]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/node.c
f2fs: add bitmaps for empty or full NAT blocks
[karo-tx-linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33         struct f2fs_nm_info *nm_i = NM_I(sbi);
34         struct sysinfo val;
35         unsigned long avail_ram;
36         unsigned long mem_size = 0;
37         bool res = false;
38
39         si_meminfo(&val);
40
41         /* only uses low memory */
42         avail_ram = val.totalram - val.totalhigh;
43
44         /*
45          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46          */
47         if (type == FREE_NIDS) {
48                 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
49                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
50                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51         } else if (type == NAT_ENTRIES) {
52                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53                                                         PAGE_SHIFT;
54                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55                 if (excess_cached_nats(sbi))
56                         res = false;
57         } else if (type == DIRTY_DENTS) {
58                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
59                         return false;
60                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62         } else if (type == INO_ENTRIES) {
63                 int i;
64
65                 for (i = 0; i <= UPDATE_INO; i++)
66                         mem_size += (sbi->im[i].ino_num *
67                                 sizeof(struct ino_entry)) >> PAGE_SHIFT;
68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
69         } else if (type == EXTENT_CACHE) {
70                 mem_size = (atomic_read(&sbi->total_ext_tree) *
71                                 sizeof(struct extent_tree) +
72                                 atomic_read(&sbi->total_ext_node) *
73                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
74                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75         } else {
76                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
77                         return true;
78         }
79         return res;
80 }
81
82 static void clear_node_page_dirty(struct page *page)
83 {
84         struct address_space *mapping = page->mapping;
85         unsigned int long flags;
86
87         if (PageDirty(page)) {
88                 spin_lock_irqsave(&mapping->tree_lock, flags);
89                 radix_tree_tag_clear(&mapping->page_tree,
90                                 page_index(page),
91                                 PAGECACHE_TAG_DIRTY);
92                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
93
94                 clear_page_dirty_for_io(page);
95                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
96         }
97         ClearPageUptodate(page);
98 }
99
100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
101 {
102         pgoff_t index = current_nat_addr(sbi, nid);
103         return get_meta_page(sbi, index);
104 }
105
106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108         struct page *src_page;
109         struct page *dst_page;
110         pgoff_t src_off;
111         pgoff_t dst_off;
112         void *src_addr;
113         void *dst_addr;
114         struct f2fs_nm_info *nm_i = NM_I(sbi);
115
116         src_off = current_nat_addr(sbi, nid);
117         dst_off = next_nat_addr(sbi, src_off);
118
119         /* get current nat block page with lock */
120         src_page = get_meta_page(sbi, src_off);
121         dst_page = grab_meta_page(sbi, dst_off);
122         f2fs_bug_on(sbi, PageDirty(src_page));
123
124         src_addr = page_address(src_page);
125         dst_addr = page_address(dst_page);
126         memcpy(dst_addr, src_addr, PAGE_SIZE);
127         set_page_dirty(dst_page);
128         f2fs_put_page(src_page, 1);
129
130         set_to_next_nat(nm_i, nid);
131
132         return dst_page;
133 }
134
135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
136 {
137         return radix_tree_lookup(&nm_i->nat_root, n);
138 }
139
140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
141                 nid_t start, unsigned int nr, struct nat_entry **ep)
142 {
143         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
144 }
145
146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
147 {
148         list_del(&e->list);
149         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
150         nm_i->nat_cnt--;
151         kmem_cache_free(nat_entry_slab, e);
152 }
153
154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
155                                                 struct nat_entry *ne)
156 {
157         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
158         struct nat_entry_set *head;
159
160         if (get_nat_flag(ne, IS_DIRTY))
161                 return;
162
163         head = radix_tree_lookup(&nm_i->nat_set_root, set);
164         if (!head) {
165                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
166
167                 INIT_LIST_HEAD(&head->entry_list);
