]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
ext4: avoid hangs in ext4_da_should_update_i_disksize()
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52                                               loff_t new_size)
53 {
54         return jbd2_journal_begin_ordered_truncate(
55                                         EXT4_SB(inode->i_sb)->s_journal,
56                                         &EXT4_I(inode)->jinode,
57                                         new_size);
58 }
59
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67         int ea_blocks = EXT4_I(inode)->i_file_acl ?
68                 (inode->i_sb->s_blocksize >> 9) : 0;
69
70         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72
73 /*
74  * The ext4 forget function must perform a revoke if we are freeing data
75  * which has been journaled.  Metadata (eg. indirect blocks) must be
76  * revoked in all cases.
77  *
78  * "bh" may be NULL: a metadata block may have been freed from memory
79  * but there may still be a record of it in the journal, and that record
80  * still needs to be revoked.
81  *
82  * If the handle isn't valid we're not journaling, but we still need to
83  * call into ext4_journal_revoke() to put the buffer head.
84  */
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86                 struct buffer_head *bh, ext4_fsblk_t blocknr)
87 {
88         int err;
89
90         might_sleep();
91
92         BUFFER_TRACE(bh, "enter");
93
94         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95                   "data mode %x\n",
96                   bh, is_metadata, inode->i_mode,
97                   test_opt(inode->i_sb, DATA_FLAGS));
98
99         /* Never use the revoke function if we are doing full data
100          * journaling: there is no need to, and a V1 superblock won't
101          * support it.  Otherwise, only skip the revoke on un-journaled
102          * data blocks. */
103
104         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105             (!is_metadata && !ext4_should_journal_data(inode))) {
106                 if (bh) {
107                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
108                         return ext4_journal_forget(handle, bh);
109                 }
110                 return 0;
111         }
112
113         /*
114          * data!=journal && (is_metadata || should_journal_data(inode))
115          */
116         BUFFER_TRACE(bh, "call ext4_journal_revoke");
117         err = ext4_journal_revoke(handle, blocknr, bh);
118         if (err)
119                 ext4_abort(inode->i_sb, __func__,
120                            "error %d when attempting revoke", err);
121         BUFFER_TRACE(bh, "exit");
122         return err;
123 }
124
125 /*
126  * Work out how many blocks we need to proceed with the next chunk of a
127  * truncate transaction.
128  */
129 static unsigned long blocks_for_truncate(struct inode *inode)
130 {
131         ext4_lblk_t needed;
132
133         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
134
135         /* Give ourselves just enough room to cope with inodes in which
136          * i_blocks is corrupt: we've seen disk corruptions in the past
137          * which resulted in random data in an inode which looked enough
138          * like a regular file for ext4 to try to delete it.  Things
139          * will go a bit crazy if that happens, but at least we should
140          * try not to panic the whole kernel. */
141         if (needed < 2)
142                 needed = 2;
143
144         /* But we need to bound the transaction so we don't overflow the
145          * journal. */
146         if (needed > EXT4_MAX_TRANS_DATA)
147                 needed = EXT4_MAX_TRANS_DATA;
148
149         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
150 }
151
152 /*
153  * Truncate transactions can be complex and absolutely huge.  So we need to
154  * be able to restart the transaction at a conventient checkpoint to make
155  * sure we don't overflow the journal.
156  *
157  * start_transaction gets us a new handle for a truncate transaction,
158  * and extend_transaction tries to extend the existing one a bit.  If
159  * extend fails, we need to propagate the failure up and restart the
160  * transaction in the top-level truncate loop. --sct
161  */
162 static handle_t *start_transaction(struct inode *inode)
163 {
164         handle_t *result;
165
166         result = ext4_journal_start(inode, blocks_for_truncate(inode));
167         if (!IS_ERR(result))
168                 return result;
169
170         ext4_std_error(inode->i_sb, PTR_ERR(result));
171         return result;
172 }
173
174 /*
175  * Try to extend this transaction for the purposes of truncation.
176  *
177  * Returns 0 if we managed to create more room.  If we can't create more
178  * room, and the transaction must be restarted we return 1.
179  */
180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
181 {
182         if (!ext4_handle_valid(handle))
183                 return 0;
184         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185                 return 0;
186         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187                 return 0;
188         return 1;
189 }
190
191 /*
192  * Restart the transaction associated with *handle.  This does a commit,
193  * so before we call here everything must be consistently dirtied against
194  * this transaction.
195  */
196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197                                  int nblocks)
198 {
199         int ret;
200
201         /*
202          * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203          * moment, get_block can be called only for blocks inside i_size since
204          * page cache has been already dropped and writes are blocked by
205          * i_mutex. So we can safely drop the i_data_sem here.
206          */
207         BUG_ON(EXT4_JOURNAL(inode) == NULL);
208         jbd_debug(2, "restarting handle %p\n", handle);
209         up_write(&EXT4_I(inode)->i_data_sem);
210         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211         down_write(&EXT4_I(inode)->i_data_sem);
212         ext4_discard_preallocations(inode);
213
214         return ret;
215 }
216
217 /*
218  * Called at the last iput() if i_nlink is zero.
219  */
220 void ext4_delete_inode(struct inode *inode)
221 {
222         handle_t *handle;
223         int err;
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
233         if (IS_ERR(handle)) {
234                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
235                 /*
236                  * If we're going to skip the normal cleanup, we still need to
237                  * make sure that the in-core orphan linked list is properly
238                  * cleaned up.
239                  */
240                 ext4_orphan_del(NULL, inode);
241                 goto no_delete;
242         }
243
244         if (IS_SYNC(inode))
245                 ext4_handle_sync(handle);
246         inode->i_size = 0;
247         err = ext4_mark_inode_dirty(handle, inode);
248         if (err) {
249                 ext4_warning(inode->i_sb, __func__,
250                              "couldn't mark inode dirty (err %d)", err);
251                 goto stop_handle;
252         }
253         if (inode->i_blocks)
254                 ext4_truncate(inode);
255
256         /*
257          * ext4_ext_truncate() doesn't reserve any slop when it
258          * restarts journal transactions; therefore there may not be
259          * enough credits left in the handle to remove the inode from
260          * the orphan list and set the dtime field.
261          */
262         if (!ext4_handle_has_enough_credits(handle, 3)) {
263                 err = ext4_journal_extend(handle, 3);
264                 if (err > 0)
265                         err = ext4_journal_restart(handle, 3);
266                 if (err != 0) {
267                         ext4_warning(inode->i_sb, __func__,
268                                      "couldn't extend journal (err %d)", err);
269                 stop_handle:
270                         ext4_journal_stop(handle);
271                         goto no_delete;
272                 }
273         }
274
275         /*
276          * Kill off the orphan record which ext4_truncate created.
277          * AKPM: I think this can be inside the above `if'.
278          * Note that ext4_orphan_del() has to be able to cope with the
279          * deletion of a non-existent orphan - this is because we don't
280          * know if ext4_truncate() actually created an orphan record.
281          * (Well, we could do this if we need to, but heck - it works)
282          */
283         ext4_orphan_del(handle, inode);
284         EXT4_I(inode)->i_dtime  = get_seconds();
285
286         /*
287          * One subtle ordering requirement: if anything has gone wrong
288          * (transaction abort, IO errors, whatever), then we can still
289          * do these next steps (the fs will already have been marked as
290          * having errors), but we can't free the inode if the mark_dirty
291          * fails.
292          */
293         if (ext4_mark_inode_dirty(handle, inode))
294                 /* If that failed, just do the required in-core inode clear. */
295                 clear_inode(inode);
296         else
297                 ext4_free_inode(handle, inode);
298         ext4_journal_stop(handle);
299         return;
300 no_delete:
301         clear_inode(inode);     /* We must guarantee clearing of inode... */
302 }
303
304 typedef struct {
305         __le32  *p;
306         __le32  key;
307         struct buffer_head *bh;
308 } Indirect;
309
310 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
311 {
312         p->key = *(p->p = v);
313         p->bh = bh;
314 }
315
316 /**
317  *      ext4_block_to_path - parse the block number into array of offsets
318  *      @inode: inode in question (we are only interested in its superblock)
319  *      @i_block: block number to be parsed
320  *      @offsets: array to store the offsets in
321  *      @boundary: set this non-zero if the referred-to block is likely to be
322  *             followed (on disk) by an indirect block.
323  *
324  *      To store the locations of file's data ext4 uses a data structure common
325  *      for UNIX filesystems - tree of pointers anchored in the inode, with
326  *      data blocks at leaves and indirect blocks in intermediate nodes.
327  *      This function translates the block number into path in that tree -
328  *      return value is the path length and @offsets[n] is the offset of
329  *      pointer to (n+1)th node in the nth one. If @block is out of range
330  *      (negative or too large) warning is printed and zero returned.
331  *
332  *      Note: function doesn't find node addresses, so no IO is needed. All
333  *      we need to know is the capacity of indirect blocks (taken from the
334  *      inode->i_sb).
335  */
336
337 /*
338  * Portability note: the last comparison (check that we fit into triple
339  * indirect block) is spelled differently, because otherwise on an
340  * architecture with 32-bit longs and 8Kb pages we might get into trouble
341  * if our filesystem had 8Kb blocks. We might use long long, but that would
342  * kill us on x86. Oh, well, at least the sign propagation does not matter -
343  * i_block would have to be negative in the very beginning, so we would not
344  * get there at all.
345  */
346
347 static int ext4_block_to_path(struct inode *inode,
348                               ext4_lblk_t i_block,
349                               ext4_lblk_t offsets[4], int *boundary)
350 {
351         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
352         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
353         const long direct_blocks = EXT4_NDIR_BLOCKS,
354                 indirect_blocks = ptrs,
355                 double_blocks = (1 << (ptrs_bits * 2));
356         int n = 0;
357         int final = 0;
358
359         if (i_block < direct_blocks) {
360                 offsets[n++] = i_block;
361                 final = direct_blocks;
362         } else if ((i_block -= direct_blocks) < indirect_blocks) {
363                 offsets[n++] = EXT4_IND_BLOCK;
364                 offsets[n++] = i_block;
365                 final = ptrs;
366         } else if ((i_block -= indirect_blocks) < double_blocks) {
367                 offsets[n++] = EXT4_DIND_BLOCK;
368                 offsets[n++] = i_block >> ptrs_bits;
369                 offsets[n++] = i_block & (ptrs - 1);
370                 final = ptrs;
371         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
372                 offsets[n++] = EXT4_TIND_BLOCK;
373                 offsets[n++] = i_block >> (ptrs_bits * 2);
374                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
375                 offsets[n++] = i_block & (ptrs - 1);
376                 final = ptrs;
377         } else {
378                 ext4_warning(inode->i_sb, "ext4_block_to_path",
379                              "block %lu > max in inode %lu",
380                              i_block + direct_blocks +
381                              indirect_blocks + double_blocks, inode->i_ino);
382         }
383         if (boundary)
384                 *boundary = final - 1 - (i_block & (ptrs - 1));
385         return n;
386 }
387
388 static int __ext4_check_blockref(const char *function, struct inode *inode,
389                                  __le32 *p, unsigned int max)
390 {
391         __le32 *bref = p;
392         unsigned int blk;
393
394         while (bref < p+max) {
395                 blk = le32_to_cpu(*bref++);
396                 if (blk &&
397                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
398                                                     blk, 1))) {
399                         ext4_error(inode->i_sb, function,
400                                    "invalid block reference %u "
401                                    "in inode #%lu", blk, inode->i_ino);
402                         return -EIO;
403                 }
404         }
405         return 0;
406 }
407
408
409 #define ext4_check_indirect_blockref(inode, bh)                         \
410         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
411                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
412
413 #define ext4_check_inode_blockref(inode)                                \
414         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
415                               EXT4_NDIR_BLOCKS)
416
417 /**
418  *      ext4_get_branch - read the chain of indirect blocks leading to data
419  *      @inode: inode in question
420  *      @depth: depth of the chain (1 - direct pointer, etc.)
421  *      @offsets: offsets of pointers in inode/indirect blocks
422  *      @chain: place to store the result
423  *      @err: here we store the error value
424  *
425  *      Function fills the array of triples <key, p, bh> and returns %NULL
426  *      if everything went OK or the pointer to the last filled triple
427  *      (incomplete one) otherwise. Upon the return chain[i].key contains
428  *      the number of (i+1)-th block in the chain (as it is stored in memory,
429  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
430  *      number (it points into struct inode for i==0 and into the bh->b_data
431  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432  *      block for i>0 and NULL for i==0. In other words, it holds the block
433  *      numbers of the chain, addresses they were taken from (and where we can
434  *      verify that chain did not change) and buffer_heads hosting these
435  *      numbers.
436  *
437  *      Function stops when it stumbles upon zero pointer (absent block)
438  *              (pointer to last triple returned, *@err == 0)
439  *      or when it gets an IO error reading an indirect block
440  *              (ditto, *@err == -EIO)
441  *      or when it reads all @depth-1 indirect blocks successfully and finds
442  *      the whole chain, all way to the data (returns %NULL, *err == 0).
443  *
444  *      Need to be called with
445  *      down_read(&EXT4_I(inode)->i_data_sem)
446  */
447 static Indirect *ext4_get_branch(struct inode *inode, int depth,
448                                  ext4_lblk_t  *offsets,
449                                  Indirect chain[4], int *err)
450 {
451         struct super_block *sb = inode->i_sb;
452         Indirect *p = chain;
453         struct buffer_head *bh;
454
455         *err = 0;
456         /* i_data is not going away, no lock needed */
457         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
458         if (!p->key)
459                 goto no_block;
460         while (--depth) {
461                 bh = sb_getblk(sb, le32_to_cpu(p->key));
462                 if (unlikely(!bh))
463                         goto failure;
464
465                 if (!bh_uptodate_or_lock(bh)) {
466                         if (bh_submit_read(bh) < 0) {
467                                 put_bh(bh);
468                                 goto failure;
469                         }
470                         /* validate block references */
471                         if (ext4_check_indirect_blockref(inode, bh)) {
472                                 put_bh(bh);
473                                 goto failure;
474                         }
475                 }
476
477                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
478                 /* Reader: end */
479                 if (!p->key)
480                         goto no_block;
481         }
482         return NULL;
483
484 failure:
485         *err = -EIO;
486 no_block:
487         return p;
488 }
489
490 /**
491  *      ext4_find_near - find a place for allocation with sufficient locality
492  *      @inode: owner
493  *      @ind: descriptor of indirect block.
494  *
495  *      This function returns the preferred place for block allocation.
496  *      It is used when heuristic for sequential allocation fails.
497  *      Rules are:
498  *        + if there is a block to the left of our position - allocate near it.
499  *        + if pointer will live in indirect block - allocate near that block.
500  *        + if pointer will live in inode - allocate in the same
501  *          cylinder group.
502  *
503  * In the latter case we colour the starting block by the callers PID to
504  * prevent it from clashing with concurrent allocations for a different inode
505  * in the same block group.   The PID is used here so that functionally related
506  * files will be close-by on-disk.
507  *
508  *      Caller must make sure that @ind is valid and will stay that way.
509  */
510 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
511 {
512         struct ext4_inode_info *ei = EXT4_I(inode);
513         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
514         __le32 *p;
515         ext4_fsblk_t bg_start;
516         ext4_fsblk_t last_block;
517         ext4_grpblk_t colour;
518         ext4_group_t block_group;
519         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
520
521         /* Try to find previous block */
522         for (p = ind->p - 1; p >= start; p--) {
523                 if (*p)
524                         return le32_to_cpu(*p);
525         }
526
527         /* No such thing, so let's try location of indirect block */
528         if (ind->bh)
529                 return ind->bh->b_blocknr;
530
531         /*
532          * It is going to be referred to from the inode itself? OK, just put it
533          * into the same cylinder group then.
534          */
535         block_group = ei->i_block_group;
536         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
537                 block_group &= ~(flex_size-1);
538                 if (S_ISREG(inode->i_mode))
539                         block_group++;
540         }
541         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
542         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
543
544         /*
545          * If we are doing delayed allocation, we don't need take
546          * colour into account.
547          */
548         if (test_opt(inode->i_sb, DELALLOC))
549                 return bg_start;
550
551         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
552                 colour = (current->pid % 16) *
553                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
554         else
555                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
556         return bg_start + colour;
557 }
558
559 /**
560  *      ext4_find_goal - find a preferred place for allocation.
561  *      @inode: owner
562  *      @block:  block we want
563  *      @partial: pointer to the last triple within a chain
564  *
565  *      Normally this function find the preferred place for block allocation,
566  *      returns it.
567  *      Because this is only used for non-extent files, we limit the block nr
568  *      to 32 bits.
569  */
570 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
571                                    Indirect *partial)
572 {
573         ext4_fsblk_t goal;
574
575         /*
576          * XXX need to get goal block from mballoc's data structures
577          */
578
579         goal = ext4_find_near(inode, partial);
580         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
581         return goal;
582 }
583
584 /**
585  *      ext4_blks_to_allocate: Look up the block map and count the number
586  *      of direct blocks need to be allocated for the given branch.
587  *
588  *      @branch: chain of indirect blocks
589  *      @k: number of blocks need for indirect blocks
590  *      @blks: number of data blocks to be mapped.
591  *      @blocks_to_boundary:  the offset in the indirect block
592  *
593  *      return the total number of blocks to be allocate, including the
594  *      direct and indirect blocks.
595  */
596 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
597                                  int blocks_to_boundary)
598 {
599         unsigned int count = 0;
600
601         /*
602          * Simple case, [t,d]Indirect block(s) has not allocated yet
603          * then it's clear blocks on that path have not allocated
604          */
605         if (k > 0) {
606                 /* right now we don't handle cross boundary allocation */
607                 if (blks < blocks_to_boundary + 1)
608                         count += blks;
609                 else
610                         count += blocks_to_boundary + 1;
611                 return count;
612         }
613
614         count++;
615         while (count < blks && count <= blocks_to_boundary &&
616                 le32_to_cpu(*(branch[0].p + count)) == 0) {
617                 count++;
618         }
619         return count;
620 }
621
622 /**
623  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
624  *      @indirect_blks: the number of blocks need to allocate for indirect
625  *                      blocks
626  *
627  *      @new_blocks: on return it will store the new block numbers for
628  *      the indirect blocks(if needed) and the first direct block,
629  *      @blks:  on return it will store the total number of allocated
630  *              direct blocks
631  */
632 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
633                              ext4_lblk_t iblock, ext4_fsblk_t goal,
634                              int indirect_blks, int blks,
635                              ext4_fsblk_t new_blocks[4], int *err)
636 {
637         struct ext4_allocation_request ar;
638         int target, i;
639         unsigned long count = 0, blk_allocated = 0;
640         int index = 0;
641         ext4_fsblk_t current_block = 0;
642         int ret = 0;
643
644         /*
645          * Here we try to allocate the requested multiple blocks at once,
646          * on a best-effort basis.
647          * To build a branch, we should allocate blocks for
648          * the indirect blocks(if not allocated yet), and at least
649          * the first direct block of this branch.  That's the
650          * minimum number of blocks need to allocate(required)
651          */
652         /* first we try to allocate the indirect blocks */
653         target = indirect_blks;
654         while (target > 0) {
655                 count = target;
656                 /* allocating blocks for indirect blocks and direct blocks */
657                 current_block = ext4_new_meta_blocks(handle, inode,
658                                                         goal, &count, err);
659                 if (*err)
660                         goto failed_out;
661
662                 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
663
664                 target -= count;
665                 /* allocate blocks for indirect blocks */
666                 while (index < indirect_blks && count) {
667                         new_blocks[index++] = current_block++;
668                         count--;
669                 }
670                 if (count > 0) {
671                         /*
672                          * save the new block number
673                          * for the first direct block
674                          */
675                         new_blocks[index] = current_block;
676                         printk(KERN_INFO "%s returned more blocks than "
677                                                 "requested\n", __func__);
678                         WARN_ON(1);
679                         break;
680                 }
681         }
682
683         target = blks - count ;
684         blk_allocated = count;
685         if (!target)
686                 goto allocated;
687         /* Now allocate data blocks */
688         memset(&ar, 0, sizeof(ar));
689         ar.inode = inode;
690         ar.goal = goal;
691         ar.len = target;
692         ar.logical = iblock;
693         if (S_ISREG(inode->i_mode))
694                 /* enable in-core preallocation only for regular files */
695                 ar.flags = EXT4_MB_HINT_DATA;
696
697         current_block = ext4_mb_new_blocks(handle, &ar, err);
698         BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
699
700         if (*err && (target == blks)) {
701                 /*
702                  * if the allocation failed and we didn't allocate
703                  * any blocks before
704                  */
705                 goto failed_out;
706         }
707         if (!*err) {
708                 if (target == blks) {
709                         /*
710                          * save the new block number
711                          * for the first direct block
712                          */
713                         new_blocks[index] = current_block;
714                 }
715                 blk_allocated += ar.len;
716         }
717 allocated:
718         /* total number of blocks allocated for direct blocks */
719         ret = blk_allocated;
720         *err = 0;
721         return ret;
722 failed_out:
723         for (i = 0; i < index; i++)
724                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
725         return ret;
726 }
727
728 /**
729  *      ext4_alloc_branch - allocate and set up a chain of blocks.
730  *      @inode: owner
731  *      @indirect_blks: number of allocated indirect blocks
732  *      @blks: number of allocated direct blocks
733  *      @offsets: offsets (in the blocks) to store the pointers to next.
734  *      @branch: place to store the chain in.
735  *
736  *      This function allocates blocks, zeroes out all but the last one,
737  *      links them into chain and (if we are synchronous) writes them to disk.
738  *      In other words, it prepares a branch that can be spliced onto the
739  *      inode. It stores the information about that chain in the branch[], in
740  *      the same format as ext4_get_branch() would do. We are calling it after
741  *      we had read the existing part of chain and partial points to the last
742  *      triple of that (one with zero ->key). Upon the exit we have the same
743  *      picture as after the successful ext4_get_block(), except that in one
744  *      place chain is disconnected - *branch->p is still zero (we did not
745  *      set the last link), but branch->key contains the number that should
746  *      be placed into *branch->p to fill that gap.
747  *
748  *      If allocation fails we free all blocks we've allocated (and forget
749  *      their buffer_heads) and return the error value the from failed
750  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751  *      as described above and return 0.
752  */
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754                              ext4_lblk_t iblock, int indirect_blks,
755                              int *blks, ext4_fsblk_t goal,
756                              ext4_lblk_t *offsets, Indirect *branch)
757 {
758         int blocksize = inode->i_sb->s_blocksize;
759         int i, n = 0;
760         int err = 0;
761         struct buffer_head *bh;
762         int num;
763         ext4_fsblk_t new_blocks[4];
764         ext4_fsblk_t current_block;
765
766         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767                                 *blks, new_blocks, &err);
768         if (err)
769                 return err;
770
771         branch[0].key = cpu_to_le32(new_blocks[0]);
772         /*
773          * metadata blocks and data blocks are allocated.
774          */
775         for (n = 1; n <= indirect_blks;  n++) {
776                 /*
777                  * Get buffer_head for parent block, zero it out
778                  * and set the pointer to new one, then send
779                  * parent to disk.
780                  */
781                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782                 branch[n].bh = bh;
783                 lock_buffer(bh);
784                 BUFFER_TRACE(bh, "call get_create_access");
785                 err = ext4_journal_get_create_access(handle, bh);
786                 if (err) {
787                         /* Don't brelse(bh) here; it's done in
788                          * ext4_journal_forget() below */
789                         unlock_buffer(bh);
790                         goto failed;
791                 }
792
793                 memset(bh->b_data, 0, blocksize);
794                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
795                 branch[n].key = cpu_to_le32(new_blocks[n]);
796                 *branch[n].p = branch[n].key;
797                 if (n == indirect_blks) {
798                         current_block = new_blocks[n];
799                         /*
800                          * End of chain, update the last new metablock of
801                          * the chain to point to the new allocated
802                          * data blocks numbers
803                          */
804                         for (i = 1; i < num; i++)
805                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
806                 }
807                 BUFFER_TRACE(bh, "marking uptodate");
808                 set_buffer_uptodate(bh);
809                 unlock_buffer(bh);
810
811                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
812                 err = ext4_handle_dirty_metadata(handle, inode, bh);
813                 if (err)
814                         goto failed;
815         }
816         *blks = num;
817         return err;
818 failed:
819         /* Allocation failed, free what we already allocated */
820         for (i = 1; i <= n ; i++) {
821                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
822                 ext4_journal_forget(handle, branch[i].bh);
823         }
824         for (i = 0; i < indirect_blks; i++)
825                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
826
827         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
828
829         return err;
830 }
831
832 /**
833  * ext4_splice_branch - splice the allocated branch onto inode.
