]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext2/inode.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[karo-tx-linux.git] / fs / ext2 / inode.c
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/dax.h>
29 #include <linux/blkdev.h>
30 #include <linux/quotaops.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include <linux/fiemap.h>
35 #include <linux/iomap.h>
36 #include <linux/namei.h>
37 #include <linux/uio.h>
38 #include "ext2.h"
39 #include "acl.h"
40 #include "xattr.h"
41
42 static int __ext2_write_inode(struct inode *inode, int do_sync);
43
44 /*
45  * Test whether an inode is a fast symlink.
46  */
47 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
48 {
49         int ea_blocks = EXT2_I(inode)->i_file_acl ?
50                 (inode->i_sb->s_blocksize >> 9) : 0;
51
52         return (S_ISLNK(inode->i_mode) &&
53                 inode->i_blocks - ea_blocks == 0);
54 }
55
56 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
57
58 static void ext2_write_failed(struct address_space *mapping, loff_t to)
59 {
60         struct inode *inode = mapping->host;
61
62         if (to > inode->i_size) {
63                 truncate_pagecache(inode, inode->i_size);
64                 ext2_truncate_blocks(inode, inode->i_size);
65         }
66 }
67
68 /*
69  * Called at the last iput() if i_nlink is zero.
70  */
71 void ext2_evict_inode(struct inode * inode)
72 {
73         struct ext2_block_alloc_info *rsv;
74         int want_delete = 0;
75
76         if (!inode->i_nlink && !is_bad_inode(inode)) {
77                 want_delete = 1;
78                 dquot_initialize(inode);
79         } else {
80                 dquot_drop(inode);
81         }
82
83         truncate_inode_pages_final(&inode->i_data);
84
85         if (want_delete) {
86                 sb_start_intwrite(inode->i_sb);
87                 /* set dtime */
88                 EXT2_I(inode)->i_dtime  = get_seconds();
89                 mark_inode_dirty(inode);
90                 __ext2_write_inode(inode, inode_needs_sync(inode));
91                 /* truncate to 0 */
92                 inode->i_size = 0;
93                 if (inode->i_blocks)
94                         ext2_truncate_blocks(inode, 0);
95                 ext2_xattr_delete_inode(inode);
96         }
97
98         invalidate_inode_buffers(inode);
99         clear_inode(inode);
100
101         ext2_discard_reservation(inode);
102         rsv = EXT2_I(inode)->i_block_alloc_info;
103         EXT2_I(inode)->i_block_alloc_info = NULL;
104         if (unlikely(rsv))
105                 kfree(rsv);
106
107         if (want_delete) {
108                 ext2_free_inode(inode);
109                 sb_end_intwrite(inode->i_sb);
110         }
111 }
112
113 typedef struct {
114         __le32  *p;
115         __le32  key;
116         struct buffer_head *bh;
117 } Indirect;
118
119 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
120 {
121         p->key = *(p->p = v);
122         p->bh = bh;
123 }
124
125 static inline int verify_chain(Indirect *from, Indirect *to)
126 {
127         while (from <= to && from->key == *from->p)
128                 from++;
129         return (from > to);
130 }
131
132 /**
133  *      ext2_block_to_path - parse the block number into array of offsets
134  *      @inode: inode in question (we are only interested in its superblock)
135  *      @i_block: block number to be parsed
136  *      @offsets: array to store the offsets in
137  *      @boundary: set this non-zero if the referred-to block is likely to be
138  *             followed (on disk) by an indirect block.
139  *      To store the locations of file's data ext2 uses a data structure common
140  *      for UNIX filesystems - tree of pointers anchored in the inode, with
141  *      data blocks at leaves and indirect blocks in intermediate nodes.
142  *      This function translates the block number into path in that tree -
143  *      return value is the path length and @offsets[n] is the offset of
144  *      pointer to (n+1)th node in the nth one. If @block is out of range
145  *      (negative or too large) warning is printed and zero returned.
146  *
147  *      Note: function doesn't find node addresses, so no IO is needed. All
148  *      we need to know is the capacity of indirect blocks (taken from the
149  *      inode->i_sb).
150  */
151
152 /*
153  * Portability note: the last comparison (check that we fit into triple
154  * indirect block) is spelled differently, because otherwise on an
155  * architecture with 32-bit longs and 8Kb pages we might get into trouble
156  * if our filesystem had 8Kb blocks. We might use long long, but that would
157  * kill us on x86. Oh, well, at least the sign propagation does not matter -
158  * i_block would have to be negative in the very beginning, so we would not
159  * get there at all.
160  */
161
162 static int ext2_block_to_path(struct inode *inode,
163                         long i_block, int offsets[4], int *boundary)
164 {
165         int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
166         int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
167         const long direct_blocks = EXT2_NDIR_BLOCKS,
168                 indirect_blocks = ptrs,
169                 double_blocks = (1 << (ptrs_bits * 2));
170         int n = 0;
171         int final = 0;
172
173         if (i_block < 0) {
174                 ext2_msg(inode->i_sb, KERN_WARNING,
175                         "warning: %s: block < 0", __func__);
176         } else if (i_block < direct_blocks) {
177                 offsets[n++] = i_block;
178                 final = direct_blocks;
179         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
180                 offsets[n++] = EXT2_IND_BLOCK;
181                 offsets[n++] = i_block;
182                 final = ptrs;
183         } else if ((i_block -= indirect_blocks) < double_blocks) {
184                 offsets[n++] = EXT2_DIND_BLOCK;
185                 offsets[n++] = i_block >> ptrs_bits;
186                 offsets[n++] = i_block & (ptrs - 1);
187                 final = ptrs;
188         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
189                 offsets[n++] = EXT2_TIND_BLOCK;
190                 offsets[n++] = i_block >> (ptrs_bits * 2);
191                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
192                 offsets[n++] = i_block & (ptrs - 1);
193                 final = ptrs;
194         } else {
195                 ext2_msg(inode->i_sb, KERN_WARNING,
196                         "warning: %s: block is too big", __func__);
197         }
198         if (boundary)
199                 *boundary = final - 1 - (i_block & (ptrs - 1));
200
201         return n;
202 }
203
204 /**
205  *      ext2_get_branch - read the chain of indirect blocks leading to data
206  *      @inode: inode in question
207  *      @depth: depth of the chain (1 - direct pointer, etc.)
208  *      @offsets: offsets of pointers in inode/indirect blocks
209  *      @chain: place to store the result
210  *      @err: here we store the error value
211  *
212  *      Function fills the array of triples <key, p, bh> and returns %NULL
213  *      if everything went OK or the pointer to the last filled triple
214  *      (incomplete one) otherwise. Upon the return chain[i].key contains
215  *      the number of (i+1)-th block in the chain (as it is stored in memory,
216  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
217  *      number (it points into struct inode for i==0 and into the bh->b_data
218  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
219  *      block for i>0 and NULL for i==0. In other words, it holds the block
220  *      numbers of the chain, addresses they were taken from (and where we can
221  *      verify that chain did not change) and buffer_heads hosting these
222  *      numbers.
