror_num of the source
5505          * drive. Therefore look it up first.  At the end, patch the device
5506          * pointer to the one of the target drive.
5507          */
5508         for (i = 0; i < num_stripes; i++) {
5509                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5510                         continue;
5511
5512                 /*
5513                  * In case of DUP, in order to keep it simple, only add the
5514                  * mirror with the lowest physical address
5515                  */
5516                 if (found &&
5517                     physical_of_found <= bbio->stripes[i].physical)
5518                         continue;
5519
5520                 index_srcdev = i;
5521                 found = 1;
5522                 physical_of_found = bbio->stripes[i].physical;
5523         }
5524
5525         btrfs_put_bbio(bbio);
5526
5527         ASSERT(found);
5528         if (!found)
5529                 return -EIO;
5530
5531         *mirror_num = index_srcdev + 1;
5532         *physical = physical_of_found;
5533         return ret;
5534 }
5535
5536 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5537                                       struct btrfs_bio **bbio_ret,
5538                                       struct btrfs_dev_replace *dev_replace,
5539                                       int *num_stripes_ret, int *max_errors_ret)
5540 {
5541         struct btrfs_bio *bbio = *bbio_ret;
5542         u64 srcdev_devid = dev_replace->srcdev->devid;
5543         int tgtdev_indexes = 0;
5544         int num_stripes = *num_stripes_ret;
5545         int max_errors = *max_errors_ret;
5546         int i;
5547
5548         if (op == BTRFS_MAP_WRITE) {
5549                 int index_where_to_add;
5550
5551                 /*
5552                  * duplicate the write operations while the dev replace
5553                  * procedure is running. Since the copying of the old disk to
5554                  * the new disk takes place at run time while the filesystem is
5555                  * mounted writable, the regular write operations to the old
5556                  * disk have to be duplicated to go to the new disk as well.
5557                  *
5558                  * Note that device->missing is handled by the caller, and that
5559                  * the write to the old disk is already set up in the stripes
5560                  * array.
5561                  */
5562                 index_where_to_add = num_stripes;
5563                 for (i = 0; i < num_stripes; i++) {
5564                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5565                                 /* write to new disk, too */
5566                                 struct btrfs_bio_stripe *new =
5567                                         bbio->stripes + index_where_to_add;
5568                                 struct btrfs_bio_stripe *old =
5569                                         bbio->stripes + i;
5570
5571                                 new->physical = old->physical;
5572                                 new->length = old->length;
5573                                 new->dev = dev_replace->tgtdev;
5574                                 bbio->tgtdev_map[i] = index_where_to_add;
5575                                 index_where_to_add++;
5576                                 max_errors++;
5577                                 tgtdev_indexes++;
5578                         }
5579                 }
5580                 num_stripes = index_where_to_add;
5581         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5582                 int index_srcdev = 0;
5583                 int found = 0;
5584                 u64 physical_of_found = 0;
5585
5586                 /*
5587                  * During the dev-replace procedure, the target drive can also
5588                  * be used to read data in case it is needed to repair a corrupt
5589                  * block elsewhere. This is possible if the requested area is
5590                  * left of the left cursor. In this area, the target drive is a
5591                  * full copy of the source drive.
5592                  */
5593                 for (i = 0; i < num_stripes; i++) {
5594                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5595                                 /*
5596                                  * In case of DUP, in order to keep it simple,
5597                                  * only add the mirror with the lowest physical
5598                                  * address
5599                                  */
5600                                 if (found &&
5601                                     physical_of_found <=
5602                                      bbio->stripes[i].physical)
5603                                         continue;
5604                                 index_srcdev = i;
5605                                 found = 1;
5606                                 physical_of_found = bbio->stripes[i].physical;
5607                         }
5608                 }
5609                 if (found) {
5610                         struct btrfs_bio_stripe *tgtdev_stripe =
5611                                 bbio->stripes + num_stripes;
5612
5613                         tgtdev_stripe->physical = physical_of_found;
5614                         tgtdev_stripe->length =
5615                                 bbio->stripes[index_srcdev].length;
5616                         tgtdev_stripe->dev = dev_replace->tgtdev;
5617                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5618
5619                         tgtdev_indexes++;
5620                         num_stripes++;
5621                 }
5622         }
5623
5624         *num_stripes_ret = num_stripes;
5625         *max_errors_ret = max_errors;
5626         bbio->num_tgtdevs = tgtdev_indexes;
5627         *bbio_ret = bbio;
5628 }
5629
5630 static bool need_full_stripe(enum btrfs_map_op op)
5631 {
5632         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5633 }
5634
5635 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5636                              enum btrfs_map_op op,
5637                              u64 logical, u64 *length,
5638                              struct btrfs_bio **bbio_ret,
5639                              int mirror_num, int need_raid_map)
5640 {
5641         struct extent_map *em;
5642         struct map_lookup *map;
5643         u64 offset;
5644         u64 stripe_offset;
5645         u64 stripe_nr;
5646         u64 stripe_len;
5647         u32 stripe_index;
5648         int i;
5649         int ret = 0;
5650         int num_stripes;
5651         int max_errors = 0;
5652         int tgtdev_indexes = 0;
5653         struct btrfs_bio *bbio = NULL;
5654         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5655         int dev_replace_is_ongoing = 0;
5656         int num_alloc_stripes;
5657         int patch_the_first_stripe_for_dev_replace = 0;
5658         u64 physical_to_patch_in_first_stripe = 0;
5659         u64 raid56_full_stripe_start = (u64)-1;
5660
5661         if (op == BTRFS_MAP_DISCARD)
5662                 return __btrfs_map_block_for_discard(fs_info, logical,
5663                                                      *length, bbio_ret);
5664
5665         em = get_chunk_map(fs_info, logical, *length);
5666         if (IS_ERR(em))
5667                 return PTR_ERR(em);
5668
5669         map = em->map_lookup;
5670         offset = logical - em->start;
5671
5672         stripe_len = map->stripe_len;
5673         stripe_nr = offset;
5674         /*
5675          * stripe_nr counts the total number of stripes we have to stride
5676          * to get to this block
5677          */
5678         stripe_nr = div64_u64(stripe_nr, stripe_len);
5679
5680         stripe_offset = stripe_nr * stripe_len;
5681         if (offset < stripe_offset) {
5682                 btrfs_crit(fs_info,
5683                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5684                            stripe_offset, offset, em->start, logical,
5685                            stripe_len);
5686                 free_extent_map(em);
5687                 return -EINVAL;
5688         }
5689
5690         /* stripe_offset is the offset of this block in its stripe*/
5691         stripe_offset = offset - stripe_offset;
5692
5693         /* if we're here for raid56, we need to know the stripe aligned start */
5694         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5695                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5696                 raid56_full_stripe_start = offset;
5697
5698                 /* allow a write of a full stripe, but make sure we don't
5699                  * allow straddling of stripes
5700                  */
5701                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5702                                 full_stripe_len);
5703                 raid56_full_stripe_start *= full_stripe_len;
5704         }
5705
5706         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5707                 u64 max_len;
5708                 /* For writes to RAID[56], allow a full stripeset across all disks.