834  * @inode: owner
835  * @block: (logical) number of block we are adding
836  * @chain: chain of indirect blocks (with a missing link - see
837  *      ext4_alloc_branch)
838  * @where: location of missing link
839  * @num:   number of indirect blocks we are adding
840  * @blks:  number of direct blocks we are adding
841  *
842  * This function fills the missing link and does all housekeeping needed in
843  * inode (->i_blocks, etc.). In case of success we end up with the full
844  * chain to new block and return 0.
845  */
846 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
847                               ext4_lblk_t block, Indirect *where, int num,
848                               int blks)
849 {
850         int i;
851         int err = 0;
852         ext4_fsblk_t current_block;
853
854         /*
855          * If we're splicing into a [td]indirect block (as opposed to the
856          * inode) then we need to get write access to the [td]indirect block
857          * before the splice.
858          */
859         if (where->bh) {
860                 BUFFER_TRACE(where->bh, "get_write_access");
861                 err = ext4_journal_get_write_access(handle, where->bh);
862                 if (err)
863                         goto err_out;
864         }
865         /* That's it */
866
867         *where->p = where->key;
868
869         /*
870          * Update the host buffer_head or inode to point to more just allocated
871          * direct blocks blocks
872          */
873         if (num == 0 && blks > 1) {
874                 current_block = le32_to_cpu(where->key) + 1;
875                 for (i = 1; i < blks; i++)
876                         *(where->p + i) = cpu_to_le32(current_block++);
877         }
878
879         /* We are done with atomic stuff, now do the rest of housekeeping */
880         /* had we spliced it onto indirect block? */
881         if (where->bh) {
882                 /*
883                  * If we spliced it onto an indirect block, we haven't
884                  * altered the inode.  Note however that if it is being spliced
885                  * onto an indirect block at the very end of the file (the
886                  * file is growing) then we *will* alter the inode to reflect
887                  * the new i_size.  But that is not done here - it is done in
888                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
889                  */
890                 jbd_debug(5, "splicing indirect only\n");
891                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
892                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
893                 if (err)
894                         goto err_out;
895         } else {
896                 /*
897                  * OK, we spliced it into the inode itself on a direct block.
898                  */
899                 ext4_mark_inode_dirty(handle, inode);
900                 jbd_debug(5, "splicing direct\n");
901         }
902         return err;
903
904 err_out:
905         for (i = 1; i <= num; i++) {
906                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
907                 ext4_journal_forget(handle, where[i].bh);
908                 ext4_free_blocks(handle, inode,
909                                         le32_to_cpu(where[i-1].key), 1, 0);
910         }
911         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
912
913         return err;
914 }
915
916 /*
917  * The ext4_ind_get_blocks() function handles non-extents inodes
918  * (i.e., using the traditional indirect/double-indirect i_blocks
919  * scheme) for ext4_get_blocks().
920  *
921  * Allocation strategy is simple: if we have to allocate something, we will
922  * have to go the whole way to leaf. So let's do it before attaching anything
923  * to tree, set linkage between the newborn blocks, write them if sync is
924  * required, recheck the path, free and repeat if check fails, otherwise
925  * set the last missing link (that will protect us from any truncate-generated
926  * removals - all blocks on the path are immune now) and possibly force the
927  * write on the parent block.
928  * That has a nice additional property: no special recovery from the failed
929  * allocations is needed - we simply release blocks and do not touch anything
930  * reachable from inode.
931  *
932  * `handle' can be NULL if create == 0.
933  *
934  * return > 0, # of blocks mapped or allocated.
935  * return = 0, if plain lookup failed.
936  * return < 0, error case.
937  *
938  * The ext4_ind_get_blocks() function should be called with
939  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942  * blocks.
943  */
944 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
945                                ext4_lblk_t iblock, unsigned int maxblocks,
946                                struct buffer_head *bh_result,
947                                int flags)
948 {
949         int err = -EIO;
950         ext4_lblk_t offsets[4];
951         Indirect chain[4];
952         Indirect *partial;
953         ext4_fsblk_t goal;
954         int indirect_blks;
955         int blocks_to_boundary = 0;
956         int depth;
957         int count = 0;
958         ext4_fsblk_t first_block = 0;
959
960         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
961         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
962         depth = ext4_block_to_path(inode, iblock, offsets,
963                                    &blocks_to_boundary);
964
965         if (depth == 0)
966                 goto out;
967
968         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
969
970         /* Simplest case - block found, no allocation needed */
971         if (!partial) {
972                 first_block = le32_to_cpu(chain[depth - 1].key);
973                 clear_buffer_new(bh_result);
974                 count++;
975                 /*map more blocks*/
976                 while (count < maxblocks && count <= blocks_to_boundary) {
977                         ext4_fsblk_t blk;
978
979                         blk = le32_to_cpu(*(chain[depth-1].p + count));
980
981                         if (blk == first_block + count)
982                                 count++;
983                         else
984                                 break;
985                 }
986                 goto got_it;
987         }
988
989         /* Next simple case - plain lookup or failed read of indirect block */
990         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
991                 goto cleanup;
992
993         /*
994          * Okay, we need to do block allocation.
995         */
996         goal = ext4_find_goal(inode, iblock, partial);
997
998         /* the number of blocks need to allocate for [d,t]indirect blocks */
999         indirect_blks = (chain + depth) - partial - 1;
1000
1001         /*
1002          * Next look up the indirect map to count the totoal number of
1003          * direct blocks to allocate for this branch.
1004          */
1005         count = ext4_blks_to_allocate(partial, indirect_blks,
1006                                         maxblocks, blocks_to_boundary);
1007         /*
1008          * Block out ext4_truncate while we alter the tree
1009          */
1010         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1011                                 &count, goal,
1012                                 offsets + (partial - chain), partial);
1013
1014         /*
1015          * The ext4_splice_branch call will free and forget any buffers
1016          * on the new chain if there is a failure, but that risks using
1017          * up transaction credits, especially for bitmaps where the
1018          * credits cannot be returned.  Can we handle this somehow?  We
1019          * may need to return -EAGAIN upwards in the worst case.  --sct
1020          */
1021         if (!err)
1022                 err = ext4_splice_branch(handle, inode, iblock,
1023                                          partial, indirect_blks, count);
1024         if (err)
1025                 goto cleanup;
1026
1027         set_buffer_new(bh_result);
1028
1029         ext4_update_inode_fsync_trans(handle, inode, 1);
1030 got_it:
1031         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1032         if (count > blocks_to_boundary)
1033                 set_buffer_boundary(bh_result);
1034         err = count;
1035         /* Clean up and exit */
1036         partial = chain + depth - 1;    /* the whole chain */
1037 cleanup:
1038         while (partial > chain) {
1039                 BUFFER_TRACE(partial->bh, "call brelse");
1040                 brelse(partial->bh);
1041                 partial--;
1042         }
1043         BUFFER_TRACE(bh_result, "returned");
1044 out:
1045         return err;
1046 }
1047
1048 #ifdef CONFIG_QUOTA
1049 qsize_t *ext4_get_reserved_space(struct inode *inode)
1050 {
1051         return &EXT4_I(inode)->i_reserved_quota;
1052 }
1053 #endif
1054
1055 /*
1056  * Calculate the number of metadata blocks need to reserve
1057  * to allocate a new block at @lblocks for non extent file based file
1058  */
1059 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1060                                               sector_t lblock)
1061 {
1062         struct ext4_inode_info *ei = EXT4_I(inode);
1063         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1064         int blk_bits;
1065
1066         if (lblock < EXT4_NDIR_BLOCKS)
1067                 return 0;
1068
1069         lblock -= EXT4_NDIR_BLOCKS;
1070
1071         if (ei->i_da_metadata_calc_len &&
1072             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1073                 ei->i_da_metadata_calc_len++;
1074                 return 0;
1075         }
1076         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1077         ei->i_da_metadata_calc_len = 1;
1078         blk_bits = order_base_2(lblock);
1079         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1080 }
1081
1082 /*
1083  * Calculate the number of metadata blocks need to reserve
1084  * to allocate a block located at @lblock
1085  */
1086 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1087 {
1088         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1089                 return ext4_ext_calc_metadata_amount(inode, lblock);
1090
1091         return ext4_indirect_calc_metadata_amount(inode, lblock);
1092 }
1093
1094 /*
1095  * Called with i_data_sem down, which is important since we can call
1096  * ext4_discard_preallocations() from here.
1097  */
1098 void ext4_da_update_reserve_space(struct inode *inode,
1099                                         int used, int quota_claim)
1100 {
1101         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1102         struct ext4_inode_info *ei = EXT4_I(inode);
1103         int mdb_free = 0, allocated_meta_blocks = 0;
1104
1105         spin_lock(&ei->i_block_reservation_lock);
1106         if (unlikely(used > ei->i_reserved_data_blocks)) {
1107                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1108                          "with only %d reserved data blocks\n",
1109                          __func__, inode->i_ino, used,
1110                          ei->i_reserved_data_blocks);
1111                 WARN_ON(1);
1112                 used = ei->i_reserved_data_blocks;
1113         }
1114
1115         /* Update per-inode reservations */
1116         ei->i_reserved_data_blocks -= used;
1117         used += ei->i_allocated_meta_blocks;
1118         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1119         allocated_meta_blocks = ei->i_allocated_meta_blocks;
1120         ei->i_allocated_meta_blocks = 0;
1121         percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1122
1123         if (ei->i_reserved_data_blocks == 0) {
1124                 /*
1125                  * We can release all of the reserved metadata blocks
1126                  * only when we have written all of the delayed
1127                  * allocation blocks.
1128                  */
1129                 mdb_free = ei->i_reserved_meta_blocks;
1130                 ei->i_reserved_meta_blocks = 0;
1131                 ei->i_da_metadata_calc_len = 0;
1132                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1133         }
1134         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1135
1136         /* Update quota subsystem */
1137         if (quota_claim) {
1138                 vfs_dq_claim_block(inode, used);
1139                 if (mdb_free)
1140                         vfs_dq_release_reservation_block(inode, mdb_free);
1141         } else {
1142                 /*
1143                  * We did fallocate with an offset that is already delayed
1144                  * allocated. So on delayed allocated writeback we should
1145                  * not update the quota for allocated blocks. But then
1146                  * converting an fallocate region to initialized region would
1147                  * have caused a metadata allocation. So claim quota for
1148                  * that
1149                  */
1150                 if (allocated_meta_blocks)
1151                         vfs_dq_claim_block(inode, allocated_meta_blocks);
1152                 vfs_dq_release_reservation_block(inode, mdb_free + used -
1153                                                 allocated_meta_blocks);
1154         }
1155
1156         /*
1157          * If we have done all the pending block allocations and if
1158          * there aren't any writers on the inode, we can discard the
1159          * inode's preallocations.
1160          */
1161         if ((ei->i_reserved_data_blocks == 0) &&
1162             (atomic_read(&inode->i_writecount) == 0))
1163                 ext4_discard_preallocations(inode);
1164 }
1165
1166 static int check_block_validity(struct inode *inode, const char *msg,
1167                                 sector_t logical, sector_t phys, int len)
1168 {
1169         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1170                 ext4_error(inode->i_sb, msg,
1171                            "inode #%lu logical block %llu mapped to %llu "
1172                            "(size %d)", inode->i_ino,
1173                            (unsigned long long) logical,
1174                            (unsigned long long) phys, len);
1175                 return -EIO;
1176         }
1177         return 0;
1178 }
1179
1180 /*
1181  * Return the number of contiguous dirty pages in a given inode
1182  * starting at page frame idx.
1183  */
1184 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1185                                     unsigned int max_pages)
1186 {
1187         struct address_space *mapping = inode->i_mapping;
1188         pgoff_t index;
1189         struct pagevec pvec;
1190         pgoff_t num = 0;
1191         int i, nr_pages, done = 0;
1192
1193         if (max_pages == 0)
1194                 return 0;
1195         pagevec_init(&pvec, 0);
1196         while (!done) {
1197                 index = idx;
1198                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1199                                               PAGECACHE_TAG_DIRTY,
1200                                               (pgoff_t)PAGEVEC_SIZE);
1201                 if (nr_pages == 0)
1202                         break;
1203                 for (i = 0; i < nr_pages; i++) {
1204                         struct page *page = pvec.pages[i];
1205                         struct buffer_head *bh, *head;
1206
1207                         lock_page(page);
1208                         if (unlikely(page->mapping != mapping) ||
1209                             !PageDirty(page) ||
1210                             PageWriteback(page) ||
1211                             page->index != idx) {
1212                                 done = 1;
1213                                 unlock_page(page);
1214                                 break;
1215                         }
1216                         if (page_has_buffers(page)) {
1217                                 bh = head = page_buffers(page);
1218                                 do {
1219                                         if (!buffer_delay(bh) &&
1220                                             !buffer_unwritten(bh))
1221                                                 done = 1;
1222                                         bh = bh->b_this_page;
1223                                 } while (!done && (bh != head));
1224                         }
1225                         unlock_page(page);
1226                         if (done)
1227                                 break;
1228                         idx++;
1229                         num++;
1230                         if (num >= max_pages)
1231                                 break;
1232                 }
1233                 pagevec_release(&pvec);
1234         }
1235         return num;
1236 }
1237
1238 /*
1239  * The ext4_get_blocks() function tries to look up the requested blocks,
1240  * and returns if the blocks are already mapped.
1241  *
1242  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1243  * and store the allocated blocks in the result buffer head and mark it
1244  * mapped.
1245  *
1246  * If file type is extents based, it will call ext4_ext_get_blocks(),
1247  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1248  * based files
1249  *
1250  * On success, it returns the number of blocks being mapped or allocate.
1251  * if create==0 and the blocks are pre-allocated and uninitialized block,
1252  * the result buffer head is unmapped. If the create ==1, it will make sure
1253  * the buffer head is mapped.
1254  *
1255  * It returns 0 if plain look up failed (blocks have not been allocated), in
1256  * that casem, buffer head is unmapped
1257  *
1258  * It returns the error in case of allocation failure.
1259  */
1260 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1261                     unsigned int max_blocks, struct buffer_head *bh,
1262                     int flags)
1263 {
1264         int retval;
1265
1266         clear_buffer_mapped(bh);
1267         clear_buffer_unwritten(bh);
1268
1269         ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1270                   "logical block %lu\n", inode->i_ino, flags, max_blocks,
1271                   (unsigned long)block);
1272         /*
1273          * Try to see if we can get the block without requesting a new
1274          * file system block.
1275          */
1276         down_read((&EXT4_I(inode)->i_data_sem));
1277         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1278                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1279                                 bh, 0);
1280         } else {
1281                 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1282                                              bh, 0);
1283         }
1284         up_read((&EXT4_I(inode)->i_data_sem));
1285
1286         if (retval > 0 && buffer_mapped(bh)) {
1287                 int ret = check_block_validity(inode, "file system corruption",
1288                                                block, bh->b_blocknr, retval);
1289                 if (ret != 0)
1290                         return ret;
1291         }
1292
1293         /* If it is only a block(s) look up */
1294         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1295                 return retval;
1296
1297         /*
1298          * Returns if the blocks have already allocated
1299          *
1300          * Note that if blocks have been preallocated
1301          * ext4_ext_get_block() returns th create = 0
1302          * with buffer head unmapped.
1303          */
1304         if (retval > 0 && buffer_mapped(bh))
1305                 return retval;
1306
1307         /*
1308          * When we call get_blocks without the create flag, the
1309          * BH_Unwritten flag could have gotten set if the blocks
1310          * requested were part of a uninitialized extent.  We need to
1311          * clear this flag now that we are committed to convert all or
1312          * part of the uninitialized extent to be an initialized
1313          * extent.  This is because we need to avoid the combination
1314          * of BH_Unwritten and BH_Mapped flags being simultaneously
1315          * set on the buffer_head.
1316          */
1317         clear_buffer_unwritten(bh);
1318
1319         /*
1320          * New blocks allocate and/or writing to uninitialized extent
1321          * will possibly result in updating i_data, so we take
1322          * the write lock of i_data_sem, and call get_blocks()
1323          * with create == 1 flag.
1324          */
1325         down_write((&EXT4_I(inode)->i_data_sem));
1326
1327         /*
1328          * if the caller is from delayed allocation writeout path
1329          * we have already reserved fs blocks for allocation
1330          * let the underlying get_block() function know to
1331          * avoid double accounting
1332          */
1333         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1334                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1335         /*
1336          * We need to check for EXT4 here because migrate
1337          * could have changed the inode type in between
1338          */
1339         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1340                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1341                                               bh, flags);
1342         } else {
1343                 retval = ext4_ind_get_blocks(handle, inode, block,
1344                                              max_blocks, bh, flags);
1345
1346                 if (retval > 0 && buffer_new(bh)) {
1347                         /*
1348                          * We allocated new blocks which will result in
1349                          * i_data's format changing.  Force the migrate
1350                          * to fail by clearing migrate flags
1351                          */
1352                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1353                 }
1354
1355                 /*
1356                  * Update reserved blocks/metadata blocks after successful
1357                  * block allocation which had been deferred till now. We don't
1358                  * support fallocate for non extent files. So we can update
1359                  * reserve space here.
1360                  */
1361                 if ((retval > 0) &&
1362                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1363                         ext4_da_update_reserve_space(inode, retval, 1);
1364         }
1365         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1366                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1367
1368         up_write((&EXT4_I(inode)->i_data_sem));
1369         if (retval > 0 && buffer_mapped(bh)) {
1370                 int ret = check_block_validity(inode, "file system "
1371                                                "corruption after allocation",
1372                                                block, bh->b_blocknr, retval);
1373                 if (ret != 0)
1374                         return ret;
1375         }
1376         return retval;
1377 }
1378
1379 /* Maximum number of blocks we map for direct IO at once. */
1380 #define DIO_MAX_BLOCKS 4096
1381
1382 int ext4_get_block(struct inode *inode, sector_t iblock,
1383                    struct buffer_head *bh_result, int create)
1384 {
1385         handle_t *handle = ext4_journal_current_handle();
1386         int ret = 0, started = 0;
1387         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1388         int dio_credits;
1389
1390         if (create && !handle) {
1391                 /* Direct IO write... */
1392                 if (max_blocks > DIO_MAX_BLOCKS)
1393                         max_blocks = DIO_MAX_BLOCKS;
1394                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1395                 handle = ext4_journal_start(inode, dio_credits);
1396                 if (IS_ERR(handle)) {
1397                         ret = PTR_ERR(handle);
1398                         goto out;
1399                 }
1400                 started = 1;
1401         }
1402
1403         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1404                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1405         if (ret > 0) {
1406                 bh_result->b_size = (ret << inode->i_blkbits);
1407                 ret = 0;
1408         }
1409         if (started)
1410                 ext4_journal_stop(handle);
1411 out:
1412         return ret;
1413 }
1414
1415 /*
1416  * `handle' can be NULL if create is zero
1417  */
1418 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1419                                 ext4_lblk_t block, int create, int *errp)
1420 {
1421         struct buffer_head dummy;
1422         int fatal = 0, err;
1423         int flags = 0;
1424
1425         J_ASSERT(handle != NULL || create == 0);
1426
1427         dummy.b_state = 0;
1428         dummy.b_blocknr = -1000;
1429         buffer_trace_init(&dummy.b_history);
1430         if (create)
1431                 flags |= EXT4_GET_BLOCKS_CREATE;
1432         err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1433         /*
1434          * ext4_get_blocks() returns number of blocks mapped. 0 in
1435          * case of a HOLE.
1436          */
1437         if (err > 0) {
1438                 if (err > 1)
1439                         WARN_ON(1);
1440                 err = 0;
1441         }
1442         *errp = err;
1443         if (!err && buffer_mapped(&dummy)) {
1444                 struct buffer_head *bh;
1445                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1446                 if (!bh) {
1447                         *errp = -EIO;
1448                         goto err;
1449                 }
1450                 if (buffer_new(&dummy)) {
1451                         J_ASSERT(create != 0);
1452                         J_ASSERT(handle != NULL);
1453
1454                         /*
1455                          * Now that we do not always journal data, we should
1456                          * keep in mind whether this should always journal the
1457                          * new buffer as metadata.  For now, regular file
1458                          * writes use ext4_get_block instead, so it's not a
1459                          * problem.
1460                          */
1461                         lock_buffer(bh);
1462                         BUFFER_TRACE(bh, "call get_create_access");
1463                         fatal = ext4_journal_get_create_access(handle, bh);
1464                         if (!fatal && !buffer_uptodate(bh)) {
1465                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1466                                 set_buffer_uptodate(bh);
1467                         }
1468                         unlock_buffer(bh);
1469                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1470                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1471                         if (!fatal)
1472                                 fatal = err;
1473                 } else {
1474                         BUFFER_TRACE(bh, "not a new buffer");
1475                 }
1476                 if (fatal) {
1477                         *errp = fatal;
1478                         brelse(bh);
1479                         bh = NULL;
1480                 }
1481                 return bh;
1482         }
1483 err:
1484         return NULL;
1485 }
1486
1487 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1488                                ext4_lblk_t block, int create, int *err)
1489 {
1490         struct buffer_head *bh;
1491
1492         bh = ext4_getblk(handle, inode, block, create, err);
1493         if (!bh)
1494                 return bh;
1495         if (buffer_uptodate(bh))
1496                 return bh;
1497         ll_rw_block(READ_META, 1, &bh);
1498         wait_on_buffer(bh);
1499         if (buffer_uptodate(bh))
1500                 return bh;
1501         put_bh(bh);
1502         *err = -EIO;
1503         return NULL;
1504 }
1505
1506 static int walk_page_buffers(handle_t *handle,
1507                              struct buffer_head *head,
1508                              unsigned from,
1509                              unsigned to,
1510                              int *partial,
1511                              int (*fn)(handle_t *handle,
1512                                        struct buffer_head *bh))
1513 {
1514         struct buffer_head *bh;
1515         unsigned block_start, block_end;
1516         unsigned blocksize = head->b_size;
1517         int err, ret = 0;
1518         struct buffer_head *next;
1519
1520         for (bh = head, block_start = 0;
1521              ret == 0 && (bh != head || !block_start);
1522              block_start = block_end, bh = next) {
1523                 next = bh->b_this_page;
1524                 block_end = block_start + blocksize;
1525                 if (block_end <= from || block_start >= to) {
1526                         if (partial && !buffer_uptodate(bh))
1527                                 *partial = 1;
1528                         continue;
1529                 }
1530                 err = (*fn)(handle, bh);
1531                 if (!ret)
1532                         ret = err;
1533         }
1534         return ret;
1535 }
1536
1537 /*
1538  * To preserve ordering, it is essential that the hole instantiation and
1539  * the data write be encapsulated in a single transaction.  We cannot
1540  * close off a transaction and start a new one between the ext4_get_block()
1541  * and the commit_write().  So doing the jbd2_journal_start at the start of
1542  * prepare_write() is the right place.
1543  *
1544  * Also, this function can nest inside ext4_writepage() ->
1545  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1546  * has generated enough buffer credits to do the whole page.  So we won't
1547  * block on the journal in that case, which is good, because the caller may
1548  * be PF_MEMALLOC.