223  *
224  *      Function stops when it stumbles upon zero pointer (absent block)
225  *              (pointer to last triple returned, *@err == 0)
226  *      or when it gets an IO error reading an indirect block
227  *              (ditto, *@err == -EIO)
228  *      or when it notices that chain had been changed while it was reading
229  *              (ditto, *@err == -EAGAIN)
230  *      or when it reads all @depth-1 indirect blocks successfully and finds
231  *      the whole chain, all way to the data (returns %NULL, *err == 0).
232  */
233 static Indirect *ext2_get_branch(struct inode *inode,
234                                  int depth,
235                                  int *offsets,
236                                  Indirect chain[4],
237                                  int *err)
238 {
239         struct super_block *sb = inode->i_sb;
240         Indirect *p = chain;
241         struct buffer_head *bh;
242
243         *err = 0;
244         /* i_data is not going away, no lock needed */
245         add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
246         if (!p->key)
247                 goto no_block;
248         while (--depth) {
249                 bh = sb_bread(sb, le32_to_cpu(p->key));
250                 if (!bh)
251                         goto failure;
252                 read_lock(&EXT2_I(inode)->i_meta_lock);
253                 if (!verify_chain(chain, p))
254                         goto changed;
255                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
256                 read_unlock(&EXT2_I(inode)->i_meta_lock);
257                 if (!p->key)
258                         goto no_block;
259         }
260         return NULL;
261
262 changed:
263         read_unlock(&EXT2_I(inode)->i_meta_lock);
264         brelse(bh);
265         *err = -EAGAIN;
266         goto no_block;
267 failure:
268         *err = -EIO;
269 no_block:
270         return p;
271 }
272
273 /**
274  *      ext2_find_near - find a place for allocation with sufficient locality
275  *      @inode: owner
276  *      @ind: descriptor of indirect block.
277  *
278  *      This function returns the preferred place for block allocation.
279  *      It is used when heuristic for sequential allocation fails.
280  *      Rules are:
281  *        + if there is a block to the left of our position - allocate near it.
282  *        + if pointer will live in indirect block - allocate near that block.
283  *        + if pointer will live in inode - allocate in the same cylinder group.
284  *
285  * In the latter case we colour the starting block by the callers PID to
286  * prevent it from clashing with concurrent allocations for a different inode
287  * in the same block group.   The PID is used here so that functionally related
288  * files will be close-by on-disk.
289  *
290  *      Caller must make sure that @ind is valid and will stay that way.
291  */
292
293 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
294 {
295         struct ext2_inode_info *ei = EXT2_I(inode);
296         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
297         __le32 *p;
298         ext2_fsblk_t bg_start;
299         ext2_fsblk_t colour;
300
301         /* Try to find previous block */
302         for (p = ind->p - 1; p >= start; p--)
303                 if (*p)
304                         return le32_to_cpu(*p);
305
306         /* No such thing, so let's try location of indirect block */
307         if (ind->bh)
308                 return ind->bh->b_blocknr;
309
310         /*
311          * It is going to be referred from inode itself? OK, just put it into
312          * the same cylinder group then.
313          */
314         bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
315         colour = (current->pid % 16) *
316                         (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
317         return bg_start + colour;
318 }
319
320 /**
321  *      ext2_find_goal - find a preferred place for allocation.
322  *      @inode: owner
323  *      @block:  block we want
324  *      @partial: pointer to the last triple within a chain
325  *
326  *      Returns preferred place for a block (the goal).
327  */
328
329 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
330                                           Indirect *partial)
331 {
332         struct ext2_block_alloc_info *block_i;
333
334         block_i = EXT2_I(inode)->i_block_alloc_info;
335
336         /*
337          * try the heuristic for sequential allocation,
338          * failing that at least try to get decent locality.
339          */
340         if (block_i && (block == block_i->last_alloc_logical_block + 1)
341                 && (block_i->last_alloc_physical_block != 0)) {
342                 return block_i->last_alloc_physical_block + 1;
343         }
344
345         return ext2_find_near(inode, partial);
346 }
347
348 /**
349  *      ext2_blks_to_allocate: Look up the block map and count the number
350  *      of direct blocks need to be allocated for the given branch.
351  *
352  *      @branch: chain of indirect blocks
353  *      @k: number of blocks need for indirect blocks
354  *      @blks: number of data blocks to be mapped.
355  *      @blocks_to_boundary:  the offset in the indirect block
356  *
357  *      return the total number of blocks to be allocate, including the
358  *      direct and indirect blocks.
359  */
360 static int
361 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
362                 int blocks_to_boundary)
363 {
364         unsigned long count = 0;
365
366         /*
367          * Simple case, [t,d]Indirect block(s) has not allocated yet
368          * then it's clear blocks on that path have not allocated
369          */
370         if (k > 0) {
371                 /* right now don't hanel cross boundary allocation */
372                 if (blks < blocks_to_boundary + 1)
373                         count += blks;
374                 else
375                         count += blocks_to_boundary + 1;
376                 return count;
377         }
378
379         count++;
380         while (count < blks && count <= blocks_to_boundary
381                 && le32_to_cpu(*(branch[0].p + count)) == 0) {
382                 count++;
383         }
384         return count;
385 }
386
387 /**
388  *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
389  *      @indirect_blks: the number of blocks need to allocate for indirect
390  *                      blocks
391  *
392  *      @new_blocks: on return it will store the new block numbers for
393  *      the indirect blocks(if needed) and the first direct block,
394  *      @blks:  on return it will store the total number of allocated
395  *              direct blocks
396  */
397 static int ext2_alloc_blocks(struct inode *inode,
398                         ext2_fsblk_t goal, int indirect_blks, int blks,
399                         ext2_fsblk_t new_blocks[4], int *err)
400 {
401         int target, i;
402         unsigned long count = 0;
403         int index = 0;
404         ext2_fsblk_t current_block = 0;
405         int ret = 0;
406
407         /*
408          * Here we try to allocate the requested multiple blocks at once,
409          * on a best-effort basis.
410          * To build a branch, we should allocate blocks for
411          * the indirect blocks(if not allocated yet), and at least
412          * the first direct block of this branch.  That's the
413          * minimum number of blocks need to allocate(required)
414          */
415         target = blks + indirect_blks;
416
417         while (1) {
418                 count = target;
419                 /* allocating blocks for indirect blocks and direct blocks */
420                 current_block = ext2_new_blocks(inode,goal,&count,err);
421                 if (*err)
422                         goto failed_out;
423
424                 target -= count;
425                 /* allocate blocks for indirect blocks */
426                 while (index < indirect_blks && count) {
427                         new_blocks[index++] = current_block++;
428                         count--;
429                 }
430
431                 if (count > 0)
432                         break;
433         }
434
435         /* save the new block number for the first direct block */
436         new_blocks[index] = current_block;
437
438         /* total number of blocks allocated for direct blocks */
439         ret = count;
440         *err = 0;
441         return ret;
442 failed_out:
443         for (i = 0; i <index; i++)
444                 ext2_free_blocks(inode, new_blocks[i], 1);
445         if (index)
446                 mark_inode_dirty(inode);
447         return ret;
448 }
449
450 /**
451  *      ext2_alloc_branch - allocate and set up a chain of blocks.
