]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/node.c
nvme_fc: fix command id check
[karo-tx-linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33         struct f2fs_nm_info *nm_i = NM_I(sbi);
34         struct sysinfo val;
35         unsigned long avail_ram;
36         unsigned long mem_size = 0;
37         bool res = false;
38
39         si_meminfo(&val);
40
41         /* only uses low memory */
42         avail_ram = val.totalram - val.totalhigh;
43
44         /*
45          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46          */
47         if (type == FREE_NIDS) {
48                 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
49                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
50                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51         } else if (type == NAT_ENTRIES) {
52                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53                                                         PAGE_SHIFT;
54                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55                 if (excess_cached_nats(sbi))
56                         res = false;
57         } else if (type == DIRTY_DENTS) {
58                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
59                         return false;
60                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62         } else if (type == INO_ENTRIES) {
63                 int i;
64
65                 for (i = 0; i <= UPDATE_INO; i++)
66                         mem_size += (sbi->im[i].ino_num *
67                                 sizeof(struct ino_entry)) >> PAGE_SHIFT;
68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
69         } else if (type == EXTENT_CACHE) {
70                 mem_size = (atomic_read(&sbi->total_ext_tree) *
71                                 sizeof(struct extent_tree) +
72                                 atomic_read(&sbi->total_ext_node) *
73                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
74                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75         } else {
76                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
77                         return true;
78         }
79         return res;
80 }
81
82 static void clear_node_page_dirty(struct page *page)
83 {
84         struct address_space *mapping = page->mapping;
85         unsigned int long flags;
86
87         if (PageDirty(page)) {
88                 spin_lock_irqsave(&mapping->tree_lock, flags);
89                 radix_tree_tag_clear(&mapping->page_tree,
90                                 page_index(page),
91                                 PAGECACHE_TAG_DIRTY);
92                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
93
94                 clear_page_dirty_for_io(page);
95                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
96         }
97         ClearPageUptodate(page);
98 }
99
100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
101 {
102         pgoff_t index = current_nat_addr(sbi, nid);
103         return get_meta_page(sbi, index);
104 }
105
106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108         struct page *src_page;
109         struct page *dst_page;
110         pgoff_t src_off;
111         pgoff_t dst_off;
112         void *src_addr;
113         void *dst_addr;
114         struct f2fs_nm_info *nm_i = NM_I(sbi);
115
116         src_off = current_nat_addr(sbi, nid);
117         dst_off = next_nat_addr(sbi, src_off);
118
119         /* get current nat block page with lock */
120         src_page = get_meta_page(sbi, src_off);
121         dst_page = grab_meta_page(sbi, dst_off);
122         f2fs_bug_on(sbi, PageDirty(src_page));
123
124         src_addr = page_address(src_page);
125         dst_addr = page_address(dst_page);
126         memcpy(dst_addr, src_addr, PAGE_SIZE);
127         set_page_dirty(dst_page);
128         f2fs_put_page(src_page, 1);
129
130         set_to_next_nat(nm_i, nid);
131
132         return dst_page;
133 }
134
135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
136 {
137         return radix_tree_lookup(&nm_i->nat_root, n);
138 }
139
140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
141                 nid_t start, unsigned int nr, struct nat_entry **ep)
142 {
143         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
144 }
145
146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
147 {
148         list_del(&e->list);
149         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
150         nm_i->nat_cnt--;
151         kmem_cache_free(nat_entry_slab, e);
152 }
153
154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
155                                                 struct nat_entry *ne)
156 {
157         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
158         struct nat_entry_set *head;
159
160         if (get_nat_flag(ne, IS_DIRTY))
161                 return;
162
163         head = radix_tree_lookup(&nm_i->nat_set_root, set);
164         if (!head) {
165                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
166
167                 INIT_LIST_HEAD(&head->entry_list);
168                 INIT_LIST_HEAD(&head->set_list);
169                 head->set = set;
170                 head->entry_cnt = 0;
171                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
172         }
173         list_move_tail(&ne->list, &head->entry_list);
174         nm_i->dirty_nat_cnt++;
175         head->entry_cnt++;
176         set_nat_flag(ne, IS_DIRTY, true);
177 }
178
179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
180                                                 struct nat_entry *ne)
181 {
182         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
183         struct nat_entry_set *head;
184
185         head = radix_tree_lookup(&nm_i->nat_set_root, set);
186         if (head) {
187                 list_move_tail(&ne->list, &nm_i->nat_entries);
188                 set_nat_flag(ne, IS_DIRTY, false);
189                 head->entry_cnt--;
190                 nm_i->dirty_nat_cnt--;
191         }
192 }
193
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
196 {
197         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198                                                         start, nr);
199 }
200
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
202 {
203         struct f2fs_nm_info *nm_i = NM_I(sbi);
204         struct nat_entry *e;
205         bool need = false;
206
207         down_read(&nm_i->nat_tree_lock);
208         e = __lookup_nat_cache(nm_i, nid);
209         if (e) {
210                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
212                         need = true;
213         }
214         up_read(&nm_i->nat_tree_lock);
215         return need;
216 }
217
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
219 {
220         struct f2fs_nm_info *nm_i = NM_I(sbi);
221         struct nat_entry *e;
222         bool is_cp = true;
223
224         down_read(&nm_i->nat_tree_lock);
225         e = __lookup_nat_cache(nm_i, nid);
226         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227                 is_cp = false;
228         up_read(&nm_i->nat_tree_lock);
229         return is_cp;
230 }
231
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
233 {
234         struct f2fs_nm_info *nm_i = NM_I(sbi);
235         struct nat_entry *e;
236         bool need_update = true;
237
238         down_read(&nm_i->nat_tree_lock);
239         e = __lookup_nat_cache(nm_i, ino);
240         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241                         (get_nat_flag(e, IS_CHECKPOINTED) ||
242                          get_nat_flag(e, HAS_FSYNCED_INODE)))
243                 need_update = false;
244         up_read(&nm_i->nat_tree_lock);
245         return need_update;
246 }
247
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
249                                                                 bool no_fail)
250 {
251         struct nat_entry *new;
252
253         if (no_fail) {
254                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
255                 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
256         } else {
257                 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
258                 if (!new)
259                         return NULL;
260                 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
261                         kmem_cache_free(nat_entry_slab, new);
262                         return NULL;
263                 }
264         }
265
266         memset(new, 0, sizeof(struct nat_entry));
267         nat_set_nid(new, nid);
268         nat_reset_flag(new);
269         list_add_tail(&new->list, &nm_i->nat_entries);
270         nm_i->nat_cnt++;
271         return new;
272 }
273
274 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
275                                                 struct f2fs_nat_entry *ne)
276 {
277         struct f2fs_nm_info *nm_i = NM_I(sbi);
278         struct nat_entry *e;
279
280         e = __lookup_nat_cache(nm_i, nid);
281         if (!e) {
282                 e = grab_nat_entry(nm_i, nid, false);
283                 if (e)
284                         node_info_from_raw_nat(&e->ni, ne);
285         } else {
286                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
287                                 nat_get_blkaddr(e) !=
288                                         le32_to_cpu(ne->block_addr) ||
289                                 nat_get_version(e) != ne->version);
290         }
291 }
292
293 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
294                         block_t new_blkaddr, bool fsync_done)
295 {
296         struct f2fs_nm_info *nm_i = NM_I(sbi);
297         struct nat_entry *e;
298
299         down_write(&nm_i->nat_tree_lock);
300         e = __lookup_nat_cache(nm_i, ni->nid);
301         if (!e) {
302                 e = grab_nat_entry(nm_i, ni->nid, true);
303                 copy_node_info(&e->ni, ni);
304                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
305         } else if (new_blkaddr == NEW_ADDR) {
306                 /*
307                  * when nid is reallocated,
308                  * previous nat entry can be remained in nat cache.
309                  * So, reinitialize it with new information.
310                  */
311                 copy_node_info(&e->ni, ni);
312                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
313         }
314
315         /* sanity check */
316         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
317         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
318                         new_blkaddr == NULL_ADDR);
319         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
320                         new_blkaddr == NEW_ADDR);
321         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
322                         nat_get_blkaddr(e) != NULL_ADDR &&
323                         new_blkaddr == NEW_ADDR);
324
325         /* increment version no as node is removed */
326         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
327                 unsigned char version = nat_get_version(e);
328                 nat_set_version(e, inc_node_version(version));
329
330                 /* in order to reuse the nid */
331                 if (nm_i->next_scan_nid > ni->nid)
332                         nm_i->next_scan_nid = ni->nid;
333         }
334
335         /* change address */
336         nat_set_blkaddr(e, new_blkaddr);
337         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
338                 set_nat_flag(e, IS_CHECKPOINTED, false);
339         __set_nat_cache_dirty(nm_i, e);
340
341         /* update fsync_mark if its inode nat entry is still alive */
342         if (ni->nid != ni->ino)
343                 e = __lookup_nat_cache(nm_i, ni->ino);
344         if (e) {
345                 if (fsync_done && ni->nid == ni->ino)
346                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
347                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
348         }
349         up_write(&nm_i->nat_tree_lock);
350 }
351
352 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
353 {
354         struct f2fs_nm_info *nm_i = NM_I(sbi);
355         int nr = nr_shrink;
356
357         if (!down_write_trylock(&nm_i->nat_tree_lock))
358                 return 0;
359
360         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
361                 struct nat_entry *ne;
362                 ne = list_first_entry(&nm_i->nat_entries,
363                                         struct nat_entry, list);
364                 __del_from_nat_cache(nm_i, ne);
365                 nr_shrink--;
366         }
367         up_write(&nm_i->nat_tree_lock);
368         return nr - nr_shrink;
369 }
370
371 /*
372  * This function always returns success
373  */
374 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
375 {
376         struct f2fs_nm_info *nm_i = NM_I(sbi);
377         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
378         struct f2fs_journal *journal = curseg->journal;
379         nid_t start_nid = START_NID(nid);
380         struct f2fs_nat_block *nat_blk;
381         struct page *page = NULL;
382         struct f2fs_nat_entry ne;
383         struct nat_entry *e;
384         int i;
385
386         ni->nid = nid;
387
388         /* Check nat cache */
389         down_read(&nm_i->nat_tree_lock);
390         e = __lookup_nat_cache(nm_i, nid);
391         if (e) {
392                 ni->ino = nat_get_ino(e);
393                 ni->blk_addr = nat_get_blkaddr(e);
394                 ni->version = nat_get_version(e);
395                 up_read(&nm_i->nat_tree_lock);
396                 return;
397         }
398
399         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
400
401         /* Check current segment summary */
402         down_read(&curseg->journal_rwsem);
403         i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
404         if (i >= 0) {
405                 ne = nat_in_journal(journal, i);
406                 node_info_from_raw_nat(ni, &ne);
407         }
408         up_read(&curseg->journal_rwsem);
409         if (i >= 0)
410                 goto cache;
411
412         /* Fill node_info from nat page */
413         page = get_current_nat_page(sbi, start_nid);
414         nat_blk = (struct f2fs_nat_block *)page_address(page);
415         ne = nat_blk->entries[nid - start_nid];
416         node_info_from_raw_nat(ni, &ne);
417         f2fs_put_page(page, 1);
418 cache:
419         up_read(&nm_i->nat_tree_lock);
420         /* cache nat entry */
421         down_write(&nm_i->nat_tree_lock);
422         cache_nat_entry(sbi, nid, &ne);
423         up_write(&nm_i->nat_tree_lock);
424 }
425
426 /*
427  * readahead MAX_RA_NODE number of node pages.