1549  *
1550  * By accident, ext4 can be reentered when a transaction is open via
1551  * quota file writes.  If we were to commit the transaction while thus
1552  * reentered, there can be a deadlock - we would be holding a quota
1553  * lock, and the commit would never complete if another thread had a
1554  * transaction open and was blocking on the quota lock - a ranking
1555  * violation.
1556  *
1557  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1558  * will _not_ run commit under these circumstances because handle->h_ref
1559  * is elevated.  We'll still have enough credits for the tiny quotafile
1560  * write.
1561  */
1562 static int do_journal_get_write_access(handle_t *handle,
1563                                        struct buffer_head *bh)
1564 {
1565         if (!buffer_mapped(bh) || buffer_freed(bh))
1566                 return 0;
1567         return ext4_journal_get_write_access(handle, bh);
1568 }
1569
1570 /*
1571  * Truncate blocks that were not used by write. We have to truncate the
1572  * pagecache as well so that corresponding buffers get properly unmapped.
1573  */
1574 static void ext4_truncate_failed_write(struct inode *inode)
1575 {
1576         truncate_inode_pages(inode->i_mapping, inode->i_size);
1577         ext4_truncate(inode);
1578 }
1579
1580 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1581                             loff_t pos, unsigned len, unsigned flags,
1582                             struct page **pagep, void **fsdata)
1583 {
1584         struct inode *inode = mapping->host;
1585         int ret, needed_blocks;
1586         handle_t *handle;
1587         int retries = 0;
1588         struct page *page;
1589         pgoff_t index;
1590         unsigned from, to;
1591
1592         trace_ext4_write_begin(inode, pos, len, flags);
1593         /*
1594          * Reserve one block more for addition to orphan list in case
1595          * we allocate blocks but write fails for some reason
1596          */
1597         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1598         index = pos >> PAGE_CACHE_SHIFT;
1599         from = pos & (PAGE_CACHE_SIZE - 1);
1600         to = from + len;
1601
1602 retry:
1603         handle = ext4_journal_start(inode, needed_blocks);
1604         if (IS_ERR(handle)) {
1605                 ret = PTR_ERR(handle);
1606                 goto out;
1607         }
1608
1609         /* We cannot recurse into the filesystem as the transaction is already
1610          * started */
1611         flags |= AOP_FLAG_NOFS;
1612
1613         page = grab_cache_page_write_begin(mapping, index, flags);
1614         if (!page) {
1615                 ext4_journal_stop(handle);
1616                 ret = -ENOMEM;
1617                 goto out;
1618         }
1619         *pagep = page;
1620
1621         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1622                                 ext4_get_block);
1623
1624         if (!ret && ext4_should_journal_data(inode)) {
1625                 ret = walk_page_buffers(handle, page_buffers(page),
1626                                 from, to, NULL, do_journal_get_write_access);
1627         }
1628
1629         if (ret) {
1630                 unlock_page(page);
1631                 page_cache_release(page);
1632                 /*
1633                  * block_write_begin may have instantiated a few blocks
1634                  * outside i_size.  Trim these off again. Don't need
1635                  * i_size_read because we hold i_mutex.
1636                  *
1637                  * Add inode to orphan list in case we crash before
1638                  * truncate finishes
1639                  */
1640                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1641                         ext4_orphan_add(handle, inode);
1642
1643                 ext4_journal_stop(handle);
1644                 if (pos + len > inode->i_size) {
1645                         ext4_truncate_failed_write(inode);
1646                         /*
1647                          * If truncate failed early the inode might
1648                          * still be on the orphan list; we need to
1649                          * make sure the inode is removed from the
1650                          * orphan list in that case.
1651                          */
1652                         if (inode->i_nlink)
1653                                 ext4_orphan_del(NULL, inode);
1654                 }
1655         }
1656
1657         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1658                 goto retry;
1659 out:
1660         return ret;
1661 }
1662
1663 /* For write_end() in data=journal mode */
1664 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1665 {
1666         if (!buffer_mapped(bh) || buffer_freed(bh))
1667                 return 0;
1668         set_buffer_uptodate(bh);
1669         return ext4_handle_dirty_metadata(handle, NULL, bh);
1670 }
1671
1672 static int ext4_generic_write_end(struct file *file,
1673                                   struct address_space *mapping,
1674                                   loff_t pos, unsigned len, unsigned copied,
1675                                   struct page *page, void *fsdata)
1676 {
1677         int i_size_changed = 0;
1678         struct inode *inode = mapping->host;
1679         handle_t *handle = ext4_journal_current_handle();
1680
1681         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1682
1683         /*
1684          * No need to use i_size_read() here, the i_size
1685          * cannot change under us because we hold i_mutex.
1686          *
1687          * But it's important to update i_size while still holding page lock:
1688          * page writeout could otherwise come in and zero beyond i_size.
1689          */
1690         if (pos + copied > inode->i_size) {
1691                 i_size_write(inode, pos + copied);
1692                 i_size_changed = 1;
1693         }
1694
1695         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1696                 /* We need to mark inode dirty even if
1697                  * new_i_size is less that inode->i_size
1698                  * bu greater than i_disksize.(hint delalloc)
1699                  */
1700                 ext4_update_i_disksize(inode, (pos + copied));
1701                 i_size_changed = 1;
1702         }
1703         unlock_page(page);
1704         page_cache_release(page);
1705
1706         /*
1707          * Don't mark the inode dirty under page lock. First, it unnecessarily
1708          * makes the holding time of page lock longer. Second, it forces lock
1709          * ordering of page lock and transaction start for journaling
1710          * filesystems.
1711          */
1712         if (i_size_changed)
1713                 ext4_mark_inode_dirty(handle, inode);
1714
1715         return copied;
1716 }
1717
1718 /*
1719  * We need to pick up the new inode size which generic_commit_write gave us
1720  * `file' can be NULL - eg, when called from page_symlink().
1721  *
1722  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1723  * buffers are managed internally.
1724  */
1725 static int ext4_ordered_write_end(struct file *file,
1726                                   struct address_space *mapping,
1727                                   loff_t pos, unsigned len, unsigned copied,
1728                                   struct page *page, void *fsdata)
1729 {
1730         handle_t *handle = ext4_journal_current_handle();
1731         struct inode *inode = mapping->host;
1732         int ret = 0, ret2;
1733
1734         trace_ext4_ordered_write_end(inode, pos, len, copied);
1735         ret = ext4_jbd2_file_inode(handle, inode);
1736
1737         if (ret == 0) {
1738                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1739                                                         page, fsdata);
1740                 copied = ret2;
1741                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1742                         /* if we have allocated more blocks and copied
1743                          * less. We will have blocks allocated outside
1744                          * inode->i_size. So truncate them
1745                          */
1746                         ext4_orphan_add(handle, inode);
1747                 if (ret2 < 0)
1748                         ret = ret2;
1749         }
1750         ret2 = ext4_journal_stop(handle);
1751         if (!ret)
1752                 ret = ret2;
1753
1754         if (pos + len > inode->i_size) {
1755                 ext4_truncate_failed_write(inode);
1756                 /*
1757                  * If truncate failed early the inode might still be
1758                  * on the orphan list; we need to make sure the inode
1759                  * is removed from the orphan list in that case.
1760                  */
1761                 if (inode->i_nlink)
1762                         ext4_orphan_del(NULL, inode);
1763         }
1764
1765
1766         return ret ? ret : copied;
1767 }
1768
1769 static int ext4_writeback_write_end(struct file *file,
1770                                     struct address_space *mapping,
1771                                     loff_t pos, unsigned len, unsigned copied,
1772                                     struct page *page, void *fsdata)
1773 {
1774         handle_t *handle = ext4_journal_current_handle();
1775         struct inode *inode = mapping->host;
1776         int ret = 0, ret2;
1777
1778         trace_ext4_writeback_write_end(inode, pos, len, copied);
1779         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1780                                                         page, fsdata);
1781         copied = ret2;
1782         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1783                 /* if we have allocated more blocks and copied
1784                  * less. We will have blocks allocated outside
1785                  * inode->i_size. So truncate them
1786                  */
1787                 ext4_orphan_add(handle, inode);
1788
1789         if (ret2 < 0)
1790                 ret = ret2;
1791
1792         ret2 = ext4_journal_stop(handle);
1793         if (!ret)
1794                 ret = ret2;
1795
1796         if (pos + len > inode->i_size) {
1797                 ext4_truncate_failed_write(inode);
1798                 /*
1799                  * If truncate failed early the inode might still be
1800                  * on the orphan list; we need to make sure the inode
1801                  * is removed from the orphan list in that case.
1802                  */
1803                 if (inode->i_nlink)
1804                         ext4_orphan_del(NULL, inode);
1805         }
1806
1807         return ret ? ret : copied;
1808 }
1809
1810 static int ext4_journalled_write_end(struct file *file,
1811                                      struct address_space *mapping,
1812                                      loff_t pos, unsigned len, unsigned copied,
1813                                      struct page *page, void *fsdata)
1814 {
1815         handle_t *handle = ext4_journal_current_handle();
1816         struct inode *inode = mapping->host;
1817         int ret = 0, ret2;
1818         int partial = 0;
1819         unsigned from, to;
1820         loff_t new_i_size;
1821
1822         trace_ext4_journalled_write_end(inode, pos, len, copied);
1823         from = pos & (PAGE_CACHE_SIZE - 1);
1824         to = from + len;
1825
1826         if (copied < len) {
1827                 if (!PageUptodate(page))
1828                         copied = 0;
1829                 page_zero_new_buffers(page, from+copied, to);
1830         }
1831
1832         ret = walk_page_buffers(handle, page_buffers(page), from,
1833                                 to, &partial, write_end_fn);
1834         if (!partial)
1835                 SetPageUptodate(page);
1836         new_i_size = pos + copied;
1837         if (new_i_size > inode->i_size)
1838                 i_size_write(inode, pos+copied);
1839         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1840         if (new_i_size > EXT4_I(inode)->i_disksize) {
1841                 ext4_update_i_disksize(inode, new_i_size);
1842                 ret2 = ext4_mark_inode_dirty(handle, inode);
1843                 if (!ret)
1844                         ret = ret2;
1845         }
1846
1847         unlock_page(page);
1848         page_cache_release(page);
1849         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1850                 /* if we have allocated more blocks and copied
1851                  * less. We will have blocks allocated outside
1852                  * inode->i_size. So truncate them
1853                  */
1854                 ext4_orphan_add(handle, inode);
1855
1856         ret2 = ext4_journal_stop(handle);
1857         if (!ret)
1858                 ret = ret2;
1859         if (pos + len > inode->i_size) {
1860                 ext4_truncate_failed_write(inode);
1861                 /*
1862                  * If truncate failed early the inode might still be
1863                  * on the orphan list; we need to make sure the inode
1864                  * is removed from the orphan list in that case.
1865                  */
1866                 if (inode->i_nlink)
1867                         ext4_orphan_del(NULL, inode);
1868         }
1869
1870         return ret ? ret : copied;
1871 }
1872
1873 /*
1874  * Reserve a single block located at lblock
1875  */
1876 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1877 {
1878         int retries = 0;
1879         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1880         struct ext4_inode_info *ei = EXT4_I(inode);
1881         unsigned long md_needed, md_reserved;
1882
1883         /*
1884          * recalculate the amount of metadata blocks to reserve
1885          * in order to allocate nrblocks
1886          * worse case is one extent per block
1887          */
1888 repeat:
1889         spin_lock(&ei->i_block_reservation_lock);
1890         md_reserved = ei->i_reserved_meta_blocks;
1891         md_needed = ext4_calc_metadata_amount(inode, lblock);
1892         spin_unlock(&ei->i_block_reservation_lock);
1893
1894         /*
1895          * Make quota reservation here to prevent quota overflow
1896          * later. Real quota accounting is done at pages writeout
1897          * time.
1898          */
1899         if (vfs_dq_reserve_block(inode, md_needed + 1))
1900                 return -EDQUOT;
1901
1902         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1903                 vfs_dq_release_reservation_block(inode, md_needed + 1);
1904                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1905                         yield();
1906                         goto repeat;
1907                 }
1908                 return -ENOSPC;
1909         }
1910         spin_lock(&ei->i_block_reservation_lock);
1911         ei->i_reserved_data_blocks++;
1912         ei->i_reserved_meta_blocks += md_needed;
1913         spin_unlock(&ei->i_block_reservation_lock);
1914
1915         return 0;       /* success */
1916 }
1917
1918 static void ext4_da_release_space(struct inode *inode, int to_free)
1919 {
1920         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1921         struct ext4_inode_info *ei = EXT4_I(inode);
1922
1923         if (!to_free)
1924                 return;         /* Nothing to release, exit */
1925
1926         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1927
1928         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1929                 /*
1930                  * if there aren't enough reserved blocks, then the
1931                  * counter is messed up somewhere.  Since this
1932                  * function is called from invalidate page, it's
1933                  * harmless to return without any action.
1934                  */
1935                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1936                          "ino %lu, to_free %d with only %d reserved "
1937                          "data blocks\n", inode->i_ino, to_free,
1938                          ei->i_reserved_data_blocks);
1939                 WARN_ON(1);
1940                 to_free = ei->i_reserved_data_blocks;
1941         }
1942         ei->i_reserved_data_blocks -= to_free;
1943
1944         if (ei->i_reserved_data_blocks == 0) {
1945                 /*
1946                  * We can release all of the reserved metadata blocks
1947                  * only when we have written all of the delayed
1948                  * allocation blocks.
1949                  */
1950                 to_free += ei->i_reserved_meta_blocks;
1951                 ei->i_reserved_meta_blocks = 0;
1952                 ei->i_da_metadata_calc_len = 0;
1953         }
1954
1955         /* update fs dirty blocks counter */
1956         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1957
1958         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1959
1960         vfs_dq_release_reservation_block(inode, to_free);
1961 }
1962
1963 static void ext4_da_page_release_reservation(struct page *page,
1964                                              unsigned long offset)
1965 {
1966         int to_release = 0;
1967         struct buffer_head *head, *bh;
1968         unsigned int curr_off = 0;
1969
1970         head = page_buffers(page);
1971         bh = head;
1972         do {
1973                 unsigned int next_off = curr_off + bh->b_size;
1974
1975                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1976                         to_release++;
1977                         clear_buffer_delay(bh);
1978                 }
1979                 curr_off = next_off;
1980         } while ((bh = bh->b_this_page) != head);
1981         ext4_da_release_space(page->mapping->host, to_release);
1982 }
1983
1984 /*
1985  * Delayed allocation stuff
1986  */
1987
1988 /*
1989  * mpage_da_submit_io - walks through extent of pages and try to write
1990  * them with writepage() call back
1991  *
1992  * @mpd->inode: inode
1993  * @mpd->first_page: first page of the extent
1994  * @mpd->next_page: page after the last page of the extent
1995  *
1996  * By the time mpage_da_submit_io() is called we expect all blocks
1997  * to be allocated. this may be wrong if allocation failed.
1998  *
1999  * As pages are already locked by write_cache_pages(), we can't use it
2000  */
2001 static int mpage_da_submit_io(struct mpage_da_data *mpd)
2002 {
2003         long pages_skipped;
2004         struct pagevec pvec;
2005         unsigned long index, end;
2006         int ret = 0, err, nr_pages, i;
2007         struct inode *inode = mpd->inode;
2008         struct address_space *mapping = inode->i_mapping;
2009
2010         BUG_ON(mpd->next_page <= mpd->first_page);
2011         /*
2012          * We need to start from the first_page to the next_page - 1
2013          * to make sure we also write the mapped dirty buffer_heads.
2014          * If we look at mpd->b_blocknr we would only be looking
2015          * at the currently mapped buffer_heads.
2016          */
2017         index = mpd->first_page;
2018         end = mpd->next_page - 1;
2019
2020         pagevec_init(&pvec, 0);
2021         while (index <= end) {
2022                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2023                 if (nr_pages == 0)
2024                         break;
2025                 for (i = 0; i < nr_pages; i++) {
2026                         struct page *page = pvec.pages[i];
2027
2028                         index = page->index;
2029                         if (index > end)
2030                                 break;
2031                         index++;
2032
2033                         BUG_ON(!PageLocked(page));
2034                         BUG_ON(PageWriteback(page));
2035
2036                         pages_skipped = mpd->wbc->pages_skipped;
2037                         err = mapping->a_ops->writepage(page, mpd->wbc);
2038                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2039                                 /*
2040                                  * have successfully written the page
2041                                  * without skipping the same
2042                                  */
2043                                 mpd->pages_written++;
2044                         /*
2045                          * In error case, we have to continue because
2046                          * remaining pages are still locked
2047                          * XXX: unlock and re-dirty them?
2048                          */
2049                         if (ret == 0)
2050                                 ret = err;
2051                 }
2052                 pagevec_release(&pvec);
2053         }
2054         return ret;
2055 }
2056
2057 /*
2058  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2059  *
2060  * @mpd->inode - inode to walk through
2061  * @exbh->b_blocknr - first block on a disk
2062  * @exbh->b_size - amount of space in bytes
2063  * @logical - first logical block to start assignment with
2064  *
2065  * the function goes through all passed space and put actual disk
2066  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2067  */
2068 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2069                                  struct buffer_head *exbh)
2070 {
2071         struct inode *inode = mpd->inode;
2072         struct address_space *mapping = inode->i_mapping;
2073         int blocks = exbh->b_size >> inode->i_blkbits;
2074         sector_t pblock = exbh->b_blocknr, cur_logical;
2075         struct buffer_head *head, *bh;
2076         pgoff_t index, end;
2077         struct pagevec pvec;
2078         int nr_pages, i;
2079
2080         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2081         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2082         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2083
2084         pagevec_init(&pvec, 0);
2085
2086         while (index <= end) {
2087                 /* XXX: optimize tail */
2088                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2089                 if (nr_pages == 0)
2090                         break;
2091                 for (i = 0; i < nr_pages; i++) {
2092                         struct page *page = pvec.pages[i];
2093
2094                         index = page->index;
2095                         if (index > end)
2096                                 break;
2097                         index++;
2098
2099                         BUG_ON(!PageLocked(page));
2100                         BUG_ON(PageWriteback(page));
2101                         BUG_ON(!page_has_buffers(page));
2102
2103                         bh = page_buffers(page);
2104                         head = bh;
2105
2106                         /* skip blocks out of the range */
2107                         do {
2108                                 if (cur_logical >= logical)
2109                                         break;
2110                                 cur_logical++;
2111                         } while ((bh = bh->b_this_page) != head);
2112
2113                         do {
2114                                 if (cur_logical >= logical + blocks)
2115                                         break;
2116
2117                                 if (buffer_delay(bh) ||
2118                                                 buffer_unwritten(bh)) {
2119
2120                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2121
2122                                         if (buffer_delay(bh)) {
2123                                                 clear_buffer_delay(bh);
2124                                                 bh->b_blocknr = pblock;
2125                                         } else {
2126                                                 /*
2127                                                  * unwritten already should have
2128                                                  * blocknr assigned. Verify that
2129                                                  */
2130                                                 clear_buffer_unwritten(bh);
2131                                                 BUG_ON(bh->b_blocknr != pblock);
2132                                         }
2133
2134                                 } else if (buffer_mapped(bh))
2135                                         BUG_ON(bh->b_blocknr != pblock);
2136
2137                                 cur_logical++;
2138                                 pblock++;
2139                         } while ((bh = bh->b_this_page) != head);
2140                 }
2141                 pagevec_release(&pvec);
2142         }
2143 }
2144
2145
2146 /*
2147  * __unmap_underlying_blocks - just a helper function to unmap
2148  * set of blocks described by @bh
2149  */
2150 static inline void __unmap_underlying_blocks(struct inode *inode,
2151                                              struct buffer_head *bh)
2152 {
2153         struct block_device *bdev = inode->i_sb->s_bdev;
2154         int blocks, i;
2155
2156         blocks = bh->b_size >> inode->i_blkbits;
2157         for (i = 0; i < blocks; i++)
2158                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2159 }
2160
2161 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2162                                         sector_t logical, long blk_cnt)
2163 {
2164         int nr_pages, i;
2165         pgoff_t index, end;
2166         struct pagevec pvec;
2167         struct inode *inode = mpd->inode;
2168         struct address_space *mapping = inode->i_mapping;
2169
2170         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2171         end   = (logical + blk_cnt - 1) >>
2172                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2173         while (index <= end) {
2174                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2175                 if (nr_pages == 0)
2176                         break;
2177                 for (i = 0; i < nr_pages; i++) {
2178                         struct page *page = pvec.pages[i];
2179                         index = page->index;
2180                         if (index > end)
2181                                 break;
2182                         index++;
2183
2184                         BUG_ON(!PageLocked(page));
2185                         BUG_ON(PageWriteback(page));
2186                         block_invalidatepage(page, 0);
2187                         ClearPageUptodate(page);
2188                         unlock_page(page);
2189                 }
2190         }
2191         return;
2192 }
2193
2194 static void ext4_print_free_blocks(struct inode *inode)
2195 {
2196         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2197         printk(KERN_CRIT "Total free blocks count %lld\n",
2198                ext4_count_free_blocks(inode->i_sb));
2199         printk(KERN_CRIT "Free/Dirty block details\n");
2200         printk(KERN_CRIT "free_blocks=%lld\n",
2201                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2202         printk(KERN_CRIT "dirty_blocks=%lld\n",
2203                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2204         printk(KERN_CRIT "Block reservation details\n");
2205         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2206                EXT4_I(inode)->i_reserved_data_blocks);
2207         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2208                EXT4_I(inode)->i_reserved_meta_blocks);
2209         return;
2210 }
2211
2212 /*
2213  * mpage_da_map_blocks - go through given space
2214  *
2215  * @mpd - bh describing space
2216  *
2217  * The function skips space we know is already mapped to disk blocks.
2218  *
2219  */
2220 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2221 {
2222         int err, blks, get_blocks_flags;
2223         struct buffer_head new;
2224         sector_t next = mpd->b_blocknr;
2225         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2226         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2227         handle_t *handle = NULL;
2228
2229         /*
2230          * We consider only non-mapped and non-allocated blocks
2231          */
2232         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2233                 !(mpd->b_state & (1 << BH_Delay)) &&
2234                 !(mpd->b_state & (1 << BH_Unwritten)))
2235                 return 0;
2236
2237         /*
2238          * If we didn't accumulate anything to write simply return
2239          */
2240         if (!mpd->b_size)
2241                 return 0;
2242
2243         handle = ext4_journal_current_handle();
2244         BUG_ON(!handle);
2245
2246         /*
2247          * Call ext4_get_blocks() to allocate any delayed allocation
2248          * blocks, or to convert an uninitialized extent to be
2249          * initialized (in the case where we have written into
2250          * one or more preallocated blocks).
2251          *
2252          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2253          * indicate that we are on the delayed allocation path.  This
2254          * affects functions in many different parts of the allocation
2255          * call path.  This flag exists primarily because we don't
2256          * want to change *many* call functions, so ext4_get_blocks()
2257          * will set the magic i_delalloc_reserved_flag once the
2258          * inode's allocation semaphore is taken.
2259          *
2260          * If the blocks in questions were delalloc blocks, set
2261          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2262          * variables are updated after the blocks have been allocated.
2263          */
2264         new.b_state = 0;
2265         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2266         if (mpd->b_state & (1 << BH_Delay))
2267                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2268
2269         blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2270                                &new, get_blocks_flags);
2271         if (blks < 0) {
2272                 err = blks;
2273                 /*
2274                  * If get block returns with error we simply
2275                  * return. Later writepage will redirty the page and
2276                  * writepages will find the dirty page again
2277                  */
2278                 if (err == -EAGAIN)
2279                         return 0;
2280
2281                 if (err == -ENOSPC &&
2282                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2283                         mpd->retval = err;
2284                         return 0;
2285                 }
2286
2287                 /*
2288                  * get block failure will cause us to loop in
2289                  * writepages, because a_ops->writepage won't be able
2290                  * to make progress. The page will be redirtied by
2291                  * writepage and writepages will again try to write
2292                  * the same.