452  *      @inode: owner
453  *      @num: depth of the chain (number of blocks to allocate)
454  *      @offsets: offsets (in the blocks) to store the pointers to next.
455  *      @branch: place to store the chain in.
456  *
457  *      This function allocates @num blocks, zeroes out all but the last one,
458  *      links them into chain and (if we are synchronous) writes them to disk.
459  *      In other words, it prepares a branch that can be spliced onto the
460  *      inode. It stores the information about that chain in the branch[], in
461  *      the same format as ext2_get_branch() would do. We are calling it after
462  *      we had read the existing part of chain and partial points to the last
463  *      triple of that (one with zero ->key). Upon the exit we have the same
464  *      picture as after the successful ext2_get_block(), except that in one
465  *      place chain is disconnected - *branch->p is still zero (we did not
466  *      set the last link), but branch->key contains the number that should
467  *      be placed into *branch->p to fill that gap.
468  *
469  *      If allocation fails we free all blocks we've allocated (and forget
470  *      their buffer_heads) and return the error value the from failed
471  *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
472  *      as described above and return 0.
473  */
474
475 static int ext2_alloc_branch(struct inode *inode,
476                         int indirect_blks, int *blks, ext2_fsblk_t goal,
477                         int *offsets, Indirect *branch)
478 {
479         int blocksize = inode->i_sb->s_blocksize;
480         int i, n = 0;
481         int err = 0;
482         struct buffer_head *bh;
483         int num;
484         ext2_fsblk_t new_blocks[4];
485         ext2_fsblk_t current_block;
486
487         num = ext2_alloc_blocks(inode, goal, indirect_blks,
488                                 *blks, new_blocks, &err);
489         if (err)
490                 return err;
491
492         branch[0].key = cpu_to_le32(new_blocks[0]);
493         /*
494          * metadata blocks and data blocks are allocated.
495          */
496         for (n = 1; n <= indirect_blks;  n++) {
497                 /*
498                  * Get buffer_head for parent block, zero it out
499                  * and set the pointer to new one, then send
500                  * parent to disk.
501                  */
502                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
503                 if (unlikely(!bh)) {
504                         err = -ENOMEM;
505                         goto failed;
506                 }
507                 branch[n].bh = bh;
508                 lock_buffer(bh);
509                 memset(bh->b_data, 0, blocksize);
510                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
511                 branch[n].key = cpu_to_le32(new_blocks[n]);
512                 *branch[n].p = branch[n].key;
513                 if ( n == indirect_blks) {
514                         current_block = new_blocks[n];
515                         /*
516                          * End of chain, update the last new metablock of
517                          * the chain to point to the new allocated
518                          * data blocks numbers
519                          */
520                         for (i=1; i < num; i++)
521                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
522                 }
523                 set_buffer_uptodate(bh);
524                 unlock_buffer(bh);
525                 mark_buffer_dirty_inode(bh, inode);
526                 /* We used to sync bh here if IS_SYNC(inode).
527                  * But we now rely upon generic_write_sync()
528                  * and b_inode_buffers.  But not for directories.
529                  */
530                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
531                         sync_dirty_buffer(bh);
532         }
533         *blks = num;
534         return err;
535
536 failed:
537         for (i = 1; i < n; i++)
538                 bforget(branch[i].bh);
539         for (i = 0; i < indirect_blks; i++)
540                 ext2_free_blocks(inode, new_blocks[i], 1);
541         ext2_free_blocks(inode, new_blocks[i], num);
542         return err;
543 }
544
545 /**
546  * ext2_splice_branch - splice the allocated branch onto inode.
547  * @inode: owner
548  * @block: (logical) number of block we are adding
549  * @where: location of missing link
550  * @num:   number of indirect blocks we are adding
551  * @blks:  number of direct blocks we are adding
552  *
553  * This function fills the missing link and does all housekeeping needed in
554  * inode (->i_blocks, etc.). In case of success we end up with the full
555  * chain to new block and return 0.
556  */
557 static void ext2_splice_branch(struct inode *inode,
558                         long block, Indirect *where, int num, int blks)
559 {
560         int i;
561         struct ext2_block_alloc_info *block_i;
562         ext2_fsblk_t current_block;
563
564         block_i = EXT2_I(inode)->i_block_alloc_info;
565
566         /* XXX LOCKING probably should have i_meta_lock ?*/
567         /* That's it */
568
569         *where->p = where->key;
570
571         /*
572          * Update the host buffer_head or inode to point to more just allocated
573          * direct blocks blocks
574          */
575         if (num == 0 && blks > 1) {
576                 current_block = le32_to_cpu(where->key) + 1;
577                 for (i = 1; i < blks; i++)
578                         *(where->p + i ) = cpu_to_le32(current_block++);
579         }
580
581         /*
582          * update the most recently allocated logical & physical block
583          * in i_block_alloc_info, to assist find the proper goal block for next
584          * allocation
585          */
586         if (block_i) {
587                 block_i->last_alloc_logical_block = block + blks - 1;
588                 block_i->last_alloc_physical_block =
589                                 le32_to_cpu(where[num].key) + blks - 1;
590         }
591
592         /* We are done with atomic stuff, now do the rest of housekeeping */
593
594         /* had we spliced it onto indirect block? */
595         if (where->bh)
596                 mark_buffer_dirty_inode(where->bh, inode);
597
598         inode->i_ctime = current_time(inode);
599         mark_inode_dirty(inode);
600 }
601
602 /*
603  * Allocation strategy is simple: if we have to allocate something, we will
604  * have to go the whole way to leaf. So let's do it before attaching anything
605  * to tree, set linkage between the newborn blocks, write them if sync is
606  * required, recheck the path, free and repeat if check fails, otherwise
607  * set the last missing link (that will protect us from any truncate-generated
608  * removals - all blocks on the path are immune now) and possibly force the
609  * write on the parent block.
610  * That has a nice additional property: no special recovery from the failed
611  * allocations is needed - we simply release blocks and do not touch anything
612  * reachable from inode.
613  *
614  * `handle' can be NULL if create == 0.
615  *
616  * return > 0, # of blocks mapped or allocated.
617  * return = 0, if plain lookup failed.
618  * return < 0, error case.
