]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
2b9278867caf418ec01506fd3683276e55a4b198
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !ext4_has_metadata_csum(inode->i_sb))
85                 return 1;
86
87         provided = le16_to_cpu(raw->i_checksum_lo);
88         calculated = ext4_inode_csum(inode, raw, ei);
89         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92         else
93                 calculated &= 0xFFFF;
94
95         return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99                                 struct ext4_inode_info *ei)
100 {
101         __u32 csum;
102
103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104             cpu_to_le32(EXT4_OS_LINUX) ||
105             !ext4_has_metadata_csum(inode->i_sb))
106                 return;
107
108         csum = ext4_inode_csum(inode, raw, ei);
109         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116                                               loff_t new_size)
117 {
118         trace_ext4_begin_ordered_truncate(inode, new_size);
119         /*
120          * If jinode is zero, then we never opened the file for
121          * writing, so there's no need to call
122          * jbd2_journal_begin_ordered_truncate() since there's no
123          * outstanding writes we need to flush.
124          */
125         if (!EXT4_I(inode)->jinode)
126                 return 0;
127         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128                                                    EXT4_I(inode)->jinode,
129                                                    new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133                                 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137                                   int pextents);
138
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147         if (ext4_has_inline_data(inode))
148                 return 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages_final(&inode->i_data);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (is_bad_inode(inode))
224                 goto no_delete;
225         dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages_final(&inode->i_data);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327                                         int used, int quota_claim)
328 {
329         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330         struct ext4_inode_info *ei = EXT4_I(inode);
331
332         spin_lock(&ei->i_block_reservation_lock);
333         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334         if (unlikely(used > ei->i_reserved_data_blocks)) {
335                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336                          "with only %d reserved data blocks",
337                          __func__, inode->i_ino, used,
338                          ei->i_reserved_data_blocks);
339                 WARN_ON(1);
340                 used = ei->i_reserved_data_blocks;
341         }
342
343         /* Update per-inode reservations */
344         ei->i_reserved_data_blocks -= used;
345         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346
347         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348
349         /* Update quota subsystem for data blocks */
350         if (quota_claim)
351                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
352         else {
353                 /*
354                  * We did fallocate with an offset that is already delayed
355                  * allocated. So on delayed allocated writeback we should
356                  * not re-claim the quota for fallocated blocks.
357                  */
358                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359         }
360
361         /*
362          * If we have done all the pending block allocations and if
363          * there aren't any writers on the inode, we can discard the
364          * inode's preallocations.
365          */
366         if ((ei->i_reserved_data_blocks == 0) &&
367             (atomic_read(&inode->i_writecount) == 0))
368                 ext4_discard_preallocations(inode);
369 }
370
371 static int __check_block_validity(struct inode *inode, const char *func,
372                                 unsigned int line,
373                                 struct ext4_map_blocks *map)
374 {
375         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376                                    map->m_len)) {
377                 ext4_error_inode(inode, func, line, map->m_pblk,
378                                  "lblock %lu mapped to illegal pblock "
379                                  "(length %d)", (unsigned long) map->m_lblk,
380                                  map->m_len);
381                 return -EFSCORRUPTED;
382         }
383         return 0;
384 }
385
386 #define check_block_validity(inode, map)        \
387         __check_block_validity((inode), __func__, __LINE__, (map))
388
389 #ifdef ES_AGGRESSIVE_TEST
390 static void ext4_map_blocks_es_recheck(handle_t *handle,
391                                        struct inode *inode,
392                                        struct ext4_map_blocks *es_map,
393                                        struct ext4_map_blocks *map,
394                                        int flags)
395 {
396         int retval;
397
398         map->m_flags = 0;
399         /*
400          * There is a race window that the result is not the same.
401          * e.g. xfstests #223 when dioread_nolock enables.  The reason
402          * is that we lookup a block mapping in extent status tree with
403          * out taking i_data_sem.  So at the time the unwritten extent
404          * could be converted.
405          */
406         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
407                 down_read(&EXT4_I(inode)->i_data_sem);
408         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
410                                              EXT4_GET_BLOCKS_KEEP_SIZE);
411         } else {
412                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
413                                              EXT4_GET_BLOCKS_KEEP_SIZE);
414         }
415         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416                 up_read((&EXT4_I(inode)->i_data_sem));
417
418         /*
419          * We don't check m_len because extent will be collpased in status
420          * tree.  So the m_len might not equal.
421          */
422         if (es_map->m_lblk != map->m_lblk ||
423             es_map->m_flags != map->m_flags ||
424             es_map->m_pblk != map->m_pblk) {
425                 printk("ES cache assertion failed for inode: %lu "
426                        "es_cached ex [%d/%d/%llu/%x] != "
427                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428                        inode->i_ino, es_map->m_lblk, es_map->m_len,
429                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
430                        map->m_len, map->m_pblk, map->m_flags,
431                        retval, flags);
432         }
433 }
434 #endif /* ES_AGGRESSIVE_TEST */
435
436 /*
437  * The ext4_map_blocks() function tries to look up the requested blocks,
438  * and returns if the blocks are already mapped.
439  *
440  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441  * and store the allocated blocks in the result buffer head and mark it
442  * mapped.
443  *
444  * If file type is extents based, it will call ext4_ext_map_blocks(),
445  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
446  * based files
447  *
448  * On success, it returns the number of blocks being mapped or allocated.
449  * if create==0 and the blocks are pre-allocated and unwritten block,
450  * the result buffer head is unmapped. If the create ==1, it will make sure
451  * the buffer head is mapped.
452  *
453  * It returns 0 if plain look up failed (blocks have not been allocated), in
454  * that case, buffer head is unmapped
455  *
456  * It returns the error in case of allocation failure.
457  */
458 int ext4_map_blocks(handle_t *handle, struct inode *inode,
459                     struct ext4_map_blocks *map, int flags)
460 {
461         struct extent_status es;
462         int retval;
463         int ret = 0;
464 #ifdef ES_AGGRESSIVE_TEST
465         struct ext4_map_blocks orig_map;
466
467         memcpy(&orig_map, map, sizeof(*map));
468 #endif
469
470         map->m_flags = 0;
471         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
473                   (unsigned long) map->m_lblk);
474
475         /*
476          * ext4_map_blocks returns an int, and m_len is an unsigned int
477          */
478         if (unlikely(map->m_len > INT_MAX))
479                 map->m_len = INT_MAX;
480
481         /* We can handle the block number less than EXT_MAX_BLOCKS */
482         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483                 return -EFSCORRUPTED;
484
485         /* Lookup extent status tree firstly */
486         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488                         map->m_pblk = ext4_es_pblock(&es) +
489                                         map->m_lblk - es.es_lblk;
490                         map->m_flags |= ext4_es_is_written(&es) ?
491                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492                         retval = es.es_len - (map->m_lblk - es.es_lblk);
493                         if (retval > map->m_len)
494                                 retval = map->m_len;
495                         map->m_len = retval;
496                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497                         retval = 0;
498                 } else {
499                         BUG_ON(1);
500                 }
501 #ifdef ES_AGGRESSIVE_TEST
502                 ext4_map_blocks_es_recheck(handle, inode, map,
503                                            &orig_map, flags);
504 #endif
505                 goto found;
506         }
507
508         /*
509          * Try to see if we can get the block without requesting a new
510          * file system block.
511          */
512         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513                 down_read(&EXT4_I(inode)->i_data_sem);
514         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
515                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
516                                              EXT4_GET_BLOCKS_KEEP_SIZE);
517         } else {
518                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
519                                              EXT4_GET_BLOCKS_KEEP_SIZE);
520         }
521         if (retval > 0) {
522                 unsigned int status;
523
524                 if (unlikely(retval != map->m_len)) {
525                         ext4_warning(inode->i_sb,
526                                      "ES len assertion failed for inode "
527                                      "%lu: retval %d != map->m_len %d",
528                                      inode->i_ino, retval, map->m_len);
529                         WARN_ON(1);
530                 }
531
532                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535                     !(status & EXTENT_STATUS_WRITTEN) &&
536                     ext4_find_delalloc_range(inode, map->m_lblk,
537                                              map->m_lblk + map->m_len - 1))
538                         status |= EXTENT_STATUS_DELAYED;
539                 ret = ext4_es_insert_extent(inode, map->m_lblk,
540                                             map->m_len, map->m_pblk, status);
541                 if (ret < 0)
542                         retval = ret;
543         }
544         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545                 up_read((&EXT4_I(inode)->i_data_sem));
546
547 found:
548         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549                 ret = check_block_validity(inode, map);
550                 if (ret != 0)
551                         return ret;
552         }
553
554         /* If it is only a block(s) look up */
555         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
556                 return retval;
557
558         /*
559          * Returns if the blocks have already allocated
560          *
561          * Note that if blocks have been preallocated
562          * ext4_ext_get_block() returns the create = 0
563          * with buffer head unmapped.
564          */
565         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566                 /*
567                  * If we need to convert extent to unwritten
568                  * we continue and do the actual work in
569                  * ext4_ext_map_blocks()
570                  */
571                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572                         return retval;
573
574         /*
575          * Here we clear m_flags because after allocating an new extent,
576          * it will be set again.
577          */
578         map->m_flags &= ~EXT4_MAP_FLAGS;
579
580         /*
581          * New blocks allocate and/or writing to unwritten extent
582          * will possibly result in updating i_data, so we take
583          * the write lock of i_data_sem, and call get_block()
584          * with create == 1 flag.
585          */
586         down_write(&EXT4_I(inode)->i_data_sem);
587
588         /*
589          * We need to check for EXT4 here because migrate
590          * could have changed the inode type in between
591          */
592         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
594         } else {
595                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
596
597                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598                         /*
599                          * We allocated new blocks which will result in
600                          * i_data's format changing.  Force the migrate
601                          * to fail by clearing migrate flags
602                          */
603                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
604                 }
605
606                 /*
607                  * Update reserved blocks/metadata blocks after successful
608                  * block allocation which had been deferred till now. We don't
609                  * support fallocate for non extent files. So we can update
610                  * reserve space here.
611                  */
612                 if ((retval > 0) &&
613                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614                         ext4_da_update_reserve_space(inode, retval, 1);
615         }
616
617         if (retval > 0) {
618                 unsigned int status;
619
620                 if (unlikely(retval != map->m_len)) {
621                         ext4_warning(inode->i_sb,
622                                      "ES len assertion failed for inode "
623                                      "%lu: retval %d != map->m_len %d",
624                                      inode->i_ino, retval, map->m_len);
625                         WARN_ON(1);
626                 }
627
628                 /*
629                  * If the extent has been zeroed out, we don't need to update
630                  * extent status tree.
631                  */
632                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634                         if (ext4_es_is_written(&es))
635                                 goto has_zeroout;
636                 }
637                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640                     !(status & EXTENT_STATUS_WRITTEN) &&
641                     ext4_find_delalloc_range(inode, map->m_lblk,
642                                              map->m_lblk + map->m_len - 1))
643                         status |= EXTENT_STATUS_DELAYED;
644                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645                                             map->m_pblk, status);
646                 if (ret < 0)
647                         retval = ret;
648         }
649
650 has_zeroout:
651         up_write((&EXT4_I(inode)->i_data_sem));
652         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653                 ret = check_block_validity(inode, map);
654                 if (ret != 0)
655                         return ret;
656         }
657         return retval;
658 }
659
660 /* Maximum number of blocks we map for direct IO at once. */
661 #define DIO_MAX_BLOCKS 4096
662
663 static int _ext4_get_block(struct inode *inode, sector_t iblock,
664                            struct buffer_head *bh, int flags)
665 {
666         handle_t *handle = ext4_journal_current_handle();
667         struct ext4_map_blocks map;
668         int ret = 0, started = 0;
669         int dio_credits;
670
671         if (ext4_has_inline_data(inode))
672                 return -ERANGE;
673
674         map.m_lblk = iblock;
675         map.m_len = bh->b_size >> inode->i_blkbits;
676
677         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
678                 /* Direct IO write... */
679                 if (map.m_len > DIO_MAX_BLOCKS)
680                         map.m_len = DIO_MAX_BLOCKS;
681                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
682                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
683                                             dio_credits);
684                 if (IS_ERR(handle)) {
685                         ret = PTR_ERR(handle);
686                         return ret;
687                 }
688                 started = 1;
689         }
690
691         ret = ext4_map_blocks(handle, inode, &map, flags);
692         if (ret > 0) {
693                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
694
695                 map_bh(bh, inode->i_sb, map.m_pblk);
696                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
697                 if (IS_DAX(inode) && buffer_unwritten(bh)) {
698                         /*
699                          * dgc: I suspect unwritten conversion on ext4+DAX is
700                          * fundamentally broken here when there are concurrent
701                          * read/write in progress on this inode.
702                          */
703                         WARN_ON_ONCE(io_end);
704                         bh->b_assoc_map = inode->i_mapping;
705                         bh->b_private = (void *)(unsigned long)iblock;
706                 }
707                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
708                         set_buffer_defer_completion(bh);
709                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
710                 ret = 0;
711         }
712         if (started)
713                 ext4_journal_stop(handle);
714         return ret;
715 }
716
717 int ext4_get_block(struct inode *inode, sector_t iblock,
718                    struct buffer_head *bh, int create)
719 {
720         return _ext4_get_block(inode, iblock, bh,
721                                create ? EXT4_GET_BLOCKS_CREATE : 0);
722 }
723
724 /*
725  * `handle' can be NULL if create is zero
726  */
727 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
728                                 ext4_lblk_t block, int map_flags)
729 {
730         struct ext4_map_blocks map;
731         struct buffer_head *bh;
732         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
733         int err;
734
735         J_ASSERT(handle != NULL || create == 0);
736
737         map.m_lblk = block;
738         map.m_len = 1;
739         err = ext4_map_blocks(handle, inode, &map, map_flags);
740
741         if (err == 0)
742                 return create ? ERR_PTR(-ENOSPC) : NULL;
743         if (err < 0)
744                 return ERR_PTR(err);
745
746         bh = sb_getblk(inode->i_sb, map.m_pblk);
747         if (unlikely(!bh))
748                 return ERR_PTR(-ENOMEM);
749         if (map.m_flags & EXT4_MAP_NEW) {
750                 J_ASSERT(create != 0);
751                 J_ASSERT(handle != NULL);
752
753                 /*
754                  * Now that we do not always journal data, we should
755                  * keep in mind whether this should always journal the
756                  * new buffer as metadata.  For now, regular file
757                  * writes use ext4_get_block instead, so it's not a
758                  * problem.
759                  */
760                 lock_buffer(bh);
761                 BUFFER_TRACE(bh, "call get_create_access");
762                 err = ext4_journal_get_create_access(handle, bh);
763                 if (unlikely(err)) {
764                         unlock_buffer(bh);
765                         goto errout;
766                 }
767                 if (!buffer_uptodate(bh)) {
768                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
769                         set_buffer_uptodate(bh);
770                 }
771                 unlock_buffer(bh);
772                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
773                 err = ext4_handle_dirty_metadata(handle, inode, bh);
774                 if (unlikely(err))
775                         goto errout;
776         } else
777                 BUFFER_TRACE(bh, "not a new buffer");
778         return bh;
779 errout:
780         brelse(bh);
781         return ERR_PTR(err);
782 }
783
784 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
785                                ext4_lblk_t block, int map_flags)
786 {
787         struct buffer_head *bh;
788
789         bh = ext4_getblk(handle, inode, block, map_flags);
790         if (IS_ERR(bh))
791                 return bh;
792         if (!bh || buffer_uptodate(bh))
793                 return bh;
794         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
795         wait_on_buffer(bh);
796         if (buffer_uptodate(bh))
797                 return bh;
798         put_bh(bh);
799         return ERR_PTR(-EIO);
800 }
801
802 int ext4_walk_page_buffers(handle_t *handle,
803                            struct buffer_head *head,
804                            unsigned from,
805                            unsigned to,
806                            int *partial,
807                            int (*fn)(handle_t *handle,
808                                      struct buffer_head *bh))
809 {
810         struct buffer_head *bh;
811         unsigned block_start, block_end;
812         unsigned blocksize = head->b_size;
813         int err, ret = 0;
814         struct buffer_head *next;
815
816         for (bh = head, block_start = 0;
817              ret == 0 && (bh != head || !block_start);
818              block_start = block_end, bh = next) {
819                 next = bh->b_this_page;
820                 block_end = block_start + blocksize;
821                 if (block_end <= from || block_start >= to) {
822                         if (partial && !buffer_uptodate(bh))
823                                 *partial = 1;
824                         continue;
825                 }
826                 err = (*fn)(handle, bh);
827                 if (!ret)
828                         ret = err;
829         }
830         return ret;
831 }
832
833 /*
834  * To preserve ordering, it is essential that the hole instantiation and
835  * the data write be encapsulated in a single transaction.  We cannot
836  * close off a transaction and start a new one between the ext4_get_block()
837  * and the commit_write().  So doing the jbd2_journal_start at the start of
838  * prepare_write() is the right place.
839  *
840  * Also, this function can nest inside ext4_writepage().  In that case, we
841  * *know* that ext4_writepage() has generated enough buffer credits to do the
842  * whole page.  So we won't block on the journal in that case, which is good,
843  * because the caller may be PF_MEMALLOC.
844  *
845  * By accident, ext4 can be reentered when a transaction is open via
846  * quota file writes.  If we were to commit the transaction while thus
847  * reentered, there can be a deadlock - we would be holding a quota
848  * lock, and the commit would never complete if another thread had a
849  * transaction open and was blocking on the quota lock - a ranking
850  * violation.
851  *
852  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853  * will _not_ run commit under these circumstances because handle->h_ref
854  * is elevated.  We'll still have enough credits for the tiny quotafile
855  * write.
856  */
857 int do_journal_get_write_access(handle_t *handle,
858                                 struct buffer_head *bh)
859 {
860         int dirty = buffer_dirty(bh);
861         int ret;
862
863         if (!buffer_mapped(bh) || buffer_freed(bh))
864                 return 0;
865         /*
866          * __block_write_begin() could have dirtied some buffers. Clean
867          * the dirty bit as jbd2_journal_get_write_access() could complain
868          * otherwise about fs integrity issues. Setting of the dirty bit
869          * by __block_write_begin() isn't a real problem here as we clear
870          * the bit before releasing a page lock and thus writeback cannot
871          * ever write the buffer.
872          */
873         if (dirty)
874                 clear_buffer_dirty(bh);
875         BUFFER_TRACE(bh, "get write access");
876         ret = ext4_journal_get_write_access(handle, bh);
877         if (!ret && dirty)
878                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
879         return ret;
880 }
881
882 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
883                    struct buffer_head *bh_result, int create);
884
885 #ifdef CONFIG_EXT4_FS_ENCRYPTION
886 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
887                                   get_block_t *get_block)
888 {
889         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
890         unsigned to = from + len;
891         struct inode *inode = page->mapping->host;
892         unsigned block_start, block_end;
893         sector_t block;
894         int err = 0;
895         unsigned blocksize = inode->i_sb->s_blocksize;
896         unsigned bbits;
897         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
898         bool decrypt = false;
899
900         BUG_ON(!PageLocked(page));
901         BUG_ON(from > PAGE_CACHE_SIZE);
902         BUG_ON(to > PAGE_CACHE_SIZE);
903         BUG_ON(from > to);
904
905         if (!page_has_buffers(page))
906                 create_empty_buffers(page, blocksize, 0);
907         head = page_buffers(page);
908         bbits = ilog2(blocksize);
909         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
910
911         for (bh = head, block_start = 0; bh != head || !block_start;
912             block++, block_start = block_end, bh = bh->b_this_page) {
913                 block_end = block_start + blocksize;
914                 if (block_end <= from || block_start >= to) {
915                         if (PageUptodate(page)) {
916                                 if (!buffer_uptodate(bh))
917                                         set_buffer_uptodate(bh);
918                         }
919                         continue;
920                 }
921                 if (buffer_new(bh))
922                         clear_buffer_new(bh);
923                 if (!buffer_mapped(bh)) {
924                         WARN_ON(bh->b_size != blocksize);
925                         err = get_block(inode, block, bh, 1);
926                         if (err)
927                                 break;
928                         if (buffer_new(bh)) {
929                                 unmap_underlying_metadata(bh->b_bdev,
930                                                           bh->b_blocknr);
931                                 if (PageUptodate(page)) {
932                                         clear_buffer_new(bh);
933                                         set_buffer_uptodate(bh);
934                                         mark_buffer_dirty(bh);
935                                         continue;
936                                 }
937                                 if (block_end > to || block_start < from)
938                                         zero_user_segments(page, to, block_end,
939                                                            block_start, from);
940                                 continue;
941                         }
942                 }
943                 if (PageUptodate(page)) {
944                         if (!buffer_uptodate(bh))
945                                 set_buffer_uptodate(bh);
946                         continue;
947                 }
948                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
949                     !buffer_unwritten(bh) &&
950                     (block_start < from || block_end > to)) {
951                         ll_rw_block(READ, 1, &bh);
952                         *wait_bh++ = bh;
953                         decrypt = ext4_encrypted_inode(inode) &&
954                                 S_ISREG(inode->i_mode);
955                 }
956         }
957         /*
958          * If we issued read requests, let them complete.