428  */
429 static void ra_node_pages(struct page *parent, int start, int n)
430 {
431         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
432         struct blk_plug plug;
433         int i, end;
434         nid_t nid;
435
436         blk_start_plug(&plug);
437
438         /* Then, try readahead for siblings of the desired node */
439         end = start + n;
440         end = min(end, NIDS_PER_BLOCK);
441         for (i = start; i < end; i++) {
442                 nid = get_nid(parent, i, false);
443                 ra_node_page(sbi, nid);
444         }
445
446         blk_finish_plug(&plug);
447 }
448
449 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
450 {
451         const long direct_index = ADDRS_PER_INODE(dn->inode);
452         const long direct_blks = ADDRS_PER_BLOCK;
453         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
454         unsigned int skipped_unit = ADDRS_PER_BLOCK;
455         int cur_level = dn->cur_level;
456         int max_level = dn->max_level;
457         pgoff_t base = 0;
458
459         if (!dn->max_level)
460                 return pgofs + 1;
461
462         while (max_level-- > cur_level)
463                 skipped_unit *= NIDS_PER_BLOCK;
464
465         switch (dn->max_level) {
466         case 3:
467                 base += 2 * indirect_blks;
468         case 2:
469                 base += 2 * direct_blks;
470         case 1:
471                 base += direct_index;
472                 break;
473         default:
474                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
475         }
476
477         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
478 }
479
480 /*
481  * The maximum depth is four.
482  * Offset[0] will have raw inode offset.
483  */
484 static int get_node_path(struct inode *inode, long block,
485                                 int offset[4], unsigned int noffset[4])
486 {
487         const long direct_index = ADDRS_PER_INODE(inode);
488         const long direct_blks = ADDRS_PER_BLOCK;
489         const long dptrs_per_blk = NIDS_PER_BLOCK;
490         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
491         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
492         int n = 0;
493         int level = 0;
494
495         noffset[0] = 0;
496
497         if (block < direct_index) {
498                 offset[n] = block;
499                 goto got;
500         }
501         block -= direct_index;
502         if (block < direct_blks) {
503                 offset[n++] = NODE_DIR1_BLOCK;
504                 noffset[n] = 1;
505                 offset[n] = block;
506                 level = 1;
507                 goto got;
508         }
509         block -= direct_blks;
510         if (block < direct_blks) {
511                 offset[n++] = NODE_DIR2_BLOCK;
512                 noffset[n] = 2;
513                 offset[n] = block;
514                 level = 1;
515                 goto got;
516         }
517         block -= direct_blks;
518         if (block < indirect_blks) {
519                 offset[n++] = NODE_IND1_BLOCK;
520                 noffset[n] = 3;
521                 offset[n++] = block / direct_blks;
522                 noffset[n] = 4 + offset[n - 1];
523                 offset[n] = block % direct_blks;
524                 level = 2;
525                 goto got;
526         }
527         block -= indirect_blks;
528         if (block < indirect_blks) {
529                 offset[n++] = NODE_IND2_BLOCK;
530                 noffset[n] = 4 + dptrs_per_blk;
531                 offset[n++] = block / direct_blks;
532                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
533                 offset[n] = block % direct_blks;
534                 level = 2;
535                 goto got;
536         }
537         block -= indirect_blks;
538         if (block < dindirect_blks) {
539                 offset[n++] = NODE_DIND_BLOCK;
540                 noffset[n] = 5 + (dptrs_per_blk * 2);
541                 offset[n++] = block / indirect_blks;
542                 noffset[n] = 6 + (dptrs_per_blk * 2) +
543                               offset[n - 1] * (dptrs_per_blk + 1);
544                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
545                 noffset[n] = 7 + (dptrs_per_blk * 2) +
546                               offset[n - 2] * (dptrs_per_blk + 1) +
547                               offset[n - 1];
548                 offset[n] = block % direct_blks;
549                 level = 3;
550                 goto got;
551         } else {
552                 BUG();
553         }
554 got:
555         return level;
556 }
557
558 /*
559  * Caller should call f2fs_put_dnode(dn).
560  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
561  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
562  * In the case of RDONLY_NODE, we don't need to care about mutex.
563  */
564 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
565 {
566         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
567         struct page *npage[4];
568         struct page *parent = NULL;
569         int offset[4];
570         unsigned int noffset[4];
571         nid_t nids[4];
572         int level, i = 0;
573         int err = 0;
574
575         level = get_node_path(dn->inode, index, offset, noffset);
576
577         nids[0] = dn->inode->i_ino;
578         npage[0] = dn->inode_page;
579
580         if (!npage[0]) {
581                 npage[0] = get_node_page(sbi, nids[0]);
582                 if (IS_ERR(npage[0]))
583                         return PTR_ERR(npage[0]);
584         }
585
586         /* if inline_data is set, should not report any block indices */
587         if (f2fs_has_inline_data(dn->inode) && index) {
588                 err = -ENOENT;
589                 f2fs_put_page(npage[0], 1);
590                 goto release_out;
591         }
592
593         parent = npage[0];
594         if (level != 0)
595                 nids[1] = get_nid(parent, offset[0], true);
596         dn->inode_page = npage[0];
597         dn->inode_page_locked = true;
598
599         /* get indirect or direct nodes */
600         for (i = 1; i <= level; i++) {
601                 bool done = false;
602
603                 if (!nids[i] && mode == ALLOC_NODE) {
604                         /* alloc new node */
605                         if (!alloc_nid(sbi, &(nids[i]))) {
606                                 err = -ENOSPC;
607                                 goto release_pages;
608                         }
609
610                         dn->nid = nids[i];
611                         npage[i] = new_node_page(dn, noffset[i], NULL);
612                         if (IS_ERR(npage[i])) {
613                                 alloc_nid_failed(sbi, nids[i]);
614                                 err = PTR_ERR(npage[i]);
615                                 goto release_pages;
616                         }
617
618                         set_nid(parent, offset[i - 1], nids[i], i == 1);
619                         alloc_nid_done(sbi, nids[i]);
620                         done = true;
621                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
622                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
623                         if (IS_ERR(npage[i])) {
624                                 err = PTR_ERR(npage[i]);
625                                 goto release_pages;
626                         }
627                         done = true;
628                 }
629                 if (i == 1) {
630                         dn->inode_page_locked = false;
631                         unlock_page(parent);
632                 } else {
633                         f2fs_put_page(parent, 1);
634                 }
635
636                 if (!done) {
637                         npage[i] = get_node_page(sbi, nids[i]);
638                         if (IS_ERR(npage[i])) {
639                                 err = PTR_ERR(npage[i]);
640                                 f2fs_put_page(npage[0], 0);
641                                 goto release_out;
642                         }
643                 }
644                 if (i < level) {
645                         parent = npage[i];
646                         nids[i + 1] = get_nid(parent, offset[i], false);
647                 }
648         }
649         dn->nid = nids[level];
650         dn->ofs_in_node = offset[level];
651         dn->node_page = npage[level];
652         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
653         return 0;
654
655 release_pages:
656         f2fs_put_page(parent, 1);
657         if (i > 1)
658                 f2fs_put_page(npage[0], 0);
659 release_out:
660         dn->inode_page = NULL;
661         dn->node_page = NULL;
662         if (err == -ENOENT) {
663                 dn->cur_level = i;
664                 dn->max_level = level;
665                 dn->ofs_in_node = offset[level];
666         }
667         return err;
668 }
669
670 static void truncate_node(struct dnode_of_data *dn)
671 {
672         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
673         struct node_info ni;
674
675         get_node_info(sbi, dn->nid, &ni);
676         if (dn->inode->i_blocks == 0) {
677                 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
678                 goto invalidate;
679         }
680         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
681
682         /* Deallocate node address */
683         invalidate_blocks(sbi, ni.blk_addr);
684         dec_valid_node_count(sbi, dn->inode);
685         set_node_addr(sbi, &ni, NULL_ADDR, false);
686
687         if (dn->nid == dn->inode->i_ino) {
688                 remove_orphan_inode(sbi, dn->nid);
689                 dec_valid_inode_count(sbi);
690                 f2fs_inode_synced(dn->inode);
691         }
692 invalidate:
693         clear_node_page_dirty(dn->node_page);
694         set_sbi_flag(sbi, SBI_IS_DIRTY);
695
696         f2fs_put_page(dn->node_page, 1);
697
698         invalidate_mapping_pages(NODE_MAPPING(sbi),
699                         dn->node_page->index, dn->node_page->index);
700
701         dn->node_page = NULL;
702         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
703 }
704
705 static int truncate_dnode(struct dnode_of_data *dn)
706 {
707         struct page *page;
708
709         if (dn->nid == 0)
710                 return 1;
711
712         /* get direct node */
713         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
714         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
715                 return 1;
716         else if (IS_ERR(page))
717                 return PTR_ERR(page);
718
719         /* Make dnode_of_data for parameter */
720         dn->node_page = page;
721         dn->ofs_in_node = 0;
722         truncate_data_blocks(dn);
723         truncate_node(dn);
724         return 1;
725 }
726
727 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
728                                                 int ofs, int depth)
729 {
730         struct dnode_of_data rdn = *dn;
731         struct page *page;
732         struct f2fs_node *rn;
733         nid_t child_nid;
734         unsigned int child_nofs;
735         int freed = 0;
736         int i, ret;
737
738         if (dn->nid == 0)
739                 return NIDS_PER_BLOCK + 1;
740
741         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
742
743         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
744         if (IS_ERR(page)) {
745                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
746                 return PTR_ERR(page);
747         }
748
749         ra_node_pages(page, ofs, NIDS_PER_BLOCK);
750
751         rn = F2FS_NODE(page);
752         if (depth < 3) {