168                 INIT_LIST_HEAD(&head->set_list);
169                 head->set = set;
170                 head->entry_cnt = 0;
171                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
172         }
173         list_move_tail(&ne->list, &head->entry_list);
174         nm_i->dirty_nat_cnt++;
175         head->entry_cnt++;
176         set_nat_flag(ne, IS_DIRTY, true);
177 }
178
179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
180                                                 struct nat_entry *ne)
181 {
182         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
183         struct nat_entry_set *head;
184
185         head = radix_tree_lookup(&nm_i->nat_set_root, set);
186         if (head) {
187                 list_move_tail(&ne->list, &nm_i->nat_entries);
188                 set_nat_flag(ne, IS_DIRTY, false);
189                 head->entry_cnt--;
190                 nm_i->dirty_nat_cnt--;
191         }
192 }
193
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
196 {
197         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198                                                         start, nr);
199 }
200
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
202 {
203         struct f2fs_nm_info *nm_i = NM_I(sbi);
204         struct nat_entry *e;
205         bool need = false;
206
207         down_read(&nm_i->nat_tree_lock);
208         e = __lookup_nat_cache(nm_i, nid);
209         if (e) {
210                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
212                         need = true;
213         }
214         up_read(&nm_i->nat_tree_lock);
215         return need;
216 }
217
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
219 {
220         struct f2fs_nm_info *nm_i = NM_I(sbi);
221         struct nat_entry *e;
222         bool is_cp = true;
223
224         down_read(&nm_i->nat_tree_lock);
225         e = __lookup_nat_cache(nm_i, nid);
226         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227                 is_cp = false;
228         up_read(&nm_i->nat_tree_lock);
229         return is_cp;
230 }
231
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
233 {
234         struct f2fs_nm_info *nm_i = NM_I(sbi);
235         struct nat_entry *e;
236         bool need_update = true;
237
238         down_read(&nm_i->nat_tree_lock);
239         e = __lookup_nat_cache(nm_i, ino);
240         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241                         (get_nat_flag(e, IS_CHECKPOINTED) ||
242                          get_nat_flag(e, HAS_FSYNCED_INODE)))
243                 need_update = false;
244         up_read(&nm_i->nat_tree_lock);
245         return need_update;
246 }
247
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
249                                                                 bool no_fail)
250 {
251         struct nat_entry *new;
252
253         if (no_fail) {
254                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
255                 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
256         } else {
257                 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
258                 if (!new)
259                         return NULL;
260                 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
261                         kmem_cache_free(nat_entry_slab, new);
262                         return NULL;
263                 }
264         }
265
266         memset(new, 0, sizeof(struct nat_entry));
267         nat_set_nid(new, nid);
268         nat_reset_flag(new);
269         list_add_tail(&new->list, &nm_i->nat_entries);
270         nm_i->nat_cnt++;
271         return new;
272 }
273
274 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
275                                                 struct f2fs_nat_entry *ne)
276 {
277         struct f2fs_nm_info *nm_i = NM_I(sbi);
278         struct nat_entry *e;
279
280         e = __lookup_nat_cache(nm_i, nid);
281         if (!e) {
282                 e = grab_nat_entry(nm_i, nid, false);
283                 if (e)
284                         node_info_from_raw_nat(&e->ni, ne);
285         } else {
286                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
287                                 nat_get_blkaddr(e) !=
288                                         le32_to_cpu(ne->block_addr) ||
289                                 nat_get_version(e) != ne->version);
290         }
291 }
292
293 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
294                         block_t new_blkaddr, bool fsync_done)
295 {
296         struct f2fs_nm_info *nm_i = NM_I(sbi);
297         struct nat_entry *e;
298
299         down_write(&nm_i->nat_tree_lock);
300         e = __lookup_nat_cache(nm_i, ni->nid);
301         if (!e) {
302                 e = grab_nat_entry(nm_i, ni->nid, true);
303                 copy_node_info(&e->ni, ni);
304                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
305         } else if (new_blkaddr == NEW_ADDR) {
306                 /*
307                  * when nid is reallocated,
308                  * previous nat entry can be remained in nat cache.
309                  * So, reinitialize it with new information.