959          */
960         while (wait_bh > wait) {
961                 wait_on_buffer(*--wait_bh);
962                 if (!buffer_uptodate(*wait_bh))
963                         err = -EIO;
964         }
965         if (unlikely(err))
966                 page_zero_new_buffers(page, from, to);
967         else if (decrypt)
968                 err = ext4_decrypt(page);
969         return err;
970 }
971 #endif
972
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974                             loff_t pos, unsigned len, unsigned flags,
975                             struct page **pagep, void **fsdata)
976 {
977         struct inode *inode = mapping->host;
978         int ret, needed_blocks;
979         handle_t *handle;
980         int retries = 0;
981         struct page *page;
982         pgoff_t index;
983         unsigned from, to;
984
985         trace_ext4_write_begin(inode, pos, len, flags);
986         /*
987          * Reserve one block more for addition to orphan list in case
988          * we allocate blocks but write fails for some reason
989          */
990         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991         index = pos >> PAGE_CACHE_SHIFT;
992         from = pos & (PAGE_CACHE_SIZE - 1);
993         to = from + len;
994
995         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997                                                     flags, pagep);
998                 if (ret < 0)
999                         return ret;
1000                 if (ret == 1)
1001                         return 0;
1002         }
1003
1004         /*
1005          * grab_cache_page_write_begin() can take a long time if the
1006          * system is thrashing due to memory pressure, or if the page
1007          * is being written back.  So grab it first before we start
1008          * the transaction handle.  This also allows us to allocate
1009          * the page (if needed) without using GFP_NOFS.
1010          */
1011 retry_grab:
1012         page = grab_cache_page_write_begin(mapping, index, flags);
1013         if (!page)
1014                 return -ENOMEM;
1015         unlock_page(page);
1016
1017 retry_journal:
1018         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019         if (IS_ERR(handle)) {
1020                 page_cache_release(page);
1021                 return PTR_ERR(handle);
1022         }
1023
1024         lock_page(page);
1025         if (page->mapping != mapping) {
1026                 /* The page got truncated from under us */
1027                 unlock_page(page);
1028                 page_cache_release(page);
1029                 ext4_journal_stop(handle);
1030                 goto retry_grab;
1031         }
1032         /* In case writeback began while the page was unlocked */
1033         wait_for_stable_page(page);
1034
1035 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1036         if (ext4_should_dioread_nolock(inode))
1037                 ret = ext4_block_write_begin(page, pos, len,
1038                                              ext4_get_block_write);
1039         else
1040                 ret = ext4_block_write_begin(page, pos, len,
1041                                              ext4_get_block);
1042 #else
1043         if (ext4_should_dioread_nolock(inode))
1044                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1045         else
1046                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1047 #endif
1048         if (!ret && ext4_should_journal_data(inode)) {
1049                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1050                                              from, to, NULL,
1051                                              do_journal_get_write_access);
1052         }
1053
1054         if (ret) {
1055                 unlock_page(page);
1056                 /*
1057                  * __block_write_begin may have instantiated a few blocks
1058                  * outside i_size.  Trim these off again. Don't need
1059                  * i_size_read because we hold i_mutex.
1060                  *
1061                  * Add inode to orphan list in case we crash before
1062                  * truncate finishes
1063                  */
1064                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1065                         ext4_orphan_add(handle, inode);
1066
1067                 ext4_journal_stop(handle);
1068                 if (pos + len > inode->i_size) {
1069                         ext4_truncate_failed_write(inode);
1070                         /*
1071                          * If truncate failed early the inode might
1072                          * still be on the orphan list; we need to
1073                          * make sure the inode is removed from the
1074                          * orphan list in that case.
1075                          */
1076                         if (inode->i_nlink)
1077                                 ext4_orphan_del(NULL, inode);
1078                 }
1079
1080                 if (ret == -ENOSPC &&
1081                     ext4_should_retry_alloc(inode->i_sb, &retries))
1082                         goto retry_journal;
1083                 page_cache_release(page);
1084                 return ret;
1085         }
1086         *pagep = page;
1087         return ret;
1088 }
1089
1090 /* For write_end() in data=journal mode */
1091 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1092 {
1093         int ret;
1094         if (!buffer_mapped(bh) || buffer_freed(bh))
1095                 return 0;
1096         set_buffer_uptodate(bh);
1097         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1098         clear_buffer_meta(bh);
1099         clear_buffer_prio(bh);
1100         return ret;
1101 }
1102
1103 /*
1104  * We need to pick up the new inode size which generic_commit_write gave us
1105  * `file' can be NULL - eg, when called from page_symlink().
1106  *
1107  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1108  * buffers are managed internally.
1109  */
1110 static int ext4_write_end(struct file *file,
1111                           struct address_space *mapping,
1112                           loff_t pos, unsigned len, unsigned copied,
1113                           struct page *page, void *fsdata)
1114 {
1115         handle_t *handle = ext4_journal_current_handle();
1116         struct inode *inode = mapping->host;
1117         loff_t old_size = inode->i_size;
1118         int ret = 0, ret2;
1119         int i_size_changed = 0;
1120
1121         trace_ext4_write_end(inode, pos, len, copied);
1122         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1123                 ret = ext4_jbd2_file_inode(handle, inode);
1124                 if (ret) {
1125                         unlock_page(page);
1126                         page_cache_release(page);
1127                         goto errout;
1128                 }
1129         }
1130
1131         if (ext4_has_inline_data(inode)) {
1132                 ret = ext4_write_inline_data_end(inode, pos, len,
1133                                                  copied, page);
1134                 if (ret < 0)
1135                         goto errout;
1136                 copied = ret;
1137         } else
1138                 copied = block_write_end(file, mapping, pos,
1139                                          len, copied, page, fsdata);
1140         /*
1141          * it's important to update i_size while still holding page lock:
1142          * page writeout could otherwise come in and zero beyond i_size.
1143          */
1144         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1145         unlock_page(page);
1146         page_cache_release(page);
1147
1148         if (old_size < pos)
1149                 pagecache_isize_extended(inode, old_size, pos);
1150         /*
1151          * Don't mark the inode dirty under page lock. First, it unnecessarily
1152          * makes the holding time of page lock longer. Second, it forces lock
1153          * ordering of page lock and transaction start for journaling
1154          * filesystems.
1155          */
1156         if (i_size_changed)
1157                 ext4_mark_inode_dirty(handle, inode);
1158
1159         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1160                 /* if we have allocated more blocks and copied
1161                  * less. We will have blocks allocated outside
1162                  * inode->i_size. So truncate them
1163                  */
1164                 ext4_orphan_add(handle, inode);
1165 errout:
1166         ret2 = ext4_journal_stop(handle);
1167         if (!ret)
1168                 ret = ret2;
1169
1170         if (pos + len > inode->i_size) {
1171                 ext4_truncate_failed_write(inode);
1172                 /*
1173                  * If truncate failed early the inode might still be
1174                  * on the orphan list; we need to make sure the inode
1175                  * is removed from the orphan list in that case.
1176                  */
1177                 if (inode->i_nlink)
1178                         ext4_orphan_del(NULL, inode);
1179         }
1180
1181         return ret ? ret : copied;
1182 }
1183
1184 /*
1185  * This is a private version of page_zero_new_buffers() which doesn't
1186  * set the buffer to be dirty, since in data=journalled mode we need
1187  * to call ext4_handle_dirty_metadata() instead.
1188  */
1189 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1190 {
1191         unsigned int block_start = 0, block_end;
1192         struct buffer_head *head, *bh;
1193
1194         bh = head = page_buffers(page);
1195         do {
1196                 block_end = block_start + bh->b_size;
1197                 if (buffer_new(bh)) {
1198                         if (block_end > from && block_start < to) {
1199                                 if (!PageUptodate(page)) {
1200                                         unsigned start, size;
1201
1202                                         start = max(from, block_start);
1203                                         size = min(to, block_end) - start;
1204
1205                                         zero_user(page, start, size);
1206                                         set_buffer_uptodate(bh);
1207                                 }
1208                                 clear_buffer_new(bh);
1209                         }
1210                 }
1211                 block_start = block_end;
1212                 bh = bh->b_this_page;
1213         } while (bh != head);
1214 }
1215
1216 static int ext4_journalled_write_end(struct file *file,
1217                                      struct address_space *mapping,
1218                                      loff_t pos, unsigned len, unsigned copied,
1219                                      struct page *page, void *fsdata)
1220 {
1221         handle_t *handle = ext4_journal_current_handle();
1222         struct inode *inode = mapping->host;
1223         loff_t old_size = inode->i_size;
1224         int ret = 0, ret2;
1225         int partial = 0;
1226         unsigned from, to;
1227         int size_changed = 0;
1228
1229         trace_ext4_journalled_write_end(inode, pos, len, copied);
1230         from = pos & (PAGE_CACHE_SIZE - 1);
1231         to = from + len;
1232
1233         BUG_ON(!ext4_handle_valid(handle));
1234
1235         if (ext4_has_inline_data(inode))
1236                 copied = ext4_write_inline_data_end(inode, pos, len,
1237                                                     copied, page);
1238         else {
1239                 if (copied < len) {
1240                         if (!PageUptodate(page))
1241                                 copied = 0;
1242                         zero_new_buffers(page, from+copied, to);
1243                 }
1244
1245                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1246                                              to, &partial, write_end_fn);
1247                 if (!partial)
1248                         SetPageUptodate(page);
1249         }
1250         size_changed = ext4_update_inode_size(inode, pos + copied);
1251         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1252         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1253         unlock_page(page);
1254         page_cache_release(page);
1255
1256         if (old_size < pos)
1257                 pagecache_isize_extended(inode, old_size, pos);
1258
1259         if (size_changed) {
1260                 ret2 = ext4_mark_inode_dirty(handle, inode);
1261                 if (!ret)
1262                         ret = ret2;
1263         }
1264
1265         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1266                 /* if we have allocated more blocks and copied
1267                  * less. We will have blocks allocated outside
1268                  * inode->i_size. So truncate them
1269                  */
1270                 ext4_orphan_add(handle, inode);
1271
1272         ret2 = ext4_journal_stop(handle);
1273         if (!ret)
1274                 ret = ret2;
1275         if (pos + len > inode->i_size) {
1276                 ext4_truncate_failed_write(inode);
1277                 /*
1278                  * If truncate failed early the inode might still be
1279                  * on the orphan list; we need to make sure the inode
1280                  * is removed from the orphan list in that case.
1281                  */
1282                 if (inode->i_nlink)
1283                         ext4_orphan_del(NULL, inode);
1284         }
1285
1286         return ret ? ret : copied;
1287 }
1288
1289 /*
1290  * Reserve space for a single cluster
1291  */
1292 static int ext4_da_reserve_space(struct inode *inode)
1293 {
1294         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1295         struct ext4_inode_info *ei = EXT4_I(inode);
1296         int ret;
1297
1298         /*
1299          * We will charge metadata quota at writeout time; this saves
1300          * us from metadata over-estimation, though we may go over by
1301          * a small amount in the end.  Here we just reserve for data.
1302          */
1303         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1304         if (ret)
1305                 return ret;
1306
1307         spin_lock(&ei->i_block_reservation_lock);
1308         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1309                 spin_unlock(&ei->i_block_reservation_lock);
1310                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1311                 return -ENOSPC;
1312         }
1313         ei->i_reserved_data_blocks++;
1314         trace_ext4_da_reserve_space(inode);
1315         spin_unlock(&ei->i_block_reservation_lock);
1316
1317         return 0;       /* success */
1318 }
1319
1320 static void ext4_da_release_space(struct inode *inode, int to_free)
1321 {
1322         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1323         struct ext4_inode_info *ei = EXT4_I(inode);
1324
1325         if (!to_free)
1326                 return;         /* Nothing to release, exit */
1327
1328         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1329
1330         trace_ext4_da_release_space(inode, to_free);
1331         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1332                 /*
1333                  * if there aren't enough reserved blocks, then the
1334                  * counter is messed up somewhere.  Since this
1335                  * function is called from invalidate page, it's
1336                  * harmless to return without any action.
1337                  */
1338                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1339                          "ino %lu, to_free %d with only %d reserved "
1340                          "data blocks", inode->i_ino, to_free,
1341                          ei->i_reserved_data_blocks);
1342                 WARN_ON(1);
1343                 to_free = ei->i_reserved_data_blocks;
1344         }
1345         ei->i_reserved_data_blocks -= to_free;
1346
1347         /* update fs dirty data blocks counter */
1348         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1349
1350         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1351
1352         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1353 }
1354
1355 static void ext4_da_page_release_reservation(struct page *page,
1356                                              unsigned int offset,
1357                                              unsigned int length)
1358 {
1359         int to_release = 0, contiguous_blks = 0;
1360         struct buffer_head *head, *bh;
1361         unsigned int curr_off = 0;
1362         struct inode *inode = page->mapping->host;
1363         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1364         unsigned int stop = offset + length;
1365         int num_clusters;
1366         ext4_fsblk_t lblk;
1367
1368         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1369
1370         head = page_buffers(page);
1371         bh = head;
1372         do {
1373                 unsigned int next_off = curr_off + bh->b_size;
1374
1375                 if (next_off > stop)
1376                         break;
1377
1378                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1379                         to_release++;
1380                         contiguous_blks++;
1381                         clear_buffer_delay(bh);
1382                 } else if (contiguous_blks) {
1383                         lblk = page->index <<
1384                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1385                         lblk += (curr_off >> inode->i_blkbits) -
1386                                 contiguous_blks;
1387                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1388                         contiguous_blks = 0;
1389                 }
1390                 curr_off = next_off;
1391         } while ((bh = bh->b_this_page) != head);
1392
1393         if (contiguous_blks) {
1394                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1395                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1396                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1397         }
1398
1399         /* If we have released all the blocks belonging to a cluster, then we
1400          * need to release the reserved space for that cluster. */
1401         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1402         while (num_clusters > 0) {
1403                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1404                         ((num_clusters - 1) << sbi->s_cluster_bits);
1405                 if (sbi->s_cluster_ratio == 1 ||
1406                     !ext4_find_delalloc_cluster(inode, lblk))
1407                         ext4_da_release_space(inode, 1);
1408
1409                 num_clusters--;
1410         }
1411 }
1412
1413 /*
1414  * Delayed allocation stuff
1415  */
1416
1417 struct mpage_da_data {
1418         struct inode *inode;
1419         struct writeback_control *wbc;
1420
1421         pgoff_t first_page;     /* The first page to write */
1422         pgoff_t next_page;      /* Current page to examine */
1423         pgoff_t last_page;      /* Last page to examine */
1424         /*
1425          * Extent to map - this can be after first_page because that can be
1426          * fully mapped. We somewhat abuse m_flags to store whether the extent
1427          * is delalloc or unwritten.
1428          */
1429         struct ext4_map_blocks map;
1430         struct ext4_io_submit io_submit;        /* IO submission data */
1431 };
1432
1433 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1434                                        bool invalidate)
1435 {
1436         int nr_pages, i;
1437         pgoff_t index, end;
1438         struct pagevec pvec;
1439         struct inode *inode = mpd->inode;
1440         struct address_space *mapping = inode->i_mapping;
1441
1442         /* This is necessary when next_page == 0. */
1443         if (mpd->first_page >= mpd->next_page)
1444                 return;
1445
1446         index = mpd->first_page;
1447         end   = mpd->next_page - 1;
1448         if (invalidate) {
1449                 ext4_lblk_t start, last;
1450                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1451                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1452                 ext4_es_remove_extent(inode, start, last - start + 1);
1453         }
1454
1455         pagevec_init(&pvec, 0);
1456         while (index <= end) {
1457                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1458                 if (nr_pages == 0)
1459                         break;
1460                 for (i = 0; i < nr_pages; i++) {
1461                         struct page *page = pvec.pages[i];
1462                         if (page->index > end)
1463                                 break;
1464                         BUG_ON(!PageLocked(page));
1465                         BUG_ON(PageWriteback(page));
1466                         if (invalidate) {
1467                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1468                                 ClearPageUptodate(page);
1469                         }
1470                         unlock_page(page);
1471                 }
1472                 index = pvec.pages[nr_pages - 1]->index + 1;
1473                 pagevec_release(&pvec);
1474         }
1475 }
1476
1477 static void ext4_print_free_blocks(struct inode *inode)
1478 {
1479         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480         struct super_block *sb = inode->i_sb;
1481         struct ext4_inode_info *ei = EXT4_I(inode);
1482
1483         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1484                EXT4_C2B(EXT4_SB(inode->i_sb),
1485                         ext4_count_free_clusters(sb)));
1486         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1487         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1488                (long long) EXT4_C2B(EXT4_SB(sb),
1489                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1490         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1491                (long long) EXT4_C2B(EXT4_SB(sb),
1492                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1493         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1494         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1495                  ei->i_reserved_data_blocks);
1496         return;
1497 }
1498
1499 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1500 {
1501         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1502 }
1503
1504 /*
1505  * This function is grabs code from the very beginning of
1506  * ext4_map_blocks, but assumes that the caller is from delayed write
1507  * time. This function looks up the requested blocks and sets the
1508  * buffer delay bit under the protection of i_data_sem.
1509  */
1510 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1511                               struct ext4_map_blocks *map,
1512                               struct buffer_head *bh)
1513 {
1514         struct extent_status es;
1515         int retval;
1516         sector_t invalid_block = ~((sector_t) 0xffff);
1517 #ifdef ES_AGGRESSIVE_TEST
1518         struct ext4_map_blocks orig_map;
1519
1520         memcpy(&orig_map, map, sizeof(*map));
1521 #endif
1522
1523         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1524                 invalid_block = ~0;
1525
1526         map->m_flags = 0;
1527         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1528                   "logical block %lu\n", inode->i_ino, map->m_len,
1529                   (unsigned long) map->m_lblk);
1530
1531         /* Lookup extent status tree firstly */
1532         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1533                 if (ext4_es_is_hole(&es)) {
1534                         retval = 0;
1535                         down_read(&EXT4_I(inode)->i_data_sem);
1536                         goto add_delayed;
1537                 }
1538
1539                 /*
1540                  * Delayed extent could be allocated by fallocate.
1541                  * So we need to check it.
1542                  */
1543                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1544                         map_bh(bh, inode->i_sb, invalid_block);
1545                         set_buffer_new(bh);
1546                         set_buffer_delay(bh);
1547                         return 0;
1548                 }
1549
1550                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1551                 retval = es.es_len - (iblock - es.es_lblk);
1552                 if (retval > map->m_len)
1553                         retval = map->m_len;
1554                 map->m_len = retval;
1555                 if (ext4_es_is_written(&es))
1556                         map->m_flags |= EXT4_MAP_MAPPED;
1557                 else if (ext4_es_is_unwritten(&es))
1558                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1559                 else
1560                         BUG_ON(1);
1561
1562 #ifdef ES_AGGRESSIVE_TEST
1563                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1564 #endif
1565                 return retval;
1566         }
1567
1568         /*
1569          * Try to see if we can get the block without requesting a new
1570          * file system block.
1571          */
1572         down_read(&EXT4_I(inode)->i_data_sem);
1573         if (ext4_has_inline_data(inode))
1574                 retval = 0;
1575         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1576                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1577         else
1578                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1579
1580 add_delayed:
1581         if (retval == 0) {
1582                 int ret;
1583                 /*
1584                  * XXX: __block_prepare_write() unmaps passed block,
1585                  * is it OK?
1586                  */
1587                 /*
1588                  * If the block was allocated from previously allocated cluster,
1589                  * then we don't need to reserve it again. However we still need
1590                  * to reserve metadata for every block we're going to write.