619  */
620 static int ext2_get_blocks(struct inode *inode,
621                            sector_t iblock, unsigned long maxblocks,
622                            u32 *bno, bool *new, bool *boundary,
623                            int create)
624 {
625         int err;
626         int offsets[4];
627         Indirect chain[4];
628         Indirect *partial;
629         ext2_fsblk_t goal;
630         int indirect_blks;
631         int blocks_to_boundary = 0;
632         int depth;
633         struct ext2_inode_info *ei = EXT2_I(inode);
634         int count = 0;
635         ext2_fsblk_t first_block = 0;
636
637         BUG_ON(maxblocks == 0);
638
639         depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
640
641         if (depth == 0)
642                 return -EIO;
643
644         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
645         /* Simplest case - block found, no allocation needed */
646         if (!partial) {
647                 first_block = le32_to_cpu(chain[depth - 1].key);
648                 count++;
649                 /*map more blocks*/
650                 while (count < maxblocks && count <= blocks_to_boundary) {
651                         ext2_fsblk_t blk;
652
653                         if (!verify_chain(chain, chain + depth - 1)) {
654                                 /*
655                                  * Indirect block might be removed by
656                                  * truncate while we were reading it.
657                                  * Handling of that case: forget what we've
658                                  * got now, go to reread.
659                                  */
660                                 err = -EAGAIN;
661                                 count = 0;
662                                 partial = chain + depth - 1;
663                                 break;
664                         }
665                         blk = le32_to_cpu(*(chain[depth-1].p + count));
666                         if (blk == first_block + count)
667                                 count++;
668                         else
669                                 break;
670                 }
671                 if (err != -EAGAIN)
672                         goto got_it;
673         }
674
675         /* Next simple case - plain lookup or failed read of indirect block */
676         if (!create || err == -EIO)
677                 goto cleanup;
678
679         mutex_lock(&ei->truncate_mutex);
680         /*
681          * If the indirect block is missing while we are reading
682          * the chain(ext2_get_branch() returns -EAGAIN err), or
683          * if the chain has been changed after we grab the semaphore,
684          * (either because another process truncated this branch, or
685          * another get_block allocated this branch) re-grab the chain to see if
686          * the request block has been allocated or not.
687          *
688          * Since we already block the truncate/other get_block
689          * at this point, we will have the current copy of the chain when we
690          * splice the branch into the tree.
691          */
692         if (err == -EAGAIN || !verify_chain(chain, partial)) {
693                 while (partial > chain) {
694                         brelse(partial->bh);
695                         partial--;
696                 }
697                 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
698                 if (!partial) {
699                         count++;
700                         mutex_unlock(&ei->truncate_mutex);
701                         if (err)
702                                 goto cleanup;
703                         goto got_it;
704                 }
705         }
706
707         /*
708          * Okay, we need to do block allocation.  Lazily initialize the block
709          * allocation info here if necessary
710         */
711         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
712                 ext2_init_block_alloc_info(inode);
713
714         goal = ext2_find_goal(inode, iblock, partial);
715
716         /* the number of blocks need to allocate for [d,t]indirect blocks */
717         indirect_blks = (chain + depth) - partial - 1;
718         /*
719          * Next look up the indirect map to count the totoal number of
720          * direct blocks to allocate for this branch.
721          */
722         count = ext2_blks_to_allocate(partial, indirect_blks,
723                                         maxblocks, blocks_to_boundary);
724         /*
725          * XXX ???? Block out ext2_truncate while we alter the tree
726          */
727         err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
728                                 offsets + (partial - chain), partial);
729
730         if (err) {
731                 mutex_unlock(&ei->truncate_mutex);
732                 goto cleanup;
733         }
734
735         if (IS_DAX(inode)) {
736                 /*
737                  * We must unmap blocks before zeroing so that writeback cannot
738                  * overwrite zeros with stale data from block device page cache.
739                  */
740                 clean_bdev_aliases(inode->i_sb->s_bdev,
741                                    le32_to_cpu(chain[depth-1].key),
742                                    count);
743                 /*
744                  * block must be initialised before we put it in the tree
745                  * so that it's not found by another thread before it's
746                  * initialised
747                  */
748                 err = sb_issue_zeroout(inode->i_sb,
749                                 le32_to_cpu(chain[depth-1].key), count,
750                                 GFP_NOFS);
751                 if (err) {
752                         mutex_unlock(&ei->truncate_mutex);
753                         goto cleanup;
754                 }
755         }
756         *new = true;
757
758         ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
759         mutex_unlock(&ei->truncate_mutex);
760 got_it:
761         if (count > blocks_to_boundary)
762                 *boundary = true;
763         err = count;
764         /* Clean up and exit */
765         partial = chain + depth - 1;    /* the whole chain */
766 cleanup:
767         while (partial > chain) {
768                 brelse(partial->bh);
769                 partial--;
770         }
771         if (err > 0)
772                 *bno = le32_to_cpu(chain[depth-1].key);
773         return err;
774 }
775
776 int ext2_get_block(struct inode *inode, sector_t iblock,
777                 struct buffer_head *bh_result, int create)
778 {
779         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
780         bool new = false, boundary = false;
781         u32 bno;
782         int ret;
783
784         ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
785                         create);
786         if (ret <= 0)
787                 return ret;
788
789         map_bh(bh_result, inode->i_sb, bno);
790         bh_result->b_size = (ret << inode->i_blkbits);
791         if (new)
792                 set_buffer_new(bh_result);
793         if (boundary)
794                 set_buffer_boundary(bh_result);
795         return 0;
796
797 }
798
799 #ifdef CONFIG_FS_DAX
800 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
801                 unsigned flags, struct iomap *iomap)
802 {
803         struct block_device *bdev;
804         unsigned int blkbits = inode->i_blkbits;
805         unsigned long first_block = offset >> blkbits;
806         unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
807         bool new = false, boundary = false;
808         u32 bno;
809         int ret;
810
811         ret = ext2_get_blocks(inode, first_block, max_blocks,
812                         &bno, &new, &boundary, flags & IOMAP_WRITE);
813         if (ret < 0)
814                 return ret;
815
816         iomap->flags = 0;
817         bdev = inode->i_sb->s_bdev;
818         iomap->bdev = bdev;
819         iomap->offset = (u64)first_block << blkbits;
820         if (blk_queue_dax(bdev->bd_queue))
821                 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
822         else
823                 iomap->dax_dev = NULL;
824
825         if (ret == 0) {
826                 iomap->type = IOMAP_HOLE;
827                 iomap->blkno = IOMAP_NULL_BLOCK;
