]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/volumes.c
4d3e5c4234dd0433b6db3d7da13932dc23d108e9
[karo-tx-linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_root *root,
138                                 struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148         return &fs_uuids;
149 }
150
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153         struct btrfs_fs_devices *fs_devs;
154
155         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156         if (!fs_devs)
157                 return ERR_PTR(-ENOMEM);
158
159         mutex_init(&fs_devs->device_list_mutex);
160
161         INIT_LIST_HEAD(&fs_devs->devices);
162         INIT_LIST_HEAD(&fs_devs->resized_devices);
163         INIT_LIST_HEAD(&fs_devs->alloc_list);
164         INIT_LIST_HEAD(&fs_devs->list);
165
166         return fs_devs;
167 }
168
169 /**
170  * alloc_fs_devices - allocate struct btrfs_fs_devices
171  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
172  *              generated.
173  *
174  * Return: a pointer to a new &struct btrfs_fs_devices on success;
175  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
176  * can be destroyed with kfree() right away.
177  */
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180         struct btrfs_fs_devices *fs_devs;
181
182         fs_devs = __alloc_fs_devices();
183         if (IS_ERR(fs_devs))
184                 return fs_devs;
185
186         if (fsid)
187                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188         else
189                 generate_random_uuid(fs_devs->fsid);
190
191         return fs_devs;
192 }
193
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196         struct btrfs_device *device;
197         WARN_ON(fs_devices->opened);
198         while (!list_empty(&fs_devices->devices)) {
199                 device = list_entry(fs_devices->devices.next,
200                                     struct btrfs_device, dev_list);
201                 list_del(&device->dev_list);
202                 rcu_string_free(device->name);
203                 kfree(device);
204         }
205         kfree(fs_devices);
206 }
207
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209                                  enum kobject_action action)
210 {
211         int ret;
212
213         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214         if (ret)
215                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216                         action,
217                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218                         &disk_to_dev(bdev->bd_disk)->kobj);
219 }
220
221 void btrfs_cleanup_fs_uuids(void)
222 {
223         struct btrfs_fs_devices *fs_devices;
224
225         while (!list_empty(&fs_uuids)) {
226                 fs_devices = list_entry(fs_uuids.next,
227                                         struct btrfs_fs_devices, list);
228                 list_del(&fs_devices->list);
229                 free_fs_devices(fs_devices);
230         }
231 }
232
233 static struct btrfs_device *__alloc_device(void)
234 {
235         struct btrfs_device *dev;
236
237         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238         if (!dev)
239                 return ERR_PTR(-ENOMEM);
240
241         INIT_LIST_HEAD(&dev->dev_list);
242         INIT_LIST_HEAD(&dev->dev_alloc_list);
243         INIT_LIST_HEAD(&dev->resized_list);
244
245         spin_lock_init(&dev->io_lock);
246
247         spin_lock_init(&dev->reada_lock);
248         atomic_set(&dev->reada_in_flight, 0);
249         atomic_set(&dev->dev_stats_ccnt, 0);
250         btrfs_device_data_ordered_init(dev);
251         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254         return dev;
255 }
256
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258                                                    u64 devid, u8 *uuid)
259 {
260         struct btrfs_device *dev;
261
262         list_for_each_entry(dev, head, dev_list) {
263                 if (dev->devid == devid &&
264                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265                         return dev;
266                 }
267         }
268         return NULL;
269 }
270
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273         struct btrfs_fs_devices *fs_devices;
274
275         list_for_each_entry(fs_devices, &fs_uuids, list) {
276                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277                         return fs_devices;
278         }
279         return NULL;
280 }
281
282 static int
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284                       int flush, struct block_device **bdev,
285                       struct buffer_head **bh)
286 {
287         int ret;
288
289         *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291         if (IS_ERR(*bdev)) {
292                 ret = PTR_ERR(*bdev);
293                 goto error;
294         }
295
296         if (flush)
297                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298         ret = set_blocksize(*bdev, 4096);
299         if (ret) {
300                 blkdev_put(*bdev, flags);
301                 goto error;
302         }
303         invalidate_bdev(*bdev);
304         *bh = btrfs_read_dev_super(*bdev);
305         if (IS_ERR(*bh)) {
306                 ret = PTR_ERR(*bh);
307                 blkdev_put(*bdev, flags);
308                 goto error;
309         }
310
311         return 0;
312
313 error:
314         *bdev = NULL;
315         *bh = NULL;
316         return ret;
317 }
318
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320                         struct bio *head, struct bio *tail)
321 {
322
323         struct bio *old_head;
324
325         old_head = pending_bios->head;
326         pending_bios->head = head;
327         if (pending_bios->tail)
328                 tail->bi_next = old_head;
329         else
330                 pending_bios->tail = tail;
331 }
332
333 /*
334  * we try to collect pending bios for a device so we don't get a large
335  * number of procs sending bios down to the same device.  This greatly
336  * improves the schedulers ability to collect and merge the bios.
337  *
338  * But, it also turns into a long list of bios to process and that is sure
339  * to eventually make the worker thread block.  The solution here is to
340  * make some progress and then put this work struct back at the end of
341  * the list if the block device is congested.  This way, multiple devices
342  * can make progress from a single worker thread.
343  */
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346         struct bio *pending;
347         struct backing_dev_info *bdi;
348         struct btrfs_fs_info *fs_info;
349         struct btrfs_pending_bios *pending_bios;
350         struct bio *tail;
351         struct bio *cur;
352         int again = 0;
353         unsigned long num_run;
354         unsigned long batch_run = 0;
355         unsigned long limit;
356         unsigned long last_waited = 0;
357         int force_reg = 0;
358         int sync_pending = 0;
359         struct blk_plug plug;
360
361         /*
362          * this function runs all the bios we've collected for
363          * a particular device.  We don't want to wander off to
364          * another device without first sending all of these down.
365          * So, setup a plug here and finish it off before we return
366          */
367         blk_start_plug(&plug);
368
369         bdi = blk_get_backing_dev_info(device->bdev);
370         fs_info = device->fs_info;
371         limit = btrfs_async_submit_limit(fs_info);
372         limit = limit * 2 / 3;
373
374 loop:
375         spin_lock(&device->io_lock);
376
377 loop_lock:
378         num_run = 0;
379
380         /* take all the bios off the list at once and process them
381          * later on (without the lock held).  But, remember the
382          * tail and other pointers so the bios can be properly reinserted
383          * into the list if we hit congestion
384          */
385         if (!force_reg && device->pending_sync_bios.head) {
386                 pending_bios = &device->pending_sync_bios;
387                 force_reg = 1;
388         } else {
389                 pending_bios = &device->pending_bios;
390                 force_reg = 0;
391         }
392
393         pending = pending_bios->head;
394         tail = pending_bios->tail;
395         WARN_ON(pending && !tail);
396
397         /*
398          * if pending was null this time around, no bios need processing
399          * at all and we can stop.  Otherwise it'll loop back up again
400          * and do an additional check so no bios are missed.
401          *
402          * device->running_pending is used to synchronize with the
403          * schedule_bio code.
404          */
405         if (device->pending_sync_bios.head == NULL &&
406             device->pending_bios.head == NULL) {
407                 again = 0;
408                 device->running_pending = 0;
409         } else {
410                 again = 1;
411                 device->running_pending = 1;
412         }
413
414         pending_bios->head = NULL;
415         pending_bios->tail = NULL;
416
417         spin_unlock(&device->io_lock);
418
419         while (pending) {
420
421                 rmb();
422                 /* we want to work on both lists, but do more bios on the
423                  * sync list than the regular list
424                  */
425                 if ((num_run > 32 &&
426                     pending_bios != &device->pending_sync_bios &&
427                     device->pending_sync_bios.head) ||
428                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429                     device->pending_bios.head)) {
430                         spin_lock(&device->io_lock);
431                         requeue_list(pending_bios, pending, tail);
432                         goto loop_lock;
433                 }
434
435                 cur = pending;
436                 pending = pending->bi_next;
437                 cur->bi_next = NULL;
438
439                 /*
440                  * atomic_dec_return implies a barrier for waitqueue_active
441                  */
442                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443                     waitqueue_active(&fs_info->async_submit_wait))
444                         wake_up(&fs_info->async_submit_wait);
445
446                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
447
448                 /*
449                  * if we're doing the sync list, record that our
450                  * plug has some sync requests on it
451                  *
452                  * If we're doing the regular list and there are
453                  * sync requests sitting around, unplug before
454                  * we add more
455                  */
456                 if (pending_bios == &device->pending_sync_bios) {
457                         sync_pending = 1;
458                 } else if (sync_pending) {
459                         blk_finish_plug(&plug);
460                         blk_start_plug(&plug);
461                         sync_pending = 0;
462                 }
463
464                 btrfsic_submit_bio(cur);
465                 num_run++;
466                 batch_run++;
467
468                 cond_resched();
469
470                 /*
471                  * we made progress, there is more work to do and the bdi
472                  * is now congested.  Back off and let other work structs
473                  * run instead
474                  */
475                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476                     fs_info->fs_devices->open_devices > 1) {
477                         struct io_context *ioc;
478
479                         ioc = current->io_context;
480
481                         /*
482                          * the main goal here is that we don't want to
483                          * block if we're going to be able to submit
484                          * more requests without blocking.
485                          *
486                          * This code does two great things, it pokes into
487                          * the elevator code from a filesystem _and_
488                          * it makes assumptions about how batching works.
489                          */
490                         if (ioc && ioc->nr_batch_requests > 0 &&
491                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492                             (last_waited == 0 ||
493                              ioc->last_waited == last_waited)) {
494                                 /*
495                                  * we want to go through our batch of
496                                  * requests and stop.  So, we copy out
497                                  * the ioc->last_waited time and test
498                                  * against it before looping
499                                  */
500                                 last_waited = ioc->last_waited;
501                                 cond_resched();
502                                 continue;
503                         }
504                         spin_lock(&device->io_lock);
505                         requeue_list(pending_bios, pending, tail);
506                         device->running_pending = 1;
507
508                         spin_unlock(&device->io_lock);
509                         btrfs_queue_work(fs_info->submit_workers,
510                                          &device->work);
511                         goto done;
512                 }
513                 /* unplug every 64 requests just for good measure */
514                 if (batch_run % 64 == 0) {
515                         blk_finish_plug(&plug);
516                         blk_start_plug(&plug);
517                         sync_pending = 0;
518                 }
519         }
520
521         cond_resched();
522         if (again)
523                 goto loop;
524
525         spin_lock(&device->io_lock);
526         if (device->pending_bios.head || device->pending_sync_bios.head)
527                 goto loop_lock;
528         spin_unlock(&device->io_lock);
529
530 done:
531         blk_finish_plug(&plug);
532 }
533
534 static void pending_bios_fn(struct btrfs_work *work)
535 {
536         struct btrfs_device *device;
537
538         device = container_of(work, struct btrfs_device, work);
539         run_scheduled_bios(device);
540 }
541
542
543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544 {
545         struct btrfs_fs_devices *fs_devs;
546         struct btrfs_device *dev;
547
548         if (!cur_dev->name)
549                 return;
550
551         list_for_each_entry(fs_devs, &fs_uuids, list) {
552                 int del = 1;
553
554                 if (fs_devs->opened)
555                         continue;
556                 if (fs_devs->seeding)
557                         continue;
558
559                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560
561                         if (dev == cur_dev)
562                                 continue;
563                         if (!dev->name)
564                                 continue;
565
566                         /*
567                          * Todo: This won't be enough. What if the same device
568                          * comes back (with new uuid and) with its mapper path?
569                          * But for now, this does help as mostly an admin will
570                          * either use mapper or non mapper path throughout.
571                          */
572                         rcu_read_lock();
573                         del = strcmp(rcu_str_deref(dev->name),
574                                                 rcu_str_deref(cur_dev->name));
575                         rcu_read_unlock();
576                         if (!del)
577                                 break;
578                 }
579
580                 if (!del) {
581                         /* delete the stale device */
582                         if (fs_devs->num_devices == 1) {
583                                 btrfs_sysfs_remove_fsid(fs_devs);
584                                 list_del(&fs_devs->list);
585                                 free_fs_devices(fs_devs);
586                         } else {
587                                 fs_devs->num_devices--;
588                                 list_del(&dev->dev_list);
589                                 rcu_string_free(dev->name);
590                                 kfree(dev);
591                         }
592                         break;
593                 }
594         }
595 }
596
597 /*
598  * Add new device to list of registered devices
599  *
600  * Returns:
601  * 1   - first time device is seen
602  * 0   - device already known
603  * < 0 - error
604  */
605 static noinline int device_list_add(const char *path,
606                            struct btrfs_super_block *disk_super,
607                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608 {
609         struct btrfs_device *device;
610         struct btrfs_fs_devices *fs_devices;
611         struct rcu_string *name;
612         int ret = 0;
613         u64 found_transid = btrfs_super_generation(disk_super);
614
615         fs_devices = find_fsid(disk_super->fsid);
616         if (!fs_devices) {
617                 fs_devices = alloc_fs_devices(disk_super->fsid);
618                 if (IS_ERR(fs_devices))
619                         return PTR_ERR(fs_devices);
620
621                 list_add(&fs_devices->list, &fs_uuids);
622
623                 device = NULL;
624         } else {
625                 device = __find_device(&fs_devices->devices, devid,
626                                        disk_super->dev_item.uuid);
627         }
628
629         if (!device) {
630                 if (fs_devices->opened)
631                         return -EBUSY;
632
633                 device = btrfs_alloc_device(NULL, &devid,
634                                             disk_super->dev_item.uuid);
635                 if (IS_ERR(device)) {
636                         /* we can safely leave the fs_devices entry around */
637                         return PTR_ERR(device);
638                 }
639
640                 name = rcu_string_strdup(path, GFP_NOFS);
641                 if (!name) {
642                         kfree(device);
643                         return -ENOMEM;
644                 }
645                 rcu_assign_pointer(device->name, name);
646
647                 mutex_lock(&fs_devices->device_list_mutex);
648                 list_add_rcu(&device->dev_list, &fs_devices->devices);
649                 fs_devices->num_devices++;
650                 mutex_unlock(&fs_devices->device_list_mutex);
651
652                 ret = 1;
653                 device->fs_devices = fs_devices;
654         } else if (!device->name || strcmp(device->name->str, path)) {
655                 /*
656                  * When FS is already mounted.
657                  * 1. If you are here and if the device->name is NULL that
658                  *    means this device was missing at time of FS mount.
659                  * 2. If you are here and if the device->name is different
660                  *    from 'path' that means either
661                  *      a. The same device disappeared and reappeared with
662                  *         different name. or
663                  *      b. The missing-disk-which-was-replaced, has
664                  *         reappeared now.
665                  *
666                  * We must allow 1 and 2a above. But 2b would be a spurious
667                  * and unintentional.
668                  *
669                  * Further in case of 1 and 2a above, the disk at 'path'
670                  * would have missed some transaction when it was away and
671                  * in case of 2a the stale bdev has to be updated as well.
672                  * 2b must not be allowed at all time.
673                  */
674
675                 /*
676                  * For now, we do allow update to btrfs_fs_device through the
677                  * btrfs dev scan cli after FS has been mounted.  We're still
678                  * tracking a problem where systems fail mount by subvolume id
679                  * when we reject replacement on a mounted FS.
680                  */
681                 if (!fs_devices->opened && found_transid < device->generation) {
682                         /*
683                          * That is if the FS is _not_ mounted and if you
684                          * are here, that means there is more than one
685                          * disk with same uuid and devid.We keep the one
686                          * with larger generation number or the last-in if
687                          * generation are equal.
688                          */
689                         return -EEXIST;
690                 }
691
692                 name = rcu_string_strdup(path, GFP_NOFS);
693                 if (!name)
694                         return -ENOMEM;
695                 rcu_string_free(device->name);
696                 rcu_assign_pointer(device->name, name);
697                 if (device->missing) {
698                         fs_devices->missing_devices--;
699                         device->missing = 0;
700                 }
701         }
702
703         /*
704          * Unmount does not free the btrfs_device struct but would zero
705          * generation along with most of the other members. So just update
706          * it back. We need it to pick the disk with largest generation
707          * (as above).
708          */
709         if (!fs_devices->opened)
710                 device->generation = found_transid;
711
712         /*
713          * if there is new btrfs on an already registered device,
714          * then remove the stale device entry.
715          */
716         if (ret > 0)
717                 btrfs_free_stale_device(device);
718
719         *fs_devices_ret = fs_devices;
720
721         return ret;
722 }
723
724 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725 {
726         struct btrfs_fs_devices *fs_devices;
727         struct btrfs_device *device;
728         struct btrfs_device *orig_dev;
729
730         fs_devices = alloc_fs_devices(orig->fsid);
731         if (IS_ERR(fs_devices))
732                 return fs_devices;
733
734         mutex_lock(&orig->device_list_mutex);
735         fs_devices->total_devices = orig->total_devices;
736
737         /* We have held the volume lock, it is safe to get the devices. */
738         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
739                 struct rcu_string *name;
740
741                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
742                                             orig_dev->uuid);
743                 if (IS_ERR(device))
744                         goto error;
745
746                 /*
747                  * This is ok to do without rcu read locked because we hold the
748                  * uuid mutex so nothing we touch in here is going to disappear.
749                  */
750                 if (orig_dev->name) {
751                         name = rcu_string_strdup(orig_dev->name->str,
752                                         GFP_KERNEL);
753                         if (!name) {
754                                 kfree(device);
755                                 goto error;
756                         }
757                         rcu_assign_pointer(device->name, name);
758                 }
759
760                 list_add(&device->dev_list, &fs_devices->devices);
761                 device->fs_devices = fs_devices;
762                 fs_devices->num_devices++;
763         }
764         mutex_unlock(&orig->device_list_mutex);
765         return fs_devices;
766 error:
767         mutex_unlock(&orig->device_list_mutex);
768         free_fs_devices(fs_devices);
769         return ERR_PTR(-ENOMEM);
770 }
771
772 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
773 {
774         struct btrfs_device *device, *next;
775         struct btrfs_device *latest_dev = NULL;
776
777         mutex_lock(&uuid_mutex);
778 again:
779         /* This is the initialized path, it is safe to release the devices. */
780         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
781                 if (device->in_fs_metadata) {
782                         if (!device->is_tgtdev_for_dev_replace &&
783                             (!latest_dev ||
784                              device->generation > latest_dev->generation)) {
785                                 latest_dev = device;
786                         }
787                         continue;
788                 }
789
790                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791                         /*
792                          * In the first step, keep the device which has
793                          * the correct fsid and the devid that is used
794                          * for the dev_replace procedure.
795                          * In the second step, the dev_replace state is
796                          * read from the device tree and it is known
797                          * whether the procedure is really active or
798                          * not, which means whether this device is
799                          * used or whether it should be removed.
800                          */
801                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
802                                 continue;
803                         }
804                 }
805                 if (device->bdev) {
806                         blkdev_put(device->bdev, device->mode);
807                         device->bdev = NULL;
808                         fs_devices->open_devices--;
809                 }
810                 if (device->writeable) {
811                         list_del_init(&device->dev_alloc_list);
812                         device->writeable = 0;
813                         if (!device->is_tgtdev_for_dev_replace)
814                                 fs_devices->rw_devices--;
815                 }
816                 list_del_init(&device->dev_list);
817                 fs_devices->num_devices--;
818                 rcu_string_free(device->name);
819                 kfree(device);
820         }
821
822         if (fs_devices->seed) {
823                 fs_devices = fs_devices->seed;
824                 goto again;
825         }
826
827         fs_devices->latest_bdev = latest_dev->bdev;
828
829         mutex_unlock(&uuid_mutex);
830 }
831
832 static void __free_device(struct work_struct *work)
833 {
834         struct btrfs_device *device;
835
836         device = container_of(work, struct btrfs_device, rcu_work);
837         rcu_string_free(device->name);
838         kfree(device);
839 }
840
841 static void free_device(struct rcu_head *head)
842 {
843         struct btrfs_device *device;
844
845         device = container_of(head, struct btrfs_device, rcu);
846
847         INIT_WORK(&device->rcu_work, __free_device);
848         schedule_work(&device->rcu_work);
849 }
850
851 static void btrfs_close_bdev(struct btrfs_device *device)
852 {
853         if (device->bdev && device->writeable) {
854                 sync_blockdev(device->bdev);
855                 invalidate_bdev(device->bdev);
856         }
857
858         if (device->bdev)
859                 blkdev_put(device->bdev, device->mode);
860 }
861
862 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
863 {
864         struct btrfs_fs_devices *fs_devices = device->fs_devices;
865         struct btrfs_device *new_device;
866         struct rcu_string *name;
867
868         if (device->bdev)
869                 fs_devices->open_devices--;
870
871         if (device->writeable &&
872             device->devid != BTRFS_DEV_REPLACE_DEVID) {
873                 list_del_init(&device->dev_alloc_list);
874                 fs_devices->rw_devices--;
875         }
876
877         if (device->missing)
878                 fs_devices->missing_devices--;
879
880         new_device = btrfs_alloc_device(NULL, &device->devid,
881                                         device->uuid);
882         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
883
884         /* Safe because we are under uuid_mutex */
885         if (device->name) {
886                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
887                 BUG_ON(!name); /* -ENOMEM */
888                 rcu_assign_pointer(new_device->name, name);
889         }
890
891         list_replace_rcu(&device->dev_list, &new_device->dev_list);
892         new_device->fs_devices = device->fs_devices;
893 }
894
895 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
896 {
897         struct btrfs_device *device, *tmp;
898         struct list_head pending_put;
899
900         INIT_LIST_HEAD(&pending_put);
901
902         if (--fs_devices->opened > 0)
903                 return 0;
904
905         mutex_lock(&fs_devices->device_list_mutex);
906         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
907                 btrfs_prepare_close_one_device(device);
908                 list_add(&device->dev_list, &pending_put);
909         }
910         mutex_unlock(&fs_devices->device_list_mutex);
911
912         /*
913          * btrfs_show_devname() is using the device_list_mutex,
914          * sometimes call to blkdev_put() leads vfs calling
915          * into this func. So do put outside of device_list_mutex,
916          * as of now.
917          */
918         while (!list_empty(&pending_put)) {
919                 device = list_first_entry(&pending_put,
920                                 struct btrfs_device, dev_list);
921                 list_del(&device->dev_list);
922                 btrfs_close_bdev(device);
923                 call_rcu(&device->rcu, free_device);
924         }
925
926         WARN_ON(fs_devices->open_devices);
927         WARN_ON(fs_devices->rw_devices);
928         fs_devices->opened = 0;
929         fs_devices->seeding = 0;
930
931         return 0;
932 }
933
934 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
935 {
936         struct btrfs_fs_devices *seed_devices = NULL;
937         int ret;
938
939         mutex_lock(&uuid_mutex);
940         ret = __btrfs_close_devices(fs_devices);
941         if (!fs_devices->opened) {
942                 seed_devices = fs_devices->seed;
943                 fs_devices->seed = NULL;
944         }
945         mutex_unlock(&uuid_mutex);
946
947         while (seed_devices) {
948                 fs_devices = seed_devices;
949                 seed_devices = fs_devices->seed;
950                 __btrfs_close_devices(fs_devices);
951                 free_fs_devices(fs_devices);
952         }
953         /*
954          * Wait for rcu kworkers under __btrfs_close_devices
955          * to finish all blkdev_puts so device is really
956          * free when umount is done.
957          */
958         rcu_barrier();
959         return ret;
960 }
961
962 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
963                                 fmode_t flags, void *holder)
964 {
965         struct request_queue *q;
966         struct block_device *bdev;
967         struct list_head *head = &fs_devices->devices;
968         struct btrfs_device *device;
969         struct btrfs_device *latest_dev = NULL;
970         struct buffer_head *bh;
971         struct btrfs_super_block *disk_super;
972         u64 devid;
973         int seeding = 1;
974         int ret = 0;
975
976         flags |= FMODE_EXCL;
977
978         list_for_each_entry(device, head, dev_list) {
979                 if (device->bdev)
980                         continue;
981                 if (!device->name)
982                         continue;
983
984                 /* Just open everything we can; ignore failures here */
985                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
986                                             &bdev, &bh))
987                         continue;
988
989                 disk_super = (struct btrfs_super_block *)bh->b_data;
990                 devid = btrfs_stack_device_id(&disk_super->dev_item);
991                 if (devid != device->devid)
992                         goto error_brelse;
993
994                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
995                            BTRFS_UUID_SIZE))
996                         goto error_brelse;
997
998                 device->generation = btrfs_super_generation(disk_super);
999                 if (!latest_dev ||
1000                     device->generation > latest_dev->generation)
1001                         latest_dev = device;
1002
1003                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1004                         device->writeable = 0;
1005                 } else {
1006                         device->writeable = !bdev_read_only(bdev);
1007                         seeding = 0;
1008                 }
1009
1010                 q = bdev_get_queue(bdev);
1011                 if (blk_queue_discard(q))
1012                         device->can_discard = 1;
1013
1014                 device->bdev = bdev;
1015                 device->in_fs_metadata = 0;
1016                 device->mode = flags;
1017
1018                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1019                         fs_devices->rotating = 1;
1020
1021                 fs_devices->open_devices++;
1022                 if (device->writeable &&
1023                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
1024                         fs_devices->rw_devices++;
1025                         list_add(&device->dev_alloc_list,
1026                                  &fs_devices->alloc_list);
1027                 }
1028                 brelse(bh);
1029                 continue;
1030
1031 error_brelse:
1032                 brelse(bh);
1033                 blkdev_put(bdev, flags);
1034                 continue;
1035         }
1036         if (fs_devices->open_devices == 0) {
1037                 ret = -EINVAL;
1038                 goto out;
1039         }
1040         fs_devices->seeding = seeding;
1041         fs_devices->opened = 1;
1042         fs_devices->latest_bdev = latest_dev->bdev;
1043         fs_devices->total_rw_bytes = 0;
1044 out:
1045         return ret;
1046 }
1047
1048 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1049                        fmode_t flags, void *holder)
1050 {
1051         int ret;
1052
1053         mutex_lock(&uuid_mutex);
1054         if (fs_devices->opened) {
1055                 fs_devices->opened++;
1056                 ret = 0;
1057         } else {
1058                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1059         }
1060         mutex_unlock(&uuid_mutex);
1061         return ret;
1062 }
1063
1064 void btrfs_release_disk_super(struct page *page)
1065 {
1066         kunmap(page);
1067         put_page(page);
1068 }
1069
1070 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1071                 struct page **page, struct btrfs_super_block **disk_super)
1072 {
1073         void *p;
1074         pgoff_t index;
1075
1076         /* make sure our super fits in the device */
1077         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1078                 return 1;
1079
1080         /* make sure our super fits in the page */
1081         if (sizeof(**disk_super) > PAGE_SIZE)
1082                 return 1;
1083
1084         /* make sure our super doesn't straddle pages on disk */
1085         index = bytenr >> PAGE_SHIFT;
1086         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1087                 return 1;
1088
1089         /* pull in the page with our super */
1090         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1091                                    index, GFP_KERNEL);
1092
1093         if (IS_ERR_OR_NULL(*page))
1094                 return 1;
1095
1096         p = kmap(*page);
1097
1098         /* align our pointer to the offset of the super block */
1099         *disk_super = p + (bytenr & ~PAGE_MASK);
1100
1101         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1102             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1103                 btrfs_release_disk_super(*page);
1104                 return 1;
1105         }
1106
1107         if ((*disk_super)->label[0] &&
1108                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1109                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1110
1111         return 0;
1112 }
1113
1114 /*
1115  * Look for a btrfs signature on a device. This may be called out of the mount path
1116  * and we are not allowed to call set_blocksize during the scan. The superblock
1117  * is read via pagecache
1118  */
1119 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1120                           struct btrfs_fs_devices **fs_devices_ret)
1121 {
1122         struct btrfs_super_block *disk_super;
1123         struct block_device *bdev;
1124         struct page *page;
1125         int ret = -EINVAL;
1126         u64 devid;
1127         u64 transid;
1128         u64 total_devices;
1129         u64 bytenr;
1130
1131         /*
1132          * we would like to check all the supers, but that would make
1133          * a btrfs mount succeed after a mkfs from a different FS.