753                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
754                         child_nid = le32_to_cpu(rn->in.nid[i]);
755                         if (child_nid == 0)
756                                 continue;
757                         rdn.nid = child_nid;
758                         ret = truncate_dnode(&rdn);
759                         if (ret < 0)
760                                 goto out_err;
761                         if (set_nid(page, i, 0, false))
762                                 dn->node_changed = true;
763                 }
764         } else {
765                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
766                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
767                         child_nid = le32_to_cpu(rn->in.nid[i]);
768                         if (child_nid == 0) {
769                                 child_nofs += NIDS_PER_BLOCK + 1;
770                                 continue;
771                         }
772                         rdn.nid = child_nid;
773                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
774                         if (ret == (NIDS_PER_BLOCK + 1)) {
775                                 if (set_nid(page, i, 0, false))
776                                         dn->node_changed = true;
777                                 child_nofs += ret;
778                         } else if (ret < 0 && ret != -ENOENT) {
779                                 goto out_err;
780                         }
781                 }
782                 freed = child_nofs;
783         }
784
785         if (!ofs) {
786                 /* remove current indirect node */
787                 dn->node_page = page;
788                 truncate_node(dn);
789                 freed++;
790         } else {
791                 f2fs_put_page(page, 1);
792         }
793         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
794         return freed;
795
796 out_err:
797         f2fs_put_page(page, 1);
798         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
799         return ret;
800 }
801
802 static int truncate_partial_nodes(struct dnode_of_data *dn,
803                         struct f2fs_inode *ri, int *offset, int depth)
804 {
805         struct page *pages[2];
806         nid_t nid[3];
807         nid_t child_nid;
808         int err = 0;
809         int i;
810         int idx = depth - 2;
811
812         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
813         if (!nid[0])
814                 return 0;
815
816         /* get indirect nodes in the path */
817         for (i = 0; i < idx + 1; i++) {
818                 /* reference count'll be increased */
819                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
820                 if (IS_ERR(pages[i])) {
821                         err = PTR_ERR(pages[i]);
822                         idx = i - 1;
823                         goto fail;
824                 }
825                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
826         }
827
828         ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
829
830         /* free direct nodes linked to a partial indirect node */
831         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
832                 child_nid = get_nid(pages[idx], i, false);
833                 if (!child_nid)
834                         continue;
835                 dn->nid = child_nid;
836                 err = truncate_dnode(dn);
837                 if (err < 0)
838                         goto fail;
839                 if (set_nid(pages[idx], i, 0, false))
840                         dn->node_changed = true;
841         }
842
843         if (offset[idx + 1] == 0) {
844                 dn->node_page = pages[idx];
845                 dn->nid = nid[idx];
846                 truncate_node(dn);
847         } else {
848                 f2fs_put_page(pages[idx], 1);
849         }
850         offset[idx]++;
851         offset[idx + 1] = 0;
852         idx--;
853 fail:
854         for (i = idx; i >= 0; i--)
855                 f2fs_put_page(pages[i], 1);
856
857         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
858
859         return err;
860 }
861
862 /*
863  * All the block addresses of data and nodes should be nullified.
864  */
865 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
866 {
867         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
868         int err = 0, cont = 1;
869         int level, offset[4], noffset[4];
870         unsigned int nofs = 0;
871         struct f2fs_inode *ri;
872         struct dnode_of_data dn;
873         struct page *page;
874
875         trace_f2fs_truncate_inode_blocks_enter(inode, from);
876
877         level = get_node_path(inode, from, offset, noffset);
878
879         page = get_node_page(sbi, inode->i_ino);
880         if (IS_ERR(page)) {
881                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
882                 return PTR_ERR(page);
883         }
884
885         set_new_dnode(&dn, inode, page, NULL, 0);
886         unlock_page(page);
887
888         ri = F2FS_INODE(page);
889         switch (level) {
890         case 0:
891         case 1:
892                 nofs = noffset[1];
893                 break;
894         case 2:
895                 nofs = noffset[1];
896                 if (!offset[level - 1])
897                         goto skip_partial;
898                 err = truncate_partial_nodes(&dn, ri, offset, level);
899                 if (err < 0 && err != -ENOENT)
900                         goto fail;
901                 nofs += 1 + NIDS_PER_BLOCK;
902                 break;
903         case 3:
904                 nofs = 5 + 2 * NIDS_PER_BLOCK;
905                 if (!offset[level - 1])
906                         goto skip_partial;
907                 err = truncate_partial_nodes(&dn, ri, offset, level);
908                 if (err < 0 && err != -ENOENT)
909                         goto fail;
910                 break;
911         default:
912                 BUG();
913         }
914
915 skip_partial:
916         while (cont) {
917                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
918                 switch (offset[0]) {
919                 case NODE_DIR1_BLOCK:
920                 case NODE_DIR2_BLOCK:
921                         err = truncate_dnode(&dn);
922                         break;
923
924                 case NODE_IND1_BLOCK:
925                 case NODE_IND2_BLOCK:
926                         err = truncate_nodes(&dn, nofs, offset[1], 2);
927                         break;
928
929                 case NODE_DIND_BLOCK:
930                         err = truncate_nodes(&dn, nofs, offset[1], 3);
931                         cont = 0;
932                         break;
933
934                 default:
935                         BUG();
936                 }
937                 if (err < 0 && err != -ENOENT)
938                         goto fail;
939                 if (offset[1] == 0 &&
940                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
941                         lock_page(page);
942                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
943                         f2fs_wait_on_page_writeback(page, NODE, true);
944                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
945                         set_page_dirty(page);
946                         unlock_page(page);
947                 }
948                 offset[1] = 0;
949                 offset[0]++;
950                 nofs += err;
951         }
952 fail:
953         f2fs_put_page(page, 0);
954         trace_f2fs_truncate_inode_blocks_exit(inode, err);
955         return err > 0 ? 0 : err;
956 }
957
958 int truncate_xattr_node(struct inode *inode, struct page *page)
959 {
960         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
961         nid_t nid = F2FS_I(inode)->i_xattr_nid;
962         struct dnode_of_data dn;
963         struct page *npage;
964
965         if (!nid)
966                 return 0;
967
968         npage = get_node_page(sbi, nid);
969         if (IS_ERR(npage))
970                 return PTR_ERR(npage);
971
972         f2fs_i_xnid_write(inode, 0);
973
974         set_new_dnode(&dn, inode, page, npage, nid);
975
976         if (page)
977                 dn.inode_page_locked = true;
978         truncate_node(&dn);
979         return 0;
980 }
981
982 /*
983  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
984  * f2fs_unlock_op().
985  */
986 int remove_inode_page(struct inode *inode)
987 {
988         struct dnode_of_data dn;
989         int err;
990
991         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
992         err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
993         if (err)
994                 return err;
995
996         err = truncate_xattr_node(inode, dn.inode_page);
997         if (err) {
998                 f2fs_put_dnode(&dn);
999                 return err;
1000         }
1001
1002         /* remove potential inline_data blocks */
1003         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1004                                 S_ISLNK(inode->i_mode))
1005                 truncate_data_blocks_range(&dn, 1);
1006
1007         /* 0 is possible, after f2fs_new_inode() has failed */
1008         f2fs_bug_on(F2FS_I_SB(inode),
1009                         inode->i_blocks != 0 && inode->i_blocks != 1);
1010
1011         /* will put inode & node pages */
1012         truncate_node(&dn);
1013         return 0;
1014 }
1015
1016 struct page *new_inode_page(struct inode *inode)
1017 {
1018         struct dnode_of_data dn;
1019
1020         /* allocate inode page for new inode */
1021         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1022
1023         /* caller should f2fs_put_page(page, 1); */
1024         return new_node_page(&dn, 0, NULL);
1025 }
1026
1027 struct page *new_node_page(struct dnode_of_data *dn,
1028                                 unsigned int ofs, struct page *ipage)
1029 {
1030         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1031         struct node_info new_ni;
1032         struct page *page;
1033         int err;
1034
1035         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1036                 return ERR_PTR(-EPERM);
1037
1038         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1039         if (!page)
1040                 return ERR_PTR(-ENOMEM);
1041
1042         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1043                 err = -ENOSPC;
1044                 goto fail;
1045         }
1046 #ifdef CONFIG_F2FS_CHECK_FS
1047         get_node_info(sbi, dn->nid, &new_ni);
1048         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1049 #endif
1050         new_ni.nid = dn->nid;
1051         new_ni.ino = dn->inode->i_ino;
1052         new_ni.blk_addr = NULL_ADDR;
1053         new_ni.flag = 0;
1054         new_ni.version = 0;
1055         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1056
1057         f2fs_wait_on_page_writeback(page, NODE, true);
1058         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1059         set_cold_node(dn->inode, page);
1060         if (!PageUptodate(page))
1061                 SetPageUptodate(page);
1062         if (set_page_dirty(page))
1063                 dn->node_changed = true;
1064
1065         if (f2fs_has_xattr_block(ofs))
1066                 f2fs_i_xnid_write(dn->inode, dn->nid);
1067
1068         if (ofs == 0)
1069                 inc_valid_inode_count(sbi);
1070         return page;
1071
1072 fail:
1073         clear_node_page_dirty(page);
1074         f2fs_put_page(page, 1);
1075         return ERR_PTR(err);
1076 }
1077
1078 /*
1079  * Caller should do after getting the following values.