5709                    For other RAID types and for RAID[56] reads, just allow a single
5710                    stripe (on a single disk). */
5711                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5712                     (op == BTRFS_MAP_WRITE)) {
5713                         max_len = stripe_len * nr_data_stripes(map) -
5714                                 (offset - raid56_full_stripe_start);
5715                 } else {
5716                         /* we limit the length of each bio to what fits in a stripe */
5717                         max_len = stripe_len - stripe_offset;
5718                 }
5719                 *length = min_t(u64, em->len - offset, max_len);
5720         } else {
5721                 *length = em->len - offset;
5722         }
5723
5724         /* This is for when we're called from btrfs_merge_bio_hook() and all
5725            it cares about is the length */
5726         if (!bbio_ret)
5727                 goto out;
5728
5729         btrfs_dev_replace_lock(dev_replace, 0);
5730         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5731         if (!dev_replace_is_ongoing)
5732                 btrfs_dev_replace_unlock(dev_replace, 0);
5733         else
5734                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5735
5736         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5737             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5738                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5739                                                     dev_replace->srcdev->devid,
5740                                                     &mirror_num,
5741                                             &physical_to_patch_in_first_stripe);
5742                 if (ret)
5743                         goto out;
5744                 else
5745                         patch_the_first_stripe_for_dev_replace = 1;
5746         } else if (mirror_num > map->num_stripes) {
5747                 mirror_num = 0;
5748         }
5749
5750         num_stripes = 1;
5751         stripe_index = 0;
5752         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5753                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5754                                 &stripe_index);
5755                 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5756                         mirror_num = 1;
5757         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5758                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5759                         num_stripes = map->num_stripes;
5760                 else if (mirror_num)
5761                         stripe_index = mirror_num - 1;
5762                 else {
5763                         stripe_index = find_live_mirror(fs_info, map, 0,
5764                                             map->num_stripes,
5765                                             current->pid % map->num_stripes,
5766                                             dev_replace_is_ongoing);
5767                         mirror_num = stripe_index + 1;
5768                 }
5769
5770         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5771                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5772                         num_stripes = map->num_stripes;
5773                 } else if (mirror_num) {
5774                         stripe_index = mirror_num - 1;
5775                 } else {
5776                         mirror_num = 1;
5777                 }
5778
5779         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5780                 u32 factor = map->num_stripes / map->sub_stripes;
5781
5782                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5783                 stripe_index *= map->sub_stripes;
5784
5785                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5786                         num_stripes = map->sub_stripes;
5787                 else if (mirror_num)
5788                         stripe_index += mirror_num - 1;
5789                 else {
5790                         int old_stripe_index = stripe_index;
5791                         stripe_index = find_live_mirror(fs_info, map,
5792                                               stripe_index,
5793                                               map->sub_stripes, stripe_index +
5794                                               current->pid % map->sub_stripes,
5795                                               dev_replace_is_ongoing);
5796                         mirror_num = stripe_index - old_stripe_index + 1;
5797                 }
5798
5799         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5800                 if (need_raid_map &&
5801                     (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5802                      mirror_num > 1)) {
5803                         /* push stripe_nr back to the start of the full stripe */
5804                         stripe_nr = div_u64(raid56_full_stripe_start,
5805                                         stripe_len * nr_data_stripes(map));
5806
5807                         /* RAID[56] write or recovery. Return all stripes */
5808                         num_stripes = map->num_stripes;
5809                         max_errors = nr_parity_stripes(map);
5810
5811                         *length = map->stripe_len;
5812                         stripe_index = 0;
5813                         stripe_offset = 0;
5814                 } else {
5815                         /*
5816                          * Mirror #0 or #1 means the original data block.
5817                          * Mirror #2 is RAID5 parity block.
5818                          * Mirror #3 is RAID6 Q block.
5819                          */
5820                         stripe_nr = div_u64_rem(stripe_nr,
5821                                         nr_data_stripes(map), &stripe_index);
5822                         if (mirror_num > 1)
5823                                 stripe_index = nr_data_stripes(map) +
5824                                                 mirror_num - 2;
5825
5826                         /* We distribute the parity blocks across stripes */
5827                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5828                                         &stripe_index);
5829                         if ((op != BTRFS_MAP_WRITE &&
5830                              op != BTRFS_MAP_GET_READ_MIRRORS) &&
5831                             mirror_num <= 1)
5832                                 mirror_num = 1;
5833                 }
5834         } else {
5835                 /*
5836                  * after this, stripe_nr is the number of stripes on this
5837                  * device we have to walk to find the data, and stripe_index is
5838                  * the number of our device in the stripe array
5839                  */
5840                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5841                                 &stripe_index);
5842                 mirror_num = stripe_index + 1;
5843         }
5844         if (stripe_index >= map->num_stripes) {
5845                 btrfs_crit(fs_info,
5846                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5847                            stripe_index, map->num_stripes);
5848                 ret = -EINVAL;
5849                 goto out;
5850         }
5851
5852         num_alloc_stripes = num_stripes;
5853         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5854                 if (op == BTRFS_MAP_WRITE)
5855                         num_alloc_stripes <<= 1;
5856                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5857                         num_alloc_stripes++;
5858                 tgtdev_indexes = num_stripes;
5859         }
5860
5861         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5862         if (!bbio) {
5863                 ret = -ENOMEM;
5864                 goto out;
5865         }
5866         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5867                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5868
5869         /* build raid_map */
5870         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5871             (need_full_stripe(op) || mirror_num > 1)) {
5872                 u64 tmp;
5873                 unsigned rot;
5874
5875                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5876                                  sizeof(struct btrfs_bio_stripe) *
5877                                  num_alloc_stripes +
5878                                  sizeof(int) * tgtdev_indexes);
5879
5880                 /* Work out the disk rotation on this stripe-set */
5881                 div_u64_rem(stripe_nr, num_stripes, &rot);
5882
5883                 /* Fill in the logical address of each stripe */
5884                 tmp = stripe_nr * nr_data_stripes(map);
5885                 for (i = 0; i < nr_data_stripes(map); i++)
5886                         bbio->raid_map[(i+rot) % num_stripes] =