2293                  */
2294                 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2295                          "delayed block allocation failed for inode %lu at "
2296                          "logical offset %llu with max blocks %zd with "
2297                          "error %d", mpd->inode->i_ino,
2298                          (unsigned long long) next,
2299                          mpd->b_size >> mpd->inode->i_blkbits, err);
2300                 printk(KERN_CRIT "This should not happen!!  "
2301                        "Data will be lost\n");
2302                 if (err == -ENOSPC) {
2303                         ext4_print_free_blocks(mpd->inode);
2304                 }
2305                 /* invalidate all the pages */
2306                 ext4_da_block_invalidatepages(mpd, next,
2307                                 mpd->b_size >> mpd->inode->i_blkbits);
2308                 return err;
2309         }
2310         BUG_ON(blks == 0);
2311
2312         new.b_size = (blks << mpd->inode->i_blkbits);
2313
2314         if (buffer_new(&new))
2315                 __unmap_underlying_blocks(mpd->inode, &new);
2316
2317         /*
2318          * If blocks are delayed marked, we need to
2319          * put actual blocknr and drop delayed bit
2320          */
2321         if ((mpd->b_state & (1 << BH_Delay)) ||
2322             (mpd->b_state & (1 << BH_Unwritten)))
2323                 mpage_put_bnr_to_bhs(mpd, next, &new);
2324
2325         if (ext4_should_order_data(mpd->inode)) {
2326                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2327                 if (err)
2328                         return err;
2329         }
2330
2331         /*
2332          * Update on-disk size along with block allocation.
2333          */
2334         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2335         if (disksize > i_size_read(mpd->inode))
2336                 disksize = i_size_read(mpd->inode);
2337         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2338                 ext4_update_i_disksize(mpd->inode, disksize);
2339                 return ext4_mark_inode_dirty(handle, mpd->inode);
2340         }
2341
2342         return 0;
2343 }
2344
2345 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2346                 (1 << BH_Delay) | (1 << BH_Unwritten))
2347
2348 /*
2349  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2350  *
2351  * @mpd->lbh - extent of blocks
2352  * @logical - logical number of the block in the file
2353  * @bh - bh of the block (used to access block's state)
2354  *
2355  * the function is used to collect contig. blocks in same state
2356  */
2357 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2358                                    sector_t logical, size_t b_size,
2359                                    unsigned long b_state)
2360 {
2361         sector_t next;
2362         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2363
2364         /*
2365          * XXX Don't go larger than mballoc is willing to allocate
2366          * This is a stopgap solution.  We eventually need to fold
2367          * mpage_da_submit_io() into this function and then call
2368          * ext4_get_blocks() multiple times in a loop
2369          */
2370         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2371                 goto flush_it;
2372
2373         /* check if thereserved journal credits might overflow */
2374         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2375                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2376                         /*
2377                          * With non-extent format we are limited by the journal
2378                          * credit available.  Total credit needed to insert
2379                          * nrblocks contiguous blocks is dependent on the
2380                          * nrblocks.  So limit nrblocks.
2381                          */
2382                         goto flush_it;
2383                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2384                                 EXT4_MAX_TRANS_DATA) {
2385                         /*
2386                          * Adding the new buffer_head would make it cross the
2387                          * allowed limit for which we have journal credit
2388                          * reserved. So limit the new bh->b_size
2389                          */
2390                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2391                                                 mpd->inode->i_blkbits;
2392                         /* we will do mpage_da_submit_io in the next loop */
2393                 }
2394         }
2395         /*
2396          * First block in the extent
2397          */
2398         if (mpd->b_size == 0) {
2399                 mpd->b_blocknr = logical;
2400                 mpd->b_size = b_size;
2401                 mpd->b_state = b_state & BH_FLAGS;
2402                 return;
2403         }
2404
2405         next = mpd->b_blocknr + nrblocks;
2406         /*
2407          * Can we merge the block to our big extent?
2408          */
2409         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2410                 mpd->b_size += b_size;
2411                 return;
2412         }
2413
2414 flush_it:
2415         /*
2416          * We couldn't merge the block to our extent, so we
2417          * need to flush current  extent and start new one
2418          */
2419         if (mpage_da_map_blocks(mpd) == 0)
2420                 mpage_da_submit_io(mpd);
2421         mpd->io_done = 1;
2422         return;
2423 }
2424
2425 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2426 {
2427         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2428 }
2429
2430 /*
2431  * __mpage_da_writepage - finds extent of pages and blocks
2432  *
2433  * @page: page to consider
2434  * @wbc: not used, we just follow rules
2435  * @data: context
2436  *
2437  * The function finds extents of pages and scan them for all blocks.
2438  */
2439 static int __mpage_da_writepage(struct page *page,
2440                                 struct writeback_control *wbc, void *data)
2441 {
2442         struct mpage_da_data *mpd = data;
2443         struct inode *inode = mpd->inode;
2444         struct buffer_head *bh, *head;
2445         sector_t logical;
2446
2447         if (mpd->io_done) {
2448                 /*
2449                  * Rest of the page in the page_vec
2450                  * redirty then and skip then. We will
2451                  * try to write them again after
2452                  * starting a new transaction
2453                  */
2454                 redirty_page_for_writepage(wbc, page);
2455                 unlock_page(page);
2456                 return MPAGE_DA_EXTENT_TAIL;
2457         }
2458         /*
2459          * Can we merge this page to current extent?
2460          */
2461         if (mpd->next_page != page->index) {
2462                 /*
2463                  * Nope, we can't. So, we map non-allocated blocks
2464                  * and start IO on them using writepage()
2465                  */
2466                 if (mpd->next_page != mpd->first_page) {
2467                         if (mpage_da_map_blocks(mpd) == 0)
2468                                 mpage_da_submit_io(mpd);
2469                         /*
2470                          * skip rest of the page in the page_vec
2471                          */
2472                         mpd->io_done = 1;
2473                         redirty_page_for_writepage(wbc, page);
2474                         unlock_page(page);
2475                         return MPAGE_DA_EXTENT_TAIL;
2476                 }
2477
2478                 /*
2479                  * Start next extent of pages ...
2480                  */
2481                 mpd->first_page = page->index;
2482
2483                 /*
2484                  * ... and blocks
2485                  */
2486                 mpd->b_size = 0;
2487                 mpd->b_state = 0;
2488                 mpd->b_blocknr = 0;
2489         }
2490
2491         mpd->next_page = page->index + 1;
2492         logical = (sector_t) page->index <<
2493                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2494
2495         if (!page_has_buffers(page)) {
2496                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2497                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2498                 if (mpd->io_done)
2499                         return MPAGE_DA_EXTENT_TAIL;
2500         } else {
2501                 /*
2502                  * Page with regular buffer heads, just add all dirty ones
2503                  */
2504                 head = page_buffers(page);
2505                 bh = head;
2506                 do {
2507                         BUG_ON(buffer_locked(bh));
2508                         /*
2509                          * We need to try to allocate
2510                          * unmapped blocks in the same page.
2511                          * Otherwise we won't make progress
2512                          * with the page in ext4_writepage
2513                          */
2514                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2515                                 mpage_add_bh_to_extent(mpd, logical,
2516                                                        bh->b_size,
2517                                                        bh->b_state);
2518                                 if (mpd->io_done)
2519                                         return MPAGE_DA_EXTENT_TAIL;
2520                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2521                                 /*
2522                                  * mapped dirty buffer. We need to update
2523                                  * the b_state because we look at
2524                                  * b_state in mpage_da_map_blocks. We don't
2525                                  * update b_size because if we find an
2526                                  * unmapped buffer_head later we need to
2527                                  * use the b_state flag of that buffer_head.
2528                                  */
2529                                 if (mpd->b_size == 0)
2530                                         mpd->b_state = bh->b_state & BH_FLAGS;
2531                         }
2532                         logical++;
2533                 } while ((bh = bh->b_this_page) != head);
2534         }
2535
2536         return 0;
2537 }
2538
2539 /*
2540  * This is a special get_blocks_t callback which is used by
2541  * ext4_da_write_begin().  It will either return mapped block or
2542  * reserve space for a single block.
2543  *
2544  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2545  * We also have b_blocknr = -1 and b_bdev initialized properly
2546  *
2547  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2548  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2549  * initialized properly.
2550  */
2551 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2552                                   struct buffer_head *bh_result, int create)
2553 {
2554         int ret = 0;
2555         sector_t invalid_block = ~((sector_t) 0xffff);
2556
2557         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2558                 invalid_block = ~0;
2559
2560         BUG_ON(create == 0);
2561         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2562
2563         /*
2564          * first, we need to know whether the block is allocated already
2565          * preallocated blocks are unmapped but should treated
2566          * the same as allocated blocks.
2567          */
2568         ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2569         if ((ret == 0) && !buffer_delay(bh_result)) {
2570                 /* the block isn't (pre)allocated yet, let's reserve space */
2571                 /*
2572                  * XXX: __block_prepare_write() unmaps passed block,
2573                  * is it OK?
2574                  */
2575                 ret = ext4_da_reserve_space(inode, iblock);
2576                 if (ret)
2577                         /* not enough space to reserve */
2578                         return ret;
2579
2580                 map_bh(bh_result, inode->i_sb, invalid_block);
2581                 set_buffer_new(bh_result);
2582                 set_buffer_delay(bh_result);
2583         } else if (ret > 0) {
2584                 bh_result->b_size = (ret << inode->i_blkbits);
2585                 if (buffer_unwritten(bh_result)) {
2586                         /* A delayed write to unwritten bh should
2587                          * be marked new and mapped.  Mapped ensures
2588                          * that we don't do get_block multiple times
2589                          * when we write to the same offset and new
2590                          * ensures that we do proper zero out for
2591                          * partial write.
2592                          */
2593                         set_buffer_new(bh_result);
2594                         set_buffer_mapped(bh_result);
2595                 }
2596                 ret = 0;
2597         }
2598
2599         return ret;
2600 }
2601
2602 /*
2603  * This function is used as a standard get_block_t calback function
2604  * when there is no desire to allocate any blocks.  It is used as a
2605  * callback function for block_prepare_write(), nobh_writepage(), and
2606  * block_write_full_page().  These functions should only try to map a
2607  * single block at a time.
2608  *
2609  * Since this function doesn't do block allocations even if the caller
2610  * requests it by passing in create=1, it is critically important that
2611  * any caller checks to make sure that any buffer heads are returned
2612  * by this function are either all already mapped or marked for
2613  * delayed allocation before calling nobh_writepage() or
2614  * block_write_full_page().  Otherwise, b_blocknr could be left
2615  * unitialized, and the page write functions will be taken by
2616  * surprise.
2617  */
2618 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2619                                    struct buffer_head *bh_result, int create)
2620 {
2621         int ret = 0;
2622         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2623
2624         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2625
2626         /*
2627          * we don't want to do block allocation in writepage
2628          * so call get_block_wrap with create = 0
2629          */
2630         ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2631         if (ret > 0) {
2632                 bh_result->b_size = (ret << inode->i_blkbits);
2633                 ret = 0;
2634         }
2635         return ret;
2636 }
2637
2638 static int bget_one(handle_t *handle, struct buffer_head *bh)
2639 {
2640         get_bh(bh);
2641         return 0;
2642 }
2643
2644 static int bput_one(handle_t *handle, struct buffer_head *bh)
2645 {
2646         put_bh(bh);
2647         return 0;
2648 }
2649
2650 static int __ext4_journalled_writepage(struct page *page,
2651                                        struct writeback_control *wbc,
2652                                        unsigned int len)
2653 {
2654         struct address_space *mapping = page->mapping;
2655         struct inode *inode = mapping->host;
2656         struct buffer_head *page_bufs;
2657         handle_t *handle = NULL;
2658         int ret = 0;
2659         int err;
2660
2661         page_bufs = page_buffers(page);
2662         BUG_ON(!page_bufs);
2663         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2664         /* As soon as we unlock the page, it can go away, but we have
2665          * references to buffers so we are safe */
2666         unlock_page(page);
2667
2668         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2669         if (IS_ERR(handle)) {
2670                 ret = PTR_ERR(handle);
2671                 goto out;
2672         }
2673
2674         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2675                                 do_journal_get_write_access);
2676
2677         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2678                                 write_end_fn);
2679         if (ret == 0)
2680                 ret = err;
2681         err = ext4_journal_stop(handle);
2682         if (!ret)
2683                 ret = err;
2684
2685         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2686         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2687 out:
2688         return ret;
2689 }
2690
2691 /*
2692  * Note that we don't need to start a transaction unless we're journaling data
2693  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2694  * need to file the inode to the transaction's list in ordered mode because if
2695  * we are writing back data added by write(), the inode is already there and if
2696  * we are writing back data modified via mmap(), noone guarantees in which
2697  * transaction the data will hit the disk. In case we are journaling data, we
2698  * cannot start transaction directly because transaction start ranks above page
2699  * lock so we have to do some magic.
2700  *
2701  * This function can get called via...
2702  *   - ext4_da_writepages after taking page lock (have journal handle)
2703  *   - journal_submit_inode_data_buffers (no journal handle)
2704  *   - shrink_page_list via pdflush (no journal handle)
2705  *   - grab_page_cache when doing write_begin (have journal handle)
2706  *
2707  * We don't do any block allocation in this function. If we have page with
2708  * multiple blocks we need to write those buffer_heads that are mapped. This
2709  * is important for mmaped based write. So if we do with blocksize 1K
2710  * truncate(f, 1024);
2711  * a = mmap(f, 0, 4096);
2712  * a[0] = 'a';
2713  * truncate(f, 4096);
2714  * we have in the page first buffer_head mapped via page_mkwrite call back
2715  * but other bufer_heads would be unmapped but dirty(dirty done via the
2716  * do_wp_page). So writepage should write the first block. If we modify
2717  * the mmap area beyond 1024 we will again get a page_fault and the
2718  * page_mkwrite callback will do the block allocation and mark the
2719  * buffer_heads mapped.
2720  *
2721  * We redirty the page if we have any buffer_heads that is either delay or
2722  * unwritten in the page.
2723  *
2724  * We can get recursively called as show below.
2725  *
2726  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2727  *              ext4_writepage()
2728  *
2729  * But since we don't do any block allocation we should not deadlock.
2730  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2731  */
2732 static int ext4_writepage(struct page *page,
2733                           struct writeback_control *wbc)
2734 {
2735         int ret = 0;
2736         loff_t size;
2737         unsigned int len;
2738         struct buffer_head *page_bufs;
2739         struct inode *inode = page->mapping->host;
2740
2741         trace_ext4_writepage(inode, page);
2742         size = i_size_read(inode);
2743         if (page->index == size >> PAGE_CACHE_SHIFT)
2744                 len = size & ~PAGE_CACHE_MASK;
2745         else
2746                 len = PAGE_CACHE_SIZE;
2747
2748         if (page_has_buffers(page)) {
2749                 page_bufs = page_buffers(page);
2750                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2751                                         ext4_bh_delay_or_unwritten)) {
2752                         /*
2753                          * We don't want to do  block allocation
2754                          * So redirty the page and return
2755                          * We may reach here when we do a journal commit
2756                          * via journal_submit_inode_data_buffers.
2757                          * If we don't have mapping block we just ignore
2758                          * them. We can also reach here via shrink_page_list
2759                          */
2760                         redirty_page_for_writepage(wbc, page);
2761                         unlock_page(page);
2762                         return 0;
2763                 }
2764         } else {
2765                 /*
2766                  * The test for page_has_buffers() is subtle:
2767                  * We know the page is dirty but it lost buffers. That means
2768                  * that at some moment in time after write_begin()/write_end()
2769                  * has been called all buffers have been clean and thus they
2770                  * must have been written at least once. So they are all
2771                  * mapped and we can happily proceed with mapping them
2772                  * and writing the page.
2773                  *
2774                  * Try to initialize the buffer_heads and check whether
2775                  * all are mapped and non delay. We don't want to
2776                  * do block allocation here.
2777                  */
2778                 ret = block_prepare_write(page, 0, len,
2779                                           noalloc_get_block_write);
2780                 if (!ret) {
2781                         page_bufs = page_buffers(page);
2782                         /* check whether all are mapped and non delay */
2783                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2784                                                 ext4_bh_delay_or_unwritten)) {
2785                                 redirty_page_for_writepage(wbc, page);
2786                                 unlock_page(page);
2787                                 return 0;
2788                         }
2789                 } else {
2790                         /*
2791                          * We can't do block allocation here
2792                          * so just redity the page and unlock
2793                          * and return
2794                          */
2795                         redirty_page_for_writepage(wbc, page);
2796                         unlock_page(page);
2797                         return 0;
2798                 }
2799                 /* now mark the buffer_heads as dirty and uptodate */
2800                 block_commit_write(page, 0, len);
2801         }
2802
2803         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2804                 /*
2805                  * It's mmapped pagecache.  Add buffers and journal it.  There
2806                  * doesn't seem much point in redirtying the page here.
2807                  */
2808                 ClearPageChecked(page);
2809                 return __ext4_journalled_writepage(page, wbc, len);
2810         }
2811
2812         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2813                 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2814         else
2815                 ret = block_write_full_page(page, noalloc_get_block_write,
2816                                             wbc);
2817
2818         return ret;
2819 }
2820
2821 /*
2822  * This is called via ext4_da_writepages() to
2823  * calulate the total number of credits to reserve to fit
2824  * a single extent allocation into a single transaction,
2825  * ext4_da_writpeages() will loop calling this before
2826  * the block allocation.
2827  */
2828
2829 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2830 {
2831         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2832
2833         /*
2834          * With non-extent format the journal credit needed to
2835          * insert nrblocks contiguous block is dependent on
2836          * number of contiguous block. So we will limit
2837          * number of contiguous block to a sane value
2838          */
2839         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2840             (max_blocks > EXT4_MAX_TRANS_DATA))
2841                 max_blocks = EXT4_MAX_TRANS_DATA;
2842
2843         return ext4_chunk_trans_blocks(inode, max_blocks);
2844 }
2845
2846 static int ext4_da_writepages(struct address_space *mapping,
2847                               struct writeback_control *wbc)
2848 {
2849         pgoff_t index;
2850         int range_whole = 0;
2851         handle_t *handle = NULL;
2852         struct mpage_da_data mpd;
2853         struct inode *inode = mapping->host;
2854         int no_nrwrite_index_update;
2855         int pages_written = 0;
2856         long pages_skipped;
2857         unsigned int max_pages;
2858         int range_cyclic, cycled = 1, io_done = 0;
2859         int needed_blocks, ret = 0;
2860         long desired_nr_to_write, nr_to_writebump = 0;
2861         loff_t range_start = wbc->range_start;
2862         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2863
2864         trace_ext4_da_writepages(inode, wbc);
2865
2866         /*
2867          * No pages to write? This is mainly a kludge to avoid starting
2868          * a transaction for special inodes like journal inode on last iput()
2869          * because that could violate lock ordering on umount
2870          */
2871         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2872                 return 0;
2873
2874         /*
2875          * If the filesystem has aborted, it is read-only, so return
2876          * right away instead of dumping stack traces later on that
2877          * will obscure the real source of the problem.  We test
2878          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2879          * the latter could be true if the filesystem is mounted
2880          * read-only, and in that case, ext4_da_writepages should
2881          * *never* be called, so if that ever happens, we would want
2882          * the stack trace.
2883          */
2884         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2885                 return -EROFS;
2886
2887         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2888                 range_whole = 1;
2889
2890         range_cyclic = wbc->range_cyclic;
2891         if (wbc->range_cyclic) {
2892                 index = mapping->writeback_index;
2893                 if (index)
2894                         cycled = 0;
2895                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2896                 wbc->range_end  = LLONG_MAX;
2897                 wbc->range_cyclic = 0;
2898         } else
2899                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2900
2901         /*
2902          * This works around two forms of stupidity.  The first is in
2903          * the writeback code, which caps the maximum number of pages
2904          * written to be 1024 pages.  This is wrong on multiple
2905          * levels; different architectues have a different page size,
2906          * which changes the maximum amount of data which gets
2907          * written.  Secondly, 4 megabytes is way too small.  XFS
2908          * forces this value to be 16 megabytes by multiplying
2909          * nr_to_write parameter by four, and then relies on its
2910          * allocator to allocate larger extents to make them
2911          * contiguous.  Unfortunately this brings us to the second
2912          * stupidity, which is that ext4's mballoc code only allocates
2913          * at most 2048 blocks.  So we force contiguous writes up to
2914          * the number of dirty blocks in the inode, or
2915          * sbi->max_writeback_mb_bump whichever is smaller.
2916          */
2917         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2918         if (!range_cyclic && range_whole)
2919                 desired_nr_to_write = wbc->nr_to_write * 8;
2920         else
2921                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2922                                                            max_pages);
2923         if (desired_nr_to_write > max_pages)
2924                 desired_nr_to_write = max_pages;
2925
2926         if (wbc->nr_to_write < desired_nr_to_write) {
2927                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2928                 wbc->nr_to_write = desired_nr_to_write;
2929         }
2930
2931         mpd.wbc = wbc;
2932         mpd.inode = mapping->host;
2933
2934         /*
2935          * we don't want write_cache_pages to update
2936          * nr_to_write and writeback_index
2937          */
2938         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2939         wbc->no_nrwrite_index_update = 1;
2940         pages_skipped = wbc->pages_skipped;
2941
2942 retry:
2943         while (!ret && wbc->nr_to_write > 0) {
2944
2945                 /*
2946                  * we  insert one extent at a time. So we need
2947                  * credit needed for single extent allocation.
2948                  * journalled mode is currently not supported
2949                  * by delalloc
2950                  */
2951                 BUG_ON(ext4_should_journal_data(inode));
2952                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2953
2954                 /* start a new transaction*/
2955                 handle = ext4_journal_start(inode, needed_blocks);
2956                 if (IS_ERR(handle)) {
2957                         ret = PTR_ERR(handle);
2958                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2959                                "%ld pages, ino %lu; err %d", __func__,
2960                                 wbc->nr_to_write, inode->i_ino, ret);
2961                         goto out_writepages;
2962                 }
2963
2964                 /*
2965                  * Now call __mpage_da_writepage to find the next
2966                  * contiguous region of logical blocks that need
2967                  * blocks to be allocated by ext4.  We don't actually
2968                  * submit the blocks for I/O here, even though
2969                  * write_cache_pages thinks it will, and will set the
2970                  * pages as clean for write before calling
2971                  * __mpage_da_writepage().
2972                  */
2973                 mpd.b_size = 0;
2974                 mpd.b_state = 0;
2975                 mpd.b_blocknr = 0;
2976                 mpd.first_page = 0;
2977                 mpd.next_page = 0;
2978                 mpd.io_done = 0;
2979                 mpd.pages_written = 0;
2980                 mpd.retval = 0;
2981                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2982                                         &mpd);
2983                 /*
2984                  * If we have a contigous extent of pages and we
2985                  * haven't done the I/O yet, map the blocks and submit
2986                  * them for I/O.