1591                  */
1592                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1593                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1594                         ret = ext4_da_reserve_space(inode);
1595                         if (ret) {
1596                                 /* not enough space to reserve */
1597                                 retval = ret;
1598                                 goto out_unlock;
1599                         }
1600                 }
1601
1602                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1603                                             ~0, EXTENT_STATUS_DELAYED);
1604                 if (ret) {
1605                         retval = ret;
1606                         goto out_unlock;
1607                 }
1608
1609                 map_bh(bh, inode->i_sb, invalid_block);
1610                 set_buffer_new(bh);
1611                 set_buffer_delay(bh);
1612         } else if (retval > 0) {
1613                 int ret;
1614                 unsigned int status;
1615
1616                 if (unlikely(retval != map->m_len)) {
1617                         ext4_warning(inode->i_sb,
1618                                      "ES len assertion failed for inode "
1619                                      "%lu: retval %d != map->m_len %d",
1620                                      inode->i_ino, retval, map->m_len);
1621                         WARN_ON(1);
1622                 }
1623
1624                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1625                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1626                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1627                                             map->m_pblk, status);
1628                 if (ret != 0)
1629                         retval = ret;
1630         }
1631
1632 out_unlock:
1633         up_read((&EXT4_I(inode)->i_data_sem));
1634
1635         return retval;
1636 }
1637
1638 /*
1639  * This is a special get_block_t callback which is used by
1640  * ext4_da_write_begin().  It will either return mapped block or
1641  * reserve space for a single block.
1642  *
1643  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1644  * We also have b_blocknr = -1 and b_bdev initialized properly
1645  *
1646  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1647  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1648  * initialized properly.
1649  */
1650 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1651                            struct buffer_head *bh, int create)
1652 {
1653         struct ext4_map_blocks map;
1654         int ret = 0;
1655
1656         BUG_ON(create == 0);
1657         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1658
1659         map.m_lblk = iblock;
1660         map.m_len = 1;
1661
1662         /*
1663          * first, we need to know whether the block is allocated already
1664          * preallocated blocks are unmapped but should treated
1665          * the same as allocated blocks.
1666          */
1667         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1668         if (ret <= 0)
1669                 return ret;
1670
1671         map_bh(bh, inode->i_sb, map.m_pblk);
1672         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1673
1674         if (buffer_unwritten(bh)) {
1675                 /* A delayed write to unwritten bh should be marked
1676                  * new and mapped.  Mapped ensures that we don't do
1677                  * get_block multiple times when we write to the same
1678                  * offset and new ensures that we do proper zero out
1679                  * for partial write.
1680                  */
1681                 set_buffer_new(bh);
1682                 set_buffer_mapped(bh);
1683         }
1684         return 0;
1685 }
1686
1687 static int bget_one(handle_t *handle, struct buffer_head *bh)
1688 {
1689         get_bh(bh);
1690         return 0;
1691 }
1692
1693 static int bput_one(handle_t *handle, struct buffer_head *bh)
1694 {
1695         put_bh(bh);
1696         return 0;
1697 }
1698
1699 static int __ext4_journalled_writepage(struct page *page,
1700                                        unsigned int len)
1701 {
1702         struct address_space *mapping = page->mapping;
1703         struct inode *inode = mapping->host;
1704         struct buffer_head *page_bufs = NULL;
1705         handle_t *handle = NULL;
1706         int ret = 0, err = 0;
1707         int inline_data = ext4_has_inline_data(inode);
1708         struct buffer_head *inode_bh = NULL;
1709
1710         ClearPageChecked(page);
1711
1712         if (inline_data) {
1713                 BUG_ON(page->index != 0);
1714                 BUG_ON(len > ext4_get_max_inline_size(inode));
1715                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1716                 if (inode_bh == NULL)
1717                         goto out;
1718         } else {
1719                 page_bufs = page_buffers(page);
1720                 if (!page_bufs) {
1721                         BUG();
1722                         goto out;
1723                 }
1724                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1725                                        NULL, bget_one);
1726         }
1727         /*
1728          * We need to release the page lock before we start the
1729          * journal, so grab a reference so the page won't disappear
1730          * out from under us.
1731          */
1732         get_page(page);
1733         unlock_page(page);
1734
1735         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1736                                     ext4_writepage_trans_blocks(inode));
1737         if (IS_ERR(handle)) {
1738                 ret = PTR_ERR(handle);
1739                 put_page(page);
1740                 goto out_no_pagelock;
1741         }
1742         BUG_ON(!ext4_handle_valid(handle));
1743
1744         lock_page(page);
1745         put_page(page);
1746         if (page->mapping != mapping) {
1747                 /* The page got truncated from under us */
1748                 ext4_journal_stop(handle);
1749                 ret = 0;
1750                 goto out;
1751         }
1752
1753         if (inline_data) {
1754                 BUFFER_TRACE(inode_bh, "get write access");
1755                 ret = ext4_journal_get_write_access(handle, inode_bh);
1756
1757                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1758
1759         } else {
1760                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1761                                              do_journal_get_write_access);
1762
1763                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1764                                              write_end_fn);
1765         }
1766         if (ret == 0)
1767                 ret = err;
1768         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1769         err = ext4_journal_stop(handle);
1770         if (!ret)
1771                 ret = err;
1772
1773         if (!ext4_has_inline_data(inode))
1774                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1775                                        NULL, bput_one);
1776         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1777 out:
1778         unlock_page(page);
1779 out_no_pagelock:
1780         brelse(inode_bh);
1781         return ret;
1782 }
1783
1784 /*
1785  * Note that we don't need to start a transaction unless we're journaling data
1786  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1787  * need to file the inode to the transaction's list in ordered mode because if
1788  * we are writing back data added by write(), the inode is already there and if
1789  * we are writing back data modified via mmap(), no one guarantees in which
1790  * transaction the data will hit the disk. In case we are journaling data, we
1791  * cannot start transaction directly because transaction start ranks above page
1792  * lock so we have to do some magic.
1793  *
1794  * This function can get called via...
1795  *   - ext4_writepages after taking page lock (have journal handle)
1796  *   - journal_submit_inode_data_buffers (no journal handle)
1797  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1798  *   - grab_page_cache when doing write_begin (have journal handle)
1799  *
1800  * We don't do any block allocation in this function. If we have page with
1801  * multiple blocks we need to write those buffer_heads that are mapped. This
1802  * is important for mmaped based write. So if we do with blocksize 1K
1803  * truncate(f, 1024);
1804  * a = mmap(f, 0, 4096);
1805  * a[0] = 'a';
1806  * truncate(f, 4096);
1807  * we have in the page first buffer_head mapped via page_mkwrite call back
1808  * but other buffer_heads would be unmapped but dirty (dirty done via the
1809  * do_wp_page). So writepage should write the first block. If we modify
1810  * the mmap area beyond 1024 we will again get a page_fault and the
1811  * page_mkwrite callback will do the block allocation and mark the
1812  * buffer_heads mapped.
1813  *
1814  * We redirty the page if we have any buffer_heads that is either delay or
1815  * unwritten in the page.
1816  *
1817  * We can get recursively called as show below.
1818  *
1819  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1820  *              ext4_writepage()
1821  *
1822  * But since we don't do any block allocation we should not deadlock.
1823  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1824  */
1825 static int ext4_writepage(struct page *page,
1826                           struct writeback_control *wbc)
1827 {
1828         int ret = 0;
1829         loff_t size;
1830         unsigned int len;
1831         struct buffer_head *page_bufs = NULL;
1832         struct inode *inode = page->mapping->host;
1833         struct ext4_io_submit io_submit;
1834         bool keep_towrite = false;
1835
1836         trace_ext4_writepage(page);
1837         size = i_size_read(inode);
1838         if (page->index == size >> PAGE_CACHE_SHIFT)
1839                 len = size & ~PAGE_CACHE_MASK;
1840         else
1841                 len = PAGE_CACHE_SIZE;
1842
1843         page_bufs = page_buffers(page);
1844         /*
1845          * We cannot do block allocation or other extent handling in this
1846          * function. If there are buffers needing that, we have to redirty
1847          * the page. But we may reach here when we do a journal commit via
1848          * journal_submit_inode_data_buffers() and in that case we must write
1849          * allocated buffers to achieve data=ordered mode guarantees.
1850          *
1851          * Also, if there is only one buffer per page (the fs block
1852          * size == the page size), if one buffer needs block
1853          * allocation or needs to modify the extent tree to clear the
1854          * unwritten flag, we know that the page can't be written at
1855          * all, so we might as well refuse the write immediately.
1856          * Unfortunately if the block size != page size, we can't as
1857          * easily detect this case using ext4_walk_page_buffers(), but
1858          * for the extremely common case, this is an optimization that
1859          * skips a useless round trip through ext4_bio_write_page().
1860          */
1861         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1862                                    ext4_bh_delay_or_unwritten)) {
1863                 redirty_page_for_writepage(wbc, page);
1864                 if ((current->flags & PF_MEMALLOC) ||
1865                     (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1866                         /*
1867                          * For memory cleaning there's no point in writing only
1868                          * some buffers. So just bail out. Warn if we came here
1869                          * from direct reclaim.
1870                          */
1871                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1872                                                         == PF_MEMALLOC);
1873                         unlock_page(page);
1874                         return 0;
1875                 }
1876                 keep_towrite = true;
1877         }
1878
1879         if (PageChecked(page) && ext4_should_journal_data(inode))
1880                 /*
1881                  * It's mmapped pagecache.  Add buffers and journal it.  There
1882                  * doesn't seem much point in redirtying the page here.
1883                  */
1884                 return __ext4_journalled_writepage(page, len);
1885
1886         ext4_io_submit_init(&io_submit, wbc);
1887         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1888         if (!io_submit.io_end) {
1889                 redirty_page_for_writepage(wbc, page);
1890                 unlock_page(page);
1891                 return -ENOMEM;
1892         }
1893         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1894         ext4_io_submit(&io_submit);
1895         /* Drop io_end reference we got from init */
1896         ext4_put_io_end_defer(io_submit.io_end);
1897         return ret;
1898 }
1899
1900 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1901 {
1902         int len;
1903         loff_t size = i_size_read(mpd->inode);
1904         int err;
1905
1906         BUG_ON(page->index != mpd->first_page);
1907         if (page->index == size >> PAGE_CACHE_SHIFT)
1908                 len = size & ~PAGE_CACHE_MASK;
1909         else
1910                 len = PAGE_CACHE_SIZE;
1911         clear_page_dirty_for_io(page);
1912         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1913         if (!err)
1914                 mpd->wbc->nr_to_write--;
1915         mpd->first_page++;
1916
1917         return err;
1918 }
1919
1920 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1921
1922 /*
1923  * mballoc gives us at most this number of blocks...
1924  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1925  * The rest of mballoc seems to handle chunks up to full group size.
1926  */
1927 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1928
1929 /*
1930  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1931  *
1932  * @mpd - extent of blocks
1933  * @lblk - logical number of the block in the file
1934  * @bh - buffer head we want to add to the extent
1935  *
1936  * The function is used to collect contig. blocks in the same state. If the
1937  * buffer doesn't require mapping for writeback and we haven't started the
1938  * extent of buffers to map yet, the function returns 'true' immediately - the
1939  * caller can write the buffer right away. Otherwise the function returns true
1940  * if the block has been added to the extent, false if the block couldn't be
1941  * added.
1942  */
1943 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1944                                    struct buffer_head *bh)
1945 {
1946         struct ext4_map_blocks *map = &mpd->map;
1947
1948         /* Buffer that doesn't need mapping for writeback? */
1949         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1950             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1951                 /* So far no extent to map => we write the buffer right away */
1952                 if (map->m_len == 0)
1953                         return true;
1954                 return false;
1955         }
1956
1957         /* First block in the extent? */
1958         if (map->m_len == 0) {
1959                 map->m_lblk = lblk;
1960                 map->m_len = 1;
1961                 map->m_flags = bh->b_state & BH_FLAGS;
1962                 return true;
1963         }
1964
1965         /* Don't go larger than mballoc is willing to allocate */
1966         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1967                 return false;
1968
1969         /* Can we merge the block to our big extent? */
1970         if (lblk == map->m_lblk + map->m_len &&
1971             (bh->b_state & BH_FLAGS) == map->m_flags) {
1972                 map->m_len++;
1973                 return true;
1974         }
1975         return false;
1976 }
1977
1978 /*
1979  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1980  *
1981  * @mpd - extent of blocks for mapping
1982  * @head - the first buffer in the page
1983  * @bh - buffer we should start processing from
1984  * @lblk - logical number of the block in the file corresponding to @bh
1985  *
1986  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1987  * the page for IO if all buffers in this page were mapped and there's no
1988  * accumulated extent of buffers to map or add buffers in the page to the
1989  * extent of buffers to map. The function returns 1 if the caller can continue
1990  * by processing the next page, 0 if it should stop adding buffers to the
1991  * extent to map because we cannot extend it anymore. It can also return value
1992  * < 0 in case of error during IO submission.
1993  */
1994 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1995                                    struct buffer_head *head,
1996                                    struct buffer_head *bh,
1997                                    ext4_lblk_t lblk)
1998 {
1999         struct inode *inode = mpd->inode;
2000         int err;
2001         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2002                                                         >> inode->i_blkbits;
2003
2004         do {
2005                 BUG_ON(buffer_locked(bh));
2006
2007                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2008                         /* Found extent to map? */
2009                         if (mpd->map.m_len)
2010                                 return 0;
2011                         /* Everything mapped so far and we hit EOF */
2012                         break;
2013                 }
2014         } while (lblk++, (bh = bh->b_this_page) != head);
2015         /* So far everything mapped? Submit the page for IO. */
2016         if (mpd->map.m_len == 0) {
2017                 err = mpage_submit_page(mpd, head->b_page);
2018                 if (err < 0)
2019                         return err;
2020         }
2021         return lblk < blocks;
2022 }
2023
2024 /*
2025  * mpage_map_buffers - update buffers corresponding to changed extent and
2026  *                     submit fully mapped pages for IO
2027  *
2028  * @mpd - description of extent to map, on return next extent to map
2029  *
2030  * Scan buffers corresponding to changed extent (we expect corresponding pages
2031  * to be already locked) and update buffer state according to new extent state.
2032  * We map delalloc buffers to their physical location, clear unwritten bits,
2033  * and mark buffers as uninit when we perform writes to unwritten extents
2034  * and do extent conversion after IO is finished. If the last page is not fully
2035  * mapped, we update @map to the next extent in the last page that needs
2036  * mapping. Otherwise we submit the page for IO.
2037  */
2038 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2039 {
2040         struct pagevec pvec;
2041         int nr_pages, i;
2042         struct inode *inode = mpd->inode;
2043         struct buffer_head *head, *bh;
2044         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2045         pgoff_t start, end;
2046         ext4_lblk_t lblk;
2047         sector_t pblock;
2048         int err;
2049
2050         start = mpd->map.m_lblk >> bpp_bits;
2051         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2052         lblk = start << bpp_bits;
2053         pblock = mpd->map.m_pblk;
2054
2055         pagevec_init(&pvec, 0);
2056         while (start <= end) {
2057                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2058                                           PAGEVEC_SIZE);
2059                 if (nr_pages == 0)
2060                         break;
2061                 for (i = 0; i < nr_pages; i++) {
2062                         struct page *page = pvec.pages[i];
2063
2064                         if (page->index > end)
2065                                 break;
2066                         /* Up to 'end' pages must be contiguous */
2067                         BUG_ON(page->index != start);
2068                         bh = head = page_buffers(page);
2069                         do {
2070                                 if (lblk < mpd->map.m_lblk)
2071                                         continue;
2072                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2073                                         /*
2074                                          * Buffer after end of mapped extent.
2075                                          * Find next buffer in the page to map.
2076                                          */
2077                                         mpd->map.m_len = 0;
2078                                         mpd->map.m_flags = 0;
2079                                         /*
2080                                          * FIXME: If dioread_nolock supports
2081                                          * blocksize < pagesize, we need to make
2082                                          * sure we add size mapped so far to
2083                                          * io_end->size as the following call
2084                                          * can submit the page for IO.
2085                                          */
2086                                         err = mpage_process_page_bufs(mpd, head,
2087                                                                       bh, lblk);
2088                                         pagevec_release(&pvec);
2089                                         if (err > 0)
2090                                                 err = 0;
2091                                         return err;
2092                                 }
2093                                 if (buffer_delay(bh)) {
2094                                         clear_buffer_delay(bh);
2095                                         bh->b_blocknr = pblock++;
2096                                 }
2097                                 clear_buffer_unwritten(bh);
2098                         } while (lblk++, (bh = bh->b_this_page) != head);
2099
2100                         /*
2101                          * FIXME: This is going to break if dioread_nolock
2102                          * supports blocksize < pagesize as we will try to
2103                          * convert potentially unmapped parts of inode.
2104                          */
2105                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2106                         /* Page fully mapped - let IO run! */
2107                         err = mpage_submit_page(mpd, page);
2108                         if (err < 0) {
2109                                 pagevec_release(&pvec);
2110                                 return err;
2111                         }
2112                         start++;
2113                 }
2114                 pagevec_release(&pvec);
2115         }
2116         /* Extent fully mapped and matches with page boundary. We are done. */
2117         mpd->map.m_len = 0;
2118         mpd->map.m_flags = 0;
2119         return 0;
2120 }
2121
2122 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2123 {
2124         struct inode *inode = mpd->inode;
2125         struct ext4_map_blocks *map = &mpd->map;
2126         int get_blocks_flags;
2127         int err, dioread_nolock;
2128
2129         trace_ext4_da_write_pages_extent(inode, map);
2130         /*
2131          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2132          * to convert an unwritten extent to be initialized (in the case
2133          * where we have written into one or more preallocated blocks).  It is
2134          * possible that we're going to need more metadata blocks than
2135          * previously reserved. However we must not fail because we're in
2136          * writeback and there is nothing we can do about it so it might result
2137          * in data loss.  So use reserved blocks to allocate metadata if
2138          * possible.
2139          *
2140          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2141          * the blocks in question are delalloc blocks.  This indicates
2142          * that the blocks and quotas has already been checked when
2143          * the data was copied into the page cache.
2144          */
2145         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2146                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2147         dioread_nolock = ext4_should_dioread_nolock(inode);
2148         if (dioread_nolock)
2149                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2150         if (map->m_flags & (1 << BH_Delay))
2151                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2152
2153         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2154         if (err < 0)
2155                 return err;
2156         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2157                 if (!mpd->io_submit.io_end->handle &&
2158                     ext4_handle_valid(handle)) {
2159                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2160                         handle->h_rsv_handle = NULL;
2161                 }
2162                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2163         }
2164
2165         BUG_ON(map->m_len == 0);
2166         if (map->m_flags & EXT4_MAP_NEW) {
2167                 struct block_device *bdev = inode->i_sb->s_bdev;
2168                 int i;
2169
2170                 for (i = 0; i < map->m_len; i++)
2171                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2172         }
2173         return 0;
2174 }
2175
2176 /*
2177  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2178  *                               mpd->len and submit pages underlying it for IO
2179  *
2180  * @handle - handle for journal operations
2181  * @mpd - extent to map
2182  * @give_up_on_write - we set this to true iff there is a fatal error and there
2183  *                     is no hope of writing the data. The caller should discard
2184  *                     dirty pages to avoid infinite loops.
2185  *
2186  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2187  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2188  * them to initialized or split the described range from larger unwritten
2189  * extent. Note that we need not map all the described range since allocation
2190  * can return less blocks or the range is covered by more unwritten extents. We
2191  * cannot map more because we are limited by reserved transaction credits. On
2192  * the other hand we always make sure that the last touched page is fully
2193  * mapped so that it can be written out (and thus forward progress is
2194  * guaranteed). After mapping we submit all mapped pages for IO.
2195  */
2196 static int mpage_map_and_submit_extent(handle_t *handle,
2197                                        struct mpage_da_data *mpd,
2198                                        bool *give_up_on_write)
2199 {
2200         struct inode *inode = mpd->inode;
2201         struct ext4_map_blocks *map = &mpd->map;
2202         int err;
2203         loff_t disksize;
2204         int progress = 0;
2205
2206         mpd->io_submit.io_end->offset =
2207                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2208         do {
2209                 err = mpage_map_one_extent(handle, mpd);
2210                 if (err < 0) {
2211                         struct super_block *sb = inode->i_sb;
2212
2213                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2214                                 goto invalidate_dirty_pages;
2215                         /*
2216                          * Let the uper layers retry transient errors.