1080  * 0: f2fs_put_page(page, 0)
1081  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1082  */
1083 static int read_node_page(struct page *page, int op_flags)
1084 {
1085         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1086         struct node_info ni;
1087         struct f2fs_io_info fio = {
1088                 .sbi = sbi,
1089                 .type = NODE,
1090                 .op = REQ_OP_READ,
1091                 .op_flags = op_flags,
1092                 .page = page,
1093                 .encrypted_page = NULL,
1094         };
1095
1096         if (PageUptodate(page))
1097                 return LOCKED_PAGE;
1098
1099         get_node_info(sbi, page->index, &ni);
1100
1101         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1102                 ClearPageUptodate(page);
1103                 return -ENOENT;
1104         }
1105
1106         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1107         return f2fs_submit_page_bio(&fio);
1108 }
1109
1110 /*
1111  * Readahead a node page
1112  */
1113 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1114 {
1115         struct page *apage;
1116         int err;
1117
1118         if (!nid)
1119                 return;
1120         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1121
1122         rcu_read_lock();
1123         apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1124         rcu_read_unlock();
1125         if (apage)
1126                 return;
1127
1128         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1129         if (!apage)
1130                 return;
1131
1132         err = read_node_page(apage, REQ_RAHEAD);
1133         f2fs_put_page(apage, err ? 1 : 0);
1134 }
1135
1136 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1137                                         struct page *parent, int start)
1138 {
1139         struct page *page;
1140         int err;
1141
1142         if (!nid)
1143                 return ERR_PTR(-ENOENT);
1144         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1145 repeat:
1146         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1147         if (!page)
1148                 return ERR_PTR(-ENOMEM);
1149
1150         err = read_node_page(page, 0);
1151         if (err < 0) {
1152                 f2fs_put_page(page, 1);
1153                 return ERR_PTR(err);
1154         } else if (err == LOCKED_PAGE) {
1155                 goto page_hit;
1156         }
1157
1158         if (parent)
1159                 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1160
1161         lock_page(page);
1162
1163         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1164                 f2fs_put_page(page, 1);
1165                 goto repeat;
1166         }
1167
1168         if (unlikely(!PageUptodate(page)))
1169                 goto out_err;
1170 page_hit:
1171         if(unlikely(nid != nid_of_node(page))) {
1172                 f2fs_bug_on(sbi, 1);
1173                 ClearPageUptodate(page);
1174 out_err:
1175                 f2fs_put_page(page, 1);
1176                 return ERR_PTR(-EIO);
1177         }
1178         return page;
1179 }
1180
1181 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1182 {
1183         return __get_node_page(sbi, nid, NULL, 0);
1184 }
1185
1186 struct page *get_node_page_ra(struct page *parent, int start)
1187 {
1188         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1189         nid_t nid = get_nid(parent, start, false);
1190
1191         return __get_node_page(sbi, nid, parent, start);
1192 }
1193
1194 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1195 {
1196         struct inode *inode;
1197         struct page *page;
1198         int ret;
1199
1200         /* should flush inline_data before evict_inode */
1201         inode = ilookup(sbi->sb, ino);
1202         if (!inode)
1203                 return;
1204
1205         page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1206         if (!page)
1207                 goto iput_out;
1208
1209         if (!PageUptodate(page))
1210                 goto page_out;
1211
1212         if (!PageDirty(page))
1213                 goto page_out;
1214
1215         if (!clear_page_dirty_for_io(page))
1216                 goto page_out;
1217
1218         ret = f2fs_write_inline_data(inode, page);
1219         inode_dec_dirty_pages(inode);
1220         remove_dirty_inode(inode);
1221         if (ret)
1222                 set_page_dirty(page);
1223 page_out:
1224         f2fs_put_page(page, 1);
1225 iput_out:
1226         iput(inode);
1227 }
1228
1229 void move_node_page(struct page *node_page, int gc_type)
1230 {
1231         if (gc_type == FG_GC) {
1232                 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1233                 struct writeback_control wbc = {
1234                         .sync_mode = WB_SYNC_ALL,
1235                         .nr_to_write = 1,
1236                         .for_reclaim = 0,
1237                 };
1238
1239                 set_page_dirty(node_page);
1240                 f2fs_wait_on_page_writeback(node_page, NODE, true);
1241
1242                 f2fs_bug_on(sbi, PageWriteback(node_page));
1243                 if (!clear_page_dirty_for_io(node_page))
1244                         goto out_page;
1245
1246                 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1247                         unlock_page(node_page);
1248                 goto release_page;
1249         } else {
1250                 /* set page dirty and write it */
1251                 if (!PageWriteback(node_page))
1252                         set_page_dirty(node_page);
1253         }
1254 out_page:
1255         unlock_page(node_page);
1256 release_page:
1257         f2fs_put_page(node_page, 0);
1258 }
1259
1260 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1261 {
1262         pgoff_t index, end;
1263         struct pagevec pvec;
1264         struct page *last_page = NULL;
1265
1266         pagevec_init(&pvec, 0);
1267         index = 0;
1268         end = ULONG_MAX;
1269
1270         while (index <= end) {
1271                 int i, nr_pages;
1272                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1273                                 PAGECACHE_TAG_DIRTY,
1274                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1275                 if (nr_pages == 0)
1276                         break;
1277
1278                 for (i = 0; i < nr_pages; i++) {
1279                         struct page *page = pvec.pages[i];
1280
1281                         if (unlikely(f2fs_cp_error(sbi))) {
1282                                 f2fs_put_page(last_page, 0);
1283                                 pagevec_release(&pvec);
1284                                 return ERR_PTR(-EIO);
1285                         }
1286
1287                         if (!IS_DNODE(page) || !is_cold_node(page))
1288                                 continue;
1289                         if (ino_of_node(page) != ino)
1290                                 continue;
1291
1292                         lock_page(page);
1293
1294                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1295 continue_unlock:
1296                                 unlock_page(page);
1297                                 continue;
1298                         }
1299                         if (ino_of_node(page) != ino)
1300                                 goto continue_unlock;
1301
1302                         if (!PageDirty(page)) {
1303                                 /* someone wrote it for us */
1304                                 goto continue_unlock;
1305                         }
1306
1307                         if (last_page)
1308                                 f2fs_put_page(last_page, 0);
1309
1310                         get_page(page);
1311                         last_page = page;
1312                         unlock_page(page);
1313                 }
1314                 pagevec_release(&pvec);
1315                 cond_resched();
1316         }
1317         return last_page;
1318 }
1319
1320 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1321                                 struct writeback_control *wbc)
1322 {
1323         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1324         nid_t nid;
1325         struct node_info ni;
1326         struct f2fs_io_info fio = {
1327                 .sbi = sbi,
1328                 .type = NODE,
1329                 .op = REQ_OP_WRITE,
1330                 .op_flags = wbc_to_write_flags(wbc),
1331                 .page = page,
1332                 .encrypted_page = NULL,
1333                 .submitted = false,
1334         };
1335
1336         trace_f2fs_writepage(page, NODE);
1337
1338         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1339                 goto redirty_out;
1340         if (unlikely(f2fs_cp_error(sbi)))
1341                 goto redirty_out;
1342
1343         /* get old block addr of this node page */
1344         nid = nid_of_node(page);
1345         f2fs_bug_on(sbi, page->index != nid);
1346
1347         if (wbc->for_reclaim) {
1348                 if (!down_read_trylock(&sbi->node_write))
1349                         goto redirty_out;
1350         } else {
1351                 down_read(&sbi->node_write);
1352         }
1353
1354         get_node_info(sbi, nid, &ni);
1355
1356         /* This page is already truncated */
1357         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1358                 ClearPageUptodate(page);
1359                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1360                 up_read(&sbi->node_write);
1361                 unlock_page(page);
1362                 return 0;
1363         }
1364
1365         if (atomic && !test_opt(sbi, NOBARRIER))
1366                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1367
1368         set_page_writeback(page);
1369         fio.old_blkaddr = ni.blk_addr;
1370         write_node_page(nid, &fio);
1371         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1372         dec_page_count(sbi, F2FS_DIRTY_NODES);
1373         up_read(&sbi->node_write);
1374
1375         if (wbc->for_reclaim) {
1376                 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 0,
1377                                                 page->index, NODE, WRITE);
1378                 submitted = NULL;
1379         }
1380
1381         unlock_page(page);
1382
1383         if (unlikely(f2fs_cp_error(sbi))) {
1384                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1385                 submitted = NULL;
1386         }
1387         if (submitted)
1388                 *submitted = fio.submitted;
1389
1390         return 0;
1391
1392 redirty_out:
1393         redirty_page_for_writepage(wbc, page);
1394         return AOP_WRITEPAGE_ACTIVATE;
1395 }
1396
1397 static int f2fs_write_node_page(struct page *page,
1398                                 struct writeback_control *wbc)
1399 {
1400         return __write_node_page(page, false, NULL, wbc);
1401 }
1402
1403 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1404                         struct writeback_control *wbc, bool atomic)
1405 {
1406         pgoff_t index, end;
1407         pgoff_t last_idx = ULONG_MAX;
1408         struct pagevec pvec;
1409         int ret = 0;
1410         struct page *last_page = NULL;
1411         bool marked = false;
1412         nid_t ino = inode->i_ino;
1413
1414         if (atomic) {
1415                 last_page = last_fsync_dnode(sbi, ino);
1416                 if (IS_ERR_OR_NULL(last_page))
1417                         return PTR_ERR_OR_ZERO(last_page);
1418         }
1419 retry:
1420         pagevec_init(&pvec, 0);
1421         index = 0;
1422         end = ULONG_MAX;
1423
1424         while (index <= end) {
1425                 int i, nr_pages;
1426                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1427                                 PAGECACHE_TAG_DIRTY,
1428                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1429                 if (nr_pages == 0)
1430                         break;
1431
1432                 for (i = 0; i < nr_pages; i++) {
