]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/dax.c
dax: Remove zeroing from dax_io()
[karo-tx-linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34
35 #define RADIX_DAX_MASK  0xf
36 #define RADIX_DAX_SHIFT 4
37 #define RADIX_DAX_PTE  (0x4 | RADIX_TREE_EXCEPTIONAL_ENTRY)
38 #define RADIX_DAX_PMD  (0x8 | RADIX_TREE_EXCEPTIONAL_ENTRY)
39 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_MASK)
40 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
41 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
42                 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE)))
43
44 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
45 {
46         struct request_queue *q = bdev->bd_queue;
47         long rc = -EIO;
48
49         dax->addr = (void __pmem *) ERR_PTR(-EIO);
50         if (blk_queue_enter(q, true) != 0)
51                 return rc;
52
53         rc = bdev_direct_access(bdev, dax);
54         if (rc < 0) {
55                 dax->addr = (void __pmem *) ERR_PTR(rc);
56                 blk_queue_exit(q);
57                 return rc;
58         }
59         return rc;
60 }
61
62 static void dax_unmap_atomic(struct block_device *bdev,
63                 const struct blk_dax_ctl *dax)
64 {
65         if (IS_ERR(dax->addr))
66                 return;
67         blk_queue_exit(bdev->bd_queue);
68 }
69
70 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
71 {
72         struct page *page = alloc_pages(GFP_KERNEL, 0);
73         struct blk_dax_ctl dax = {
74                 .size = PAGE_SIZE,
75                 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
76         };
77         long rc;
78
79         if (!page)
80                 return ERR_PTR(-ENOMEM);
81
82         rc = dax_map_atomic(bdev, &dax);
83         if (rc < 0)
84                 return ERR_PTR(rc);
85         memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
86         dax_unmap_atomic(bdev, &dax);
87         return page;
88 }
89
90 /*
91  * dax_clear_sectors() is called from within transaction context from XFS,
92  * and hence this means the stack from this point must follow GFP_NOFS
93  * semantics for all operations.
94  */
95 int dax_clear_sectors(struct block_device *bdev, sector_t _sector, long _size)
96 {
97         struct blk_dax_ctl dax = {
98                 .sector = _sector,
99                 .size = _size,
100         };
101
102         might_sleep();
103         do {
104                 long count, sz;
105
106                 count = dax_map_atomic(bdev, &dax);
107                 if (count < 0)
108                         return count;
109                 sz = min_t(long, count, SZ_128K);
110                 clear_pmem(dax.addr, sz);
111                 dax.size -= sz;
112                 dax.sector += sz / 512;
113                 dax_unmap_atomic(bdev, &dax);
114                 cond_resched();
115         } while (dax.size);
116
117         wmb_pmem();
118         return 0;
119 }
120 EXPORT_SYMBOL_GPL(dax_clear_sectors);
121
122 static bool buffer_written(struct buffer_head *bh)
123 {
124         return buffer_mapped(bh) && !buffer_unwritten(bh);
125 }
126
127 /*
128  * When ext4 encounters a hole, it returns without modifying the buffer_head
129  * which means that we can't trust b_size.  To cope with this, we set b_state
130  * to 0 before calling get_block and, if any bit is set, we know we can trust
131  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
132  * and would save us time calling get_block repeatedly.
