]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/dax.c
dax: Remove pointless writeback from dax_do_io()
[karo-tx-linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34
35 #define RADIX_DAX_MASK  0xf
36 #define RADIX_DAX_SHIFT 4
37 #define RADIX_DAX_PTE  (0x4 | RADIX_TREE_EXCEPTIONAL_ENTRY)
38 #define RADIX_DAX_PMD  (0x8 | RADIX_TREE_EXCEPTIONAL_ENTRY)
39 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_MASK)
40 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
41 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
42                 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE)))
43
44 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
45 {
46         struct request_queue *q = bdev->bd_queue;
47         long rc = -EIO;
48
49         dax->addr = (void __pmem *) ERR_PTR(-EIO);
50         if (blk_queue_enter(q, true) != 0)
51                 return rc;
52
53         rc = bdev_direct_access(bdev, dax);
54         if (rc < 0) {
55                 dax->addr = (void __pmem *) ERR_PTR(rc);
56                 blk_queue_exit(q);
57                 return rc;
58         }
59         return rc;
60 }
61
62 static void dax_unmap_atomic(struct block_device *bdev,
63                 const struct blk_dax_ctl *dax)
64 {
65         if (IS_ERR(dax->addr))
66                 return;
67         blk_queue_exit(bdev->bd_queue);
68 }
69
70 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
71 {
72         struct page *page = alloc_pages(GFP_KERNEL, 0);
73         struct blk_dax_ctl dax = {
74                 .size = PAGE_SIZE,
75                 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
76         };
77         long rc;
78
79         if (!page)
80                 return ERR_PTR(-ENOMEM);
81
82         rc = dax_map_atomic(bdev, &dax);
83         if (rc < 0)
84                 return ERR_PTR(rc);
85         memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
86         dax_unmap_atomic(bdev, &dax);
87         return page;
88 }
89
90 /*
91  * dax_clear_sectors() is called from within transaction context from XFS,
92  * and hence this means the stack from this point must follow GFP_NOFS
93  * semantics for all operations.
94  */
95 int dax_clear_sectors(struct block_device *bdev, sector_t _sector, long _size)
96 {
97         struct blk_dax_ctl dax = {
98                 .sector = _sector,
99                 .size = _size,
100         };
101
102         might_sleep();
103         do {
104                 long count, sz;
105
106                 count = dax_map_atomic(bdev, &dax);
107                 if (count < 0)
108                         return count;
109                 sz = min_t(long, count, SZ_128K);
110                 clear_pmem(dax.addr, sz);
111                 dax.size -= sz;
112                 dax.sector += sz / 512;
113                 dax_unmap_atomic(bdev, &dax);
114                 cond_resched();
115         } while (dax.size);
116
117         wmb_pmem();
118         return 0;
119 }
120 EXPORT_SYMBOL_GPL(dax_clear_sectors);
121
122 static bool buffer_written(struct buffer_head *bh)
123 {
124         return buffer_mapped(bh) && !buffer_unwritten(bh);
125 }
126
127 /*
128  * When ext4 encounters a hole, it returns without modifying the buffer_head
129  * which means that we can't trust b_size.  To cope with this, we set b_state
130  * to 0 before calling get_block and, if any bit is set, we know we can trust
131  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
132  * and would save us time calling get_block repeatedly.