2217                          * In the case of ENOSPC, if ext4_count_free_blocks()
2218                          * is non-zero, a commit should free up blocks.
2219                          */
2220                         if ((err == -ENOMEM) ||
2221                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2222                                 if (progress)
2223                                         goto update_disksize;
2224                                 return err;
2225                         }
2226                         ext4_msg(sb, KERN_CRIT,
2227                                  "Delayed block allocation failed for "
2228                                  "inode %lu at logical offset %llu with"
2229                                  " max blocks %u with error %d",
2230                                  inode->i_ino,
2231                                  (unsigned long long)map->m_lblk,
2232                                  (unsigned)map->m_len, -err);
2233                         ext4_msg(sb, KERN_CRIT,
2234                                  "This should not happen!! Data will "
2235                                  "be lost\n");
2236                         if (err == -ENOSPC)
2237                                 ext4_print_free_blocks(inode);
2238                 invalidate_dirty_pages:
2239                         *give_up_on_write = true;
2240                         return err;
2241                 }
2242                 progress = 1;
2243                 /*
2244                  * Update buffer state, submit mapped pages, and get us new
2245                  * extent to map
2246                  */
2247                 err = mpage_map_and_submit_buffers(mpd);
2248                 if (err < 0)
2249                         goto update_disksize;
2250         } while (map->m_len);
2251
2252 update_disksize:
2253         /*
2254          * Update on-disk size after IO is submitted.  Races with
2255          * truncate are avoided by checking i_size under i_data_sem.
2256          */
2257         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2258         if (disksize > EXT4_I(inode)->i_disksize) {
2259                 int err2;
2260                 loff_t i_size;
2261
2262                 down_write(&EXT4_I(inode)->i_data_sem);
2263                 i_size = i_size_read(inode);
2264                 if (disksize > i_size)
2265                         disksize = i_size;
2266                 if (disksize > EXT4_I(inode)->i_disksize)
2267                         EXT4_I(inode)->i_disksize = disksize;
2268                 err2 = ext4_mark_inode_dirty(handle, inode);
2269                 up_write(&EXT4_I(inode)->i_data_sem);
2270                 if (err2)
2271                         ext4_error(inode->i_sb,
2272                                    "Failed to mark inode %lu dirty",
2273                                    inode->i_ino);
2274                 if (!err)
2275                         err = err2;
2276         }
2277         return err;
2278 }
2279
2280 /*
2281  * Calculate the total number of credits to reserve for one writepages
2282  * iteration. This is called from ext4_writepages(). We map an extent of
2283  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2284  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2285  * bpp - 1 blocks in bpp different extents.
2286  */
2287 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2288 {
2289         int bpp = ext4_journal_blocks_per_page(inode);
2290
2291         return ext4_meta_trans_blocks(inode,
2292                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2293 }
2294
2295 /*
2296  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2297  *                               and underlying extent to map
2298  *
2299  * @mpd - where to look for pages
2300  *
2301  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2302  * IO immediately. When we find a page which isn't mapped we start accumulating
2303  * extent of buffers underlying these pages that needs mapping (formed by
2304  * either delayed or unwritten buffers). We also lock the pages containing
2305  * these buffers. The extent found is returned in @mpd structure (starting at
2306  * mpd->lblk with length mpd->len blocks).
2307  *
2308  * Note that this function can attach bios to one io_end structure which are
2309  * neither logically nor physically contiguous. Although it may seem as an
2310  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2311  * case as we need to track IO to all buffers underlying a page in one io_end.
2312  */
2313 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2314 {
2315         struct address_space *mapping = mpd->inode->i_mapping;
2316         struct pagevec pvec;
2317         unsigned int nr_pages;
2318         long left = mpd->wbc->nr_to_write;
2319         pgoff_t index = mpd->first_page;
2320         pgoff_t end = mpd->last_page;
2321         int tag;
2322         int i, err = 0;
2323         int blkbits = mpd->inode->i_blkbits;
2324         ext4_lblk_t lblk;
2325         struct buffer_head *head;
2326
2327         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2328                 tag = PAGECACHE_TAG_TOWRITE;
2329         else
2330                 tag = PAGECACHE_TAG_DIRTY;
2331
2332         pagevec_init(&pvec, 0);
2333         mpd->map.m_len = 0;
2334         mpd->next_page = index;
2335         while (index <= end) {
2336                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2337                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2338                 if (nr_pages == 0)
2339                         goto out;
2340
2341                 for (i = 0; i < nr_pages; i++) {
2342                         struct page *page = pvec.pages[i];
2343
2344                         /*
2345                          * At this point, the page may be truncated or
2346                          * invalidated (changing page->mapping to NULL), or
2347                          * even swizzled back from swapper_space to tmpfs file
2348                          * mapping. However, page->index will not change
2349                          * because we have a reference on the page.
2350                          */
2351                         if (page->index > end)
2352                                 goto out;
2353
2354                         /*
2355                          * Accumulated enough dirty pages? This doesn't apply
2356                          * to WB_SYNC_ALL mode. For integrity sync we have to
2357                          * keep going because someone may be concurrently
2358                          * dirtying pages, and we might have synced a lot of
2359                          * newly appeared dirty pages, but have not synced all
2360                          * of the old dirty pages.
2361                          */
2362                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2363                                 goto out;
2364
2365                         /* If we can't merge this page, we are done. */
2366                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2367                                 goto out;
2368
2369                         lock_page(page);
2370                         /*
2371                          * If the page is no longer dirty, or its mapping no
2372                          * longer corresponds to inode we are writing (which
2373                          * means it has been truncated or invalidated), or the
2374                          * page is already under writeback and we are not doing
2375                          * a data integrity writeback, skip the page
2376                          */
2377                         if (!PageDirty(page) ||
2378                             (PageWriteback(page) &&
2379                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2380                             unlikely(page->mapping != mapping)) {
2381                                 unlock_page(page);
2382                                 continue;
2383                         }
2384
2385                         wait_on_page_writeback(page);
2386                         BUG_ON(PageWriteback(page));
2387
2388                         if (mpd->map.m_len == 0)
2389                                 mpd->first_page = page->index;
2390                         mpd->next_page = page->index + 1;
2391                         /* Add all dirty buffers to mpd */
2392                         lblk = ((ext4_lblk_t)page->index) <<
2393                                 (PAGE_CACHE_SHIFT - blkbits);
2394                         head = page_buffers(page);
2395                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2396                         if (err <= 0)
2397                                 goto out;
2398                         err = 0;
2399                         left--;
2400                 }
2401                 pagevec_release(&pvec);
2402                 cond_resched();
2403         }
2404         return 0;
2405 out:
2406         pagevec_release(&pvec);
2407         return err;
2408 }
2409
2410 static int __writepage(struct page *page, struct writeback_control *wbc,
2411                        void *data)
2412 {
2413         struct address_space *mapping = data;
2414         int ret = ext4_writepage(page, wbc);
2415         mapping_set_error(mapping, ret);
2416         return ret;
2417 }
2418
2419 static int ext4_writepages(struct address_space *mapping,
2420                            struct writeback_control *wbc)
2421 {
2422         pgoff_t writeback_index = 0;
2423         long nr_to_write = wbc->nr_to_write;
2424         int range_whole = 0;
2425         int cycled = 1;
2426         handle_t *handle = NULL;
2427         struct mpage_da_data mpd;
2428         struct inode *inode = mapping->host;
2429         int needed_blocks, rsv_blocks = 0, ret = 0;
2430         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2431         bool done;
2432         struct blk_plug plug;
2433         bool give_up_on_write = false;
2434
2435         trace_ext4_writepages(inode, wbc);
2436
2437         /*
2438          * No pages to write? This is mainly a kludge to avoid starting
2439          * a transaction for special inodes like journal inode on last iput()
2440          * because that could violate lock ordering on umount
2441          */
2442         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2443                 goto out_writepages;
2444
2445         if (ext4_should_journal_data(inode)) {
2446                 struct blk_plug plug;
2447
2448                 blk_start_plug(&plug);
2449                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2450                 blk_finish_plug(&plug);
2451                 goto out_writepages;
2452         }
2453
2454         /*
2455          * If the filesystem has aborted, it is read-only, so return
2456          * right away instead of dumping stack traces later on that
2457          * will obscure the real source of the problem.  We test
2458          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2459          * the latter could be true if the filesystem is mounted
2460          * read-only, and in that case, ext4_writepages should
2461          * *never* be called, so if that ever happens, we would want
2462          * the stack trace.
2463          */
2464         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2465                 ret = -EROFS;
2466                 goto out_writepages;
2467         }
2468
2469         if (ext4_should_dioread_nolock(inode)) {
2470                 /*
2471                  * We may need to convert up to one extent per block in
2472                  * the page and we may dirty the inode.
2473                  */
2474                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2475         }
2476
2477         /*
2478          * If we have inline data and arrive here, it means that
2479          * we will soon create the block for the 1st page, so
2480          * we'd better clear the inline data here.
2481          */
2482         if (ext4_has_inline_data(inode)) {
2483                 /* Just inode will be modified... */
2484                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2485                 if (IS_ERR(handle)) {
2486                         ret = PTR_ERR(handle);
2487                         goto out_writepages;
2488                 }
2489                 BUG_ON(ext4_test_inode_state(inode,
2490                                 EXT4_STATE_MAY_INLINE_DATA));
2491                 ext4_destroy_inline_data(handle, inode);
2492                 ext4_journal_stop(handle);
2493         }
2494
2495         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2496                 range_whole = 1;
2497
2498         if (wbc->range_cyclic) {
2499                 writeback_index = mapping->writeback_index;
2500                 if (writeback_index)
2501                         cycled = 0;
2502                 mpd.first_page = writeback_index;
2503                 mpd.last_page = -1;
2504         } else {
2505                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2506                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2507         }
2508
2509         mpd.inode = inode;
2510         mpd.wbc = wbc;
2511         ext4_io_submit_init(&mpd.io_submit, wbc);
2512 retry:
2513         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2514                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2515         done = false;
2516         blk_start_plug(&plug);
2517         while (!done && mpd.first_page <= mpd.last_page) {
2518                 /* For each extent of pages we use new io_end */
2519                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2520                 if (!mpd.io_submit.io_end) {
2521                         ret = -ENOMEM;
2522                         break;
2523                 }
2524
2525                 /*
2526                  * We have two constraints: We find one extent to map and we
2527                  * must always write out whole page (makes a difference when
2528                  * blocksize < pagesize) so that we don't block on IO when we
2529                  * try to write out the rest of the page. Journalled mode is
2530                  * not supported by delalloc.
2531                  */
2532                 BUG_ON(ext4_should_journal_data(inode));
2533                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2534
2535                 /* start a new transaction */
2536                 handle = ext4_journal_start_with_reserve(inode,
2537                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2538                 if (IS_ERR(handle)) {
2539                         ret = PTR_ERR(handle);
2540                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2541                                "%ld pages, ino %lu; err %d", __func__,
2542                                 wbc->nr_to_write, inode->i_ino, ret);
2543                         /* Release allocated io_end */
2544                         ext4_put_io_end(mpd.io_submit.io_end);
2545                         break;
2546                 }
2547
2548                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2549                 ret = mpage_prepare_extent_to_map(&mpd);
2550                 if (!ret) {
2551                         if (mpd.map.m_len)
2552                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2553                                         &give_up_on_write);
2554                         else {
2555                                 /*
2556                                  * We scanned the whole range (or exhausted
2557                                  * nr_to_write), submitted what was mapped and
2558                                  * didn't find anything needing mapping. We are
2559                                  * done.
2560                                  */
2561                                 done = true;
2562                         }
2563                 }
2564                 ext4_journal_stop(handle);
2565                 /* Submit prepared bio */
2566                 ext4_io_submit(&mpd.io_submit);
2567                 /* Unlock pages we didn't use */
2568                 mpage_release_unused_pages(&mpd, give_up_on_write);
2569                 /* Drop our io_end reference we got from init */
2570                 ext4_put_io_end(mpd.io_submit.io_end);
2571
2572                 if (ret == -ENOSPC && sbi->s_journal) {
2573                         /*
2574                          * Commit the transaction which would
2575                          * free blocks released in the transaction
2576                          * and try again
2577                          */
2578                         jbd2_journal_force_commit_nested(sbi->s_journal);
2579                         ret = 0;
2580                         continue;
2581                 }
2582                 /* Fatal error - ENOMEM, EIO... */
2583                 if (ret)
2584                         break;
2585         }
2586         blk_finish_plug(&plug);
2587         if (!ret && !cycled && wbc->nr_to_write > 0) {
2588                 cycled = 1;
2589                 mpd.last_page = writeback_index - 1;
2590                 mpd.first_page = 0;
2591                 goto retry;
2592         }
2593
2594         /* Update index */
2595         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2596                 /*
2597                  * Set the writeback_index so that range_cyclic
2598                  * mode will write it back later
2599                  */
2600                 mapping->writeback_index = mpd.first_page;
2601
2602 out_writepages:
2603         trace_ext4_writepages_result(inode, wbc, ret,
2604                                      nr_to_write - wbc->nr_to_write);
2605         return ret;
2606 }
2607
2608 static int ext4_nonda_switch(struct super_block *sb)
2609 {
2610         s64 free_clusters, dirty_clusters;
2611         struct ext4_sb_info *sbi = EXT4_SB(sb);
2612
2613         /*
2614          * switch to non delalloc mode if we are running low
2615          * on free block. The free block accounting via percpu
2616          * counters can get slightly wrong with percpu_counter_batch getting
2617          * accumulated on each CPU without updating global counters
2618          * Delalloc need an accurate free block accounting. So switch
2619          * to non delalloc when we are near to error range.
2620          */
2621         free_clusters =
2622                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2623         dirty_clusters =
2624                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2625         /*
2626          * Start pushing delalloc when 1/2 of free blocks are dirty.
2627          */
2628         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2629                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2630
2631         if (2 * free_clusters < 3 * dirty_clusters ||
2632             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2633                 /*
2634                  * free block count is less than 150% of dirty blocks
2635                  * or free blocks is less than watermark
2636                  */
2637                 return 1;
2638         }
2639         return 0;
2640 }
2641
2642 /* We always reserve for an inode update; the superblock could be there too */
2643 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2644 {
2645         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2646                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2647                 return 1;
2648
2649         if (pos + len <= 0x7fffffffULL)
2650                 return 1;
2651
2652         /* We might need to update the superblock to set LARGE_FILE */
2653         return 2;
2654 }
2655
2656 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2657                                loff_t pos, unsigned len, unsigned flags,
2658                                struct page **pagep, void **fsdata)
2659 {
2660         int ret, retries = 0;
2661         struct page *page;
2662         pgoff_t index;
2663         struct inode *inode = mapping->host;
2664         handle_t *handle;
2665
2666         index = pos >> PAGE_CACHE_SHIFT;
2667
2668         if (ext4_nonda_switch(inode->i_sb)) {
2669                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2670                 return ext4_write_begin(file, mapping, pos,
2671                                         len, flags, pagep, fsdata);
2672         }
2673         *fsdata = (void *)0;
2674         trace_ext4_da_write_begin(inode, pos, len, flags);
2675
2676         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2677                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2678                                                       pos, len, flags,
2679                                                       pagep, fsdata);
2680                 if (ret < 0)
2681                         return ret;
2682                 if (ret == 1)
2683                         return 0;
2684         }
2685
2686         /*
2687          * grab_cache_page_write_begin() can take a long time if the
2688          * system is thrashing due to memory pressure, or if the page
2689          * is being written back.  So grab it first before we start
2690          * the transaction handle.  This also allows us to allocate
2691          * the page (if needed) without using GFP_NOFS.
2692          */
2693 retry_grab:
2694         page = grab_cache_page_write_begin(mapping, index, flags);
2695         if (!page)
2696                 return -ENOMEM;
2697         unlock_page(page);
2698
2699         /*
2700          * With delayed allocation, we don't log the i_disksize update
2701          * if there is delayed block allocation. But we still need
2702          * to journalling the i_disksize update if writes to the end
2703          * of file which has an already mapped buffer.
2704          */
2705 retry_journal:
2706         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2707                                 ext4_da_write_credits(inode, pos, len));
2708         if (IS_ERR(handle)) {
2709                 page_cache_release(page);
2710                 return PTR_ERR(handle);
2711         }
2712
2713         lock_page(page);
2714         if (page->mapping != mapping) {
2715                 /* The page got truncated from under us */
2716                 unlock_page(page);
2717                 page_cache_release(page);
2718                 ext4_journal_stop(handle);
2719                 goto retry_grab;
2720         }
2721         /* In case writeback began while the page was unlocked */
2722         wait_for_stable_page(page);
2723
2724 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2725         ret = ext4_block_write_begin(page, pos, len,
2726                                      ext4_da_get_block_prep);
2727 #else
2728         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2729 #endif
2730         if (ret < 0) {
2731                 unlock_page(page);
2732                 ext4_journal_stop(handle);
2733                 /*
2734                  * block_write_begin may have instantiated a few blocks
2735                  * outside i_size.  Trim these off again. Don't need
2736                  * i_size_read because we hold i_mutex.
2737                  */
2738                 if (pos + len > inode->i_size)
2739                         ext4_truncate_failed_write(inode);
2740
2741                 if (ret == -ENOSPC &&
2742                     ext4_should_retry_alloc(inode->i_sb, &retries))
2743                         goto retry_journal;
2744
2745                 page_cache_release(page);
2746                 return ret;
2747         }
2748
2749         *pagep = page;
2750         return ret;
2751 }
2752
2753 /*
2754  * Check if we should update i_disksize
2755  * when write to the end of file but not require block allocation
2756  */
2757 static int ext4_da_should_update_i_disksize(struct page *page,
2758                                             unsigned long offset)
2759 {
2760         struct buffer_head *bh;
2761         struct inode *inode = page->mapping->host;
2762         unsigned int idx;
2763         int i;
2764
2765         bh = page_buffers(page);
2766         idx = offset >> inode->i_blkbits;
2767
2768         for (i = 0; i < idx; i++)
2769                 bh = bh->b_this_page;
2770
2771         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2772                 return 0;
2773         return 1;
2774 }
2775
2776 static int ext4_da_write_end(struct file *file,
2777                              struct address_space *mapping,
2778                              loff_t pos, unsigned len, unsigned copied,
2779                              struct page *page, void *fsdata)
2780 {
2781         struct inode *inode = mapping->host;
2782         int ret = 0, ret2;
2783         handle_t *handle = ext4_journal_current_handle();
2784         loff_t new_i_size;
2785         unsigned long start, end;
2786         int write_mode = (int)(unsigned long)fsdata;
2787
2788         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2789                 return ext4_write_end(file, mapping, pos,
2790                                       len, copied, page, fsdata);
2791
2792         trace_ext4_da_write_end(inode, pos, len, copied);
2793         start = pos & (PAGE_CACHE_SIZE - 1);
2794         end = start + copied - 1;
2795
2796         /*
2797          * generic_write_end() will run mark_inode_dirty() if i_size
2798          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2799          * into that.
2800          */
2801         new_i_size = pos + copied;
2802         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2803                 if (ext4_has_inline_data(inode) ||
2804                     ext4_da_should_update_i_disksize(page, end)) {
2805                         ext4_update_i_disksize(inode, new_i_size);
2806                         /* We need to mark inode dirty even if
2807                          * new_i_size is less that inode->i_size
2808                          * bu greater than i_disksize.(hint delalloc)
2809                          */
2810                         ext4_mark_inode_dirty(handle, inode);
2811                 }
2812         }
2813
2814         if (write_mode != CONVERT_INLINE_DATA &&
2815             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2816             ext4_has_inline_data(inode))
2817                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2818                                                      page);
2819         else
2820                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2821                                                         page, fsdata);
2822
2823         copied = ret2;
2824         if (ret2 < 0)
2825                 ret = ret2;
2826         ret2 = ext4_journal_stop(handle);
2827         if (!ret)
2828                 ret = ret2;
2829
2830         return ret ? ret : copied;
2831 }
2832
2833 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2834                                    unsigned int length)
2835 {
2836         /*
2837          * Drop reserved blocks
2838          */
2839         BUG_ON(!PageLocked(page));
2840         if (!page_has_buffers(page))
2841                 goto out;
2842
2843         ext4_da_page_release_reservation(page, offset, length);
2844
2845 out:
2846         ext4_invalidatepage(page, offset, length);
2847
2848         return;
2849 }
2850
2851 /*
2852  * Force all delayed allocation blocks to be allocated for a given inode.