133  */
134 static bool buffer_size_valid(struct buffer_head *bh)
135 {
136         return bh->b_state != 0;
137 }
138
139
140 static sector_t to_sector(const struct buffer_head *bh,
141                 const struct inode *inode)
142 {
143         sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
144
145         return sector;
146 }
147
148 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
149                       loff_t start, loff_t end, get_block_t get_block,
150                       struct buffer_head *bh)
151 {
152         loff_t pos = start, max = start, bh_max = start;
153         bool hole = false, need_wmb = false;
154         struct block_device *bdev = NULL;
155         int rw = iov_iter_rw(iter), rc;
156         long map_len = 0;
157         struct blk_dax_ctl dax = {
158                 .addr = (void __pmem *) ERR_PTR(-EIO),
159         };
160         unsigned blkbits = inode->i_blkbits;
161         sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1)
162                                                                 >> blkbits;
163
164         if (rw == READ)
165                 end = min(end, i_size_read(inode));
166
167         while (pos < end) {
168                 size_t len;
169                 if (pos == max) {
170                         long page = pos >> PAGE_SHIFT;
171                         sector_t block = page << (PAGE_SHIFT - blkbits);
172                         unsigned first = pos - (block << blkbits);
173                         long size;
174
175                         if (pos == bh_max) {
176                                 bh->b_size = PAGE_ALIGN(end - pos);
177                                 bh->b_state = 0;
178                                 rc = get_block(inode, block, bh, rw == WRITE);
179                                 if (rc)
180                                         break;
181                                 if (!buffer_size_valid(bh))
182                                         bh->b_size = 1 << blkbits;
183                                 bh_max = pos - first + bh->b_size;
184                                 bdev = bh->b_bdev;
185                                 /*
186                                  * We allow uninitialized buffers for writes
187                                  * beyond EOF as those cannot race with faults
188                                  */
189                                 WARN_ON_ONCE(
190                                         (buffer_new(bh) && block < file_blks) ||
191                                         (rw == WRITE && buffer_unwritten(bh)));
192                         } else {
193                                 unsigned done = bh->b_size -
194                                                 (bh_max - (pos - first));
195                                 bh->b_blocknr += done >> blkbits;
196                                 bh->b_size -= done;
197                         }
198
199                         hole = rw == READ && !buffer_written(bh);
200                         if (hole) {
201                                 size = bh->b_size - first;
202                         } else {
203                                 dax_unmap_atomic(bdev, &dax);
204                                 dax.sector = to_sector(bh, inode);
205                                 dax.size = bh->b_size;
206                                 map_len = dax_map_atomic(bdev, &dax);
207                                 if (map_len < 0) {
208                                         rc = map_len;
209                                         break;
210                                 }
211                                 dax.addr += first;
212                                 size = map_len - first;
213                         }
214                         max = min(pos + size, end);
215                 }
216
217                 if (iov_iter_rw(iter) == WRITE) {
218                         len = copy_from_iter_pmem(dax.addr, max - pos, iter);
219                         need_wmb = true;
220                 } else if (!hole)
221                         len = copy_to_iter((void __force *) dax.addr, max - pos,
222                                         iter);
223                 else
224                         len = iov_iter_zero(max - pos, iter);
225
226                 if (!len) {
227                         rc = -EFAULT;
228                         break;
229                 }
230
231                 pos += len;
232                 if (!IS_ERR(dax.addr))
233                         dax.addr += len;
234         }
235
236         if (need_wmb)
237                 wmb_pmem();
238         dax_unmap_atomic(bdev, &dax);
239
240         return (pos == start) ? rc : pos - start;
241 }
242
243 /**
244  * dax_do_io - Perform I/O to a DAX file
245  * @iocb: The control block for this I/O
246  * @inode: The file which the I/O is directed at
247  * @iter: The addresses to do I/O from or to
248  * @pos: The file offset where the I/O starts
249  * @get_block: The filesystem method used to translate file offsets to blocks
250  * @end_io: A filesystem callback for I/O completion
251  * @flags: See below
252  *
253  * This function uses the same locking scheme as do_blockdev_direct_IO:
254  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
255  * caller for writes.  For reads, we take and release the i_mutex ourselves.
256  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
257  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
258  * is in progress.
259  */
260 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
261                   struct iov_iter *iter, loff_t pos, get_block_t get_block,
262                   dio_iodone_t end_io, int flags)
263 {
264         struct buffer_head bh;
265         ssize_t retval = -EINVAL;
266         loff_t end = pos + iov_iter_count(iter);
267
268         memset(&bh, 0, sizeof(bh));
269         bh.b_bdev = inode->i_sb->s_bdev;
270
271         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
272                 struct address_space *mapping = inode->i_mapping;
273                 inode_lock(inode);
274                 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
275                 if (retval) {
276                         inode_unlock(inode);
277                         goto out;
278                 }
279         }
280
281         /* Protects against truncate */
282         if (!(flags & DIO_SKIP_DIO_COUNT))
283                 inode_dio_begin(inode);
284
285         retval = dax_io(inode, iter, pos, end, get_block, &bh);
286
287         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
288                 inode_unlock(inode);
289
290         if (end_io) {
291                 int err;
292
293                 err = end_io(iocb, pos, retval, bh.b_private);
294                 if (err)
295                         retval = err;
296         }
297
298         if (!(flags & DIO_SKIP_DIO_COUNT))
299                 inode_dio_end(inode);
300  out:
301         return retval;
302 }
303 EXPORT_SYMBOL_GPL(dax_do_io);
304
305 /*
306  * The user has performed a load from a hole in the file.  Allocating
307  * a new page in the file would cause excessive storage usage for
308  * workloads with sparse files.  We allocate a page cache page instead.