5887                                 em->start + (tmp + i) * map->stripe_len;
5888
5889                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5890                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5891                         bbio->raid_map[(i+rot+1) % num_stripes] =
5892                                 RAID6_Q_STRIPE;
5893         }
5894
5895
5896         for (i = 0; i < num_stripes; i++) {
5897                 bbio->stripes[i].physical =
5898                         map->stripes[stripe_index].physical +
5899                         stripe_offset +
5900                         stripe_nr * map->stripe_len;
5901                 bbio->stripes[i].dev =
5902                         map->stripes[stripe_index].dev;
5903                 stripe_index++;
5904         }
5905
5906         if (need_full_stripe(op))
5907                 max_errors = btrfs_chunk_max_errors(map);
5908
5909         if (bbio->raid_map)
5910                 sort_parity_stripes(bbio, num_stripes);
5911
5912         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5913             need_full_stripe(op)) {
5914                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5915                                           &max_errors);
5916         }
5917
5918         *bbio_ret = bbio;
5919         bbio->map_type = map->type;
5920         bbio->num_stripes = num_stripes;
5921         bbio->max_errors = max_errors;
5922         bbio->mirror_num = mirror_num;
5923
5924         /*
5925          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5926          * mirror_num == num_stripes + 1 && dev_replace target drive is
5927          * available as a mirror
5928          */
5929         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5930                 WARN_ON(num_stripes > 1);
5931                 bbio->stripes[0].dev = dev_replace->tgtdev;
5932                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5933                 bbio->mirror_num = map->num_stripes + 1;
5934         }
5935 out:
5936         if (dev_replace_is_ongoing) {
5937                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5938                 btrfs_dev_replace_unlock(dev_replace, 0);
5939         }
5940         free_extent_map(em);
5941         return ret;
5942 }
5943
5944 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5945                       u64 logical, u64 *length,
5946                       struct btrfs_bio **bbio_ret, int mirror_num)
5947 {
5948         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5949                                  mirror_num, 0);
5950 }
5951
5952 /* For Scrub/replace */
5953 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5954                      u64 logical, u64 *length,
5955                      struct btrfs_bio **bbio_ret)
5956 {
5957         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5958 }
5959
5960 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5961                      u64 chunk_start, u64 physical, u64 devid,
5962                      u64 **logical, int *naddrs, int *stripe_len)
5963 {
5964         struct extent_map *em;
5965         struct map_lookup *map;
5966         u64 *buf;
5967         u64 bytenr;
5968         u64 length;
5969         u64 stripe_nr;
5970         u64 rmap_len;
5971         int i, j, nr = 0;
5972
5973         em = get_chunk_map(fs_info, chunk_start, 1);
5974         if (IS_ERR(em))
5975                 return -EIO;
5976
5977         map = em->map_lookup;
5978         length = em->len;
5979         rmap_len = map->stripe_len;
5980
5981         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5982                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5983         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5984                 length = div_u64(length, map->num_stripes);
5985         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5986                 length = div_u64(length, nr_data_stripes(map));
5987                 rmap_len = map->stripe_len * nr_data_stripes(map);
5988         }
5989
5990         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5991         BUG_ON(!buf); /* -ENOMEM */
5992
5993         for (i = 0; i < map->num_stripes; i++) {
5994                 if (devid && map->stripes[i].dev->devid != devid)
5995                         continue;
5996                 if (map->stripes[i].physical > physical ||
5997                     map->stripes[i].physical + length <= physical)
5998                         continue;
5999
6000                 stripe_nr = physical - map->stripes[i].physical;
6001                 stripe_nr = div_u64(stripe_nr, map->stripe_len);
6002
6003                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6004                         stripe_nr = stripe_nr * map->num_stripes + i;
6005                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6006                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6007                         stripe_nr = stripe_nr * map->num_stripes + i;
6008                 } /* else if RAID[56], multiply by nr_data_stripes().
6009                    * Alternatively, just use rmap_len below instead of
6010                    * map->stripe_len */
6011
6012                 bytenr = chunk_start + stripe_nr * rmap_len;
6013                 WARN_ON(nr >= map->num_stripes);
6014                 for (j = 0; j < nr; j++) {
6015                         if (buf[j] == bytenr)
6016                                 break;
6017                 }
6018                 if (j == nr) {
6019                         WARN_ON(nr >= map->num_stripes);
6020                         buf[nr++] = bytenr;
6021                 }
6022         }
6023
6024         *logical = buf;
6025         *naddrs = nr;
6026         *stripe_len = rmap_len;
6027
6028         free_extent_map(em);
6029         return 0;
6030 }
6031
6032 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6033 {
6034         bio->bi_private = bbio->private;
6035         bio->bi_end_io = bbio->end_io;
6036         bio_endio(bio);
6037
6038         btrfs_put_bbio(bbio);
6039 }
6040
6041 static void btrfs_end_bio(struct bio *bio)
6042 {
6043         struct btrfs_bio *bbio = bio->bi_private;
6044         int is_orig_bio = 0;
6045
6046         if (bio->bi_error) {
6047                 atomic_inc(&bbio->error);
6048                 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6049                         unsigned int stripe_index =
6050                                 btrfs_io_bio(bio)->stripe_index;
6051                         struct btrfs_device *dev;
6052
6053                         BUG_ON(stripe_index >= bbio->num_stripes);
6054                         dev = bbio->stripes[stripe_index].dev;
6055                         if (dev->bdev) {
6056                                 if (bio_op(bio) == REQ_OP_WRITE)
6057                                         btrfs_dev_stat_inc(dev,
6058                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6059                                 else
6060                                         btrfs_dev_stat_inc(dev,
6061                                                 BTRFS_DEV_STAT_READ_ERRS);
6062                                 if (bio->bi_opf & REQ_PREFLUSH)
6063                                         btrfs_dev_stat_inc(dev,
6064                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6065                                 btrfs_dev_stat_print_on_error(dev);
6066                         }
6067                 }
6068         }
6069
6070         if (bio == bbio->orig_bio)
6071                 is_orig_bio = 1;
6072
6073         btrfs_bio_counter_dec(bbio->fs_info);
6074
6075         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6076                 if (!is_orig_bio) {
6077                         bio_put(bio);
6078                         bio = bbio->orig_bio;
6079                 }
6080
6081                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6082                 /* only send an error to the higher layers if it is
6083                  * beyond the tolerance of the btrfs bio
6084                  */
6085                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6086                         bio->bi_error = -EIO;
6087                 } else {
6088                         /*
6089                          * this bio is actually up to date, we didn't
6090                          * go over the max number of errors
6091                          */
6092                         bio->bi_error = 0;
6093                 }
6094
6095                 btrfs_end_bbio(bbio, bio);
6096         } else if (!is_orig_bio) {
6097                 bio_put(bio);
6098         }
6099 }
6100
6101 /*
6102  * see run_scheduled_bios for a description of why bios are collected for
6103  * async submit.
6104  *
6105  * This will add one bio to the pending list for a device and make sure
6106  * the work struct is scheduled.