2853  */
2854 int ext4_alloc_da_blocks(struct inode *inode)
2855 {
2856         trace_ext4_alloc_da_blocks(inode);
2857
2858         if (!EXT4_I(inode)->i_reserved_data_blocks)
2859                 return 0;
2860
2861         /*
2862          * We do something simple for now.  The filemap_flush() will
2863          * also start triggering a write of the data blocks, which is
2864          * not strictly speaking necessary (and for users of
2865          * laptop_mode, not even desirable).  However, to do otherwise
2866          * would require replicating code paths in:
2867          *
2868          * ext4_writepages() ->
2869          *    write_cache_pages() ---> (via passed in callback function)
2870          *        __mpage_da_writepage() -->
2871          *           mpage_add_bh_to_extent()
2872          *           mpage_da_map_blocks()
2873          *
2874          * The problem is that write_cache_pages(), located in
2875          * mm/page-writeback.c, marks pages clean in preparation for
2876          * doing I/O, which is not desirable if we're not planning on
2877          * doing I/O at all.
2878          *
2879          * We could call write_cache_pages(), and then redirty all of
2880          * the pages by calling redirty_page_for_writepage() but that
2881          * would be ugly in the extreme.  So instead we would need to
2882          * replicate parts of the code in the above functions,
2883          * simplifying them because we wouldn't actually intend to
2884          * write out the pages, but rather only collect contiguous
2885          * logical block extents, call the multi-block allocator, and
2886          * then update the buffer heads with the block allocations.
2887          *
2888          * For now, though, we'll cheat by calling filemap_flush(),
2889          * which will map the blocks, and start the I/O, but not
2890          * actually wait for the I/O to complete.
2891          */
2892         return filemap_flush(inode->i_mapping);
2893 }
2894
2895 /*
2896  * bmap() is special.  It gets used by applications such as lilo and by
2897  * the swapper to find the on-disk block of a specific piece of data.
2898  *
2899  * Naturally, this is dangerous if the block concerned is still in the
2900  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2901  * filesystem and enables swap, then they may get a nasty shock when the
2902  * data getting swapped to that swapfile suddenly gets overwritten by
2903  * the original zero's written out previously to the journal and
2904  * awaiting writeback in the kernel's buffer cache.
2905  *
2906  * So, if we see any bmap calls here on a modified, data-journaled file,
2907  * take extra steps to flush any blocks which might be in the cache.
2908  */
2909 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2910 {
2911         struct inode *inode = mapping->host;
2912         journal_t *journal;
2913         int err;
2914
2915         /*
2916          * We can get here for an inline file via the FIBMAP ioctl
2917          */
2918         if (ext4_has_inline_data(inode))
2919                 return 0;
2920
2921         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2922                         test_opt(inode->i_sb, DELALLOC)) {
2923                 /*
2924                  * With delalloc we want to sync the file
2925                  * so that we can make sure we allocate
2926                  * blocks for file
2927                  */
2928                 filemap_write_and_wait(mapping);
2929         }
2930
2931         if (EXT4_JOURNAL(inode) &&
2932             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2933                 /*
2934                  * This is a REALLY heavyweight approach, but the use of
2935                  * bmap on dirty files is expected to be extremely rare:
2936                  * only if we run lilo or swapon on a freshly made file
2937                  * do we expect this to happen.
2938                  *
2939                  * (bmap requires CAP_SYS_RAWIO so this does not
2940                  * represent an unprivileged user DOS attack --- we'd be
2941                  * in trouble if mortal users could trigger this path at
2942                  * will.)
2943                  *
2944                  * NB. EXT4_STATE_JDATA is not set on files other than
2945                  * regular files.  If somebody wants to bmap a directory
2946                  * or symlink and gets confused because the buffer
2947                  * hasn't yet been flushed to disk, they deserve
2948                  * everything they get.
2949                  */
2950
2951                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2952                 journal = EXT4_JOURNAL(inode);
2953                 jbd2_journal_lock_updates(journal);
2954                 err = jbd2_journal_flush(journal);
2955                 jbd2_journal_unlock_updates(journal);
2956
2957                 if (err)
2958                         return 0;
2959         }
2960
2961         return generic_block_bmap(mapping, block, ext4_get_block);
2962 }
2963
2964 static int ext4_readpage(struct file *file, struct page *page)
2965 {
2966         int ret = -EAGAIN;
2967         struct inode *inode = page->mapping->host;
2968
2969         trace_ext4_readpage(page);
2970
2971         if (ext4_has_inline_data(inode))
2972                 ret = ext4_readpage_inline(inode, page);
2973
2974         if (ret == -EAGAIN)
2975                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2976
2977         return ret;
2978 }
2979
2980 static int
2981 ext4_readpages(struct file *file, struct address_space *mapping,
2982                 struct list_head *pages, unsigned nr_pages)
2983 {
2984         struct inode *inode = mapping->host;
2985
2986         /* If the file has inline data, no need to do readpages. */
2987         if (ext4_has_inline_data(inode))
2988                 return 0;
2989
2990         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2991 }
2992
2993 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2994                                 unsigned int length)
2995 {
2996         trace_ext4_invalidatepage(page, offset, length);
2997
2998         /* No journalling happens on data buffers when this function is used */
2999         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3000
3001         block_invalidatepage(page, offset, length);
3002 }
3003
3004 static int __ext4_journalled_invalidatepage(struct page *page,
3005                                             unsigned int offset,
3006                                             unsigned int length)
3007 {
3008         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3009
3010         trace_ext4_journalled_invalidatepage(page, offset, length);
3011
3012         /*
3013          * If it's a full truncate we just forget about the pending dirtying
3014          */
3015         if (offset == 0 && length == PAGE_CACHE_SIZE)
3016                 ClearPageChecked(page);
3017
3018         return jbd2_journal_invalidatepage(journal, page, offset, length);
3019 }
3020
3021 /* Wrapper for aops... */
3022 static void ext4_journalled_invalidatepage(struct page *page,
3023                                            unsigned int offset,
3024                                            unsigned int length)
3025 {
3026         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3027 }
3028
3029 static int ext4_releasepage(struct page *page, gfp_t wait)
3030 {
3031         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3032
3033         trace_ext4_releasepage(page);
3034
3035         /* Page has dirty journalled data -> cannot release */
3036         if (PageChecked(page))
3037                 return 0;
3038         if (journal)
3039                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3040         else
3041                 return try_to_free_buffers(page);
3042 }
3043
3044 /*
3045  * ext4_get_block used when preparing for a DIO write or buffer write.
3046  * We allocate an uinitialized extent if blocks haven't been allocated.
3047  * The extent will be converted to initialized after the IO is complete.
3048  */
3049 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3050                    struct buffer_head *bh_result, int create)
3051 {
3052         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3053                    inode->i_ino, create);
3054         return _ext4_get_block(inode, iblock, bh_result,
3055                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3056 }
3057
3058 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3059                    struct buffer_head *bh_result, int create)
3060 {
3061         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3062                    inode->i_ino, create);
3063         return _ext4_get_block(inode, iblock, bh_result,
3064                                EXT4_GET_BLOCKS_NO_LOCK);
3065 }
3066
3067 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3068                    struct buffer_head *bh_result, int create)
3069 {
3070         int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3071         if (create)
3072                 flags |= EXT4_GET_BLOCKS_CREATE;
3073         ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3074                    inode->i_ino, create);
3075         return _ext4_get_block(inode, iblock, bh_result, flags);
3076 }
3077
3078 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3079                             ssize_t size, void *private)
3080 {
3081         ext4_io_end_t *io_end = iocb->private;
3082
3083         /* if not async direct IO just return */
3084         if (!io_end)
3085                 return;
3086
3087         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3088                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3089                   iocb->private, io_end->inode->i_ino, iocb, offset,
3090                   size);
3091
3092         iocb->private = NULL;
3093         io_end->offset = offset;
3094         io_end->size = size;
3095         ext4_put_io_end(io_end);
3096 }
3097
3098 /*
3099  * For ext4 extent files, ext4 will do direct-io write to holes,
3100  * preallocated extents, and those write extend the file, no need to
3101  * fall back to buffered IO.
3102  *
3103  * For holes, we fallocate those blocks, mark them as unwritten
3104  * If those blocks were preallocated, we mark sure they are split, but
3105  * still keep the range to write as unwritten.
3106  *
3107  * The unwritten extents will be converted to written when DIO is completed.
3108  * For async direct IO, since the IO may still pending when return, we
3109  * set up an end_io call back function, which will do the conversion
3110  * when async direct IO completed.
3111  *
3112  * If the O_DIRECT write will extend the file then add this inode to the
3113  * orphan list.  So recovery will truncate it back to the original size
3114  * if the machine crashes during the write.
3115  *
3116  */
3117 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3118                                   loff_t offset)
3119 {
3120         struct file *file = iocb->ki_filp;
3121         struct inode *inode = file->f_mapping->host;
3122         ssize_t ret;
3123         size_t count = iov_iter_count(iter);
3124         int overwrite = 0;
3125         get_block_t *get_block_func = NULL;
3126         int dio_flags = 0;
3127         loff_t final_size = offset + count;
3128         ext4_io_end_t *io_end = NULL;
3129
3130         /* Use the old path for reads and writes beyond i_size. */
3131         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3132                 return ext4_ind_direct_IO(iocb, iter, offset);
3133
3134         BUG_ON(iocb->private == NULL);
3135
3136         /*
3137          * Make all waiters for direct IO properly wait also for extent
3138          * conversion. This also disallows race between truncate() and
3139          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3140          */
3141         if (iov_iter_rw(iter) == WRITE)
3142                 inode_dio_begin(inode);
3143
3144         /* If we do a overwrite dio, i_mutex locking can be released */
3145         overwrite = *((int *)iocb->private);
3146
3147         if (overwrite) {
3148                 down_read(&EXT4_I(inode)->i_data_sem);
3149                 mutex_unlock(&inode->i_mutex);
3150         }
3151
3152         /*
3153          * We could direct write to holes and fallocate.
3154          *
3155          * Allocated blocks to fill the hole are marked as
3156          * unwritten to prevent parallel buffered read to expose
3157          * the stale data before DIO complete the data IO.
3158          *
3159          * As to previously fallocated extents, ext4 get_block will
3160          * just simply mark the buffer mapped but still keep the
3161          * extents unwritten.
3162          *
3163          * For non AIO case, we will convert those unwritten extents
3164          * to written after return back from blockdev_direct_IO.
3165          *
3166          * For async DIO, the conversion needs to be deferred when the
3167          * IO is completed. The ext4 end_io callback function will be
3168          * called to take care of the conversion work.  Here for async
3169          * case, we allocate an io_end structure to hook to the iocb.
3170          */
3171         iocb->private = NULL;
3172         ext4_inode_aio_set(inode, NULL);
3173         if (!is_sync_kiocb(iocb)) {
3174                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3175                 if (!io_end) {
3176                         ret = -ENOMEM;
3177                         goto retake_lock;
3178                 }
3179                 /*
3180                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3181                  */
3182                 iocb->private = ext4_get_io_end(io_end);
3183                 /*
3184                  * we save the io structure for current async direct
3185                  * IO, so that later ext4_map_blocks() could flag the
3186                  * io structure whether there is a unwritten extents
3187                  * needs to be converted when IO is completed.
3188                  */
3189                 ext4_inode_aio_set(inode, io_end);
3190         }
3191
3192         if (overwrite) {
3193                 get_block_func = ext4_get_block_write_nolock;
3194         } else {
3195                 get_block_func = ext4_get_block_write;
3196                 dio_flags = DIO_LOCKING;
3197         }
3198 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3199         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3200 #endif
3201         if (IS_DAX(inode))
3202                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3203                                 ext4_end_io_dio, dio_flags);
3204         else
3205                 ret = __blockdev_direct_IO(iocb, inode,
3206                                            inode->i_sb->s_bdev, iter, offset,
3207                                            get_block_func,
3208                                            ext4_end_io_dio, NULL, dio_flags);
3209
3210         /*
3211          * Put our reference to io_end. This can free the io_end structure e.g.
3212          * in sync IO case or in case of error. It can even perform extent
3213          * conversion if all bios we submitted finished before we got here.
3214          * Note that in that case iocb->private can be already set to NULL
3215          * here.
3216          */
3217         if (io_end) {
3218                 ext4_inode_aio_set(inode, NULL);
3219                 ext4_put_io_end(io_end);
3220                 /*
3221                  * When no IO was submitted ext4_end_io_dio() was not
3222                  * called so we have to put iocb's reference.
3223                  */
3224                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3225                         WARN_ON(iocb->private != io_end);
3226                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3227                         ext4_put_io_end(io_end);
3228                         iocb->private = NULL;
3229                 }
3230         }
3231         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3232                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3233                 int err;
3234                 /*
3235                  * for non AIO case, since the IO is already
3236                  * completed, we could do the conversion right here
3237                  */
3238                 err = ext4_convert_unwritten_extents(NULL, inode,
3239                                                      offset, ret);
3240                 if (err < 0)
3241                         ret = err;
3242                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3243         }
3244
3245 retake_lock:
3246         if (iov_iter_rw(iter) == WRITE)
3247                 inode_dio_end(inode);
3248         /* take i_mutex locking again if we do a ovewrite dio */
3249         if (overwrite) {
3250                 up_read(&EXT4_I(inode)->i_data_sem);
3251                 mutex_lock(&inode->i_mutex);
3252         }
3253
3254         return ret;
3255 }
3256
3257 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3258                               loff_t offset)
3259 {
3260         struct file *file = iocb->ki_filp;
3261         struct inode *inode = file->f_mapping->host;
3262         size_t count = iov_iter_count(iter);
3263         ssize_t ret;
3264
3265 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3266         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3267                 return 0;
3268 #endif
3269
3270         /*
3271          * If we are doing data journalling we don't support O_DIRECT
3272          */
3273         if (ext4_should_journal_data(inode))
3274                 return 0;
3275
3276         /* Let buffer I/O handle the inline data case. */
3277         if (ext4_has_inline_data(inode))
3278                 return 0;
3279
3280         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3281         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3282                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3283         else
3284                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3285         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3286         return ret;
3287 }
3288
3289 /*
3290  * Pages can be marked dirty completely asynchronously from ext4's journalling
3291  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3292  * much here because ->set_page_dirty is called under VFS locks.  The page is
3293  * not necessarily locked.
3294  *
3295  * We cannot just dirty the page and leave attached buffers clean, because the
3296  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3297  * or jbddirty because all the journalling code will explode.
3298  *
3299  * So what we do is to mark the page "pending dirty" and next time writepage
3300  * is called, propagate that into the buffers appropriately.
3301  */
3302 static int ext4_journalled_set_page_dirty(struct page *page)
3303 {
3304         SetPageChecked(page);
3305         return __set_page_dirty_nobuffers(page);
3306 }
3307
3308 static const struct address_space_operations ext4_aops = {
3309         .readpage               = ext4_readpage,
3310         .readpages              = ext4_readpages,
3311         .writepage              = ext4_writepage,
3312         .writepages             = ext4_writepages,
3313         .write_begin            = ext4_write_begin,
3314         .write_end              = ext4_write_end,
3315         .bmap                   = ext4_bmap,
3316         .invalidatepage         = ext4_invalidatepage,
3317         .releasepage            = ext4_releasepage,
3318         .direct_IO              = ext4_direct_IO,
3319         .migratepage            = buffer_migrate_page,
3320         .is_partially_uptodate  = block_is_partially_uptodate,
3321         .error_remove_page      = generic_error_remove_page,
3322 };
3323
3324 static const struct address_space_operations ext4_journalled_aops = {
3325         .readpage               = ext4_readpage,
3326         .readpages              = ext4_readpages,
3327         .writepage              = ext4_writepage,
3328         .writepages             = ext4_writepages,
3329         .write_begin            = ext4_write_begin,
3330         .write_end              = ext4_journalled_write_end,
3331         .set_page_dirty         = ext4_journalled_set_page_dirty,
3332         .bmap                   = ext4_bmap,
3333         .invalidatepage         = ext4_journalled_invalidatepage,
3334         .releasepage            = ext4_releasepage,
3335         .direct_IO              = ext4_direct_IO,
3336         .is_partially_uptodate  = block_is_partially_uptodate,
3337         .error_remove_page      = generic_error_remove_page,
3338 };
3339
3340 static const struct address_space_operations ext4_da_aops = {
3341         .readpage               = ext4_readpage,
3342         .readpages              = ext4_readpages,
3343         .writepage              = ext4_writepage,
3344         .writepages             = ext4_writepages,
3345         .write_begin            = ext4_da_write_begin,
3346         .write_end              = ext4_da_write_end,
3347         .bmap                   = ext4_bmap,
3348         .invalidatepage         = ext4_da_invalidatepage,
3349         .releasepage            = ext4_releasepage,
3350         .direct_IO              = ext4_direct_IO,
3351         .migratepage            = buffer_migrate_page,
3352         .is_partially_uptodate  = block_is_partially_uptodate,
3353         .error_remove_page      = generic_error_remove_page,
3354 };
3355
3356 void ext4_set_aops(struct inode *inode)
3357 {
3358         switch (ext4_inode_journal_mode(inode)) {
3359         case EXT4_INODE_ORDERED_DATA_MODE:
3360                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3361                 break;
3362         case EXT4_INODE_WRITEBACK_DATA_MODE:
3363                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3364                 break;
3365         case EXT4_INODE_JOURNAL_DATA_MODE:
3366                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3367                 return;
3368         default:
3369                 BUG();
3370         }
3371         if (test_opt(inode->i_sb, DELALLOC))
3372                 inode->i_mapping->a_ops = &ext4_da_aops;
3373         else
3374                 inode->i_mapping->a_ops = &ext4_aops;
3375 }
3376
3377 static int __ext4_block_zero_page_range(handle_t *handle,
3378                 struct address_space *mapping, loff_t from, loff_t length)
3379 {
3380         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3381         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3382         unsigned blocksize, pos;
3383         ext4_lblk_t iblock;
3384         struct inode *inode = mapping->host;
3385         struct buffer_head *bh;
3386         struct page *page;
3387         int err = 0;
3388
3389         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3390                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3391         if (!page)
3392                 return -ENOMEM;
3393
3394         blocksize = inode->i_sb->s_blocksize;
3395
3396         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3397
3398         if (!page_has_buffers(page))
3399                 create_empty_buffers(page, blocksize, 0);
3400
3401         /* Find the buffer that contains "offset" */
3402         bh = page_buffers(page);
3403         pos = blocksize;
3404         while (offset >= pos) {
3405                 bh = bh->b_this_page;
3406                 iblock++;
3407                 pos += blocksize;
3408         }
3409         if (buffer_freed(bh)) {
3410                 BUFFER_TRACE(bh, "freed: skip");
3411                 goto unlock;
3412         }
3413         if (!buffer_mapped(bh)) {
3414                 BUFFER_TRACE(bh, "unmapped");
3415                 ext4_get_block(inode, iblock, bh, 0);
3416                 /* unmapped? It's a hole - nothing to do */
3417                 if (!buffer_mapped(bh)) {
3418                         BUFFER_TRACE(bh, "still unmapped");
3419                         goto unlock;
3420                 }
3421         }
3422
3423         /* Ok, it's mapped. Make sure it's up-to-date */
3424         if (PageUptodate(page))
3425                 set_buffer_uptodate(bh);
3426
3427         if (!buffer_uptodate(bh)) {
3428                 err = -EIO;
3429                 ll_rw_block(READ, 1, &bh);
3430                 wait_on_buffer(bh);
3431                 /* Uhhuh. Read error. Complain and punt. */
3432                 if (!buffer_uptodate(bh))
3433                         goto unlock;
3434                 if (S_ISREG(inode->i_mode) &&
3435                     ext4_encrypted_inode(inode)) {
3436                         /* We expect the key to be set. */
3437                         BUG_ON(!ext4_has_encryption_key(inode));
3438                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3439                         WARN_ON_ONCE(ext4_decrypt(page));
3440                 }
3441         }
3442         if (ext4_should_journal_data(inode)) {
3443                 BUFFER_TRACE(bh, "get write access");
3444                 err = ext4_journal_get_write_access(handle, bh);
3445                 if (err)
3446                         goto unlock;
3447         }
3448         zero_user(page, offset, length);
3449         BUFFER_TRACE(bh, "zeroed end of block");
3450
3451         if (ext4_should_journal_data(inode)) {
3452                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3453         } else {
3454                 err = 0;
3455                 mark_buffer_dirty(bh);
3456                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3457                         err = ext4_jbd2_file_inode(handle, inode);
3458         }
3459
3460 unlock:
3461         unlock_page(page);
3462         page_cache_release(page);
3463         return err;
3464 }
3465
3466 /*
3467  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3468  * starting from file offset 'from'.  The range to be zero'd must
3469  * be contained with in one block.  If the specified range exceeds
3470  * the end of the block it will be shortened to end of the block
3471  * that cooresponds to 'from'
3472  */
3473 static int ext4_block_zero_page_range(handle_t *handle,
3474                 struct address_space *mapping, loff_t from, loff_t length)
3475 {
3476         struct inode *inode = mapping->host;
3477         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3478         unsigned blocksize = inode->i_sb->s_blocksize;
3479         unsigned max = blocksize - (offset & (blocksize - 1));
3480
3481         /*
3482          * correct length if it does not fall between
3483          * 'from' and the end of the block
3484          */
3485         if (length > max || length < 0)
3486                 length = max;
3487
3488         if (IS_DAX(inode))
3489                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3490         return __ext4_block_zero_page_range(handle, mapping, from, length);
3491 }
3492
3493 /*
3494  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3495  * up to the end of the block which corresponds to `from'.