309  * We'll kick it out of the page cache if it's ever written to,
310  * otherwise it will simply fall out of the page cache under memory
311  * pressure without ever having been dirtied.
312  */
313 static int dax_load_hole(struct address_space *mapping, struct page *page,
314                                                         struct vm_fault *vmf)
315 {
316         unsigned long size;
317         struct inode *inode = mapping->host;
318         if (!page)
319                 page = find_or_create_page(mapping, vmf->pgoff,
320                                                 GFP_KERNEL | __GFP_ZERO);
321         if (!page)
322                 return VM_FAULT_OOM;
323         /* Recheck i_size under page lock to avoid truncate race */
324         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
325         if (vmf->pgoff >= size) {
326                 unlock_page(page);
327                 put_page(page);
328                 return VM_FAULT_SIGBUS;
329         }
330
331         vmf->page = page;
332         return VM_FAULT_LOCKED;
333 }
334
335 static int copy_user_bh(struct page *to, struct inode *inode,
336                 struct buffer_head *bh, unsigned long vaddr)
337 {
338         struct blk_dax_ctl dax = {
339                 .sector = to_sector(bh, inode),
340                 .size = bh->b_size,
341         };
342         struct block_device *bdev = bh->b_bdev;
343         void *vto;
344
345         if (dax_map_atomic(bdev, &dax) < 0)
346                 return PTR_ERR(dax.addr);
347         vto = kmap_atomic(to);
348         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
349         kunmap_atomic(vto);
350         dax_unmap_atomic(bdev, &dax);
351         return 0;
352 }
353
354 #define NO_SECTOR -1
355 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
356
357 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
358                 sector_t sector, bool pmd_entry, bool dirty)
359 {
360         struct radix_tree_root *page_tree = &mapping->page_tree;
361         pgoff_t pmd_index = DAX_PMD_INDEX(index);
362         int type, error = 0;
363         void *entry;
364
365         WARN_ON_ONCE(pmd_entry && !dirty);
366         if (dirty)
367                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
368
369         spin_lock_irq(&mapping->tree_lock);
370
371         entry = radix_tree_lookup(page_tree, pmd_index);
372         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
373                 index = pmd_index;
374                 goto dirty;
375         }
376
377         entry = radix_tree_lookup(page_tree, index);
378         if (entry) {
379                 type = RADIX_DAX_TYPE(entry);
380                 if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
381                                         type != RADIX_DAX_PMD)) {
382                         error = -EIO;
383                         goto unlock;
384                 }
385
386                 if (!pmd_entry || type == RADIX_DAX_PMD)
387                         goto dirty;
388
389                 /*
390                  * We only insert dirty PMD entries into the radix tree.  This
391                  * means we don't need to worry about removing a dirty PTE
392                  * entry and inserting a clean PMD entry, thus reducing the
393                  * range we would flush with a follow-up fsync/msync call.
394                  */
395                 radix_tree_delete(&mapping->page_tree, index);
396                 mapping->nrexceptional--;
397         }
398
399         if (sector == NO_SECTOR) {
400                 /*
401                  * This can happen during correct operation if our pfn_mkwrite
402                  * fault raced against a hole punch operation.  If this
403                  * happens the pte that was hole punched will have been
404                  * unmapped and the radix tree entry will have been removed by
405                  * the time we are called, but the call will still happen.  We
406                  * will return all the way up to wp_pfn_shared(), where the
407                  * pte_same() check will fail, eventually causing page fault
408                  * to be retried by the CPU.
409                  */
410                 goto unlock;
411         }
412
413         error = radix_tree_insert(page_tree, index,
414                         RADIX_DAX_ENTRY(sector, pmd_entry));
415         if (error)
416                 goto unlock;
417
418         mapping->nrexceptional++;
419  dirty:
420         if (dirty)
421                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
422  unlock:
423         spin_unlock_irq(&mapping->tree_lock);
424         return error;
425 }
426
427 static int dax_writeback_one(struct block_device *bdev,
428                 struct address_space *mapping, pgoff_t index, void *entry)
429 {
430         struct radix_tree_root *page_tree = &mapping->page_tree;
431         int type = RADIX_DAX_TYPE(entry);
432         struct radix_tree_node *node;
433         struct blk_dax_ctl dax;
434         void **slot;
435         int ret = 0;
436
437         spin_lock_irq(&mapping->tree_lock);
438         /*
439          * Regular page slots are stabilized by the page lock even
440          * without the tree itself locked.  These unlocked entries
441          * need verification under the tree lock.