133  */
134 static bool buffer_size_valid(struct buffer_head *bh)
135 {
136         return bh->b_state != 0;
137 }
138
139
140 static sector_t to_sector(const struct buffer_head *bh,
141                 const struct inode *inode)
142 {
143         sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
144
145         return sector;
146 }
147
148 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
149                       loff_t start, loff_t end, get_block_t get_block,
150                       struct buffer_head *bh)
151 {
152         loff_t pos = start, max = start, bh_max = start;
153         bool hole = false, need_wmb = false;
154         struct block_device *bdev = NULL;
155         int rw = iov_iter_rw(iter), rc;
156         long map_len = 0;
157         struct blk_dax_ctl dax = {
158                 .addr = (void __pmem *) ERR_PTR(-EIO),
159         };
160         unsigned blkbits = inode->i_blkbits;
161         sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1)
162                                                                 >> blkbits;
163
164         if (rw == READ)
165                 end = min(end, i_size_read(inode));
166
167         while (pos < end) {
168                 size_t len;
169                 if (pos == max) {
170                         long page = pos >> PAGE_SHIFT;
171                         sector_t block = page << (PAGE_SHIFT - blkbits);
172                         unsigned first = pos - (block << blkbits);
173                         long size;
174
175                         if (pos == bh_max) {
176                                 bh->b_size = PAGE_ALIGN(end - pos);
177                                 bh->b_state = 0;
178                                 rc = get_block(inode, block, bh, rw == WRITE);
179                                 if (rc)
180                                         break;
181                                 if (!buffer_size_valid(bh))
182                                         bh->b_size = 1 << blkbits;
183                                 bh_max = pos - first + bh->b_size;
184                                 bdev = bh->b_bdev;
185                                 /*
186                                  * We allow uninitialized buffers for writes
187                                  * beyond EOF as those cannot race with faults
188                                  */
189                                 WARN_ON_ONCE(
190                                         (buffer_new(bh) && block < file_blks) ||
191                                         (rw == WRITE && buffer_unwritten(bh)));
192                         } else {
193                                 unsigned done = bh->b_size -
194                                                 (bh_max - (pos - first));
195                                 bh->b_blocknr += done >> blkbits;
196                                 bh->b_size -= done;
197                         }
198
199                         hole = rw == READ && !buffer_written(bh);
200                         if (hole) {
201                                 size = bh->b_size - first;
202                         } else {
203                                 dax_unmap_atomic(bdev, &dax);
204                                 dax.sector = to_sector(bh, inode);
205                                 dax.size = bh->b_size;
206                                 map_len = dax_map_atomic(bdev, &dax);
207                                 if (map_len < 0) {
208                                         rc = map_len;
209                                         break;
210                                 }
211                                 dax.addr += first;
212                                 size = map_len - first;
213                         }
214                         max = min(pos + size, end);
215                 }
216
217                 if (iov_iter_rw(iter) == WRITE) {
218                         len = copy_from_iter_pmem(dax.addr, max - pos, iter);
219                         need_wmb = true;
220                 } else if (!hole)
221                         len = copy_to_iter((void __force *) dax.addr, max - pos,
222                                         iter);
223                 else
224                         len = iov_iter_zero(max - pos, iter);
225
226                 if (!len) {
227                         rc = -EFAULT;
228                         break;
229                 }
230
231                 pos += len;
232                 if (!IS_ERR(dax.addr))
233                         dax.addr += len;
234         }
235
236         if (need_wmb)
237                 wmb_pmem();
238         dax_unmap_atomic(bdev, &dax);
239
240         return (pos == start) ? rc : pos - start;
241 }
242
243 /**
244  * dax_do_io - Perform I/O to a DAX file
245  * @iocb: The control block for this I/O
246  * @inode: The file which the I/O is directed at
247  * @iter: The addresses to do I/O from or to
248  * @pos: The file offset where the I/O starts
249  * @get_block: The filesystem method used to translate file offsets to blocks
250  * @end_io: A filesystem callback for I/O completion
251  * @flags: See below
252  *
253  * This function uses the same locking scheme as do_blockdev_direct_IO:
254  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
255  * caller for writes.  For reads, we take and release the i_mutex ourselves.
256  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
257  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
258  * is in progress.
259  */
260 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
261                   struct iov_iter *iter, loff_t pos, get_block_t get_block,
262                   dio_iodone_t end_io, int flags)
263 {
264         struct buffer_head bh;
265         ssize_t retval = -EINVAL;
266         loff_t end = pos + iov_iter_count(iter);
267
268         memset(&bh, 0, sizeof(bh));
269         bh.b_bdev = inode->i_sb->s_bdev;
270
271         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
272                 inode_lock(inode);
273
274         /* Protects against truncate */
275         if (!(flags & DIO_SKIP_DIO_COUNT))
276                 inode_dio_begin(inode);
277
278         retval = dax_io(inode, iter, pos, end, get_block, &bh);
279
280         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
281                 inode_unlock(inode);
282
283         if (end_io) {
284                 int err;
285
286                 err = end_io(iocb, pos, retval, bh.b_private);
287                 if (err)
288                         retval = err;
289         }
290
291         if (!(flags & DIO_SKIP_DIO_COUNT))
292                 inode_dio_end(inode);
293         return retval;
294 }
295 EXPORT_SYMBOL_GPL(dax_do_io);
296
297 /*
298  * The user has performed a load from a hole in the file.  Allocating
299  * a new page in the file would cause excessive storage usage for
300  * workloads with sparse files.  We allocate a page cache page instead.
301  * We'll kick it out of the page cache if it's ever written to,
302  * otherwise it will simply fall out of the page cache under memory
303  * pressure without ever having been dirtied.