6107  */
6108 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6109                                         struct bio *bio)
6110 {
6111         struct btrfs_fs_info *fs_info = device->fs_info;
6112         int should_queue = 1;
6113         struct btrfs_pending_bios *pending_bios;
6114
6115         if (device->missing || !device->bdev) {
6116                 bio_io_error(bio);
6117                 return;
6118         }
6119
6120         /* don't bother with additional async steps for reads, right now */
6121         if (bio_op(bio) == REQ_OP_READ) {
6122                 bio_get(bio);
6123                 btrfsic_submit_bio(bio);
6124                 bio_put(bio);
6125                 return;
6126         }
6127
6128         /*
6129          * nr_async_bios allows us to reliably return congestion to the
6130          * higher layers.  Otherwise, the async bio makes it appear we have
6131          * made progress against dirty pages when we've really just put it
6132          * on a queue for later
6133          */
6134         atomic_inc(&fs_info->nr_async_bios);
6135         WARN_ON(bio->bi_next);
6136         bio->bi_next = NULL;
6137
6138         spin_lock(&device->io_lock);
6139         if (op_is_sync(bio->bi_opf))
6140                 pending_bios = &device->pending_sync_bios;
6141         else
6142                 pending_bios = &device->pending_bios;
6143
6144         if (pending_bios->tail)
6145                 pending_bios->tail->bi_next = bio;
6146
6147         pending_bios->tail = bio;
6148         if (!pending_bios->head)
6149                 pending_bios->head = bio;
6150         if (device->running_pending)
6151                 should_queue = 0;
6152
6153         spin_unlock(&device->io_lock);
6154
6155         if (should_queue)
6156                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6157 }
6158
6159 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6160                               u64 physical, int dev_nr, int async)
6161 {
6162         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6163         struct btrfs_fs_info *fs_info = bbio->fs_info;
6164
6165         bio->bi_private = bbio;
6166         btrfs_io_bio(bio)->stripe_index = dev_nr;
6167         bio->bi_end_io = btrfs_end_bio;
6168         bio->bi_iter.bi_sector = physical >> 9;
6169 #ifdef DEBUG
6170         {
6171                 struct rcu_string *name;
6172
6173                 rcu_read_lock();
6174                 name = rcu_dereference(dev->name);
6175                 btrfs_debug(fs_info,
6176                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6177                         bio_op(bio), bio->bi_opf,
6178                         (u64)bio->bi_iter.bi_sector,
6179                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6180                         bio->bi_iter.bi_size);
6181                 rcu_read_unlock();
6182         }
6183 #endif
6184         bio->bi_bdev = dev->bdev;
6185
6186         btrfs_bio_counter_inc_noblocked(fs_info);
6187
6188         if (async)
6189                 btrfs_schedule_bio(dev, bio);
6190         else
6191                 btrfsic_submit_bio(bio);
6192 }
6193
6194 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6195 {
6196         atomic_inc(&bbio->error);
6197         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6198                 /* Should be the original bio. */
6199                 WARN_ON(bio != bbio->orig_bio);
6200
6201                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6202                 bio->bi_iter.bi_sector = logical >> 9;
6203                 bio->bi_error = -EIO;
6204                 btrfs_end_bbio(bbio, bio);
6205         }
6206 }
6207
6208 int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6209                   int mirror_num, int async_submit)
6210 {
6211         struct btrfs_device *dev;
6212         struct bio *first_bio = bio;
6213         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6214         u64 length = 0;
6215         u64 map_length;
6216         int ret;
6217         int dev_nr;
6218         int total_devs;
6219         struct btrfs_bio *bbio = NULL;
6220
6221         length = bio->bi_iter.bi_size;
6222         map_length = length;
6223
6224         btrfs_bio_counter_inc_blocked(fs_info);
6225         ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6226                                 &map_length, &bbio, mirror_num, 1);
6227         if (ret) {
6228                 btrfs_bio_counter_dec(fs_info);
6229                 return ret;
6230         }
6231
6232         total_devs = bbio->num_stripes;
6233         bbio->orig_bio = first_bio;
6234         bbio->private = first_bio->bi_private;
6235         bbio->end_io = first_bio->bi_end_io;
6236         bbio->fs_info = fs_info;
6237         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6238
6239         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6240             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6241                 /* In this case, map_length has been set to the length of
6242                    a single stripe; not the whole write */
6243                 if (bio_op(bio) == REQ_OP_WRITE) {
6244                         ret = raid56_parity_write(fs_info, bio, bbio,
6245                                                   map_length);
6246                 } else {
6247                         ret = raid56_parity_recover(fs_info, bio, bbio,
6248                                                     map_length, mirror_num, 1);
6249                 }
6250
6251                 btrfs_bio_counter_dec(fs_info);
6252                 return ret;
6253         }
6254
6255         if (map_length < length) {
6256                 btrfs_crit(fs_info,
6257                            "mapping failed logical %llu bio len %llu len %llu",
6258                            logical, length, map_length);
6259                 BUG();
6260         }
6261
6262         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6263                 dev = bbio->stripes[dev_nr].dev;
6264                 if (!dev || !dev->bdev ||
6265                     (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6266                         bbio_error(bbio, first_bio, logical);
6267                         continue;
6268                 }
6269
6270                 if (dev_nr < total_devs - 1) {
6271                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6272                         BUG_ON(!bio); /* -ENOMEM */
6273                 } else
6274                         bio = first_bio;
6275
6276                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6277                                   dev_nr, async_submit);
6278         }
6279         btrfs_bio_counter_dec(fs_info);
6280         return 0;
6281 }
6282
6283 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6284                                        u8 *uuid, u8 *fsid)
6285 {
6286         struct btrfs_device *device;
6287         struct btrfs_fs_devices *cur_devices;
6288
6289         cur_devices = fs_info->fs_devices;
6290         while (cur_devices) {
6291                 if (!fsid ||
6292                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6293                         device = __find_device(&cur_devices->devices,
6294                                                devid, uuid);
6295                         if (device)
6296                                 return device;
6297                 }
6298                 cur_devices = cur_devices->seed;
6299         }
6300         return NULL;
6301 }
6302
6303 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6304                                             u64 devid, u8 *dev_uuid)
6305 {
6306         struct btrfs_device *device;
6307
6308         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6309         if (IS_ERR(device))
6310                 return NULL;
6311
6312         list_add(&device->dev_list, &fs_devices->devices);
6313         device->fs_devices = fs_devices;
6314         fs_devices->num_devices++;
6315
6316         device->missing = 1;
6317         fs_devices->missing_devices++;
6318
6319         return device;
6320 }
6321
6322 /**
6323  * btrfs_alloc_device - allocate struct btrfs_device
6324  * @fs_info:    used only for generating a new devid, can be NULL if
6325  *              devid is provided (i.e. @devid != NULL).
6326  * @devid:      a pointer to devid for this device.  If NULL a new devid
6327  *              is generated.
6328  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6329  *              is generated.