442          */
443         if (!__radix_tree_lookup(page_tree, index, &node, &slot))
444                 goto unlock;
445         if (*slot != entry)
446                 goto unlock;
447
448         /* another fsync thread may have already written back this entry */
449         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
450                 goto unlock;
451
452         if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
453                 ret = -EIO;
454                 goto unlock;
455         }
456
457         dax.sector = RADIX_DAX_SECTOR(entry);
458         dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
459         spin_unlock_irq(&mapping->tree_lock);
460
461         /*
462          * We cannot hold tree_lock while calling dax_map_atomic() because it
463          * eventually calls cond_resched().
464          */
465         ret = dax_map_atomic(bdev, &dax);
466         if (ret < 0)
467                 return ret;
468
469         if (WARN_ON_ONCE(ret < dax.size)) {
470                 ret = -EIO;
471                 goto unmap;
472         }
473
474         wb_cache_pmem(dax.addr, dax.size);
475
476         spin_lock_irq(&mapping->tree_lock);
477         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
478         spin_unlock_irq(&mapping->tree_lock);
479  unmap:
480         dax_unmap_atomic(bdev, &dax);
481         return ret;
482
483  unlock:
484         spin_unlock_irq(&mapping->tree_lock);
485         return ret;
486 }
487
488 /*
489  * Flush the mapping to the persistent domain within the byte range of [start,
490  * end]. This is required by data integrity operations to ensure file data is
491  * on persistent storage prior to completion of the operation.
492  */
493 int dax_writeback_mapping_range(struct address_space *mapping,
494                 struct block_device *bdev, struct writeback_control *wbc)
495 {
496         struct inode *inode = mapping->host;
497         pgoff_t start_index, end_index, pmd_index;
498         pgoff_t indices[PAGEVEC_SIZE];
499         struct pagevec pvec;
500         bool done = false;
501         int i, ret = 0;
502         void *entry;
503
504         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
505                 return -EIO;
506
507         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
508                 return 0;
509
510         start_index = wbc->range_start >> PAGE_SHIFT;
511         end_index = wbc->range_end >> PAGE_SHIFT;
512         pmd_index = DAX_PMD_INDEX(start_index);
513
514         rcu_read_lock();
515         entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
516         rcu_read_unlock();
517
518         /* see if the start of our range is covered by a PMD entry */
519         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
520                 start_index = pmd_index;
521
522         tag_pages_for_writeback(mapping, start_index, end_index);
523
524         pagevec_init(&pvec, 0);
525         while (!done) {
526                 pvec.nr = find_get_entries_tag(mapping, start_index,
527                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
528                                 pvec.pages, indices);
529
530                 if (pvec.nr == 0)
531                         break;
532
533                 for (i = 0; i < pvec.nr; i++) {
534                         if (indices[i] > end_index) {
535                                 done = true;
536                                 break;
537                         }
538
539                         ret = dax_writeback_one(bdev, mapping, indices[i],
540                                         pvec.pages[i]);
541                         if (ret < 0)
542                                 return ret;
543                 }
544         }
545         wmb_pmem();
546         return 0;
547 }
548 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
549
550 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
551                         struct vm_area_struct *vma, struct vm_fault *vmf)
552 {
553         unsigned long vaddr = (unsigned long)vmf->virtual_address;
554         struct address_space *mapping = inode->i_mapping;
555         struct block_device *bdev = bh->b_bdev;
556         struct blk_dax_ctl dax = {
557                 .sector = to_sector(bh, inode),
558                 .size = bh->b_size,
559         };
560         pgoff_t size;
561         int error;
562
563         i_mmap_lock_read(mapping);
564
565         /*
566          * Check truncate didn't happen while we were allocating a block.
567          * If it did, this block may or may not be still allocated to the
568          * file.  We can't tell the filesystem to free it because we can't
569          * take i_mutex here.  In the worst case, the file still has blocks
570          * allocated past the end of the file.
571          */
572         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
573         if (unlikely(vmf->pgoff >= size)) {
574                 error = -EIO;
575                 goto out;
576         }
577
578         if (dax_map_atomic(bdev, &dax) < 0) {
579                 error = PTR_ERR(dax.addr);
580                 goto out;
581         }
582         dax_unmap_atomic(bdev, &dax);
583
584         error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
585                         vmf->flags & FAULT_FLAG_WRITE);
586         if (error)
587                 goto out;
588
589         error = vm_insert_mixed(vma, vaddr, dax.pfn);
590
591  out:
592         i_mmap_unlock_read(mapping);
593
594         return error;
595 }
596
597 /**
598  * __dax_fault - handle a page fault on a DAX file
599  * @vma: The virtual memory area where the fault occurred
600  * @vmf: The description of the fault
601  * @get_block: The filesystem method used to translate file offsets to blocks
602  *
603  * When a page fault occurs, filesystems may call this helper in their
604  * fault handler for DAX files. __dax_fault() assumes the caller has done all
605  * the necessary locking for the page fault to proceed successfully.