828                 iomap->length = 1 << blkbits;
829         } else {
830                 iomap->type = IOMAP_MAPPED;
831                 iomap->blkno = (sector_t)bno << (blkbits - 9);
832                 iomap->length = (u64)ret << blkbits;
833                 iomap->flags |= IOMAP_F_MERGED;
834         }
835
836         if (new)
837                 iomap->flags |= IOMAP_F_NEW;
838         return 0;
839 }
840
841 static int
842 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
843                 ssize_t written, unsigned flags, struct iomap *iomap)
844 {
845         fs_put_dax(iomap->dax_dev);
846         if (iomap->type == IOMAP_MAPPED &&
847             written < length &&
848             (flags & IOMAP_WRITE))
849                 ext2_write_failed(inode->i_mapping, offset + length);
850         return 0;
851 }
852
853 const struct iomap_ops ext2_iomap_ops = {
854         .iomap_begin            = ext2_iomap_begin,
855         .iomap_end              = ext2_iomap_end,
856 };
857 #else
858 /* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
859 const struct iomap_ops ext2_iomap_ops;
860 #endif /* CONFIG_FS_DAX */
861
862 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
863                 u64 start, u64 len)
864 {
865         return generic_block_fiemap(inode, fieinfo, start, len,
866                                     ext2_get_block);
867 }
868
869 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
870 {
871         return block_write_full_page(page, ext2_get_block, wbc);
872 }
873
874 static int ext2_readpage(struct file *file, struct page *page)
875 {
876         return mpage_readpage(page, ext2_get_block);
877 }
878
879 static int
880 ext2_readpages(struct file *file, struct address_space *mapping,
881                 struct list_head *pages, unsigned nr_pages)
882 {
883         return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
884 }
885
886 static int
887 ext2_write_begin(struct file *file, struct address_space *mapping,
888                 loff_t pos, unsigned len, unsigned flags,
889                 struct page **pagep, void **fsdata)
890 {
891         int ret;
892
893         ret = block_write_begin(mapping, pos, len, flags, pagep,
894                                 ext2_get_block);
895         if (ret < 0)
896                 ext2_write_failed(mapping, pos + len);
897         return ret;
898 }
899
900 static int ext2_write_end(struct file *file, struct address_space *mapping,
901                         loff_t pos, unsigned len, unsigned copied,
902                         struct page *page, void *fsdata)
903 {
904         int ret;
905
906         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
907         if (ret < len)
908                 ext2_write_failed(mapping, pos + len);
909         return ret;
910 }
911
912 static int
913 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
914                 loff_t pos, unsigned len, unsigned flags,
915                 struct page **pagep, void **fsdata)
916 {
917         int ret;
918
919         ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
920                                ext2_get_block);
921         if (ret < 0)
922                 ext2_write_failed(mapping, pos + len);
923         return ret;
924 }
925
926 static int ext2_nobh_writepage(struct page *page,
927                         struct writeback_control *wbc)
928 {
929         return nobh_writepage(page, ext2_get_block, wbc);
930 }
931
932 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
933 {
934         return generic_block_bmap(mapping,block,ext2_get_block);
935 }
936
937 static ssize_t
938 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
939 {
940         struct file *file = iocb->ki_filp;
941         struct address_space *mapping = file->f_mapping;
942         struct inode *inode = mapping->host;
943         size_t count = iov_iter_count(iter);
944         loff_t offset = iocb->ki_pos;
945         ssize_t ret;
946
947         if (WARN_ON_ONCE(IS_DAX(inode)))
948                 return -EIO;
949
950         ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
951         if (ret < 0 && iov_iter_rw(iter) == WRITE)
952                 ext2_write_failed(mapping, offset + count);
953         return ret;
954 }
955
956 static int
957 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
958 {
959 #ifdef CONFIG_FS_DAX
960         if (dax_mapping(mapping)) {
961                 return dax_writeback_mapping_range(mapping,
962                                                    mapping->host->i_sb->s_bdev,
963                                                    wbc);
964         }
965 #endif
966
967         return mpage_writepages(mapping, wbc, ext2_get_block);
968 }
969
970 const struct address_space_operations ext2_aops = {
971         .readpage               = ext2_readpage,
972         .readpages              = ext2_readpages,
973         .writepage              = ext2_writepage,
974         .write_begin            = ext2_write_begin,
975         .write_end              = ext2_write_end,
976         .bmap                   = ext2_bmap,
977         .direct_IO              = ext2_direct_IO,
978         .writepages             = ext2_writepages,
979         .migratepage            = buffer_migrate_page,
980         .is_partially_uptodate  = block_is_partially_uptodate,
981         .error_remove_page      = generic_error_remove_page,
982 };
983
984 const struct address_space_operations ext2_nobh_aops = {
985         .readpage               = ext2_readpage,
986         .readpages              = ext2_readpages,
987         .writepage              = ext2_nobh_writepage,
988         .write_begin            = ext2_nobh_write_begin,
989         .write_end              = nobh_write_end,
990         .bmap                   = ext2_bmap,
991         .direct_IO              = ext2_direct_IO,
992         .writepages             = ext2_writepages,
993         .migratepage            = buffer_migrate_page,
994         .error_remove_page      = generic_error_remove_page,
995 };
996
997 /*
998  * Probably it should be a library function... search for first non-zero word
999  * or memcmp with zero_page, whatever is better for particular architecture.
1000  * Linus?
1001  */
1002 static inline int all_zeroes(__le32 *p, __le32 *q)
1003 {
1004         while (p < q)
1005                 if (*p++)
1006                         return 0;
1007         return 1;
1008 }
1009
1010 /**
1011  *      ext2_find_shared - find the indirect blocks for partial truncation.
1012  *      @inode:   inode in question
1013  *      @depth:   depth of the affected branch
1014  *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1015  *      @chain:   place to store the pointers to partial indirect blocks
1016  *      @top:     place to the (detached) top of branch
1017  *
1018  *      This is a helper function used by ext2_truncate().
1019  *
1020  *      When we do truncate() we may have to clean the ends of several indirect
1021  *      blocks but leave the blocks themselves alive. Block is partially
1022  *      truncated if some data below the new i_size is referred from it (and
1023  *      it is on the path to the first completely truncated data block, indeed).
1024  *      We have to free the top of that path along with everything to the right
1025  *      of the path. Since no allocation past the truncation point is possible
1026  *      until ext2_truncate() finishes, we may safely do the latter, but top
1027  *      of branch may require special attention - pageout below the truncation
1028  *      point might try to populate it.
1029  *
1030  *      We atomically detach the top of branch from the tree, store the block
1031  *      number of its root in *@top, pointers to buffer_heads of partially
1032  *      truncated blocks - in @chain[].bh and pointers to their last elements
1033  *      that should not be removed - in @chain[].p. Return value is the pointer
1034  *      to last filled element of @chain.
1035  *
1036  *      The work left to caller to do the actual freeing of subtrees:
1037  *              a) free the subtree starting from *@top
1038  *              b) free the subtrees whose roots are stored in
1039  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1040  *              c) free the subtrees growing from the inode past the @chain[0].p
1041  *                      (no partially truncated stuff there).