304  */
305 static int dax_load_hole(struct address_space *mapping, struct page *page,
306                                                         struct vm_fault *vmf)
307 {
308         unsigned long size;
309         struct inode *inode = mapping->host;
310         if (!page)
311                 page = find_or_create_page(mapping, vmf->pgoff,
312                                                 GFP_KERNEL | __GFP_ZERO);
313         if (!page)
314                 return VM_FAULT_OOM;
315         /* Recheck i_size under page lock to avoid truncate race */
316         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
317         if (vmf->pgoff >= size) {
318                 unlock_page(page);
319                 put_page(page);
320                 return VM_FAULT_SIGBUS;
321         }
322
323         vmf->page = page;
324         return VM_FAULT_LOCKED;
325 }
326
327 static int copy_user_bh(struct page *to, struct inode *inode,
328                 struct buffer_head *bh, unsigned long vaddr)
329 {
330         struct blk_dax_ctl dax = {
331                 .sector = to_sector(bh, inode),
332                 .size = bh->b_size,
333         };
334         struct block_device *bdev = bh->b_bdev;
335         void *vto;
336
337         if (dax_map_atomic(bdev, &dax) < 0)
338                 return PTR_ERR(dax.addr);
339         vto = kmap_atomic(to);
340         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
341         kunmap_atomic(vto);
342         dax_unmap_atomic(bdev, &dax);
343         return 0;
344 }
345
346 #define NO_SECTOR -1
347 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
348
349 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
350                 sector_t sector, bool pmd_entry, bool dirty)
351 {
352         struct radix_tree_root *page_tree = &mapping->page_tree;
353         pgoff_t pmd_index = DAX_PMD_INDEX(index);
354         int type, error = 0;
355         void *entry;
356
357         WARN_ON_ONCE(pmd_entry && !dirty);
358         if (dirty)
359                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
360
361         spin_lock_irq(&mapping->tree_lock);
362
363         entry = radix_tree_lookup(page_tree, pmd_index);
364         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
365                 index = pmd_index;
366                 goto dirty;
367         }
368
369         entry = radix_tree_lookup(page_tree, index);
370         if (entry) {
371                 type = RADIX_DAX_TYPE(entry);
372                 if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
373                                         type != RADIX_DAX_PMD)) {
374                         error = -EIO;
375                         goto unlock;
376                 }
377
378                 if (!pmd_entry || type == RADIX_DAX_PMD)
379                         goto dirty;
380
381                 /*
382                  * We only insert dirty PMD entries into the radix tree.  This
383                  * means we don't need to worry about removing a dirty PTE
384                  * entry and inserting a clean PMD entry, thus reducing the
385                  * range we would flush with a follow-up fsync/msync call.
386                  */
387                 radix_tree_delete(&mapping->page_tree, index);
388                 mapping->nrexceptional--;
389         }
390
391         if (sector == NO_SECTOR) {
392                 /*
393                  * This can happen during correct operation if our pfn_mkwrite
394                  * fault raced against a hole punch operation.  If this
395                  * happens the pte that was hole punched will have been
396                  * unmapped and the radix tree entry will have been removed by
397                  * the time we are called, but the call will still happen.  We
398                  * will return all the way up to wp_pfn_shared(), where the
399                  * pte_same() check will fail, eventually causing page fault
400                  * to be retried by the CPU.
401                  */
402                 goto unlock;
403         }
404
405         error = radix_tree_insert(page_tree, index,
406                         RADIX_DAX_ENTRY(sector, pmd_entry));
407         if (error)
408                 goto unlock;
409
410         mapping->nrexceptional++;
411  dirty:
412         if (dirty)
413                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
414  unlock:
415         spin_unlock_irq(&mapping->tree_lock);
416         return error;
417 }
418
419 static int dax_writeback_one(struct block_device *bdev,
420                 struct address_space *mapping, pgoff_t index, void *entry)
421 {
422         struct radix_tree_root *page_tree = &mapping->page_tree;
423         int type = RADIX_DAX_TYPE(entry);
424         struct radix_tree_node *node;
425         struct blk_dax_ctl dax;
426         void **slot;
427         int ret = 0;
428
429         spin_lock_irq(&mapping->tree_lock);
430         /*
431          * Regular page slots are stabilized by the page lock even
432          * without the tree itself locked.  These unlocked entries
433          * need verification under the tree lock.