1134          * So, we need to add a special mount option to scan for
1135          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1136          */
1137         bytenr = btrfs_sb_offset(0);
1138         flags |= FMODE_EXCL;
1139         mutex_lock(&uuid_mutex);
1140
1141         bdev = blkdev_get_by_path(path, flags, holder);
1142         if (IS_ERR(bdev)) {
1143                 ret = PTR_ERR(bdev);
1144                 goto error;
1145         }
1146
1147         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1148                 goto error_bdev_put;
1149
1150         devid = btrfs_stack_device_id(&disk_super->dev_item);
1151         transid = btrfs_super_generation(disk_super);
1152         total_devices = btrfs_super_num_devices(disk_super);
1153
1154         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1155         if (ret > 0) {
1156                 if (disk_super->label[0]) {
1157                         pr_info("BTRFS: device label %s ", disk_super->label);
1158                 } else {
1159                         pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1160                 }
1161
1162                 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1163                 ret = 0;
1164         }
1165         if (!ret && fs_devices_ret)
1166                 (*fs_devices_ret)->total_devices = total_devices;
1167
1168         btrfs_release_disk_super(page);
1169
1170 error_bdev_put:
1171         blkdev_put(bdev, flags);
1172 error:
1173         mutex_unlock(&uuid_mutex);
1174         return ret;
1175 }
1176
1177 /* helper to account the used device space in the range */
1178 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1179                                    u64 end, u64 *length)
1180 {
1181         struct btrfs_key key;
1182         struct btrfs_root *root = device->fs_info->dev_root;
1183         struct btrfs_dev_extent *dev_extent;
1184         struct btrfs_path *path;
1185         u64 extent_end;
1186         int ret;
1187         int slot;
1188         struct extent_buffer *l;
1189
1190         *length = 0;
1191
1192         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1193                 return 0;
1194
1195         path = btrfs_alloc_path();
1196         if (!path)
1197                 return -ENOMEM;
1198         path->reada = READA_FORWARD;
1199
1200         key.objectid = device->devid;
1201         key.offset = start;
1202         key.type = BTRFS_DEV_EXTENT_KEY;
1203
1204         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1205         if (ret < 0)
1206                 goto out;
1207         if (ret > 0) {
1208                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1209                 if (ret < 0)
1210                         goto out;
1211         }
1212
1213         while (1) {
1214                 l = path->nodes[0];
1215                 slot = path->slots[0];
1216                 if (slot >= btrfs_header_nritems(l)) {
1217                         ret = btrfs_next_leaf(root, path);
1218                         if (ret == 0)
1219                                 continue;
1220                         if (ret < 0)
1221                                 goto out;
1222
1223                         break;
1224                 }
1225                 btrfs_item_key_to_cpu(l, &key, slot);
1226
1227                 if (key.objectid < device->devid)
1228                         goto next;
1229
1230                 if (key.objectid > device->devid)
1231                         break;
1232
1233                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1234                         goto next;
1235
1236                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1237                 extent_end = key.offset + btrfs_dev_extent_length(l,
1238                                                                   dev_extent);
1239                 if (key.offset <= start && extent_end > end) {
1240                         *length = end - start + 1;
1241                         break;
1242                 } else if (key.offset <= start && extent_end > start)
1243                         *length += extent_end - start;
1244                 else if (key.offset > start && extent_end <= end)
1245                         *length += extent_end - key.offset;
1246                 else if (key.offset > start && key.offset <= end) {
1247                         *length += end - key.offset + 1;
1248                         break;
1249                 } else if (key.offset > end)
1250                         break;
1251
1252 next:
1253                 path->slots[0]++;
1254         }
1255         ret = 0;
1256 out:
1257         btrfs_free_path(path);
1258         return ret;
1259 }
1260
1261 static int contains_pending_extent(struct btrfs_transaction *transaction,
1262                                    struct btrfs_device *device,
1263                                    u64 *start, u64 len)
1264 {
1265         struct btrfs_fs_info *fs_info = device->fs_info;
1266         struct extent_map *em;
1267         struct list_head *search_list = &fs_info->pinned_chunks;
1268         int ret = 0;
1269         u64 physical_start = *start;
1270
1271         if (transaction)
1272                 search_list = &transaction->pending_chunks;
1273 again:
1274         list_for_each_entry(em, search_list, list) {
1275                 struct map_lookup *map;
1276                 int i;
1277
1278                 map = em->map_lookup;
1279                 for (i = 0; i < map->num_stripes; i++) {
1280                         u64 end;
1281
1282                         if (map->stripes[i].dev != device)
1283                                 continue;
1284                         if (map->stripes[i].physical >= physical_start + len ||
1285                             map->stripes[i].physical + em->orig_block_len <=
1286                             physical_start)
1287                                 continue;
1288                         /*
1289                          * Make sure that while processing the pinned list we do
1290                          * not override our *start with a lower value, because
1291                          * we can have pinned chunks that fall within this
1292                          * device hole and that have lower physical addresses
1293                          * than the pending chunks we processed before. If we
1294                          * do not take this special care we can end up getting
1295                          * 2 pending chunks that start at the same physical
1296                          * device offsets because the end offset of a pinned
1297                          * chunk can be equal to the start offset of some
1298                          * pending chunk.
1299                          */
1300                         end = map->stripes[i].physical + em->orig_block_len;
1301                         if (end > *start) {
1302                                 *start = end;
1303                                 ret = 1;
1304                         }
1305                 }
1306         }
1307         if (search_list != &fs_info->pinned_chunks) {
1308                 search_list = &fs_info->pinned_chunks;
1309                 goto again;
1310         }
1311
1312         return ret;
1313 }
1314
1315
1316 /*
1317  * find_free_dev_extent_start - find free space in the specified device
1318  * @device:       the device which we search the free space in
1319  * @num_bytes:    the size of the free space that we need
1320  * @search_start: the position from which to begin the search
1321  * @start:        store the start of the free space.
1322  * @len:          the size of the free space. that we find, or the size
1323  *                of the max free space if we don't find suitable free space
1324  *
1325  * this uses a pretty simple search, the expectation is that it is
1326  * called very infrequently and that a given device has a small number
1327  * of extents
1328  *
1329  * @start is used to store the start of the free space if we find. But if we
1330  * don't find suitable free space, it will be used to store the start position
1331  * of the max free space.
1332  *
1333  * @len is used to store the size of the free space that we find.
1334  * But if we don't find suitable free space, it is used to store the size of
1335  * the max free space.
1336  */
1337 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1338                                struct btrfs_device *device, u64 num_bytes,
1339                                u64 search_start, u64 *start, u64 *len)
1340 {
1341         struct btrfs_root *root = device->fs_info->dev_root;
1342         struct btrfs_key key;
1343         struct btrfs_dev_extent *dev_extent;
1344         struct btrfs_path *path;
1345         u64 hole_size;
1346         u64 max_hole_start;
1347         u64 max_hole_size;
1348         u64 extent_end;
1349         u64 search_end = device->total_bytes;
1350         int ret;
1351         int slot;
1352         struct extent_buffer *l;
1353         u64 min_search_start;
1354
1355         /*
1356          * We don't want to overwrite the superblock on the drive nor any area
1357          * used by the boot loader (grub for example), so we make sure to start
1358          * at an offset of at least 1MB.
1359          */
1360         min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1361         search_start = max(search_start, min_search_start);
1362
1363         path = btrfs_alloc_path();
1364         if (!path)
1365                 return -ENOMEM;
1366
1367         max_hole_start = search_start;
1368         max_hole_size = 0;
1369
1370 again:
1371         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1372                 ret = -ENOSPC;
1373                 goto out;
1374         }
1375
1376         path->reada = READA_FORWARD;
1377         path->search_commit_root = 1;
1378         path->skip_locking = 1;
1379
1380         key.objectid = device->devid;
1381         key.offset = search_start;
1382         key.type = BTRFS_DEV_EXTENT_KEY;
1383
1384         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1385         if (ret < 0)
1386                 goto out;
1387         if (ret > 0) {
1388                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1389                 if (ret < 0)
1390                         goto out;
1391         }
1392
1393         while (1) {
1394                 l = path->nodes[0];
1395                 slot = path->slots[0];
1396                 if (slot >= btrfs_header_nritems(l)) {
1397                         ret = btrfs_next_leaf(root, path);
1398                         if (ret == 0)
1399                                 continue;
1400                         if (ret < 0)
1401                                 goto out;
1402
1403                         break;
1404                 }
1405                 btrfs_item_key_to_cpu(l, &key, slot);
1406
1407                 if (key.objectid < device->devid)
1408                         goto next;
1409
1410                 if (key.objectid > device->devid)
1411                         break;
1412
1413                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1414                         goto next;
1415
1416                 if (key.offset > search_start) {
1417                         hole_size = key.offset - search_start;
1418
1419                         /*
1420                          * Have to check before we set max_hole_start, otherwise
1421                          * we could end up sending back this offset anyway.
1422                          */
1423                         if (contains_pending_extent(transaction, device,
1424                                                     &search_start,
1425                                                     hole_size)) {
1426                                 if (key.offset >= search_start) {
1427                                         hole_size = key.offset - search_start;
1428                                 } else {
1429                                         WARN_ON_ONCE(1);
1430                                         hole_size = 0;
1431                                 }
1432                         }
1433
1434                         if (hole_size > max_hole_size) {
1435                                 max_hole_start = search_start;
1436                                 max_hole_size = hole_size;
1437                         }
1438
1439                         /*
1440                          * If this free space is greater than which we need,
1441                          * it must be the max free space that we have found
1442                          * until now, so max_hole_start must point to the start
1443                          * of this free space and the length of this free space
1444                          * is stored in max_hole_size. Thus, we return
1445                          * max_hole_start and max_hole_size and go back to the
1446                          * caller.
1447                          */
1448                         if (hole_size >= num_bytes) {
1449                                 ret = 0;
1450                                 goto out;
1451                         }
1452                 }
1453
1454                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1455                 extent_end = key.offset + btrfs_dev_extent_length(l,
1456                                                                   dev_extent);
1457                 if (extent_end > search_start)
1458                         search_start = extent_end;
1459 next:
1460                 path->slots[0]++;
1461                 cond_resched();
1462         }
1463
1464         /*
1465          * At this point, search_start should be the end of
1466          * allocated dev extents, and when shrinking the device,
1467          * search_end may be smaller than search_start.
1468          */
1469         if (search_end > search_start) {
1470                 hole_size = search_end - search_start;
1471
1472                 if (contains_pending_extent(transaction, device, &search_start,
1473                                             hole_size)) {
1474                         btrfs_release_path(path);
1475                         goto again;
1476                 }
1477
1478                 if (hole_size > max_hole_size) {
1479                         max_hole_start = search_start;
1480                         max_hole_size = hole_size;
1481                 }
1482         }
1483
1484         /* See above. */
1485         if (max_hole_size < num_bytes)
1486                 ret = -ENOSPC;
1487         else
1488                 ret = 0;
1489
1490 out:
1491         btrfs_free_path(path);
1492         *start = max_hole_start;
1493         if (len)
1494                 *len = max_hole_size;
1495         return ret;
1496 }
1497
1498 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1499                          struct btrfs_device *device, u64 num_bytes,
1500                          u64 *start, u64 *len)
1501 {
1502         /* FIXME use last free of some kind */
1503         return find_free_dev_extent_start(trans->transaction, device,
1504                                           num_bytes, 0, start, len);
1505 }
1506
1507 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1508                           struct btrfs_device *device,
1509                           u64 start, u64 *dev_extent_len)
1510 {
1511         struct btrfs_root *root = device->fs_info->dev_root;
1512         int ret;
1513         struct btrfs_path *path;
1514         struct btrfs_key key;
1515         struct btrfs_key found_key;
1516         struct extent_buffer *leaf = NULL;
1517         struct btrfs_dev_extent *extent = NULL;
1518
1519         path = btrfs_alloc_path();
1520         if (!path)
1521                 return -ENOMEM;
1522
1523         key.objectid = device->devid;
1524         key.offset = start;
1525         key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528         if (ret > 0) {
1529                 ret = btrfs_previous_item(root, path, key.objectid,
1530                                           BTRFS_DEV_EXTENT_KEY);
1531                 if (ret)
1532                         goto out;
1533                 leaf = path->nodes[0];
1534                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535                 extent = btrfs_item_ptr(leaf, path->slots[0],
1536                                         struct btrfs_dev_extent);
1537                 BUG_ON(found_key.offset > start || found_key.offset +
1538                        btrfs_dev_extent_length(leaf, extent) < start);
1539                 key = found_key;
1540                 btrfs_release_path(path);
1541                 goto again;
1542         } else if (ret == 0) {
1543                 leaf = path->nodes[0];
1544                 extent = btrfs_item_ptr(leaf, path->slots[0],
1545                                         struct btrfs_dev_extent);
1546         } else {
1547                 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1548                 goto out;
1549         }
1550
1551         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
1553         ret = btrfs_del_item(trans, root, path);
1554         if (ret) {
1555                 btrfs_handle_fs_error(root->fs_info, ret,
1556                             "Failed to remove dev extent item");
1557         } else {
1558                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559         }
1560 out:
1561         btrfs_free_path(path);
1562         return ret;
1563 }
1564
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566                                   struct btrfs_device *device,
1567                                   u64 chunk_tree, u64 chunk_objectid,
1568                                   u64 chunk_offset, u64 start, u64 num_bytes)
1569 {
1570         int ret;
1571         struct btrfs_path *path;
1572         struct btrfs_root *root = device->fs_info->dev_root;
1573         struct btrfs_dev_extent *extent;
1574         struct extent_buffer *leaf;
1575         struct btrfs_key key;
1576
1577         WARN_ON(!device->in_fs_metadata);
1578         WARN_ON(device->is_tgtdev_for_dev_replace);
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return -ENOMEM;
1582
1583         key.objectid = device->devid;
1584         key.offset = start;
1585         key.type = BTRFS_DEV_EXTENT_KEY;
1586         ret = btrfs_insert_empty_item(trans, root, path, &key,
1587                                       sizeof(*extent));
1588         if (ret)
1589                 goto out;
1590
1591         leaf = path->nodes[0];
1592         extent = btrfs_item_ptr(leaf, path->slots[0],
1593                                 struct btrfs_dev_extent);
1594         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1595         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1596         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1597
1598         write_extent_buffer_chunk_tree_uuid(leaf,
1599                         root->fs_info->chunk_tree_uuid);
1600
1601         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1602         btrfs_mark_buffer_dirty(leaf);
1603 out:
1604         btrfs_free_path(path);
1605         return ret;
1606 }
1607
1608 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1609 {
1610         struct extent_map_tree *em_tree;
1611         struct extent_map *em;
1612         struct rb_node *n;
1613         u64 ret = 0;
1614
1615         em_tree = &fs_info->mapping_tree.map_tree;
1616         read_lock(&em_tree->lock);
1617         n = rb_last(&em_tree->map);
1618         if (n) {
1619                 em = rb_entry(n, struct extent_map, rb_node);
1620                 ret = em->start + em->len;
1621         }
1622         read_unlock(&em_tree->lock);
1623
1624         return ret;
1625 }
1626
1627 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1628                                     u64 *devid_ret)
1629 {
1630         int ret;
1631         struct btrfs_key key;
1632         struct btrfs_key found_key;
1633         struct btrfs_path *path;
1634
1635         path = btrfs_alloc_path();
1636         if (!path)
1637                 return -ENOMEM;
1638
1639         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1640         key.type = BTRFS_DEV_ITEM_KEY;
1641         key.offset = (u64)-1;
1642
1643         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1644         if (ret < 0)
1645                 goto error;
1646
1647         BUG_ON(ret == 0); /* Corruption */
1648
1649         ret = btrfs_previous_item(fs_info->chunk_root, path,
1650                                   BTRFS_DEV_ITEMS_OBJECTID,
1651                                   BTRFS_DEV_ITEM_KEY);
1652         if (ret) {
1653                 *devid_ret = 1;
1654         } else {
1655                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1656                                       path->slots[0]);
1657                 *devid_ret = found_key.offset + 1;
1658         }
1659         ret = 0;
1660 error:
1661         btrfs_free_path(path);
1662         return ret;
1663 }
1664
1665 /*
1666  * the device information is stored in the chunk root
1667  * the btrfs_device struct should be fully filled in
1668  */
1669 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1670                             struct btrfs_fs_info *fs_info,
1671                             struct btrfs_device *device)
1672 {
1673         struct btrfs_root *root = fs_info->chunk_root;
1674         int ret;
1675         struct btrfs_path *path;
1676         struct btrfs_dev_item *dev_item;
1677         struct extent_buffer *leaf;
1678         struct btrfs_key key;
1679         unsigned long ptr;
1680
1681         path = btrfs_alloc_path();
1682         if (!path)
1683                 return -ENOMEM;
1684
1685         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1686         key.type = BTRFS_DEV_ITEM_KEY;
1687         key.offset = device->devid;
1688
1689         ret = btrfs_insert_empty_item(trans, root, path, &key,
1690                                       sizeof(*dev_item));
1691         if (ret)
1692                 goto out;
1693
1694         leaf = path->nodes[0];
1695         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1696
1697         btrfs_set_device_id(leaf, dev_item, device->devid);
1698         btrfs_set_device_generation(leaf, dev_item, 0);
1699         btrfs_set_device_type(leaf, dev_item, device->type);
1700         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1701         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1702         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1703         btrfs_set_device_total_bytes(leaf, dev_item,
1704                                      btrfs_device_get_disk_total_bytes(device));
1705         btrfs_set_device_bytes_used(leaf, dev_item,
1706                                     btrfs_device_get_bytes_used(device));
1707         btrfs_set_device_group(leaf, dev_item, 0);
1708         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1709         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1710         btrfs_set_device_start_offset(leaf, dev_item, 0);
1711
1712         ptr = btrfs_device_uuid(dev_item);
1713         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1714         ptr = btrfs_device_fsid(dev_item);
1715         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1716         btrfs_mark_buffer_dirty(leaf);
1717
1718         ret = 0;
1719 out:
1720         btrfs_free_path(path);
1721         return ret;
1722 }
1723
1724 /*
1725  * Function to update ctime/mtime for a given device path.
1726  * Mainly used for ctime/mtime based probe like libblkid.
1727  */
1728 static void update_dev_time(char *path_name)
1729 {
1730         struct file *filp;
1731
1732         filp = filp_open(path_name, O_RDWR, 0);
1733         if (IS_ERR(filp))
1734                 return;
1735         file_update_time(filp);
1736         filp_close(filp, NULL);
1737 }
1738
1739 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1740                              struct btrfs_device *device)
1741 {
1742         struct btrfs_root *root = fs_info->chunk_root;
1743         int ret;
1744         struct btrfs_path *path;
1745         struct btrfs_key key;
1746         struct btrfs_trans_handle *trans;
1747
1748         path = btrfs_alloc_path();
1749         if (!path)
1750                 return -ENOMEM;
1751
1752         trans = btrfs_start_transaction(root, 0);
1753         if (IS_ERR(trans)) {
1754                 btrfs_free_path(path);
1755                 return PTR_ERR(trans);
1756         }
1757         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1758         key.type = BTRFS_DEV_ITEM_KEY;
1759         key.offset = device->devid;
1760
1761         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1762         if (ret < 0)
1763                 goto out;
1764
1765         if (ret > 0) {
1766                 ret = -ENOENT;
1767                 goto out;
1768         }
1769
1770         ret = btrfs_del_item(trans, root, path);
1771         if (ret)
1772                 goto out;
1773 out:
1774         btrfs_free_path(path);
1775         btrfs_commit_transaction(trans, root);
1776         return ret;
1777 }
1778
1779 /*
1780  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1781  * filesystem. It's up to the caller to adjust that number regarding eg. device
1782  * replace.
1783  */
1784 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1785                 u64 num_devices)
1786 {
1787         u64 all_avail;
1788         unsigned seq;
1789         int i;
1790
1791         do {
1792                 seq = read_seqbegin(&fs_info->profiles_lock);
1793
1794                 all_avail = fs_info->avail_data_alloc_bits |
1795                             fs_info->avail_system_alloc_bits |
1796                             fs_info->avail_metadata_alloc_bits;
1797         } while (read_seqretry(&fs_info->profiles_lock, seq));
1798
1799         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1800                 if (!(all_avail & btrfs_raid_group[i]))
1801                         continue;
1802
1803                 if (num_devices < btrfs_raid_array[i].devs_min) {
1804                         int ret = btrfs_raid_mindev_error[i];
1805
1806                         if (ret)
1807                                 return ret;
1808                 }
1809         }
1810
1811         return 0;
1812 }
1813
1814 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1815                                         struct btrfs_device *device)
1816 {
1817         struct btrfs_device *next_device;
1818
1819         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1820                 if (next_device != device &&
1821                         !next_device->missing && next_device->bdev)
1822                         return next_device;
1823         }
1824
1825         return NULL;
1826 }
1827
1828 /*
1829  * Helper function to check if the given device is part of s_bdev / latest_bdev
1830  * and replace it with the provided or the next active device, in the context
1831  * where this function called, there should be always be another device (or
1832  * this_dev) which is active.
1833  */
1834 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1835                 struct btrfs_device *device, struct btrfs_device *this_dev)
1836 {
1837         struct btrfs_device *next_device;
1838
1839         if (this_dev)
1840                 next_device = this_dev;
1841         else
1842                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1843                                                                 device);
1844         ASSERT(next_device);
1845
1846         if (fs_info->sb->s_bdev &&
1847                         (fs_info->sb->s_bdev == device->bdev))
1848                 fs_info->sb->s_bdev = next_device->bdev;
1849
1850         if (fs_info->fs_devices->latest_bdev == device->bdev)
1851                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1852 }
1853
1854 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1855 {
1856         struct btrfs_device *device;
1857         struct btrfs_fs_devices *cur_devices;
1858         u64 num_devices;
1859         int ret = 0;
1860         bool clear_super = false;
1861
1862         mutex_lock(&uuid_mutex);
1863
1864         num_devices = root->fs_info->fs_devices->num_devices;
1865         btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1866         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1867                 WARN_ON(num_devices < 1);
1868                 num_devices--;
1869         }
1870         btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1871
1872         ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1873         if (ret)
1874                 goto out;
1875
1876         ret = btrfs_find_device_by_devspec(root, devid, device_path,
1877                                 &device);
1878         if (ret)
1879                 goto out;
1880
1881         if (device->is_tgtdev_for_dev_replace) {
1882                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1883                 goto out;
1884         }
1885
1886         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1887                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1888                 goto out;
1889         }
1890
1891         if (device->writeable) {
1892                 lock_chunks(root);
1893                 list_del_init(&device->dev_alloc_list);
1894                 device->fs_devices->rw_devices--;
1895                 unlock_chunks(root);
1896                 clear_super = true;
1897         }
1898
1899         mutex_unlock(&uuid_mutex);
1900         ret = btrfs_shrink_device(device, 0);
1901         mutex_lock(&uuid_mutex);
1902         if (ret)
1903                 goto error_undo;
1904
1905         /*
1906          * TODO: the superblock still includes this device in its num_devices
1907          * counter although write_all_supers() is not locked out. This
1908          * could give a filesystem state which requires a degraded mount.
1909          */
1910         ret = btrfs_rm_dev_item(root->fs_info, device);
1911         if (ret)
1912                 goto error_undo;
1913
1914         device->in_fs_metadata = 0;
1915         btrfs_scrub_cancel_dev(root->fs_info, device);
1916
1917         /*
1918          * the device list mutex makes sure that we don't change
1919          * the device list while someone else is writing out all
1920          * the device supers. Whoever is writing all supers, should
1921          * lock the device list mutex before getting the number of
1922          * devices in the super block (super_copy). Conversely,
1923          * whoever updates the number of devices in the super block
1924          * (super_copy) should hold the device list mutex.
1925          */
1926
1927         cur_devices = device->fs_devices;
1928         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1929         list_del_rcu(&device->dev_list);
1930
1931         device->fs_devices->num_devices--;
1932         device->fs_devices->total_devices--;
1933
1934         if (device->missing)
1935                 device->fs_devices->missing_devices--;
1936
1937         btrfs_assign_next_active_device(root->fs_info, device, NULL);
1938
1939         if (device->bdev) {
1940                 device->fs_devices->open_devices--;
1941                 /* remove sysfs entry */
1942                 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1943         }
1944
1945         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1946         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1947         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1948
1949         /*
1950          * at this point, the device is zero sized and detached from
1951          * the devices list.  All that's left is to zero out the old
1952          * supers and free the device.