1042  */
1043
1044 static Indirect *ext2_find_shared(struct inode *inode,
1045                                 int depth,
1046                                 int offsets[4],
1047                                 Indirect chain[4],
1048                                 __le32 *top)
1049 {
1050         Indirect *partial, *p;
1051         int k, err;
1052
1053         *top = 0;
1054         for (k = depth; k > 1 && !offsets[k-1]; k--)
1055                 ;
1056         partial = ext2_get_branch(inode, k, offsets, chain, &err);
1057         if (!partial)
1058                 partial = chain + k-1;
1059         /*
1060          * If the branch acquired continuation since we've looked at it -
1061          * fine, it should all survive and (new) top doesn't belong to us.
1062          */
1063         write_lock(&EXT2_I(inode)->i_meta_lock);
1064         if (!partial->key && *partial->p) {
1065                 write_unlock(&EXT2_I(inode)->i_meta_lock);
1066                 goto no_top;
1067         }
1068         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1069                 ;
1070         /*
1071          * OK, we've found the last block that must survive. The rest of our
1072          * branch should be detached before unlocking. However, if that rest
1073          * of branch is all ours and does not grow immediately from the inode
1074          * it's easier to cheat and just decrement partial->p.
1075          */
1076         if (p == chain + k - 1 && p > chain) {
1077                 p->p--;
1078         } else {
1079                 *top = *p->p;
1080                 *p->p = 0;
1081         }
1082         write_unlock(&EXT2_I(inode)->i_meta_lock);
1083
1084         while(partial > p)
1085         {
1086                 brelse(partial->bh);
1087                 partial--;
1088         }
1089 no_top:
1090         return partial;
1091 }
1092
1093 /**
1094  *      ext2_free_data - free a list of data blocks
1095  *      @inode: inode we are dealing with
1096  *      @p:     array of block numbers
1097  *      @q:     points immediately past the end of array
1098  *
1099  *      We are freeing all blocks referred from that array (numbers are
1100  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1101  *      appropriately.
1102  */
1103 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1104 {
1105         unsigned long block_to_free = 0, count = 0;
1106         unsigned long nr;
1107
1108         for ( ; p < q ; p++) {
1109                 nr = le32_to_cpu(*p);
1110                 if (nr) {
1111                         *p = 0;
1112                         /* accumulate blocks to free if they're contiguous */
1113                         if (count == 0)
1114                                 goto free_this;
1115                         else if (block_to_free == nr - count)
1116                                 count++;
1117                         else {
1118                                 ext2_free_blocks (inode, block_to_free, count);
1119                                 mark_inode_dirty(inode);
1120                         free_this:
1121                                 block_to_free = nr;
1122                                 count = 1;
1123                         }
1124                 }
1125         }
1126         if (count > 0) {
1127                 ext2_free_blocks (inode, block_to_free, count);
1128                 mark_inode_dirty(inode);
1129         }
1130 }
1131
1132 /**
1133  *      ext2_free_branches - free an array of branches
1134  *      @inode: inode we are dealing with
1135  *      @p:     array of block numbers
1136  *      @q:     pointer immediately past the end of array
1137  *      @depth: depth of the branches to free
1138  *
1139  *      We are freeing all blocks referred from these branches (numbers are
1140  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1141  *      appropriately.
1142  */
1143 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1144 {
1145         struct buffer_head * bh;
1146         unsigned long nr;
1147
1148         if (depth--) {
1149                 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1150                 for ( ; p < q ; p++) {
1151                         nr = le32_to_cpu(*p);
1152                         if (!nr)
1153                                 continue;
1154                         *p = 0;
1155                         bh = sb_bread(inode->i_sb, nr);
1156                         /*
1157                          * A read failure? Report error and clear slot
1158                          * (should be rare).
1159                          */ 
1160                         if (!bh) {
1161                                 ext2_error(inode->i_sb, "ext2_free_branches",
1162                                         "Read failure, inode=%ld, block=%ld",
1163                                         inode->i_ino, nr);
1164                                 continue;
1165                         }
1166                         ext2_free_branches(inode,
1167                                            (__le32*)bh->b_data,
1168                                            (__le32*)bh->b_data + addr_per_block,
1169                                            depth);
1170                         bforget(bh);
1171                         ext2_free_blocks(inode, nr, 1);
1172                         mark_inode_dirty(inode);
1173                 }
1174         } else
1175                 ext2_free_data(inode, p, q);
1176 }
1177
1178 /* dax_sem must be held when calling this function */
1179 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1180 {
1181         __le32 *i_data = EXT2_I(inode)->i_data;
1182         struct ext2_inode_info *ei = EXT2_I(inode);
1183         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1184         int offsets[4];
1185         Indirect chain[4];
1186         Indirect *partial;
1187         __le32 nr = 0;
1188         int n;
1189         long iblock;
1190         unsigned blocksize;
1191         blocksize = inode->i_sb->s_blocksize;
1192         iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1193
1194 #ifdef CONFIG_FS_DAX
1195         WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1196 #endif
1197
1198         n = ext2_block_to_path(inode, iblock, offsets, NULL);
1199         if (n == 0)
1200                 return;
1201
1202         /*
1203          * From here we block out all ext2_get_block() callers who want to
1204          * modify the block allocation tree.
1205          */
1206         mutex_lock(&ei->truncate_mutex);
1207
1208         if (n == 1) {
1209                 ext2_free_data(inode, i_data+offsets[0],
1210                                         i_data + EXT2_NDIR_BLOCKS);
1211                 goto do_indirects;
1212         }
1213
1214         partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1215         /* Kill the top of shared branch (already detached) */
1216         if (nr) {
1217                 if (partial == chain)
1218                         mark_inode_dirty(inode);
1219                 else
1220                         mark_buffer_dirty_inode(partial->bh, inode);
1221                 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1222         }
1223         /* Clear the ends of indirect blocks on the shared branch */
1224         while (partial > chain) {
1225                 ext2_free_branches(inode,
1226                                    partial->p + 1,
1227                                    (__le32*)partial->bh->b_data+addr_per_block,
1228                                    (chain+n-1) - partial);
1229                 mark_buffer_dirty_inode(partial->bh, inode);
1230                 brelse (partial->bh);
1231                 partial--;
1232         }
1233 do_indirects:
1234         /* Kill the remaining (whole) subtrees */
1235         switch (offsets[0]) {
1236                 default:
1237                         nr = i_data[EXT2_IND_BLOCK];
1238                         if (nr) {
1239                                 i_data[EXT2_IND_BLOCK] = 0;
1240                                 mark_inode_dirty(inode);
1241                                 ext2_free_branches(inode, &nr, &nr+1, 1);
1242                         }
1243                 case EXT2_IND_BLOCK:
1244                         nr = i_data[EXT2_DIND_BLOCK];
1245                         if (nr) {
1246                                 i_data[EXT2_DIND_BLOCK] = 0;
1247                                 mark_inode_dirty(inode);
1248                                 ext2_free_branches(inode, &nr, &nr+1, 2);
1249                         }
1250                 case EXT2_DIND_BLOCK:
1251                         nr = i_data[EXT2_TIND_BLOCK];
1252                         if (nr) {
1253                                 i_data[EXT2_TIND_BLOCK] = 0;
1254                                 mark_inode_dirty(inode);
1255                                 ext2_free_branches(inode, &nr, &nr+1, 3);
1256                         }
1257                 case EXT2_TIND_BLOCK:
1258                         ;
1259         }
1260
1261         ext2_discard_reservation(inode);
1262
1263         mutex_unlock(&ei->truncate_mutex);
1264 }
1265
1266 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1267 {
1268         /*
1269          * XXX: it seems like a bug here that we don't allow
1270          * IS_APPEND inode to have blocks-past-i_size trimmed off.