606  */
607 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
608                         get_block_t get_block)
609 {
610         struct file *file = vma->vm_file;
611         struct address_space *mapping = file->f_mapping;
612         struct inode *inode = mapping->host;
613         struct page *page;
614         struct buffer_head bh;
615         unsigned long vaddr = (unsigned long)vmf->virtual_address;
616         unsigned blkbits = inode->i_blkbits;
617         sector_t block;
618         pgoff_t size;
619         int error;
620         int major = 0;
621
622         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
623         if (vmf->pgoff >= size)
624                 return VM_FAULT_SIGBUS;
625
626         memset(&bh, 0, sizeof(bh));
627         block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
628         bh.b_bdev = inode->i_sb->s_bdev;
629         bh.b_size = PAGE_SIZE;
630
631  repeat:
632         page = find_get_page(mapping, vmf->pgoff);
633         if (page) {
634                 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
635                         put_page(page);
636                         return VM_FAULT_RETRY;
637                 }
638                 if (unlikely(page->mapping != mapping)) {
639                         unlock_page(page);
640                         put_page(page);
641                         goto repeat;
642                 }
643                 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
644                 if (unlikely(vmf->pgoff >= size)) {
645                         /*
646                          * We have a struct page covering a hole in the file
647                          * from a read fault and we've raced with a truncate
648                          */
649                         error = -EIO;
650                         goto unlock_page;
651                 }
652         }
653
654         error = get_block(inode, block, &bh, 0);
655         if (!error && (bh.b_size < PAGE_SIZE))
656                 error = -EIO;           /* fs corruption? */
657         if (error)
658                 goto unlock_page;
659
660         if (!buffer_mapped(&bh) && !vmf->cow_page) {
661                 if (vmf->flags & FAULT_FLAG_WRITE) {
662                         error = get_block(inode, block, &bh, 1);
663                         count_vm_event(PGMAJFAULT);
664                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
665                         major = VM_FAULT_MAJOR;
666                         if (!error && (bh.b_size < PAGE_SIZE))
667                                 error = -EIO;
668                         if (error)
669                                 goto unlock_page;
670                 } else {
671                         return dax_load_hole(mapping, page, vmf);
672                 }
673         }
674
675         if (vmf->cow_page) {
676                 struct page *new_page = vmf->cow_page;
677                 if (buffer_written(&bh))
678                         error = copy_user_bh(new_page, inode, &bh, vaddr);
679                 else
680                         clear_user_highpage(new_page, vaddr);
681                 if (error)
682                         goto unlock_page;
683                 vmf->page = page;
684                 if (!page) {
685                         i_mmap_lock_read(mapping);
686                         /* Check we didn't race with truncate */
687                         size = (i_size_read(inode) + PAGE_SIZE - 1) >>
688                                                                 PAGE_SHIFT;
689                         if (vmf->pgoff >= size) {
690                                 i_mmap_unlock_read(mapping);
691                                 error = -EIO;
692                                 goto out;
693                         }
694                 }
695                 return VM_FAULT_LOCKED;
696         }
697
698         /* Check we didn't race with a read fault installing a new page */
699         if (!page && major)
700                 page = find_lock_page(mapping, vmf->pgoff);
701
702         if (page) {
703                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
704                                                         PAGE_SIZE, 0);
705                 delete_from_page_cache(page);
706                 unlock_page(page);
707                 put_page(page);
708                 page = NULL;
709         }
710
711         /* Filesystem should not return unwritten buffers to us! */
712         WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
713         error = dax_insert_mapping(inode, &bh, vma, vmf);
714
715  out:
716         if (error == -ENOMEM)
717                 return VM_FAULT_OOM | major;
718         /* -EBUSY is fine, somebody else faulted on the same PTE */
719         if ((error < 0) && (error != -EBUSY))
720                 return VM_FAULT_SIGBUS | major;
721         return VM_FAULT_NOPAGE | major;
722
723  unlock_page:
724         if (page) {
725                 unlock_page(page);
726                 put_page(page);
727         }
728         goto out;
729 }
730 EXPORT_SYMBOL(__dax_fault);
731
732 /**
733  * dax_fault - handle a page fault on a DAX file
734  * @vma: The virtual memory area where the fault occurred
735  * @vmf: The description of the fault
736  * @get_block: The filesystem method used to translate file offsets to blocks
737  *
738  * When a page fault occurs, filesystems may call this helper in their
739  * fault handler for DAX files.