434          */
435         if (!__radix_tree_lookup(page_tree, index, &node, &slot))
436                 goto unlock;
437         if (*slot != entry)
438                 goto unlock;
439
440         /* another fsync thread may have already written back this entry */
441         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
442                 goto unlock;
443
444         if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
445                 ret = -EIO;
446                 goto unlock;
447         }
448
449         dax.sector = RADIX_DAX_SECTOR(entry);
450         dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
451         spin_unlock_irq(&mapping->tree_lock);
452
453         /*
454          * We cannot hold tree_lock while calling dax_map_atomic() because it
455          * eventually calls cond_resched().
456          */
457         ret = dax_map_atomic(bdev, &dax);
458         if (ret < 0)
459                 return ret;
460
461         if (WARN_ON_ONCE(ret < dax.size)) {
462                 ret = -EIO;
463                 goto unmap;
464         }
465
466         wb_cache_pmem(dax.addr, dax.size);
467
468         spin_lock_irq(&mapping->tree_lock);
469         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
470         spin_unlock_irq(&mapping->tree_lock);
471  unmap:
472         dax_unmap_atomic(bdev, &dax);
473         return ret;
474
475  unlock:
476         spin_unlock_irq(&mapping->tree_lock);
477         return ret;
478 }
479
480 /*
481  * Flush the mapping to the persistent domain within the byte range of [start,
482  * end]. This is required by data integrity operations to ensure file data is
483  * on persistent storage prior to completion of the operation.
484  */
485 int dax_writeback_mapping_range(struct address_space *mapping,
486                 struct block_device *bdev, struct writeback_control *wbc)
487 {
488         struct inode *inode = mapping->host;
489         pgoff_t start_index, end_index, pmd_index;
490         pgoff_t indices[PAGEVEC_SIZE];
491         struct pagevec pvec;
492         bool done = false;
493         int i, ret = 0;
494         void *entry;
495
496         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
497                 return -EIO;
498
499         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
500                 return 0;
501
502         start_index = wbc->range_start >> PAGE_SHIFT;
503         end_index = wbc->range_end >> PAGE_SHIFT;
504         pmd_index = DAX_PMD_INDEX(start_index);
505
506         rcu_read_lock();
507         entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
508         rcu_read_unlock();
509
510         /* see if the start of our range is covered by a PMD entry */
511         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
512                 start_index = pmd_index;
513
514         tag_pages_for_writeback(mapping, start_index, end_index);
515
516         pagevec_init(&pvec, 0);
517         while (!done) {
518                 pvec.nr = find_get_entries_tag(mapping, start_index,
519                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
520                                 pvec.pages, indices);
521
522                 if (pvec.nr == 0)
523                         break;
524
525                 for (i = 0; i < pvec.nr; i++) {
526                         if (indices[i] > end_index) {
527                                 done = true;
528                                 break;
529                         }
530
531                         ret = dax_writeback_one(bdev, mapping, indices[i],
532                                         pvec.pages[i]);
533                         if (ret < 0)
534                                 return ret;
535                 }
536         }
537         wmb_pmem();
538         return 0;
539 }
540 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
541
542 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
543                         struct vm_area_struct *vma, struct vm_fault *vmf)
544 {
545         unsigned long vaddr = (unsigned long)vmf->virtual_address;
546         struct address_space *mapping = inode->i_mapping;
547         struct block_device *bdev = bh->b_bdev;
548         struct blk_dax_ctl dax = {
549                 .sector = to_sector(bh, inode),
550                 .size = bh->b_size,
551         };
552         pgoff_t size;
553         int error;
554
555         i_mmap_lock_read(mapping);
556
557         /*
558          * Check truncate didn't happen while we were allocating a block.
559          * If it did, this block may or may not be still allocated to the
560          * file.  We can't tell the filesystem to free it because we can't
561          * take i_mutex here.  In the worst case, the file still has blocks
562          * allocated past the end of the file.
563          */
564         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
565         if (unlikely(vmf->pgoff >= size)) {
566                 error = -EIO;
567                 goto out;
568         }
569
570         if (dax_map_atomic(bdev, &dax) < 0) {
571                 error = PTR_ERR(dax.addr);
572                 goto out;
573         }
574         dax_unmap_atomic(bdev, &dax);
575
576         error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
577                         vmf->flags & FAULT_FLAG_WRITE);
578         if (error)
579                 goto out;
580
581         error = vm_insert_mixed(vma, vaddr, dax.pfn);
582
583  out:
584         i_mmap_unlock_read(mapping);
585
586         return error;
587 }
588
589 /**
590  * __dax_fault - handle a page fault on a DAX file
591  * @vma: The virtual memory area where the fault occurred
592  * @vmf: The description of the fault
593  * @get_block: The filesystem method used to translate file offsets to blocks
594  *
595  * When a page fault occurs, filesystems may call this helper in their
596  * fault handler for DAX files. __dax_fault() assumes the caller has done all
597  * the necessary locking for the page fault to proceed successfully.