1271          * review and fix this.
1272          *
1273          * Also would be nice to be able to handle IO errors and such,
1274          * but that's probably too much to ask.
1275          */
1276         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1277             S_ISLNK(inode->i_mode)))
1278                 return;
1279         if (ext2_inode_is_fast_symlink(inode))
1280                 return;
1281         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1282                 return;
1283
1284         dax_sem_down_write(EXT2_I(inode));
1285         __ext2_truncate_blocks(inode, offset);
1286         dax_sem_up_write(EXT2_I(inode));
1287 }
1288
1289 static int ext2_setsize(struct inode *inode, loff_t newsize)
1290 {
1291         int error;
1292
1293         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1294             S_ISLNK(inode->i_mode)))
1295                 return -EINVAL;
1296         if (ext2_inode_is_fast_symlink(inode))
1297                 return -EINVAL;
1298         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1299                 return -EPERM;
1300
1301         inode_dio_wait(inode);
1302
1303         if (IS_DAX(inode)) {
1304                 error = iomap_zero_range(inode, newsize,
1305                                          PAGE_ALIGN(newsize) - newsize, NULL,
1306                                          &ext2_iomap_ops);
1307         } else if (test_opt(inode->i_sb, NOBH))
1308                 error = nobh_truncate_page(inode->i_mapping,
1309                                 newsize, ext2_get_block);
1310         else
1311                 error = block_truncate_page(inode->i_mapping,
1312                                 newsize, ext2_get_block);
1313         if (error)
1314                 return error;
1315
1316         dax_sem_down_write(EXT2_I(inode));
1317         truncate_setsize(inode, newsize);
1318         __ext2_truncate_blocks(inode, newsize);
1319         dax_sem_up_write(EXT2_I(inode));
1320
1321         inode->i_mtime = inode->i_ctime = current_time(inode);
1322         if (inode_needs_sync(inode)) {
1323                 sync_mapping_buffers(inode->i_mapping);
1324                 sync_inode_metadata(inode, 1);
1325         } else {
1326                 mark_inode_dirty(inode);
1327         }
1328
1329         return 0;
1330 }
1331
1332 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1333                                         struct buffer_head **p)
1334 {
1335         struct buffer_head * bh;
1336         unsigned long block_group;
1337         unsigned long block;
1338         unsigned long offset;
1339         struct ext2_group_desc * gdp;
1340
1341         *p = NULL;
1342         if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1343             ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1344                 goto Einval;
1345
1346         block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1347         gdp = ext2_get_group_desc(sb, block_group, NULL);
1348         if (!gdp)
1349                 goto Egdp;
1350         /*
1351          * Figure out the offset within the block group inode table
1352          */
1353         offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1354         block = le32_to_cpu(gdp->bg_inode_table) +
1355                 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1356         if (!(bh = sb_bread(sb, block)))
1357                 goto Eio;
1358
1359         *p = bh;
1360         offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1361         return (struct ext2_inode *) (bh->b_data + offset);
1362
1363 Einval:
1364         ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1365                    (unsigned long) ino);
1366         return ERR_PTR(-EINVAL);
1367 Eio:
1368         ext2_error(sb, "ext2_get_inode",
1369                    "unable to read inode block - inode=%lu, block=%lu",
1370                    (unsigned long) ino, block);
1371 Egdp:
1372         return ERR_PTR(-EIO);
1373 }
1374
1375 void ext2_set_inode_flags(struct inode *inode)
1376 {
1377         unsigned int flags = EXT2_I(inode)->i_flags;
1378
1379         inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1380                                 S_DIRSYNC | S_DAX);
1381         if (flags & EXT2_SYNC_FL)
1382                 inode->i_flags |= S_SYNC;
1383         if (flags & EXT2_APPEND_FL)
1384                 inode->i_flags |= S_APPEND;
1385         if (flags & EXT2_IMMUTABLE_FL)
1386                 inode->i_flags |= S_IMMUTABLE;
1387         if (flags & EXT2_NOATIME_FL)
1388                 inode->i_flags |= S_NOATIME;
1389         if (flags & EXT2_DIRSYNC_FL)
1390                 inode->i_flags |= S_DIRSYNC;
1391         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1392                 inode->i_flags |= S_DAX;
1393 }
1394
1395 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1396 {
1397         struct ext2_inode_info *ei;
1398         struct buffer_head * bh;
1399         struct ext2_inode *raw_inode;
1400         struct inode *inode;
1401         long ret = -EIO;
1402         int n;
1403         uid_t i_uid;
1404         gid_t i_gid;
1405
1406         inode = iget_locked(sb, ino);
1407         if (!inode)
1408                 return ERR_PTR(-ENOMEM);
1409         if (!(inode->i_state & I_NEW))
1410                 return inode;
1411
1412         ei = EXT2_I(inode);
1413         ei->i_block_alloc_info = NULL;
1414
1415         raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1416         if (IS_ERR(raw_inode)) {
1417                 ret = PTR_ERR(raw_inode);
1418                 goto bad_inode;
1419         }
1420
1421         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1422         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1423         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1424         if (!(test_opt (inode->i_sb, NO_UID32))) {
1425                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1426                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1427         }
1428         i_uid_write(inode, i_uid);
1429         i_gid_write(inode, i_gid);
1430         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1431         inode->i_size = le32_to_cpu(raw_inode->i_size);
1432         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1433         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1434         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1435         inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1436         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1437         /* We now have enough fields to check if the inode was active or not.
1438          * This is needed because nfsd might try to access dead inodes
1439          * the test is that same one that e2fsck uses
1440          * NeilBrown 1999oct15
1441          */
1442         if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1443                 /* this inode is deleted */
1444                 brelse (bh);
1445                 ret = -ESTALE;
1446                 goto bad_inode;
1447         }
1448         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1449         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1450         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1451         ei->i_frag_no = raw_inode->i_frag;
1452         ei->i_frag_size = raw_inode->i_fsize;
1453         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1454         ei->i_dir_acl = 0;
1455
1456         if (ei->i_file_acl &&
1457             !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1458                 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1459                            ei->i_file_acl);
1460                 brelse(bh);
1461                 ret = -EFSCORRUPTED;
1462                 goto bad_inode;
1463         }
1464
1465         if (S_ISREG(inode->i_mode))
1466                 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1467         else
1468                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1469         if (i_size_read(inode) < 0) {
1470                 ret = -EFSCORRUPTED;
1471                 goto bad_inode;
1472         }
1473         ei->i_dtime = 0;
1474         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1475         ei->i_state = 0;
1476         ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1477         ei->i_dir_start_lookup = 0;
1478
1479         /*
1480          * NOTE! The in-memory inode i_data array is in little-endian order
1481          * even on big-endian machines: we do NOT byteswap the block numbers!