6330  *
6331  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6332  * on error.  Returned struct is not linked onto any lists and can be
6333  * destroyed with kfree() right away.
6334  */
6335 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6336                                         const u64 *devid,
6337                                         const u8 *uuid)
6338 {
6339         struct btrfs_device *dev;
6340         u64 tmp;
6341
6342         if (WARN_ON(!devid && !fs_info))
6343                 return ERR_PTR(-EINVAL);
6344
6345         dev = __alloc_device();
6346         if (IS_ERR(dev))
6347                 return dev;
6348
6349         if (devid)
6350                 tmp = *devid;
6351         else {
6352                 int ret;
6353
6354                 ret = find_next_devid(fs_info, &tmp);
6355                 if (ret) {
6356                         kfree(dev);
6357                         return ERR_PTR(ret);
6358                 }
6359         }
6360         dev->devid = tmp;
6361
6362         if (uuid)
6363                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6364         else
6365                 generate_random_uuid(dev->uuid);
6366
6367         btrfs_init_work(&dev->work, btrfs_submit_helper,
6368                         pending_bios_fn, NULL, NULL);
6369
6370         return dev;
6371 }
6372
6373 /* Return -EIO if any error, otherwise return 0. */
6374 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6375                                    struct extent_buffer *leaf,
6376                                    struct btrfs_chunk *chunk, u64 logical)
6377 {
6378         u64 length;
6379         u64 stripe_len;
6380         u16 num_stripes;
6381         u16 sub_stripes;
6382         u64 type;
6383
6384         length = btrfs_chunk_length(leaf, chunk);
6385         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6386         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6387         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6388         type = btrfs_chunk_type(leaf, chunk);
6389
6390         if (!num_stripes) {
6391                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6392                           num_stripes);
6393                 return -EIO;
6394         }
6395         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6396                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6397                 return -EIO;
6398         }
6399         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6400                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6401                           btrfs_chunk_sector_size(leaf, chunk));
6402                 return -EIO;
6403         }
6404         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6405                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6406                 return -EIO;
6407         }
6408         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6409                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6410                           stripe_len);
6411                 return -EIO;
6412         }
6413         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6414             type) {
6415                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6416                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6417                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6418                           btrfs_chunk_type(leaf, chunk));
6419                 return -EIO;
6420         }
6421         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6422             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6423             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6424             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6425             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6426             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6427              num_stripes != 1)) {
6428                 btrfs_err(fs_info,
6429                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6430                         num_stripes, sub_stripes,
6431                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6432                 return -EIO;
6433         }
6434
6435         return 0;
6436 }
6437
6438 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6439                           struct extent_buffer *leaf,
6440                           struct btrfs_chunk *chunk)
6441 {
6442         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6443         struct map_lookup *map;
6444         struct extent_map *em;
6445         u64 logical;
6446         u64 length;
6447         u64 stripe_len;
6448         u64 devid;
6449         u8 uuid[BTRFS_UUID_SIZE];
6450         int num_stripes;
6451         int ret;
6452         int i;
6453
6454         logical = key->offset;
6455         length = btrfs_chunk_length(leaf, chunk);
6456         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6457         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6458
6459         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6460         if (ret)
6461                 return ret;
6462
6463         read_lock(&map_tree->map_tree.lock);
6464         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6465         read_unlock(&map_tree->map_tree.lock);
6466
6467         /* already mapped? */
6468         if (em && em->start <= logical && em->start + em->len > logical) {
6469                 free_extent_map(em);
6470                 return 0;
6471         } else if (em) {
6472                 free_extent_map(em);
6473         }
6474
6475         em = alloc_extent_map();
6476         if (!em)
6477                 return -ENOMEM;
6478         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6479         if (!map) {
6480                 free_extent_map(em);
6481                 return -ENOMEM;
6482         }
6483
6484         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6485         em->map_lookup = map;
6486         em->start = logical;
6487         em->len = length;
6488         em->orig_start = 0;
6489         em->block_start = 0;
6490         em->block_len = em->len;
6491
6492         map->num_stripes = num_stripes;
6493         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6494         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6495         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6496         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6497         map->type = btrfs_chunk_type(leaf, chunk);
6498         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6499         for (i = 0; i < num_stripes; i++) {
6500                 map->stripes[i].physical =
6501                         btrfs_stripe_offset_nr(leaf, chunk, i);
6502                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6503                 read_extent_buffer(leaf, uuid, (unsigned long)
6504                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6505                                    BTRFS_UUID_SIZE);
6506                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6507                                                         uuid, NULL);
6508                 if (!map->stripes[i].dev &&
6509                     !btrfs_test_opt(fs_info, DEGRADED)) {
6510                         free_extent_map(em);
6511                         return -EIO;
6512                 }
6513                 if (!map->stripes[i].dev) {
6514                         map->stripes[i].dev =
6515                                 add_missing_dev(fs_info->fs_devices, devid,
6516                                                 uuid);
6517                         if (!map->stripes[i].dev) {
6518                                 free_extent_map(em);
6519                                 return -EIO;
6520                         }
6521                         btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
6522                                    devid, uuid);
6523                 }
6524                 map->stripes[i].dev->in_fs_metadata = 1;
6525         }
6526
6527         write_lock(&map_tree->map_tree.lock);
6528         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6529         write_unlock(&map_tree->map_tree.lock);
6530         BUG_ON(ret); /* Tree corruption */
6531         free_extent_map(em);
6532
6533         return 0;
6534 }
6535
6536 static void fill_device_from_item(struct extent_buffer *leaf,