310                  */
311                 copy_node_info(&e->ni, ni);
312                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
313         }
314
315         /* sanity check */
316         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
317         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
318                         new_blkaddr == NULL_ADDR);
319         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
320                         new_blkaddr == NEW_ADDR);
321         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
322                         nat_get_blkaddr(e) != NULL_ADDR &&
323                         new_blkaddr == NEW_ADDR);
324
325         /* increment version no as node is removed */
326         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
327                 unsigned char version = nat_get_version(e);
328                 nat_set_version(e, inc_node_version(version));
329
330                 /* in order to reuse the nid */
331                 if (nm_i->next_scan_nid > ni->nid)
332                         nm_i->next_scan_nid = ni->nid;
333         }
334
335         /* change address */
336         nat_set_blkaddr(e, new_blkaddr);
337         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
338                 set_nat_flag(e, IS_CHECKPOINTED, false);
339         __set_nat_cache_dirty(nm_i, e);
340
341         if (enabled_nat_bits(sbi, NULL) && new_blkaddr == NEW_ADDR)
342                 clear_bit_le(NAT_BLOCK_OFFSET(ni->nid), nm_i->empty_nat_bits);
343
344         /* update fsync_mark if its inode nat entry is still alive */
345         if (ni->nid != ni->ino)
346                 e = __lookup_nat_cache(nm_i, ni->ino);
347         if (e) {
348                 if (fsync_done && ni->nid == ni->ino)
349                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
350                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
351         }
352         up_write(&nm_i->nat_tree_lock);
353 }
354
355 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
356 {
357         struct f2fs_nm_info *nm_i = NM_I(sbi);
358         int nr = nr_shrink;
359
360         if (!down_write_trylock(&nm_i->nat_tree_lock))
361                 return 0;
362
363         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
364                 struct nat_entry *ne;
365                 ne = list_first_entry(&nm_i->nat_entries,
366                                         struct nat_entry, list);
367                 __del_from_nat_cache(nm_i, ne);
368                 nr_shrink--;
369         }
370         up_write(&nm_i->nat_tree_lock);
371         return nr - nr_shrink;
372 }
373
374 /*
375  * This function always returns success
376  */
377 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
378 {
379         struct f2fs_nm_info *nm_i = NM_I(sbi);
380         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
381         struct f2fs_journal *journal = curseg->journal;
382         nid_t start_nid = START_NID(nid);
383         struct f2fs_nat_block *nat_blk;
384         struct page *page = NULL;
385         struct f2fs_nat_entry ne;
386         struct nat_entry *e;
387         int i;
388
389         ni->nid = nid;
390
391         /* Check nat cache */
392         down_read(&nm_i->nat_tree_lock);
393         e = __lookup_nat_cache(nm_i, nid);
394         if (e) {
395                 ni->ino = nat_get_ino(e);
396                 ni->blk_addr = nat_get_blkaddr(e);
397                 ni->version = nat_get_version(e);
398                 up_read(&nm_i->nat_tree_lock);
399                 return;
400         }
401
402         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
403
404         /* Check current segment summary */
405         down_read(&curseg->journal_rwsem);
406         i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
407         if (i >= 0) {
408                 ne = nat_in_journal(journal, i);
409                 node_info_from_raw_nat(ni, &ne);
410         }
411         up_read(&curseg->journal_rwsem);
412         if (i >= 0)
413                 goto cache;
414
415         /* Fill node_info from nat page */
416         page = get_current_nat_page(sbi, start_nid);
417         nat_blk = (struct f2fs_nat_block *)page_address(page);
418         ne = nat_blk->entries[nid - start_nid];
419         node_info_from_raw_nat(ni, &ne);
420         f2fs_put_page(page, 1);
421 cache:
422         up_read(&nm_i->nat_tree_lock);
423         /* cache nat entry */
424         down_write(&nm_i->nat_tree_lock);
425         cache_nat_entry(sbi, nid, &ne);
426         up_write(&nm_i->nat_tree_lock);
427 }
428
429 /*
430  * readahead MAX_RA_NODE number of node pages.