1433                         struct page *page = pvec.pages[i];
1434                         bool submitted = false;
1435
1436                         if (unlikely(f2fs_cp_error(sbi))) {
1437                                 f2fs_put_page(last_page, 0);
1438                                 pagevec_release(&pvec);
1439                                 ret = -EIO;
1440                                 goto out;
1441                         }
1442
1443                         if (!IS_DNODE(page) || !is_cold_node(page))
1444                                 continue;
1445                         if (ino_of_node(page) != ino)
1446                                 continue;
1447
1448                         lock_page(page);
1449
1450                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1451 continue_unlock:
1452                                 unlock_page(page);
1453                                 continue;
1454                         }
1455                         if (ino_of_node(page) != ino)
1456                                 goto continue_unlock;
1457
1458                         if (!PageDirty(page) && page != last_page) {
1459                                 /* someone wrote it for us */
1460                                 goto continue_unlock;
1461                         }
1462
1463                         f2fs_wait_on_page_writeback(page, NODE, true);
1464                         BUG_ON(PageWriteback(page));
1465
1466                         if (!atomic || page == last_page) {
1467                                 set_fsync_mark(page, 1);
1468                                 if (IS_INODE(page)) {
1469                                         if (is_inode_flag_set(inode,
1470                                                                 FI_DIRTY_INODE))
1471                                                 update_inode(inode, page);
1472                                         set_dentry_mark(page,
1473                                                 need_dentry_mark(sbi, ino));
1474                                 }
1475                                 /*  may be written by other thread */
1476                                 if (!PageDirty(page))
1477                                         set_page_dirty(page);
1478                         }
1479
1480                         if (!clear_page_dirty_for_io(page))
1481                                 goto continue_unlock;
1482
1483                         ret = __write_node_page(page, atomic &&
1484                                                 page == last_page,
1485                                                 &submitted, wbc);
1486                         if (ret) {
1487                                 unlock_page(page);
1488                                 f2fs_put_page(last_page, 0);
1489                                 break;
1490                         } else if (submitted) {
1491                                 last_idx = page->index;
1492                         }
1493
1494                         if (page == last_page) {
1495                                 f2fs_put_page(page, 0);
1496                                 marked = true;
1497                                 break;
1498                         }
1499                 }
1500                 pagevec_release(&pvec);
1501                 cond_resched();
1502
1503                 if (ret || marked)
1504                         break;
1505         }
1506         if (!ret && atomic && !marked) {
1507                 f2fs_msg(sbi->sb, KERN_DEBUG,
1508                         "Retry to write fsync mark: ino=%u, idx=%lx",
1509                                         ino, last_page->index);
1510                 lock_page(last_page);
1511                 f2fs_wait_on_page_writeback(last_page, NODE, true);
1512                 set_page_dirty(last_page);
1513                 unlock_page(last_page);
1514                 goto retry;
1515         }
1516 out:
1517         if (last_idx != ULONG_MAX)
1518                 f2fs_submit_merged_bio_cond(sbi, NULL, ino, last_idx,
1519                                                         NODE, WRITE);
1520         return ret ? -EIO: 0;
1521 }
1522
1523 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1524 {
1525         pgoff_t index, end;
1526         struct pagevec pvec;
1527         int step = 0;
1528         int nwritten = 0;
1529         int ret = 0;
1530
1531         pagevec_init(&pvec, 0);
1532
1533 next_step:
1534         index = 0;
1535         end = ULONG_MAX;
1536
1537         while (index <= end) {
1538                 int i, nr_pages;
1539                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1540                                 PAGECACHE_TAG_DIRTY,
1541                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1542                 if (nr_pages == 0)
1543                         break;
1544
1545                 for (i = 0; i < nr_pages; i++) {
1546                         struct page *page = pvec.pages[i];
1547                         bool submitted = false;
1548
1549                         if (unlikely(f2fs_cp_error(sbi))) {
1550                                 pagevec_release(&pvec);
1551                                 ret = -EIO;
1552                                 goto out;
1553                         }
1554
1555                         /*
1556                          * flushing sequence with step:
1557                          * 0. indirect nodes
1558                          * 1. dentry dnodes
1559                          * 2. file dnodes
1560                          */
1561                         if (step == 0 && IS_DNODE(page))
1562                                 continue;
1563                         if (step == 1 && (!IS_DNODE(page) ||
1564                                                 is_cold_node(page)))
1565                                 continue;
1566                         if (step == 2 && (!IS_DNODE(page) ||
1567                                                 !is_cold_node(page)))
1568                                 continue;
1569 lock_node:
1570                         if (!trylock_page(page))
1571                                 continue;
1572
1573                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1574 continue_unlock:
1575                                 unlock_page(page);
1576                                 continue;
1577                         }
1578
1579                         if (!PageDirty(page)) {
1580                                 /* someone wrote it for us */
1581                                 goto continue_unlock;
1582                         }
1583
1584                         /* flush inline_data */
1585                         if (is_inline_node(page)) {
1586                                 clear_inline_node(page);
1587                                 unlock_page(page);
1588                                 flush_inline_data(sbi, ino_of_node(page));
1589                                 goto lock_node;
1590                         }
1591
1592                         f2fs_wait_on_page_writeback(page, NODE, true);
1593
1594                         BUG_ON(PageWriteback(page));
1595                         if (!clear_page_dirty_for_io(page))
1596                                 goto continue_unlock;
1597
1598                         set_fsync_mark(page, 0);
1599                         set_dentry_mark(page, 0);
1600
1601                         ret = __write_node_page(page, false, &submitted, wbc);
1602                         if (ret)
1603                                 unlock_page(page);
1604                         else if (submitted)
1605                                 nwritten++;
1606
1607                         if (--wbc->nr_to_write == 0)
1608                                 break;
1609                 }
1610                 pagevec_release(&pvec);
1611                 cond_resched();
1612
1613                 if (wbc->nr_to_write == 0) {
1614                         step = 2;
1615                         break;
1616                 }
1617         }
1618
1619         if (step < 2) {
1620                 step++;
1621                 goto next_step;
1622         }
1623 out:
1624         if (nwritten)
1625                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1626         return ret;
1627 }
1628
1629 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1630 {
1631         pgoff_t index = 0, end = ULONG_MAX;
1632         struct pagevec pvec;
1633         int ret2, ret = 0;
1634
1635         pagevec_init(&pvec, 0);
1636
1637         while (index <= end) {
1638                 int i, nr_pages;
1639                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1640                                 PAGECACHE_TAG_WRITEBACK,
1641                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1642                 if (nr_pages == 0)
1643                         break;
1644
1645                 for (i = 0; i < nr_pages; i++) {
1646                         struct page *page = pvec.pages[i];
1647
1648                         /* until radix tree lookup accepts end_index */
1649                         if (unlikely(page->index > end))
1650                                 continue;
1651
1652                         if (ino && ino_of_node(page) == ino) {
1653                                 f2fs_wait_on_page_writeback(page, NODE, true);
1654                                 if (TestClearPageError(page))
1655                                         ret = -EIO;
1656                         }
1657                 }
1658                 pagevec_release(&pvec);
1659                 cond_resched();
1660         }
1661
1662         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1663         if (!ret)
1664                 ret = ret2;
1665         return ret;
1666 }
1667
1668 static int f2fs_write_node_pages(struct address_space *mapping,
1669                             struct writeback_control *wbc)
1670 {
1671         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1672         struct blk_plug plug;
1673         long diff;
1674
1675         /* balancing f2fs's metadata in background */
1676         f2fs_balance_fs_bg(sbi);
1677
1678         /* collect a number of dirty node pages and write together */
1679         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1680                 goto skip_write;
1681
1682         trace_f2fs_writepages(mapping->host, wbc, NODE);
1683
1684         diff = nr_pages_to_write(sbi, NODE, wbc);
1685         wbc->sync_mode = WB_SYNC_NONE;
1686         blk_start_plug(&plug);
1687         sync_node_pages(sbi, wbc);
1688         blk_finish_plug(&plug);
1689         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1690         return 0;
1691
1692 skip_write:
1693         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1694         trace_f2fs_writepages(mapping->host, wbc, NODE);
1695         return 0;
1696 }
1697
1698 static int f2fs_set_node_page_dirty(struct page *page)
1699 {
1700         trace_f2fs_set_page_dirty(page, NODE);
1701
1702         if (!PageUptodate(page))
1703                 SetPageUptodate(page);
1704         if (!PageDirty(page)) {
1705                 f2fs_set_page_dirty_nobuffers(page);
1706                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1707                 SetPagePrivate(page);
1708                 f2fs_trace_pid(page);
1709                 return 1;
1710         }
1711         return 0;
1712 }
1713
1714 /*
1715  * Structure of the f2fs node operations
1716  */
1717 const struct address_space_operations f2fs_node_aops = {
1718         .writepage      = f2fs_write_node_page,
1719         .writepages     = f2fs_write_node_pages,
1720         .set_page_dirty = f2fs_set_node_page_dirty,
1721         .invalidatepage = f2fs_invalidate_page,
1722         .releasepage    = f2fs_release_page,
1723 #ifdef CONFIG_MIGRATION
1724         .migratepage    = f2fs_migrate_page,
1725 #endif
1726 };
1727
1728 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1729                                                 nid_t n)
1730 {
1731         return radix_tree_lookup(&nm_i->free_nid_root, n);
1732 }
1733