6537                                  struct btrfs_dev_item *dev_item,
6538                                  struct btrfs_device *device)
6539 {
6540         unsigned long ptr;
6541
6542         device->devid = btrfs_device_id(leaf, dev_item);
6543         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6544         device->total_bytes = device->disk_total_bytes;
6545         device->commit_total_bytes = device->disk_total_bytes;
6546         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6547         device->commit_bytes_used = device->bytes_used;
6548         device->type = btrfs_device_type(leaf, dev_item);
6549         device->io_align = btrfs_device_io_align(leaf, dev_item);
6550         device->io_width = btrfs_device_io_width(leaf, dev_item);
6551         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6552         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6553         device->is_tgtdev_for_dev_replace = 0;
6554
6555         ptr = btrfs_device_uuid(dev_item);
6556         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6557 }
6558
6559 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6560                                                   u8 *fsid)
6561 {
6562         struct btrfs_fs_devices *fs_devices;
6563         int ret;
6564
6565         BUG_ON(!mutex_is_locked(&uuid_mutex));
6566
6567         fs_devices = fs_info->fs_devices->seed;
6568         while (fs_devices) {
6569                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6570                         return fs_devices;
6571
6572                 fs_devices = fs_devices->seed;
6573         }
6574
6575         fs_devices = find_fsid(fsid);
6576         if (!fs_devices) {
6577                 if (!btrfs_test_opt(fs_info, DEGRADED))
6578                         return ERR_PTR(-ENOENT);
6579
6580                 fs_devices = alloc_fs_devices(fsid);
6581                 if (IS_ERR(fs_devices))
6582                         return fs_devices;
6583
6584                 fs_devices->seeding = 1;
6585                 fs_devices->opened = 1;
6586                 return fs_devices;
6587         }
6588
6589         fs_devices = clone_fs_devices(fs_devices);
6590         if (IS_ERR(fs_devices))
6591                 return fs_devices;
6592
6593         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6594                                    fs_info->bdev_holder);
6595         if (ret) {
6596                 free_fs_devices(fs_devices);
6597                 fs_devices = ERR_PTR(ret);
6598                 goto out;
6599         }
6600
6601         if (!fs_devices->seeding) {
6602                 __btrfs_close_devices(fs_devices);
6603                 free_fs_devices(fs_devices);
6604                 fs_devices = ERR_PTR(-EINVAL);
6605                 goto out;
6606         }
6607
6608         fs_devices->seed = fs_info->fs_devices->seed;
6609         fs_info->fs_devices->seed = fs_devices;
6610 out:
6611         return fs_devices;
6612 }
6613
6614 static int read_one_dev(struct btrfs_fs_info *fs_info,
6615                         struct extent_buffer *leaf,
6616                         struct btrfs_dev_item *dev_item)
6617 {
6618         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6619         struct btrfs_device *device;
6620         u64 devid;
6621         int ret;
6622         u8 fs_uuid[BTRFS_UUID_SIZE];
6623         u8 dev_uuid[BTRFS_UUID_SIZE];
6624
6625         devid = btrfs_device_id(leaf, dev_item);
6626         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6627                            BTRFS_UUID_SIZE);
6628         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6629                            BTRFS_UUID_SIZE);
6630
6631         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
6632                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6633                 if (IS_ERR(fs_devices))
6634                         return PTR_ERR(fs_devices);
6635         }
6636
6637         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6638         if (!device) {
6639                 if (!btrfs_test_opt(fs_info, DEGRADED))
6640                         return -EIO;
6641
6642                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6643                 if (!device)
6644                         return -ENOMEM;
6645                 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
6646                                 devid, dev_uuid);
6647         } else {
6648                 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
6649                         return -EIO;
6650
6651                 if(!device->bdev && !device->missing) {
6652                         /*
6653                          * this happens when a device that was properly setup
6654                          * in the device info lists suddenly goes bad.
6655                          * device->bdev is NULL, and so we have to set
6656                          * device->missing to one here
6657                          */
6658                         device->fs_devices->missing_devices++;
6659                         device->missing = 1;
6660                 }
6661
6662                 /* Move the device to its own fs_devices */
6663                 if (device->fs_devices != fs_devices) {
6664                         ASSERT(device->missing);
6665
6666                         list_move(&device->dev_list, &fs_devices->devices);
6667                         device->fs_devices->num_devices--;
6668                         fs_devices->num_devices++;
6669
6670                         device->fs_devices->missing_devices--;
6671                         fs_devices->missing_devices++;
6672
6673                         device->fs_devices = fs_devices;
6674                 }
6675         }
6676
6677         if (device->fs_devices != fs_info->fs_devices) {
6678                 BUG_ON(device->writeable);
6679                 if (device->generation !=
6680                     btrfs_device_generation(leaf, dev_item))
6681                         return -EINVAL;
6682         }
6683
6684         fill_device_from_item(leaf, dev_item, device);
6685         device->in_fs_metadata = 1;
6686         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6687                 device->fs_devices->total_rw_bytes += device->total_bytes;
6688                 spin_lock(&fs_info->free_chunk_lock);
6689                 fs_info->free_chunk_space += device->total_bytes -
6690                         device->bytes_used;
6691                 spin_unlock(&fs_info->free_chunk_lock);
6692         }
6693         ret = 0;
6694         return ret;
6695 }
6696
6697 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6698 {
6699         struct btrfs_root *root = fs_info->tree_root;
6700         struct btrfs_super_block *super_copy = fs_info->super_copy;
6701         struct extent_buffer *sb;
6702         struct btrfs_disk_key *disk_key;
6703         struct btrfs_chunk *chunk;
6704         u8 *array_ptr;
6705         unsigned long sb_array_offset;
6706         int ret = 0;
6707         u32 num_stripes;
6708         u32 array_size;
6709         u32 len = 0;
6710         u32 cur_offset;
6711         u64 type;
6712         struct btrfs_key key;
6713
6714         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6715         /*
6716          * This will create extent buffer of nodesize, superblock size is
6717          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6718          * overallocate but we can keep it as-is, only the first page is used.
6719          */
6720         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6721         if (IS_ERR(sb))
6722                 return PTR_ERR(sb);
6723         set_extent_buffer_uptodate(sb);
6724         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6725         /*
6726          * The sb extent buffer is artificial and just used to read the system array.
6727          * set_extent_buffer_uptodate() call does not properly mark all it's
6728          * pages up-to-date when the page is larger: extent does not cover the
6729          * whole page and consequently check_page_uptodate does not find all
6730          * the page's extents up-to-date (the hole beyond sb),
6731          * write_extent_buffer then triggers a WARN_ON.
6732          *
6733          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6734          * but sb spans only this function. Add an explicit SetPageUptodate call
6735          * to silence the warning eg. on PowerPC 64.