2987                  */
2988                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2989                         if (mpage_da_map_blocks(&mpd) == 0)
2990                                 mpage_da_submit_io(&mpd);
2991                         mpd.io_done = 1;
2992                         ret = MPAGE_DA_EXTENT_TAIL;
2993                 }
2994                 trace_ext4_da_write_pages(inode, &mpd);
2995                 wbc->nr_to_write -= mpd.pages_written;
2996
2997                 ext4_journal_stop(handle);
2998
2999                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3000                         /* commit the transaction which would
3001                          * free blocks released in the transaction
3002                          * and try again
3003                          */
3004                         jbd2_journal_force_commit_nested(sbi->s_journal);
3005                         wbc->pages_skipped = pages_skipped;
3006                         ret = 0;
3007                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3008                         /*
3009                          * got one extent now try with
3010                          * rest of the pages
3011                          */
3012                         pages_written += mpd.pages_written;
3013                         wbc->pages_skipped = pages_skipped;
3014                         ret = 0;
3015                         io_done = 1;
3016                 } else if (wbc->nr_to_write)
3017                         /*
3018                          * There is no more writeout needed
3019                          * or we requested for a noblocking writeout
3020                          * and we found the device congested
3021                          */
3022                         break;
3023         }
3024         if (!io_done && !cycled) {
3025                 cycled = 1;
3026                 index = 0;
3027                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3028                 wbc->range_end  = mapping->writeback_index - 1;
3029                 goto retry;
3030         }
3031         if (pages_skipped != wbc->pages_skipped)
3032                 ext4_msg(inode->i_sb, KERN_CRIT,
3033                          "This should not happen leaving %s "
3034                          "with nr_to_write = %ld ret = %d",
3035                          __func__, wbc->nr_to_write, ret);
3036
3037         /* Update index */
3038         index += pages_written;
3039         wbc->range_cyclic = range_cyclic;
3040         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3041                 /*
3042                  * set the writeback_index so that range_cyclic
3043                  * mode will write it back later
3044                  */
3045                 mapping->writeback_index = index;
3046
3047 out_writepages:
3048         if (!no_nrwrite_index_update)
3049                 wbc->no_nrwrite_index_update = 0;
3050         wbc->nr_to_write -= nr_to_writebump;
3051         wbc->range_start = range_start;
3052         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3053         return ret;
3054 }
3055
3056 #define FALL_BACK_TO_NONDELALLOC 1
3057 static int ext4_nonda_switch(struct super_block *sb)
3058 {
3059         s64 free_blocks, dirty_blocks;
3060         struct ext4_sb_info *sbi = EXT4_SB(sb);
3061
3062         /*
3063          * switch to non delalloc mode if we are running low
3064          * on free block. The free block accounting via percpu
3065          * counters can get slightly wrong with percpu_counter_batch getting
3066          * accumulated on each CPU without updating global counters
3067          * Delalloc need an accurate free block accounting. So switch
3068          * to non delalloc when we are near to error range.
3069          */
3070         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3071         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3072         if (2 * free_blocks < 3 * dirty_blocks ||
3073                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3074                 /*
3075                  * free block count is less than 150% of dirty blocks
3076                  * or free blocks is less than watermark
3077                  */
3078                 return 1;
3079         }
3080         /*
3081          * Even if we don't switch but are nearing capacity,
3082          * start pushing delalloc when 1/2 of free blocks are dirty.
3083          */
3084         if (free_blocks < 2 * dirty_blocks)
3085                 writeback_inodes_sb_if_idle(sb);
3086
3087         return 0;
3088 }
3089
3090 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3091                                loff_t pos, unsigned len, unsigned flags,
3092                                struct page **pagep, void **fsdata)
3093 {
3094         int ret, retries = 0, quota_retries = 0;
3095         struct page *page;
3096         pgoff_t index;
3097         unsigned from, to;
3098         struct inode *inode = mapping->host;
3099         handle_t *handle;
3100
3101         index = pos >> PAGE_CACHE_SHIFT;
3102         from = pos & (PAGE_CACHE_SIZE - 1);
3103         to = from + len;
3104
3105         if (ext4_nonda_switch(inode->i_sb)) {
3106                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3107                 return ext4_write_begin(file, mapping, pos,
3108                                         len, flags, pagep, fsdata);
3109         }
3110         *fsdata = (void *)0;
3111         trace_ext4_da_write_begin(inode, pos, len, flags);
3112 retry:
3113         /*
3114          * With delayed allocation, we don't log the i_disksize update
3115          * if there is delayed block allocation. But we still need
3116          * to journalling the i_disksize update if writes to the end
3117          * of file which has an already mapped buffer.
3118          */
3119         handle = ext4_journal_start(inode, 1);
3120         if (IS_ERR(handle)) {
3121                 ret = PTR_ERR(handle);
3122                 goto out;
3123         }
3124         /* We cannot recurse into the filesystem as the transaction is already
3125          * started */
3126         flags |= AOP_FLAG_NOFS;
3127
3128         page = grab_cache_page_write_begin(mapping, index, flags);
3129         if (!page) {
3130                 ext4_journal_stop(handle);
3131                 ret = -ENOMEM;
3132                 goto out;
3133         }
3134         *pagep = page;
3135
3136         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3137                                 ext4_da_get_block_prep);
3138         if (ret < 0) {
3139                 unlock_page(page);
3140                 ext4_journal_stop(handle);
3141                 page_cache_release(page);
3142                 /*
3143                  * block_write_begin may have instantiated a few blocks
3144                  * outside i_size.  Trim these off again. Don't need
3145                  * i_size_read because we hold i_mutex.
3146                  */
3147                 if (pos + len > inode->i_size)
3148                         ext4_truncate_failed_write(inode);
3149         }
3150
3151         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3152                 goto retry;
3153
3154         if ((ret == -EDQUOT) &&
3155             EXT4_I(inode)->i_reserved_meta_blocks &&
3156             (quota_retries++ < 3)) {
3157                 /*
3158                  * Since we often over-estimate the number of meta
3159                  * data blocks required, we may sometimes get a
3160                  * spurios out of quota error even though there would
3161                  * be enough space once we write the data blocks and
3162                  * find out how many meta data blocks were _really_
3163                  * required.  So try forcing the inode write to see if
3164                  * that helps.
3165                  */
3166                 write_inode_now(inode, (quota_retries == 3));
3167                 goto retry;
3168         }
3169 out:
3170         return ret;
3171 }
3172
3173 /*
3174  * Check if we should update i_disksize
3175  * when write to the end of file but not require block allocation
3176  */
3177 static int ext4_da_should_update_i_disksize(struct page *page,
3178                                             unsigned long offset)
3179 {
3180         struct buffer_head *bh;
3181         struct inode *inode = page->mapping->host;
3182         unsigned int idx;
3183         int i;
3184
3185         bh = page_buffers(page);
3186         idx = offset >> inode->i_blkbits;
3187
3188         for (i = 0; i < idx; i++)
3189                 bh = bh->b_this_page;
3190
3191         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3192                 return 0;
3193         return 1;
3194 }
3195
3196 static int ext4_da_write_end(struct file *file,
3197                              struct address_space *mapping,
3198                              loff_t pos, unsigned len, unsigned copied,
3199                              struct page *page, void *fsdata)
3200 {
3201         struct inode *inode = mapping->host;
3202         int ret = 0, ret2;
3203         handle_t *handle = ext4_journal_current_handle();
3204         loff_t new_i_size;
3205         unsigned long start, end;
3206         int write_mode = (int)(unsigned long)fsdata;
3207
3208         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3209                 if (ext4_should_order_data(inode)) {
3210                         return ext4_ordered_write_end(file, mapping, pos,
3211                                         len, copied, page, fsdata);
3212                 } else if (ext4_should_writeback_data(inode)) {
3213                         return ext4_writeback_write_end(file, mapping, pos,
3214                                         len, copied, page, fsdata);
3215                 } else {
3216                         BUG();
3217                 }
3218         }
3219
3220         trace_ext4_da_write_end(inode, pos, len, copied);
3221         start = pos & (PAGE_CACHE_SIZE - 1);
3222         end = start + copied - 1;
3223
3224         /*
3225          * generic_write_end() will run mark_inode_dirty() if i_size
3226          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3227          * into that.
3228          */
3229
3230         new_i_size = pos + copied;
3231         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3232                 if (ext4_da_should_update_i_disksize(page, end)) {
3233                         down_write(&EXT4_I(inode)->i_data_sem);
3234                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3235                                 /*
3236                                  * Updating i_disksize when extending file
3237                                  * without needing block allocation
3238                                  */
3239                                 if (ext4_should_order_data(inode))
3240                                         ret = ext4_jbd2_file_inode(handle,
3241                                                                    inode);
3242
3243                                 EXT4_I(inode)->i_disksize = new_i_size;
3244                         }
3245                         up_write(&EXT4_I(inode)->i_data_sem);
3246                         /* We need to mark inode dirty even if
3247                          * new_i_size is less that inode->i_size
3248                          * bu greater than i_disksize.(hint delalloc)
3249                          */
3250                         ext4_mark_inode_dirty(handle, inode);
3251                 }
3252         }
3253         ret2 = generic_write_end(file, mapping, pos, len, copied,
3254                                                         page, fsdata);
3255         copied = ret2;
3256         if (ret2 < 0)
3257                 ret = ret2;
3258         ret2 = ext4_journal_stop(handle);
3259         if (!ret)
3260                 ret = ret2;
3261
3262         return ret ? ret : copied;
3263 }
3264
3265 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3266 {
3267         /*
3268          * Drop reserved blocks
3269          */
3270         BUG_ON(!PageLocked(page));
3271         if (!page_has_buffers(page))
3272                 goto out;
3273
3274         ext4_da_page_release_reservation(page, offset);
3275
3276 out:
3277         ext4_invalidatepage(page, offset);
3278
3279         return;
3280 }
3281
3282 /*
3283  * Force all delayed allocation blocks to be allocated for a given inode.
3284  */
3285 int ext4_alloc_da_blocks(struct inode *inode)
3286 {
3287         trace_ext4_alloc_da_blocks(inode);
3288
3289         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3290             !EXT4_I(inode)->i_reserved_meta_blocks)
3291                 return 0;
3292
3293         /*
3294          * We do something simple for now.  The filemap_flush() will
3295          * also start triggering a write of the data blocks, which is
3296          * not strictly speaking necessary (and for users of
3297          * laptop_mode, not even desirable).  However, to do otherwise
3298          * would require replicating code paths in:
3299          *
3300          * ext4_da_writepages() ->
3301          *    write_cache_pages() ---> (via passed in callback function)
3302          *        __mpage_da_writepage() -->
3303          *           mpage_add_bh_to_extent()
3304          *           mpage_da_map_blocks()
3305          *
3306          * The problem is that write_cache_pages(), located in
3307          * mm/page-writeback.c, marks pages clean in preparation for
3308          * doing I/O, which is not desirable if we're not planning on
3309          * doing I/O at all.
3310          *
3311          * We could call write_cache_pages(), and then redirty all of
3312          * the pages by calling redirty_page_for_writeback() but that
3313          * would be ugly in the extreme.  So instead we would need to
3314          * replicate parts of the code in the above functions,
3315          * simplifying them becuase we wouldn't actually intend to
3316          * write out the pages, but rather only collect contiguous
3317          * logical block extents, call the multi-block allocator, and
3318          * then update the buffer heads with the block allocations.
3319          *
3320          * For now, though, we'll cheat by calling filemap_flush(),
3321          * which will map the blocks, and start the I/O, but not
3322          * actually wait for the I/O to complete.
3323          */
3324         return filemap_flush(inode->i_mapping);
3325 }
3326
3327 /*
3328  * bmap() is special.  It gets used by applications such as lilo and by
3329  * the swapper to find the on-disk block of a specific piece of data.
3330  *
3331  * Naturally, this is dangerous if the block concerned is still in the
3332  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3333  * filesystem and enables swap, then they may get a nasty shock when the
3334  * data getting swapped to that swapfile suddenly gets overwritten by
3335  * the original zero's written out previously to the journal and
3336  * awaiting writeback in the kernel's buffer cache.
3337  *
3338  * So, if we see any bmap calls here on a modified, data-journaled file,
3339  * take extra steps to flush any blocks which might be in the cache.
3340  */
3341 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3342 {
3343         struct inode *inode = mapping->host;
3344         journal_t *journal;
3345         int err;
3346
3347         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3348                         test_opt(inode->i_sb, DELALLOC)) {
3349                 /*
3350                  * With delalloc we want to sync the file
3351                  * so that we can make sure we allocate
3352                  * blocks for file
3353                  */
3354                 filemap_write_and_wait(mapping);
3355         }
3356
3357         if (EXT4_JOURNAL(inode) &&
3358             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3359                 /*
3360                  * This is a REALLY heavyweight approach, but the use of
3361                  * bmap on dirty files is expected to be extremely rare:
3362                  * only if we run lilo or swapon on a freshly made file
3363                  * do we expect this to happen.
3364                  *
3365                  * (bmap requires CAP_SYS_RAWIO so this does not
3366                  * represent an unprivileged user DOS attack --- we'd be
3367                  * in trouble if mortal users could trigger this path at
3368                  * will.)
3369                  *
3370                  * NB. EXT4_STATE_JDATA is not set on files other than
3371                  * regular files.  If somebody wants to bmap a directory
3372                  * or symlink and gets confused because the buffer
3373                  * hasn't yet been flushed to disk, they deserve
3374                  * everything they get.
3375                  */
3376
3377                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3378                 journal = EXT4_JOURNAL(inode);
3379                 jbd2_journal_lock_updates(journal);
3380                 err = jbd2_journal_flush(journal);
3381                 jbd2_journal_unlock_updates(journal);
3382
3383                 if (err)
3384                         return 0;
3385         }
3386
3387         return generic_block_bmap(mapping, block, ext4_get_block);
3388 }
3389
3390 static int ext4_readpage(struct file *file, struct page *page)
3391 {
3392         return mpage_readpage(page, ext4_get_block);
3393 }
3394
3395 static int
3396 ext4_readpages(struct file *file, struct address_space *mapping,
3397                 struct list_head *pages, unsigned nr_pages)
3398 {
3399         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3400 }
3401
3402 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3403 {
3404         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3405
3406         /*
3407          * If it's a full truncate we just forget about the pending dirtying
3408          */
3409         if (offset == 0)
3410                 ClearPageChecked(page);
3411
3412         if (journal)
3413                 jbd2_journal_invalidatepage(journal, page, offset);
3414         else
3415                 block_invalidatepage(page, offset);
3416 }
3417
3418 static int ext4_releasepage(struct page *page, gfp_t wait)
3419 {
3420         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3421
3422         WARN_ON(PageChecked(page));
3423         if (!page_has_buffers(page))
3424                 return 0;
3425         if (journal)
3426                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3427         else
3428                 return try_to_free_buffers(page);
3429 }
3430
3431 /*
3432  * O_DIRECT for ext3 (or indirect map) based files
3433  *
3434  * If the O_DIRECT write will extend the file then add this inode to the
3435  * orphan list.  So recovery will truncate it back to the original size
3436  * if the machine crashes during the write.
3437  *
3438  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3439  * crashes then stale disk data _may_ be exposed inside the file. But current
3440  * VFS code falls back into buffered path in that case so we are safe.
3441  */
3442 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3443                               const struct iovec *iov, loff_t offset,
3444                               unsigned long nr_segs)
3445 {
3446         struct file *file = iocb->ki_filp;
3447         struct inode *inode = file->f_mapping->host;
3448         struct ext4_inode_info *ei = EXT4_I(inode);
3449         handle_t *handle;
3450         ssize_t ret;
3451         int orphan = 0;
3452         size_t count = iov_length(iov, nr_segs);
3453         int retries = 0;
3454
3455         if (rw == WRITE) {
3456                 loff_t final_size = offset + count;
3457
3458                 if (final_size > inode->i_size) {
3459                         /* Credits for sb + inode write */
3460                         handle = ext4_journal_start(inode, 2);
3461                         if (IS_ERR(handle)) {
3462                                 ret = PTR_ERR(handle);
3463                                 goto out;
3464                         }
3465                         ret = ext4_orphan_add(handle, inode);
3466                         if (ret) {
3467                                 ext4_journal_stop(handle);
3468                                 goto out;
3469                         }
3470                         orphan = 1;
3471                         ei->i_disksize = inode->i_size;
3472                         ext4_journal_stop(handle);
3473                 }
3474         }
3475
3476 retry:
3477         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3478                                  offset, nr_segs,
3479                                  ext4_get_block, NULL);
3480         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3481                 goto retry;
3482
3483         if (orphan) {
3484                 int err;
3485
3486                 /* Credits for sb + inode write */
3487                 handle = ext4_journal_start(inode, 2);
3488                 if (IS_ERR(handle)) {
3489                         /* This is really bad luck. We've written the data
3490                          * but cannot extend i_size. Bail out and pretend
3491                          * the write failed... */
3492                         ret = PTR_ERR(handle);
3493                         if (inode->i_nlink)
3494                                 ext4_orphan_del(NULL, inode);
3495
3496                         goto out;
3497                 }
3498                 if (inode->i_nlink)
3499                         ext4_orphan_del(handle, inode);
3500                 if (ret > 0) {
3501                         loff_t end = offset + ret;
3502                         if (end > inode->i_size) {
3503                                 ei->i_disksize = end;
3504                                 i_size_write(inode, end);
3505                                 /*
3506                                  * We're going to return a positive `ret'
3507                                  * here due to non-zero-length I/O, so there's
3508                                  * no way of reporting error returns from
3509                                  * ext4_mark_inode_dirty() to userspace.  So
3510                                  * ignore it.
3511                                  */
3512                                 ext4_mark_inode_dirty(handle, inode);
3513                         }
3514                 }
3515                 err = ext4_journal_stop(handle);
3516                 if (ret == 0)
3517                         ret = err;
3518         }
3519 out:
3520         return ret;
3521 }
3522
3523 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3524                    struct buffer_head *bh_result, int create)
3525 {
3526         handle_t *handle = NULL;
3527         int ret = 0;
3528         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3529         int dio_credits;
3530
3531         ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3532                    inode->i_ino, create);
3533         /*
3534          * DIO VFS code passes create = 0 flag for write to
3535          * the middle of file. It does this to avoid block
3536          * allocation for holes, to prevent expose stale data
3537          * out when there is parallel buffered read (which does
3538          * not hold the i_mutex lock) while direct IO write has
3539          * not completed. DIO request on holes finally falls back
3540          * to buffered IO for this reason.
3541          *
3542          * For ext4 extent based file, since we support fallocate,
3543          * new allocated extent as uninitialized, for holes, we
3544          * could fallocate blocks for holes, thus parallel
3545          * buffered IO read will zero out the page when read on
3546          * a hole while parallel DIO write to the hole has not completed.
3547          *
3548          * when we come here, we know it's a direct IO write to
3549          * to the middle of file (<i_size)
3550          * so it's safe to override the create flag from VFS.
3551          */
3552         create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3553
3554         if (max_blocks > DIO_MAX_BLOCKS)
3555                 max_blocks = DIO_MAX_BLOCKS;
3556         dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3557         handle = ext4_journal_start(inode, dio_credits);
3558         if (IS_ERR(handle)) {
3559                 ret = PTR_ERR(handle);
3560                 goto out;
3561         }
3562         ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3563                               create);
3564         if (ret > 0) {
3565                 bh_result->b_size = (ret << inode->i_blkbits);
3566                 ret = 0;
3567         }
3568         ext4_journal_stop(handle);
3569 out:
3570         return ret;
3571 }
3572
3573 static void ext4_free_io_end(ext4_io_end_t *io)
3574 {
3575         BUG_ON(!io);
3576         iput(io->inode);
3577         kfree(io);
3578 }
3579 static void dump_aio_dio_list(struct inode * inode)
3580 {
3581 #ifdef  EXT4_DEBUG
3582         struct list_head *cur, *before, *after;
3583         ext4_io_end_t *io, *io0, *io1;
3584
3585         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3586                 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3587                 return;
3588         }
3589
3590         ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3591         list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3592                 cur = &io->list;
3593                 before = cur->prev;
3594                 io0 = container_of(before, ext4_io_end_t, list);
3595                 after = cur->next;
3596                 io1 = container_of(after, ext4_io_end_t, list);
3597
3598                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3599                             io, inode->i_ino, io0, io1);
3600         }
3601 #endif
3602 }
3603
3604 /*
3605  * check a range of space and convert unwritten extents to written.
3606  */
3607 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3608 {
3609         struct inode *inode = io->inode;
3610         loff_t offset = io->offset;
3611         ssize_t size = io->size;
3612         int ret = 0;
3613
3614         ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3615                    "list->prev 0x%p\n",
3616                    io, inode->i_ino, io->list.next, io->list.prev);
3617
3618         if (list_empty(&io->list))
3619                 return ret;
3620
3621         if (io->flag != DIO_AIO_UNWRITTEN)
3622                 return ret;
3623
3624         if (offset + size <= i_size_read(inode))
3625                 ret = ext4_convert_unwritten_extents(inode, offset, size);
3626
3627         if (ret < 0) {
3628                 printk(KERN_EMERG "%s: failed to convert unwritten"
3629                         "extents to written extents, error is %d"
3630                         " io is still on inode %lu aio dio list\n",
3631                        __func__, ret, inode->i_ino);
3632                 return ret;
3633         }
3634
3635         /* clear the DIO AIO unwritten flag */
3636         io->flag = 0;
3637         return ret;
3638 }
3639 /*
3640  * work on completed aio dio IO, to convert unwritten extents to extents
3641  */
3642 static void ext4_end_aio_dio_work(struct work_struct *work)
3643 {
3644         ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3645         struct inode *inode = io->inode;
3646         int ret = 0;
3647
3648         mutex_lock(&inode->i_mutex);
3649         ret = ext4_end_aio_dio_nolock(io);
3650         if (ret >= 0) {
3651                 if (!list_empty(&io->list))
3652                         list_del_init(&io->list);
3653                 ext4_free_io_end(io);
3654         }
3655         mutex_unlock(&inode->i_mutex);
3656 }
3657 /*
3658  * This function is called from ext4_sync_file().
3659  *
3660  * When AIO DIO IO is completed, the work to convert unwritten
3661  * extents to written is queued on workqueue but may not get immediately
3662  * scheduled. When fsync is called, we need to ensure the
3663  * conversion is complete before fsync returns.
3664  * The inode keeps track of a list of completed AIO from DIO path
3665  * that might needs to do the conversion. This function walks through
3666  * the list and convert the related unwritten extents to written.
3667  */
3668 int flush_aio_dio_completed_IO(struct inode *inode)
3669 {
3670         ext4_io_end_t *io;
3671         int ret = 0;
3672         int ret2 = 0;
3673
3674         if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3675                 return ret;
3676
3677         dump_aio_dio_list(inode);
3678         while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3679                 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3680                                 ext4_io_end_t, list);
3681                 /*
3682                  * Calling ext4_end_aio_dio_nolock() to convert completed
3683                  * IO to written.
3684                  *
3685                  * When ext4_sync_file() is called, run_queue() may already
3686                  * about to flush the work corresponding to this io structure.
3687                  * It will be upset if it founds the io structure related
3688                  * to the work-to-be schedule is freed.
3689                  *
3690                  * Thus we need to keep the io structure still valid here after
3691                  * convertion finished. The io structure has a flag to
3692                  * avoid double converting from both fsync and background work
3693                  * queue work.
3694                  */
3695                 ret = ext4_end_aio_dio_nolock(io);
3696                 if (ret < 0)
3697                         ret2 = ret;
3698                 else
3699                         list_del_init(&io->list);
3700         }
3701         return (ret2 < 0) ? ret2 : 0;
3702 }
3703
3704 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3705 {
3706         ext4_io_end_t *io = NULL;
3707
3708         io = kmalloc(sizeof(*io), GFP_NOFS);
3709
3710         if (io) {
3711                 igrab(inode);
3712                 io->inode = inode;
3713                 io->flag = 0;
3714                 io->offset = 0;
3715                 io->size = 0;
3716                 io->error = 0;
3717                 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3718                 INIT_LIST_HEAD(&io->list);
3719         }
3720
3721         return io;
3722 }
3723
3724 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3725                             ssize_t size, void *private)
3726 {
3727         ext4_io_end_t *io_end = iocb->private;
3728         struct workqueue_struct *wq;
3729
3730         /* if not async direct IO or dio with 0 bytes write, just return */
3731         if (!io_end || !size)
3732                 return;
3733
3734         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3735                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3736                   iocb->private, io_end->inode->i_ino, iocb, offset,
3737                   size);
3738
3739         /* if not aio dio with unwritten extents, just free io and return */
3740         if (io_end->flag != DIO_AIO_UNWRITTEN){
3741                 ext4_free_io_end(io_end);
3742                 iocb->private = NULL;
3743                 return;
3744         }
3745
3746         io_end->offset = offset;
3747         io_end->size = size;
3748         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3749
3750         /* queue the work to convert unwritten extents to written */
3751         queue_work(wq, &io_end->work);
3752
3753         /* Add the io_end to per-inode completed aio dio list*/
3754         list_add_tail(&io_end->list,
3755                  &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3756         iocb->private = NULL;
3757 }
3758 /*
3759  * For ext4 extent files, ext4 will do direct-io write to holes,
3760  * preallocated extents, and those write extend the file, no need to
3761  * fall back to buffered IO.