1734 static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1735                         struct free_nid *i, enum nid_list list, bool new)
1736 {
1737         struct f2fs_nm_info *nm_i = NM_I(sbi);
1738
1739         if (new) {
1740                 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1741                 if (err)
1742                         return err;
1743         }
1744
1745         f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1746                                                 i->state != NID_ALLOC);
1747         nm_i->nid_cnt[list]++;
1748         list_add_tail(&i->list, &nm_i->nid_list[list]);
1749         return 0;
1750 }
1751
1752 static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1753                         struct free_nid *i, enum nid_list list, bool reuse)
1754 {
1755         struct f2fs_nm_info *nm_i = NM_I(sbi);
1756
1757         f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1758                                                 i->state != NID_ALLOC);
1759         nm_i->nid_cnt[list]--;
1760         list_del(&i->list);
1761         if (!reuse)
1762                 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1763 }
1764
1765 /* return if the nid is recognized as free */
1766 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1767 {
1768         struct f2fs_nm_info *nm_i = NM_I(sbi);
1769         struct free_nid *i;
1770         struct nat_entry *ne;
1771         int err;
1772
1773         /* 0 nid should not be used */
1774         if (unlikely(nid == 0))
1775                 return false;
1776
1777         if (build) {
1778                 /* do not add allocated nids */
1779                 ne = __lookup_nat_cache(nm_i, nid);
1780                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1781                                 nat_get_blkaddr(ne) != NULL_ADDR))
1782                         return false;
1783         }
1784
1785         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1786         i->nid = nid;
1787         i->state = NID_NEW;
1788
1789         if (radix_tree_preload(GFP_NOFS)) {
1790                 kmem_cache_free(free_nid_slab, i);
1791                 return true;
1792         }
1793
1794         spin_lock(&nm_i->nid_list_lock);
1795         err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1796         spin_unlock(&nm_i->nid_list_lock);
1797         radix_tree_preload_end();
1798         if (err) {
1799                 kmem_cache_free(free_nid_slab, i);
1800                 return true;
1801         }
1802         return true;
1803 }
1804
1805 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1806 {
1807         struct f2fs_nm_info *nm_i = NM_I(sbi);
1808         struct free_nid *i;
1809         bool need_free = false;
1810
1811         spin_lock(&nm_i->nid_list_lock);
1812         i = __lookup_free_nid_list(nm_i, nid);
1813         if (i && i->state == NID_NEW) {
1814                 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1815                 need_free = true;
1816         }
1817         spin_unlock(&nm_i->nid_list_lock);
1818
1819         if (need_free)
1820                 kmem_cache_free(free_nid_slab, i);
1821 }
1822
1823 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1824                         bool set, bool build, bool locked)
1825 {
1826         struct f2fs_nm_info *nm_i = NM_I(sbi);
1827         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1828         unsigned int nid_ofs = nid - START_NID(nid);
1829
1830         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1831                 return;
1832
1833         if (set)
1834                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1835         else
1836                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1837
1838         if (!locked)
1839                 spin_lock(&nm_i->free_nid_lock);
1840         if (set)
1841                 nm_i->free_nid_count[nat_ofs]++;
1842         else if (!build)
1843                 nm_i->free_nid_count[nat_ofs]--;
1844         if (!locked)
1845                 spin_unlock(&nm_i->free_nid_lock);
1846 }
1847
1848 static void scan_nat_page(struct f2fs_sb_info *sbi,
1849                         struct page *nat_page, nid_t start_nid)
1850 {
1851         struct f2fs_nm_info *nm_i = NM_I(sbi);
1852         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1853         block_t blk_addr;
1854         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1855         int i;
1856
1857         if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1858                 return;
1859
1860         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1861
1862         i = start_nid % NAT_ENTRY_PER_BLOCK;
1863
1864         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1865                 bool freed = false;
1866
1867                 if (unlikely(start_nid >= nm_i->max_nid))
1868                         break;
1869
1870                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1871                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1872                 if (blk_addr == NULL_ADDR)
1873                         freed = add_free_nid(sbi, start_nid, true);
1874                 update_free_nid_bitmap(sbi, start_nid, freed, true, false);
1875         }
1876 }
1877
1878 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1879 {
1880         struct f2fs_nm_info *nm_i = NM_I(sbi);
1881         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1882         struct f2fs_journal *journal = curseg->journal;
1883         unsigned int i, idx;
1884
1885         down_read(&nm_i->nat_tree_lock);
1886
1887         for (i = 0; i < nm_i->nat_blocks; i++) {
1888                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
1889                         continue;
1890                 if (!nm_i->free_nid_count[i])
1891                         continue;
1892                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1893                         nid_t nid;
1894
1895                         if (!test_bit_le(idx, nm_i->free_nid_bitmap[i]))
1896                                 continue;
1897
1898                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
1899                         add_free_nid(sbi, nid, true);
1900
1901                         if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
1902                                 goto out;
1903                 }
1904         }
1905 out:
1906         down_read(&curseg->journal_rwsem);
1907         for (i = 0; i < nats_in_cursum(journal); i++) {
1908                 block_t addr;
1909                 nid_t nid;
1910
1911                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1912                 nid = le32_to_cpu(nid_in_journal(journal, i));
1913                 if (addr == NULL_ADDR)
1914                         add_free_nid(sbi, nid, true);
1915                 else
1916                         remove_free_nid(sbi, nid);
1917         }
1918         up_read(&curseg->journal_rwsem);
1919         up_read(&nm_i->nat_tree_lock);
1920 }
1921
1922 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1923 {
1924         struct f2fs_nm_info *nm_i = NM_I(sbi);
1925         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1926         struct f2fs_journal *journal = curseg->journal;
1927         int i = 0;
1928         nid_t nid = nm_i->next_scan_nid;
1929
1930         /* Enough entries */
1931         if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1932                 return;
1933
1934         if (!sync && !available_free_memory(sbi, FREE_NIDS))
1935                 return;
1936
1937         if (!mount) {
1938                 /* try to find free nids in free_nid_bitmap */
1939                 scan_free_nid_bits(sbi);
1940
1941                 if (nm_i->nid_cnt[FREE_NID_LIST])
1942                         return;
1943         }
1944
1945         /* readahead nat pages to be scanned */
1946         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1947                                                         META_NAT, true);
1948
1949         down_read(&nm_i->nat_tree_lock);
1950
1951         while (1) {
1952                 struct page *page = get_current_nat_page(sbi, nid);
1953
1954                 scan_nat_page(sbi, page, nid);
1955                 f2fs_put_page(page, 1);
1956
1957                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1958                 if (unlikely(nid >= nm_i->max_nid))
1959                         nid = 0;
1960
1961                 if (++i >= FREE_NID_PAGES)
1962                         break;
1963         }
1964
1965         /* go to the next free nat pages to find free nids abundantly */
1966         nm_i->next_scan_nid = nid;
1967
1968         /* find free nids from current sum_pages */
1969         down_read(&curseg->journal_rwsem);
1970         for (i = 0; i < nats_in_cursum(journal); i++) {
1971                 block_t addr;
1972
1973                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1974                 nid = le32_to_cpu(nid_in_journal(journal, i));
1975                 if (addr == NULL_ADDR)
1976                         add_free_nid(sbi, nid, true);
1977                 else
1978                         remove_free_nid(sbi, nid);
1979         }
1980         up_read(&curseg->journal_rwsem);
1981         up_read(&nm_i->nat_tree_lock);
1982
1983         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1984                                         nm_i->ra_nid_pages, META_NAT, false);
1985 }
1986
1987 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1988 {
1989         mutex_lock(&NM_I(sbi)->build_lock);
1990         __build_free_nids(sbi, sync, mount);
1991         mutex_unlock(&NM_I(sbi)->build_lock);
1992 }
1993
1994 /*
1995  * If this function returns success, caller can obtain a new nid
1996  * from second parameter of this function.
1997  * The returned nid could be used ino as well as nid when inode is created.
1998  */
1999 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2000 {
2001         struct f2fs_nm_info *nm_i = NM_I(sbi);
2002         struct free_nid *i = NULL;
2003 retry:
2004 #ifdef CONFIG_F2FS_FAULT_INJECTION
2005         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2006                 f2fs_show_injection_info(FAULT_ALLOC_NID);
2007                 return false;
2008         }
2009 #endif
2010         spin_lock(&nm_i->nid_list_lock);
2011
2012         if (unlikely(nm_i->available_nids == 0)) {
2013                 spin_unlock(&nm_i->nid_list_lock);
2014                 return false;
2015         }
2016
2017         /* We should not use stale free nids created by build_free_nids */
2018         if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
2019                 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
2020                 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
2021                                         struct free_nid, list);
2022                 *nid = i->nid;
2023
2024                 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
2025                 i->state = NID_ALLOC;
2026                 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
2027                 nm_i->available_nids--;
2028
2029                 update_free_nid_bitmap(sbi, *nid, false, false, false);
2030
2031                 spin_unlock(&nm_i->nid_list_lock);
2032                 return true;
2033         }
2034         spin_unlock(&nm_i->nid_list_lock);
2035
2036         /* Let's scan nat pages and its caches to get free nids */
2037         build_free_nids(sbi, true, false);
2038         goto retry;
2039 }
2040
2041 /*
2042  * alloc_nid() should be called prior to this function.
2043  */
2044 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2045 {
2046         struct f2fs_nm_info *nm_i = NM_I(sbi);
2047         struct free_nid *i;
2048
2049         spin_lock(&nm_i->nid_list_lock);
2050         i = __lookup_free_nid_list(nm_i, nid);
2051         f2fs_bug_on(sbi, !i);
2052         __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2053         spin_unlock(&nm_i->nid_list_lock);
2054
2055         kmem_cache_free(free_nid_slab, i);
2056 }
2057
2058 /*
2059  * alloc_nid() should be called prior to this function.