6736          */
6737         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6738                 SetPageUptodate(sb->pages[0]);
6739
6740         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6741         array_size = btrfs_super_sys_array_size(super_copy);
6742
6743         array_ptr = super_copy->sys_chunk_array;
6744         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6745         cur_offset = 0;
6746
6747         while (cur_offset < array_size) {
6748                 disk_key = (struct btrfs_disk_key *)array_ptr;
6749                 len = sizeof(*disk_key);
6750                 if (cur_offset + len > array_size)
6751                         goto out_short_read;
6752
6753                 btrfs_disk_key_to_cpu(&key, disk_key);
6754
6755                 array_ptr += len;
6756                 sb_array_offset += len;
6757                 cur_offset += len;
6758
6759                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6760                         chunk = (struct btrfs_chunk *)sb_array_offset;
6761                         /*
6762                          * At least one btrfs_chunk with one stripe must be
6763                          * present, exact stripe count check comes afterwards
6764                          */
6765                         len = btrfs_chunk_item_size(1);
6766                         if (cur_offset + len > array_size)
6767                                 goto out_short_read;
6768
6769                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6770                         if (!num_stripes) {
6771                                 btrfs_err(fs_info,
6772                                         "invalid number of stripes %u in sys_array at offset %u",
6773                                         num_stripes, cur_offset);
6774                                 ret = -EIO;
6775                                 break;
6776                         }
6777
6778                         type = btrfs_chunk_type(sb, chunk);
6779                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6780                                 btrfs_err(fs_info,
6781                             "invalid chunk type %llu in sys_array at offset %u",
6782                                         type, cur_offset);
6783                                 ret = -EIO;
6784                                 break;
6785                         }
6786
6787                         len = btrfs_chunk_item_size(num_stripes);
6788                         if (cur_offset + len > array_size)
6789                                 goto out_short_read;
6790
6791                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6792                         if (ret)
6793                                 break;
6794                 } else {
6795                         btrfs_err(fs_info,
6796                             "unexpected item type %u in sys_array at offset %u",
6797                                   (u32)key.type, cur_offset);
6798                         ret = -EIO;
6799                         break;
6800                 }
6801                 array_ptr += len;
6802                 sb_array_offset += len;
6803                 cur_offset += len;
6804         }
6805         clear_extent_buffer_uptodate(sb);
6806         free_extent_buffer_stale(sb);
6807         return ret;
6808
6809 out_short_read:
6810         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6811                         len, cur_offset);
6812         clear_extent_buffer_uptodate(sb);
6813         free_extent_buffer_stale(sb);
6814         return -EIO;
6815 }
6816
6817 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6818 {
6819         struct btrfs_root *root = fs_info->chunk_root;
6820         struct btrfs_path *path;
6821         struct extent_buffer *leaf;
6822         struct btrfs_key key;
6823         struct btrfs_key found_key;
6824         int ret;
6825         int slot;
6826         u64 total_dev = 0;
6827
6828         path = btrfs_alloc_path();
6829         if (!path)
6830                 return -ENOMEM;
6831
6832         mutex_lock(&uuid_mutex);
6833         mutex_lock(&fs_info->chunk_mutex);
6834
6835         /*
6836          * Read all device items, and then all the chunk items. All
6837          * device items are found before any chunk item (their object id
6838          * is smaller than the lowest possible object id for a chunk
6839          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6840          */
6841         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6842         key.offset = 0;
6843         key.type = 0;
6844         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6845         if (ret < 0)
6846                 goto error;
6847         while (1) {
6848                 leaf = path->nodes[0];
6849                 slot = path->slots[0];
6850                 if (slot >= btrfs_header_nritems(leaf)) {
6851                         ret = btrfs_next_leaf(root, path);
6852                         if (ret == 0)
6853                                 continue;
6854                         if (ret < 0)
6855                                 goto error;
6856                         break;
6857                 }
6858                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6859                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6860                         struct btrfs_dev_item *dev_item;
6861                         dev_item = btrfs_item_ptr(leaf, slot,
6862                                                   struct btrfs_dev_item);
6863                         ret = read_one_dev(fs_info, leaf, dev_item);
6864                         if (ret)
6865                                 goto error;
6866                         total_dev++;
6867                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6868                         struct btrfs_chunk *chunk;
6869                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6870                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6871                         if (ret)
6872                                 goto error;
6873                 }
6874                 path->slots[0]++;
6875         }
6876
6877         /*
6878          * After loading chunk tree, we've got all device information,
6879          * do another round of validation checks.
6880          */
6881         if (total_dev != fs_info->fs_devices->total_devices) {
6882                 btrfs_err(fs_info,
6883            "super_num_devices %llu mismatch with num_devices %llu found here",
6884                           btrfs_super_num_devices(fs_info->super_copy),
6885                           total_dev);
6886                 ret = -EINVAL;
6887                 goto error;
6888         }
6889         if (btrfs_super_total_bytes(fs_info->super_copy) <
6890             fs_info->fs_devices->total_rw_bytes) {
6891                 btrfs_err(fs_info,
6892         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6893                           btrfs_super_total_bytes(fs_info->super_copy),
6894                           fs_info->fs_devices->total_rw_bytes);
6895                 ret = -EINVAL;
6896                 goto error;
6897         }
6898         ret = 0;
6899 error:
6900         mutex_unlock(&fs_info->chunk_mutex);
6901         mutex_unlock(&uuid_mutex);
6902
6903         btrfs_free_path(path);
6904         return ret;
6905 }
6906
6907 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6908 {
6909         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6910         struct btrfs_device *device;
6911
6912         while (fs_devices) {
6913                 mutex_lock(&fs_devices->device_list_mutex);
6914                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6915                         device->fs_info = fs_info;
6916                 mutex_unlock(&fs_devices->device_list_mutex);
6917
6918                 fs_devices = fs_devices->seed;
6919         }
6920 }
6921
6922 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6923 {
6924         int i;
6925
6926         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6927                 btrfs_dev_stat_reset(dev, i);
6928 }
6929
6930 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6931 {
6932         struct btrfs_key key;
6933         struct btrfs_key found_key;
6934         struct btrfs_root *dev_root = fs_info->dev_root;
6935         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6936         struct extent_buffer *eb;
6937         int slot;
6938         int ret = 0;
6939         struct btrfs_device *device;
6940         struct btrfs_path *path = NULL;
6941         int i;
6942
6943         path = btrfs_alloc_path();
6944         if (!path) {
6945                 ret = -ENOMEM;
6946                 goto out;
6947         }
6948
6949         mutex_lock(&fs_devices->device_list_mutex);
6950         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6951                 int item_size;
6952                 struct btrfs_dev_stats_item *ptr;
6953
6954                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6955                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6956                 key.offset = device->devid;
6957                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6958                 if (ret) {
6959                         __btrfs_reset_dev_stats(device);
6960                         device->dev_stats_valid = 1;
6961                         btrfs_release_path(path);
6962                         continue;
6963                 }
6964                 slot = path->slots[0];
6965                 eb = path->nodes[0];
6966                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6967                 item_size = btrfs_item_size_nr(eb, slot);
6968
6969                 ptr = btrfs_item_ptr(eb, slot,
6970                                      struct btrfs_dev_stats_item);
6971
6972                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6973                         if (item_size >= (1 + i) * sizeof(__le64))
6974                                 btrfs_dev_stat_set(device, i,
6975                                         btrfs_dev_stats_value(eb, ptr, i));
6976                         else
6977                                 btrfs_dev_stat_reset(device, i);
6978                 }
6979
6980                 device->dev_stats_valid = 1;
6981                 btrfs_dev_stat_print_on_load(device);
6982                 btrfs_release_path(path);
6983         }
6984         mutex_unlock(&fs_devices->device_list_mutex);
6985
6986 out:
6987         btrfs_free_path(path);
6988         return ret < 0 ? ret : 0;
6989 }
6990
6991 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6992                                 struct btrfs_fs_info *fs_info,
6993                                 struct btrfs_device *device)
6994 {
6995         struct btrfs_root *dev_root = fs_info->dev_root;
6996         struct btrfs_path *path;
6997         struct btrfs_key key;
6998         struct extent_buffer *eb;
6999         struct btrfs_dev_stats_item *ptr;
7000         int ret;
7001         int i;
7002
7003         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7004         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7005         key.offset = device->devid;
7006
7007         path = btrfs_alloc_path();
7008         if (!path)
7009                 return -ENOMEM;
7010         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7011         if (ret < 0) {
7012                 btrfs_warn_in_rcu(fs_info,
7013                         "error %d while searching for dev_stats item for device %s",
7014                               ret, rcu_str_deref(device->name));
7015                 goto out;
7016         }
7017
7018         if (ret == 0 &&
7019             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7020                 /* need to delete old one and insert a new one */
7021                 ret = btrfs_del_item(trans, dev_root, path);
7022                 if (ret != 0) {
7023                         btrfs_warn_in_rcu(fs_info,
7024                                 "delete too small dev_stats item for device %s failed %d",
7025                                       rcu_str_deref(device->name), ret);
7026                         goto out;
7027                 }
7028                 ret = 1;
7029         }
7030
7031         if (ret == 1) {
7032                 /* need to insert a new item */
7033                 btrfs_release_path(path);
7034                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7035                                               &key, sizeof(*ptr));
7036                 if (ret < 0) {
7037                         btrfs_warn_in_rcu(fs_info,
7038                                 "insert dev_stats item for device %s failed %d",
7039                                 rcu_str_deref(device->name), ret);
7040                         goto out;
7041                 }
7042         }
7043
7044         eb = path->nodes[0];
7045         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7046         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7047                 btrfs_set_dev_stats_value(eb, ptr, i,
7048                                           btrfs_dev_stat_read(device, i));
7049         btrfs_mark_buffer_dirty(eb);
7050
7051 out:
7052         btrfs_free_path(path);
7053         return ret;
7054 }
7055
7056 /*
7057  * called from commit_transaction. Writes all changed device stats to disk.