598  */
599 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
600                         get_block_t get_block)
601 {
602         struct file *file = vma->vm_file;
603         struct address_space *mapping = file->f_mapping;
604         struct inode *inode = mapping->host;
605         struct page *page;
606         struct buffer_head bh;
607         unsigned long vaddr = (unsigned long)vmf->virtual_address;
608         unsigned blkbits = inode->i_blkbits;
609         sector_t block;
610         pgoff_t size;
611         int error;
612         int major = 0;
613
614         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
615         if (vmf->pgoff >= size)
616                 return VM_FAULT_SIGBUS;
617
618         memset(&bh, 0, sizeof(bh));
619         block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
620         bh.b_bdev = inode->i_sb->s_bdev;
621         bh.b_size = PAGE_SIZE;
622
623  repeat:
624         page = find_get_page(mapping, vmf->pgoff);
625         if (page) {
626                 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
627                         put_page(page);
628                         return VM_FAULT_RETRY;
629                 }
630                 if (unlikely(page->mapping != mapping)) {
631                         unlock_page(page);
632                         put_page(page);
633                         goto repeat;
634                 }
635                 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
636                 if (unlikely(vmf->pgoff >= size)) {
637                         /*
638                          * We have a struct page covering a hole in the file
639                          * from a read fault and we've raced with a truncate
640                          */
641                         error = -EIO;
642                         goto unlock_page;
643                 }
644         }
645
646         error = get_block(inode, block, &bh, 0);
647         if (!error && (bh.b_size < PAGE_SIZE))
648                 error = -EIO;           /* fs corruption? */
649         if (error)
650                 goto unlock_page;
651
652         if (!buffer_mapped(&bh) && !vmf->cow_page) {
653                 if (vmf->flags & FAULT_FLAG_WRITE) {
654                         error = get_block(inode, block, &bh, 1);
655                         count_vm_event(PGMAJFAULT);
656                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
657                         major = VM_FAULT_MAJOR;
658                         if (!error && (bh.b_size < PAGE_SIZE))
659                                 error = -EIO;
660                         if (error)
661                                 goto unlock_page;
662                 } else {
663                         return dax_load_hole(mapping, page, vmf);
664                 }
665         }
666
667         if (vmf->cow_page) {
668                 struct page *new_page = vmf->cow_page;
669                 if (buffer_written(&bh))
670                         error = copy_user_bh(new_page, inode, &bh, vaddr);
671                 else
672                         clear_user_highpage(new_page, vaddr);
673                 if (error)
674                         goto unlock_page;
675                 vmf->page = page;
676                 if (!page) {
677                         i_mmap_lock_read(mapping);
678                         /* Check we didn't race with truncate */
679                         size = (i_size_read(inode) + PAGE_SIZE - 1) >>
680                                                                 PAGE_SHIFT;
681                         if (vmf->pgoff >= size) {
682                                 i_mmap_unlock_read(mapping);
683                                 error = -EIO;
684                                 goto out;
685                         }
686                 }
687                 return VM_FAULT_LOCKED;
688         }
689
690         /* Check we didn't race with a read fault installing a new page */
691         if (!page && major)
692                 page = find_lock_page(mapping, vmf->pgoff);
693
694         if (page) {
695                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
696                                                         PAGE_SIZE, 0);
697                 delete_from_page_cache(page);
698                 unlock_page(page);
699                 put_page(page);
700                 page = NULL;
701         }
702
703         /* Filesystem should not return unwritten buffers to us! */
704         WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
705         error = dax_insert_mapping(inode, &bh, vma, vmf);
706
707  out:
708         if (error == -ENOMEM)
709                 return VM_FAULT_OOM | major;
710         /* -EBUSY is fine, somebody else faulted on the same PTE */
711         if ((error < 0) && (error != -EBUSY))
712                 return VM_FAULT_SIGBUS | major;
713         return VM_FAULT_NOPAGE | major;
714
715  unlock_page:
716         if (page) {
717                 unlock_page(page);
718                 put_page(page);
719         }
720         goto out;
721 }
722 EXPORT_SYMBOL(__dax_fault);
723
724 /**
725  * dax_fault - handle a page fault on a DAX file
726  * @vma: The virtual memory area where the fault occurred
727  * @vmf: The description of the fault
728  * @get_block: The filesystem method used to translate file offsets to blocks
729  *
730  * When a page fault occurs, filesystems may call this helper in their
731  * fault handler for DAX files.