1953          */
1954         if (device->writeable)
1955                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1956
1957         btrfs_close_bdev(device);
1958         call_rcu(&device->rcu, free_device);
1959
1960         if (cur_devices->open_devices == 0) {
1961                 struct btrfs_fs_devices *fs_devices;
1962                 fs_devices = root->fs_info->fs_devices;
1963                 while (fs_devices) {
1964                         if (fs_devices->seed == cur_devices) {
1965                                 fs_devices->seed = cur_devices->seed;
1966                                 break;
1967                         }
1968                         fs_devices = fs_devices->seed;
1969                 }
1970                 cur_devices->seed = NULL;
1971                 __btrfs_close_devices(cur_devices);
1972                 free_fs_devices(cur_devices);
1973         }
1974
1975         root->fs_info->num_tolerated_disk_barrier_failures =
1976                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1977
1978 out:
1979         mutex_unlock(&uuid_mutex);
1980         return ret;
1981
1982 error_undo:
1983         if (device->writeable) {
1984                 lock_chunks(root);
1985                 list_add(&device->dev_alloc_list,
1986                          &root->fs_info->fs_devices->alloc_list);
1987                 device->fs_devices->rw_devices++;
1988                 unlock_chunks(root);
1989         }
1990         goto out;
1991 }
1992
1993 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1994                                         struct btrfs_device *srcdev)
1995 {
1996         struct btrfs_fs_devices *fs_devices;
1997
1998         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1999
2000         /*
2001          * in case of fs with no seed, srcdev->fs_devices will point
2002          * to fs_devices of fs_info. However when the dev being replaced is
2003          * a seed dev it will point to the seed's local fs_devices. In short
2004          * srcdev will have its correct fs_devices in both the cases.
2005          */
2006         fs_devices = srcdev->fs_devices;
2007
2008         list_del_rcu(&srcdev->dev_list);
2009         list_del_rcu(&srcdev->dev_alloc_list);
2010         fs_devices->num_devices--;
2011         if (srcdev->missing)
2012                 fs_devices->missing_devices--;
2013
2014         if (srcdev->writeable)
2015                 fs_devices->rw_devices--;
2016
2017         if (srcdev->bdev)
2018                 fs_devices->open_devices--;
2019 }
2020
2021 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2022                                       struct btrfs_device *srcdev)
2023 {
2024         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2025
2026         if (srcdev->writeable) {
2027                 /* zero out the old super if it is writable */
2028                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2029         }
2030
2031         btrfs_close_bdev(srcdev);
2032
2033         call_rcu(&srcdev->rcu, free_device);
2034
2035         /*
2036          * unless fs_devices is seed fs, num_devices shouldn't go
2037          * zero
2038          */
2039         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2040
2041         /* if this is no devs we rather delete the fs_devices */
2042         if (!fs_devices->num_devices) {
2043                 struct btrfs_fs_devices *tmp_fs_devices;
2044
2045                 tmp_fs_devices = fs_info->fs_devices;
2046                 while (tmp_fs_devices) {
2047                         if (tmp_fs_devices->seed == fs_devices) {
2048                                 tmp_fs_devices->seed = fs_devices->seed;
2049                                 break;
2050                         }
2051                         tmp_fs_devices = tmp_fs_devices->seed;
2052                 }
2053                 fs_devices->seed = NULL;
2054                 __btrfs_close_devices(fs_devices);
2055                 free_fs_devices(fs_devices);
2056         }
2057 }
2058
2059 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2060                                       struct btrfs_device *tgtdev)
2061 {
2062         mutex_lock(&uuid_mutex);
2063         WARN_ON(!tgtdev);
2064         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2065
2066         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2067
2068         if (tgtdev->bdev)
2069                 fs_info->fs_devices->open_devices--;
2070
2071         fs_info->fs_devices->num_devices--;
2072
2073         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2074
2075         list_del_rcu(&tgtdev->dev_list);
2076
2077         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2078         mutex_unlock(&uuid_mutex);
2079
2080         /*
2081          * The update_dev_time() with in btrfs_scratch_superblocks()
2082          * may lead to a call to btrfs_show_devname() which will try
2083          * to hold device_list_mutex. And here this device
2084          * is already out of device list, so we don't have to hold
2085          * the device_list_mutex lock.
2086          */
2087         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2088
2089         btrfs_close_bdev(tgtdev);
2090         call_rcu(&tgtdev->rcu, free_device);
2091 }
2092
2093 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2094                                      struct btrfs_device **device)
2095 {
2096         int ret = 0;
2097         struct btrfs_super_block *disk_super;
2098         u64 devid;
2099         u8 *dev_uuid;
2100         struct block_device *bdev;
2101         struct buffer_head *bh;
2102
2103         *device = NULL;
2104         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2105                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
2106         if (ret)
2107                 return ret;
2108         disk_super = (struct btrfs_super_block *)bh->b_data;
2109         devid = btrfs_stack_device_id(&disk_super->dev_item);
2110         dev_uuid = disk_super->dev_item.uuid;
2111         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2112                                     disk_super->fsid);
2113         brelse(bh);
2114         if (!*device)
2115                 ret = -ENOENT;
2116         blkdev_put(bdev, FMODE_READ);
2117         return ret;
2118 }
2119
2120 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2121                                          char *device_path,
2122                                          struct btrfs_device **device)
2123 {
2124         *device = NULL;
2125         if (strcmp(device_path, "missing") == 0) {
2126                 struct list_head *devices;
2127                 struct btrfs_device *tmp;
2128
2129                 devices = &root->fs_info->fs_devices->devices;
2130                 /*
2131                  * It is safe to read the devices since the volume_mutex
2132                  * is held by the caller.
2133                  */
2134                 list_for_each_entry(tmp, devices, dev_list) {
2135                         if (tmp->in_fs_metadata && !tmp->bdev) {
2136                                 *device = tmp;
2137                                 break;
2138                         }
2139                 }
2140
2141                 if (!*device)
2142                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2143
2144                 return 0;
2145         } else {
2146                 return btrfs_find_device_by_path(root, device_path, device);
2147         }
2148 }
2149
2150 /*
2151  * Lookup a device given by device id, or the path if the id is 0.
2152  */
2153 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2154                                          char *devpath,
2155                                          struct btrfs_device **device)
2156 {
2157         int ret;
2158
2159         if (devid) {
2160                 ret = 0;
2161                 *device = btrfs_find_device(root->fs_info, devid, NULL,
2162                                             NULL);
2163                 if (!*device)
2164                         ret = -ENOENT;
2165         } else {
2166                 if (!devpath || !devpath[0])
2167                         return -EINVAL;
2168
2169                 ret = btrfs_find_device_missing_or_by_path(root, devpath,
2170                                                            device);
2171         }
2172         return ret;
2173 }
2174
2175 /*
2176  * does all the dirty work required for changing file system's UUID.
2177  */
2178 static int btrfs_prepare_sprout(struct btrfs_root *root)
2179 {
2180         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2181         struct btrfs_fs_devices *old_devices;
2182         struct btrfs_fs_devices *seed_devices;
2183         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2184         struct btrfs_device *device;
2185         u64 super_flags;
2186
2187         BUG_ON(!mutex_is_locked(&uuid_mutex));
2188         if (!fs_devices->seeding)
2189                 return -EINVAL;
2190
2191         seed_devices = __alloc_fs_devices();
2192         if (IS_ERR(seed_devices))
2193                 return PTR_ERR(seed_devices);
2194
2195         old_devices = clone_fs_devices(fs_devices);
2196         if (IS_ERR(old_devices)) {
2197                 kfree(seed_devices);
2198                 return PTR_ERR(old_devices);
2199         }
2200
2201         list_add(&old_devices->list, &fs_uuids);
2202
2203         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2204         seed_devices->opened = 1;
2205         INIT_LIST_HEAD(&seed_devices->devices);
2206         INIT_LIST_HEAD(&seed_devices->alloc_list);
2207         mutex_init(&seed_devices->device_list_mutex);
2208
2209         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2210         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2211                               synchronize_rcu);
2212         list_for_each_entry(device, &seed_devices->devices, dev_list)
2213                 device->fs_devices = seed_devices;
2214
2215         lock_chunks(root);
2216         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2217         unlock_chunks(root);
2218
2219         fs_devices->seeding = 0;
2220         fs_devices->num_devices = 0;
2221         fs_devices->open_devices = 0;
2222         fs_devices->missing_devices = 0;
2223         fs_devices->rotating = 0;
2224         fs_devices->seed = seed_devices;
2225
2226         generate_random_uuid(fs_devices->fsid);
2227         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2228         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2229         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2230
2231         super_flags = btrfs_super_flags(disk_super) &
2232                       ~BTRFS_SUPER_FLAG_SEEDING;
2233         btrfs_set_super_flags(disk_super, super_flags);
2234
2235         return 0;
2236 }
2237
2238 /*
2239  * Store the expected generation for seed devices in device items.
2240  */
2241 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2242                                struct btrfs_fs_info *fs_info)
2243 {
2244         struct btrfs_root *root = fs_info->chunk_root;
2245         struct btrfs_path *path;
2246         struct extent_buffer *leaf;
2247         struct btrfs_dev_item *dev_item;
2248         struct btrfs_device *device;
2249         struct btrfs_key key;
2250         u8 fs_uuid[BTRFS_UUID_SIZE];
2251         u8 dev_uuid[BTRFS_UUID_SIZE];
2252         u64 devid;
2253         int ret;
2254
2255         path = btrfs_alloc_path();
2256         if (!path)
2257                 return -ENOMEM;
2258
2259         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2260         key.offset = 0;
2261         key.type = BTRFS_DEV_ITEM_KEY;
2262
2263         while (1) {
2264                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2265                 if (ret < 0)
2266                         goto error;
2267
2268                 leaf = path->nodes[0];
2269 next_slot:
2270                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2271                         ret = btrfs_next_leaf(root, path);
2272                         if (ret > 0)
2273                                 break;
2274                         if (ret < 0)
2275                                 goto error;
2276                         leaf = path->nodes[0];
2277                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2278                         btrfs_release_path(path);
2279                         continue;
2280                 }
2281
2282                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2283                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2284                     key.type != BTRFS_DEV_ITEM_KEY)
2285                         break;
2286
2287                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2288                                           struct btrfs_dev_item);
2289                 devid = btrfs_device_id(leaf, dev_item);
2290                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2291                                    BTRFS_UUID_SIZE);
2292                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2293                                    BTRFS_UUID_SIZE);
2294                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2295                                            fs_uuid);
2296                 BUG_ON(!device); /* Logic error */
2297
2298                 if (device->fs_devices->seeding) {
2299                         btrfs_set_device_generation(leaf, dev_item,
2300                                                     device->generation);
2301                         btrfs_mark_buffer_dirty(leaf);
2302                 }
2303
2304                 path->slots[0]++;
2305                 goto next_slot;
2306         }
2307         ret = 0;
2308 error:
2309         btrfs_free_path(path);
2310         return ret;
2311 }
2312
2313 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, char *device_path)
2314 {
2315         struct btrfs_root *root = fs_info->dev_root;
2316         struct request_queue *q;
2317         struct btrfs_trans_handle *trans;
2318         struct btrfs_device *device;
2319         struct block_device *bdev;
2320         struct list_head *devices;
2321         struct super_block *sb = root->fs_info->sb;
2322         struct rcu_string *name;
2323         u64 tmp;
2324         int seeding_dev = 0;
2325         int ret = 0;
2326
2327         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2328                 return -EROFS;
2329
2330         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2331                                   root->fs_info->bdev_holder);
2332         if (IS_ERR(bdev))
2333                 return PTR_ERR(bdev);
2334
2335         if (root->fs_info->fs_devices->seeding) {
2336                 seeding_dev = 1;
2337                 down_write(&sb->s_umount);
2338                 mutex_lock(&uuid_mutex);
2339         }
2340
2341         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2342
2343         devices = &root->fs_info->fs_devices->devices;
2344
2345         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2346         list_for_each_entry(device, devices, dev_list) {
2347                 if (device->bdev == bdev) {
2348                         ret = -EEXIST;
2349                         mutex_unlock(
2350                                 &root->fs_info->fs_devices->device_list_mutex);
2351                         goto error;
2352                 }
2353         }
2354         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2355
2356         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2357         if (IS_ERR(device)) {
2358                 /* we can safely leave the fs_devices entry around */
2359                 ret = PTR_ERR(device);
2360                 goto error;
2361         }
2362
2363         name = rcu_string_strdup(device_path, GFP_KERNEL);
2364         if (!name) {
2365                 kfree(device);
2366                 ret = -ENOMEM;
2367                 goto error;
2368         }
2369         rcu_assign_pointer(device->name, name);
2370
2371         trans = btrfs_start_transaction(root, 0);
2372         if (IS_ERR(trans)) {
2373                 rcu_string_free(device->name);
2374                 kfree(device);
2375                 ret = PTR_ERR(trans);
2376                 goto error;
2377         }
2378
2379         q = bdev_get_queue(bdev);
2380         if (blk_queue_discard(q))
2381                 device->can_discard = 1;
2382         device->writeable = 1;
2383         device->generation = trans->transid;
2384         device->io_width = root->fs_info->sectorsize;
2385         device->io_align = root->fs_info->sectorsize;
2386         device->sector_size = root->fs_info->sectorsize;
2387         device->total_bytes = i_size_read(bdev->bd_inode);
2388         device->disk_total_bytes = device->total_bytes;
2389         device->commit_total_bytes = device->total_bytes;
2390         device->fs_info = fs_info;
2391         device->bdev = bdev;
2392         device->in_fs_metadata = 1;
2393         device->is_tgtdev_for_dev_replace = 0;
2394         device->mode = FMODE_EXCL;
2395         device->dev_stats_valid = 1;
2396         set_blocksize(device->bdev, 4096);
2397
2398         if (seeding_dev) {
2399                 sb->s_flags &= ~MS_RDONLY;
2400                 ret = btrfs_prepare_sprout(root);
2401                 BUG_ON(ret); /* -ENOMEM */
2402         }
2403
2404         device->fs_devices = root->fs_info->fs_devices;
2405
2406         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2407         lock_chunks(root);
2408         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2409         list_add(&device->dev_alloc_list,
2410                  &root->fs_info->fs_devices->alloc_list);
2411         root->fs_info->fs_devices->num_devices++;
2412         root->fs_info->fs_devices->open_devices++;
2413         root->fs_info->fs_devices->rw_devices++;
2414         root->fs_info->fs_devices->total_devices++;
2415         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2416
2417         spin_lock(&root->fs_info->free_chunk_lock);
2418         root->fs_info->free_chunk_space += device->total_bytes;
2419         spin_unlock(&root->fs_info->free_chunk_lock);
2420
2421         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2422                 root->fs_info->fs_devices->rotating = 1;
2423
2424         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2425         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2426                                     tmp + device->total_bytes);
2427
2428         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2429         btrfs_set_super_num_devices(root->fs_info->super_copy,
2430                                     tmp + 1);
2431
2432         /* add sysfs device entry */
2433         btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2434
2435         /*
2436          * we've got more storage, clear any full flags on the space
2437          * infos
2438          */
2439         btrfs_clear_space_info_full(root->fs_info);
2440
2441         unlock_chunks(root);
2442         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2443
2444         if (seeding_dev) {
2445                 lock_chunks(root);
2446                 ret = init_first_rw_device(trans, root, device);
2447                 unlock_chunks(root);
2448                 if (ret) {
2449                         btrfs_abort_transaction(trans, ret);
2450                         goto error_trans;
2451                 }
2452         }
2453
2454         ret = btrfs_add_device(trans, root->fs_info, device);
2455         if (ret) {
2456                 btrfs_abort_transaction(trans, ret);
2457                 goto error_trans;
2458         }
2459
2460         if (seeding_dev) {
2461                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2462
2463                 ret = btrfs_finish_sprout(trans, root->fs_info);
2464                 if (ret) {
2465                         btrfs_abort_transaction(trans, ret);
2466                         goto error_trans;
2467                 }
2468
2469                 /* Sprouting would change fsid of the mounted root,
2470                  * so rename the fsid on the sysfs
2471                  */
2472                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2473                                                 root->fs_info->fsid);
2474                 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2475                                                                 fsid_buf))
2476                         btrfs_warn(root->fs_info,
2477                                 "sysfs: failed to create fsid for sprout");
2478         }
2479
2480         root->fs_info->num_tolerated_disk_barrier_failures =
2481                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2482         ret = btrfs_commit_transaction(trans, root);
2483
2484         if (seeding_dev) {
2485                 mutex_unlock(&uuid_mutex);
2486                 up_write(&sb->s_umount);
2487
2488                 if (ret) /* transaction commit */
2489                         return ret;
2490
2491                 ret = btrfs_relocate_sys_chunks(root);
2492                 if (ret < 0)
2493                         btrfs_handle_fs_error(root->fs_info, ret,
2494                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2495                 trans = btrfs_attach_transaction(root);
2496                 if (IS_ERR(trans)) {
2497                         if (PTR_ERR(trans) == -ENOENT)
2498                                 return 0;
2499                         return PTR_ERR(trans);
2500                 }
2501                 ret = btrfs_commit_transaction(trans, root);
2502         }
2503
2504         /* Update ctime/mtime for libblkid */
2505         update_dev_time(device_path);
2506         return ret;
2507
2508 error_trans:
2509         btrfs_end_transaction(trans, root);
2510         rcu_string_free(device->name);
2511         btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2512         kfree(device);
2513 error:
2514         blkdev_put(bdev, FMODE_EXCL);
2515         if (seeding_dev) {
2516                 mutex_unlock(&uuid_mutex);
2517                 up_write(&sb->s_umount);
2518         }
2519         return ret;
2520 }
2521
2522 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2523                                   struct btrfs_device *srcdev,
2524                                   struct btrfs_device **device_out)
2525 {
2526         struct request_queue *q;
2527         struct btrfs_device *device;
2528         struct block_device *bdev;
2529         struct btrfs_fs_info *fs_info = root->fs_info;
2530         struct list_head *devices;
2531         struct rcu_string *name;
2532         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2533         int ret = 0;
2534
2535         *device_out = NULL;
2536         if (fs_info->fs_devices->seeding) {
2537                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2538                 return -EINVAL;
2539         }
2540
2541         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2542                                   fs_info->bdev_holder);
2543         if (IS_ERR(bdev)) {
2544                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2545                 return PTR_ERR(bdev);
2546         }
2547
2548         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2549
2550         devices = &fs_info->fs_devices->devices;
2551         list_for_each_entry(device, devices, dev_list) {
2552                 if (device->bdev == bdev) {
2553                         btrfs_err(fs_info,
2554                                   "target device is in the filesystem!");
2555                         ret = -EEXIST;
2556                         goto error;
2557                 }
2558         }
2559
2560
2561         if (i_size_read(bdev->bd_inode) <
2562             btrfs_device_get_total_bytes(srcdev)) {
2563                 btrfs_err(fs_info,
2564                           "target device is smaller than source device!");
2565                 ret = -EINVAL;
2566                 goto error;
2567         }
2568
2569
2570         device = btrfs_alloc_device(NULL, &devid, NULL);
2571         if (IS_ERR(device)) {
2572                 ret = PTR_ERR(device);
2573                 goto error;
2574         }
2575
2576         name = rcu_string_strdup(device_path, GFP_NOFS);
2577         if (!name) {
2578                 kfree(device);
2579                 ret = -ENOMEM;
2580                 goto error;
2581         }
2582         rcu_assign_pointer(device->name, name);
2583
2584         q = bdev_get_queue(bdev);
2585         if (blk_queue_discard(q))
2586                 device->can_discard = 1;
2587         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2588         device->writeable = 1;
2589         device->generation = 0;
2590         device->io_width = root->fs_info->sectorsize;
2591         device->io_align = root->fs_info->sectorsize;
2592         device->sector_size = root->fs_info->sectorsize;
2593         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2594         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2595         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2596         ASSERT(list_empty(&srcdev->resized_list));
2597         device->commit_total_bytes = srcdev->commit_total_bytes;
2598         device->commit_bytes_used = device->bytes_used;
2599         device->fs_info = fs_info;
2600         device->bdev = bdev;
2601         device->in_fs_metadata = 1;
2602         device->is_tgtdev_for_dev_replace = 1;
2603         device->mode = FMODE_EXCL;
2604         device->dev_stats_valid = 1;
2605         set_blocksize(device->bdev, 4096);
2606         device->fs_devices = fs_info->fs_devices;
2607         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2608         fs_info->fs_devices->num_devices++;
2609         fs_info->fs_devices->open_devices++;
2610         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2611
2612         *device_out = device;
2613         return ret;
2614
2615 error:
2616         blkdev_put(bdev, FMODE_EXCL);
2617         return ret;
2618 }
2619
2620 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2621                                               struct btrfs_device *tgtdev)
2622 {
2623         u32 sectorsize = fs_info->sectorsize;
2624
2625         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2626         tgtdev->io_width = sectorsize;
2627         tgtdev->io_align = sectorsize;
2628         tgtdev->sector_size = sectorsize;
2629         tgtdev->fs_info = fs_info;
2630         tgtdev->in_fs_metadata = 1;
2631 }
2632
2633 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2634                                         struct btrfs_device *device)
2635 {
2636         int ret;
2637         struct btrfs_path *path;
2638         struct btrfs_root *root;
2639         struct btrfs_dev_item *dev_item;
2640         struct extent_buffer *leaf;
2641         struct btrfs_key key;
2642
2643         root = device->fs_info->chunk_root;
2644
2645         path = btrfs_alloc_path();
2646         if (!path)
2647                 return -ENOMEM;
2648
2649         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2650         key.type = BTRFS_DEV_ITEM_KEY;
2651         key.offset = device->devid;
2652
2653         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2654         if (ret < 0)
2655                 goto out;
2656
2657         if (ret > 0) {
2658                 ret = -ENOENT;
2659                 goto out;
2660         }
2661
2662         leaf = path->nodes[0];
2663         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2664
2665         btrfs_set_device_id(leaf, dev_item, device->devid);
2666         btrfs_set_device_type(leaf, dev_item, device->type);
2667         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2668         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2669         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2670         btrfs_set_device_total_bytes(leaf, dev_item,
2671                                      btrfs_device_get_disk_total_bytes(device));
2672         btrfs_set_device_bytes_used(leaf, dev_item,
2673                                     btrfs_device_get_bytes_used(device));
2674         btrfs_mark_buffer_dirty(leaf);
2675
2676 out:
2677         btrfs_free_path(path);
2678         return ret;
2679 }
2680
2681 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2682                       struct btrfs_device *device, u64 new_size)
2683 {
2684         struct btrfs_super_block *super_copy = device->fs_info->super_copy;
2685         struct btrfs_fs_devices *fs_devices;
2686         u64 old_total;
2687         u64 diff;
2688
2689         if (!device->writeable)
2690                 return -EACCES;
2691
2692         lock_chunks(device->fs_info->dev_root);
2693         old_total = btrfs_super_total_bytes(super_copy);
2694         diff = new_size - device->total_bytes;
2695
2696         if (new_size <= device->total_bytes ||
2697             device->is_tgtdev_for_dev_replace) {
2698                 unlock_chunks(device->fs_info->dev_root);
2699                 return -EINVAL;
2700         }
2701
2702         fs_devices = device->fs_info->fs_devices;
2703
2704         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2705         device->fs_devices->total_rw_bytes += diff;
2706
2707         btrfs_device_set_total_bytes(device, new_size);
2708         btrfs_device_set_disk_total_bytes(device, new_size);
2709         btrfs_clear_space_info_full(device->fs_info);
2710         if (list_empty(&device->resized_list))
2711                 list_add_tail(&device->resized_list,
2712                               &fs_devices->resized_devices);
2713         unlock_chunks(device->fs_info->dev_root);
2714
2715         return btrfs_update_device(trans, device);
2716 }
2717
2718 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2719                             struct btrfs_fs_info *fs_info, u64 chunk_objectid,
2720                             u64 chunk_offset)
2721 {
2722         struct btrfs_root *root = fs_info->chunk_root;
2723         int ret;
2724         struct btrfs_path *path;
2725         struct btrfs_key key;
2726
2727         path = btrfs_alloc_path();
2728         if (!path)
2729                 return -ENOMEM;
2730
2731         key.objectid = chunk_objectid;
2732         key.offset = chunk_offset;
2733         key.type = BTRFS_CHUNK_ITEM_KEY;
2734
2735         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2736         if (ret < 0)
2737                 goto out;
2738         else if (ret > 0) { /* Logic error or corruption */
2739                 btrfs_handle_fs_error(root->fs_info, -ENOENT,
2740                             "Failed lookup while freeing chunk.");
2741                 ret = -ENOENT;
2742                 goto out;
2743         }
2744
2745         ret = btrfs_del_item(trans, root, path);
2746         if (ret < 0)
2747                 btrfs_handle_fs_error(root->fs_info, ret,
2748                             "Failed to delete chunk item.");
2749 out:
2750         btrfs_free_path(path);
2751         return ret;
2752 }
2753
2754 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2755                                u64 chunk_objectid, u64 chunk_offset)
2756 {
2757         struct btrfs_root *root = fs_info->chunk_root;
2758         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2759         struct btrfs_disk_key *disk_key;
2760         struct btrfs_chunk *chunk;
2761         u8 *ptr;
2762         int ret = 0;
2763         u32 num_stripes;
2764         u32 array_size;
2765         u32 len = 0;
2766         u32 cur;
2767         struct btrfs_key key;
2768
2769         lock_chunks(root);
2770         array_size = btrfs_super_sys_array_size(super_copy);
2771
2772         ptr = super_copy->sys_chunk_array;
2773         cur = 0;
2774
2775         while (cur < array_size) {
2776                 disk_key = (struct btrfs_disk_key *)ptr;
2777                 btrfs_disk_key_to_cpu(&key, disk_key);
2778
2779                 len = sizeof(*disk_key);
2780
2781                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2782                         chunk = (struct btrfs_chunk *)(ptr + len);
2783                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2784                         len += btrfs_chunk_item_size(num_stripes);
2785                 } else {
2786                         ret = -EIO;
2787                         break;
2788                 }
2789                 if (key.objectid == chunk_objectid &&
2790                     key.offset == chunk_offset) {
2791                         memmove(ptr, ptr + len, array_size - (cur + len));
2792                         array_size -= len;
2793                         btrfs_set_super_sys_array_size(super_copy, array_size);
2794                 } else {
2795                         ptr += len;
2796                         cur += len;
2797                 }
2798         }
2799         unlock_chunks(root);
2800         return ret;
2801 }
2802
2803 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2804                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2805 {
2806         struct btrfs_root *root = fs_info->chunk_root;
2807         struct extent_map_tree *em_tree;
2808         struct extent_map *em;
2809         struct btrfs_root *extent_root = root->fs_info->extent_root;
2810         struct map_lookup *map;
2811         u64 dev_extent_len = 0;
2812         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2813         int i, ret = 0;
2814         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2815
2816         em_tree = &fs_info->mapping_tree.map_tree;
2817
2818         read_lock(&em_tree->lock);
2819         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2820         read_unlock(&em_tree->lock);
2821
2822         if (!em || em->start > chunk_offset ||
2823             em->start + em->len < chunk_offset) {
2824                 /*
2825                  * This is a logic error, but we don't want to just rely on the
2826                  * user having built with ASSERT enabled, so if ASSERT doesn't
2827                  * do anything we still error out.