1482          */
1483         for (n = 0; n < EXT2_N_BLOCKS; n++)
1484                 ei->i_data[n] = raw_inode->i_block[n];
1485
1486         if (S_ISREG(inode->i_mode)) {
1487                 inode->i_op = &ext2_file_inode_operations;
1488                 if (test_opt(inode->i_sb, NOBH)) {
1489                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1490                         inode->i_fop = &ext2_file_operations;
1491                 } else {
1492                         inode->i_mapping->a_ops = &ext2_aops;
1493                         inode->i_fop = &ext2_file_operations;
1494                 }
1495         } else if (S_ISDIR(inode->i_mode)) {
1496                 inode->i_op = &ext2_dir_inode_operations;
1497                 inode->i_fop = &ext2_dir_operations;
1498                 if (test_opt(inode->i_sb, NOBH))
1499                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1500                 else
1501                         inode->i_mapping->a_ops = &ext2_aops;
1502         } else if (S_ISLNK(inode->i_mode)) {
1503                 if (ext2_inode_is_fast_symlink(inode)) {
1504                         inode->i_link = (char *)ei->i_data;
1505                         inode->i_op = &ext2_fast_symlink_inode_operations;
1506                         nd_terminate_link(ei->i_data, inode->i_size,
1507                                 sizeof(ei->i_data) - 1);
1508                 } else {
1509                         inode->i_op = &ext2_symlink_inode_operations;
1510                         inode_nohighmem(inode);
1511                         if (test_opt(inode->i_sb, NOBH))
1512                                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1513                         else
1514                                 inode->i_mapping->a_ops = &ext2_aops;
1515                 }
1516         } else {
1517                 inode->i_op = &ext2_special_inode_operations;
1518                 if (raw_inode->i_block[0])
1519                         init_special_inode(inode, inode->i_mode,
1520                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1521                 else 
1522                         init_special_inode(inode, inode->i_mode,
1523                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1524         }
1525         brelse (bh);
1526         ext2_set_inode_flags(inode);
1527         unlock_new_inode(inode);
1528         return inode;
1529         
1530 bad_inode:
1531         iget_failed(inode);
1532         return ERR_PTR(ret);
1533 }
1534
1535 static int __ext2_write_inode(struct inode *inode, int do_sync)
1536 {
1537         struct ext2_inode_info *ei = EXT2_I(inode);
1538         struct super_block *sb = inode->i_sb;
1539         ino_t ino = inode->i_ino;
1540         uid_t uid = i_uid_read(inode);
1541         gid_t gid = i_gid_read(inode);
1542         struct buffer_head * bh;
1543         struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1544         int n;
1545         int err = 0;
1546
1547         if (IS_ERR(raw_inode))
1548                 return -EIO;
1549
1550         /* For fields not not tracking in the in-memory inode,
1551          * initialise them to zero for new inodes. */
1552         if (ei->i_state & EXT2_STATE_NEW)
1553                 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1554
1555         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1556         if (!(test_opt(sb, NO_UID32))) {
1557                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1558                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1559 /*
1560  * Fix up interoperability with old kernels. Otherwise, old inodes get
1561  * re-used with the upper 16 bits of the uid/gid intact
1562  */
1563                 if (!ei->i_dtime) {
1564                         raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1565                         raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1566                 } else {
1567                         raw_inode->i_uid_high = 0;
1568                         raw_inode->i_gid_high = 0;
1569                 }
1570         } else {
1571                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1572                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1573                 raw_inode->i_uid_high = 0;
1574                 raw_inode->i_gid_high = 0;
1575         }
1576         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1577         raw_inode->i_size = cpu_to_le32(inode->i_size);
1578         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1579         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1580         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1581
1582         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1583         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1584         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1585         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1586         raw_inode->i_frag = ei->i_frag_no;
1587         raw_inode->i_fsize = ei->i_frag_size;
1588         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1589         if (!S_ISREG(inode->i_mode))
1590                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1591         else {
1592                 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1593                 if (inode->i_size > 0x7fffffffULL) {
1594                         if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1595                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1596                             EXT2_SB(sb)->s_es->s_rev_level ==
1597                                         cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1598                                /* If this is the first large file
1599                                 * created, add a flag to the superblock.
1600                                 */
1601                                 spin_lock(&EXT2_SB(sb)->s_lock);
1602                                 ext2_update_dynamic_rev(sb);
1603                                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1604                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1605                                 spin_unlock(&EXT2_SB(sb)->s_lock);
1606                                 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1607                         }
1608                 }
1609         }
1610         
1611         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1612         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1613                 if (old_valid_dev(inode->i_rdev)) {
1614                         raw_inode->i_block[0] =
1615                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1616                         raw_inode->i_block[1] = 0;
1617                 } else {
1618                         raw_inode->i_block[0] = 0;
1619                         raw_inode->i_block[1] =
1620                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1621                         raw_inode->i_block[2] = 0;
1622                 }
1623         } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1624                 raw_inode->i_block[n] = ei->i_data[n];
1625         mark_buffer_dirty(bh);
1626         if (do_sync) {
1627                 sync_dirty_buffer(bh);
1628                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1629                         printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1630                                 sb->s_id, (unsigned long) ino);
1631                         err = -EIO;
1632                 }
1633         }
1634         ei->i_state &= ~EXT2_STATE_NEW;
1635         brelse (bh);
1636         return err;
1637 }
1638
1639 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1640 {
1641         return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1642 }
1643
1644 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1645 {
1646         struct inode *inode = d_inode(dentry);
1647         int error;
1648
1649         error = setattr_prepare(dentry, iattr);
1650         if (error)
1651                 return error;
1652
1653         if (is_quota_modification(inode, iattr)) {
1654                 error = dquot_initialize(inode);
1655                 if (error)
1656                         return error;
1657         }
1658         if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1659             (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1660                 error = dquot_transfer(inode, iattr);
1661                 if (error)
1662                         return error;
1663         }
1664         if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1665                 error = ext2_setsize(inode, iattr->ia_size);
1666                 if (error)
1667                         return error;
1668         }
1669         setattr_copy(inode, iattr);
1670         if (iattr->ia_valid & ATTR_MODE)
1671                 error = posix_acl_chmod(inode, inode->i_mode);
1672         mark_inode_dirty(inode);
1673
1674         return error;
1675 }