3762  *
3763  * For holes, we fallocate those blocks, mark them as unintialized
3764  * If those blocks were preallocated, we mark sure they are splited, but
3765  * still keep the range to write as unintialized.
3766  *
3767  * The unwrritten extents will be converted to written when DIO is completed.
3768  * For async direct IO, since the IO may still pending when return, we
3769  * set up an end_io call back function, which will do the convertion
3770  * when async direct IO completed.
3771  *
3772  * If the O_DIRECT write will extend the file then add this inode to the
3773  * orphan list.  So recovery will truncate it back to the original size
3774  * if the machine crashes during the write.
3775  *
3776  */
3777 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3778                               const struct iovec *iov, loff_t offset,
3779                               unsigned long nr_segs)
3780 {
3781         struct file *file = iocb->ki_filp;
3782         struct inode *inode = file->f_mapping->host;
3783         ssize_t ret;
3784         size_t count = iov_length(iov, nr_segs);
3785
3786         loff_t final_size = offset + count;
3787         if (rw == WRITE && final_size <= inode->i_size) {
3788                 /*
3789                  * We could direct write to holes and fallocate.
3790                  *
3791                  * Allocated blocks to fill the hole are marked as uninitialized
3792                  * to prevent paralel buffered read to expose the stale data
3793                  * before DIO complete the data IO.
3794                  *
3795                  * As to previously fallocated extents, ext4 get_block
3796                  * will just simply mark the buffer mapped but still
3797                  * keep the extents uninitialized.
3798                  *
3799                  * for non AIO case, we will convert those unwritten extents
3800                  * to written after return back from blockdev_direct_IO.
3801                  *
3802                  * for async DIO, the conversion needs to be defered when
3803                  * the IO is completed. The ext4 end_io callback function
3804                  * will be called to take care of the conversion work.
3805                  * Here for async case, we allocate an io_end structure to
3806                  * hook to the iocb.
3807                  */
3808                 iocb->private = NULL;
3809                 EXT4_I(inode)->cur_aio_dio = NULL;
3810                 if (!is_sync_kiocb(iocb)) {
3811                         iocb->private = ext4_init_io_end(inode);
3812                         if (!iocb->private)
3813                                 return -ENOMEM;
3814                         /*
3815                          * we save the io structure for current async
3816                          * direct IO, so that later ext4_get_blocks()
3817                          * could flag the io structure whether there
3818                          * is a unwritten extents needs to be converted
3819                          * when IO is completed.
3820                          */
3821                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3822                 }
3823
3824                 ret = blockdev_direct_IO(rw, iocb, inode,
3825                                          inode->i_sb->s_bdev, iov,
3826                                          offset, nr_segs,
3827                                          ext4_get_block_dio_write,
3828                                          ext4_end_io_dio);
3829                 if (iocb->private)
3830                         EXT4_I(inode)->cur_aio_dio = NULL;
3831                 /*
3832                  * The io_end structure takes a reference to the inode,
3833                  * that structure needs to be destroyed and the
3834                  * reference to the inode need to be dropped, when IO is
3835                  * complete, even with 0 byte write, or failed.
3836                  *
3837                  * In the successful AIO DIO case, the io_end structure will be
3838                  * desctroyed and the reference to the inode will be dropped
3839                  * after the end_io call back function is called.
3840                  *
3841                  * In the case there is 0 byte write, or error case, since
3842                  * VFS direct IO won't invoke the end_io call back function,
3843                  * we need to free the end_io structure here.
3844                  */
3845                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3846                         ext4_free_io_end(iocb->private);
3847                         iocb->private = NULL;
3848                 } else if (ret > 0 && ext4_test_inode_state(inode,
3849                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3850                         int err;
3851                         /*
3852                          * for non AIO case, since the IO is already
3853                          * completed, we could do the convertion right here
3854                          */
3855                         err = ext4_convert_unwritten_extents(inode,
3856                                                              offset, ret);
3857                         if (err < 0)
3858                                 ret = err;
3859                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3860                 }
3861                 return ret;
3862         }
3863
3864         /* for write the the end of file case, we fall back to old way */
3865         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3866 }
3867
3868 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3869                               const struct iovec *iov, loff_t offset,
3870                               unsigned long nr_segs)
3871 {
3872         struct file *file = iocb->ki_filp;
3873         struct inode *inode = file->f_mapping->host;
3874
3875         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3876                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3877
3878         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3879 }
3880
3881 /*
3882  * Pages can be marked dirty completely asynchronously from ext4's journalling
3883  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3884  * much here because ->set_page_dirty is called under VFS locks.  The page is
3885  * not necessarily locked.
3886  *
3887  * We cannot just dirty the page and leave attached buffers clean, because the
3888  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3889  * or jbddirty because all the journalling code will explode.
3890  *
3891  * So what we do is to mark the page "pending dirty" and next time writepage
3892  * is called, propagate that into the buffers appropriately.
3893  */
3894 static int ext4_journalled_set_page_dirty(struct page *page)
3895 {
3896         SetPageChecked(page);
3897         return __set_page_dirty_nobuffers(page);
3898 }
3899
3900 static const struct address_space_operations ext4_ordered_aops = {
3901         .readpage               = ext4_readpage,
3902         .readpages              = ext4_readpages,
3903         .writepage              = ext4_writepage,
3904         .sync_page              = block_sync_page,
3905         .write_begin            = ext4_write_begin,
3906         .write_end              = ext4_ordered_write_end,
3907         .bmap                   = ext4_bmap,
3908         .invalidatepage         = ext4_invalidatepage,
3909         .releasepage            = ext4_releasepage,
3910         .direct_IO              = ext4_direct_IO,
3911         .migratepage            = buffer_migrate_page,
3912         .is_partially_uptodate  = block_is_partially_uptodate,
3913         .error_remove_page      = generic_error_remove_page,
3914 };
3915
3916 static const struct address_space_operations ext4_writeback_aops = {
3917         .readpage               = ext4_readpage,
3918         .readpages              = ext4_readpages,
3919         .writepage              = ext4_writepage,
3920         .sync_page              = block_sync_page,
3921         .write_begin            = ext4_write_begin,
3922         .write_end              = ext4_writeback_write_end,
3923         .bmap                   = ext4_bmap,
3924         .invalidatepage         = ext4_invalidatepage,
3925         .releasepage            = ext4_releasepage,
3926         .direct_IO              = ext4_direct_IO,
3927         .migratepage            = buffer_migrate_page,
3928         .is_partially_uptodate  = block_is_partially_uptodate,
3929         .error_remove_page      = generic_error_remove_page,
3930 };
3931
3932 static const struct address_space_operations ext4_journalled_aops = {
3933         .readpage               = ext4_readpage,
3934         .readpages              = ext4_readpages,
3935         .writepage              = ext4_writepage,
3936         .sync_page              = block_sync_page,
3937         .write_begin            = ext4_write_begin,
3938         .write_end              = ext4_journalled_write_end,
3939         .set_page_dirty         = ext4_journalled_set_page_dirty,
3940         .bmap                   = ext4_bmap,
3941         .invalidatepage         = ext4_invalidatepage,
3942         .releasepage            = ext4_releasepage,
3943         .is_partially_uptodate  = block_is_partially_uptodate,
3944         .error_remove_page      = generic_error_remove_page,
3945 };
3946
3947 static const struct address_space_operations ext4_da_aops = {
3948         .readpage               = ext4_readpage,
3949         .readpages              = ext4_readpages,
3950         .writepage              = ext4_writepage,
3951         .writepages             = ext4_da_writepages,
3952         .sync_page              = block_sync_page,
3953         .write_begin            = ext4_da_write_begin,
3954         .write_end              = ext4_da_write_end,
3955         .bmap                   = ext4_bmap,
3956         .invalidatepage         = ext4_da_invalidatepage,
3957         .releasepage            = ext4_releasepage,
3958         .direct_IO              = ext4_direct_IO,
3959         .migratepage            = buffer_migrate_page,
3960         .is_partially_uptodate  = block_is_partially_uptodate,
3961         .error_remove_page      = generic_error_remove_page,
3962 };
3963
3964 void ext4_set_aops(struct inode *inode)
3965 {
3966         if (ext4_should_order_data(inode) &&
3967                 test_opt(inode->i_sb, DELALLOC))
3968                 inode->i_mapping->a_ops = &ext4_da_aops;
3969         else if (ext4_should_order_data(inode))
3970                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3971         else if (ext4_should_writeback_data(inode) &&
3972                  test_opt(inode->i_sb, DELALLOC))
3973                 inode->i_mapping->a_ops = &ext4_da_aops;
3974         else if (ext4_should_writeback_data(inode))
3975                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3976         else
3977                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3978 }
3979
3980 /*
3981  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3982  * up to the end of the block which corresponds to `from'.
3983  * This required during truncate. We need to physically zero the tail end
3984  * of that block so it doesn't yield old data if the file is later grown.
3985  */
3986 int ext4_block_truncate_page(handle_t *handle,
3987                 struct address_space *mapping, loff_t from)
3988 {
3989         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3990         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3991         unsigned blocksize, length, pos;
3992         ext4_lblk_t iblock;
3993         struct inode *inode = mapping->host;
3994         struct buffer_head *bh;
3995         struct page *page;
3996         int err = 0;
3997
3998         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3999                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
4000         if (!page)
4001                 return -EINVAL;
4002
4003         blocksize = inode->i_sb->s_blocksize;
4004         length = blocksize - (offset & (blocksize - 1));
4005         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4006
4007         /*
4008          * For "nobh" option,  we can only work if we don't need to
4009          * read-in the page - otherwise we create buffers to do the IO.
4010          */
4011         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4012              ext4_should_writeback_data(inode) && PageUptodate(page)) {
4013                 zero_user(page, offset, length);
4014                 set_page_dirty(page);
4015                 goto unlock;
4016         }
4017
4018         if (!page_has_buffers(page))
4019                 create_empty_buffers(page, blocksize, 0);
4020
4021         /* Find the buffer that contains "offset" */
4022         bh = page_buffers(page);
4023         pos = blocksize;
4024         while (offset >= pos) {
4025                 bh = bh->b_this_page;
4026                 iblock++;
4027                 pos += blocksize;
4028         }
4029
4030         err = 0;
4031         if (buffer_freed(bh)) {
4032                 BUFFER_TRACE(bh, "freed: skip");
4033                 goto unlock;
4034         }
4035
4036         if (!buffer_mapped(bh)) {
4037                 BUFFER_TRACE(bh, "unmapped");
4038                 ext4_get_block(inode, iblock, bh, 0);
4039                 /* unmapped? It's a hole - nothing to do */
4040                 if (!buffer_mapped(bh)) {
4041                         BUFFER_TRACE(bh, "still unmapped");
4042                         goto unlock;
4043                 }
4044         }
4045
4046         /* Ok, it's mapped. Make sure it's up-to-date */
4047         if (PageUptodate(page))
4048                 set_buffer_uptodate(bh);
4049
4050         if (!buffer_uptodate(bh)) {
4051                 err = -EIO;
4052                 ll_rw_block(READ, 1, &bh);
4053                 wait_on_buffer(bh);
4054                 /* Uhhuh. Read error. Complain and punt. */
4055                 if (!buffer_uptodate(bh))
4056                         goto unlock;
4057         }
4058
4059         if (ext4_should_journal_data(inode)) {
4060                 BUFFER_TRACE(bh, "get write access");
4061                 err = ext4_journal_get_write_access(handle, bh);
4062                 if (err)
4063                         goto unlock;
4064         }
4065
4066         zero_user(page, offset, length);
4067
4068         BUFFER_TRACE(bh, "zeroed end of block");
4069
4070         err = 0;
4071         if (ext4_should_journal_data(inode)) {
4072                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4073         } else {
4074                 if (ext4_should_order_data(inode))
4075                         err = ext4_jbd2_file_inode(handle, inode);
4076                 mark_buffer_dirty(bh);
4077         }
4078
4079 unlock:
4080         unlock_page(page);
4081         page_cache_release(page);
4082         return err;
4083 }
4084
4085 /*
4086  * Probably it should be a library function... search for first non-zero word
4087  * or memcmp with zero_page, whatever is better for particular architecture.
4088  * Linus?
4089  */
4090 static inline int all_zeroes(__le32 *p, __le32 *q)
4091 {
4092         while (p < q)
4093                 if (*p++)
4094                         return 0;
4095         return 1;
4096 }
4097
4098 /**
4099  *      ext4_find_shared - find the indirect blocks for partial truncation.
4100  *      @inode:   inode in question
4101  *      @depth:   depth of the affected branch
4102  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4103  *      @chain:   place to store the pointers to partial indirect blocks
4104  *      @top:     place to the (detached) top of branch
4105  *
4106  *      This is a helper function used by ext4_truncate().
4107  *
4108  *      When we do truncate() we may have to clean the ends of several
4109  *      indirect blocks but leave the blocks themselves alive. Block is
4110  *      partially truncated if some data below the new i_size is refered
4111  *      from it (and it is on the path to the first completely truncated
4112  *      data block, indeed).  We have to free the top of that path along
4113  *      with everything to the right of the path. Since no allocation
4114  *      past the truncation point is possible until ext4_truncate()
4115  *      finishes, we may safely do the latter, but top of branch may
4116  *      require special attention - pageout below the truncation point
4117  *      might try to populate it.
4118  *
4119  *      We atomically detach the top of branch from the tree, store the
4120  *      block number of its root in *@top, pointers to buffer_heads of
4121  *      partially truncated blocks - in @chain[].bh and pointers to
4122  *      their last elements that should not be removed - in
4123  *      @chain[].p. Return value is the pointer to last filled element
4124  *      of @chain.
4125  *
4126  *      The work left to caller to do the actual freeing of subtrees:
4127  *              a) free the subtree starting from *@top
4128  *              b) free the subtrees whose roots are stored in
4129  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4130  *              c) free the subtrees growing from the inode past the @chain[0].
4131  *                      (no partially truncated stuff there).  */
4132
4133 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4134                                   ext4_lblk_t offsets[4], Indirect chain[4],
4135                                   __le32 *top)
4136 {
4137         Indirect *partial, *p;
4138         int k, err;
4139
4140         *top = 0;
4141         /* Make k index the deepest non-null offest + 1 */
4142         for (k = depth; k > 1 && !offsets[k-1]; k--)
4143                 ;
4144         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4145         /* Writer: pointers */
4146         if (!partial)
4147                 partial = chain + k-1;
4148         /*
4149          * If the branch acquired continuation since we've looked at it -
4150          * fine, it should all survive and (new) top doesn't belong to us.
4151          */
4152         if (!partial->key && *partial->p)
4153                 /* Writer: end */
4154                 goto no_top;
4155         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4156                 ;
4157         /*
4158          * OK, we've found the last block that must survive. The rest of our
4159          * branch should be detached before unlocking. However, if that rest
4160          * of branch is all ours and does not grow immediately from the inode
4161          * it's easier to cheat and just decrement partial->p.
4162          */
4163         if (p == chain + k - 1 && p > chain) {
4164                 p->p--;
4165         } else {
4166                 *top = *p->p;
4167                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4168 #if 0
4169                 *p->p = 0;
4170 #endif
4171         }
4172         /* Writer: end */
4173
4174         while (partial > p) {
4175                 brelse(partial->bh);
4176                 partial--;
4177         }
4178 no_top:
4179         return partial;
4180 }
4181
4182 /*
4183  * Zero a number of block pointers in either an inode or an indirect block.
4184  * If we restart the transaction we must again get write access to the
4185  * indirect block for further modification.
4186  *
4187  * We release `count' blocks on disk, but (last - first) may be greater
4188  * than `count' because there can be holes in there.
4189  */
4190 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4191                               struct buffer_head *bh,
4192                               ext4_fsblk_t block_to_free,
4193                               unsigned long count, __le32 *first,
4194                               __le32 *last)
4195 {
4196         __le32 *p;
4197         int     is_metadata = S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode);
4198
4199         if (try_to_extend_transaction(handle, inode)) {
4200                 if (bh) {
4201                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4202                         ext4_handle_dirty_metadata(handle, inode, bh);
4203                 }
4204                 ext4_mark_inode_dirty(handle, inode);
4205                 ext4_truncate_restart_trans(handle, inode,
4206                                             blocks_for_truncate(inode));
4207                 if (bh) {
4208                         BUFFER_TRACE(bh, "retaking write access");
4209                         ext4_journal_get_write_access(handle, bh);
4210                 }
4211         }
4212
4213         /*
4214          * Any buffers which are on the journal will be in memory. We
4215          * find them on the hash table so jbd2_journal_revoke() will
4216          * run jbd2_journal_forget() on them.  We've already detached
4217          * each block from the file, so bforget() in
4218          * jbd2_journal_forget() should be safe.
4219          *
4220          * AKPM: turn on bforget in jbd2_journal_forget()!!!
4221          */
4222         for (p = first; p < last; p++) {
4223                 u32 nr = le32_to_cpu(*p);
4224                 if (nr) {
4225                         struct buffer_head *tbh;
4226
4227                         *p = 0;
4228                         tbh = sb_find_get_block(inode->i_sb, nr);
4229                         ext4_forget(handle, is_metadata, inode, tbh, nr);
4230                 }
4231         }
4232
4233         ext4_free_blocks(handle, inode, block_to_free, count, is_metadata);
4234 }
4235
4236 /**
4237  * ext4_free_data - free a list of data blocks
4238  * @handle:     handle for this transaction
4239  * @inode:      inode we are dealing with
4240  * @this_bh:    indirect buffer_head which contains *@first and *@last
4241  * @first:      array of block numbers
4242  * @last:       points immediately past the end of array
4243  *
4244  * We are freeing all blocks refered from that array (numbers are stored as
4245  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4246  *
4247  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4248  * blocks are contiguous then releasing them at one time will only affect one
4249  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4250  * actually use a lot of journal space.
4251  *
4252  * @this_bh will be %NULL if @first and @last point into the inode's direct
4253  * block pointers.
4254  */
4255 static void ext4_free_data(handle_t *handle, struct inode *inode,
4256                            struct buffer_head *this_bh,
4257                            __le32 *first, __le32 *last)
4258 {
4259         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4260         unsigned long count = 0;            /* Number of blocks in the run */
4261         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4262                                                corresponding to
4263                                                block_to_free */
4264         ext4_fsblk_t nr;                    /* Current block # */
4265         __le32 *p;                          /* Pointer into inode/ind
4266                                                for current block */
4267         int err;
4268
4269         if (this_bh) {                          /* For indirect block */
4270                 BUFFER_TRACE(this_bh, "get_write_access");
4271                 err = ext4_journal_get_write_access(handle, this_bh);
4272                 /* Important: if we can't update the indirect pointers
4273                  * to the blocks, we can't free them. */
4274                 if (err)
4275                         return;
4276         }
4277
4278         for (p = first; p < last; p++) {
4279                 nr = le32_to_cpu(*p);
4280                 if (nr) {
4281                         /* accumulate blocks to free if they're contiguous */
4282                         if (count == 0) {
4283                                 block_to_free = nr;
4284                                 block_to_free_p = p;
4285                                 count = 1;
4286                         } else if (nr == block_to_free + count) {
4287                                 count++;
4288                         } else {
4289                                 ext4_clear_blocks(handle, inode, this_bh,
4290                                                   block_to_free,
4291                                                   count, block_to_free_p, p);
4292                                 block_to_free = nr;
4293                                 block_to_free_p = p;
4294                                 count = 1;
4295                         }
4296                 }
4297         }
4298
4299         if (count > 0)
4300                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4301                                   count, block_to_free_p, p);
4302
4303         if (this_bh) {
4304                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4305
4306                 /*
4307                  * The buffer head should have an attached journal head at this
4308                  * point. However, if the data is corrupted and an indirect
4309                  * block pointed to itself, it would have been detached when
4310                  * the block was cleared. Check for this instead of OOPSing.
4311                  */
4312                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4313                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4314                 else
4315                         ext4_error(inode->i_sb, __func__,
4316                                    "circular indirect block detected, "
4317                                    "inode=%lu, block=%llu",
4318                                    inode->i_ino,
4319                                    (unsigned long long) this_bh->b_blocknr);
4320         }
4321 }
4322
4323 /**
4324  *      ext4_free_branches - free an array of branches
4325  *      @handle: JBD handle for this transaction
4326  *      @inode: inode we are dealing with
4327  *      @parent_bh: the buffer_head which contains *@first and *@last
4328  *      @first: array of block numbers
4329  *      @last:  pointer immediately past the end of array
4330  *      @depth: depth of the branches to free
4331  *
4332  *      We are freeing all blocks refered from these branches (numbers are
4333  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4334  *      appropriately.
4335  */
4336 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4337                                struct buffer_head *parent_bh,
4338                                __le32 *first, __le32 *last, int depth)
4339 {
4340         ext4_fsblk_t nr;
4341         __le32 *p;
4342
4343         if (ext4_handle_is_aborted(handle))
4344                 return;
4345
4346         if (depth--) {
4347                 struct buffer_head *bh;
4348                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4349                 p = last;
4350                 while (--p >= first) {
4351                         nr = le32_to_cpu(*p);
4352                         if (!nr)
4353                                 continue;               /* A hole */
4354
4355                         /* Go read the buffer for the next level down */
4356                         bh = sb_bread(inode->i_sb, nr);
4357
4358                         /*
4359                          * A read failure? Report error and clear slot
4360                          * (should be rare).
4361                          */
4362                         if (!bh) {
4363                                 ext4_error(inode->i_sb, "ext4_free_branches",
4364                                            "Read failure, inode=%lu, block=%llu",
4365                                            inode->i_ino, nr);
4366                                 continue;
4367                         }
4368
4369                         /* This zaps the entire block.  Bottom up. */
4370                         BUFFER_TRACE(bh, "free child branches");
4371                         ext4_free_branches(handle, inode, bh,
4372                                         (__le32 *) bh->b_data,
4373                                         (__le32 *) bh->b_data + addr_per_block,
4374                                         depth);
4375
4376                         /*
4377                          * We've probably journalled the indirect block several
4378                          * times during the truncate.  But it's no longer
4379                          * needed and we now drop it from the transaction via
4380                          * jbd2_journal_revoke().
4381                          *
4382                          * That's easy if it's exclusively part of this
4383                          * transaction.  But if it's part of the committing
4384                          * transaction then jbd2_journal_forget() will simply
4385                          * brelse() it.  That means that if the underlying
4386                          * block is reallocated in ext4_get_block(),
4387                          * unmap_underlying_metadata() will find this block
4388                          * and will try to get rid of it.  damn, damn.
4389                          *
4390                          * If this block has already been committed to the
4391                          * journal, a revoke record will be written.  And
4392                          * revoke records must be emitted *before* clearing
4393                          * this block's bit in the bitmaps.
4394                          */
4395                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4396
4397                         /*
4398                          * Everything below this this pointer has been
4399                          * released.  Now let this top-of-subtree go.
4400                          *
4401                          * We want the freeing of this indirect block to be
4402                          * atomic in the journal with the updating of the
4403                          * bitmap block which owns it.  So make some room in
4404                          * the journal.
4405                          *
4406                          * We zero the parent pointer *after* freeing its
4407                          * pointee in the bitmaps, so if extend_transaction()
4408                          * for some reason fails to put the bitmap changes and
4409                          * the release into the same transaction, recovery
4410                          * will merely complain about releasing a free block,
4411                          * rather than leaking blocks.