7058  */
7059 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7060                         struct btrfs_fs_info *fs_info)
7061 {
7062         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7063         struct btrfs_device *device;
7064         int stats_cnt;
7065         int ret = 0;
7066
7067         mutex_lock(&fs_devices->device_list_mutex);
7068         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7069                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7070                         continue;
7071
7072                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7073                 ret = update_dev_stat_item(trans, fs_info, device);
7074                 if (!ret)
7075                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7076         }
7077         mutex_unlock(&fs_devices->device_list_mutex);
7078
7079         return ret;
7080 }
7081
7082 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7083 {
7084         btrfs_dev_stat_inc(dev, index);
7085         btrfs_dev_stat_print_on_error(dev);
7086 }
7087
7088 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7089 {
7090         if (!dev->dev_stats_valid)
7091                 return;
7092         btrfs_err_rl_in_rcu(dev->fs_info,
7093                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7094                            rcu_str_deref(dev->name),
7095                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7096                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7097                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7098                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7099                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7100 }
7101
7102 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7103 {
7104         int i;
7105
7106         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7107                 if (btrfs_dev_stat_read(dev, i) != 0)
7108                         break;
7109         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7110                 return; /* all values == 0, suppress message */
7111
7112         btrfs_info_in_rcu(dev->fs_info,
7113                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7114                rcu_str_deref(dev->name),
7115                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7116                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7117                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7118                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7119                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7120 }
7121
7122 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7123                         struct btrfs_ioctl_get_dev_stats *stats)
7124 {
7125         struct btrfs_device *dev;
7126         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7127         int i;
7128
7129         mutex_lock(&fs_devices->device_list_mutex);
7130         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7131         mutex_unlock(&fs_devices->device_list_mutex);
7132
7133         if (!dev) {
7134                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7135                 return -ENODEV;
7136         } else if (!dev->dev_stats_valid) {
7137                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7138                 return -ENODEV;
7139         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7140                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7141                         if (stats->nr_items > i)
7142                                 stats->values[i] =
7143                                         btrfs_dev_stat_read_and_reset(dev, i);
7144                         else
7145                                 btrfs_dev_stat_reset(dev, i);
7146                 }
7147         } else {
7148                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7149                         if (stats->nr_items > i)
7150                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7151         }
7152         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7153                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7154         return 0;
7155 }
7156
7157 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7158 {
7159         struct buffer_head *bh;
7160         struct btrfs_super_block *disk_super;
7161         int copy_num;
7162
7163         if (!bdev)
7164                 return;
7165
7166         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7167                 copy_num++) {
7168
7169                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7170                         continue;
7171
7172                 disk_super = (struct btrfs_super_block *)bh->b_data;
7173
7174                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7175                 set_buffer_dirty(bh);
7176                 sync_dirty_buffer(bh);
7177                 brelse(bh);
7178         }
7179
7180         /* Notify udev that device has changed */
7181         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7182
7183         /* Update ctime/mtime for device path for libblkid */
7184         update_dev_time(device_path);
7185 }
7186
7187 /*
7188  * Update the size of all devices, which is used for writing out the
7189  * super blocks.
7190  */
7191 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7192 {
7193         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7194         struct btrfs_device *curr, *next;
7195
7196         if (list_empty(&fs_devices->resized_devices))
7197                 return;
7198
7199         mutex_lock(&fs_devices->device_list_mutex);
7200         mutex_lock(&fs_info->chunk_mutex);
7201         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7202                                  resized_list) {
7203                 list_del_init(&curr->resized_list);
7204                 curr->commit_total_bytes = curr->disk_total_bytes;
7205         }
7206         mutex_unlock(&fs_info->chunk_mutex);
7207         mutex_unlock(&fs_devices->device_list_mutex);
7208 }
7209
7210 /* Must be invoked during the transaction commit */
7211 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7212                                         struct btrfs_transaction *transaction)
7213 {
7214         struct extent_map *em;
7215         struct map_lookup *map;
7216         struct btrfs_device *dev;
7217         int i;
7218
7219         if (list_empty(&transaction->pending_chunks))
7220                 return;
7221
7222         /* In order to kick the device replace finish process */
7223         mutex_lock(&fs_info->chunk_mutex);
7224         list_for_each_entry(em, &transaction->pending_chunks, list) {
7225                 map = em->map_lookup;
7226
7227                 for (i = 0; i < map->num_stripes; i++) {
7228                         dev = map->stripes[i].dev;
7229                         dev->commit_bytes_used = dev->bytes_used;
7230                 }
7231         }
7232         mutex_unlock(&fs_info->chunk_mutex);
7233 }
7234
7235 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7236 {
7237         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7238         while (fs_devices) {
7239                 fs_devices->fs_info = fs_info;
7240                 fs_devices = fs_devices->seed;
7241         }
7242 }
7243
7244 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7245 {
7246         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7247         while (fs_devices) {
7248                 fs_devices->fs_info = NULL;
7249                 fs_devices = fs_devices->seed;
7250         }
7251 }