3496  * This required during truncate. We need to physically zero the tail end
3497  * of that block so it doesn't yield old data if the file is later grown.
3498  */
3499 static int ext4_block_truncate_page(handle_t *handle,
3500                 struct address_space *mapping, loff_t from)
3501 {
3502         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3503         unsigned length;
3504         unsigned blocksize;
3505         struct inode *inode = mapping->host;
3506
3507         blocksize = inode->i_sb->s_blocksize;
3508         length = blocksize - (offset & (blocksize - 1));
3509
3510         return ext4_block_zero_page_range(handle, mapping, from, length);
3511 }
3512
3513 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3514                              loff_t lstart, loff_t length)
3515 {
3516         struct super_block *sb = inode->i_sb;
3517         struct address_space *mapping = inode->i_mapping;
3518         unsigned partial_start, partial_end;
3519         ext4_fsblk_t start, end;
3520         loff_t byte_end = (lstart + length - 1);
3521         int err = 0;
3522
3523         partial_start = lstart & (sb->s_blocksize - 1);
3524         partial_end = byte_end & (sb->s_blocksize - 1);
3525
3526         start = lstart >> sb->s_blocksize_bits;
3527         end = byte_end >> sb->s_blocksize_bits;
3528
3529         /* Handle partial zero within the single block */
3530         if (start == end &&
3531             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3532                 err = ext4_block_zero_page_range(handle, mapping,
3533                                                  lstart, length);
3534                 return err;
3535         }
3536         /* Handle partial zero out on the start of the range */
3537         if (partial_start) {
3538                 err = ext4_block_zero_page_range(handle, mapping,
3539                                                  lstart, sb->s_blocksize);
3540                 if (err)
3541                         return err;
3542         }
3543         /* Handle partial zero out on the end of the range */
3544         if (partial_end != sb->s_blocksize - 1)
3545                 err = ext4_block_zero_page_range(handle, mapping,
3546                                                  byte_end - partial_end,
3547                                                  partial_end + 1);
3548         return err;
3549 }
3550
3551 int ext4_can_truncate(struct inode *inode)
3552 {
3553         if (S_ISREG(inode->i_mode))
3554                 return 1;
3555         if (S_ISDIR(inode->i_mode))
3556                 return 1;
3557         if (S_ISLNK(inode->i_mode))
3558                 return !ext4_inode_is_fast_symlink(inode);
3559         return 0;
3560 }
3561
3562 /*
3563  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3564  * associated with the given offset and length
3565  *
3566  * @inode:  File inode
3567  * @offset: The offset where the hole will begin
3568  * @len:    The length of the hole
3569  *
3570  * Returns: 0 on success or negative on failure
3571  */
3572
3573 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3574 {
3575         struct super_block *sb = inode->i_sb;
3576         ext4_lblk_t first_block, stop_block;
3577         struct address_space *mapping = inode->i_mapping;
3578         loff_t first_block_offset, last_block_offset;
3579         handle_t *handle;
3580         unsigned int credits;
3581         int ret = 0;
3582
3583         if (!S_ISREG(inode->i_mode))
3584                 return -EOPNOTSUPP;
3585
3586         trace_ext4_punch_hole(inode, offset, length, 0);
3587
3588         /*
3589          * Write out all dirty pages to avoid race conditions
3590          * Then release them.
3591          */
3592         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3593                 ret = filemap_write_and_wait_range(mapping, offset,
3594                                                    offset + length - 1);
3595                 if (ret)
3596                         return ret;
3597         }
3598
3599         mutex_lock(&inode->i_mutex);
3600
3601         /* No need to punch hole beyond i_size */
3602         if (offset >= inode->i_size)
3603                 goto out_mutex;
3604
3605         /*
3606          * If the hole extends beyond i_size, set the hole
3607          * to end after the page that contains i_size
3608          */
3609         if (offset + length > inode->i_size) {
3610                 length = inode->i_size +
3611                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3612                    offset;
3613         }
3614
3615         if (offset & (sb->s_blocksize - 1) ||
3616             (offset + length) & (sb->s_blocksize - 1)) {
3617                 /*
3618                  * Attach jinode to inode for jbd2 if we do any zeroing of
3619                  * partial block
3620                  */
3621                 ret = ext4_inode_attach_jinode(inode);
3622                 if (ret < 0)
3623                         goto out_mutex;
3624
3625         }
3626
3627         first_block_offset = round_up(offset, sb->s_blocksize);
3628         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3629
3630         /* Now release the pages and zero block aligned part of pages*/
3631         if (last_block_offset > first_block_offset)
3632                 truncate_pagecache_range(inode, first_block_offset,
3633                                          last_block_offset);
3634
3635         /* Wait all existing dio workers, newcomers will block on i_mutex */
3636         ext4_inode_block_unlocked_dio(inode);
3637         inode_dio_wait(inode);
3638
3639         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3640                 credits = ext4_writepage_trans_blocks(inode);
3641         else
3642                 credits = ext4_blocks_for_truncate(inode);
3643         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3644         if (IS_ERR(handle)) {
3645                 ret = PTR_ERR(handle);
3646                 ext4_std_error(sb, ret);
3647                 goto out_dio;
3648         }
3649
3650         ret = ext4_zero_partial_blocks(handle, inode, offset,
3651                                        length);
3652         if (ret)
3653                 goto out_stop;
3654
3655         first_block = (offset + sb->s_blocksize - 1) >>
3656                 EXT4_BLOCK_SIZE_BITS(sb);
3657         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3658
3659         /* If there are no blocks to remove, return now */
3660         if (first_block >= stop_block)
3661                 goto out_stop;
3662
3663         down_write(&EXT4_I(inode)->i_data_sem);
3664         ext4_discard_preallocations(inode);
3665
3666         ret = ext4_es_remove_extent(inode, first_block,
3667                                     stop_block - first_block);
3668         if (ret) {
3669                 up_write(&EXT4_I(inode)->i_data_sem);
3670                 goto out_stop;
3671         }
3672
3673         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3674                 ret = ext4_ext_remove_space(inode, first_block,
3675                                             stop_block - 1);
3676         else
3677                 ret = ext4_ind_remove_space(handle, inode, first_block,
3678                                             stop_block);
3679
3680         up_write(&EXT4_I(inode)->i_data_sem);
3681         if (IS_SYNC(inode))
3682                 ext4_handle_sync(handle);
3683
3684         /* Now release the pages again to reduce race window */
3685         if (last_block_offset > first_block_offset)
3686                 truncate_pagecache_range(inode, first_block_offset,
3687                                          last_block_offset);
3688
3689         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3690         ext4_mark_inode_dirty(handle, inode);
3691 out_stop:
3692         ext4_journal_stop(handle);
3693 out_dio:
3694         ext4_inode_resume_unlocked_dio(inode);
3695 out_mutex:
3696         mutex_unlock(&inode->i_mutex);
3697         return ret;
3698 }
3699
3700 int ext4_inode_attach_jinode(struct inode *inode)
3701 {
3702         struct ext4_inode_info *ei = EXT4_I(inode);
3703         struct jbd2_inode *jinode;
3704
3705         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3706                 return 0;
3707
3708         jinode = jbd2_alloc_inode(GFP_KERNEL);
3709         spin_lock(&inode->i_lock);
3710         if (!ei->jinode) {
3711                 if (!jinode) {
3712                         spin_unlock(&inode->i_lock);
3713                         return -ENOMEM;
3714                 }
3715                 ei->jinode = jinode;
3716                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3717                 jinode = NULL;
3718         }
3719         spin_unlock(&inode->i_lock);
3720         if (unlikely(jinode != NULL))
3721                 jbd2_free_inode(jinode);
3722         return 0;
3723 }
3724
3725 /*
3726  * ext4_truncate()
3727  *
3728  * We block out ext4_get_block() block instantiations across the entire
3729  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3730  * simultaneously on behalf of the same inode.
3731  *
3732  * As we work through the truncate and commit bits of it to the journal there
3733  * is one core, guiding principle: the file's tree must always be consistent on
3734  * disk.  We must be able to restart the truncate after a crash.
3735  *
3736  * The file's tree may be transiently inconsistent in memory (although it
3737  * probably isn't), but whenever we close off and commit a journal transaction,
3738  * the contents of (the filesystem + the journal) must be consistent and
3739  * restartable.  It's pretty simple, really: bottom up, right to left (although
3740  * left-to-right works OK too).
3741  *
3742  * Note that at recovery time, journal replay occurs *before* the restart of
3743  * truncate against the orphan inode list.
3744  *
3745  * The committed inode has the new, desired i_size (which is the same as
3746  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3747  * that this inode's truncate did not complete and it will again call
3748  * ext4_truncate() to have another go.  So there will be instantiated blocks
3749  * to the right of the truncation point in a crashed ext4 filesystem.  But
3750  * that's fine - as long as they are linked from the inode, the post-crash
3751  * ext4_truncate() run will find them and release them.
3752  */
3753 void ext4_truncate(struct inode *inode)
3754 {
3755         struct ext4_inode_info *ei = EXT4_I(inode);
3756         unsigned int credits;
3757         handle_t *handle;
3758         struct address_space *mapping = inode->i_mapping;
3759
3760         /*
3761          * There is a possibility that we're either freeing the inode
3762          * or it's a completely new inode. In those cases we might not
3763          * have i_mutex locked because it's not necessary.
3764          */
3765         if (!(inode->i_state & (I_NEW|I_FREEING)))
3766                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3767         trace_ext4_truncate_enter(inode);
3768
3769         if (!ext4_can_truncate(inode))
3770                 return;
3771
3772         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3773
3774         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3775                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3776
3777         if (ext4_has_inline_data(inode)) {
3778                 int has_inline = 1;
3779
3780                 ext4_inline_data_truncate(inode, &has_inline);
3781                 if (has_inline)
3782                         return;
3783         }
3784
3785         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3786         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3787                 if (ext4_inode_attach_jinode(inode) < 0)
3788                         return;
3789         }
3790
3791         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3792                 credits = ext4_writepage_trans_blocks(inode);
3793         else
3794                 credits = ext4_blocks_for_truncate(inode);
3795
3796         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3797         if (IS_ERR(handle)) {
3798                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3799                 return;
3800         }
3801
3802         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3803                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3804
3805         /*
3806          * We add the inode to the orphan list, so that if this
3807          * truncate spans multiple transactions, and we crash, we will
3808          * resume the truncate when the filesystem recovers.  It also
3809          * marks the inode dirty, to catch the new size.
3810          *
3811          * Implication: the file must always be in a sane, consistent
3812          * truncatable state while each transaction commits.
3813          */
3814         if (ext4_orphan_add(handle, inode))
3815                 goto out_stop;
3816
3817         down_write(&EXT4_I(inode)->i_data_sem);
3818
3819         ext4_discard_preallocations(inode);
3820
3821         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3822                 ext4_ext_truncate(handle, inode);
3823         else
3824                 ext4_ind_truncate(handle, inode);
3825
3826         up_write(&ei->i_data_sem);
3827
3828         if (IS_SYNC(inode))
3829                 ext4_handle_sync(handle);
3830
3831 out_stop:
3832         /*
3833          * If this was a simple ftruncate() and the file will remain alive,
3834          * then we need to clear up the orphan record which we created above.
3835          * However, if this was a real unlink then we were called by
3836          * ext4_evict_inode(), and we allow that function to clean up the
3837          * orphan info for us.
3838          */
3839         if (inode->i_nlink)
3840                 ext4_orphan_del(handle, inode);
3841
3842         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3843         ext4_mark_inode_dirty(handle, inode);
3844         ext4_journal_stop(handle);
3845
3846         trace_ext4_truncate_exit(inode);
3847 }
3848
3849 /*
3850  * ext4_get_inode_loc returns with an extra refcount against the inode's
3851  * underlying buffer_head on success. If 'in_mem' is true, we have all
3852  * data in memory that is needed to recreate the on-disk version of this
3853  * inode.
3854  */
3855 static int __ext4_get_inode_loc(struct inode *inode,
3856                                 struct ext4_iloc *iloc, int in_mem)
3857 {
3858         struct ext4_group_desc  *gdp;
3859         struct buffer_head      *bh;
3860         struct super_block      *sb = inode->i_sb;
3861         ext4_fsblk_t            block;
3862         int                     inodes_per_block, inode_offset;
3863
3864         iloc->bh = NULL;
3865         if (!ext4_valid_inum(sb, inode->i_ino))
3866                 return -EFSCORRUPTED;
3867
3868         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3869         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3870         if (!gdp)
3871                 return -EIO;
3872
3873         /*
3874          * Figure out the offset within the block group inode table
3875          */
3876         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3877         inode_offset = ((inode->i_ino - 1) %
3878                         EXT4_INODES_PER_GROUP(sb));
3879         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3880         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3881
3882         bh = sb_getblk(sb, block);
3883         if (unlikely(!bh))
3884                 return -ENOMEM;
3885         if (!buffer_uptodate(bh)) {
3886                 lock_buffer(bh);
3887
3888                 /*
3889                  * If the buffer has the write error flag, we have failed
3890                  * to write out another inode in the same block.  In this
3891                  * case, we don't have to read the block because we may
3892                  * read the old inode data successfully.
3893                  */
3894                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3895                         set_buffer_uptodate(bh);
3896
3897                 if (buffer_uptodate(bh)) {
3898                         /* someone brought it uptodate while we waited */
3899                         unlock_buffer(bh);
3900                         goto has_buffer;
3901                 }
3902
3903                 /*
3904                  * If we have all information of the inode in memory and this
3905                  * is the only valid inode in the block, we need not read the
3906                  * block.
3907                  */
3908                 if (in_mem) {
3909                         struct buffer_head *bitmap_bh;
3910                         int i, start;
3911
3912                         start = inode_offset & ~(inodes_per_block - 1);
3913
3914                         /* Is the inode bitmap in cache? */
3915                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3916                         if (unlikely(!bitmap_bh))
3917                                 goto make_io;
3918
3919                         /*
3920                          * If the inode bitmap isn't in cache then the
3921                          * optimisation may end up performing two reads instead
3922                          * of one, so skip it.
3923                          */
3924                         if (!buffer_uptodate(bitmap_bh)) {
3925                                 brelse(bitmap_bh);
3926                                 goto make_io;
3927                         }
3928                         for (i = start; i < start + inodes_per_block; i++) {
3929                                 if (i == inode_offset)
3930                                         continue;
3931                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3932                                         break;
3933                         }
3934                         brelse(bitmap_bh);
3935                         if (i == start + inodes_per_block) {
3936                                 /* all other inodes are free, so skip I/O */
3937                                 memset(bh->b_data, 0, bh->b_size);
3938                                 set_buffer_uptodate(bh);
3939                                 unlock_buffer(bh);
3940                                 goto has_buffer;
3941                         }
3942                 }
3943
3944 make_io:
3945                 /*
3946                  * If we need to do any I/O, try to pre-readahead extra
3947                  * blocks from the inode table.
3948                  */
3949                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3950                         ext4_fsblk_t b, end, table;
3951                         unsigned num;
3952                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3953
3954                         table = ext4_inode_table(sb, gdp);
3955                         /* s_inode_readahead_blks is always a power of 2 */
3956                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3957                         if (table > b)
3958                                 b = table;
3959                         end = b + ra_blks;
3960                         num = EXT4_INODES_PER_GROUP(sb);
3961                         if (ext4_has_group_desc_csum(sb))
3962                                 num -= ext4_itable_unused_count(sb, gdp);
3963                         table += num / inodes_per_block;
3964                         if (end > table)
3965                                 end = table;
3966                         while (b <= end)
3967                                 sb_breadahead(sb, b++);
3968                 }
3969
3970                 /*
3971                  * There are other valid inodes in the buffer, this inode
3972                  * has in-inode xattrs, or we don't have this inode in memory.
3973                  * Read the block from disk.
3974                  */
3975                 trace_ext4_load_inode(inode);
3976                 get_bh(bh);
3977                 bh->b_end_io = end_buffer_read_sync;
3978                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3979                 wait_on_buffer(bh);
3980                 if (!buffer_uptodate(bh)) {
3981                         EXT4_ERROR_INODE_BLOCK(inode, block,
3982                                                "unable to read itable block");
3983                         brelse(bh);
3984                         return -EIO;
3985                 }
3986         }
3987 has_buffer:
3988         iloc->bh = bh;
3989         return 0;
3990 }
3991
3992 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3993 {
3994         /* We have all inode data except xattrs in memory here. */
3995         return __ext4_get_inode_loc(inode, iloc,
3996                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3997 }
3998
3999 void ext4_set_inode_flags(struct inode *inode)
4000 {
4001         unsigned int flags = EXT4_I(inode)->i_flags;
4002         unsigned int new_fl = 0;
4003
4004         if (flags & EXT4_SYNC_FL)
4005                 new_fl |= S_SYNC;
4006         if (flags & EXT4_APPEND_FL)
4007                 new_fl |= S_APPEND;
4008         if (flags & EXT4_IMMUTABLE_FL)
4009                 new_fl |= S_IMMUTABLE;
4010         if (flags & EXT4_NOATIME_FL)
4011                 new_fl |= S_NOATIME;
4012         if (flags & EXT4_DIRSYNC_FL)
4013                 new_fl |= S_DIRSYNC;
4014         if (test_opt(inode->i_sb, DAX))
4015                 new_fl |= S_DAX;
4016         inode_set_flags(inode, new_fl,
4017                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4018 }
4019
4020 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4021 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4022 {
4023         unsigned int vfs_fl;
4024         unsigned long old_fl, new_fl;
4025
4026         do {
4027                 vfs_fl = ei->vfs_inode.i_flags;
4028                 old_fl = ei->i_flags;
4029                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4030                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4031                                 EXT4_DIRSYNC_FL);
4032                 if (vfs_fl & S_SYNC)
4033                         new_fl |= EXT4_SYNC_FL;
4034                 if (vfs_fl & S_APPEND)
4035                         new_fl |= EXT4_APPEND_FL;
4036                 if (vfs_fl & S_IMMUTABLE)
4037                         new_fl |= EXT4_IMMUTABLE_FL;
4038                 if (vfs_fl & S_NOATIME)
4039                         new_fl |= EXT4_NOATIME_FL;
4040                 if (vfs_fl & S_DIRSYNC)
4041                         new_fl |= EXT4_DIRSYNC_FL;
4042         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4043 }
4044
4045 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4046                                   struct ext4_inode_info *ei)
4047 {
4048         blkcnt_t i_blocks ;
4049         struct inode *inode = &(ei->vfs_inode);
4050         struct super_block *sb = inode->i_sb;
4051
4052         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4053                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4054                 /* we are using combined 48 bit field */
4055                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4056                                         le32_to_cpu(raw_inode->i_blocks_lo);
4057                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4058                         /* i_blocks represent file system block size */
4059                         return i_blocks  << (inode->i_blkbits - 9);
4060                 } else {
4061                         return i_blocks;
4062                 }
4063         } else {
4064                 return le32_to_cpu(raw_inode->i_blocks_lo);
4065         }
4066 }
4067
4068 static inline void ext4_iget_extra_inode(struct inode *inode,
4069                                          struct ext4_inode *raw_inode,
4070                                          struct ext4_inode_info *ei)
4071 {
4072         __le32 *magic = (void *)raw_inode +
4073                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4074         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4075                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4076                 ext4_find_inline_data_nolock(inode);
4077         } else
4078                 EXT4_I(inode)->i_inline_off = 0;
4079 }
4080
4081 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4082 {
4083         struct ext4_iloc iloc;
4084         struct ext4_inode *raw_inode;
4085         struct ext4_inode_info *ei;
4086         struct inode *inode;
4087         journal_t *journal = EXT4_SB(sb)->s_journal;
4088         long ret;
4089         int block;
4090         uid_t i_uid;
4091         gid_t i_gid;
4092
4093         inode = iget_locked(sb, ino);
4094         if (!inode)
4095                 return ERR_PTR(-ENOMEM);
4096         if (!(inode->i_state & I_NEW))
4097                 return inode;
4098
4099         ei = EXT4_I(inode);
4100         iloc.bh = NULL;
4101
4102         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4103         if (ret < 0)
4104                 goto bad_inode;
4105         raw_inode = ext4_raw_inode(&iloc);
4106
4107         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4108                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4109                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4110                     EXT4_INODE_SIZE(inode->i_sb)) {
4111                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4112                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4113                                 EXT4_INODE_SIZE(inode->i_sb));
4114                         ret = -EFSCORRUPTED;
4115                         goto bad_inode;
4116                 }
4117         } else
4118                 ei->i_extra_isize = 0;
4119
4120         /* Precompute checksum seed for inode metadata */
4121         if (ext4_has_metadata_csum(sb)) {
4122                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4123                 __u32 csum;
4124                 __le32 inum = cpu_to_le32(inode->i_ino);
4125                 __le32 gen = raw_inode->i_generation;
4126                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4127                                    sizeof(inum));
4128                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4129                                               sizeof(gen));
4130         }
4131
4132         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4133                 EXT4_ERROR_INODE(inode, "checksum invalid");
4134                 ret = -EFSBADCRC;
4135                 goto bad_inode;
4136         }
4137
4138         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4139         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4140         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4141         if (!(test_opt(inode->i_sb, NO_UID32))) {
4142                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4143                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4144         }
4145         i_uid_write(inode, i_uid);
4146         i_gid_write(inode, i_gid);
4147         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4148
4149         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4150         ei->i_inline_off = 0;
4151         ei->i_dir_start_lookup = 0;
4152         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4153         /* We now have enough fields to check if the inode was active or not.