2828                  */
2829                 ASSERT(0);
2830                 if (em)
2831                         free_extent_map(em);
2832                 return -EINVAL;
2833         }
2834         map = em->map_lookup;
2835         lock_chunks(root->fs_info->chunk_root);
2836         check_system_chunk(trans, extent_root, map->type);
2837         unlock_chunks(root->fs_info->chunk_root);
2838
2839         /*
2840          * Take the device list mutex to prevent races with the final phase of
2841          * a device replace operation that replaces the device object associated
2842          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2843          */
2844         mutex_lock(&fs_devices->device_list_mutex);
2845         for (i = 0; i < map->num_stripes; i++) {
2846                 struct btrfs_device *device = map->stripes[i].dev;
2847                 ret = btrfs_free_dev_extent(trans, device,
2848                                             map->stripes[i].physical,
2849                                             &dev_extent_len);
2850                 if (ret) {
2851                         mutex_unlock(&fs_devices->device_list_mutex);
2852                         btrfs_abort_transaction(trans, ret);
2853                         goto out;
2854                 }
2855
2856                 if (device->bytes_used > 0) {
2857                         lock_chunks(root);
2858                         btrfs_device_set_bytes_used(device,
2859                                         device->bytes_used - dev_extent_len);
2860                         spin_lock(&root->fs_info->free_chunk_lock);
2861                         root->fs_info->free_chunk_space += dev_extent_len;
2862                         spin_unlock(&root->fs_info->free_chunk_lock);
2863                         btrfs_clear_space_info_full(root->fs_info);
2864                         unlock_chunks(root);
2865                 }
2866
2867                 if (map->stripes[i].dev) {
2868                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2869                         if (ret) {
2870                                 mutex_unlock(&fs_devices->device_list_mutex);
2871                                 btrfs_abort_transaction(trans, ret);
2872                                 goto out;
2873                         }
2874                 }
2875         }
2876         mutex_unlock(&fs_devices->device_list_mutex);
2877
2878         ret = btrfs_free_chunk(trans, root->fs_info, chunk_objectid,
2879                                chunk_offset);
2880         if (ret) {
2881                 btrfs_abort_transaction(trans, ret);
2882                 goto out;
2883         }
2884
2885         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2886
2887         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2888                 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2889                                           chunk_offset);
2890                 if (ret) {
2891                         btrfs_abort_transaction(trans, ret);
2892                         goto out;
2893                 }
2894         }
2895
2896         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2897         if (ret) {
2898                 btrfs_abort_transaction(trans, ret);
2899                 goto out;
2900         }
2901
2902 out:
2903         /* once for us */
2904         free_extent_map(em);
2905         return ret;
2906 }
2907
2908 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2909 {
2910         struct btrfs_root *root = fs_info->chunk_root;
2911         struct btrfs_root *extent_root = fs_info->extent_root;
2912         struct btrfs_trans_handle *trans;
2913         int ret;
2914
2915         /*
2916          * Prevent races with automatic removal of unused block groups.
2917          * After we relocate and before we remove the chunk with offset
2918          * chunk_offset, automatic removal of the block group can kick in,
2919          * resulting in a failure when calling btrfs_remove_chunk() below.
2920          *
2921          * Make sure to acquire this mutex before doing a tree search (dev
2922          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2923          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2924          * we release the path used to search the chunk/dev tree and before
2925          * the current task acquires this mutex and calls us.
2926          */
2927         ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2928
2929         ret = btrfs_can_relocate(root->fs_info, chunk_offset);
2930         if (ret)
2931                 return -ENOSPC;
2932
2933         /* step one, relocate all the extents inside this chunk */
2934         btrfs_scrub_pause(root);
2935         ret = btrfs_relocate_block_group(root->fs_info, chunk_offset);
2936         btrfs_scrub_continue(root);
2937         if (ret)
2938                 return ret;
2939
2940         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2941                                                      chunk_offset);
2942         if (IS_ERR(trans)) {
2943                 ret = PTR_ERR(trans);
2944                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2945                 return ret;
2946         }
2947
2948         /*
2949          * step two, delete the device extents and the
2950          * chunk tree entries
2951          */
2952         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2953         btrfs_end_transaction(trans, extent_root);
2954         return ret;
2955 }
2956
2957 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2958 {
2959         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2960         struct btrfs_path *path;
2961         struct extent_buffer *leaf;
2962         struct btrfs_chunk *chunk;
2963         struct btrfs_key key;
2964         struct btrfs_key found_key;
2965         u64 chunk_type;
2966         bool retried = false;
2967         int failed = 0;
2968         int ret;
2969
2970         path = btrfs_alloc_path();
2971         if (!path)
2972                 return -ENOMEM;
2973
2974 again:
2975         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2976         key.offset = (u64)-1;
2977         key.type = BTRFS_CHUNK_ITEM_KEY;
2978
2979         while (1) {
2980                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2981                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2982                 if (ret < 0) {
2983                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2984                         goto error;
2985                 }
2986                 BUG_ON(ret == 0); /* Corruption */
2987
2988                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2989                                           key.type);
2990                 if (ret)
2991                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2992                 if (ret < 0)
2993                         goto error;
2994                 if (ret > 0)
2995                         break;
2996
2997                 leaf = path->nodes[0];
2998                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2999
3000                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3001                                        struct btrfs_chunk);
3002                 chunk_type = btrfs_chunk_type(leaf, chunk);
3003                 btrfs_release_path(path);
3004
3005                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3006                         ret = btrfs_relocate_chunk(root->fs_info,
3007                                                    found_key.offset);
3008                         if (ret == -ENOSPC)
3009                                 failed++;
3010                         else
3011                                 BUG_ON(ret);
3012                 }
3013                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
3014
3015                 if (found_key.offset == 0)
3016                         break;
3017                 key.offset = found_key.offset - 1;
3018         }
3019         ret = 0;
3020         if (failed && !retried) {
3021                 failed = 0;
3022                 retried = true;
3023                 goto again;
3024         } else if (WARN_ON(failed && retried)) {
3025                 ret = -ENOSPC;
3026         }
3027 error:
3028         btrfs_free_path(path);
3029         return ret;
3030 }
3031
3032 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3033                                struct btrfs_balance_control *bctl)
3034 {
3035         struct btrfs_root *root = fs_info->tree_root;
3036         struct btrfs_trans_handle *trans;
3037         struct btrfs_balance_item *item;
3038         struct btrfs_disk_balance_args disk_bargs;
3039         struct btrfs_path *path;
3040         struct extent_buffer *leaf;
3041         struct btrfs_key key;
3042         int ret, err;
3043
3044         path = btrfs_alloc_path();
3045         if (!path)
3046                 return -ENOMEM;
3047
3048         trans = btrfs_start_transaction(root, 0);
3049         if (IS_ERR(trans)) {
3050                 btrfs_free_path(path);
3051                 return PTR_ERR(trans);
3052         }
3053
3054         key.objectid = BTRFS_BALANCE_OBJECTID;
3055         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3056         key.offset = 0;
3057
3058         ret = btrfs_insert_empty_item(trans, root, path, &key,
3059                                       sizeof(*item));
3060         if (ret)
3061                 goto out;
3062
3063         leaf = path->nodes[0];
3064         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3065
3066         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3067
3068         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3069         btrfs_set_balance_data(leaf, item, &disk_bargs);
3070         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3071         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3072         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3073         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3074
3075         btrfs_set_balance_flags(leaf, item, bctl->flags);
3076
3077         btrfs_mark_buffer_dirty(leaf);
3078 out:
3079         btrfs_free_path(path);
3080         err = btrfs_commit_transaction(trans, root);
3081         if (err && !ret)
3082                 ret = err;
3083         return ret;
3084 }
3085
3086 static int del_balance_item(struct btrfs_fs_info *fs_info)
3087 {
3088         struct btrfs_root *root = fs_info->tree_root;
3089         struct btrfs_trans_handle *trans;
3090         struct btrfs_path *path;
3091         struct btrfs_key key;
3092         int ret, err;
3093
3094         path = btrfs_alloc_path();
3095         if (!path)
3096                 return -ENOMEM;
3097
3098         trans = btrfs_start_transaction(root, 0);
3099         if (IS_ERR(trans)) {
3100                 btrfs_free_path(path);
3101                 return PTR_ERR(trans);
3102         }
3103
3104         key.objectid = BTRFS_BALANCE_OBJECTID;
3105         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3106         key.offset = 0;
3107
3108         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3109         if (ret < 0)
3110                 goto out;
3111         if (ret > 0) {
3112                 ret = -ENOENT;
3113                 goto out;
3114         }
3115
3116         ret = btrfs_del_item(trans, root, path);
3117 out:
3118         btrfs_free_path(path);
3119         err = btrfs_commit_transaction(trans, root);
3120         if (err && !ret)
3121                 ret = err;
3122         return ret;
3123 }
3124
3125 /*
3126  * This is a heuristic used to reduce the number of chunks balanced on
3127  * resume after balance was interrupted.
3128  */
3129 static void update_balance_args(struct btrfs_balance_control *bctl)
3130 {
3131         /*
3132          * Turn on soft mode for chunk types that were being converted.
3133          */
3134         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140
3141         /*
3142          * Turn on usage filter if is not already used.  The idea is
3143          * that chunks that we have already balanced should be
3144          * reasonably full.  Don't do it for chunks that are being
3145          * converted - that will keep us from relocating unconverted
3146          * (albeit full) chunks.
3147          */
3148         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3149             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3150             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3151                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3152                 bctl->data.usage = 90;
3153         }
3154         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3155             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3156             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3157                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3158                 bctl->sys.usage = 90;
3159         }
3160         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3161             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3162             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3163                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3164                 bctl->meta.usage = 90;
3165         }
3166 }
3167
3168 /*
3169  * Should be called with both balance and volume mutexes held to
3170  * serialize other volume operations (add_dev/rm_dev/resize) with
3171  * restriper.  Same goes for unset_balance_control.
3172  */
3173 static void set_balance_control(struct btrfs_balance_control *bctl)
3174 {
3175         struct btrfs_fs_info *fs_info = bctl->fs_info;
3176
3177         BUG_ON(fs_info->balance_ctl);
3178
3179         spin_lock(&fs_info->balance_lock);
3180         fs_info->balance_ctl = bctl;
3181         spin_unlock(&fs_info->balance_lock);
3182 }
3183
3184 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3185 {
3186         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3187
3188         BUG_ON(!fs_info->balance_ctl);
3189
3190         spin_lock(&fs_info->balance_lock);
3191         fs_info->balance_ctl = NULL;
3192         spin_unlock(&fs_info->balance_lock);
3193
3194         kfree(bctl);
3195 }
3196
3197 /*
3198  * Balance filters.  Return 1 if chunk should be filtered out
3199  * (should not be balanced).
3200  */
3201 static int chunk_profiles_filter(u64 chunk_type,
3202                                  struct btrfs_balance_args *bargs)
3203 {
3204         chunk_type = chunk_to_extended(chunk_type) &
3205                                 BTRFS_EXTENDED_PROFILE_MASK;
3206
3207         if (bargs->profiles & chunk_type)
3208                 return 0;
3209
3210         return 1;
3211 }
3212
3213 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3214                               struct btrfs_balance_args *bargs)
3215 {
3216         struct btrfs_block_group_cache *cache;
3217         u64 chunk_used;
3218         u64 user_thresh_min;
3219         u64 user_thresh_max;
3220         int ret = 1;
3221
3222         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3223         chunk_used = btrfs_block_group_used(&cache->item);
3224
3225         if (bargs->usage_min == 0)
3226                 user_thresh_min = 0;
3227         else
3228                 user_thresh_min = div_factor_fine(cache->key.offset,
3229                                         bargs->usage_min);
3230
3231         if (bargs->usage_max == 0)
3232                 user_thresh_max = 1;
3233         else if (bargs->usage_max > 100)
3234                 user_thresh_max = cache->key.offset;
3235         else
3236                 user_thresh_max = div_factor_fine(cache->key.offset,
3237                                         bargs->usage_max);
3238
3239         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3240                 ret = 0;
3241
3242         btrfs_put_block_group(cache);
3243         return ret;
3244 }
3245
3246 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3247                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3248 {
3249         struct btrfs_block_group_cache *cache;
3250         u64 chunk_used, user_thresh;
3251         int ret = 1;
3252
3253         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3254         chunk_used = btrfs_block_group_used(&cache->item);
3255
3256         if (bargs->usage_min == 0)
3257                 user_thresh = 1;
3258         else if (bargs->usage > 100)
3259                 user_thresh = cache->key.offset;
3260         else
3261                 user_thresh = div_factor_fine(cache->key.offset,
3262                                               bargs->usage);
3263
3264         if (chunk_used < user_thresh)
3265                 ret = 0;
3266
3267         btrfs_put_block_group(cache);
3268         return ret;
3269 }
3270
3271 static int chunk_devid_filter(struct extent_buffer *leaf,
3272                               struct btrfs_chunk *chunk,
3273                               struct btrfs_balance_args *bargs)
3274 {
3275         struct btrfs_stripe *stripe;
3276         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3277         int i;
3278
3279         for (i = 0; i < num_stripes; i++) {
3280                 stripe = btrfs_stripe_nr(chunk, i);
3281                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3282                         return 0;
3283         }
3284
3285         return 1;
3286 }
3287
3288 /* [pstart, pend) */
3289 static int chunk_drange_filter(struct extent_buffer *leaf,
3290                                struct btrfs_chunk *chunk,
3291                                u64 chunk_offset,
3292                                struct btrfs_balance_args *bargs)
3293 {
3294         struct btrfs_stripe *stripe;
3295         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3296         u64 stripe_offset;
3297         u64 stripe_length;
3298         int factor;
3299         int i;
3300
3301         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3302                 return 0;
3303
3304         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3305              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3306                 factor = num_stripes / 2;
3307         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3308                 factor = num_stripes - 1;
3309         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3310                 factor = num_stripes - 2;
3311         } else {
3312                 factor = num_stripes;
3313         }
3314
3315         for (i = 0; i < num_stripes; i++) {
3316                 stripe = btrfs_stripe_nr(chunk, i);
3317                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3318                         continue;
3319
3320                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3321                 stripe_length = btrfs_chunk_length(leaf, chunk);
3322                 stripe_length = div_u64(stripe_length, factor);
3323
3324                 if (stripe_offset < bargs->pend &&
3325                     stripe_offset + stripe_length > bargs->pstart)
3326                         return 0;
3327         }
3328
3329         return 1;
3330 }
3331
3332 /* [vstart, vend) */
3333 static int chunk_vrange_filter(struct extent_buffer *leaf,
3334                                struct btrfs_chunk *chunk,
3335                                u64 chunk_offset,
3336                                struct btrfs_balance_args *bargs)
3337 {
3338         if (chunk_offset < bargs->vend &&
3339             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3340                 /* at least part of the chunk is inside this vrange */
3341                 return 0;
3342
3343         return 1;
3344 }
3345
3346 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3347                                struct btrfs_chunk *chunk,
3348                                struct btrfs_balance_args *bargs)
3349 {
3350         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3351
3352         if (bargs->stripes_min <= num_stripes
3353                         && num_stripes <= bargs->stripes_max)
3354                 return 0;
3355
3356         return 1;
3357 }
3358
3359 static int chunk_soft_convert_filter(u64 chunk_type,
3360                                      struct btrfs_balance_args *bargs)
3361 {
3362         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3363                 return 0;
3364
3365         chunk_type = chunk_to_extended(chunk_type) &
3366                                 BTRFS_EXTENDED_PROFILE_MASK;
3367
3368         if (bargs->target == chunk_type)
3369                 return 1;
3370
3371         return 0;
3372 }
3373
3374 static int should_balance_chunk(struct btrfs_root *root,
3375                                 struct extent_buffer *leaf,
3376                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3377 {
3378         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3379         struct btrfs_balance_args *bargs = NULL;
3380         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3381
3382         /* type filter */
3383         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3384               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3385                 return 0;
3386         }
3387
3388         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3389                 bargs = &bctl->data;
3390         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3391                 bargs = &bctl->sys;
3392         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3393                 bargs = &bctl->meta;
3394
3395         /* profiles filter */
3396         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3397             chunk_profiles_filter(chunk_type, bargs)) {
3398                 return 0;
3399         }
3400
3401         /* usage filter */
3402         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3403             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3404                 return 0;
3405         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3406             chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3407                 return 0;
3408         }
3409
3410         /* devid filter */
3411         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3412             chunk_devid_filter(leaf, chunk, bargs)) {
3413                 return 0;
3414         }
3415
3416         /* drange filter, makes sense only with devid filter */
3417         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3418             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3419                 return 0;
3420         }
3421
3422         /* vrange filter */
3423         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3424             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3425                 return 0;
3426         }
3427
3428         /* stripes filter */
3429         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3430             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3431                 return 0;
3432         }
3433
3434         /* soft profile changing mode */
3435         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3436             chunk_soft_convert_filter(chunk_type, bargs)) {
3437                 return 0;
3438         }
3439
3440         /*
3441          * limited by count, must be the last filter
3442          */
3443         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3444                 if (bargs->limit == 0)
3445                         return 0;
3446                 else
3447                         bargs->limit--;
3448         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3449                 /*
3450                  * Same logic as the 'limit' filter; the minimum cannot be
3451                  * determined here because we do not have the global information
3452                  * about the count of all chunks that satisfy the filters.
3453                  */
3454                 if (bargs->limit_max == 0)
3455                         return 0;
3456                 else
3457                         bargs->limit_max--;
3458         }
3459
3460         return 1;
3461 }
3462
3463 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3464 {
3465         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3466         struct btrfs_root *chunk_root = fs_info->chunk_root;
3467         struct btrfs_root *dev_root = fs_info->dev_root;
3468         struct list_head *devices;
3469         struct btrfs_device *device;
3470         u64 old_size;
3471         u64 size_to_free;
3472         u64 chunk_type;
3473         struct btrfs_chunk *chunk;
3474         struct btrfs_path *path = NULL;
3475         struct btrfs_key key;
3476         struct btrfs_key found_key;
3477         struct btrfs_trans_handle *trans;
3478         struct extent_buffer *leaf;
3479         int slot;
3480         int ret;
3481         int enospc_errors = 0;
3482         bool counting = true;
3483         /* The single value limit and min/max limits use the same bytes in the */
3484         u64 limit_data = bctl->data.limit;
3485         u64 limit_meta = bctl->meta.limit;
3486         u64 limit_sys = bctl->sys.limit;
3487         u32 count_data = 0;
3488         u32 count_meta = 0;
3489         u32 count_sys = 0;
3490         int chunk_reserved = 0;
3491         u64 bytes_used = 0;
3492
3493         /* step one make some room on all the devices */
3494         devices = &fs_info->fs_devices->devices;
3495         list_for_each_entry(device, devices, dev_list) {
3496                 old_size = btrfs_device_get_total_bytes(device);
3497                 size_to_free = div_factor(old_size, 1);
3498                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3499                 if (!device->writeable ||
3500                     btrfs_device_get_total_bytes(device) -
3501                     btrfs_device_get_bytes_used(device) > size_to_free ||
3502                     device->is_tgtdev_for_dev_replace)
3503                         continue;
3504
3505                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3506                 if (ret == -ENOSPC)
3507                         break;
3508                 if (ret) {
3509                         /* btrfs_shrink_device never returns ret > 0 */
3510                         WARN_ON(ret > 0);
3511                         goto error;
3512                 }
3513
3514                 trans = btrfs_start_transaction(dev_root, 0);
3515                 if (IS_ERR(trans)) {
3516                         ret = PTR_ERR(trans);
3517                         btrfs_info_in_rcu(fs_info,
3518                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3519                                           rcu_str_deref(device->name), ret,
3520                                           old_size, old_size - size_to_free);
3521                         goto error;
3522                 }
3523
3524                 ret = btrfs_grow_device(trans, device, old_size);
3525                 if (ret) {
3526                         btrfs_end_transaction(trans, dev_root);
3527                         /* btrfs_grow_device never returns ret > 0 */
3528                         WARN_ON(ret > 0);
3529                         btrfs_info_in_rcu(fs_info,
3530                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3531                                           rcu_str_deref(device->name), ret,
3532                                           old_size, old_size - size_to_free);
3533                         goto error;
3534                 }
3535
3536                 btrfs_end_transaction(trans, dev_root);
3537         }
3538
3539         /* step two, relocate all the chunks */
3540         path = btrfs_alloc_path();
3541         if (!path) {
3542                 ret = -ENOMEM;
3543                 goto error;
3544         }
3545
3546         /* zero out stat counters */
3547         spin_lock(&fs_info->balance_lock);
3548         memset(&bctl->stat, 0, sizeof(bctl->stat));
3549         spin_unlock(&fs_info->balance_lock);
3550 again:
3551         if (!counting) {
3552                 /*
3553                  * The single value limit and min/max limits use the same bytes
3554                  * in the
3555                  */
3556                 bctl->data.limit = limit_data;
3557                 bctl->meta.limit = limit_meta;
3558                 bctl->sys.limit = limit_sys;
3559         }
3560         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3561         key.offset = (u64)-1;
3562         key.type = BTRFS_CHUNK_ITEM_KEY;
3563
3564         while (1) {
3565                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3566                     atomic_read(&fs_info->balance_cancel_req)) {
3567                         ret = -ECANCELED;
3568                         goto error;
3569                 }
3570
3571                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3572                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3573                 if (ret < 0) {
3574                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3575                         goto error;
3576                 }
3577
3578                 /*
3579                  * this shouldn't happen, it means the last relocate
3580                  * failed
3581                  */
3582                 if (ret == 0)
3583                         BUG(); /* FIXME break ? */
3584
3585                 ret = btrfs_previous_item(chunk_root, path, 0,
3586                                           BTRFS_CHUNK_ITEM_KEY);
3587                 if (ret) {
3588                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589                         ret = 0;
3590                         break;
3591                 }
3592
3593                 leaf = path->nodes[0];
3594                 slot = path->slots[0];
3595                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3596
3597                 if (found_key.objectid != key.objectid) {
3598                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3599                         break;
3600                 }
3601
3602                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3603                 chunk_type = btrfs_chunk_type(leaf, chunk);
3604
3605                 if (!counting) {
3606                         spin_lock(&fs_info->balance_lock);
3607                         bctl->stat.considered++;
3608                         spin_unlock(&fs_info->balance_lock);
3609                 }
3610
3611                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3612                                            found_key.offset);
3613
3614                 btrfs_release_path(path);
3615                 if (!ret) {
3616                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3617                         goto loop;
3618                 }
3619
3620                 if (counting) {
3621                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3622                         spin_lock(&fs_info->balance_lock);
3623                         bctl->stat.expected++;
3624                         spin_unlock(&fs_info->balance_lock);
3625
3626                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3627                                 count_data++;
3628                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3629                                 count_sys++;
3630                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3631                                 count_meta++;
3632
3633                         goto loop;
3634                 }
3635
3636                 /*
3637                  * Apply limit_min filter, no need to check if the LIMITS
3638                  * filter is used, limit_min is 0 by default
3639                  */
3640                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3641                                         count_data < bctl->data.limit_min)
3642                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3643                                         count_meta < bctl->meta.limit_min)
3644                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3645                                         count_sys < bctl->sys.limit_min)) {
3646                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3647                         goto loop;
3648                 }
3649
3650                 ASSERT(fs_info->data_sinfo);
3651                 spin_lock(&fs_info->data_sinfo->lock);
3652                 bytes_used = fs_info->data_sinfo->bytes_used;
3653                 spin_unlock(&fs_info->data_sinfo->lock);
3654
3655                 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3656                     !chunk_reserved && !bytes_used) {
3657                         trans = btrfs_start_transaction(chunk_root, 0);
3658                         if (IS_ERR(trans)) {
3659                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3660                                 ret = PTR_ERR(trans);
3661                                 goto error;
3662                         }
3663
3664                         ret = btrfs_force_chunk_alloc(trans, chunk_root,
3665                                                       BTRFS_BLOCK_GROUP_DATA);
3666                         btrfs_end_transaction(trans, chunk_root);
3667                         if (ret < 0) {
3668                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3669                                 goto error;
3670                         }
3671                         chunk_reserved = 1;
3672                 }
3673
3674                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3675                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3676                 if (ret && ret != -ENOSPC)
3677                         goto error;
3678                 if (ret == -ENOSPC) {
3679                         enospc_errors++;
3680                 } else {
3681                         spin_lock(&fs_info->balance_lock);
3682                         bctl->stat.completed++;
3683                         spin_unlock(&fs_info->balance_lock);
3684                 }
3685 loop:
3686                 if (found_key.offset == 0)
3687                         break;
3688                 key.offset = found_key.offset - 1;
3689         }
3690
3691         if (counting) {
3692                 btrfs_release_path(path);
3693                 counting = false;
3694                 goto again;
3695         }
3696 error:
3697         btrfs_free_path(path);
3698         if (enospc_errors) {
3699                 btrfs_info(fs_info, "%d enospc errors during balance",
3700                            enospc_errors);
3701                 if (!ret)
3702                         ret = -ENOSPC;
3703         }
3704
3705         return ret;
3706 }
3707
3708 /**
3709  * alloc_profile_is_valid - see if a given profile is valid and reduced
3710  * @flags: profile to validate
3711  * @extended: if true @flags is treated as an extended profile
3712  */
3713 static int alloc_profile_is_valid(u64 flags, int extended)
3714 {
3715         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3716                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3717
3718         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3719
3720         /* 1) check that all other bits are zeroed */
3721         if (flags & ~mask)
3722                 return 0;
3723
3724         /* 2) see if profile is reduced */
3725         if (flags == 0)
3726                 return !extended; /* "0" is valid for usual profiles */
3727
3728         /* true if exactly one bit set */
3729         return (flags & (flags - 1)) == 0;
3730 }
3731
3732 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3733 {
3734         /* cancel requested || normal exit path */
3735         return atomic_read(&fs_info->balance_cancel_req) ||
3736                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3737                  atomic_read(&fs_info->balance_cancel_req) == 0);
3738 }
3739
3740 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3741 {
3742         int ret;
3743
3744         unset_balance_control(fs_info);
3745         ret = del_balance_item(fs_info);
3746         if (ret)
3747                 btrfs_handle_fs_error(fs_info, ret, NULL);
3748
3749         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3750 }
3751
3752 /* Non-zero return value signifies invalidity */
3753 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3754                 u64 allowed)
3755 {
3756         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3757                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3758                  (bctl_arg->target & ~allowed)));
3759 }
3760
3761 /*
3762  * Should be called with both balance and volume mutexes held
3763  */
3764 int btrfs_balance(struct btrfs_balance_control *bctl,
3765                   struct btrfs_ioctl_balance_args *bargs)
3766 {
3767         struct btrfs_fs_info *fs_info = bctl->fs_info;
3768         u64 allowed;
3769         int mixed = 0;
3770         int ret;
3771         u64 num_devices;
3772         unsigned seq;
3773
3774         if (btrfs_fs_closing(fs_info) ||
3775             atomic_read(&fs_info->balance_pause_req) ||
3776             atomic_read(&fs_info->balance_cancel_req)) {
3777                 ret = -EINVAL;
3778                 goto out;
3779         }
3780
3781         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3782         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3783                 mixed = 1;
3784
3785         /*
3786          * In case of mixed groups both data and meta should be picked,
3787          * and identical options should be given for both of them.