2060  */
2061 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2062 {
2063         struct f2fs_nm_info *nm_i = NM_I(sbi);
2064         struct free_nid *i;
2065         bool need_free = false;
2066
2067         if (!nid)
2068                 return;
2069
2070         spin_lock(&nm_i->nid_list_lock);
2071         i = __lookup_free_nid_list(nm_i, nid);
2072         f2fs_bug_on(sbi, !i);
2073
2074         if (!available_free_memory(sbi, FREE_NIDS)) {
2075                 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2076                 need_free = true;
2077         } else {
2078                 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
2079                 i->state = NID_NEW;
2080                 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
2081         }
2082
2083         nm_i->available_nids++;
2084
2085         update_free_nid_bitmap(sbi, nid, true, false, false);
2086
2087         spin_unlock(&nm_i->nid_list_lock);
2088
2089         if (need_free)
2090                 kmem_cache_free(free_nid_slab, i);
2091 }
2092
2093 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2094 {
2095         struct f2fs_nm_info *nm_i = NM_I(sbi);
2096         struct free_nid *i, *next;
2097         int nr = nr_shrink;
2098
2099         if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2100                 return 0;
2101
2102         if (!mutex_trylock(&nm_i->build_lock))
2103                 return 0;
2104
2105         spin_lock(&nm_i->nid_list_lock);
2106         list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
2107                                                                         list) {
2108                 if (nr_shrink <= 0 ||
2109                                 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2110                         break;
2111
2112                 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2113                 kmem_cache_free(free_nid_slab, i);
2114                 nr_shrink--;
2115         }
2116         spin_unlock(&nm_i->nid_list_lock);
2117         mutex_unlock(&nm_i->build_lock);
2118
2119         return nr - nr_shrink;
2120 }
2121
2122 void recover_inline_xattr(struct inode *inode, struct page *page)
2123 {
2124         void *src_addr, *dst_addr;
2125         size_t inline_size;
2126         struct page *ipage;
2127         struct f2fs_inode *ri;
2128
2129         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2130         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2131
2132         ri = F2FS_INODE(page);
2133         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2134                 clear_inode_flag(inode, FI_INLINE_XATTR);
2135                 goto update_inode;
2136         }
2137
2138         dst_addr = inline_xattr_addr(ipage);
2139         src_addr = inline_xattr_addr(page);
2140         inline_size = inline_xattr_size(inode);
2141
2142         f2fs_wait_on_page_writeback(ipage, NODE, true);
2143         memcpy(dst_addr, src_addr, inline_size);
2144 update_inode:
2145         update_inode(inode, ipage);
2146         f2fs_put_page(ipage, 1);
2147 }
2148
2149 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2150 {
2151         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2152         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2153         nid_t new_xnid = nid_of_node(page);
2154         struct node_info ni;
2155         struct page *xpage;
2156
2157         if (!prev_xnid)
2158                 goto recover_xnid;
2159
2160         /* 1: invalidate the previous xattr nid */
2161         get_node_info(sbi, prev_xnid, &ni);
2162         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2163         invalidate_blocks(sbi, ni.blk_addr);
2164         dec_valid_node_count(sbi, inode);
2165         set_node_addr(sbi, &ni, NULL_ADDR, false);
2166
2167 recover_xnid:
2168         /* 2: update xattr nid in inode */
2169         remove_free_nid(sbi, new_xnid);
2170         f2fs_i_xnid_write(inode, new_xnid);
2171         if (unlikely(!inc_valid_node_count(sbi, inode)))
2172                 f2fs_bug_on(sbi, 1);
2173         update_inode_page(inode);
2174
2175         /* 3: update and set xattr node page dirty */
2176         xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid);
2177         if (!xpage)
2178                 return -ENOMEM;
2179
2180         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE);
2181
2182         get_node_info(sbi, new_xnid, &ni);
2183         ni.ino = inode->i_ino;
2184         set_node_addr(sbi, &ni, NEW_ADDR, false);
2185         set_page_dirty(xpage);
2186         f2fs_put_page(xpage, 1);
2187
2188         return 0;
2189 }
2190
2191 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2192 {
2193         struct f2fs_inode *src, *dst;
2194         nid_t ino = ino_of_node(page);
2195         struct node_info old_ni, new_ni;
2196         struct page *ipage;
2197
2198         get_node_info(sbi, ino, &old_ni);
2199
2200         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2201                 return -EINVAL;
2202 retry:
2203         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2204         if (!ipage) {
2205                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2206                 goto retry;
2207         }
2208
2209         /* Should not use this inode from free nid list */
2210         remove_free_nid(sbi, ino);
2211
2212         if (!PageUptodate(ipage))
2213                 SetPageUptodate(ipage);
2214         fill_node_footer(ipage, ino, ino, 0, true);
2215
2216         src = F2FS_INODE(page);
2217         dst = F2FS_INODE(ipage);
2218
2219         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2220         dst->i_size = 0;
2221         dst->i_blocks = cpu_to_le64(1);
2222         dst->i_links = cpu_to_le32(1);
2223         dst->i_xattr_nid = 0;
2224         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2225
2226         new_ni = old_ni;
2227         new_ni.ino = ino;
2228
2229         if (unlikely(!inc_valid_node_count(sbi, NULL)))
2230                 WARN_ON(1);
2231         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2232         inc_valid_inode_count(sbi);
2233         set_page_dirty(ipage);
2234         f2fs_put_page(ipage, 1);
2235         return 0;
2236 }
2237
2238 int restore_node_summary(struct f2fs_sb_info *sbi,
2239                         unsigned int segno, struct f2fs_summary_block *sum)
2240 {
2241         struct f2fs_node *rn;
2242         struct f2fs_summary *sum_entry;
2243         block_t addr;
2244         int i, idx, last_offset, nrpages;
2245
2246         /* scan the node segment */
2247         last_offset = sbi->blocks_per_seg;
2248         addr = START_BLOCK(sbi, segno);
2249         sum_entry = &sum->entries[0];
2250
2251         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2252                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2253
2254                 /* readahead node pages */
2255                 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2256
2257                 for (idx = addr; idx < addr + nrpages; idx++) {
2258                         struct page *page = get_tmp_page(sbi, idx);
2259
2260                         rn = F2FS_NODE(page);
2261                         sum_entry->nid = rn->footer.nid;
2262                         sum_entry->version = 0;
2263                         sum_entry->ofs_in_node = 0;
2264                         sum_entry++;
2265                         f2fs_put_page(page, 1);
2266                 }
2267
2268                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2269                                                         addr + nrpages);
2270         }
2271         return 0;
2272 }
2273
2274 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2275 {
2276         struct f2fs_nm_info *nm_i = NM_I(sbi);
2277         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2278         struct f2fs_journal *journal = curseg->journal;
2279         int i;
2280
2281         down_write(&curseg->journal_rwsem);
2282         for (i = 0; i < nats_in_cursum(journal); i++) {
2283                 struct nat_entry *ne;
2284                 struct f2fs_nat_entry raw_ne;
2285                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2286
2287                 raw_ne = nat_in_journal(journal, i);
2288
2289                 ne = __lookup_nat_cache(nm_i, nid);
2290                 if (!ne) {
2291                         ne = grab_nat_entry(nm_i, nid, true);
2292                         node_info_from_raw_nat(&ne->ni, &raw_ne);
2293                 }
2294
2295                 /*
2296                  * if a free nat in journal has not been used after last
2297                  * checkpoint, we should remove it from available nids,
2298                  * since later we will add it again.
2299                  */
2300                 if (!get_nat_flag(ne, IS_DIRTY) &&
2301                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2302                         spin_lock(&nm_i->nid_list_lock);
2303                         nm_i->available_nids--;
2304                         spin_unlock(&nm_i->nid_list_lock);
2305                 }
2306
2307                 __set_nat_cache_dirty(nm_i, ne);
2308         }
2309         update_nats_in_cursum(journal, -i);
2310         up_write(&curseg->journal_rwsem);
2311 }
2312
2313 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2314                                                 struct list_head *head, int max)
2315 {
2316         struct nat_entry_set *cur;
2317
2318         if (nes->entry_cnt >= max)
2319                 goto add_out;
2320
2321         list_for_each_entry(cur, head, set_list) {
2322                 if (cur->entry_cnt >= nes->entry_cnt) {
2323                         list_add(&nes->set_list, cur->set_list.prev);
2324                         return;
2325                 }
2326         }
2327 add_out:
2328         list_add_tail(&nes->set_list, head);
2329 }
2330
2331 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2332                                                 struct page *page)
2333 {
2334         struct f2fs_nm_info *nm_i = NM_I(sbi);
2335         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2336         struct f2fs_nat_block *nat_blk = page_address(page);
2337         int valid = 0;
2338         int i;
2339
2340         if (!enabled_nat_bits(sbi, NULL))
2341                 return;
2342
2343         for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2344                 if (start_nid == 0 && i == 0)
2345                         valid++;
2346                 if (nat_blk->entries[i].block_addr)
2347                         valid++;
2348         }
2349         if (valid == 0) {
2350                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2351                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2352                 return;
2353         }
2354
2355         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2356         if (valid == NAT_ENTRY_PER_BLOCK)
2357                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2358         else
2359                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2360 }
2361
2362 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2363                 struct nat_entry_set *set, struct cp_control *cpc)
2364 {
2365         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2366         struct f2fs_journal *journal = curseg->journal;
2367         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2368         bool to_journal = true;
2369         struct f2fs_nat_block *nat_blk;
2370         struct nat_entry *ne, *cur;
2371         struct page *page = NULL;
2372
2373         /*
2374          * there are two steps to flush nat entries:
2375          * #1, flush nat entries to journal in current hot data summary block.
2376          * #2, flush nat entries to nat page.
2377          */
2378         if (enabled_nat_bits(sbi, cpc) ||
2379                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2380                 to_journal = false;
2381
2382         if (to_journal) {
2383                 down_write(&curseg->journal_rwsem);
2384         } else {
2385                 page = get_next_nat_page(sbi, start_nid);
2386                 nat_blk = page_address(page);
2387                 f2fs_bug_on(sbi, !nat_blk);
2388         }
2389
2390         /* flush dirty nats in nat entry set */
2391         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2392                 struct f2fs_nat_entry *raw_ne;
2393                 nid_t nid = nat_get_nid(ne);
2394                 int offset;
2395
2396                 if (nat_get_blkaddr(ne) == NEW_ADDR)
2397                         continue;
2398
2399                 if (to_journal) {
2400                         offset = lookup_journal_in_cursum(journal,
2401                                                         NAT_JOURNAL, nid, 1);
2402                         f2fs_bug_on(sbi, offset < 0);
2403                         raw_ne = &nat_in_journal(journal, offset);
2404                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2405                 } else {
2406                         raw_ne = &nat_blk->entries[nid - start_nid];
2407                 }
2408                 raw_nat_from_node_info(raw_ne, &ne->ni);
2409                 nat_reset_flag(ne);
2410                 __clear_nat_cache_dirty(NM_I(sbi), ne);
2411                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2412                         add_free_nid(sbi, nid, false);
2413                         spin_lock(&NM_I(sbi)->nid_list_lock);
2414                         NM_I(sbi)->available_nids++;
2415                         update_free_nid_bitmap(sbi, nid, true, false, false);
2416                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2417                 } else {
2418                         spin_lock(&NM_I(sbi)->nid_list_lock);
2419                         update_free_nid_bitmap(sbi, nid, false, false, false);
2420                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2421                 }
2422         }
2423
2424         if (to_journal) {
2425                 up_write(&curseg->journal_rwsem);
2426         } else {
2427                 __update_nat_bits(sbi, start_nid, page);
2428                 f2fs_put_page(page, 1);
2429         }
2430
2431         f2fs_bug_on(sbi, set->entry_cnt);
2432
2433         radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2434         kmem_cache_free(nat_entry_set_slab, set);
2435 }
2436
2437 /*
2438  * This function is called during the checkpointing process.