740  */
741 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
742               get_block_t get_block)
743 {
744         int result;
745         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
746
747         if (vmf->flags & FAULT_FLAG_WRITE) {
748                 sb_start_pagefault(sb);
749                 file_update_time(vma->vm_file);
750         }
751         result = __dax_fault(vma, vmf, get_block);
752         if (vmf->flags & FAULT_FLAG_WRITE)
753                 sb_end_pagefault(sb);
754
755         return result;
756 }
757 EXPORT_SYMBOL_GPL(dax_fault);
758
759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
760 /*
761  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
762  * more often than one might expect in the below function.
763  */
764 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
765
766 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
767                 const char *reason, const char *fn)
768 {
769         if (bh) {
770                 char bname[BDEVNAME_SIZE];
771                 bdevname(bh->b_bdev, bname);
772                 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
773                         "length %zd fallback: %s\n", fn, current->comm,
774                         address, bname, bh->b_state, (u64)bh->b_blocknr,
775                         bh->b_size, reason);
776         } else {
777                 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
778                         current->comm, address, reason);
779         }
780 }
781
782 #define dax_pmd_dbg(bh, address, reason)        __dax_dbg(bh, address, reason, "dax_pmd")
783
784 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
785                 pmd_t *pmd, unsigned int flags, get_block_t get_block)
786 {
787         struct file *file = vma->vm_file;
788         struct address_space *mapping = file->f_mapping;
789         struct inode *inode = mapping->host;
790         struct buffer_head bh;
791         unsigned blkbits = inode->i_blkbits;
792         unsigned long pmd_addr = address & PMD_MASK;
793         bool write = flags & FAULT_FLAG_WRITE;
794         struct block_device *bdev;
795         pgoff_t size, pgoff;
796         sector_t block;
797         int error, result = 0;
798         bool alloc = false;
799
800         /* dax pmd mappings require pfn_t_devmap() */
801         if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
802                 return VM_FAULT_FALLBACK;
803
804         /* Fall back to PTEs if we're going to COW */
805         if (write && !(vma->vm_flags & VM_SHARED)) {
806                 split_huge_pmd(vma, pmd, address);
807                 dax_pmd_dbg(NULL, address, "cow write");
808                 return VM_FAULT_FALLBACK;
809         }
810         /* If the PMD would extend outside the VMA */
811         if (pmd_addr < vma->vm_start) {
812                 dax_pmd_dbg(NULL, address, "vma start unaligned");
813                 return VM_FAULT_FALLBACK;
814         }
815         if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
816                 dax_pmd_dbg(NULL, address, "vma end unaligned");
817                 return VM_FAULT_FALLBACK;
818         }
819
820         pgoff = linear_page_index(vma, pmd_addr);
821         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
822         if (pgoff >= size)
823                 return VM_FAULT_SIGBUS;
824         /* If the PMD would cover blocks out of the file */
825         if ((pgoff | PG_PMD_COLOUR) >= size) {
826                 dax_pmd_dbg(NULL, address,
827                                 "offset + huge page size > file size");
828                 return VM_FAULT_FALLBACK;
829         }
830
831         memset(&bh, 0, sizeof(bh));
832         bh.b_bdev = inode->i_sb->s_bdev;
833         block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
834
835         bh.b_size = PMD_SIZE;
836
837         if (get_block(inode, block, &bh, 0) != 0)
838                 return VM_FAULT_SIGBUS;
839
840         if (!buffer_mapped(&bh) && write) {
841                 if (get_block(inode, block, &bh, 1) != 0)
842                         return VM_FAULT_SIGBUS;
843                 alloc = true;
844                 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
845         }
846
847         bdev = bh.b_bdev;
848
849         /*
850          * If the filesystem isn't willing to tell us the length of a hole,
851          * just fall back to PTEs.  Calling get_block 512 times in a loop
852          * would be silly.
853          */
854         if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
855                 dax_pmd_dbg(&bh, address, "allocated block too small");
856                 return VM_FAULT_FALLBACK;
857         }
858
859         /*
860          * If we allocated new storage, make sure no process has any
861          * zero pages covering this hole
862          */
863         if (alloc) {
864                 loff_t lstart = pgoff << PAGE_SHIFT;
865                 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
866
867                 truncate_pagecache_range(inode, lstart, lend);
868         }
869
870         i_mmap_lock_read(mapping);
871
872         /*
873          * If a truncate happened while we were allocating blocks, we may
874          * leave blocks allocated to the file that are beyond EOF.  We can't
875          * take i_mutex here, so just leave them hanging; they'll be freed
876          * when the file is deleted.