3788          */
3789         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3790         if (mixed && (bctl->flags & allowed)) {
3791                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3792                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3793                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3794                         btrfs_err(fs_info,
3795                                   "with mixed groups data and metadata balance options must be the same");
3796                         ret = -EINVAL;
3797                         goto out;
3798                 }
3799         }
3800
3801         num_devices = fs_info->fs_devices->num_devices;
3802         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3803         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3804                 BUG_ON(num_devices < 1);
3805                 num_devices--;
3806         }
3807         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3808         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3809         if (num_devices > 1)
3810                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3811         if (num_devices > 2)
3812                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3813         if (num_devices > 3)
3814                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3815                             BTRFS_BLOCK_GROUP_RAID6);
3816         if (validate_convert_profile(&bctl->data, allowed)) {
3817                 btrfs_err(fs_info,
3818                           "unable to start balance with target data profile %llu",
3819                           bctl->data.target);
3820                 ret = -EINVAL;
3821                 goto out;
3822         }
3823         if (validate_convert_profile(&bctl->meta, allowed)) {
3824                 btrfs_err(fs_info,
3825                           "unable to start balance with target metadata profile %llu",
3826                           bctl->meta.target);
3827                 ret = -EINVAL;
3828                 goto out;
3829         }
3830         if (validate_convert_profile(&bctl->sys, allowed)) {
3831                 btrfs_err(fs_info,
3832                           "unable to start balance with target system profile %llu",
3833                           bctl->sys.target);
3834                 ret = -EINVAL;
3835                 goto out;
3836         }
3837
3838         /* allow to reduce meta or sys integrity only if force set */
3839         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3840                         BTRFS_BLOCK_GROUP_RAID10 |
3841                         BTRFS_BLOCK_GROUP_RAID5 |
3842                         BTRFS_BLOCK_GROUP_RAID6;
3843         do {
3844                 seq = read_seqbegin(&fs_info->profiles_lock);
3845
3846                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3847                      (fs_info->avail_system_alloc_bits & allowed) &&
3848                      !(bctl->sys.target & allowed)) ||
3849                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3850                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3851                      !(bctl->meta.target & allowed))) {
3852                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3853                                 btrfs_info(fs_info,
3854                                            "force reducing metadata integrity");
3855                         } else {
3856                                 btrfs_err(fs_info,
3857                                           "balance will reduce metadata integrity, use force if you want this");
3858                                 ret = -EINVAL;
3859                                 goto out;
3860                         }
3861                 }
3862         } while (read_seqretry(&fs_info->profiles_lock, seq));
3863
3864         if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3865                 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3866                 btrfs_warn(fs_info,
3867                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3868                            bctl->meta.target, bctl->data.target);
3869         }
3870
3871         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3872                 fs_info->num_tolerated_disk_barrier_failures = min(
3873                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3874                         btrfs_get_num_tolerated_disk_barrier_failures(
3875                                 bctl->sys.target));
3876         }
3877
3878         ret = insert_balance_item(fs_info, bctl);
3879         if (ret && ret != -EEXIST)
3880                 goto out;
3881
3882         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3883                 BUG_ON(ret == -EEXIST);
3884                 set_balance_control(bctl);
3885         } else {
3886                 BUG_ON(ret != -EEXIST);
3887                 spin_lock(&fs_info->balance_lock);
3888                 update_balance_args(bctl);
3889                 spin_unlock(&fs_info->balance_lock);
3890         }
3891
3892         atomic_inc(&fs_info->balance_running);
3893         mutex_unlock(&fs_info->balance_mutex);
3894
3895         ret = __btrfs_balance(fs_info);
3896
3897         mutex_lock(&fs_info->balance_mutex);
3898         atomic_dec(&fs_info->balance_running);
3899
3900         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3901                 fs_info->num_tolerated_disk_barrier_failures =
3902                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3903         }
3904
3905         if (bargs) {
3906                 memset(bargs, 0, sizeof(*bargs));
3907                 update_ioctl_balance_args(fs_info, 0, bargs);
3908         }
3909
3910         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3911             balance_need_close(fs_info)) {
3912                 __cancel_balance(fs_info);
3913         }
3914
3915         wake_up(&fs_info->balance_wait_q);
3916
3917         return ret;
3918 out:
3919         if (bctl->flags & BTRFS_BALANCE_RESUME)
3920                 __cancel_balance(fs_info);
3921         else {
3922                 kfree(bctl);
3923                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3924         }
3925         return ret;
3926 }
3927
3928 static int balance_kthread(void *data)
3929 {
3930         struct btrfs_fs_info *fs_info = data;
3931         int ret = 0;
3932
3933         mutex_lock(&fs_info->volume_mutex);
3934         mutex_lock(&fs_info->balance_mutex);
3935
3936         if (fs_info->balance_ctl) {
3937                 btrfs_info(fs_info, "continuing balance");
3938                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3939         }
3940
3941         mutex_unlock(&fs_info->balance_mutex);
3942         mutex_unlock(&fs_info->volume_mutex);
3943
3944         return ret;
3945 }
3946
3947 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3948 {
3949         struct task_struct *tsk;
3950
3951         spin_lock(&fs_info->balance_lock);
3952         if (!fs_info->balance_ctl) {
3953                 spin_unlock(&fs_info->balance_lock);
3954                 return 0;
3955         }
3956         spin_unlock(&fs_info->balance_lock);
3957
3958         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3959                 btrfs_info(fs_info, "force skipping balance");
3960                 return 0;
3961         }
3962
3963         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3964         return PTR_ERR_OR_ZERO(tsk);
3965 }
3966
3967 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3968 {
3969         struct btrfs_balance_control *bctl;
3970         struct btrfs_balance_item *item;
3971         struct btrfs_disk_balance_args disk_bargs;
3972         struct btrfs_path *path;
3973         struct extent_buffer *leaf;
3974         struct btrfs_key key;
3975         int ret;
3976
3977         path = btrfs_alloc_path();
3978         if (!path)
3979                 return -ENOMEM;
3980
3981         key.objectid = BTRFS_BALANCE_OBJECTID;
3982         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3983         key.offset = 0;
3984
3985         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3986         if (ret < 0)
3987                 goto out;
3988         if (ret > 0) { /* ret = -ENOENT; */
3989                 ret = 0;
3990                 goto out;
3991         }
3992
3993         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3994         if (!bctl) {
3995                 ret = -ENOMEM;
3996                 goto out;
3997         }
3998
3999         leaf = path->nodes[0];
4000         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4001
4002         bctl->fs_info = fs_info;
4003         bctl->flags = btrfs_balance_flags(leaf, item);
4004         bctl->flags |= BTRFS_BALANCE_RESUME;
4005
4006         btrfs_balance_data(leaf, item, &disk_bargs);
4007         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4008         btrfs_balance_meta(leaf, item, &disk_bargs);
4009         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4010         btrfs_balance_sys(leaf, item, &disk_bargs);
4011         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4012
4013         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4014
4015         mutex_lock(&fs_info->volume_mutex);
4016         mutex_lock(&fs_info->balance_mutex);
4017
4018         set_balance_control(bctl);
4019
4020         mutex_unlock(&fs_info->balance_mutex);
4021         mutex_unlock(&fs_info->volume_mutex);
4022 out:
4023         btrfs_free_path(path);
4024         return ret;
4025 }
4026
4027 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4028 {
4029         int ret = 0;
4030
4031         mutex_lock(&fs_info->balance_mutex);
4032         if (!fs_info->balance_ctl) {
4033                 mutex_unlock(&fs_info->balance_mutex);
4034                 return -ENOTCONN;
4035         }
4036
4037         if (atomic_read(&fs_info->balance_running)) {
4038                 atomic_inc(&fs_info->balance_pause_req);
4039                 mutex_unlock(&fs_info->balance_mutex);
4040
4041                 wait_event(fs_info->balance_wait_q,
4042                            atomic_read(&fs_info->balance_running) == 0);
4043
4044                 mutex_lock(&fs_info->balance_mutex);
4045                 /* we are good with balance_ctl ripped off from under us */
4046                 BUG_ON(atomic_read(&fs_info->balance_running));
4047                 atomic_dec(&fs_info->balance_pause_req);
4048         } else {
4049                 ret = -ENOTCONN;
4050         }
4051
4052         mutex_unlock(&fs_info->balance_mutex);
4053         return ret;
4054 }
4055
4056 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4057 {
4058         if (fs_info->sb->s_flags & MS_RDONLY)
4059                 return -EROFS;
4060
4061         mutex_lock(&fs_info->balance_mutex);
4062         if (!fs_info->balance_ctl) {
4063                 mutex_unlock(&fs_info->balance_mutex);
4064                 return -ENOTCONN;
4065         }
4066
4067         atomic_inc(&fs_info->balance_cancel_req);
4068         /*
4069          * if we are running just wait and return, balance item is
4070          * deleted in btrfs_balance in this case
4071          */
4072         if (atomic_read(&fs_info->balance_running)) {
4073                 mutex_unlock(&fs_info->balance_mutex);
4074                 wait_event(fs_info->balance_wait_q,
4075                            atomic_read(&fs_info->balance_running) == 0);
4076                 mutex_lock(&fs_info->balance_mutex);
4077         } else {
4078                 /* __cancel_balance needs volume_mutex */
4079                 mutex_unlock(&fs_info->balance_mutex);
4080                 mutex_lock(&fs_info->volume_mutex);
4081                 mutex_lock(&fs_info->balance_mutex);
4082
4083                 if (fs_info->balance_ctl)
4084                         __cancel_balance(fs_info);
4085
4086                 mutex_unlock(&fs_info->volume_mutex);
4087         }
4088
4089         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4090         atomic_dec(&fs_info->balance_cancel_req);
4091         mutex_unlock(&fs_info->balance_mutex);
4092         return 0;
4093 }
4094
4095 static int btrfs_uuid_scan_kthread(void *data)
4096 {
4097         struct btrfs_fs_info *fs_info = data;
4098         struct btrfs_root *root = fs_info->tree_root;
4099         struct btrfs_key key;
4100         struct btrfs_key max_key;
4101         struct btrfs_path *path = NULL;
4102         int ret = 0;
4103         struct extent_buffer *eb;
4104         int slot;
4105         struct btrfs_root_item root_item;
4106         u32 item_size;
4107         struct btrfs_trans_handle *trans = NULL;
4108
4109         path = btrfs_alloc_path();
4110         if (!path) {
4111                 ret = -ENOMEM;
4112                 goto out;
4113         }
4114
4115         key.objectid = 0;
4116         key.type = BTRFS_ROOT_ITEM_KEY;
4117         key.offset = 0;
4118
4119         max_key.objectid = (u64)-1;
4120         max_key.type = BTRFS_ROOT_ITEM_KEY;
4121         max_key.offset = (u64)-1;
4122
4123         while (1) {
4124                 ret = btrfs_search_forward(root, &key, path, 0);
4125                 if (ret) {
4126                         if (ret > 0)
4127                                 ret = 0;
4128                         break;
4129                 }
4130
4131                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4132                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4133                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4134                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4135                         goto skip;
4136
4137                 eb = path->nodes[0];
4138                 slot = path->slots[0];
4139                 item_size = btrfs_item_size_nr(eb, slot);
4140                 if (item_size < sizeof(root_item))
4141                         goto skip;
4142
4143                 read_extent_buffer(eb, &root_item,
4144                                    btrfs_item_ptr_offset(eb, slot),
4145                                    (int)sizeof(root_item));
4146                 if (btrfs_root_refs(&root_item) == 0)
4147                         goto skip;
4148
4149                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4150                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4151                         if (trans)
4152                                 goto update_tree;
4153
4154                         btrfs_release_path(path);
4155                         /*
4156                          * 1 - subvol uuid item
4157                          * 1 - received_subvol uuid item
4158                          */
4159                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4160                         if (IS_ERR(trans)) {
4161                                 ret = PTR_ERR(trans);
4162                                 break;
4163                         }
4164                         continue;
4165                 } else {
4166                         goto skip;
4167                 }
4168 update_tree:
4169                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4170                         ret = btrfs_uuid_tree_add(trans, fs_info,
4171                                                   root_item.uuid,
4172                                                   BTRFS_UUID_KEY_SUBVOL,
4173                                                   key.objectid);
4174                         if (ret < 0) {
4175                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4176                                         ret);
4177                                 break;
4178                         }
4179                 }
4180
4181                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4182                         ret = btrfs_uuid_tree_add(trans, fs_info,
4183                                                   root_item.received_uuid,
4184                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4185                                                   key.objectid);
4186                         if (ret < 0) {
4187                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4188                                         ret);
4189                                 break;
4190                         }
4191                 }
4192
4193 skip:
4194                 if (trans) {
4195                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4196                         trans = NULL;
4197                         if (ret)
4198                                 break;
4199                 }
4200
4201                 btrfs_release_path(path);
4202                 if (key.offset < (u64)-1) {
4203                         key.offset++;
4204                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4205                         key.offset = 0;
4206                         key.type = BTRFS_ROOT_ITEM_KEY;
4207                 } else if (key.objectid < (u64)-1) {
4208                         key.offset = 0;
4209                         key.type = BTRFS_ROOT_ITEM_KEY;
4210                         key.objectid++;
4211                 } else {
4212                         break;
4213                 }
4214                 cond_resched();
4215         }
4216
4217 out:
4218         btrfs_free_path(path);
4219         if (trans && !IS_ERR(trans))
4220                 btrfs_end_transaction(trans, fs_info->uuid_root);
4221         if (ret)
4222                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4223         else
4224                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4225         up(&fs_info->uuid_tree_rescan_sem);
4226         return 0;
4227 }
4228
4229 /*
4230  * Callback for btrfs_uuid_tree_iterate().
4231  * returns:
4232  * 0    check succeeded, the entry is not outdated.
4233  * < 0  if an error occurred.
4234  * > 0  if the check failed, which means the caller shall remove the entry.
4235  */
4236 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4237                                        u8 *uuid, u8 type, u64 subid)
4238 {
4239         struct btrfs_key key;
4240         int ret = 0;
4241         struct btrfs_root *subvol_root;
4242
4243         if (type != BTRFS_UUID_KEY_SUBVOL &&
4244             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4245                 goto out;
4246
4247         key.objectid = subid;
4248         key.type = BTRFS_ROOT_ITEM_KEY;
4249         key.offset = (u64)-1;
4250         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4251         if (IS_ERR(subvol_root)) {
4252                 ret = PTR_ERR(subvol_root);
4253                 if (ret == -ENOENT)
4254                         ret = 1;
4255                 goto out;
4256         }
4257
4258         switch (type) {
4259         case BTRFS_UUID_KEY_SUBVOL:
4260                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4261                         ret = 1;
4262                 break;
4263         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4264                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4265                            BTRFS_UUID_SIZE))
4266                         ret = 1;
4267                 break;
4268         }
4269
4270 out:
4271         return ret;
4272 }
4273
4274 static int btrfs_uuid_rescan_kthread(void *data)
4275 {
4276         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4277         int ret;
4278
4279         /*
4280          * 1st step is to iterate through the existing UUID tree and
4281          * to delete all entries that contain outdated data.
4282          * 2nd step is to add all missing entries to the UUID tree.
4283          */
4284         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4285         if (ret < 0) {
4286                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4287                 up(&fs_info->uuid_tree_rescan_sem);
4288                 return ret;
4289         }
4290         return btrfs_uuid_scan_kthread(data);
4291 }
4292
4293 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4294 {
4295         struct btrfs_trans_handle *trans;
4296         struct btrfs_root *tree_root = fs_info->tree_root;
4297         struct btrfs_root *uuid_root;
4298         struct task_struct *task;
4299         int ret;
4300
4301         /*
4302          * 1 - root node
4303          * 1 - root item
4304          */
4305         trans = btrfs_start_transaction(tree_root, 2);
4306         if (IS_ERR(trans))
4307                 return PTR_ERR(trans);
4308
4309         uuid_root = btrfs_create_tree(trans, fs_info,
4310                                       BTRFS_UUID_TREE_OBJECTID);
4311         if (IS_ERR(uuid_root)) {
4312                 ret = PTR_ERR(uuid_root);
4313                 btrfs_abort_transaction(trans, ret);
4314                 btrfs_end_transaction(trans, tree_root);
4315                 return ret;
4316         }
4317
4318         fs_info->uuid_root = uuid_root;
4319
4320         ret = btrfs_commit_transaction(trans, tree_root);
4321         if (ret)
4322                 return ret;
4323
4324         down(&fs_info->uuid_tree_rescan_sem);
4325         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4326         if (IS_ERR(task)) {
4327                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4328                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4329                 up(&fs_info->uuid_tree_rescan_sem);
4330                 return PTR_ERR(task);
4331         }
4332
4333         return 0;
4334 }
4335
4336 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4337 {
4338         struct task_struct *task;
4339
4340         down(&fs_info->uuid_tree_rescan_sem);
4341         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4342         if (IS_ERR(task)) {
4343                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4344                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4345                 up(&fs_info->uuid_tree_rescan_sem);
4346                 return PTR_ERR(task);
4347         }
4348
4349         return 0;
4350 }
4351
4352 /*
4353  * shrinking a device means finding all of the device extents past
4354  * the new size, and then following the back refs to the chunks.
4355  * The chunk relocation code actually frees the device extent
4356  */
4357 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4358 {
4359         struct btrfs_trans_handle *trans;
4360         struct btrfs_root *root = device->fs_info->dev_root;
4361         struct btrfs_dev_extent *dev_extent = NULL;
4362         struct btrfs_path *path;
4363         u64 length;
4364         u64 chunk_offset;
4365         int ret;
4366         int slot;
4367         int failed = 0;
4368         bool retried = false;
4369         bool checked_pending_chunks = false;
4370         struct extent_buffer *l;
4371         struct btrfs_key key;
4372         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4373         u64 old_total = btrfs_super_total_bytes(super_copy);
4374         u64 old_size = btrfs_device_get_total_bytes(device);
4375         u64 diff = old_size - new_size;
4376
4377         if (device->is_tgtdev_for_dev_replace)
4378                 return -EINVAL;
4379
4380         path = btrfs_alloc_path();
4381         if (!path)
4382                 return -ENOMEM;
4383
4384         path->reada = READA_FORWARD;
4385
4386         lock_chunks(root);
4387
4388         btrfs_device_set_total_bytes(device, new_size);
4389         if (device->writeable) {
4390                 device->fs_devices->total_rw_bytes -= diff;
4391                 spin_lock(&root->fs_info->free_chunk_lock);
4392                 root->fs_info->free_chunk_space -= diff;
4393                 spin_unlock(&root->fs_info->free_chunk_lock);
4394         }
4395         unlock_chunks(root);
4396
4397 again:
4398         key.objectid = device->devid;
4399         key.offset = (u64)-1;
4400         key.type = BTRFS_DEV_EXTENT_KEY;
4401
4402         do {
4403                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4404                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4405                 if (ret < 0) {
4406                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4407                         goto done;
4408                 }
4409
4410                 ret = btrfs_previous_item(root, path, 0, key.type);
4411                 if (ret)
4412                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4413                 if (ret < 0)
4414                         goto done;
4415                 if (ret) {
4416                         ret = 0;
4417                         btrfs_release_path(path);
4418                         break;
4419                 }
4420
4421                 l = path->nodes[0];
4422                 slot = path->slots[0];
4423                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4424
4425                 if (key.objectid != device->devid) {
4426                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4427                         btrfs_release_path(path);
4428                         break;
4429                 }
4430
4431                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4432                 length = btrfs_dev_extent_length(l, dev_extent);
4433
4434                 if (key.offset + length <= new_size) {
4435                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4436                         btrfs_release_path(path);
4437                         break;
4438                 }
4439
4440                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4441                 btrfs_release_path(path);
4442
4443                 ret = btrfs_relocate_chunk(root->fs_info, chunk_offset);
4444                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4445                 if (ret && ret != -ENOSPC)
4446                         goto done;
4447                 if (ret == -ENOSPC)
4448                         failed++;
4449         } while (key.offset-- > 0);
4450
4451         if (failed && !retried) {
4452                 failed = 0;
4453                 retried = true;
4454                 goto again;
4455         } else if (failed && retried) {
4456                 ret = -ENOSPC;
4457                 goto done;
4458         }
4459
4460         /* Shrinking succeeded, else we would be at "done". */
4461         trans = btrfs_start_transaction(root, 0);
4462         if (IS_ERR(trans)) {
4463                 ret = PTR_ERR(trans);
4464                 goto done;
4465         }
4466
4467         lock_chunks(root);
4468
4469         /*
4470          * We checked in the above loop all device extents that were already in
4471          * the device tree. However before we have updated the device's
4472          * total_bytes to the new size, we might have had chunk allocations that
4473          * have not complete yet (new block groups attached to transaction
4474          * handles), and therefore their device extents were not yet in the
4475          * device tree and we missed them in the loop above. So if we have any
4476          * pending chunk using a device extent that overlaps the device range
4477          * that we can not use anymore, commit the current transaction and
4478          * repeat the search on the device tree - this way we guarantee we will
4479          * not have chunks using device extents that end beyond 'new_size'.
4480          */
4481         if (!checked_pending_chunks) {
4482                 u64 start = new_size;
4483                 u64 len = old_size - new_size;
4484
4485                 if (contains_pending_extent(trans->transaction, device,
4486                                             &start, len)) {
4487                         unlock_chunks(root);
4488                         checked_pending_chunks = true;
4489                         failed = 0;
4490                         retried = false;
4491                         ret = btrfs_commit_transaction(trans, root);
4492                         if (ret)
4493                                 goto done;
4494                         goto again;
4495                 }
4496         }
4497
4498         btrfs_device_set_disk_total_bytes(device, new_size);
4499         if (list_empty(&device->resized_list))
4500                 list_add_tail(&device->resized_list,
4501                               &root->fs_info->fs_devices->resized_devices);
4502
4503         WARN_ON(diff > old_total);
4504         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4505         unlock_chunks(root);
4506
4507         /* Now btrfs_update_device() will change the on-disk size. */
4508         ret = btrfs_update_device(trans, device);
4509         btrfs_end_transaction(trans, root);
4510 done:
4511         btrfs_free_path(path);
4512         if (ret) {
4513                 lock_chunks(root);
4514                 btrfs_device_set_total_bytes(device, old_size);
4515                 if (device->writeable)
4516                         device->fs_devices->total_rw_bytes += diff;
4517                 spin_lock(&root->fs_info->free_chunk_lock);
4518                 root->fs_info->free_chunk_space += diff;
4519                 spin_unlock(&root->fs_info->free_chunk_lock);
4520                 unlock_chunks(root);
4521         }
4522         return ret;
4523 }
4524
4525 static int btrfs_add_system_chunk(struct btrfs_root *root,
4526                            struct btrfs_key *key,
4527                            struct btrfs_chunk *chunk, int item_size)
4528 {
4529         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4530         struct btrfs_disk_key disk_key;
4531         u32 array_size;
4532         u8 *ptr;
4533
4534         lock_chunks(root);
4535         array_size = btrfs_super_sys_array_size(super_copy);
4536         if (array_size + item_size + sizeof(disk_key)
4537                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4538                 unlock_chunks(root);
4539                 return -EFBIG;
4540         }
4541
4542         ptr = super_copy->sys_chunk_array + array_size;
4543         btrfs_cpu_key_to_disk(&disk_key, key);
4544         memcpy(ptr, &disk_key, sizeof(disk_key));
4545         ptr += sizeof(disk_key);
4546         memcpy(ptr, chunk, item_size);
4547         item_size += sizeof(disk_key);
4548         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4549         unlock_chunks(root);
4550
4551         return 0;
4552 }
4553
4554 /*
4555  * sort the devices in descending order by max_avail, total_avail
4556  */
4557 static int btrfs_cmp_device_info(const void *a, const void *b)
4558 {
4559         const struct btrfs_device_info *di_a = a;
4560         const struct btrfs_device_info *di_b = b;
4561
4562         if (di_a->max_avail > di_b->max_avail)
4563                 return -1;
4564         if (di_a->max_avail < di_b->max_avail)
4565                 return 1;
4566         if (di_a->total_avail > di_b->total_avail)
4567                 return -1;
4568         if (di_a->total_avail < di_b->total_avail)
4569                 return 1;
4570         return 0;
4571 }
4572
4573 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4574 {
4575         /* TODO allow them to set a preferred stripe size */
4576         return SZ_64K;
4577 }
4578
4579 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4580 {
4581         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4582                 return;
4583
4584         btrfs_set_fs_incompat(info, RAID56);
4585 }
4586
4587 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)             \
4588                         - sizeof(struct btrfs_chunk))           \
4589                         / sizeof(struct btrfs_stripe) + 1)
4590
4591 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4592                                 - 2 * sizeof(struct btrfs_disk_key)     \
4593                                 - 2 * sizeof(struct btrfs_chunk))       \
4594                                 / sizeof(struct btrfs_stripe) + 1)
4595
4596 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4597                                struct btrfs_root *extent_root, u64 start,
4598                                u64 type)
4599 {
4600         struct btrfs_fs_info *info = extent_root->fs_info;
4601         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4602         struct list_head *cur;
4603         struct map_lookup *map = NULL;
4604         struct extent_map_tree *em_tree;
4605         struct extent_map *em;
4606         struct btrfs_device_info *devices_info = NULL;
4607         u64 total_avail;
4608         int num_stripes;        /* total number of stripes to allocate */
4609         int data_stripes;       /* number of stripes that count for
4610                                    block group size */
4611         int sub_stripes;        /* sub_stripes info for map */
4612         int dev_stripes;        /* stripes per dev */
4613         int devs_max;           /* max devs to use */
4614         int devs_min;           /* min devs needed */
4615         int devs_increment;     /* ndevs has to be a multiple of this */
4616         int ncopies;            /* how many copies to data has */
4617         int ret;
4618         u64 max_stripe_size;
4619         u64 max_chunk_size;
4620         u64 stripe_size;
4621         u64 num_bytes;
4622         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4623         int ndevs;
4624         int i;
4625         int j;
4626         int index;
4627
4628         BUG_ON(!alloc_profile_is_valid(type, 0));
4629
4630         if (list_empty(&fs_devices->alloc_list))
4631                 return -ENOSPC;
4632
4633         index = __get_raid_index(type);
4634
4635         sub_stripes = btrfs_raid_array[index].sub_stripes;
4636         dev_stripes = btrfs_raid_array[index].dev_stripes;
4637         devs_max = btrfs_raid_array[index].devs_max;
4638         devs_min = btrfs_raid_array[index].devs_min;
4639         devs_increment = btrfs_raid_array[index].devs_increment;
4640         ncopies = btrfs_raid_array[index].ncopies;
4641
4642         if (type & BTRFS_BLOCK_GROUP_DATA) {
4643                 max_stripe_size = SZ_1G;
4644                 max_chunk_size = 10 * max_stripe_size;
4645                 if (!devs_max)
4646                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4647         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4648                 /* for larger filesystems, use larger metadata chunks */
4649                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4650                         max_stripe_size = SZ_1G;
4651                 else
4652                         max_stripe_size = SZ_256M;
4653                 max_chunk_size = max_stripe_size;
4654                 if (!devs_max)
4655                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4656         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4657                 max_stripe_size = SZ_32M;
4658                 max_chunk_size = 2 * max_stripe_size;
4659                 if (!devs_max)
4660                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4661         } else {
4662                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4663                        type);
4664                 BUG_ON(1);
4665         }
4666
4667         /* we don't want a chunk larger than 10% of writeable space */
4668         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4669                              max_chunk_size);
4670
4671         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4672                                GFP_NOFS);
4673         if (!devices_info)
4674                 return -ENOMEM;
4675
4676         cur = fs_devices->alloc_list.next;
4677
4678         /*
4679          * in the first pass through the devices list, we gather information
4680          * about the available holes on each device.