732  */
733 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
734               get_block_t get_block)
735 {
736         int result;
737         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
738
739         if (vmf->flags & FAULT_FLAG_WRITE) {
740                 sb_start_pagefault(sb);
741                 file_update_time(vma->vm_file);
742         }
743         result = __dax_fault(vma, vmf, get_block);
744         if (vmf->flags & FAULT_FLAG_WRITE)
745                 sb_end_pagefault(sb);
746
747         return result;
748 }
749 EXPORT_SYMBOL_GPL(dax_fault);
750
751 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
752 /*
753  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
754  * more often than one might expect in the below function.
755  */
756 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
757
758 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
759                 const char *reason, const char *fn)
760 {
761         if (bh) {
762                 char bname[BDEVNAME_SIZE];
763                 bdevname(bh->b_bdev, bname);
764                 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
765                         "length %zd fallback: %s\n", fn, current->comm,
766                         address, bname, bh->b_state, (u64)bh->b_blocknr,
767                         bh->b_size, reason);
768         } else {
769                 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
770                         current->comm, address, reason);
771         }
772 }
773
774 #define dax_pmd_dbg(bh, address, reason)        __dax_dbg(bh, address, reason, "dax_pmd")
775
776 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
777                 pmd_t *pmd, unsigned int flags, get_block_t get_block)
778 {
779         struct file *file = vma->vm_file;
780         struct address_space *mapping = file->f_mapping;
781         struct inode *inode = mapping->host;
782         struct buffer_head bh;
783         unsigned blkbits = inode->i_blkbits;
784         unsigned long pmd_addr = address & PMD_MASK;
785         bool write = flags & FAULT_FLAG_WRITE;
786         struct block_device *bdev;
787         pgoff_t size, pgoff;
788         sector_t block;
789         int error, result = 0;
790         bool alloc = false;
791
792         /* dax pmd mappings require pfn_t_devmap() */
793         if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
794                 return VM_FAULT_FALLBACK;
795
796         /* Fall back to PTEs if we're going to COW */
797         if (write && !(vma->vm_flags & VM_SHARED)) {
798                 split_huge_pmd(vma, pmd, address);
799                 dax_pmd_dbg(NULL, address, "cow write");
800                 return VM_FAULT_FALLBACK;
801         }
802         /* If the PMD would extend outside the VMA */
803         if (pmd_addr < vma->vm_start) {
804                 dax_pmd_dbg(NULL, address, "vma start unaligned");
805                 return VM_FAULT_FALLBACK;
806         }
807         if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
808                 dax_pmd_dbg(NULL, address, "vma end unaligned");
809                 return VM_FAULT_FALLBACK;
810         }
811
812         pgoff = linear_page_index(vma, pmd_addr);
813         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
814         if (pgoff >= size)
815                 return VM_FAULT_SIGBUS;
816         /* If the PMD would cover blocks out of the file */
817         if ((pgoff | PG_PMD_COLOUR) >= size) {
818                 dax_pmd_dbg(NULL, address,
819                                 "offset + huge page size > file size");
820                 return VM_FAULT_FALLBACK;
821         }
822
823         memset(&bh, 0, sizeof(bh));
824         bh.b_bdev = inode->i_sb->s_bdev;
825         block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
826
827         bh.b_size = PMD_SIZE;
828
829         if (get_block(inode, block, &bh, 0) != 0)
830                 return VM_FAULT_SIGBUS;
831
832         if (!buffer_mapped(&bh) && write) {
833                 if (get_block(inode, block, &bh, 1) != 0)
834                         return VM_FAULT_SIGBUS;
835                 alloc = true;
836                 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
837         }
838
839         bdev = bh.b_bdev;
840
841         /*
842          * If the filesystem isn't willing to tell us the length of a hole,
843          * just fall back to PTEs.  Calling get_block 512 times in a loop
844          * would be silly.
845          */
846         if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
847                 dax_pmd_dbg(&bh, address, "allocated block too small");
848                 return VM_FAULT_FALLBACK;
849         }
850
851         /*
852          * If we allocated new storage, make sure no process has any
853          * zero pages covering this hole
854          */
855         if (alloc) {
856                 loff_t lstart = pgoff << PAGE_SHIFT;
857                 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
858
859                 truncate_pagecache_range(inode, lstart, lend);
860         }
861
862         i_mmap_lock_read(mapping);
863
864         /*
865          * If a truncate happened while we were allocating blocks, we may
866          * leave blocks allocated to the file that are beyond EOF.  We can't
867          * take i_mutex here, so just leave them hanging; they'll be freed
868          * when the file is deleted.