877          */
878         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
879         if (pgoff >= size) {
880                 result = VM_FAULT_SIGBUS;
881                 goto out;
882         }
883         if ((pgoff | PG_PMD_COLOUR) >= size) {
884                 dax_pmd_dbg(&bh, address,
885                                 "offset + huge page size > file size");
886                 goto fallback;
887         }
888
889         if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
890                 spinlock_t *ptl;
891                 pmd_t entry;
892                 struct page *zero_page = get_huge_zero_page();
893
894                 if (unlikely(!zero_page)) {
895                         dax_pmd_dbg(&bh, address, "no zero page");
896                         goto fallback;
897                 }
898
899                 ptl = pmd_lock(vma->vm_mm, pmd);
900                 if (!pmd_none(*pmd)) {
901                         spin_unlock(ptl);
902                         dax_pmd_dbg(&bh, address, "pmd already present");
903                         goto fallback;
904                 }
905
906                 dev_dbg(part_to_dev(bdev->bd_part),
907                                 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
908                                 __func__, current->comm, address,
909                                 (unsigned long long) to_sector(&bh, inode));
910
911                 entry = mk_pmd(zero_page, vma->vm_page_prot);
912                 entry = pmd_mkhuge(entry);
913                 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
914                 result = VM_FAULT_NOPAGE;
915                 spin_unlock(ptl);
916         } else {
917                 struct blk_dax_ctl dax = {
918                         .sector = to_sector(&bh, inode),
919                         .size = PMD_SIZE,
920                 };
921                 long length = dax_map_atomic(bdev, &dax);
922
923                 if (length < 0) {
924                         result = VM_FAULT_SIGBUS;
925                         goto out;
926                 }
927                 if (length < PMD_SIZE) {
928                         dax_pmd_dbg(&bh, address, "dax-length too small");
929                         dax_unmap_atomic(bdev, &dax);
930                         goto fallback;
931                 }
932                 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
933                         dax_pmd_dbg(&bh, address, "pfn unaligned");
934                         dax_unmap_atomic(bdev, &dax);
935                         goto fallback;
936                 }
937
938                 if (!pfn_t_devmap(dax.pfn)) {
939                         dax_unmap_atomic(bdev, &dax);
940                         dax_pmd_dbg(&bh, address, "pfn not in memmap");
941                         goto fallback;
942                 }
943                 dax_unmap_atomic(bdev, &dax);
944
945                 /*
946                  * For PTE faults we insert a radix tree entry for reads, and
947                  * leave it clean.  Then on the first write we dirty the radix
948                  * tree entry via the dax_pfn_mkwrite() path.  This sequence
949                  * allows the dax_pfn_mkwrite() call to be simpler and avoid a
950                  * call into get_block() to translate the pgoff to a sector in
951                  * order to be able to create a new radix tree entry.
952                  *
953                  * The PMD path doesn't have an equivalent to
954                  * dax_pfn_mkwrite(), though, so for a read followed by a
955                  * write we traverse all the way through __dax_pmd_fault()
956                  * twice.  This means we can just skip inserting a radix tree
957                  * entry completely on the initial read and just wait until
958                  * the write to insert a dirty entry.
959                  */
960                 if (write) {
961                         error = dax_radix_entry(mapping, pgoff, dax.sector,
962                                         true, true);
963                         if (error) {
964                                 dax_pmd_dbg(&bh, address,
965                                                 "PMD radix insertion failed");
966                                 goto fallback;
967                         }
968                 }
969
970                 dev_dbg(part_to_dev(bdev->bd_part),
971                                 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
972                                 __func__, current->comm, address,
973                                 pfn_t_to_pfn(dax.pfn),
974                                 (unsigned long long) dax.sector);
975                 result |= vmf_insert_pfn_pmd(vma, address, pmd,
976                                 dax.pfn, write);
977         }
978
979  out:
980         i_mmap_unlock_read(mapping);
981
982         return result;
983
984  fallback:
985         count_vm_event(THP_FAULT_FALLBACK);
986         result = VM_FAULT_FALLBACK;
987         goto out;
988 }
989 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
990
991 /**
992  * dax_pmd_fault - handle a PMD fault on a DAX file
993  * @vma: The virtual memory area where the fault occurred
994  * @vmf: The description of the fault
995  * @get_block: The filesystem method used to translate file offsets to blocks
996  *
997  * When a page fault occurs, filesystems may call this helper in their
998  * pmd_fault handler for DAX files.