4154          * This is needed because nfsd might try to access dead inodes
4155          * the test is that same one that e2fsck uses
4156          * NeilBrown 1999oct15
4157          */
4158         if (inode->i_nlink == 0) {
4159                 if ((inode->i_mode == 0 ||
4160                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4161                     ino != EXT4_BOOT_LOADER_INO) {
4162                         /* this inode is deleted */
4163                         ret = -ESTALE;
4164                         goto bad_inode;
4165                 }
4166                 /* The only unlinked inodes we let through here have
4167                  * valid i_mode and are being read by the orphan
4168                  * recovery code: that's fine, we're about to complete
4169                  * the process of deleting those.
4170                  * OR it is the EXT4_BOOT_LOADER_INO which is
4171                  * not initialized on a new filesystem. */
4172         }
4173         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4174         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4175         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4176         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4177                 ei->i_file_acl |=
4178                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4179         inode->i_size = ext4_isize(raw_inode);
4180         ei->i_disksize = inode->i_size;
4181 #ifdef CONFIG_QUOTA
4182         ei->i_reserved_quota = 0;
4183 #endif
4184         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4185         ei->i_block_group = iloc.block_group;
4186         ei->i_last_alloc_group = ~0;
4187         /*
4188          * NOTE! The in-memory inode i_data array is in little-endian order
4189          * even on big-endian machines: we do NOT byteswap the block numbers!
4190          */
4191         for (block = 0; block < EXT4_N_BLOCKS; block++)
4192                 ei->i_data[block] = raw_inode->i_block[block];
4193         INIT_LIST_HEAD(&ei->i_orphan);
4194
4195         /*
4196          * Set transaction id's of transactions that have to be committed
4197          * to finish f[data]sync. We set them to currently running transaction
4198          * as we cannot be sure that the inode or some of its metadata isn't
4199          * part of the transaction - the inode could have been reclaimed and
4200          * now it is reread from disk.
4201          */
4202         if (journal) {
4203                 transaction_t *transaction;
4204                 tid_t tid;
4205
4206                 read_lock(&journal->j_state_lock);
4207                 if (journal->j_running_transaction)
4208                         transaction = journal->j_running_transaction;
4209                 else
4210                         transaction = journal->j_committing_transaction;
4211                 if (transaction)
4212                         tid = transaction->t_tid;
4213                 else
4214                         tid = journal->j_commit_sequence;
4215                 read_unlock(&journal->j_state_lock);
4216                 ei->i_sync_tid = tid;
4217                 ei->i_datasync_tid = tid;
4218         }
4219
4220         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4221                 if (ei->i_extra_isize == 0) {
4222                         /* The extra space is currently unused. Use it. */
4223                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4224                                             EXT4_GOOD_OLD_INODE_SIZE;
4225                 } else {
4226                         ext4_iget_extra_inode(inode, raw_inode, ei);
4227                 }
4228         }
4229
4230         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4231         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4232         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4233         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4234
4235         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4236                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4237                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4238                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4239                                 inode->i_version |=
4240                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4241                 }
4242         }
4243
4244         ret = 0;
4245         if (ei->i_file_acl &&
4246             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4247                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4248                                  ei->i_file_acl);
4249                 ret = -EFSCORRUPTED;
4250                 goto bad_inode;
4251         } else if (!ext4_has_inline_data(inode)) {
4252                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4253                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4254                             (S_ISLNK(inode->i_mode) &&
4255                              !ext4_inode_is_fast_symlink(inode))))
4256                                 /* Validate extent which is part of inode */
4257                                 ret = ext4_ext_check_inode(inode);
4258                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4259                            (S_ISLNK(inode->i_mode) &&
4260                             !ext4_inode_is_fast_symlink(inode))) {
4261                         /* Validate block references which are part of inode */
4262                         ret = ext4_ind_check_inode(inode);
4263                 }
4264         }
4265         if (ret)
4266                 goto bad_inode;
4267
4268         if (S_ISREG(inode->i_mode)) {
4269                 inode->i_op = &ext4_file_inode_operations;
4270                 inode->i_fop = &ext4_file_operations;
4271                 ext4_set_aops(inode);
4272         } else if (S_ISDIR(inode->i_mode)) {
4273                 inode->i_op = &ext4_dir_inode_operations;
4274                 inode->i_fop = &ext4_dir_operations;
4275         } else if (S_ISLNK(inode->i_mode)) {
4276                 if (ext4_encrypted_inode(inode)) {
4277                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4278                         ext4_set_aops(inode);
4279                 } else if (ext4_inode_is_fast_symlink(inode)) {
4280                         inode->i_link = (char *)ei->i_data;
4281                         inode->i_op = &ext4_fast_symlink_inode_operations;
4282                         nd_terminate_link(ei->i_data, inode->i_size,
4283                                 sizeof(ei->i_data) - 1);
4284                 } else {
4285                         inode->i_op = &ext4_symlink_inode_operations;
4286                         ext4_set_aops(inode);
4287                 }
4288         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4289               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4290                 inode->i_op = &ext4_special_inode_operations;
4291                 if (raw_inode->i_block[0])
4292                         init_special_inode(inode, inode->i_mode,
4293                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4294                 else
4295                         init_special_inode(inode, inode->i_mode,
4296                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4297         } else if (ino == EXT4_BOOT_LOADER_INO) {
4298                 make_bad_inode(inode);
4299         } else {
4300                 ret = -EFSCORRUPTED;
4301                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4302                 goto bad_inode;
4303         }
4304         brelse(iloc.bh);
4305         ext4_set_inode_flags(inode);
4306         unlock_new_inode(inode);
4307         return inode;
4308
4309 bad_inode:
4310         brelse(iloc.bh);
4311         iget_failed(inode);
4312         return ERR_PTR(ret);
4313 }
4314
4315 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4316 {
4317         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4318                 return ERR_PTR(-EFSCORRUPTED);
4319         return ext4_iget(sb, ino);
4320 }
4321
4322 static int ext4_inode_blocks_set(handle_t *handle,
4323                                 struct ext4_inode *raw_inode,
4324                                 struct ext4_inode_info *ei)
4325 {
4326         struct inode *inode = &(ei->vfs_inode);
4327         u64 i_blocks = inode->i_blocks;
4328         struct super_block *sb = inode->i_sb;
4329
4330         if (i_blocks <= ~0U) {
4331                 /*
4332                  * i_blocks can be represented in a 32 bit variable
4333                  * as multiple of 512 bytes
4334                  */
4335                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4336                 raw_inode->i_blocks_high = 0;
4337                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4338                 return 0;
4339         }
4340         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4341                 return -EFBIG;
4342
4343         if (i_blocks <= 0xffffffffffffULL) {
4344                 /*
4345                  * i_blocks can be represented in a 48 bit variable
4346                  * as multiple of 512 bytes
4347                  */
4348                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4349                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4350                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4351         } else {
4352                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4353                 /* i_block is stored in file system block size */
4354                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4355                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4356                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4357         }
4358         return 0;
4359 }
4360
4361 struct other_inode {
4362         unsigned long           orig_ino;
4363         struct ext4_inode       *raw_inode;
4364 };
4365
4366 static int other_inode_match(struct inode * inode, unsigned long ino,
4367                              void *data)
4368 {
4369         struct other_inode *oi = (struct other_inode *) data;
4370
4371         if ((inode->i_ino != ino) ||
4372             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4373                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4374             ((inode->i_state & I_DIRTY_TIME) == 0))
4375                 return 0;
4376         spin_lock(&inode->i_lock);
4377         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4378                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4379             (inode->i_state & I_DIRTY_TIME)) {
4380                 struct ext4_inode_info  *ei = EXT4_I(inode);
4381
4382                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4383                 spin_unlock(&inode->i_lock);
4384
4385                 spin_lock(&ei->i_raw_lock);
4386                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4387                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4388                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4389                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4390                 spin_unlock(&ei->i_raw_lock);
4391                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4392                 return -1;
4393         }
4394         spin_unlock(&inode->i_lock);
4395         return -1;
4396 }
4397
4398 /*
4399  * Opportunistically update the other time fields for other inodes in
4400  * the same inode table block.
4401  */
4402 static void ext4_update_other_inodes_time(struct super_block *sb,
4403                                           unsigned long orig_ino, char *buf)
4404 {
4405         struct other_inode oi;
4406         unsigned long ino;
4407         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4408         int inode_size = EXT4_INODE_SIZE(sb);
4409
4410         oi.orig_ino = orig_ino;
4411         /*
4412          * Calculate the first inode in the inode table block.  Inode
4413          * numbers are one-based.  That is, the first inode in a block
4414          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4415          */
4416         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4417         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4418                 if (ino == orig_ino)
4419                         continue;
4420                 oi.raw_inode = (struct ext4_inode *) buf;
4421                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4422         }
4423 }
4424
4425 /*
4426  * Post the struct inode info into an on-disk inode location in the
4427  * buffer-cache.  This gobbles the caller's reference to the
4428  * buffer_head in the inode location struct.
4429  *
4430  * The caller must have write access to iloc->bh.
4431  */
4432 static int ext4_do_update_inode(handle_t *handle,
4433                                 struct inode *inode,
4434                                 struct ext4_iloc *iloc)
4435 {
4436         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4437         struct ext4_inode_info *ei = EXT4_I(inode);
4438         struct buffer_head *bh = iloc->bh;
4439         struct super_block *sb = inode->i_sb;
4440         int err = 0, rc, block;
4441         int need_datasync = 0, set_large_file = 0;
4442         uid_t i_uid;
4443         gid_t i_gid;
4444
4445         spin_lock(&ei->i_raw_lock);
4446
4447         /* For fields not tracked in the in-memory inode,
4448          * initialise them to zero for new inodes. */
4449         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4450                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4451
4452         ext4_get_inode_flags(ei);
4453         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4454         i_uid = i_uid_read(inode);
4455         i_gid = i_gid_read(inode);
4456         if (!(test_opt(inode->i_sb, NO_UID32))) {
4457                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4458                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4459 /*
4460  * Fix up interoperability with old kernels. Otherwise, old inodes get
4461  * re-used with the upper 16 bits of the uid/gid intact
4462  */
4463                 if (!ei->i_dtime) {
4464                         raw_inode->i_uid_high =
4465                                 cpu_to_le16(high_16_bits(i_uid));
4466                         raw_inode->i_gid_high =
4467                                 cpu_to_le16(high_16_bits(i_gid));
4468                 } else {
4469                         raw_inode->i_uid_high = 0;
4470                         raw_inode->i_gid_high = 0;
4471                 }
4472         } else {
4473                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4474                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4475                 raw_inode->i_uid_high = 0;
4476                 raw_inode->i_gid_high = 0;
4477         }
4478         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4479
4480         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4481         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4482         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4483         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4484
4485         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4486         if (err) {
4487                 spin_unlock(&ei->i_raw_lock);
4488                 goto out_brelse;
4489         }
4490         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4491         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4492         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4493                 raw_inode->i_file_acl_high =
4494                         cpu_to_le16(ei->i_file_acl >> 32);
4495         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4496         if (ei->i_disksize != ext4_isize(raw_inode)) {
4497                 ext4_isize_set(raw_inode, ei->i_disksize);
4498                 need_datasync = 1;
4499         }
4500         if (ei->i_disksize > 0x7fffffffULL) {
4501                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4502                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4503                                 EXT4_SB(sb)->s_es->s_rev_level ==
4504                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4505                         set_large_file = 1;
4506         }
4507         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4508         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4509                 if (old_valid_dev(inode->i_rdev)) {
4510                         raw_inode->i_block[0] =
4511                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4512                         raw_inode->i_block[1] = 0;
4513                 } else {
4514                         raw_inode->i_block[0] = 0;
4515                         raw_inode->i_block[1] =
4516                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4517                         raw_inode->i_block[2] = 0;
4518                 }
4519         } else if (!ext4_has_inline_data(inode)) {
4520                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4521                         raw_inode->i_block[block] = ei->i_data[block];
4522         }
4523
4524         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4525                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4526                 if (ei->i_extra_isize) {
4527                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4528                                 raw_inode->i_version_hi =
4529                                         cpu_to_le32(inode->i_version >> 32);
4530                         raw_inode->i_extra_isize =
4531                                 cpu_to_le16(ei->i_extra_isize);
4532                 }
4533         }
4534         ext4_inode_csum_set(inode, raw_inode, ei);
4535         spin_unlock(&ei->i_raw_lock);
4536         if (inode->i_sb->s_flags & MS_LAZYTIME)
4537                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4538                                               bh->b_data);
4539
4540         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4541         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4542         if (!err)
4543                 err = rc;
4544         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4545         if (set_large_file) {
4546                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4547                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4548                 if (err)
4549                         goto out_brelse;
4550                 ext4_update_dynamic_rev(sb);
4551                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4552                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4553                 ext4_handle_sync(handle);
4554                 err = ext4_handle_dirty_super(handle, sb);
4555         }
4556         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4557 out_brelse:
4558         brelse(bh);
4559         ext4_std_error(inode->i_sb, err);
4560         return err;
4561 }
4562
4563 /*
4564  * ext4_write_inode()
4565  *
4566  * We are called from a few places:
4567  *
4568  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4569  *   Here, there will be no transaction running. We wait for any running
4570  *   transaction to commit.
4571  *
4572  * - Within flush work (sys_sync(), kupdate and such).
4573  *   We wait on commit, if told to.
4574  *
4575  * - Within iput_final() -> write_inode_now()
4576  *   We wait on commit, if told to.
4577  *
4578  * In all cases it is actually safe for us to return without doing anything,
4579  * because the inode has been copied into a raw inode buffer in
4580  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4581  * writeback.
4582  *
4583  * Note that we are absolutely dependent upon all inode dirtiers doing the
4584  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4585  * which we are interested.
4586  *
4587  * It would be a bug for them to not do this.  The code:
4588  *
4589  *      mark_inode_dirty(inode)
4590  *      stuff();
4591  *      inode->i_size = expr;
4592  *
4593  * is in error because write_inode() could occur while `stuff()' is running,
4594  * and the new i_size will be lost.  Plus the inode will no longer be on the
4595  * superblock's dirty inode list.
4596  */
4597 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4598 {
4599         int err;
4600
4601         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4602                 return 0;
4603
4604         if (EXT4_SB(inode->i_sb)->s_journal) {
4605                 if (ext4_journal_current_handle()) {
4606                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4607                         dump_stack();
4608                         return -EIO;
4609                 }
4610
4611                 /*
4612                  * No need to force transaction in WB_SYNC_NONE mode. Also
4613                  * ext4_sync_fs() will force the commit after everything is
4614                  * written.
4615                  */
4616                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4617                         return 0;
4618
4619                 err = ext4_force_commit(inode->i_sb);
4620         } else {
4621                 struct ext4_iloc iloc;
4622
4623                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4624                 if (err)
4625                         return err;
4626                 /*
4627                  * sync(2) will flush the whole buffer cache. No need to do
4628                  * it here separately for each inode.
4629                  */
4630                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4631                         sync_dirty_buffer(iloc.bh);
4632                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4633                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4634                                          "IO error syncing inode");
4635                         err = -EIO;
4636                 }
4637                 brelse(iloc.bh);
4638         }
4639         return err;
4640 }
4641
4642 /*
4643  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4644  * buffers that are attached to a page stradding i_size and are undergoing
4645  * commit. In that case we have to wait for commit to finish and try again.
4646  */
4647 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4648 {
4649         struct page *page;
4650         unsigned offset;
4651         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4652         tid_t commit_tid = 0;
4653         int ret;
4654
4655         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4656         /*
4657          * All buffers in the last page remain valid? Then there's nothing to
4658          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4659          * blocksize case
4660          */
4661         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4662                 return;
4663         while (1) {
4664                 page = find_lock_page(inode->i_mapping,
4665                                       inode->i_size >> PAGE_CACHE_SHIFT);
4666                 if (!page)
4667                         return;
4668                 ret = __ext4_journalled_invalidatepage(page, offset,
4669                                                 PAGE_CACHE_SIZE - offset);
4670                 unlock_page(page);
4671                 page_cache_release(page);
4672                 if (ret != -EBUSY)
4673                         return;
4674                 commit_tid = 0;
4675                 read_lock(&journal->j_state_lock);
4676                 if (journal->j_committing_transaction)
4677                         commit_tid = journal->j_committing_transaction->t_tid;
4678                 read_unlock(&journal->j_state_lock);
4679                 if (commit_tid)
4680                         jbd2_log_wait_commit(journal, commit_tid);
4681         }
4682 }
4683
4684 /*
4685  * ext4_setattr()
4686  *
4687  * Called from notify_change.
4688  *
4689  * We want to trap VFS attempts to truncate the file as soon as
4690  * possible.  In particular, we want to make sure that when the VFS
4691  * shrinks i_size, we put the inode on the orphan list and modify
4692  * i_disksize immediately, so that during the subsequent flushing of
4693  * dirty pages and freeing of disk blocks, we can guarantee that any
4694  * commit will leave the blocks being flushed in an unused state on
4695  * disk.  (On recovery, the inode will get truncated and the blocks will
4696  * be freed, so we have a strong guarantee that no future commit will
4697  * leave these blocks visible to the user.)
4698  *
4699  * Another thing we have to assure is that if we are in ordered mode
4700  * and inode is still attached to the committing transaction, we must
4701  * we start writeout of all the dirty pages which are being truncated.
4702  * This way we are sure that all the data written in the previous
4703  * transaction are already on disk (truncate waits for pages under
4704  * writeback).
4705  *
4706  * Called with inode->i_mutex down.