869          */
870         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
871         if (pgoff >= size) {
872                 result = VM_FAULT_SIGBUS;
873                 goto out;
874         }
875         if ((pgoff | PG_PMD_COLOUR) >= size) {
876                 dax_pmd_dbg(&bh, address,
877                                 "offset + huge page size > file size");
878                 goto fallback;
879         }
880
881         if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
882                 spinlock_t *ptl;
883                 pmd_t entry;
884                 struct page *zero_page = get_huge_zero_page();
885
886                 if (unlikely(!zero_page)) {
887                         dax_pmd_dbg(&bh, address, "no zero page");
888                         goto fallback;
889                 }
890
891                 ptl = pmd_lock(vma->vm_mm, pmd);
892                 if (!pmd_none(*pmd)) {
893                         spin_unlock(ptl);
894                         dax_pmd_dbg(&bh, address, "pmd already present");
895                         goto fallback;
896                 }
897
898                 dev_dbg(part_to_dev(bdev->bd_part),
899                                 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
900                                 __func__, current->comm, address,
901                                 (unsigned long long) to_sector(&bh, inode));
902
903                 entry = mk_pmd(zero_page, vma->vm_page_prot);
904                 entry = pmd_mkhuge(entry);
905                 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
906                 result = VM_FAULT_NOPAGE;
907                 spin_unlock(ptl);
908         } else {
909                 struct blk_dax_ctl dax = {
910                         .sector = to_sector(&bh, inode),
911                         .size = PMD_SIZE,
912                 };
913                 long length = dax_map_atomic(bdev, &dax);
914
915                 if (length < 0) {
916                         result = VM_FAULT_SIGBUS;
917                         goto out;
918                 }
919                 if (length < PMD_SIZE) {
920                         dax_pmd_dbg(&bh, address, "dax-length too small");
921                         dax_unmap_atomic(bdev, &dax);
922                         goto fallback;
923                 }
924                 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
925                         dax_pmd_dbg(&bh, address, "pfn unaligned");
926                         dax_unmap_atomic(bdev, &dax);
927                         goto fallback;
928                 }
929
930                 if (!pfn_t_devmap(dax.pfn)) {
931                         dax_unmap_atomic(bdev, &dax);
932                         dax_pmd_dbg(&bh, address, "pfn not in memmap");
933                         goto fallback;
934                 }
935                 dax_unmap_atomic(bdev, &dax);
936
937                 /*
938                  * For PTE faults we insert a radix tree entry for reads, and
939                  * leave it clean.  Then on the first write we dirty the radix
940                  * tree entry via the dax_pfn_mkwrite() path.  This sequence
941                  * allows the dax_pfn_mkwrite() call to be simpler and avoid a
942                  * call into get_block() to translate the pgoff to a sector in
943                  * order to be able to create a new radix tree entry.
944                  *
945                  * The PMD path doesn't have an equivalent to
946                  * dax_pfn_mkwrite(), though, so for a read followed by a
947                  * write we traverse all the way through __dax_pmd_fault()
948                  * twice.  This means we can just skip inserting a radix tree
949                  * entry completely on the initial read and just wait until
950                  * the write to insert a dirty entry.
951                  */
952                 if (write) {
953                         error = dax_radix_entry(mapping, pgoff, dax.sector,
954                                         true, true);
955                         if (error) {
956                                 dax_pmd_dbg(&bh, address,
957                                                 "PMD radix insertion failed");
958                                 goto fallback;
959                         }
960                 }
961
962                 dev_dbg(part_to_dev(bdev->bd_part),
963                                 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
964                                 __func__, current->comm, address,
965                                 pfn_t_to_pfn(dax.pfn),
966                                 (unsigned long long) dax.sector);
967                 result |= vmf_insert_pfn_pmd(vma, address, pmd,
968                                 dax.pfn, write);
969         }
970
971  out:
972         i_mmap_unlock_read(mapping);
973
974         return result;
975
976  fallback:
977         count_vm_event(THP_FAULT_FALLBACK);
978         result = VM_FAULT_FALLBACK;
979         goto out;
980 }
981 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
982
983 /**
984  * dax_pmd_fault - handle a PMD fault on a DAX file
985  * @vma: The virtual memory area where the fault occurred
986  * @vmf: The description of the fault
987  * @get_block: The filesystem method used to translate file offsets to blocks
988  *
989  * When a page fault occurs, filesystems may call this helper in their
990  * pmd_fault handler for DAX files.