999  */
1000 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1001                         pmd_t *pmd, unsigned int flags, get_block_t get_block)
1002 {
1003         int result;
1004         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1005
1006         if (flags & FAULT_FLAG_WRITE) {
1007                 sb_start_pagefault(sb);
1008                 file_update_time(vma->vm_file);
1009         }
1010         result = __dax_pmd_fault(vma, address, pmd, flags, get_block);
1011         if (flags & FAULT_FLAG_WRITE)
1012                 sb_end_pagefault(sb);
1013
1014         return result;
1015 }
1016 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1017 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1018
1019 /**
1020  * dax_pfn_mkwrite - handle first write to DAX page
1021  * @vma: The virtual memory area where the fault occurred
1022  * @vmf: The description of the fault
1023  */
1024 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1025 {
1026         struct file *file = vma->vm_file;
1027         int error;
1028
1029         /*
1030          * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1031          * RADIX_DAX_PTE entry already exists in the radix tree from a
1032          * previous call to __dax_fault().  We just want to look up that PTE
1033          * entry using vmf->pgoff and make sure the dirty tag is set.  This
1034          * saves us from having to make a call to get_block() here to look
1035          * up the sector.
1036          */
1037         error = dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false,
1038                         true);
1039
1040         if (error == -ENOMEM)
1041                 return VM_FAULT_OOM;
1042         if (error)
1043                 return VM_FAULT_SIGBUS;
1044         return VM_FAULT_NOPAGE;
1045 }
1046 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1047
1048 /**
1049  * dax_zero_page_range - zero a range within a page of a DAX file
1050  * @inode: The file being truncated
1051  * @from: The file offset that is being truncated to
1052  * @length: The number of bytes to zero
1053  * @get_block: The filesystem method used to translate file offsets to blocks
1054  *
1055  * This function can be called by a filesystem when it is zeroing part of a
1056  * page in a DAX file.  This is intended for hole-punch operations.  If
1057  * you are truncating a file, the helper function dax_truncate_page() may be
1058  * more convenient.
1059  *
1060  * We work in terms of PAGE_SIZE here for commonality with
1061  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1062  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1063  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1064  * since the file might be mmapped.
1065  */
1066 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1067                                                         get_block_t get_block)
1068 {
1069         struct buffer_head bh;
1070         pgoff_t index = from >> PAGE_SHIFT;
1071         unsigned offset = from & (PAGE_SIZE-1);
1072         int err;
1073
1074         /* Block boundary? Nothing to do */
1075         if (!length)
1076                 return 0;
1077         BUG_ON((offset + length) > PAGE_SIZE);
1078
1079         memset(&bh, 0, sizeof(bh));
1080         bh.b_bdev = inode->i_sb->s_bdev;
1081         bh.b_size = PAGE_SIZE;
1082         err = get_block(inode, index, &bh, 0);
1083         if (err < 0)
1084                 return err;
1085         if (buffer_written(&bh)) {
1086                 struct block_device *bdev = bh.b_bdev;
1087                 struct blk_dax_ctl dax = {
1088                         .sector = to_sector(&bh, inode),
1089                         .size = PAGE_SIZE,
1090                 };
1091
1092                 if (dax_map_atomic(bdev, &dax) < 0)
1093                         return PTR_ERR(dax.addr);
1094                 clear_pmem(dax.addr + offset, length);
1095                 wmb_pmem();
1096                 dax_unmap_atomic(bdev, &dax);
1097         }
1098
1099         return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1102
1103 /**
1104  * dax_truncate_page - handle a partial page being truncated in a DAX file
1105  * @inode: The file being truncated
1106  * @from: The file offset that is being truncated to
1107  * @get_block: The filesystem method used to translate file offsets to blocks
1108  *
1109  * Similar to block_truncate_page(), this function can be called by a
1110  * filesystem when it is truncating a DAX file to handle the partial page.
1111  *
1112  * We work in terms of PAGE_SIZE here for commonality with
1113  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1114  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1115  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1116  * since the file might be mmapped.
1117  */
1118 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1119 {
1120         unsigned length = PAGE_ALIGN(from) - from;
1121         return dax_zero_page_range(inode, from, length, get_block);
1122 }
1123 EXPORT_SYMBOL_GPL(dax_truncate_page);