2439  */
2440 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2441 {
2442         struct f2fs_nm_info *nm_i = NM_I(sbi);
2443         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2444         struct f2fs_journal *journal = curseg->journal;
2445         struct nat_entry_set *setvec[SETVEC_SIZE];
2446         struct nat_entry_set *set, *tmp;
2447         unsigned int found;
2448         nid_t set_idx = 0;
2449         LIST_HEAD(sets);
2450
2451         if (!nm_i->dirty_nat_cnt)
2452                 return;
2453
2454         down_write(&nm_i->nat_tree_lock);
2455
2456         /*
2457          * if there are no enough space in journal to store dirty nat
2458          * entries, remove all entries from journal and merge them
2459          * into nat entry set.
2460          */
2461         if (enabled_nat_bits(sbi, cpc) ||
2462                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2463                 remove_nats_in_journal(sbi);
2464
2465         while ((found = __gang_lookup_nat_set(nm_i,
2466                                         set_idx, SETVEC_SIZE, setvec))) {
2467                 unsigned idx;
2468                 set_idx = setvec[found - 1]->set + 1;
2469                 for (idx = 0; idx < found; idx++)
2470                         __adjust_nat_entry_set(setvec[idx], &sets,
2471                                                 MAX_NAT_JENTRIES(journal));
2472         }
2473
2474         /* flush dirty nats in nat entry set */
2475         list_for_each_entry_safe(set, tmp, &sets, set_list)
2476                 __flush_nat_entry_set(sbi, set, cpc);
2477
2478         up_write(&nm_i->nat_tree_lock);
2479
2480         f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2481 }
2482
2483 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2484 {
2485         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2486         struct f2fs_nm_info *nm_i = NM_I(sbi);
2487         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2488         unsigned int i;
2489         __u64 cp_ver = cur_cp_version(ckpt);
2490         block_t nat_bits_addr;
2491
2492         if (!enabled_nat_bits(sbi, NULL))
2493                 return 0;
2494
2495         nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2496                                                 F2FS_BLKSIZE - 1);
2497         nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2498                                                 GFP_KERNEL);
2499         if (!nm_i->nat_bits)
2500                 return -ENOMEM;
2501
2502         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2503                                                 nm_i->nat_bits_blocks;
2504         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2505                 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2506
2507                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2508                                         page_address(page), F2FS_BLKSIZE);
2509                 f2fs_put_page(page, 1);
2510         }
2511
2512         cp_ver |= (cur_cp_crc(ckpt) << 32);
2513         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2514                 disable_nat_bits(sbi, true);
2515                 return 0;
2516         }
2517
2518         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2519         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2520
2521         f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2522         return 0;
2523 }
2524
2525 inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2526 {
2527         struct f2fs_nm_info *nm_i = NM_I(sbi);
2528         unsigned int i = 0;
2529         nid_t nid, last_nid;
2530
2531         if (!enabled_nat_bits(sbi, NULL))
2532                 return;
2533
2534         for (i = 0; i < nm_i->nat_blocks; i++) {
2535                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2536                 if (i >= nm_i->nat_blocks)
2537                         break;
2538
2539                 __set_bit_le(i, nm_i->nat_block_bitmap);
2540
2541                 nid = i * NAT_ENTRY_PER_BLOCK;
2542                 last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK;
2543
2544                 spin_lock(&nm_i->free_nid_lock);
2545                 for (; nid < last_nid; nid++)
2546                         update_free_nid_bitmap(sbi, nid, true, true, true);
2547                 spin_unlock(&nm_i->free_nid_lock);
2548         }
2549
2550         for (i = 0; i < nm_i->nat_blocks; i++) {
2551                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2552                 if (i >= nm_i->nat_blocks)
2553                         break;
2554
2555                 __set_bit_le(i, nm_i->nat_block_bitmap);
2556         }
2557 }
2558
2559 static int init_node_manager(struct f2fs_sb_info *sbi)
2560 {
2561         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2562         struct f2fs_nm_info *nm_i = NM_I(sbi);
2563         unsigned char *version_bitmap;
2564         unsigned int nat_segs;
2565         int err;
2566
2567         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2568
2569         /* segment_count_nat includes pair segment so divide to 2. */
2570         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2571         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2572         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2573
2574         /* not used nids: 0, node, meta, (and root counted as valid node) */
2575         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2576                                                         F2FS_RESERVED_NODE_NUM;
2577         nm_i->nid_cnt[FREE_NID_LIST] = 0;
2578         nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2579         nm_i->nat_cnt = 0;
2580         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2581         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2582         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2583
2584         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2585         INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2586         INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2587         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2588         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2589         INIT_LIST_HEAD(&nm_i->nat_entries);
2590
2591         mutex_init(&nm_i->build_lock);
2592         spin_lock_init(&nm_i->nid_list_lock);
2593         init_rwsem(&nm_i->nat_tree_lock);
2594
2595         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2596         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2597         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2598         if (!version_bitmap)
2599                 return -EFAULT;
2600
2601         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2602                                         GFP_KERNEL);
2603         if (!nm_i->nat_bitmap)
2604                 return -ENOMEM;
2605
2606         err = __get_nat_bitmaps(sbi);
2607         if (err)
2608                 return err;
2609
2610 #ifdef CONFIG_F2FS_CHECK_FS
2611         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2612                                         GFP_KERNEL);
2613         if (!nm_i->nat_bitmap_mir)
2614                 return -ENOMEM;
2615 #endif
2616
2617         return 0;
2618 }
2619
2620 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2621 {
2622         struct f2fs_nm_info *nm_i = NM_I(sbi);
2623
2624         nm_i->free_nid_bitmap = f2fs_kvzalloc(nm_i->nat_blocks *
2625                                         NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2626         if (!nm_i->free_nid_bitmap)
2627                 return -ENOMEM;
2628
2629         nm_i->nat_block_bitmap = f2fs_kvzalloc(nm_i->nat_blocks / 8,
2630                                                                 GFP_KERNEL);
2631         if (!nm_i->nat_block_bitmap)
2632                 return -ENOMEM;
2633
2634         nm_i->free_nid_count = f2fs_kvzalloc(nm_i->nat_blocks *
2635                                         sizeof(unsigned short), GFP_KERNEL);
2636         if (!nm_i->free_nid_count)
2637                 return -ENOMEM;
2638
2639         spin_lock_init(&nm_i->free_nid_lock);
2640
2641         return 0;
2642 }
2643
2644 int build_node_manager(struct f2fs_sb_info *sbi)
2645 {
2646         int err;
2647
2648         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2649         if (!sbi->nm_info)
2650                 return -ENOMEM;
2651
2652         err = init_node_manager(sbi);
2653         if (err)
2654                 return err;
2655
2656         err = init_free_nid_cache(sbi);
2657         if (err)
2658                 return err;
2659
2660         /* load free nid status from nat_bits table */
2661         load_free_nid_bitmap(sbi);
2662
2663         build_free_nids(sbi, true, true);
2664         return 0;
2665 }
2666
2667 void destroy_node_manager(struct f2fs_sb_info *sbi)
2668 {
2669         struct f2fs_nm_info *nm_i = NM_I(sbi);
2670         struct free_nid *i, *next_i;
2671         struct nat_entry *natvec[NATVEC_SIZE];
2672         struct nat_entry_set *setvec[SETVEC_SIZE];
2673         nid_t nid = 0;
2674         unsigned int found;
2675
2676         if (!nm_i)
2677                 return;
2678
2679         /* destroy free nid list */
2680         spin_lock(&nm_i->nid_list_lock);
2681         list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2682                                                                         list) {
2683                 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2684                 spin_unlock(&nm_i->nid_list_lock);
2685                 kmem_cache_free(free_nid_slab, i);
2686                 spin_lock(&nm_i->nid_list_lock);
2687         }
2688         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2689         f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2690         f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2691         spin_unlock(&nm_i->nid_list_lock);
2692
2693         /* destroy nat cache */
2694         down_write(&nm_i->nat_tree_lock);
2695         while ((found = __gang_lookup_nat_cache(nm_i,
2696                                         nid, NATVEC_SIZE, natvec))) {
2697                 unsigned idx;
2698
2699                 nid = nat_get_nid(natvec[found - 1]) + 1;
2700                 for (idx = 0; idx < found; idx++)
2701                         __del_from_nat_cache(nm_i, natvec[idx]);
2702         }
2703         f2fs_bug_on(sbi, nm_i->nat_cnt);
2704
2705         /* destroy nat set cache */
2706         nid = 0;
2707         while ((found = __gang_lookup_nat_set(nm_i,
2708                                         nid, SETVEC_SIZE, setvec))) {
2709                 unsigned idx;
2710
2711                 nid = setvec[found - 1]->set + 1;
2712                 for (idx = 0; idx < found; idx++) {
2713                         /* entry_cnt is not zero, when cp_error was occurred */
2714                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2715                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2716                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2717                 }
2718         }
2719         up_write(&nm_i->nat_tree_lock);
2720
2721         kvfree(nm_i->nat_block_bitmap);
2722         kvfree(nm_i->free_nid_bitmap);
2723         kvfree(nm_i->free_nid_count);
2724
2725         kfree(nm_i->nat_bitmap);
2726         kfree(nm_i->nat_bits);
2727 #ifdef CONFIG_F2FS_CHECK_FS
2728         kfree(nm_i->nat_bitmap_mir);
2729 #endif
2730         sbi->nm_info = NULL;
2731         kfree(nm_i);
2732 }
2733
2734 int __init create_node_manager_caches(void)
2735 {
2736         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2737                         sizeof(struct nat_entry));
2738         if (!nat_entry_slab)
2739                 goto fail;
2740
2741         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2742                         sizeof(struct free_nid));
2743         if (!free_nid_slab)
2744                 goto destroy_nat_entry;
2745
2746         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2747                         sizeof(struct nat_entry_set));
2748         if (!nat_entry_set_slab)
2749                 goto destroy_free_nid;
2750         return 0;
2751
2752 destroy_free_nid:
2753         kmem_cache_destroy(free_nid_slab);
2754 destroy_nat_entry:
2755         kmem_cache_destroy(nat_entry_slab);
2756 fail:
2757         return -ENOMEM;
2758 }
2759
2760 void destroy_node_manager_caches(void)
2761 {
2762         kmem_cache_destroy(nat_entry_set_slab);
2763         kmem_cache_destroy(free_nid_slab);
2764         kmem_cache_destroy(nat_entry_slab);
2765 }