4707  */
4708 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4709 {
4710         struct inode *inode = d_inode(dentry);
4711         int error, rc = 0;
4712         int orphan = 0;
4713         const unsigned int ia_valid = attr->ia_valid;
4714
4715         error = inode_change_ok(inode, attr);
4716         if (error)
4717                 return error;
4718
4719         if (is_quota_modification(inode, attr)) {
4720                 error = dquot_initialize(inode);
4721                 if (error)
4722                         return error;
4723         }
4724         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4725             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4726                 handle_t *handle;
4727
4728                 /* (user+group)*(old+new) structure, inode write (sb,
4729                  * inode block, ? - but truncate inode update has it) */
4730                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4731                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4732                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4733                 if (IS_ERR(handle)) {
4734                         error = PTR_ERR(handle);
4735                         goto err_out;
4736                 }
4737                 error = dquot_transfer(inode, attr);
4738                 if (error) {
4739                         ext4_journal_stop(handle);
4740                         return error;
4741                 }
4742                 /* Update corresponding info in inode so that everything is in
4743                  * one transaction */
4744                 if (attr->ia_valid & ATTR_UID)
4745                         inode->i_uid = attr->ia_uid;
4746                 if (attr->ia_valid & ATTR_GID)
4747                         inode->i_gid = attr->ia_gid;
4748                 error = ext4_mark_inode_dirty(handle, inode);
4749                 ext4_journal_stop(handle);
4750         }
4751
4752         if (attr->ia_valid & ATTR_SIZE) {
4753                 handle_t *handle;
4754                 loff_t oldsize = inode->i_size;
4755                 int shrink = (attr->ia_size <= inode->i_size);
4756
4757                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4758                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4759
4760                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4761                                 return -EFBIG;
4762                 }
4763                 if (!S_ISREG(inode->i_mode))
4764                         return -EINVAL;
4765
4766                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4767                         inode_inc_iversion(inode);
4768
4769                 if (ext4_should_order_data(inode) &&
4770                     (attr->ia_size < inode->i_size)) {
4771                         error = ext4_begin_ordered_truncate(inode,
4772                                                             attr->ia_size);
4773                         if (error)
4774                                 goto err_out;
4775                 }
4776                 if (attr->ia_size != inode->i_size) {
4777                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4778                         if (IS_ERR(handle)) {
4779                                 error = PTR_ERR(handle);
4780                                 goto err_out;
4781                         }
4782                         if (ext4_handle_valid(handle) && shrink) {
4783                                 error = ext4_orphan_add(handle, inode);
4784                                 orphan = 1;
4785                         }
4786                         /*
4787                          * Update c/mtime on truncate up, ext4_truncate() will
4788                          * update c/mtime in shrink case below
4789                          */
4790                         if (!shrink) {
4791                                 inode->i_mtime = ext4_current_time(inode);
4792                                 inode->i_ctime = inode->i_mtime;
4793                         }
4794                         down_write(&EXT4_I(inode)->i_data_sem);
4795                         EXT4_I(inode)->i_disksize = attr->ia_size;
4796                         rc = ext4_mark_inode_dirty(handle, inode);
4797                         if (!error)
4798                                 error = rc;
4799                         /*
4800                          * We have to update i_size under i_data_sem together
4801                          * with i_disksize to avoid races with writeback code
4802                          * running ext4_wb_update_i_disksize().
4803                          */
4804                         if (!error)
4805                                 i_size_write(inode, attr->ia_size);
4806                         up_write(&EXT4_I(inode)->i_data_sem);
4807                         ext4_journal_stop(handle);
4808                         if (error) {
4809                                 if (orphan)
4810                                         ext4_orphan_del(NULL, inode);
4811                                 goto err_out;
4812                         }
4813                 }
4814                 if (!shrink)
4815                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4816
4817                 /*
4818                  * Blocks are going to be removed from the inode. Wait
4819                  * for dio in flight.  Temporarily disable
4820                  * dioread_nolock to prevent livelock.
4821                  */
4822                 if (orphan) {
4823                         if (!ext4_should_journal_data(inode)) {
4824                                 ext4_inode_block_unlocked_dio(inode);
4825                                 inode_dio_wait(inode);
4826                                 ext4_inode_resume_unlocked_dio(inode);
4827                         } else
4828                                 ext4_wait_for_tail_page_commit(inode);
4829                 }
4830                 /*
4831                  * Truncate pagecache after we've waited for commit
4832                  * in data=journal mode to make pages freeable.
4833                  */
4834                 truncate_pagecache(inode, inode->i_size);
4835                 if (shrink)
4836                         ext4_truncate(inode);
4837         }
4838
4839         if (!rc) {
4840                 setattr_copy(inode, attr);
4841                 mark_inode_dirty(inode);
4842         }
4843
4844         /*
4845          * If the call to ext4_truncate failed to get a transaction handle at
4846          * all, we need to clean up the in-core orphan list manually.
4847          */
4848         if (orphan && inode->i_nlink)
4849                 ext4_orphan_del(NULL, inode);
4850
4851         if (!rc && (ia_valid & ATTR_MODE))
4852                 rc = posix_acl_chmod(inode, inode->i_mode);
4853
4854 err_out:
4855         ext4_std_error(inode->i_sb, error);
4856         if (!error)
4857                 error = rc;
4858         return error;
4859 }
4860
4861 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4862                  struct kstat *stat)
4863 {
4864         struct inode *inode;
4865         unsigned long long delalloc_blocks;
4866
4867         inode = d_inode(dentry);
4868         generic_fillattr(inode, stat);
4869
4870         /*
4871          * If there is inline data in the inode, the inode will normally not
4872          * have data blocks allocated (it may have an external xattr block).
4873          * Report at least one sector for such files, so tools like tar, rsync,
4874          * others doen't incorrectly think the file is completely sparse.
4875          */
4876         if (unlikely(ext4_has_inline_data(inode)))
4877                 stat->blocks += (stat->size + 511) >> 9;
4878
4879         /*
4880          * We can't update i_blocks if the block allocation is delayed
4881          * otherwise in the case of system crash before the real block
4882          * allocation is done, we will have i_blocks inconsistent with
4883          * on-disk file blocks.
4884          * We always keep i_blocks updated together with real
4885          * allocation. But to not confuse with user, stat
4886          * will return the blocks that include the delayed allocation
4887          * blocks for this file.
4888          */
4889         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4890                                    EXT4_I(inode)->i_reserved_data_blocks);
4891         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4892         return 0;
4893 }
4894
4895 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4896                                    int pextents)
4897 {
4898         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4899                 return ext4_ind_trans_blocks(inode, lblocks);
4900         return ext4_ext_index_trans_blocks(inode, pextents);
4901 }
4902
4903 /*
4904  * Account for index blocks, block groups bitmaps and block group
4905  * descriptor blocks if modify datablocks and index blocks
4906  * worse case, the indexs blocks spread over different block groups
4907  *
4908  * If datablocks are discontiguous, they are possible to spread over
4909  * different block groups too. If they are contiguous, with flexbg,
4910  * they could still across block group boundary.
4911  *
4912  * Also account for superblock, inode, quota and xattr blocks
4913  */
4914 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4915                                   int pextents)
4916 {
4917         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4918         int gdpblocks;
4919         int idxblocks;
4920         int ret = 0;
4921
4922         /*
4923          * How many index blocks need to touch to map @lblocks logical blocks
4924          * to @pextents physical extents?
4925          */
4926         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4927
4928         ret = idxblocks;
4929
4930         /*
4931          * Now let's see how many group bitmaps and group descriptors need
4932          * to account
4933          */
4934         groups = idxblocks + pextents;
4935         gdpblocks = groups;
4936         if (groups > ngroups)
4937                 groups = ngroups;
4938         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4939                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4940
4941         /* bitmaps and block group descriptor blocks */
4942         ret += groups + gdpblocks;
4943
4944         /* Blocks for super block, inode, quota and xattr blocks */
4945         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4946
4947         return ret;
4948 }
4949
4950 /*
4951  * Calculate the total number of credits to reserve to fit
4952  * the modification of a single pages into a single transaction,
4953  * which may include multiple chunks of block allocations.
4954  *
4955  * This could be called via ext4_write_begin()
4956  *
4957  * We need to consider the worse case, when
4958  * one new block per extent.
4959  */
4960 int ext4_writepage_trans_blocks(struct inode *inode)
4961 {
4962         int bpp = ext4_journal_blocks_per_page(inode);
4963         int ret;
4964
4965         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4966
4967         /* Account for data blocks for journalled mode */
4968         if (ext4_should_journal_data(inode))
4969                 ret += bpp;
4970         return ret;
4971 }
4972
4973 /*
4974  * Calculate the journal credits for a chunk of data modification.
4975  *
4976  * This is called from DIO, fallocate or whoever calling
4977  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4978  *
4979  * journal buffers for data blocks are not included here, as DIO
4980  * and fallocate do no need to journal data buffers.
4981  */
4982 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4983 {
4984         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4985 }
4986
4987 /*
4988  * The caller must have previously called ext4_reserve_inode_write().
4989  * Give this, we know that the caller already has write access to iloc->bh.
4990  */
4991 int ext4_mark_iloc_dirty(handle_t *handle,
4992                          struct inode *inode, struct ext4_iloc *iloc)
4993 {
4994         int err = 0;
4995
4996         if (IS_I_VERSION(inode))
4997                 inode_inc_iversion(inode);
4998
4999         /* the do_update_inode consumes one bh->b_count */
5000         get_bh(iloc->bh);
5001
5002         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5003         err = ext4_do_update_inode(handle, inode, iloc);
5004         put_bh(iloc->bh);
5005         return err;
5006 }
5007
5008 /*
5009  * On success, We end up with an outstanding reference count against
5010  * iloc->bh.  This _must_ be cleaned up later.
5011  */
5012
5013 int
5014 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5015                          struct ext4_iloc *iloc)
5016 {
5017         int err;
5018
5019         err = ext4_get_inode_loc(inode, iloc);
5020         if (!err) {
5021                 BUFFER_TRACE(iloc->bh, "get_write_access");
5022                 err = ext4_journal_get_write_access(handle, iloc->bh);
5023                 if (err) {
5024                         brelse(iloc->bh);
5025                         iloc->bh = NULL;
5026                 }
5027         }
5028         ext4_std_error(inode->i_sb, err);
5029         return err;
5030 }
5031
5032 /*
5033  * Expand an inode by new_extra_isize bytes.
5034  * Returns 0 on success or negative error number on failure.
5035  */
5036 static int ext4_expand_extra_isize(struct inode *inode,
5037                                    unsigned int new_extra_isize,
5038                                    struct ext4_iloc iloc,
5039                                    handle_t *handle)
5040 {
5041         struct ext4_inode *raw_inode;
5042         struct ext4_xattr_ibody_header *header;
5043
5044         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5045                 return 0;
5046
5047         raw_inode = ext4_raw_inode(&iloc);
5048
5049         header = IHDR(inode, raw_inode);
5050
5051         /* No extended attributes present */
5052         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5053             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5054                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5055                         new_extra_isize);
5056                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5057                 return 0;
5058         }
5059
5060         /* try to expand with EAs present */
5061         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5062                                           raw_inode, handle);
5063 }
5064
5065 /*
5066  * What we do here is to mark the in-core inode as clean with respect to inode
5067  * dirtiness (it may still be data-dirty).
5068  * This means that the in-core inode may be reaped by prune_icache
5069  * without having to perform any I/O.  This is a very good thing,
5070  * because *any* task may call prune_icache - even ones which
5071  * have a transaction open against a different journal.
5072  *
5073  * Is this cheating?  Not really.  Sure, we haven't written the
5074  * inode out, but prune_icache isn't a user-visible syncing function.
5075  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5076  * we start and wait on commits.
5077  */
5078 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5079 {
5080         struct ext4_iloc iloc;
5081         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5082         static unsigned int mnt_count;
5083         int err, ret;
5084
5085         might_sleep();
5086         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5087         err = ext4_reserve_inode_write(handle, inode, &iloc);
5088         if (ext4_handle_valid(handle) &&
5089             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5090             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5091                 /*
5092                  * We need extra buffer credits since we may write into EA block
5093                  * with this same handle. If journal_extend fails, then it will
5094                  * only result in a minor loss of functionality for that inode.
5095                  * If this is felt to be critical, then e2fsck should be run to
5096                  * force a large enough s_min_extra_isize.
5097                  */
5098                 if ((jbd2_journal_extend(handle,
5099                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5100                         ret = ext4_expand_extra_isize(inode,
5101                                                       sbi->s_want_extra_isize,
5102                                                       iloc, handle);
5103                         if (ret) {
5104                                 ext4_set_inode_state(inode,
5105                                                      EXT4_STATE_NO_EXPAND);
5106                                 if (mnt_count !=
5107                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5108                                         ext4_warning(inode->i_sb,
5109                                         "Unable to expand inode %lu. Delete"
5110                                         " some EAs or run e2fsck.",
5111                                         inode->i_ino);
5112                                         mnt_count =
5113                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5114                                 }
5115                         }
5116                 }
5117         }
5118         if (!err)
5119                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5120         return err;
5121 }
5122
5123 /*
5124  * ext4_dirty_inode() is called from __mark_inode_dirty()
5125  *
5126  * We're really interested in the case where a file is being extended.
5127  * i_size has been changed by generic_commit_write() and we thus need
5128  * to include the updated inode in the current transaction.
5129  *
5130  * Also, dquot_alloc_block() will always dirty the inode when blocks
5131  * are allocated to the file.
5132  *
5133  * If the inode is marked synchronous, we don't honour that here - doing
5134  * so would cause a commit on atime updates, which we don't bother doing.
5135  * We handle synchronous inodes at the highest possible level.
5136  *
5137  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5138  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5139  * to copy into the on-disk inode structure are the timestamp files.
5140  */
5141 void ext4_dirty_inode(struct inode *inode, int flags)
5142 {
5143         handle_t *handle;
5144
5145         if (flags == I_DIRTY_TIME)
5146                 return;
5147         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5148         if (IS_ERR(handle))
5149                 goto out;
5150
5151         ext4_mark_inode_dirty(handle, inode);
5152
5153         ext4_journal_stop(handle);
5154 out:
5155         return;
5156 }
5157
5158 #if 0
5159 /*
5160  * Bind an inode's backing buffer_head into this transaction, to prevent
5161  * it from being flushed to disk early.  Unlike
5162  * ext4_reserve_inode_write, this leaves behind no bh reference and
5163  * returns no iloc structure, so the caller needs to repeat the iloc
5164  * lookup to mark the inode dirty later.
5165  */
5166 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5167 {
5168         struct ext4_iloc iloc;
5169
5170         int err = 0;
5171         if (handle) {
5172                 err = ext4_get_inode_loc(inode, &iloc);
5173                 if (!err) {
5174                         BUFFER_TRACE(iloc.bh, "get_write_access");
5175                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5176                         if (!err)
5177                                 err = ext4_handle_dirty_metadata(handle,
5178                                                                  NULL,
5179                                                                  iloc.bh);
5180                         brelse(iloc.bh);
5181                 }
5182         }
5183         ext4_std_error(inode->i_sb, err);
5184         return err;
5185 }
5186 #endif
5187
5188 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5189 {
5190         journal_t *journal;
5191         handle_t *handle;
5192         int err;
5193
5194         /*
5195          * We have to be very careful here: changing a data block's
5196          * journaling status dynamically is dangerous.  If we write a
5197          * data block to the journal, change the status and then delete
5198          * that block, we risk forgetting to revoke the old log record
5199          * from the journal and so a subsequent replay can corrupt data.
5200          * So, first we make sure that the journal is empty and that
5201          * nobody is changing anything.
5202          */
5203
5204         journal = EXT4_JOURNAL(inode);
5205         if (!journal)
5206                 return 0;
5207         if (is_journal_aborted(journal))
5208                 return -EROFS;
5209         /* We have to allocate physical blocks for delalloc blocks
5210          * before flushing journal. otherwise delalloc blocks can not
5211          * be allocated any more. even more truncate on delalloc blocks
5212          * could trigger BUG by flushing delalloc blocks in journal.
5213          * There is no delalloc block in non-journal data mode.
5214          */
5215         if (val && test_opt(inode->i_sb, DELALLOC)) {
5216                 err = ext4_alloc_da_blocks(inode);
5217                 if (err < 0)
5218                         return err;
5219         }
5220
5221         /* Wait for all existing dio workers */
5222         ext4_inode_block_unlocked_dio(inode);
5223         inode_dio_wait(inode);
5224
5225         jbd2_journal_lock_updates(journal);
5226
5227         /*
5228          * OK, there are no updates running now, and all cached data is
5229          * synced to disk.  We are now in a completely consistent state
5230          * which doesn't have anything in the journal, and we know that
5231          * no filesystem updates are running, so it is safe to modify
5232          * the inode's in-core data-journaling state flag now.
5233          */
5234
5235         if (val)
5236                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5237         else {
5238                 err = jbd2_journal_flush(journal);
5239                 if (err < 0) {
5240                         jbd2_journal_unlock_updates(journal);
5241                         ext4_inode_resume_unlocked_dio(inode);
5242                         return err;
5243                 }
5244                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5245         }
5246         ext4_set_aops(inode);
5247
5248         jbd2_journal_unlock_updates(journal);
5249         ext4_inode_resume_unlocked_dio(inode);
5250
5251         /* Finally we can mark the inode as dirty. */
5252
5253         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5254         if (IS_ERR(handle))
5255                 return PTR_ERR(handle);
5256
5257         err = ext4_mark_inode_dirty(handle, inode);
5258         ext4_handle_sync(handle);
5259         ext4_journal_stop(handle);
5260         ext4_std_error(inode->i_sb, err);
5261
5262         return err;
5263 }
5264
5265 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5266 {
5267         return !buffer_mapped(bh);
5268 }
5269
5270 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5271 {
5272         struct page *page = vmf->page;
5273         loff_t size;
5274         unsigned long len;
5275         int ret;
5276         struct file *file = vma->vm_file;
5277         struct inode *inode = file_inode(file);
5278         struct address_space *mapping = inode->i_mapping;
5279         handle_t *handle;
5280         get_block_t *get_block;
5281         int retries = 0;
5282
5283         sb_start_pagefault(inode->i_sb);
5284         file_update_time(vma->vm_file);
5285         /* Delalloc case is easy... */
5286         if (test_opt(inode->i_sb, DELALLOC) &&
5287             !ext4_should_journal_data(inode) &&
5288             !ext4_nonda_switch(inode->i_sb)) {
5289                 do {
5290                         ret = __block_page_mkwrite(vma, vmf,
5291                                                    ext4_da_get_block_prep);
5292                 } while (ret == -ENOSPC &&
5293                        ext4_should_retry_alloc(inode->i_sb, &retries));
5294                 goto out_ret;
5295         }
5296
5297         lock_page(page);
5298         size = i_size_read(inode);
5299         /* Page got truncated from under us? */
5300         if (page->mapping != mapping || page_offset(page) > size) {
5301                 unlock_page(page);
5302                 ret = VM_FAULT_NOPAGE;
5303                 goto out;
5304         }
5305
5306         if (page->index == size >> PAGE_CACHE_SHIFT)
5307                 len = size & ~PAGE_CACHE_MASK;
5308         else
5309                 len = PAGE_CACHE_SIZE;
5310         /*
5311          * Return if we have all the buffers mapped. This avoids the need to do
5312          * journal_start/journal_stop which can block and take a long time
5313          */
5314         if (page_has_buffers(page)) {
5315                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5316                                             0, len, NULL,
5317                                             ext4_bh_unmapped)) {
5318                         /* Wait so that we don't change page under IO */
5319                         wait_for_stable_page(page);
5320                         ret = VM_FAULT_LOCKED;
5321                         goto out;
5322                 }
5323         }
5324         unlock_page(page);
5325         /* OK, we need to fill the hole... */
5326         if (ext4_should_dioread_nolock(inode))
5327                 get_block = ext4_get_block_write;
5328         else
5329                 get_block = ext4_get_block;
5330 retry_alloc:
5331         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5332                                     ext4_writepage_trans_blocks(inode));
5333         if (IS_ERR(handle)) {
5334                 ret = VM_FAULT_SIGBUS;
5335                 goto out;
5336         }
5337         ret = __block_page_mkwrite(vma, vmf, get_block);
5338         if (!ret && ext4_should_journal_data(inode)) {
5339                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5340                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5341                         unlock_page(page);
5342                         ret = VM_FAULT_SIGBUS;
5343                         ext4_journal_stop(handle);
5344                         goto out;
5345                 }
5346                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5347         }
5348         ext4_journal_stop(handle);
5349         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5350                 goto retry_alloc;
5351 out_ret:
5352         ret = block_page_mkwrite_return(ret);
5353 out:
5354         sb_end_pagefault(inode->i_sb);
5355         return ret;
5356 }