4681          */
4682         ndevs = 0;
4683         while (cur != &fs_devices->alloc_list) {
4684                 struct btrfs_device *device;
4685                 u64 max_avail;
4686                 u64 dev_offset;
4687
4688                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4689
4690                 cur = cur->next;
4691
4692                 if (!device->writeable) {
4693                         WARN(1, KERN_ERR
4694                                "BTRFS: read-only device in alloc_list\n");
4695                         continue;
4696                 }
4697
4698                 if (!device->in_fs_metadata ||
4699                     device->is_tgtdev_for_dev_replace)
4700                         continue;
4701
4702                 if (device->total_bytes > device->bytes_used)
4703                         total_avail = device->total_bytes - device->bytes_used;
4704                 else
4705                         total_avail = 0;
4706
4707                 /* If there is no space on this device, skip it. */
4708                 if (total_avail == 0)
4709                         continue;
4710
4711                 ret = find_free_dev_extent(trans, device,
4712                                            max_stripe_size * dev_stripes,
4713                                            &dev_offset, &max_avail);
4714                 if (ret && ret != -ENOSPC)
4715                         goto error;
4716
4717                 if (ret == 0)
4718                         max_avail = max_stripe_size * dev_stripes;
4719
4720                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4721                         continue;
4722
4723                 if (ndevs == fs_devices->rw_devices) {
4724                         WARN(1, "%s: found more than %llu devices\n",
4725                              __func__, fs_devices->rw_devices);
4726                         break;
4727                 }
4728                 devices_info[ndevs].dev_offset = dev_offset;
4729                 devices_info[ndevs].max_avail = max_avail;
4730                 devices_info[ndevs].total_avail = total_avail;
4731                 devices_info[ndevs].dev = device;
4732                 ++ndevs;
4733         }
4734
4735         /*
4736          * now sort the devices by hole size / available space
4737          */
4738         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4739              btrfs_cmp_device_info, NULL);
4740
4741         /* round down to number of usable stripes */
4742         ndevs -= ndevs % devs_increment;
4743
4744         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4745                 ret = -ENOSPC;
4746                 goto error;
4747         }
4748
4749         if (devs_max && ndevs > devs_max)
4750                 ndevs = devs_max;
4751         /*
4752          * the primary goal is to maximize the number of stripes, so use as many
4753          * devices as possible, even if the stripes are not maximum sized.
4754          */
4755         stripe_size = devices_info[ndevs-1].max_avail;
4756         num_stripes = ndevs * dev_stripes;
4757
4758         /*
4759          * this will have to be fixed for RAID1 and RAID10 over
4760          * more drives
4761          */
4762         data_stripes = num_stripes / ncopies;
4763
4764         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4765                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4766                                                          info->stripesize);
4767                 data_stripes = num_stripes - 1;
4768         }
4769         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4770                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4771                                                          info->stripesize);
4772                 data_stripes = num_stripes - 2;
4773         }
4774
4775         /*
4776          * Use the number of data stripes to figure out how big this chunk
4777          * is really going to be in terms of logical address space,
4778          * and compare that answer with the max chunk size
4779          */
4780         if (stripe_size * data_stripes > max_chunk_size) {
4781                 u64 mask = (1ULL << 24) - 1;
4782
4783                 stripe_size = div_u64(max_chunk_size, data_stripes);
4784
4785                 /* bump the answer up to a 16MB boundary */
4786                 stripe_size = (stripe_size + mask) & ~mask;
4787
4788                 /* but don't go higher than the limits we found
4789                  * while searching for free extents
4790                  */
4791                 if (stripe_size > devices_info[ndevs-1].max_avail)
4792                         stripe_size = devices_info[ndevs-1].max_avail;
4793         }
4794
4795         stripe_size = div_u64(stripe_size, dev_stripes);
4796
4797         /* align to BTRFS_STRIPE_LEN */
4798         stripe_size = div_u64(stripe_size, raid_stripe_len);
4799         stripe_size *= raid_stripe_len;
4800
4801         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4802         if (!map) {
4803                 ret = -ENOMEM;
4804                 goto error;
4805         }
4806         map->num_stripes = num_stripes;
4807
4808         for (i = 0; i < ndevs; ++i) {
4809                 for (j = 0; j < dev_stripes; ++j) {
4810                         int s = i * dev_stripes + j;
4811                         map->stripes[s].dev = devices_info[i].dev;
4812                         map->stripes[s].physical = devices_info[i].dev_offset +
4813                                                    j * stripe_size;
4814                 }
4815         }
4816         map->sector_size = info->sectorsize;
4817         map->stripe_len = raid_stripe_len;
4818         map->io_align = raid_stripe_len;
4819         map->io_width = raid_stripe_len;
4820         map->type = type;
4821         map->sub_stripes = sub_stripes;
4822
4823         num_bytes = stripe_size * data_stripes;
4824
4825         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4826
4827         em = alloc_extent_map();
4828         if (!em) {
4829                 kfree(map);
4830                 ret = -ENOMEM;
4831                 goto error;
4832         }
4833         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4834         em->map_lookup = map;
4835         em->start = start;
4836         em->len = num_bytes;
4837         em->block_start = 0;
4838         em->block_len = em->len;
4839         em->orig_block_len = stripe_size;
4840
4841         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4842         write_lock(&em_tree->lock);
4843         ret = add_extent_mapping(em_tree, em, 0);
4844         if (!ret) {
4845                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4846                 atomic_inc(&em->refs);
4847         }
4848         write_unlock(&em_tree->lock);
4849         if (ret) {
4850                 free_extent_map(em);
4851                 goto error;
4852         }
4853
4854         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4855                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4856                                      start, num_bytes);
4857         if (ret)
4858                 goto error_del_extent;
4859
4860         for (i = 0; i < map->num_stripes; i++) {
4861                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4862                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4863         }
4864
4865         spin_lock(&extent_root->fs_info->free_chunk_lock);
4866         extent_root->fs_info->free_chunk_space -= (stripe_size *
4867                                                    map->num_stripes);
4868         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4869
4870         free_extent_map(em);
4871         check_raid56_incompat_flag(extent_root->fs_info, type);
4872
4873         kfree(devices_info);
4874         return 0;
4875
4876 error_del_extent:
4877         write_lock(&em_tree->lock);
4878         remove_extent_mapping(em_tree, em);
4879         write_unlock(&em_tree->lock);
4880
4881         /* One for our allocation */
4882         free_extent_map(em);
4883         /* One for the tree reference */
4884         free_extent_map(em);
4885         /* One for the pending_chunks list reference */
4886         free_extent_map(em);
4887 error:
4888         kfree(devices_info);
4889         return ret;
4890 }
4891
4892 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4893                                 struct btrfs_fs_info *fs_info,
4894                                 u64 chunk_offset, u64 chunk_size)
4895 {
4896         struct btrfs_root *extent_root = fs_info->extent_root;
4897         struct btrfs_root *chunk_root = fs_info->chunk_root;
4898         struct btrfs_key key;
4899         struct btrfs_device *device;
4900         struct btrfs_chunk *chunk;
4901         struct btrfs_stripe *stripe;
4902         struct extent_map_tree *em_tree;
4903         struct extent_map *em;
4904         struct map_lookup *map;
4905         size_t item_size;
4906         u64 dev_offset;
4907         u64 stripe_size;
4908         int i = 0;
4909         int ret = 0;
4910
4911         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4912         read_lock(&em_tree->lock);
4913         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4914         read_unlock(&em_tree->lock);
4915
4916         if (!em) {
4917                 btrfs_crit(extent_root->fs_info,
4918                            "unable to find logical %Lu len %Lu",
4919                            chunk_offset, chunk_size);
4920                 return -EINVAL;
4921         }
4922
4923         if (em->start != chunk_offset || em->len != chunk_size) {
4924                 btrfs_crit(extent_root->fs_info,
4925                            "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4926                             chunk_offset, chunk_size, em->start, em->len);
4927                 free_extent_map(em);
4928                 return -EINVAL;
4929         }
4930
4931         map = em->map_lookup;
4932         item_size = btrfs_chunk_item_size(map->num_stripes);
4933         stripe_size = em->orig_block_len;
4934
4935         chunk = kzalloc(item_size, GFP_NOFS);
4936         if (!chunk) {
4937                 ret = -ENOMEM;
4938                 goto out;
4939         }
4940
4941         /*
4942          * Take the device list mutex to prevent races with the final phase of
4943          * a device replace operation that replaces the device object associated
4944          * with the map's stripes, because the device object's id can change
4945          * at any time during that final phase of the device replace operation
4946          * (dev-replace.c:btrfs_dev_replace_finishing()).
4947          */
4948         mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4949         for (i = 0; i < map->num_stripes; i++) {
4950                 device = map->stripes[i].dev;
4951                 dev_offset = map->stripes[i].physical;
4952
4953                 ret = btrfs_update_device(trans, device);
4954                 if (ret)
4955                         break;
4956                 ret = btrfs_alloc_dev_extent(trans, device,
4957                                              chunk_root->root_key.objectid,
4958                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4959                                              chunk_offset, dev_offset,
4960                                              stripe_size);
4961                 if (ret)
4962                         break;
4963         }
4964         if (ret) {
4965                 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4966                 goto out;
4967         }
4968
4969         stripe = &chunk->stripe;
4970         for (i = 0; i < map->num_stripes; i++) {
4971                 device = map->stripes[i].dev;
4972                 dev_offset = map->stripes[i].physical;
4973
4974                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4975                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4976                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4977                 stripe++;
4978         }
4979         mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4980
4981         btrfs_set_stack_chunk_length(chunk, chunk_size);
4982         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4983         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4984         btrfs_set_stack_chunk_type(chunk, map->type);
4985         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4986         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4987         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4988         btrfs_set_stack_chunk_sector_size(chunk,
4989                                           extent_root->fs_info->sectorsize);
4990         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4991
4992         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4993         key.type = BTRFS_CHUNK_ITEM_KEY;
4994         key.offset = chunk_offset;
4995
4996         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4997         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4998                 /*
4999                  * TODO: Cleanup of inserted chunk root in case of
5000                  * failure.
5001                  */
5002                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
5003                                              item_size);
5004         }
5005
5006 out:
5007         kfree(chunk);
5008         free_extent_map(em);
5009         return ret;
5010 }
5011
5012 /*
5013  * Chunk allocation falls into two parts. The first part does works
5014  * that make the new allocated chunk useable, but not do any operation
5015  * that modifies the chunk tree. The second part does the works that
5016  * require modifying the chunk tree. This division is important for the
5017  * bootstrap process of adding storage to a seed btrfs.
5018  */
5019 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5020                       struct btrfs_root *extent_root, u64 type)
5021 {
5022         u64 chunk_offset;
5023
5024         ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5025         chunk_offset = find_next_chunk(extent_root->fs_info);
5026         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5027 }
5028
5029 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5030                                          struct btrfs_root *root,
5031                                          struct btrfs_device *device)
5032 {
5033         u64 chunk_offset;
5034         u64 sys_chunk_offset;
5035         u64 alloc_profile;
5036         struct btrfs_fs_info *fs_info = root->fs_info;
5037         struct btrfs_root *extent_root = fs_info->extent_root;
5038         int ret;
5039
5040         chunk_offset = find_next_chunk(fs_info);
5041         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5042         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5043                                   alloc_profile);
5044         if (ret)
5045                 return ret;
5046
5047         sys_chunk_offset = find_next_chunk(root->fs_info);
5048         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5049         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5050                                   alloc_profile);
5051         return ret;
5052 }
5053
5054 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5055 {
5056         int max_errors;
5057
5058         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5059                          BTRFS_BLOCK_GROUP_RAID10 |
5060                          BTRFS_BLOCK_GROUP_RAID5 |
5061                          BTRFS_BLOCK_GROUP_DUP)) {
5062                 max_errors = 1;
5063         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5064                 max_errors = 2;
5065         } else {
5066                 max_errors = 0;
5067         }
5068
5069         return max_errors;
5070 }
5071
5072 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5073 {
5074         struct extent_map *em;
5075         struct map_lookup *map;
5076         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5077         int readonly = 0;
5078         int miss_ndevs = 0;
5079         int i;
5080
5081         read_lock(&map_tree->map_tree.lock);
5082         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5083         read_unlock(&map_tree->map_tree.lock);
5084         if (!em)
5085                 return 1;
5086
5087         map = em->map_lookup;
5088         for (i = 0; i < map->num_stripes; i++) {
5089                 if (map->stripes[i].dev->missing) {
5090                         miss_ndevs++;
5091                         continue;
5092                 }
5093
5094                 if (!map->stripes[i].dev->writeable) {
5095                         readonly = 1;
5096                         goto end;
5097                 }
5098         }
5099
5100         /*
5101          * If the number of missing devices is larger than max errors,
5102          * we can not write the data into that chunk successfully, so
5103          * set it readonly.
5104          */
5105         if (miss_ndevs > btrfs_chunk_max_errors(map))
5106                 readonly = 1;
5107 end:
5108         free_extent_map(em);
5109         return readonly;
5110 }
5111
5112 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5113 {
5114         extent_map_tree_init(&tree->map_tree);
5115 }
5116
5117 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5118 {
5119         struct extent_map *em;
5120
5121         while (1) {
5122                 write_lock(&tree->map_tree.lock);
5123                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5124                 if (em)
5125                         remove_extent_mapping(&tree->map_tree, em);
5126                 write_unlock(&tree->map_tree.lock);
5127                 if (!em)
5128                         break;
5129                 /* once for us */
5130                 free_extent_map(em);
5131                 /* once for the tree */
5132                 free_extent_map(em);
5133         }
5134 }
5135
5136 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5137 {
5138         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5139         struct extent_map *em;
5140         struct map_lookup *map;
5141         struct extent_map_tree *em_tree = &map_tree->map_tree;
5142         int ret;
5143
5144         read_lock(&em_tree->lock);
5145         em = lookup_extent_mapping(em_tree, logical, len);
5146         read_unlock(&em_tree->lock);
5147
5148         /*
5149          * We could return errors for these cases, but that could get ugly and
5150          * we'd probably do the same thing which is just not do anything else
5151          * and exit, so return 1 so the callers don't try to use other copies.
5152          */
5153         if (!em) {
5154                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5155                             logical+len);
5156                 return 1;
5157         }
5158
5159         if (em->start > logical || em->start + em->len < logical) {
5160                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5161                            logical, logical+len, em->start,
5162                            em->start + em->len);
5163                 free_extent_map(em);
5164                 return 1;
5165         }
5166
5167         map = em->map_lookup;
5168         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5169                 ret = map->num_stripes;
5170         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5171                 ret = map->sub_stripes;
5172         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5173                 ret = 2;
5174         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5175                 ret = 3;
5176         else
5177                 ret = 1;
5178         free_extent_map(em);
5179
5180         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5181         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5182                 ret++;
5183         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5184
5185         return ret;
5186 }
5187
5188 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5189                                     struct btrfs_mapping_tree *map_tree,
5190                                     u64 logical)
5191 {
5192         struct extent_map *em;
5193         struct map_lookup *map;
5194         struct extent_map_tree *em_tree = &map_tree->map_tree;
5195         unsigned long len = root->fs_info->sectorsize;
5196
5197         read_lock(&em_tree->lock);
5198         em = lookup_extent_mapping(em_tree, logical, len);
5199         read_unlock(&em_tree->lock);
5200         BUG_ON(!em);
5201
5202         BUG_ON(em->start > logical || em->start + em->len < logical);
5203         map = em->map_lookup;
5204         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5205                 len = map->stripe_len * nr_data_stripes(map);
5206         free_extent_map(em);
5207         return len;
5208 }
5209
5210 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5211                            u64 logical, u64 len, int mirror_num)
5212 {
5213         struct extent_map *em;
5214         struct map_lookup *map;
5215         struct extent_map_tree *em_tree = &map_tree->map_tree;
5216         int ret = 0;
5217
5218         read_lock(&em_tree->lock);
5219         em = lookup_extent_mapping(em_tree, logical, len);
5220         read_unlock(&em_tree->lock);
5221         BUG_ON(!em);
5222
5223         BUG_ON(em->start > logical || em->start + em->len < logical);
5224         map = em->map_lookup;
5225         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5226                 ret = 1;
5227         free_extent_map(em);
5228         return ret;
5229 }
5230
5231 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5232                             struct map_lookup *map, int first, int num,
5233                             int optimal, int dev_replace_is_ongoing)
5234 {
5235         int i;
5236         int tolerance;
5237         struct btrfs_device *srcdev;
5238
5239         if (dev_replace_is_ongoing &&
5240             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5241              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5242                 srcdev = fs_info->dev_replace.srcdev;
5243         else
5244                 srcdev = NULL;
5245
5246         /*
5247          * try to avoid the drive that is the source drive for a
5248          * dev-replace procedure, only choose it if no other non-missing
5249          * mirror is available
5250          */
5251         for (tolerance = 0; tolerance < 2; tolerance++) {
5252                 if (map->stripes[optimal].dev->bdev &&
5253                     (tolerance || map->stripes[optimal].dev != srcdev))
5254                         return optimal;
5255                 for (i = first; i < first + num; i++) {
5256                         if (map->stripes[i].dev->bdev &&
5257                             (tolerance || map->stripes[i].dev != srcdev))
5258                                 return i;
5259                 }
5260         }
5261
5262         /* we couldn't find one that doesn't fail.  Just return something
5263          * and the io error handling code will clean up eventually
5264          */
5265         return optimal;
5266 }
5267
5268 static inline int parity_smaller(u64 a, u64 b)
5269 {
5270         return a > b;
5271 }
5272
5273 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5274 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5275 {
5276         struct btrfs_bio_stripe s;
5277         int i;
5278         u64 l;
5279         int again = 1;
5280
5281         while (again) {
5282                 again = 0;
5283                 for (i = 0; i < num_stripes - 1; i++) {
5284                         if (parity_smaller(bbio->raid_map[i],
5285                                            bbio->raid_map[i+1])) {
5286                                 s = bbio->stripes[i];
5287                                 l = bbio->raid_map[i];
5288                                 bbio->stripes[i] = bbio->stripes[i+1];
5289                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5290                                 bbio->stripes[i+1] = s;
5291                                 bbio->raid_map[i+1] = l;
5292
5293                                 again = 1;
5294                         }
5295                 }
5296         }
5297 }
5298
5299 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5300 {
5301         struct btrfs_bio *bbio = kzalloc(
5302                  /* the size of the btrfs_bio */
5303                 sizeof(struct btrfs_bio) +
5304                 /* plus the variable array for the stripes */
5305                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5306                 /* plus the variable array for the tgt dev */
5307                 sizeof(int) * (real_stripes) +
5308                 /*
5309                  * plus the raid_map, which includes both the tgt dev
5310                  * and the stripes
5311                  */
5312                 sizeof(u64) * (total_stripes),
5313                 GFP_NOFS|__GFP_NOFAIL);
5314
5315         atomic_set(&bbio->error, 0);
5316         atomic_set(&bbio->refs, 1);
5317
5318         return bbio;
5319 }
5320
5321 void btrfs_get_bbio(struct btrfs_bio *bbio)
5322 {
5323         WARN_ON(!atomic_read(&bbio->refs));
5324         atomic_inc(&bbio->refs);
5325 }
5326
5327 void btrfs_put_bbio(struct btrfs_bio *bbio)
5328 {
5329         if (!bbio)
5330                 return;
5331         if (atomic_dec_and_test(&bbio->refs))
5332                 kfree(bbio);
5333 }
5334
5335 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5336                              enum btrfs_map_op op,
5337                              u64 logical, u64 *length,
5338                              struct btrfs_bio **bbio_ret,
5339                              int mirror_num, int need_raid_map)
5340 {
5341         struct extent_map *em;
5342         struct map_lookup *map;
5343         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5344         struct extent_map_tree *em_tree = &map_tree->map_tree;
5345         u64 offset;
5346         u64 stripe_offset;
5347         u64 stripe_end_offset;
5348         u64 stripe_nr;
5349         u64 stripe_nr_orig;
5350         u64 stripe_nr_end;
5351         u64 stripe_len;
5352         u32 stripe_index;
5353         int i;
5354         int ret = 0;
5355         int num_stripes;
5356         int max_errors = 0;
5357         int tgtdev_indexes = 0;
5358         struct btrfs_bio *bbio = NULL;
5359         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5360         int dev_replace_is_ongoing = 0;
5361         int num_alloc_stripes;
5362         int patch_the_first_stripe_for_dev_replace = 0;
5363         u64 physical_to_patch_in_first_stripe = 0;
5364         u64 raid56_full_stripe_start = (u64)-1;
5365
5366         read_lock(&em_tree->lock);
5367         em = lookup_extent_mapping(em_tree, logical, *length);
5368         read_unlock(&em_tree->lock);
5369
5370         if (!em) {
5371                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5372                         logical, *length);
5373                 return -EINVAL;
5374         }
5375
5376         if (em->start > logical || em->start + em->len < logical) {
5377                 btrfs_crit(fs_info,
5378                            "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5379                            logical, em->start, em->start + em->len);
5380                 free_extent_map(em);
5381                 return -EINVAL;
5382         }
5383
5384         map = em->map_lookup;
5385         offset = logical - em->start;
5386
5387         stripe_len = map->stripe_len;
5388         stripe_nr = offset;
5389         /*
5390          * stripe_nr counts the total number of stripes we have to stride
5391          * to get to this block
5392          */
5393         stripe_nr = div64_u64(stripe_nr, stripe_len);
5394
5395         stripe_offset = stripe_nr * stripe_len;
5396         if (offset < stripe_offset) {
5397                 btrfs_crit(fs_info,
5398                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5399                            stripe_offset, offset, em->start, logical,
5400                            stripe_len);
5401                 free_extent_map(em);
5402                 return -EINVAL;
5403         }
5404
5405         /* stripe_offset is the offset of this block in its stripe*/
5406         stripe_offset = offset - stripe_offset;
5407
5408         /* if we're here for raid56, we need to know the stripe aligned start */
5409         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5410                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5411                 raid56_full_stripe_start = offset;
5412
5413                 /* allow a write of a full stripe, but make sure we don't
5414                  * allow straddling of stripes
5415                  */
5416                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5417                                 full_stripe_len);
5418                 raid56_full_stripe_start *= full_stripe_len;
5419         }
5420
5421         if (op == BTRFS_MAP_DISCARD) {
5422                 /* we don't discard raid56 yet */
5423                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5424                         ret = -EOPNOTSUPP;
5425                         goto out;
5426                 }
5427                 *length = min_t(u64, em->len - offset, *length);
5428         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5429                 u64 max_len;
5430                 /* For writes to RAID[56], allow a full stripeset across all disks.
5431                    For other RAID types and for RAID[56] reads, just allow a single
5432                    stripe (on a single disk). */
5433                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5434                     (op == BTRFS_MAP_WRITE)) {
5435                         max_len = stripe_len * nr_data_stripes(map) -
5436                                 (offset - raid56_full_stripe_start);
5437                 } else {
5438                         /* we limit the length of each bio to what fits in a stripe */
5439                         max_len = stripe_len - stripe_offset;
5440                 }
5441                 *length = min_t(u64, em->len - offset, max_len);
5442         } else {
5443                 *length = em->len - offset;
5444         }
5445
5446         /* This is for when we're called from btrfs_merge_bio_hook() and all
5447            it cares about is the length */
5448         if (!bbio_ret)
5449                 goto out;
5450
5451         btrfs_dev_replace_lock(dev_replace, 0);
5452         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5453         if (!dev_replace_is_ongoing)
5454                 btrfs_dev_replace_unlock(dev_replace, 0);
5455         else
5456                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5457
5458         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5459             op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5460             op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5461                 /*
5462                  * in dev-replace case, for repair case (that's the only
5463                  * case where the mirror is selected explicitly when
5464                  * calling btrfs_map_block), blocks left of the left cursor
5465                  * can also be read from the target drive.
5466                  * For REQ_GET_READ_MIRRORS, the target drive is added as
5467                  * the last one to the array of stripes. For READ, it also
5468                  * needs to be supported using the same mirror number.
5469                  * If the requested block is not left of the left cursor,
5470                  * EIO is returned. This can happen because btrfs_num_copies()
5471                  * returns one more in the dev-replace case.
5472                  */
5473                 u64 tmp_length = *length;
5474                 struct btrfs_bio *tmp_bbio = NULL;
5475                 int tmp_num_stripes;
5476                 u64 srcdev_devid = dev_replace->srcdev->devid;
5477                 int index_srcdev = 0;
5478                 int found = 0;
5479                 u64 physical_of_found = 0;
5480
5481                 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5482                              logical, &tmp_length, &tmp_bbio, 0, 0);
5483                 if (ret) {
5484                         WARN_ON(tmp_bbio != NULL);
5485                         goto out;
5486                 }
5487
5488                 tmp_num_stripes = tmp_bbio->num_stripes;
5489                 if (mirror_num > tmp_num_stripes) {
5490                         /*
5491                          * BTRFS_MAP_GET_READ_MIRRORS does not contain this
5492                          * mirror, that means that the requested area
5493                          * is not left of the left cursor
5494                          */
5495                         ret = -EIO;
5496                         btrfs_put_bbio(tmp_bbio);
5497                         goto out;
5498                 }
5499
5500                 /*
5501                  * process the rest of the function using the mirror_num
5502                  * of the source drive. Therefore look it up first.