991  */
992 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
993                         pmd_t *pmd, unsigned int flags, get_block_t get_block)
994 {
995         int result;
996         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
997
998         if (flags & FAULT_FLAG_WRITE) {
999                 sb_start_pagefault(sb);
1000                 file_update_time(vma->vm_file);
1001         }
1002         result = __dax_pmd_fault(vma, address, pmd, flags, get_block);
1003         if (flags & FAULT_FLAG_WRITE)
1004                 sb_end_pagefault(sb);
1005
1006         return result;
1007 }
1008 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1009 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1010
1011 /**
1012  * dax_pfn_mkwrite - handle first write to DAX page
1013  * @vma: The virtual memory area where the fault occurred
1014  * @vmf: The description of the fault
1015  */
1016 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1017 {
1018         struct file *file = vma->vm_file;
1019         int error;
1020
1021         /*
1022          * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1023          * RADIX_DAX_PTE entry already exists in the radix tree from a
1024          * previous call to __dax_fault().  We just want to look up that PTE
1025          * entry using vmf->pgoff and make sure the dirty tag is set.  This
1026          * saves us from having to make a call to get_block() here to look
1027          * up the sector.
1028          */
1029         error = dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false,
1030                         true);
1031
1032         if (error == -ENOMEM)
1033                 return VM_FAULT_OOM;
1034         if (error)
1035                 return VM_FAULT_SIGBUS;
1036         return VM_FAULT_NOPAGE;
1037 }
1038 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1039
1040 /**
1041  * dax_zero_page_range - zero a range within a page of a DAX file
1042  * @inode: The file being truncated
1043  * @from: The file offset that is being truncated to
1044  * @length: The number of bytes to zero
1045  * @get_block: The filesystem method used to translate file offsets to blocks
1046  *
1047  * This function can be called by a filesystem when it is zeroing part of a
1048  * page in a DAX file.  This is intended for hole-punch operations.  If
1049  * you are truncating a file, the helper function dax_truncate_page() may be
1050  * more convenient.
1051  *
1052  * We work in terms of PAGE_SIZE here for commonality with
1053  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1054  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1055  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1056  * since the file might be mmapped.
1057  */
1058 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1059                                                         get_block_t get_block)
1060 {
1061         struct buffer_head bh;
1062         pgoff_t index = from >> PAGE_SHIFT;
1063         unsigned offset = from & (PAGE_SIZE-1);
1064         int err;
1065
1066         /* Block boundary? Nothing to do */
1067         if (!length)
1068                 return 0;
1069         BUG_ON((offset + length) > PAGE_SIZE);
1070
1071         memset(&bh, 0, sizeof(bh));
1072         bh.b_bdev = inode->i_sb->s_bdev;
1073         bh.b_size = PAGE_SIZE;
1074         err = get_block(inode, index, &bh, 0);
1075         if (err < 0)
1076                 return err;
1077         if (buffer_written(&bh)) {
1078                 struct block_device *bdev = bh.b_bdev;
1079                 struct blk_dax_ctl dax = {
1080                         .sector = to_sector(&bh, inode),
1081                         .size = PAGE_SIZE,
1082                 };
1083
1084                 if (dax_map_atomic(bdev, &dax) < 0)
1085                         return PTR_ERR(dax.addr);
1086                 clear_pmem(dax.addr + offset, length);
1087                 wmb_pmem();
1088                 dax_unmap_atomic(bdev, &dax);
1089         }
1090
1091         return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1094
1095 /**
1096  * dax_truncate_page - handle a partial page being truncated in a DAX file
1097  * @inode: The file being truncated
1098  * @from: The file offset that is being truncated to
1099  * @get_block: The filesystem method used to translate file offsets to blocks
1100  *
1101  * Similar to block_truncate_page(), this function can be called by a
1102  * filesystem when it is truncating a DAX file to handle the partial page.
1103  *
1104  * We work in terms of PAGE_SIZE here for commonality with
1105  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1106  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1107  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1108  * since the file might be mmapped.
1109  */
1110 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1111 {
1112         unsigned length = PAGE_ALIGN(from) - from;
1113         return dax_zero_page_range(inode, from, length, get_block);
1114 }
1115 EXPORT_SYMBOL_GPL(dax_truncate_page);