4412                          */
4413                         if (ext4_handle_is_aborted(handle))
4414                                 return;
4415                         if (try_to_extend_transaction(handle, inode)) {
4416                                 ext4_mark_inode_dirty(handle, inode);
4417                                 ext4_truncate_restart_trans(handle, inode,
4418                                             blocks_for_truncate(inode));
4419                         }
4420
4421                         ext4_free_blocks(handle, inode, nr, 1, 1);
4422
4423                         if (parent_bh) {
4424                                 /*
4425                                  * The block which we have just freed is
4426                                  * pointed to by an indirect block: journal it
4427                                  */
4428                                 BUFFER_TRACE(parent_bh, "get_write_access");
4429                                 if (!ext4_journal_get_write_access(handle,
4430                                                                    parent_bh)){
4431                                         *p = 0;
4432                                         BUFFER_TRACE(parent_bh,
4433                                         "call ext4_handle_dirty_metadata");
4434                                         ext4_handle_dirty_metadata(handle,
4435                                                                    inode,
4436                                                                    parent_bh);
4437                                 }
4438                         }
4439                 }
4440         } else {
4441                 /* We have reached the bottom of the tree. */
4442                 BUFFER_TRACE(parent_bh, "free data blocks");
4443                 ext4_free_data(handle, inode, parent_bh, first, last);
4444         }
4445 }
4446
4447 int ext4_can_truncate(struct inode *inode)
4448 {
4449         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4450                 return 0;
4451         if (S_ISREG(inode->i_mode))
4452                 return 1;
4453         if (S_ISDIR(inode->i_mode))
4454                 return 1;
4455         if (S_ISLNK(inode->i_mode))
4456                 return !ext4_inode_is_fast_symlink(inode);
4457         return 0;
4458 }
4459
4460 /*
4461  * ext4_truncate()
4462  *
4463  * We block out ext4_get_block() block instantiations across the entire
4464  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4465  * simultaneously on behalf of the same inode.
4466  *
4467  * As we work through the truncate and commmit bits of it to the journal there
4468  * is one core, guiding principle: the file's tree must always be consistent on
4469  * disk.  We must be able to restart the truncate after a crash.
4470  *
4471  * The file's tree may be transiently inconsistent in memory (although it
4472  * probably isn't), but whenever we close off and commit a journal transaction,
4473  * the contents of (the filesystem + the journal) must be consistent and
4474  * restartable.  It's pretty simple, really: bottom up, right to left (although
4475  * left-to-right works OK too).
4476  *
4477  * Note that at recovery time, journal replay occurs *before* the restart of
4478  * truncate against the orphan inode list.
4479  *
4480  * The committed inode has the new, desired i_size (which is the same as
4481  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4482  * that this inode's truncate did not complete and it will again call
4483  * ext4_truncate() to have another go.  So there will be instantiated blocks
4484  * to the right of the truncation point in a crashed ext4 filesystem.  But
4485  * that's fine - as long as they are linked from the inode, the post-crash
4486  * ext4_truncate() run will find them and release them.
4487  */
4488 void ext4_truncate(struct inode *inode)
4489 {
4490         handle_t *handle;
4491         struct ext4_inode_info *ei = EXT4_I(inode);
4492         __le32 *i_data = ei->i_data;
4493         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4494         struct address_space *mapping = inode->i_mapping;
4495         ext4_lblk_t offsets[4];
4496         Indirect chain[4];
4497         Indirect *partial;
4498         __le32 nr = 0;
4499         int n;
4500         ext4_lblk_t last_block;
4501         unsigned blocksize = inode->i_sb->s_blocksize;
4502
4503         if (!ext4_can_truncate(inode))
4504                 return;
4505
4506         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4507
4508         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4509                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4510
4511         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4512                 ext4_ext_truncate(inode);
4513                 return;
4514         }
4515
4516         handle = start_transaction(inode);
4517         if (IS_ERR(handle))
4518                 return;         /* AKPM: return what? */
4519
4520         last_block = (inode->i_size + blocksize-1)
4521                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4522
4523         if (inode->i_size & (blocksize - 1))
4524                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4525                         goto out_stop;
4526
4527         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4528         if (n == 0)
4529                 goto out_stop;  /* error */
4530
4531         /*
4532          * OK.  This truncate is going to happen.  We add the inode to the
4533          * orphan list, so that if this truncate spans multiple transactions,
4534          * and we crash, we will resume the truncate when the filesystem
4535          * recovers.  It also marks the inode dirty, to catch the new size.
4536          *
4537          * Implication: the file must always be in a sane, consistent
4538          * truncatable state while each transaction commits.
4539          */
4540         if (ext4_orphan_add(handle, inode))
4541                 goto out_stop;
4542
4543         /*
4544          * From here we block out all ext4_get_block() callers who want to
4545          * modify the block allocation tree.
4546          */
4547         down_write(&ei->i_data_sem);
4548
4549         ext4_discard_preallocations(inode);
4550
4551         /*
4552          * The orphan list entry will now protect us from any crash which
4553          * occurs before the truncate completes, so it is now safe to propagate
4554          * the new, shorter inode size (held for now in i_size) into the
4555          * on-disk inode. We do this via i_disksize, which is the value which
4556          * ext4 *really* writes onto the disk inode.
4557          */
4558         ei->i_disksize = inode->i_size;
4559
4560         if (n == 1) {           /* direct blocks */
4561                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4562                                i_data + EXT4_NDIR_BLOCKS);
4563                 goto do_indirects;
4564         }
4565
4566         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4567         /* Kill the top of shared branch (not detached) */
4568         if (nr) {
4569                 if (partial == chain) {
4570                         /* Shared branch grows from the inode */
4571                         ext4_free_branches(handle, inode, NULL,
4572                                            &nr, &nr+1, (chain+n-1) - partial);
4573                         *partial->p = 0;
4574                         /*
4575                          * We mark the inode dirty prior to restart,
4576                          * and prior to stop.  No need for it here.
4577                          */
4578                 } else {
4579                         /* Shared branch grows from an indirect block */
4580                         BUFFER_TRACE(partial->bh, "get_write_access");
4581                         ext4_free_branches(handle, inode, partial->bh,
4582                                         partial->p,
4583                                         partial->p+1, (chain+n-1) - partial);
4584                 }
4585         }
4586         /* Clear the ends of indirect blocks on the shared branch */
4587         while (partial > chain) {
4588                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4589                                    (__le32*)partial->bh->b_data+addr_per_block,
4590                                    (chain+n-1) - partial);
4591                 BUFFER_TRACE(partial->bh, "call brelse");
4592                 brelse(partial->bh);
4593                 partial--;
4594         }
4595 do_indirects:
4596         /* Kill the remaining (whole) subtrees */
4597         switch (offsets[0]) {
4598         default:
4599                 nr = i_data[EXT4_IND_BLOCK];
4600                 if (nr) {
4601                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4602                         i_data[EXT4_IND_BLOCK] = 0;
4603                 }
4604         case EXT4_IND_BLOCK:
4605                 nr = i_data[EXT4_DIND_BLOCK];
4606                 if (nr) {
4607                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4608                         i_data[EXT4_DIND_BLOCK] = 0;
4609                 }
4610         case EXT4_DIND_BLOCK:
4611                 nr = i_data[EXT4_TIND_BLOCK];
4612                 if (nr) {
4613                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4614                         i_data[EXT4_TIND_BLOCK] = 0;
4615                 }
4616         case EXT4_TIND_BLOCK:
4617                 ;
4618         }
4619
4620         up_write(&ei->i_data_sem);
4621         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4622         ext4_mark_inode_dirty(handle, inode);
4623
4624         /*
4625          * In a multi-transaction truncate, we only make the final transaction
4626          * synchronous
4627          */
4628         if (IS_SYNC(inode))
4629                 ext4_handle_sync(handle);
4630 out_stop:
4631         /*
4632          * If this was a simple ftruncate(), and the file will remain alive
4633          * then we need to clear up the orphan record which we created above.
4634          * However, if this was a real unlink then we were called by
4635          * ext4_delete_inode(), and we allow that function to clean up the
4636          * orphan info for us.
4637          */
4638         if (inode->i_nlink)
4639                 ext4_orphan_del(handle, inode);
4640
4641         ext4_journal_stop(handle);
4642 }
4643
4644 /*
4645  * ext4_get_inode_loc returns with an extra refcount against the inode's
4646  * underlying buffer_head on success. If 'in_mem' is true, we have all
4647  * data in memory that is needed to recreate the on-disk version of this
4648  * inode.
4649  */
4650 static int __ext4_get_inode_loc(struct inode *inode,
4651                                 struct ext4_iloc *iloc, int in_mem)
4652 {
4653         struct ext4_group_desc  *gdp;
4654         struct buffer_head      *bh;
4655         struct super_block      *sb = inode->i_sb;
4656         ext4_fsblk_t            block;
4657         int                     inodes_per_block, inode_offset;
4658
4659         iloc->bh = NULL;
4660         if (!ext4_valid_inum(sb, inode->i_ino))
4661                 return -EIO;
4662
4663         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4664         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4665         if (!gdp)
4666                 return -EIO;
4667
4668         /*
4669          * Figure out the offset within the block group inode table
4670          */
4671         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4672         inode_offset = ((inode->i_ino - 1) %
4673                         EXT4_INODES_PER_GROUP(sb));
4674         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4675         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4676
4677         bh = sb_getblk(sb, block);
4678         if (!bh) {
4679                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4680                            "inode block - inode=%lu, block=%llu",
4681                            inode->i_ino, block);
4682                 return -EIO;
4683         }
4684         if (!buffer_uptodate(bh)) {
4685                 lock_buffer(bh);
4686
4687                 /*
4688                  * If the buffer has the write error flag, we have failed
4689                  * to write out another inode in the same block.  In this
4690                  * case, we don't have to read the block because we may
4691                  * read the old inode data successfully.
4692                  */
4693                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4694                         set_buffer_uptodate(bh);
4695
4696                 if (buffer_uptodate(bh)) {
4697                         /* someone brought it uptodate while we waited */
4698                         unlock_buffer(bh);
4699                         goto has_buffer;
4700                 }
4701
4702                 /*
4703                  * If we have all information of the inode in memory and this
4704                  * is the only valid inode in the block, we need not read the
4705                  * block.
4706                  */
4707                 if (in_mem) {
4708                         struct buffer_head *bitmap_bh;
4709                         int i, start;
4710
4711                         start = inode_offset & ~(inodes_per_block - 1);
4712
4713                         /* Is the inode bitmap in cache? */
4714                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4715                         if (!bitmap_bh)
4716                                 goto make_io;
4717
4718                         /*
4719                          * If the inode bitmap isn't in cache then the
4720                          * optimisation may end up performing two reads instead
4721                          * of one, so skip it.
4722                          */
4723                         if (!buffer_uptodate(bitmap_bh)) {
4724                                 brelse(bitmap_bh);
4725                                 goto make_io;
4726                         }
4727                         for (i = start; i < start + inodes_per_block; i++) {
4728                                 if (i == inode_offset)
4729                                         continue;
4730                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4731                                         break;
4732                         }
4733                         brelse(bitmap_bh);
4734                         if (i == start + inodes_per_block) {
4735                                 /* all other inodes are free, so skip I/O */
4736                                 memset(bh->b_data, 0, bh->b_size);
4737                                 set_buffer_uptodate(bh);
4738                                 unlock_buffer(bh);
4739                                 goto has_buffer;
4740                         }
4741                 }
4742
4743 make_io:
4744                 /*
4745                  * If we need to do any I/O, try to pre-readahead extra
4746                  * blocks from the inode table.
4747                  */
4748                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4749                         ext4_fsblk_t b, end, table;
4750                         unsigned num;
4751
4752                         table = ext4_inode_table(sb, gdp);
4753                         /* s_inode_readahead_blks is always a power of 2 */
4754                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4755                         if (table > b)
4756                                 b = table;
4757                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4758                         num = EXT4_INODES_PER_GROUP(sb);
4759                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4760                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4761                                 num -= ext4_itable_unused_count(sb, gdp);
4762                         table += num / inodes_per_block;
4763                         if (end > table)
4764                                 end = table;
4765                         while (b <= end)
4766                                 sb_breadahead(sb, b++);
4767                 }
4768
4769                 /*
4770                  * There are other valid inodes in the buffer, this inode
4771                  * has in-inode xattrs, or we don't have this inode in memory.
4772                  * Read the block from disk.
4773                  */
4774                 get_bh(bh);
4775                 bh->b_end_io = end_buffer_read_sync;
4776                 submit_bh(READ_META, bh);
4777                 wait_on_buffer(bh);
4778                 if (!buffer_uptodate(bh)) {
4779                         ext4_error(sb, __func__,
4780                                    "unable to read inode block - inode=%lu, "
4781                                    "block=%llu", inode->i_ino, block);
4782                         brelse(bh);
4783                         return -EIO;
4784                 }
4785         }
4786 has_buffer:
4787         iloc->bh = bh;
4788         return 0;
4789 }
4790
4791 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4792 {
4793         /* We have all inode data except xattrs in memory here. */
4794         return __ext4_get_inode_loc(inode, iloc,
4795                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4796 }
4797
4798 void ext4_set_inode_flags(struct inode *inode)
4799 {
4800         unsigned int flags = EXT4_I(inode)->i_flags;
4801
4802         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4803         if (flags & EXT4_SYNC_FL)
4804                 inode->i_flags |= S_SYNC;
4805         if (flags & EXT4_APPEND_FL)
4806                 inode->i_flags |= S_APPEND;
4807         if (flags & EXT4_IMMUTABLE_FL)
4808                 inode->i_flags |= S_IMMUTABLE;
4809         if (flags & EXT4_NOATIME_FL)
4810                 inode->i_flags |= S_NOATIME;
4811         if (flags & EXT4_DIRSYNC_FL)
4812                 inode->i_flags |= S_DIRSYNC;
4813 }
4814
4815 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4816 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4817 {
4818         unsigned int vfs_fl;
4819         unsigned long old_fl, new_fl;
4820
4821         do {
4822                 vfs_fl = ei->vfs_inode.i_flags;
4823                 old_fl = ei->i_flags;
4824                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4825                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4826                                 EXT4_DIRSYNC_FL);
4827                 if (vfs_fl & S_SYNC)
4828                         new_fl |= EXT4_SYNC_FL;
4829                 if (vfs_fl & S_APPEND)
4830                         new_fl |= EXT4_APPEND_FL;
4831                 if (vfs_fl & S_IMMUTABLE)
4832                         new_fl |= EXT4_IMMUTABLE_FL;
4833                 if (vfs_fl & S_NOATIME)
4834                         new_fl |= EXT4_NOATIME_FL;
4835                 if (vfs_fl & S_DIRSYNC)
4836                         new_fl |= EXT4_DIRSYNC_FL;
4837         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4838 }
4839
4840 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4841                                   struct ext4_inode_info *ei)
4842 {
4843         blkcnt_t i_blocks ;
4844         struct inode *inode = &(ei->vfs_inode);
4845         struct super_block *sb = inode->i_sb;
4846
4847         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4848                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4849                 /* we are using combined 48 bit field */
4850                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4851                                         le32_to_cpu(raw_inode->i_blocks_lo);
4852                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4853                         /* i_blocks represent file system block size */
4854                         return i_blocks  << (inode->i_blkbits - 9);
4855                 } else {
4856                         return i_blocks;
4857                 }
4858         } else {
4859                 return le32_to_cpu(raw_inode->i_blocks_lo);
4860         }
4861 }
4862
4863 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4864 {
4865         struct ext4_iloc iloc;
4866         struct ext4_inode *raw_inode;
4867         struct ext4_inode_info *ei;
4868         struct inode *inode;
4869         journal_t *journal = EXT4_SB(sb)->s_journal;
4870         long ret;
4871         int block;
4872
4873         inode = iget_locked(sb, ino);
4874         if (!inode)
4875                 return ERR_PTR(-ENOMEM);
4876         if (!(inode->i_state & I_NEW))
4877                 return inode;
4878
4879         ei = EXT4_I(inode);
4880         iloc.bh = 0;
4881
4882         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4883         if (ret < 0)
4884                 goto bad_inode;
4885         raw_inode = ext4_raw_inode(&iloc);
4886         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4887         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4888         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4889         if (!(test_opt(inode->i_sb, NO_UID32))) {
4890                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4891                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4892         }
4893         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4894
4895         ei->i_state_flags = 0;
4896         ei->i_dir_start_lookup = 0;
4897         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4898         /* We now have enough fields to check if the inode was active or not.
4899          * This is needed because nfsd might try to access dead inodes
4900          * the test is that same one that e2fsck uses
4901          * NeilBrown 1999oct15
4902          */
4903         if (inode->i_nlink == 0) {
4904                 if (inode->i_mode == 0 ||
4905                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4906                         /* this inode is deleted */
4907                         ret = -ESTALE;
4908                         goto bad_inode;
4909                 }
4910                 /* The only unlinked inodes we let through here have
4911                  * valid i_mode and are being read by the orphan
4912                  * recovery code: that's fine, we're about to complete
4913                  * the process of deleting those. */
4914         }
4915         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4916         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4917         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4918         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4919                 ei->i_file_acl |=
4920                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4921         inode->i_size = ext4_isize(raw_inode);
4922         ei->i_disksize = inode->i_size;
4923 #ifdef CONFIG_QUOTA
4924         ei->i_reserved_quota = 0;
4925 #endif
4926         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4927         ei->i_block_group = iloc.block_group;
4928         ei->i_last_alloc_group = ~0;
4929         /*
4930          * NOTE! The in-memory inode i_data array is in little-endian order
4931          * even on big-endian machines: we do NOT byteswap the block numbers!
4932          */
4933         for (block = 0; block < EXT4_N_BLOCKS; block++)
4934                 ei->i_data[block] = raw_inode->i_block[block];
4935         INIT_LIST_HEAD(&ei->i_orphan);
4936
4937         /*
4938          * Set transaction id's of transactions that have to be committed
4939          * to finish f[data]sync. We set them to currently running transaction
4940          * as we cannot be sure that the inode or some of its metadata isn't
4941          * part of the transaction - the inode could have been reclaimed and
4942          * now it is reread from disk.
4943          */
4944         if (journal) {
4945                 transaction_t *transaction;
4946                 tid_t tid;
4947
4948                 spin_lock(&journal->j_state_lock);
4949                 if (journal->j_running_transaction)
4950                         transaction = journal->j_running_transaction;
4951                 else
4952                         transaction = journal->j_committing_transaction;
4953                 if (transaction)
4954                         tid = transaction->t_tid;
4955                 else
4956                         tid = journal->j_commit_sequence;
4957                 spin_unlock(&journal->j_state_lock);
4958                 ei->i_sync_tid = tid;
4959                 ei->i_datasync_tid = tid;
4960         }
4961
4962         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4963                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4964                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4965                     EXT4_INODE_SIZE(inode->i_sb)) {
4966                         ret = -EIO;
4967                         goto bad_inode;
4968                 }
4969                 if (ei->i_extra_isize == 0) {
4970                         /* The extra space is currently unused. Use it. */
4971                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4972                                             EXT4_GOOD_OLD_INODE_SIZE;
4973                 } else {
4974                         __le32 *magic = (void *)raw_inode +
4975                                         EXT4_GOOD_OLD_INODE_SIZE +
4976                                         ei->i_extra_isize;
4977                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4978                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4979                 }
4980         } else
4981                 ei->i_extra_isize = 0;
4982
4983         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4984         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4985         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4986         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4987
4988         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4989         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4990                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4991                         inode->i_version |=
4992                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4993         }
4994
4995         ret = 0;
4996         if (ei->i_file_acl &&
4997             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4998                 ext4_error(sb, __func__,
4999                            "bad extended attribute block %llu in inode #%lu",
5000                            ei->i_file_acl, inode->i_ino);
5001                 ret = -EIO;
5002                 goto bad_inode;
5003         } else if (ei->i_flags & EXT4_EXTENTS_FL) {
5004                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5005                     (S_ISLNK(inode->i_mode) &&
5006                      !ext4_inode_is_fast_symlink(inode)))
5007                         /* Validate extent which is part of inode */
5008                         ret = ext4_ext_check_inode(inode);
5009         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5010                    (S_ISLNK(inode->i_mode) &&
5011                     !ext4_inode_is_fast_symlink(inode))) {
5012                 /* Validate block references which are part of inode */
5013                 ret = ext4_check_inode_blockref(inode);
5014         }
5015         if (ret)
5016                 goto bad_inode;
5017
5018         if (S_ISREG(inode->i_mode)) {
5019                 inode->i_op = &ext4_file_inode_operations;
5020                 inode->i_fop = &ext4_file_operations;
5021                 ext4_set_aops(inode);
5022         } else if (S_ISDIR(inode->i_mode)) {
5023                 inode->i_op = &ext4_dir_inode_operations;
5024                 inode->i_fop = &ext4_dir_operations;
5025         } else if (S_ISLNK(inode->i_mode)) {
5026                 if (ext4_inode_is_fast_symlink(inode)) {
5027                         inode->i_op = &ext4_fast_symlink_inode_operations;
5028                         nd_terminate_link(ei->i_data, inode->i_size,
5029                                 sizeof(ei->i_data) - 1);
5030                 } else {
5031                         inode->i_op = &ext4_symlink_inode_operations;
5032                         ext4_set_aops(inode);
5033                 }
5034         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5035               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5036                 inode->i_op = &ext4_special_inode_operations;
5037                 if (raw_inode->i_block[0])
5038                         init_special_inode(inode, inode->i_mode,
5039                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5040                 else
5041                         init_special_inode(inode, inode->i_mode,
5042                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5043         } else {
5044                 ret = -EIO;
5045                 ext4_error(inode->i_sb, __func__,
5046                            "bogus i_mode (%o) for inode=%lu",
5047                            inode->i_mode, inode->i_ino);
5048                 goto bad_inode;
5049         }
5050         brelse(iloc.bh);
5051         ext4_set_inode_flags(inode);
5052         unlock_new_inode(inode);
5053         return inode;
5054
5055 bad_inode:
5056         brelse(iloc.bh);
5057         iget_failed(inode);
5058         return ERR_PTR(ret);
5059 }
5060
5061 static int ext4_inode_blocks_set(handle_t *handle,
5062                                 struct ext4_inode *raw_inode,
5063                                 struct ext4_inode_info *ei)
5064 {
5065         struct inode *inode = &(ei->vfs_inode);
5066         u64 i_blocks = inode->i_blocks;
5067         struct super_block *sb = inode->i_sb;
5068
5069         if (i_blocks <= ~0U) {
5070                 /*
5071                  * i_blocks can be represnted in a 32 bit variable
5072                  * as multiple of 512 bytes
5073                  */
5074                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5075                 raw_inode->i_blocks_high = 0;
5076                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5077                 return 0;
5078         }
5079         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5080                 return -EFBIG;
5081
5082         if (i_blocks <= 0xffffffffffffULL) {
5083                 /*
5084                  * i_blocks can be represented in a 48 bit variable
5085                  * as multiple of 512 bytes
5086                  */
5087                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5088                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5089                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5090         } else {
5091                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5092                 /* i_block is stored in file system block size */
5093                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5094                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5095                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5096         }
5097         return 0;
5098 }
5099
5100 /*
5101  * Post the struct inode info into an on-disk inode location in the
5102  * buffer-cache.  This gobbles the caller's reference to the
5103  * buffer_head in the inode location struct.
5104  *
5105  * The caller must have write access to iloc->bh.