5503                  * At the end, patch the device pointer to the one of the
5504                  * target drive.
5505                  */
5506                 for (i = 0; i < tmp_num_stripes; i++) {
5507                         if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5508                                 continue;
5509
5510                         /*
5511                          * In case of DUP, in order to keep it simple, only add
5512                          * the mirror with the lowest physical address
5513                          */
5514                         if (found &&
5515                             physical_of_found <= tmp_bbio->stripes[i].physical)
5516                                 continue;
5517
5518                         index_srcdev = i;
5519                         found = 1;
5520                         physical_of_found = tmp_bbio->stripes[i].physical;
5521                 }
5522
5523                 btrfs_put_bbio(tmp_bbio);
5524
5525                 if (!found) {
5526                         WARN_ON(1);
5527                         ret = -EIO;
5528                         goto out;
5529                 }
5530
5531                 mirror_num = index_srcdev + 1;
5532                 patch_the_first_stripe_for_dev_replace = 1;
5533                 physical_to_patch_in_first_stripe = physical_of_found;
5534         } else if (mirror_num > map->num_stripes) {
5535                 mirror_num = 0;
5536         }
5537
5538         num_stripes = 1;
5539         stripe_index = 0;
5540         stripe_nr_orig = stripe_nr;
5541         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5542         stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5543         stripe_end_offset = stripe_nr_end * map->stripe_len -
5544                             (offset + *length);
5545
5546         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5547                 if (op == BTRFS_MAP_DISCARD)
5548                         num_stripes = min_t(u64, map->num_stripes,
5549                                             stripe_nr_end - stripe_nr_orig);
5550                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5551                                 &stripe_index);
5552                 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5553                     op != BTRFS_MAP_GET_READ_MIRRORS)
5554                         mirror_num = 1;
5555         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5556                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5557                     op == BTRFS_MAP_GET_READ_MIRRORS)
5558                         num_stripes = map->num_stripes;
5559                 else if (mirror_num)
5560                         stripe_index = mirror_num - 1;
5561                 else {
5562                         stripe_index = find_live_mirror(fs_info, map, 0,
5563                                             map->num_stripes,
5564                                             current->pid % map->num_stripes,
5565                                             dev_replace_is_ongoing);
5566                         mirror_num = stripe_index + 1;
5567                 }
5568
5569         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5570                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5571                     op == BTRFS_MAP_GET_READ_MIRRORS) {
5572                         num_stripes = map->num_stripes;
5573                 } else if (mirror_num) {
5574                         stripe_index = mirror_num - 1;
5575                 } else {
5576                         mirror_num = 1;
5577                 }
5578
5579         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5580                 u32 factor = map->num_stripes / map->sub_stripes;
5581
5582                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5583                 stripe_index *= map->sub_stripes;
5584
5585                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5586                         num_stripes = map->sub_stripes;
5587                 else if (op == BTRFS_MAP_DISCARD)
5588                         num_stripes = min_t(u64, map->sub_stripes *
5589                                             (stripe_nr_end - stripe_nr_orig),
5590                                             map->num_stripes);
5591                 else if (mirror_num)
5592                         stripe_index += mirror_num - 1;
5593                 else {
5594                         int old_stripe_index = stripe_index;
5595                         stripe_index = find_live_mirror(fs_info, map,
5596                                               stripe_index,
5597                                               map->sub_stripes, stripe_index +
5598                                               current->pid % map->sub_stripes,
5599                                               dev_replace_is_ongoing);
5600                         mirror_num = stripe_index - old_stripe_index + 1;
5601                 }
5602
5603         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5604                 if (need_raid_map &&
5605                     (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5606                      mirror_num > 1)) {
5607                         /* push stripe_nr back to the start of the full stripe */
5608                         stripe_nr = div_u64(raid56_full_stripe_start,
5609                                         stripe_len * nr_data_stripes(map));
5610
5611                         /* RAID[56] write or recovery. Return all stripes */
5612                         num_stripes = map->num_stripes;
5613                         max_errors = nr_parity_stripes(map);
5614
5615                         *length = map->stripe_len;
5616                         stripe_index = 0;
5617                         stripe_offset = 0;
5618                 } else {
5619                         /*
5620                          * Mirror #0 or #1 means the original data block.
5621                          * Mirror #2 is RAID5 parity block.
5622                          * Mirror #3 is RAID6 Q block.
5623                          */
5624                         stripe_nr = div_u64_rem(stripe_nr,
5625                                         nr_data_stripes(map), &stripe_index);
5626                         if (mirror_num > 1)
5627                                 stripe_index = nr_data_stripes(map) +
5628                                                 mirror_num - 2;
5629
5630                         /* We distribute the parity blocks across stripes */
5631                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5632                                         &stripe_index);
5633                         if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5634                             op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1)
5635                                 mirror_num = 1;
5636                 }
5637         } else {
5638                 /*
5639                  * after this, stripe_nr is the number of stripes on this
5640                  * device we have to walk to find the data, and stripe_index is
5641                  * the number of our device in the stripe array
5642                  */
5643                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5644                                 &stripe_index);
5645                 mirror_num = stripe_index + 1;
5646         }
5647         if (stripe_index >= map->num_stripes) {
5648                 btrfs_crit(fs_info,
5649                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5650                            stripe_index, map->num_stripes);
5651                 ret = -EINVAL;
5652                 goto out;
5653         }
5654
5655         num_alloc_stripes = num_stripes;
5656         if (dev_replace_is_ongoing) {
5657                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD)
5658                         num_alloc_stripes <<= 1;
5659                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5660                         num_alloc_stripes++;
5661                 tgtdev_indexes = num_stripes;
5662         }
5663
5664         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5665         if (!bbio) {
5666                 ret = -ENOMEM;
5667                 goto out;
5668         }
5669         if (dev_replace_is_ongoing)
5670                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5671
5672         /* build raid_map */
5673         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5674             need_raid_map &&
5675             ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) ||
5676             mirror_num > 1)) {
5677                 u64 tmp;
5678                 unsigned rot;
5679
5680                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5681                                  sizeof(struct btrfs_bio_stripe) *
5682                                  num_alloc_stripes +
5683                                  sizeof(int) * tgtdev_indexes);
5684
5685                 /* Work out the disk rotation on this stripe-set */
5686                 div_u64_rem(stripe_nr, num_stripes, &rot);
5687
5688                 /* Fill in the logical address of each stripe */
5689                 tmp = stripe_nr * nr_data_stripes(map);
5690                 for (i = 0; i < nr_data_stripes(map); i++)
5691                         bbio->raid_map[(i+rot) % num_stripes] =
5692                                 em->start + (tmp + i) * map->stripe_len;
5693
5694                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5695                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5696                         bbio->raid_map[(i+rot+1) % num_stripes] =
5697                                 RAID6_Q_STRIPE;
5698         }
5699
5700         if (op == BTRFS_MAP_DISCARD) {
5701                 u32 factor = 0;
5702                 u32 sub_stripes = 0;
5703                 u64 stripes_per_dev = 0;
5704                 u32 remaining_stripes = 0;
5705                 u32 last_stripe = 0;
5706
5707                 if (map->type &
5708                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5709                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5710                                 sub_stripes = 1;
5711                         else
5712                                 sub_stripes = map->sub_stripes;
5713
5714                         factor = map->num_stripes / sub_stripes;
5715                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5716                                                       stripe_nr_orig,
5717                                                       factor,
5718                                                       &remaining_stripes);
5719                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5720                         last_stripe *= sub_stripes;
5721                 }
5722
5723                 for (i = 0; i < num_stripes; i++) {
5724                         bbio->stripes[i].physical =
5725                                 map->stripes[stripe_index].physical +
5726                                 stripe_offset + stripe_nr * map->stripe_len;
5727                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5728
5729                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5730                                          BTRFS_BLOCK_GROUP_RAID10)) {
5731                                 bbio->stripes[i].length = stripes_per_dev *
5732                                                           map->stripe_len;
5733
5734                                 if (i / sub_stripes < remaining_stripes)
5735                                         bbio->stripes[i].length +=
5736                                                 map->stripe_len;
5737
5738                                 /*
5739                                  * Special for the first stripe and
5740                                  * the last stripe:
5741                                  *
5742                                  * |-------|...|-------|
5743                                  *     |----------|
5744                                  *    off     end_off
5745                                  */
5746                                 if (i < sub_stripes)
5747                                         bbio->stripes[i].length -=
5748                                                 stripe_offset;
5749
5750                                 if (stripe_index >= last_stripe &&
5751                                     stripe_index <= (last_stripe +
5752                                                      sub_stripes - 1))
5753                                         bbio->stripes[i].length -=
5754                                                 stripe_end_offset;
5755
5756                                 if (i == sub_stripes - 1)
5757                                         stripe_offset = 0;
5758                         } else
5759                                 bbio->stripes[i].length = *length;
5760
5761                         stripe_index++;
5762                         if (stripe_index == map->num_stripes) {
5763                                 /* This could only happen for RAID0/10 */
5764                                 stripe_index = 0;
5765                                 stripe_nr++;
5766                         }
5767                 }
5768         } else {
5769                 for (i = 0; i < num_stripes; i++) {
5770                         bbio->stripes[i].physical =
5771                                 map->stripes[stripe_index].physical +
5772                                 stripe_offset +
5773                                 stripe_nr * map->stripe_len;
5774                         bbio->stripes[i].dev =
5775                                 map->stripes[stripe_index].dev;
5776                         stripe_index++;
5777                 }
5778         }
5779
5780         if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5781                 max_errors = btrfs_chunk_max_errors(map);
5782
5783         if (bbio->raid_map)
5784                 sort_parity_stripes(bbio, num_stripes);
5785
5786         tgtdev_indexes = 0;
5787         if (dev_replace_is_ongoing &&
5788            (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) &&
5789             dev_replace->tgtdev != NULL) {
5790                 int index_where_to_add;
5791                 u64 srcdev_devid = dev_replace->srcdev->devid;
5792
5793                 /*
5794                  * duplicate the write operations while the dev replace
5795                  * procedure is running. Since the copying of the old disk
5796                  * to the new disk takes place at run time while the
5797                  * filesystem is mounted writable, the regular write
5798                  * operations to the old disk have to be duplicated to go
5799                  * to the new disk as well.
5800                  * Note that device->missing is handled by the caller, and
5801                  * that the write to the old disk is already set up in the
5802                  * stripes array.
5803                  */
5804                 index_where_to_add = num_stripes;
5805                 for (i = 0; i < num_stripes; i++) {
5806                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5807                                 /* write to new disk, too */
5808                                 struct btrfs_bio_stripe *new =
5809                                         bbio->stripes + index_where_to_add;
5810                                 struct btrfs_bio_stripe *old =
5811                                         bbio->stripes + i;
5812
5813                                 new->physical = old->physical;
5814                                 new->length = old->length;
5815                                 new->dev = dev_replace->tgtdev;
5816                                 bbio->tgtdev_map[i] = index_where_to_add;
5817                                 index_where_to_add++;
5818                                 max_errors++;
5819                                 tgtdev_indexes++;
5820                         }
5821                 }
5822                 num_stripes = index_where_to_add;
5823         } else if (dev_replace_is_ongoing &&
5824                    op == BTRFS_MAP_GET_READ_MIRRORS &&
5825                    dev_replace->tgtdev != NULL) {
5826                 u64 srcdev_devid = dev_replace->srcdev->devid;
5827                 int index_srcdev = 0;
5828                 int found = 0;
5829                 u64 physical_of_found = 0;
5830
5831                 /*
5832                  * During the dev-replace procedure, the target drive can
5833                  * also be used to read data in case it is needed to repair
5834                  * a corrupt block elsewhere. This is possible if the
5835                  * requested area is left of the left cursor. In this area,
5836                  * the target drive is a full copy of the source drive.
5837                  */
5838                 for (i = 0; i < num_stripes; i++) {
5839                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5840                                 /*
5841                                  * In case of DUP, in order to keep it
5842                                  * simple, only add the mirror with the
5843                                  * lowest physical address
5844                                  */
5845                                 if (found &&
5846                                     physical_of_found <=
5847                                      bbio->stripes[i].physical)
5848                                         continue;
5849                                 index_srcdev = i;
5850                                 found = 1;
5851                                 physical_of_found = bbio->stripes[i].physical;
5852                         }
5853                 }
5854                 if (found) {
5855                         struct btrfs_bio_stripe *tgtdev_stripe =
5856                                 bbio->stripes + num_stripes;
5857
5858                         tgtdev_stripe->physical = physical_of_found;
5859                         tgtdev_stripe->length =
5860                                 bbio->stripes[index_srcdev].length;
5861                         tgtdev_stripe->dev = dev_replace->tgtdev;
5862                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5863
5864                         tgtdev_indexes++;
5865                         num_stripes++;
5866                 }
5867         }
5868
5869         *bbio_ret = bbio;
5870         bbio->map_type = map->type;
5871         bbio->num_stripes = num_stripes;
5872         bbio->max_errors = max_errors;
5873         bbio->mirror_num = mirror_num;
5874         bbio->num_tgtdevs = tgtdev_indexes;
5875
5876         /*
5877          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5878          * mirror_num == num_stripes + 1 && dev_replace target drive is
5879          * available as a mirror
5880          */
5881         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5882                 WARN_ON(num_stripes > 1);
5883                 bbio->stripes[0].dev = dev_replace->tgtdev;
5884                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5885                 bbio->mirror_num = map->num_stripes + 1;
5886         }
5887 out:
5888         if (dev_replace_is_ongoing) {
5889                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5890                 btrfs_dev_replace_unlock(dev_replace, 0);
5891         }
5892         free_extent_map(em);
5893         return ret;
5894 }
5895
5896 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5897                       u64 logical, u64 *length,
5898                       struct btrfs_bio **bbio_ret, int mirror_num)
5899 {
5900         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5901                                  mirror_num, 0);
5902 }
5903
5904 /* For Scrub/replace */
5905 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5906                      u64 logical, u64 *length,
5907                      struct btrfs_bio **bbio_ret, int mirror_num,
5908                      int need_raid_map)
5909 {
5910         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5911                                  mirror_num, need_raid_map);
5912 }
5913
5914 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5915                      u64 chunk_start, u64 physical, u64 devid,
5916                      u64 **logical, int *naddrs, int *stripe_len)
5917 {
5918         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5919         struct extent_map_tree *em_tree = &map_tree->map_tree;
5920         struct extent_map *em;
5921         struct map_lookup *map;
5922         u64 *buf;
5923         u64 bytenr;
5924         u64 length;
5925         u64 stripe_nr;
5926         u64 rmap_len;
5927         int i, j, nr = 0;
5928
5929         read_lock(&em_tree->lock);
5930         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5931         read_unlock(&em_tree->lock);
5932
5933         if (!em) {
5934                 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5935                         chunk_start);
5936                 return -EIO;
5937         }
5938
5939         if (em->start != chunk_start) {
5940                 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5941                        em->start, chunk_start);
5942                 free_extent_map(em);
5943                 return -EIO;
5944         }
5945         map = em->map_lookup;
5946
5947         length = em->len;
5948         rmap_len = map->stripe_len;
5949
5950         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5951                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5952         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5953                 length = div_u64(length, map->num_stripes);
5954         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5955                 length = div_u64(length, nr_data_stripes(map));
5956                 rmap_len = map->stripe_len * nr_data_stripes(map);
5957         }
5958
5959         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5960         BUG_ON(!buf); /* -ENOMEM */
5961
5962         for (i = 0; i < map->num_stripes; i++) {
5963                 if (devid && map->stripes[i].dev->devid != devid)
5964                         continue;
5965                 if (map->stripes[i].physical > physical ||
5966                     map->stripes[i].physical + length <= physical)
5967                         continue;
5968
5969                 stripe_nr = physical - map->stripes[i].physical;
5970                 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5971
5972                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5973                         stripe_nr = stripe_nr * map->num_stripes + i;
5974                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5975                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5976                         stripe_nr = stripe_nr * map->num_stripes + i;
5977                 } /* else if RAID[56], multiply by nr_data_stripes().
5978                    * Alternatively, just use rmap_len below instead of
5979                    * map->stripe_len */
5980
5981                 bytenr = chunk_start + stripe_nr * rmap_len;
5982                 WARN_ON(nr >= map->num_stripes);
5983                 for (j = 0; j < nr; j++) {
5984                         if (buf[j] == bytenr)
5985                                 break;
5986                 }
5987                 if (j == nr) {
5988                         WARN_ON(nr >= map->num_stripes);
5989                         buf[nr++] = bytenr;
5990                 }
5991         }
5992
5993         *logical = buf;
5994         *naddrs = nr;
5995         *stripe_len = rmap_len;
5996
5997         free_extent_map(em);
5998         return 0;
5999 }
6000
6001 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6002 {
6003         bio->bi_private = bbio->private;
6004         bio->bi_end_io = bbio->end_io;
6005         bio_endio(bio);
6006
6007         btrfs_put_bbio(bbio);
6008 }
6009
6010 static void btrfs_end_bio(struct bio *bio)
6011 {
6012         struct btrfs_bio *bbio = bio->bi_private;
6013         int is_orig_bio = 0;
6014
6015         if (bio->bi_error) {
6016                 atomic_inc(&bbio->error);
6017                 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6018                         unsigned int stripe_index =
6019                                 btrfs_io_bio(bio)->stripe_index;
6020                         struct btrfs_device *dev;
6021
6022                         BUG_ON(stripe_index >= bbio->num_stripes);
6023                         dev = bbio->stripes[stripe_index].dev;
6024                         if (dev->bdev) {
6025                                 if (bio_op(bio) == REQ_OP_WRITE)
6026                                         btrfs_dev_stat_inc(dev,
6027                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6028                                 else
6029                                         btrfs_dev_stat_inc(dev,
6030                                                 BTRFS_DEV_STAT_READ_ERRS);
6031                                 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6032                                         btrfs_dev_stat_inc(dev,
6033                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6034                                 btrfs_dev_stat_print_on_error(dev);
6035                         }
6036                 }
6037         }
6038
6039         if (bio == bbio->orig_bio)
6040                 is_orig_bio = 1;
6041
6042         btrfs_bio_counter_dec(bbio->fs_info);
6043
6044         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6045                 if (!is_orig_bio) {
6046                         bio_put(bio);
6047                         bio = bbio->orig_bio;
6048                 }
6049
6050                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6051                 /* only send an error to the higher layers if it is
6052                  * beyond the tolerance of the btrfs bio
6053                  */
6054                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6055                         bio->bi_error = -EIO;
6056                 } else {
6057                         /*
6058                          * this bio is actually up to date, we didn't
6059                          * go over the max number of errors
6060                          */
6061                         bio->bi_error = 0;
6062                 }
6063
6064                 btrfs_end_bbio(bbio, bio);
6065         } else if (!is_orig_bio) {
6066                 bio_put(bio);
6067         }
6068 }
6069
6070 /*
6071  * see run_scheduled_bios for a description of why bios are collected for
6072  * async submit.
6073  *
6074  * This will add one bio to the pending list for a device and make sure
6075  * the work struct is scheduled.
6076  */
6077 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6078                                         struct btrfs_device *device,
6079                                         struct bio *bio)
6080 {
6081         int should_queue = 1;
6082         struct btrfs_pending_bios *pending_bios;
6083
6084         if (device->missing || !device->bdev) {
6085                 bio_io_error(bio);
6086                 return;
6087         }
6088
6089         /* don't bother with additional async steps for reads, right now */
6090         if (bio_op(bio) == REQ_OP_READ) {
6091                 bio_get(bio);
6092                 btrfsic_submit_bio(bio);
6093                 bio_put(bio);
6094                 return;
6095         }
6096
6097         /*
6098          * nr_async_bios allows us to reliably return congestion to the
6099          * higher layers.  Otherwise, the async bio makes it appear we have
6100          * made progress against dirty pages when we've really just put it
6101          * on a queue for later
6102          */
6103         atomic_inc(&root->fs_info->nr_async_bios);
6104         WARN_ON(bio->bi_next);
6105         bio->bi_next = NULL;
6106
6107         spin_lock(&device->io_lock);
6108         if (bio->bi_opf & REQ_SYNC)
6109                 pending_bios = &device->pending_sync_bios;
6110         else
6111                 pending_bios = &device->pending_bios;
6112
6113         if (pending_bios->tail)
6114                 pending_bios->tail->bi_next = bio;
6115
6116         pending_bios->tail = bio;
6117         if (!pending_bios->head)
6118                 pending_bios->head = bio;
6119         if (device->running_pending)
6120                 should_queue = 0;
6121
6122         spin_unlock(&device->io_lock);
6123
6124         if (should_queue)
6125                 btrfs_queue_work(root->fs_info->submit_workers,
6126                                  &device->work);
6127 }
6128
6129 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6130                               struct bio *bio, u64 physical, int dev_nr,
6131                               int async)
6132 {
6133         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6134
6135         bio->bi_private = bbio;
6136         btrfs_io_bio(bio)->stripe_index = dev_nr;
6137         bio->bi_end_io = btrfs_end_bio;
6138         bio->bi_iter.bi_sector = physical >> 9;
6139 #ifdef DEBUG
6140         {
6141                 struct rcu_string *name;
6142
6143                 rcu_read_lock();
6144                 name = rcu_dereference(dev->name);
6145                 btrfs_debug(fs_info,
6146                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6147                         bio_op(bio), bio->bi_opf,
6148                         (u64)bio->bi_iter.bi_sector,
6149                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6150                         bio->bi_iter.bi_size);
6151                 rcu_read_unlock();
6152         }
6153 #endif
6154         bio->bi_bdev = dev->bdev;
6155
6156         btrfs_bio_counter_inc_noblocked(root->fs_info);
6157
6158         if (async)
6159                 btrfs_schedule_bio(root, dev, bio);
6160         else
6161                 btrfsic_submit_bio(bio);
6162 }
6163
6164 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6165 {
6166         atomic_inc(&bbio->error);
6167         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6168                 /* Should be the original bio. */
6169                 WARN_ON(bio != bbio->orig_bio);
6170
6171                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6172                 bio->bi_iter.bi_sector = logical >> 9;
6173                 bio->bi_error = -EIO;
6174                 btrfs_end_bbio(bbio, bio);
6175         }
6176 }
6177
6178 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6179                   int mirror_num, int async_submit)
6180 {
6181         struct btrfs_device *dev;
6182         struct bio *first_bio = bio;
6183         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6184         u64 length = 0;
6185         u64 map_length;
6186         int ret;
6187         int dev_nr;
6188         int total_devs;
6189         struct btrfs_bio *bbio = NULL;
6190
6191         length = bio->bi_iter.bi_size;
6192         map_length = length;
6193
6194         btrfs_bio_counter_inc_blocked(root->fs_info);
6195         ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6196                                 &map_length, &bbio, mirror_num, 1);
6197         if (ret) {
6198                 btrfs_bio_counter_dec(root->fs_info);
6199                 return ret;
6200         }
6201
6202         total_devs = bbio->num_stripes;
6203         bbio->orig_bio = first_bio;
6204         bbio->private = first_bio->bi_private;
6205         bbio->end_io = first_bio->bi_end_io;
6206         bbio->fs_info = root->fs_info;
6207         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6208
6209         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6210             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6211                 /* In this case, map_length has been set to the length of
6212                    a single stripe; not the whole write */
6213                 if (bio_op(bio) == REQ_OP_WRITE) {
6214                         ret = raid56_parity_write(root, bio, bbio, map_length);
6215                 } else {
6216                         ret = raid56_parity_recover(root, bio, bbio, map_length,
6217                                                     mirror_num, 1);
6218                 }
6219
6220                 btrfs_bio_counter_dec(root->fs_info);
6221                 return ret;
6222         }
6223
6224         if (map_length < length) {
6225                 btrfs_crit(root->fs_info,
6226                            "mapping failed logical %llu bio len %llu len %llu",
6227                            logical, length, map_length);
6228                 BUG();
6229         }
6230
6231         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6232                 dev = bbio->stripes[dev_nr].dev;
6233                 if (!dev || !dev->bdev ||
6234                     (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6235                         bbio_error(bbio, first_bio, logical);
6236                         continue;
6237                 }
6238
6239                 if (dev_nr < total_devs - 1) {
6240                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6241                         BUG_ON(!bio); /* -ENOMEM */
6242                 } else
6243                         bio = first_bio;
6244
6245                 submit_stripe_bio(root, bbio, bio,
6246                                   bbio->stripes[dev_nr].physical, dev_nr,
6247                                   async_submit);
6248         }
6249         btrfs_bio_counter_dec(root->fs_info);
6250         return 0;
6251 }
6252
6253 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6254                                        u8 *uuid, u8 *fsid)
6255 {
6256         struct btrfs_device *device;
6257         struct btrfs_fs_devices *cur_devices;
6258
6259         cur_devices = fs_info->fs_devices;
6260         while (cur_devices) {
6261                 if (!fsid ||
6262                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6263                         device = __find_device(&cur_devices->devices,
6264                                                devid, uuid);
6265                         if (device)
6266                                 return device;
6267                 }
6268                 cur_devices = cur_devices->seed;
6269         }
6270         return NULL;
6271 }
6272
6273 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6274                                             struct btrfs_fs_devices *fs_devices,
6275                                             u64 devid, u8 *dev_uuid)
6276 {
6277         struct btrfs_device *device;
6278
6279         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6280         if (IS_ERR(device))
6281                 return NULL;
6282
6283         list_add(&device->dev_list, &fs_devices->devices);
6284         device->fs_devices = fs_devices;
6285         fs_devices->num_devices++;
6286
6287         device->missing = 1;
6288         fs_devices->missing_devices++;
6289
6290         return device;
6291 }
6292
6293 /**
6294  * btrfs_alloc_device - allocate struct btrfs_device
6295  * @fs_info:    used only for generating a new devid, can be NULL if
6296  *              devid is provided (i.e. @devid != NULL).
6297  * @devid:      a pointer to devid for this device.  If NULL a new devid
6298  *              is generated.
6299  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6300  *              is generated.
6301  *
6302  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6303  * on error.  Returned struct is not linked onto any lists and can be
6304  * destroyed with kfree() right away.