5106  */
5107 static int ext4_do_update_inode(handle_t *handle,
5108                                 struct inode *inode,
5109                                 struct ext4_iloc *iloc)
5110 {
5111         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5112         struct ext4_inode_info *ei = EXT4_I(inode);
5113         struct buffer_head *bh = iloc->bh;
5114         int err = 0, rc, block;
5115
5116         /* For fields not not tracking in the in-memory inode,
5117          * initialise them to zero for new inodes. */
5118         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5119                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5120
5121         ext4_get_inode_flags(ei);
5122         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5123         if (!(test_opt(inode->i_sb, NO_UID32))) {
5124                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5125                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5126 /*
5127  * Fix up interoperability with old kernels. Otherwise, old inodes get
5128  * re-used with the upper 16 bits of the uid/gid intact
5129  */
5130                 if (!ei->i_dtime) {
5131                         raw_inode->i_uid_high =
5132                                 cpu_to_le16(high_16_bits(inode->i_uid));
5133                         raw_inode->i_gid_high =
5134                                 cpu_to_le16(high_16_bits(inode->i_gid));
5135                 } else {
5136                         raw_inode->i_uid_high = 0;
5137                         raw_inode->i_gid_high = 0;
5138                 }
5139         } else {
5140                 raw_inode->i_uid_low =
5141                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5142                 raw_inode->i_gid_low =
5143                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5144                 raw_inode->i_uid_high = 0;
5145                 raw_inode->i_gid_high = 0;
5146         }
5147         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5148
5149         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5150         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5151         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5152         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5153
5154         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5155                 goto out_brelse;
5156         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5157         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5158         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5159             cpu_to_le32(EXT4_OS_HURD))
5160                 raw_inode->i_file_acl_high =
5161                         cpu_to_le16(ei->i_file_acl >> 32);
5162         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5163         ext4_isize_set(raw_inode, ei->i_disksize);
5164         if (ei->i_disksize > 0x7fffffffULL) {
5165                 struct super_block *sb = inode->i_sb;
5166                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5167                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5168                                 EXT4_SB(sb)->s_es->s_rev_level ==
5169                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5170                         /* If this is the first large file
5171                          * created, add a flag to the superblock.
5172                          */
5173                         err = ext4_journal_get_write_access(handle,
5174                                         EXT4_SB(sb)->s_sbh);
5175                         if (err)
5176                                 goto out_brelse;
5177                         ext4_update_dynamic_rev(sb);
5178                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5179                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5180                         sb->s_dirt = 1;
5181                         ext4_handle_sync(handle);
5182                         err = ext4_handle_dirty_metadata(handle, NULL,
5183                                         EXT4_SB(sb)->s_sbh);
5184                 }
5185         }
5186         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5187         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5188                 if (old_valid_dev(inode->i_rdev)) {
5189                         raw_inode->i_block[0] =
5190                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5191                         raw_inode->i_block[1] = 0;
5192                 } else {
5193                         raw_inode->i_block[0] = 0;
5194                         raw_inode->i_block[1] =
5195                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5196                         raw_inode->i_block[2] = 0;
5197                 }
5198         } else
5199                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5200                         raw_inode->i_block[block] = ei->i_data[block];
5201
5202         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5203         if (ei->i_extra_isize) {
5204                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5205                         raw_inode->i_version_hi =
5206                         cpu_to_le32(inode->i_version >> 32);
5207                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5208         }
5209
5210         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5211         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5212         if (!err)
5213                 err = rc;
5214         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5215
5216         ext4_update_inode_fsync_trans(handle, inode, 0);
5217 out_brelse:
5218         brelse(bh);
5219         ext4_std_error(inode->i_sb, err);
5220         return err;
5221 }
5222
5223 /*
5224  * ext4_write_inode()
5225  *
5226  * We are called from a few places:
5227  *
5228  * - Within generic_file_write() for O_SYNC files.
5229  *   Here, there will be no transaction running. We wait for any running
5230  *   trasnaction to commit.
5231  *
5232  * - Within sys_sync(), kupdate and such.
5233  *   We wait on commit, if tol to.
5234  *
5235  * - Within prune_icache() (PF_MEMALLOC == true)
5236  *   Here we simply return.  We can't afford to block kswapd on the
5237  *   journal commit.
5238  *
5239  * In all cases it is actually safe for us to return without doing anything,
5240  * because the inode has been copied into a raw inode buffer in
5241  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5242  * knfsd.
5243  *
5244  * Note that we are absolutely dependent upon all inode dirtiers doing the
5245  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5246  * which we are interested.
5247  *
5248  * It would be a bug for them to not do this.  The code:
5249  *
5250  *      mark_inode_dirty(inode)
5251  *      stuff();
5252  *      inode->i_size = expr;
5253  *
5254  * is in error because a kswapd-driven write_inode() could occur while
5255  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5256  * will no longer be on the superblock's dirty inode list.
5257  */
5258 int ext4_write_inode(struct inode *inode, int wait)
5259 {
5260         int err;
5261
5262         if (current->flags & PF_MEMALLOC)
5263                 return 0;
5264
5265         if (EXT4_SB(inode->i_sb)->s_journal) {
5266                 if (ext4_journal_current_handle()) {
5267                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5268                         dump_stack();
5269                         return -EIO;
5270                 }
5271
5272                 if (!wait)
5273                         return 0;
5274
5275                 err = ext4_force_commit(inode->i_sb);
5276         } else {
5277                 struct ext4_iloc iloc;
5278
5279                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5280                 if (err)
5281                         return err;
5282                 if (wait)
5283                         sync_dirty_buffer(iloc.bh);
5284                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5285                         ext4_error(inode->i_sb, __func__,
5286                                    "IO error syncing inode, "
5287                                    "inode=%lu, block=%llu",
5288                                    inode->i_ino,
5289                                    (unsigned long long)iloc.bh->b_blocknr);
5290                         err = -EIO;
5291                 }
5292                 brelse(iloc.bh);
5293         }
5294         return err;
5295 }
5296
5297 /*
5298  * ext4_setattr()
5299  *
5300  * Called from notify_change.
5301  *
5302  * We want to trap VFS attempts to truncate the file as soon as
5303  * possible.  In particular, we want to make sure that when the VFS
5304  * shrinks i_size, we put the inode on the orphan list and modify
5305  * i_disksize immediately, so that during the subsequent flushing of
5306  * dirty pages and freeing of disk blocks, we can guarantee that any
5307  * commit will leave the blocks being flushed in an unused state on
5308  * disk.  (On recovery, the inode will get truncated and the blocks will
5309  * be freed, so we have a strong guarantee that no future commit will
5310  * leave these blocks visible to the user.)
5311  *
5312  * Another thing we have to assure is that if we are in ordered mode
5313  * and inode is still attached to the committing transaction, we must
5314  * we start writeout of all the dirty pages which are being truncated.
5315  * This way we are sure that all the data written in the previous
5316  * transaction are already on disk (truncate waits for pages under
5317  * writeback).
5318  *
5319  * Called with inode->i_mutex down.
5320  */
5321 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5322 {
5323         struct inode *inode = dentry->d_inode;
5324         int error, rc = 0;
5325         const unsigned int ia_valid = attr->ia_valid;
5326
5327         error = inode_change_ok(inode, attr);
5328         if (error)
5329                 return error;
5330
5331         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5332                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5333                 handle_t *handle;
5334
5335                 /* (user+group)*(old+new) structure, inode write (sb,
5336                  * inode block, ? - but truncate inode update has it) */
5337                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5338                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5339                 if (IS_ERR(handle)) {
5340                         error = PTR_ERR(handle);
5341                         goto err_out;
5342                 }
5343                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5344                 if (error) {
5345                         ext4_journal_stop(handle);
5346                         return error;
5347                 }
5348                 /* Update corresponding info in inode so that everything is in
5349                  * one transaction */
5350                 if (attr->ia_valid & ATTR_UID)
5351                         inode->i_uid = attr->ia_uid;
5352                 if (attr->ia_valid & ATTR_GID)
5353                         inode->i_gid = attr->ia_gid;
5354                 error = ext4_mark_inode_dirty(handle, inode);
5355                 ext4_journal_stop(handle);
5356         }
5357
5358         if (attr->ia_valid & ATTR_SIZE) {
5359                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5360                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5361
5362                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5363                                 error = -EFBIG;
5364                                 goto err_out;
5365                         }
5366                 }
5367         }
5368
5369         if (S_ISREG(inode->i_mode) &&
5370             attr->ia_valid & ATTR_SIZE &&
5371             (attr->ia_size < inode->i_size ||
5372              (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5373                 handle_t *handle;
5374
5375                 handle = ext4_journal_start(inode, 3);
5376                 if (IS_ERR(handle)) {
5377                         error = PTR_ERR(handle);
5378                         goto err_out;
5379                 }
5380
5381                 error = ext4_orphan_add(handle, inode);
5382                 EXT4_I(inode)->i_disksize = attr->ia_size;
5383                 rc = ext4_mark_inode_dirty(handle, inode);
5384                 if (!error)
5385                         error = rc;
5386                 ext4_journal_stop(handle);
5387
5388                 if (ext4_should_order_data(inode)) {
5389                         error = ext4_begin_ordered_truncate(inode,
5390                                                             attr->ia_size);
5391                         if (error) {
5392                                 /* Do as much error cleanup as possible */
5393                                 handle = ext4_journal_start(inode, 3);
5394                                 if (IS_ERR(handle)) {
5395                                         ext4_orphan_del(NULL, inode);
5396                                         goto err_out;
5397                                 }
5398                                 ext4_orphan_del(handle, inode);
5399                                 ext4_journal_stop(handle);
5400                                 goto err_out;
5401                         }
5402                 }
5403                 /* ext4_truncate will clear the flag */
5404                 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5405                         ext4_truncate(inode);
5406         }
5407
5408         rc = inode_setattr(inode, attr);
5409
5410         /* If inode_setattr's call to ext4_truncate failed to get a
5411          * transaction handle at all, we need to clean up the in-core
5412          * orphan list manually. */
5413         if (inode->i_nlink)
5414                 ext4_orphan_del(NULL, inode);
5415
5416         if (!rc && (ia_valid & ATTR_MODE))
5417                 rc = ext4_acl_chmod(inode);
5418
5419 err_out:
5420         ext4_std_error(inode->i_sb, error);
5421         if (!error)
5422                 error = rc;
5423         return error;
5424 }
5425
5426 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5427                  struct kstat *stat)
5428 {
5429         struct inode *inode;
5430         unsigned long delalloc_blocks;
5431
5432         inode = dentry->d_inode;
5433         generic_fillattr(inode, stat);
5434
5435         /*
5436          * We can't update i_blocks if the block allocation is delayed
5437          * otherwise in the case of system crash before the real block
5438          * allocation is done, we will have i_blocks inconsistent with
5439          * on-disk file blocks.
5440          * We always keep i_blocks updated together with real
5441          * allocation. But to not confuse with user, stat
5442          * will return the blocks that include the delayed allocation
5443          * blocks for this file.
5444          */
5445         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5446         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5447         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5448
5449         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5450         return 0;
5451 }
5452
5453 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5454                                       int chunk)
5455 {
5456         int indirects;
5457
5458         /* if nrblocks are contiguous */
5459         if (chunk) {
5460                 /*
5461                  * With N contiguous data blocks, we need at most
5462                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5463                  * 2 dindirect blocks, and 1 tindirect block
5464                  */
5465                 return DIV_ROUND_UP(nrblocks,
5466                                     EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
5467         }
5468         /*
5469          * if nrblocks are not contiguous, worse case, each block touch
5470          * a indirect block, and each indirect block touch a double indirect
5471          * block, plus a triple indirect block
5472          */
5473         indirects = nrblocks * 2 + 1;
5474         return indirects;
5475 }
5476
5477 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5478 {
5479         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5480                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5481         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5482 }
5483
5484 /*
5485  * Account for index blocks, block groups bitmaps and block group
5486  * descriptor blocks if modify datablocks and index blocks
5487  * worse case, the indexs blocks spread over different block groups
5488  *
5489  * If datablocks are discontiguous, they are possible to spread over
5490  * different block groups too. If they are contiugous, with flexbg,
5491  * they could still across block group boundary.
5492  *
5493  * Also account for superblock, inode, quota and xattr blocks
5494  */
5495 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5496 {
5497         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5498         int gdpblocks;
5499         int idxblocks;
5500         int ret = 0;
5501
5502         /*
5503          * How many index blocks need to touch to modify nrblocks?
5504          * The "Chunk" flag indicating whether the nrblocks is
5505          * physically contiguous on disk
5506          *
5507          * For Direct IO and fallocate, they calls get_block to allocate
5508          * one single extent at a time, so they could set the "Chunk" flag
5509          */
5510         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5511
5512         ret = idxblocks;
5513
5514         /*
5515          * Now let's see how many group bitmaps and group descriptors need
5516          * to account
5517          */
5518         groups = idxblocks;
5519         if (chunk)
5520                 groups += 1;
5521         else
5522                 groups += nrblocks;
5523
5524         gdpblocks = groups;
5525         if (groups > ngroups)
5526                 groups = ngroups;
5527         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5528                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5529
5530         /* bitmaps and block group descriptor blocks */
5531         ret += groups + gdpblocks;
5532
5533         /* Blocks for super block, inode, quota and xattr blocks */
5534         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5535
5536         return ret;
5537 }
5538
5539 /*
5540  * Calulate the total number of credits to reserve to fit
5541  * the modification of a single pages into a single transaction,
5542  * which may include multiple chunks of block allocations.
5543  *
5544  * This could be called via ext4_write_begin()
5545  *
5546  * We need to consider the worse case, when
5547  * one new block per extent.
5548  */
5549 int ext4_writepage_trans_blocks(struct inode *inode)
5550 {
5551         int bpp = ext4_journal_blocks_per_page(inode);
5552         int ret;
5553
5554         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5555
5556         /* Account for data blocks for journalled mode */
5557         if (ext4_should_journal_data(inode))
5558                 ret += bpp;
5559         return ret;
5560 }
5561
5562 /*
5563  * Calculate the journal credits for a chunk of data modification.
5564  *
5565  * This is called from DIO, fallocate or whoever calling
5566  * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5567  *
5568  * journal buffers for data blocks are not included here, as DIO
5569  * and fallocate do no need to journal data buffers.
5570  */
5571 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5572 {
5573         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5574 }
5575
5576 /*
5577  * The caller must have previously called ext4_reserve_inode_write().
5578  * Give this, we know that the caller already has write access to iloc->bh.
5579  */
5580 int ext4_mark_iloc_dirty(handle_t *handle,
5581                          struct inode *inode, struct ext4_iloc *iloc)
5582 {
5583         int err = 0;
5584
5585         if (test_opt(inode->i_sb, I_VERSION))
5586                 inode_inc_iversion(inode);
5587
5588         /* the do_update_inode consumes one bh->b_count */
5589         get_bh(iloc->bh);
5590
5591         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5592         err = ext4_do_update_inode(handle, inode, iloc);
5593         put_bh(iloc->bh);
5594         return err;
5595 }
5596
5597 /*
5598  * On success, We end up with an outstanding reference count against
5599  * iloc->bh.  This _must_ be cleaned up later.
5600  */
5601
5602 int
5603 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5604                          struct ext4_iloc *iloc)
5605 {
5606         int err;
5607
5608         err = ext4_get_inode_loc(inode, iloc);
5609         if (!err) {
5610                 BUFFER_TRACE(iloc->bh, "get_write_access");
5611                 err = ext4_journal_get_write_access(handle, iloc->bh);
5612                 if (err) {
5613                         brelse(iloc->bh);
5614                         iloc->bh = NULL;
5615                 }
5616         }
5617         ext4_std_error(inode->i_sb, err);
5618         return err;
5619 }
5620
5621 /*
5622  * Expand an inode by new_extra_isize bytes.
5623  * Returns 0 on success or negative error number on failure.
5624  */
5625 static int ext4_expand_extra_isize(struct inode *inode,
5626                                    unsigned int new_extra_isize,
5627                                    struct ext4_iloc iloc,
5628                                    handle_t *handle)
5629 {
5630         struct ext4_inode *raw_inode;
5631         struct ext4_xattr_ibody_header *header;
5632         struct ext4_xattr_entry *entry;
5633
5634         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5635                 return 0;
5636
5637         raw_inode = ext4_raw_inode(&iloc);
5638
5639         header = IHDR(inode, raw_inode);
5640         entry = IFIRST(header);
5641
5642         /* No extended attributes present */
5643         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5644             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5645                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5646                         new_extra_isize);
5647                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5648                 return 0;
5649         }
5650
5651         /* try to expand with EAs present */
5652         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5653                                           raw_inode, handle);
5654 }
5655
5656 /*
5657  * What we do here is to mark the in-core inode as clean with respect to inode
5658  * dirtiness (it may still be data-dirty).
5659  * This means that the in-core inode may be reaped by prune_icache
5660  * without having to perform any I/O.  This is a very good thing,
5661  * because *any* task may call prune_icache - even ones which
5662  * have a transaction open against a different journal.
5663  *
5664  * Is this cheating?  Not really.  Sure, we haven't written the
5665  * inode out, but prune_icache isn't a user-visible syncing function.
5666  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5667  * we start and wait on commits.
5668  *
5669  * Is this efficient/effective?  Well, we're being nice to the system
5670  * by cleaning up our inodes proactively so they can be reaped
5671  * without I/O.  But we are potentially leaving up to five seconds'
5672  * worth of inodes floating about which prune_icache wants us to
5673  * write out.  One way to fix that would be to get prune_icache()
5674  * to do a write_super() to free up some memory.  It has the desired
5675  * effect.
5676  */
5677 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5678 {
5679         struct ext4_iloc iloc;
5680         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5681         static unsigned int mnt_count;
5682         int err, ret;
5683
5684         might_sleep();
5685         err = ext4_reserve_inode_write(handle, inode, &iloc);
5686         if (ext4_handle_valid(handle) &&
5687             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5688             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5689                 /*
5690                  * We need extra buffer credits since we may write into EA block
5691                  * with this same handle. If journal_extend fails, then it will
5692                  * only result in a minor loss of functionality for that inode.
5693                  * If this is felt to be critical, then e2fsck should be run to
5694                  * force a large enough s_min_extra_isize.
5695                  */
5696                 if ((jbd2_journal_extend(handle,
5697                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5698                         ret = ext4_expand_extra_isize(inode,
5699                                                       sbi->s_want_extra_isize,
5700                                                       iloc, handle);
5701                         if (ret) {
5702                                 ext4_set_inode_state(inode,
5703                                                      EXT4_STATE_NO_EXPAND);
5704                                 if (mnt_count !=
5705                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5706                                         ext4_warning(inode->i_sb, __func__,
5707                                         "Unable to expand inode %lu. Delete"
5708                                         " some EAs or run e2fsck.",
5709                                         inode->i_ino);
5710                                         mnt_count =
5711                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5712                                 }
5713                         }
5714                 }
5715         }
5716         if (!err)
5717                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5718         return err;
5719 }
5720
5721 /*
5722  * ext4_dirty_inode() is called from __mark_inode_dirty()
5723  *
5724  * We're really interested in the case where a file is being extended.
5725  * i_size has been changed by generic_commit_write() and we thus need
5726  * to include the updated inode in the current transaction.
5727  *
5728  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5729  * are allocated to the file.
5730  *
5731  * If the inode is marked synchronous, we don't honour that here - doing
5732  * so would cause a commit on atime updates, which we don't bother doing.
5733  * We handle synchronous inodes at the highest possible level.
5734  */
5735 void ext4_dirty_inode(struct inode *inode)
5736 {
5737         handle_t *handle;
5738
5739         handle = ext4_journal_start(inode, 2);
5740         if (IS_ERR(handle))
5741                 goto out;
5742
5743         ext4_mark_inode_dirty(handle, inode);
5744
5745         ext4_journal_stop(handle);
5746 out:
5747         return;
5748 }
5749
5750 #if 0
5751 /*
5752  * Bind an inode's backing buffer_head into this transaction, to prevent
5753  * it from being flushed to disk early.  Unlike
5754  * ext4_reserve_inode_write, this leaves behind no bh reference and
5755  * returns no iloc structure, so the caller needs to repeat the iloc
5756  * lookup to mark the inode dirty later.
5757  */
5758 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5759 {
5760         struct ext4_iloc iloc;
5761
5762         int err = 0;
5763         if (handle) {
5764                 err = ext4_get_inode_loc(inode, &iloc);
5765                 if (!err) {
5766                         BUFFER_TRACE(iloc.bh, "get_write_access");
5767                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5768                         if (!err)
5769                                 err = ext4_handle_dirty_metadata(handle,
5770                                                                  NULL,
5771                                                                  iloc.bh);
5772                         brelse(iloc.bh);
5773                 }
5774         }
5775         ext4_std_error(inode->i_sb, err);
5776         return err;
5777 }
5778 #endif
5779
5780 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5781 {
5782         journal_t *journal;
5783         handle_t *handle;
5784         int err;
5785
5786         /*
5787          * We have to be very careful here: changing a data block's
5788          * journaling status dynamically is dangerous.  If we write a
5789          * data block to the journal, change the status and then delete
5790          * that block, we risk forgetting to revoke the old log record
5791          * from the journal and so a subsequent replay can corrupt data.
5792          * So, first we make sure that the journal is empty and that
5793          * nobody is changing anything.
5794          */
5795
5796         journal = EXT4_JOURNAL(inode);
5797         if (!journal)
5798                 return 0;
5799         if (is_journal_aborted(journal))
5800                 return -EROFS;
5801
5802         jbd2_journal_lock_updates(journal);
5803         jbd2_journal_flush(journal);
5804
5805         /*
5806          * OK, there are no updates running now, and all cached data is
5807          * synced to disk.  We are now in a completely consistent state
5808          * which doesn't have anything in the journal, and we know that
5809          * no filesystem updates are running, so it is safe to modify
5810          * the inode's in-core data-journaling state flag now.
5811          */
5812
5813         if (val)
5814                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5815         else
5816                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5817         ext4_set_aops(inode);
5818
5819         jbd2_journal_unlock_updates(journal);
5820
5821         /* Finally we can mark the inode as dirty. */
5822
5823         handle = ext4_journal_start(inode, 1);
5824         if (IS_ERR(handle))
5825                 return PTR_ERR(handle);
5826
5827         err = ext4_mark_inode_dirty(handle, inode);
5828         ext4_handle_sync(handle);
5829         ext4_journal_stop(handle);
5830         ext4_std_error(inode->i_sb, err);
5831
5832         return err;
5833 }
5834
5835 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5836 {
5837         return !buffer_mapped(bh);
5838 }
5839
5840 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5841 {
5842         struct page *page = vmf->page;
5843         loff_t size;
5844         unsigned long len;
5845         int ret = -EINVAL;
5846         void *fsdata;
5847         struct file *file = vma->vm_file;
5848         struct inode *inode = file->f_path.dentry->d_inode;
5849         struct address_space *mapping = inode->i_mapping;
5850
5851         /*
5852          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5853          * get i_mutex because we are already holding mmap_sem.
5854          */
5855         down_read(&inode->i_alloc_sem);
5856         size = i_size_read(inode);
5857         if (page->mapping != mapping || size <= page_offset(page)
5858             || !PageUptodate(page)) {
5859                 /* page got truncated from under us? */
5860                 goto out_unlock;
5861         }
5862         ret = 0;
5863         if (PageMappedToDisk(page))
5864                 goto out_unlock;
5865
5866         if (page->index == size >> PAGE_CACHE_SHIFT)
5867                 len = size & ~PAGE_CACHE_MASK;
5868         else
5869                 len = PAGE_CACHE_SIZE;
5870
5871         lock_page(page);
5872         /*
5873          * return if we have all the buffers mapped. This avoid
5874          * the need to call write_begin/write_end which does a
5875          * journal_start/journal_stop which can block and take
5876          * long time
5877          */
5878         if (page_has_buffers(page)) {
5879                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5880                                         ext4_bh_unmapped)) {
5881                         unlock_page(page);
5882                         goto out_unlock;
5883                 }
5884         }
5885         unlock_page(page);
5886         /*
5887          * OK, we need to fill the hole... Do write_begin write_end
5888          * to do block allocation/reservation.We are not holding
5889          * inode.i__mutex here. That allow * parallel write_begin,
5890          * write_end call. lock_page prevent this from happening
5891          * on the same page though
5892          */
5893         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5894                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5895         if (ret < 0)
5896                 goto out_unlock;
5897         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5898                         len, len, page, fsdata);
5899         if (ret < 0)
5900                 goto out_unlock;
5901         ret = 0;
5902 out_unlock:
5903         if (ret)
5904                 ret = VM_FAULT_SIGBUS;
5905         up_read(&inode->i_alloc_sem);
5906         return ret;
5907 }