6305  */
6306 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6307                                         const u64 *devid,
6308                                         const u8 *uuid)
6309 {
6310         struct btrfs_device *dev;
6311         u64 tmp;
6312
6313         if (WARN_ON(!devid && !fs_info))
6314                 return ERR_PTR(-EINVAL);
6315
6316         dev = __alloc_device();
6317         if (IS_ERR(dev))
6318                 return dev;
6319
6320         if (devid)
6321                 tmp = *devid;
6322         else {
6323                 int ret;
6324
6325                 ret = find_next_devid(fs_info, &tmp);
6326                 if (ret) {
6327                         kfree(dev);
6328                         return ERR_PTR(ret);
6329                 }
6330         }
6331         dev->devid = tmp;
6332
6333         if (uuid)
6334                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6335         else
6336                 generate_random_uuid(dev->uuid);
6337
6338         btrfs_init_work(&dev->work, btrfs_submit_helper,
6339                         pending_bios_fn, NULL, NULL);
6340
6341         return dev;
6342 }
6343
6344 /* Return -EIO if any error, otherwise return 0. */
6345 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6346                                    struct extent_buffer *leaf,
6347                                    struct btrfs_chunk *chunk, u64 logical)
6348 {
6349         u64 length;
6350         u64 stripe_len;
6351         u16 num_stripes;
6352         u16 sub_stripes;
6353         u64 type;
6354
6355         length = btrfs_chunk_length(leaf, chunk);
6356         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6357         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6358         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6359         type = btrfs_chunk_type(leaf, chunk);
6360
6361         if (!num_stripes) {
6362                 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6363                           num_stripes);
6364                 return -EIO;
6365         }
6366         if (!IS_ALIGNED(logical, root->fs_info->sectorsize)) {
6367                 btrfs_err(root->fs_info,
6368                           "invalid chunk logical %llu", logical);
6369                 return -EIO;
6370         }
6371         if (btrfs_chunk_sector_size(leaf, chunk) != root->fs_info->sectorsize) {
6372                 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6373                           btrfs_chunk_sector_size(leaf, chunk));
6374                 return -EIO;
6375         }
6376         if (!length || !IS_ALIGNED(length, root->fs_info->sectorsize)) {
6377                 btrfs_err(root->fs_info,
6378                         "invalid chunk length %llu", length);
6379                 return -EIO;
6380         }
6381         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6382                 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6383                           stripe_len);
6384                 return -EIO;
6385         }
6386         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6387             type) {
6388                 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6389                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6390                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6391                           btrfs_chunk_type(leaf, chunk));
6392                 return -EIO;
6393         }
6394         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6395             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6396             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6397             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6398             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6399             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6400              num_stripes != 1)) {
6401                 btrfs_err(root->fs_info,
6402                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6403                         num_stripes, sub_stripes,
6404                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6405                 return -EIO;
6406         }
6407
6408         return 0;
6409 }
6410
6411 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6412                           struct extent_buffer *leaf,
6413                           struct btrfs_chunk *chunk)
6414 {
6415         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6416         struct map_lookup *map;
6417         struct extent_map *em;
6418         u64 logical;
6419         u64 length;
6420         u64 stripe_len;
6421         u64 devid;
6422         u8 uuid[BTRFS_UUID_SIZE];
6423         int num_stripes;
6424         int ret;
6425         int i;
6426
6427         logical = key->offset;
6428         length = btrfs_chunk_length(leaf, chunk);
6429         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6430         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6431
6432         ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6433         if (ret)
6434                 return ret;
6435
6436         read_lock(&map_tree->map_tree.lock);
6437         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6438         read_unlock(&map_tree->map_tree.lock);
6439
6440         /* already mapped? */
6441         if (em && em->start <= logical && em->start + em->len > logical) {
6442                 free_extent_map(em);
6443                 return 0;
6444         } else if (em) {
6445                 free_extent_map(em);
6446         }
6447
6448         em = alloc_extent_map();
6449         if (!em)
6450                 return -ENOMEM;
6451         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6452         if (!map) {
6453                 free_extent_map(em);
6454                 return -ENOMEM;
6455         }
6456
6457         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6458         em->map_lookup = map;
6459         em->start = logical;
6460         em->len = length;
6461         em->orig_start = 0;
6462         em->block_start = 0;
6463         em->block_len = em->len;
6464
6465         map->num_stripes = num_stripes;
6466         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6467         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6468         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6469         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6470         map->type = btrfs_chunk_type(leaf, chunk);
6471         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6472         for (i = 0; i < num_stripes; i++) {
6473                 map->stripes[i].physical =
6474                         btrfs_stripe_offset_nr(leaf, chunk, i);
6475                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6476                 read_extent_buffer(leaf, uuid, (unsigned long)
6477                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6478                                    BTRFS_UUID_SIZE);
6479                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6480                                                         uuid, NULL);
6481                 if (!map->stripes[i].dev &&
6482                     !btrfs_test_opt(root->fs_info, DEGRADED)) {
6483                         free_extent_map(em);
6484                         return -EIO;
6485                 }
6486                 if (!map->stripes[i].dev) {
6487                         map->stripes[i].dev =
6488                                 add_missing_dev(root, root->fs_info->fs_devices,
6489                                                 devid, uuid);
6490                         if (!map->stripes[i].dev) {
6491                                 free_extent_map(em);
6492                                 return -EIO;
6493                         }
6494                         btrfs_warn(root->fs_info,
6495                                    "devid %llu uuid %pU is missing",
6496                                    devid, uuid);
6497                 }
6498                 map->stripes[i].dev->in_fs_metadata = 1;
6499         }
6500
6501         write_lock(&map_tree->map_tree.lock);
6502         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6503         write_unlock(&map_tree->map_tree.lock);
6504         BUG_ON(ret); /* Tree corruption */
6505         free_extent_map(em);
6506
6507         return 0;
6508 }
6509
6510 static void fill_device_from_item(struct extent_buffer *leaf,
6511                                  struct btrfs_dev_item *dev_item,
6512                                  struct btrfs_device *device)
6513 {
6514         unsigned long ptr;
6515
6516         device->devid = btrfs_device_id(leaf, dev_item);
6517         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6518         device->total_bytes = device->disk_total_bytes;
6519         device->commit_total_bytes = device->disk_total_bytes;
6520         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6521         device->commit_bytes_used = device->bytes_used;
6522         device->type = btrfs_device_type(leaf, dev_item);
6523         device->io_align = btrfs_device_io_align(leaf, dev_item);
6524         device->io_width = btrfs_device_io_width(leaf, dev_item);
6525         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6526         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6527         device->is_tgtdev_for_dev_replace = 0;
6528
6529         ptr = btrfs_device_uuid(dev_item);
6530         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6531 }
6532
6533 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6534                                                   u8 *fsid)
6535 {
6536         struct btrfs_fs_devices *fs_devices;
6537         int ret;
6538
6539         BUG_ON(!mutex_is_locked(&uuid_mutex));
6540
6541         fs_devices = root->fs_info->fs_devices->seed;
6542         while (fs_devices) {
6543                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6544                         return fs_devices;
6545
6546                 fs_devices = fs_devices->seed;
6547         }
6548
6549         fs_devices = find_fsid(fsid);
6550         if (!fs_devices) {
6551                 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6552                         return ERR_PTR(-ENOENT);
6553
6554                 fs_devices = alloc_fs_devices(fsid);
6555                 if (IS_ERR(fs_devices))
6556                         return fs_devices;
6557
6558                 fs_devices->seeding = 1;
6559                 fs_devices->opened = 1;
6560                 return fs_devices;
6561         }
6562
6563         fs_devices = clone_fs_devices(fs_devices);
6564         if (IS_ERR(fs_devices))
6565                 return fs_devices;
6566
6567         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6568                                    root->fs_info->bdev_holder);
6569         if (ret) {
6570                 free_fs_devices(fs_devices);
6571                 fs_devices = ERR_PTR(ret);
6572                 goto out;
6573         }
6574
6575         if (!fs_devices->seeding) {
6576                 __btrfs_close_devices(fs_devices);
6577                 free_fs_devices(fs_devices);
6578                 fs_devices = ERR_PTR(-EINVAL);
6579                 goto out;
6580         }
6581
6582         fs_devices->seed = root->fs_info->fs_devices->seed;
6583         root->fs_info->fs_devices->seed = fs_devices;
6584 out:
6585         return fs_devices;
6586 }
6587
6588 static int read_one_dev(struct btrfs_root *root,
6589                         struct extent_buffer *leaf,
6590                         struct btrfs_dev_item *dev_item)
6591 {
6592         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6593         struct btrfs_device *device;
6594         u64 devid;
6595         int ret;
6596         u8 fs_uuid[BTRFS_UUID_SIZE];
6597         u8 dev_uuid[BTRFS_UUID_SIZE];
6598
6599         devid = btrfs_device_id(leaf, dev_item);
6600         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6601                            BTRFS_UUID_SIZE);
6602         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6603                            BTRFS_UUID_SIZE);
6604
6605         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6606                 fs_devices = open_seed_devices(root, fs_uuid);
6607                 if (IS_ERR(fs_devices))
6608                         return PTR_ERR(fs_devices);
6609         }
6610
6611         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6612         if (!device) {
6613                 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6614                         return -EIO;
6615
6616                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6617                 if (!device)
6618                         return -ENOMEM;
6619                 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6620                                 devid, dev_uuid);
6621         } else {
6622                 if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6623                         return -EIO;
6624
6625                 if(!device->bdev && !device->missing) {
6626                         /*
6627                          * this happens when a device that was properly setup
6628                          * in the device info lists suddenly goes bad.
6629                          * device->bdev is NULL, and so we have to set
6630                          * device->missing to one here
6631                          */
6632                         device->fs_devices->missing_devices++;
6633                         device->missing = 1;
6634                 }
6635
6636                 /* Move the device to its own fs_devices */
6637                 if (device->fs_devices != fs_devices) {
6638                         ASSERT(device->missing);
6639
6640                         list_move(&device->dev_list, &fs_devices->devices);
6641                         device->fs_devices->num_devices--;
6642                         fs_devices->num_devices++;
6643
6644                         device->fs_devices->missing_devices--;
6645                         fs_devices->missing_devices++;
6646
6647                         device->fs_devices = fs_devices;
6648                 }
6649         }
6650
6651         if (device->fs_devices != root->fs_info->fs_devices) {
6652                 BUG_ON(device->writeable);
6653                 if (device->generation !=
6654                     btrfs_device_generation(leaf, dev_item))
6655                         return -EINVAL;
6656         }
6657
6658         fill_device_from_item(leaf, dev_item, device);
6659         device->in_fs_metadata = 1;
6660         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6661                 device->fs_devices->total_rw_bytes += device->total_bytes;
6662                 spin_lock(&root->fs_info->free_chunk_lock);
6663                 root->fs_info->free_chunk_space += device->total_bytes -
6664                         device->bytes_used;
6665                 spin_unlock(&root->fs_info->free_chunk_lock);
6666         }
6667         ret = 0;
6668         return ret;
6669 }
6670
6671 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6672 {
6673         struct btrfs_root *root = fs_info->tree_root;
6674         struct btrfs_super_block *super_copy = fs_info->super_copy;
6675         struct extent_buffer *sb;
6676         struct btrfs_disk_key *disk_key;
6677         struct btrfs_chunk *chunk;
6678         u8 *array_ptr;
6679         unsigned long sb_array_offset;
6680         int ret = 0;
6681         u32 num_stripes;
6682         u32 array_size;
6683         u32 len = 0;
6684         u32 cur_offset;
6685         u64 type;
6686         struct btrfs_key key;
6687
6688         ASSERT(BTRFS_SUPER_INFO_SIZE <= root->fs_info->nodesize);
6689         /*
6690          * This will create extent buffer of nodesize, superblock size is
6691          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6692          * overallocate but we can keep it as-is, only the first page is used.
6693          */
6694         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6695         if (IS_ERR(sb))
6696                 return PTR_ERR(sb);
6697         set_extent_buffer_uptodate(sb);
6698         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6699         /*
6700          * The sb extent buffer is artificial and just used to read the system array.
6701          * set_extent_buffer_uptodate() call does not properly mark all it's
6702          * pages up-to-date when the page is larger: extent does not cover the
6703          * whole page and consequently check_page_uptodate does not find all
6704          * the page's extents up-to-date (the hole beyond sb),
6705          * write_extent_buffer then triggers a WARN_ON.
6706          *
6707          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6708          * but sb spans only this function. Add an explicit SetPageUptodate call
6709          * to silence the warning eg. on PowerPC 64.
6710          */
6711         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6712                 SetPageUptodate(sb->pages[0]);
6713
6714         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6715         array_size = btrfs_super_sys_array_size(super_copy);
6716
6717         array_ptr = super_copy->sys_chunk_array;
6718         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6719         cur_offset = 0;
6720
6721         while (cur_offset < array_size) {
6722                 disk_key = (struct btrfs_disk_key *)array_ptr;
6723                 len = sizeof(*disk_key);
6724                 if (cur_offset + len > array_size)
6725                         goto out_short_read;
6726
6727                 btrfs_disk_key_to_cpu(&key, disk_key);
6728
6729                 array_ptr += len;
6730                 sb_array_offset += len;
6731                 cur_offset += len;
6732
6733                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6734                         chunk = (struct btrfs_chunk *)sb_array_offset;
6735                         /*
6736                          * At least one btrfs_chunk with one stripe must be
6737                          * present, exact stripe count check comes afterwards
6738                          */
6739                         len = btrfs_chunk_item_size(1);
6740                         if (cur_offset + len > array_size)
6741                                 goto out_short_read;
6742
6743                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6744                         if (!num_stripes) {
6745                                 btrfs_err(fs_info,
6746                                         "invalid number of stripes %u in sys_array at offset %u",
6747                                         num_stripes, cur_offset);
6748                                 ret = -EIO;
6749                                 break;
6750                         }
6751
6752                         type = btrfs_chunk_type(sb, chunk);
6753                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6754                                 btrfs_err(fs_info,
6755                             "invalid chunk type %llu in sys_array at offset %u",
6756                                         type, cur_offset);
6757                                 ret = -EIO;
6758                                 break;
6759                         }
6760
6761                         len = btrfs_chunk_item_size(num_stripes);
6762                         if (cur_offset + len > array_size)
6763                                 goto out_short_read;
6764
6765                         ret = read_one_chunk(root, &key, sb, chunk);
6766                         if (ret)
6767                                 break;
6768                 } else {
6769                         btrfs_err(fs_info,
6770                             "unexpected item type %u in sys_array at offset %u",
6771                                   (u32)key.type, cur_offset);
6772                         ret = -EIO;
6773                         break;
6774                 }
6775                 array_ptr += len;
6776                 sb_array_offset += len;
6777                 cur_offset += len;
6778         }
6779         clear_extent_buffer_uptodate(sb);
6780         free_extent_buffer_stale(sb);
6781         return ret;
6782
6783 out_short_read:
6784         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6785                         len, cur_offset);
6786         clear_extent_buffer_uptodate(sb);
6787         free_extent_buffer_stale(sb);
6788         return -EIO;
6789 }
6790
6791 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6792 {
6793         struct btrfs_root *root = fs_info->chunk_root;
6794         struct btrfs_path *path;
6795         struct extent_buffer *leaf;
6796         struct btrfs_key key;
6797         struct btrfs_key found_key;
6798         int ret;
6799         int slot;
6800         u64 total_dev = 0;
6801
6802         path = btrfs_alloc_path();
6803         if (!path)
6804                 return -ENOMEM;
6805
6806         mutex_lock(&uuid_mutex);
6807         lock_chunks(root);
6808
6809         /*
6810          * Read all device items, and then all the chunk items. All
6811          * device items are found before any chunk item (their object id
6812          * is smaller than the lowest possible object id for a chunk
6813          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6814          */
6815         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6816         key.offset = 0;
6817         key.type = 0;
6818         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6819         if (ret < 0)
6820                 goto error;
6821         while (1) {
6822                 leaf = path->nodes[0];
6823                 slot = path->slots[0];
6824                 if (slot >= btrfs_header_nritems(leaf)) {
6825                         ret = btrfs_next_leaf(root, path);
6826                         if (ret == 0)
6827                                 continue;
6828                         if (ret < 0)
6829                                 goto error;
6830                         break;
6831                 }
6832                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6833                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6834                         struct btrfs_dev_item *dev_item;
6835                         dev_item = btrfs_item_ptr(leaf, slot,
6836                                                   struct btrfs_dev_item);
6837                         ret = read_one_dev(root, leaf, dev_item);
6838                         if (ret)
6839                                 goto error;
6840                         total_dev++;
6841                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6842                         struct btrfs_chunk *chunk;
6843                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6844                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6845                         if (ret)
6846                                 goto error;
6847                 }
6848                 path->slots[0]++;
6849         }
6850
6851         /*
6852          * After loading chunk tree, we've got all device information,
6853          * do another round of validation checks.
6854          */
6855         if (total_dev != root->fs_info->fs_devices->total_devices) {
6856                 btrfs_err(root->fs_info,
6857            "super_num_devices %llu mismatch with num_devices %llu found here",
6858                           btrfs_super_num_devices(root->fs_info->super_copy),
6859                           total_dev);
6860                 ret = -EINVAL;
6861                 goto error;
6862         }
6863         if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6864             root->fs_info->fs_devices->total_rw_bytes) {
6865                 btrfs_err(root->fs_info,
6866         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6867                           btrfs_super_total_bytes(root->fs_info->super_copy),
6868                           root->fs_info->fs_devices->total_rw_bytes);
6869                 ret = -EINVAL;
6870                 goto error;
6871         }
6872         ret = 0;
6873 error:
6874         unlock_chunks(root);
6875         mutex_unlock(&uuid_mutex);
6876
6877         btrfs_free_path(path);
6878         return ret;
6879 }
6880
6881 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6882 {
6883         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6884         struct btrfs_device *device;
6885
6886         while (fs_devices) {
6887                 mutex_lock(&fs_devices->device_list_mutex);
6888                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6889                         device->fs_info = fs_info;
6890                 mutex_unlock(&fs_devices->device_list_mutex);
6891
6892                 fs_devices = fs_devices->seed;
6893         }
6894 }
6895
6896 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6897 {
6898         int i;
6899
6900         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6901                 btrfs_dev_stat_reset(dev, i);
6902 }
6903
6904 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6905 {
6906         struct btrfs_key key;
6907         struct btrfs_key found_key;
6908         struct btrfs_root *dev_root = fs_info->dev_root;
6909         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6910         struct extent_buffer *eb;
6911         int slot;
6912         int ret = 0;
6913         struct btrfs_device *device;
6914         struct btrfs_path *path = NULL;
6915         int i;
6916
6917         path = btrfs_alloc_path();
6918         if (!path) {
6919                 ret = -ENOMEM;
6920                 goto out;
6921         }
6922
6923         mutex_lock(&fs_devices->device_list_mutex);
6924         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6925                 int item_size;
6926                 struct btrfs_dev_stats_item *ptr;
6927
6928                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6929                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6930                 key.offset = device->devid;
6931                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6932                 if (ret) {
6933                         __btrfs_reset_dev_stats(device);
6934                         device->dev_stats_valid = 1;
6935                         btrfs_release_path(path);
6936                         continue;
6937                 }
6938                 slot = path->slots[0];
6939                 eb = path->nodes[0];
6940                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6941                 item_size = btrfs_item_size_nr(eb, slot);
6942
6943                 ptr = btrfs_item_ptr(eb, slot,
6944                                      struct btrfs_dev_stats_item);
6945
6946                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6947                         if (item_size >= (1 + i) * sizeof(__le64))
6948                                 btrfs_dev_stat_set(device, i,
6949                                         btrfs_dev_stats_value(eb, ptr, i));
6950                         else
6951                                 btrfs_dev_stat_reset(device, i);
6952                 }
6953
6954                 device->dev_stats_valid = 1;
6955                 btrfs_dev_stat_print_on_load(device);
6956                 btrfs_release_path(path);
6957         }
6958         mutex_unlock(&fs_devices->device_list_mutex);
6959
6960 out:
6961         btrfs_free_path(path);
6962         return ret < 0 ? ret : 0;
6963 }
6964
6965 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6966                                 struct btrfs_fs_info *fs_info,
6967                                 struct btrfs_device *device)
6968 {
6969         struct btrfs_root *dev_root = fs_info->dev_root;
6970         struct btrfs_path *path;
6971         struct btrfs_key key;
6972         struct extent_buffer *eb;
6973         struct btrfs_dev_stats_item *ptr;
6974         int ret;
6975         int i;
6976
6977         key.objectid = BTRFS_DEV_STATS_OBJECTID;
6978         key.type = BTRFS_PERSISTENT_ITEM_KEY;
6979         key.offset = device->devid;
6980
6981         path = btrfs_alloc_path();
6982         BUG_ON(!path);
6983         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6984         if (ret < 0) {
6985                 btrfs_warn_in_rcu(dev_root->fs_info,
6986                         "error %d while searching for dev_stats item for device %s",
6987                               ret, rcu_str_deref(device->name));
6988                 goto out;
6989         }
6990
6991         if (ret == 0 &&
6992             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6993                 /* need to delete old one and insert a new one */
6994                 ret = btrfs_del_item(trans, dev_root, path);
6995                 if (ret != 0) {
6996                         btrfs_warn_in_rcu(dev_root->fs_info,
6997                                 "delete too small dev_stats item for device %s failed %d",
6998                                       rcu_str_deref(device->name), ret);
6999                         goto out;
7000                 }
7001                 ret = 1;
7002         }
7003
7004         if (ret == 1) {
7005                 /* need to insert a new item */
7006                 btrfs_release_path(path);
7007                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7008                                               &key, sizeof(*ptr));
7009                 if (ret < 0) {
7010                         btrfs_warn_in_rcu(dev_root->fs_info,
7011                                 "insert dev_stats item for device %s failed %d",
7012                                 rcu_str_deref(device->name), ret);
7013                         goto out;
7014                 }
7015         }
7016
7017         eb = path->nodes[0];
7018         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7019         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7020                 btrfs_set_dev_stats_value(eb, ptr, i,
7021                                           btrfs_dev_stat_read(device, i));
7022         btrfs_mark_buffer_dirty(eb);
7023
7024 out:
7025         btrfs_free_path(path);
7026         return ret;
7027 }
7028
7029 /*
7030  * called from commit_transaction. Writes all changed device stats to disk.
7031  */
7032 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7033                         struct btrfs_fs_info *fs_info)
7034 {
7035         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7036         struct btrfs_device *device;
7037         int stats_cnt;
7038         int ret = 0;
7039
7040         mutex_lock(&fs_devices->device_list_mutex);
7041         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7042                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7043                         continue;
7044
7045                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7046                 ret = update_dev_stat_item(trans, fs_info, device);
7047                 if (!ret)
7048                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7049         }
7050         mutex_unlock(&fs_devices->device_list_mutex);
7051
7052         return ret;
7053 }
7054
7055 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7056 {
7057         btrfs_dev_stat_inc(dev, index);
7058         btrfs_dev_stat_print_on_error(dev);
7059 }
7060
7061 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7062 {
7063         if (!dev->dev_stats_valid)
7064                 return;
7065         btrfs_err_rl_in_rcu(dev->fs_info,
7066                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7067                            rcu_str_deref(dev->name),
7068                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7069                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7070                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7071                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7072                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7073 }
7074
7075 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7076 {
7077         int i;
7078
7079         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7080                 if (btrfs_dev_stat_read(dev, i) != 0)
7081                         break;
7082         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7083                 return; /* all values == 0, suppress message */
7084
7085         btrfs_info_in_rcu(dev->fs_info,
7086                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7087                rcu_str_deref(dev->name),
7088                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7089                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7090                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7091                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7092                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7093 }
7094
7095 int btrfs_get_dev_stats(struct btrfs_root *root,
7096                         struct btrfs_ioctl_get_dev_stats *stats)
7097 {
7098         struct btrfs_device *dev;
7099         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7100         int i;
7101
7102         mutex_lock(&fs_devices->device_list_mutex);
7103         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7104         mutex_unlock(&fs_devices->device_list_mutex);
7105
7106         if (!dev) {
7107                 btrfs_warn(root->fs_info,
7108                            "get dev_stats failed, device not found");
7109                 return -ENODEV;
7110         } else if (!dev->dev_stats_valid) {
7111                 btrfs_warn(root->fs_info,
7112                            "get dev_stats failed, not yet valid");
7113                 return -ENODEV;
7114         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7115                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7116                         if (stats->nr_items > i)
7117                                 stats->values[i] =
7118                                         btrfs_dev_stat_read_and_reset(dev, i);
7119                         else
7120                                 btrfs_dev_stat_reset(dev, i);
7121                 }
7122         } else {
7123                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7124                         if (stats->nr_items > i)
7125                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7126         }
7127         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7128                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7129         return 0;
7130 }
7131
7132 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7133 {
7134         struct buffer_head *bh;
7135         struct btrfs_super_block *disk_super;
7136         int copy_num;
7137
7138         if (!bdev)
7139                 return;
7140
7141         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7142                 copy_num++) {
7143
7144                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7145                         continue;
7146
7147                 disk_super = (struct btrfs_super_block *)bh->b_data;
7148
7149                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7150                 set_buffer_dirty(bh);
7151                 sync_dirty_buffer(bh);
7152                 brelse(bh);
7153         }
7154
7155         /* Notify udev that device has changed */
7156         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7157
7158         /* Update ctime/mtime for device path for libblkid */
7159         update_dev_time(device_path);
7160 }
7161
7162 /*
7163  * Update the size of all devices, which is used for writing out the
7164  * super blocks.
7165  */
7166 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7167 {
7168         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7169         struct btrfs_device *curr, *next;
7170
7171         if (list_empty(&fs_devices->resized_devices))
7172                 return;
7173
7174         mutex_lock(&fs_devices->device_list_mutex);
7175         lock_chunks(fs_info->dev_root);
7176         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7177                                  resized_list) {
7178                 list_del_init(&curr->resized_list);
7179                 curr->commit_total_bytes = curr->disk_total_bytes;
7180         }
7181         unlock_chunks(fs_info->dev_root);
7182         mutex_unlock(&fs_devices->device_list_mutex);
7183 }
7184
7185 /* Must be invoked during the transaction commit */
7186 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7187                                         struct btrfs_transaction *transaction)
7188 {
7189         struct extent_map *em;
7190         struct map_lookup *map;
7191         struct btrfs_device *dev;
7192         int i;
7193
7194         if (list_empty(&transaction->pending_chunks))
7195                 return;
7196
7197         /* In order to kick the device replace finish process */
7198         lock_chunks(root);
7199         list_for_each_entry(em, &transaction->pending_chunks, list) {
7200                 map = em->map_lookup;
7201
7202                 for (i = 0; i < map->num_stripes; i++) {
7203                         dev = map->stripes[i].dev;
7204                         dev->commit_bytes_used = dev->bytes_used;
7205                 }
7206         }
7207         unlock_chunks(root);
7208 }
7209
7210 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7211 {
7212         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7213         while (fs_devices) {
7214                 fs_devices->fs_info = fs_info;
7215                 fs_devices = fs_devices->seed;
7216         }
7217 }
7218
7219 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7220 {
7221         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7222         while (fs_devices) {
7223                 fs_devices->fs_info = NULL;
7224                 fs_devices = fs_devices->seed;
7225         }
7226 }