431  */
432 static void ra_node_pages(struct page *parent, int start, int n)
433 {
434         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
435         struct blk_plug plug;
436         int i, end;
437         nid_t nid;
438
439         blk_start_plug(&plug);
440
441         /* Then, try readahead for siblings of the desired node */
442         end = start + n;
443         end = min(end, NIDS_PER_BLOCK);
444         for (i = start; i < end; i++) {
445                 nid = get_nid(parent, i, false);
446                 ra_node_page(sbi, nid);
447         }
448
449         blk_finish_plug(&plug);
450 }
451
452 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
453 {
454         const long direct_index = ADDRS_PER_INODE(dn->inode);
455         const long direct_blks = ADDRS_PER_BLOCK;
456         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
457         unsigned int skipped_unit = ADDRS_PER_BLOCK;
458         int cur_level = dn->cur_level;
459         int max_level = dn->max_level;
460         pgoff_t base = 0;
461
462         if (!dn->max_level)
463                 return pgofs + 1;
464
465         while (max_level-- > cur_level)
466                 skipped_unit *= NIDS_PER_BLOCK;
467
468         switch (dn->max_level) {
469         case 3:
470                 base += 2 * indirect_blks;
471         case 2:
472                 base += 2 * direct_blks;
473         case 1:
474                 base += direct_index;
475                 break;
476         default:
477                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
478         }
479
480         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
481 }
482
483 /*
484  * The maximum depth is four.
485  * Offset[0] will have raw inode offset.
486  */
487 static int get_node_path(struct inode *inode, long block,
488                                 int offset[4], unsigned int noffset[4])
489 {
490         const long direct_index = ADDRS_PER_INODE(inode);
491         const long direct_blks = ADDRS_PER_BLOCK;
492         const long dptrs_per_blk = NIDS_PER_BLOCK;
493         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
494         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
495         int n = 0;
496         int level = 0;
497
498         noffset[0] = 0;
499
500         if (block < direct_index) {
501                 offset[n] = block;
502                 goto got;
503         }
504         block -= direct_index;
505         if (block < direct_blks) {
506                 offset[n++] = NODE_DIR1_BLOCK;
507                 noffset[n] = 1;
508                 offset[n] = block;
509                 level = 1;
510                 goto got;
511         }
512         block -= direct_blks;
513         if (block < direct_blks) {
514                 offset[n++] = NODE_DIR2_BLOCK;
515                 noffset[n] = 2;
516                 offset[n] = block;
517                 level = 1;
518                 goto got;
519         }
520         block -= direct_blks;
521         if (block < indirect_blks) {
522                 offset[n++] = NODE_IND1_BLOCK;
523                 noffset[n] = 3;
524                 offset[n++] = block / direct_blks;
525                 noffset[n] = 4 + offset[n - 1];
526                 offset[n] = block % direct_blks;
527                 level = 2;
528                 goto got;
529         }
530         block -= indirect_blks;
531         if (block < indirect_blks) {
532                 offset[n++] = NODE_IND2_BLOCK;
533                 noffset[n] = 4 + dptrs_per_blk;
534                 offset[n++] = block / direct_blks;
535                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
536                 offset[n] = block % direct_blks;
537                 level = 2;
538                 goto got;
539         }
540         block -= indirect_blks;
541         if (block < dindirect_blks) {
542                 offset[n++] = NODE_DIND_BLOCK;
543                 noffset[n] = 5 + (dptrs_per_blk * 2);
544                 offset[n++] = block / indirect_blks;
545                 noffset[n] = 6 + (dptrs_per_blk * 2) +
546                               offset[n - 1] * (dptrs_per_blk + 1);
547                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
548                 noffset[n] = 7 + (dptrs_per_blk * 2) +
549                               offset[n - 2] * (dptrs_per_blk + 1) +
550                               offset[n - 1];
551                 offset[n] = block % direct_blks;
552                 level = 3;
553                 goto got;
554         } else {
555                 BUG();
556         }
557 got:
558         return level;
559 }
560
561 /*
562  * Caller should call f2fs_put_dnode(dn).
563  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
564  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
565  * In the case of RDONLY_NODE, we don't need to care about mutex.
566  */
567 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
568 {
569         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
570         struct page *npage[4];
571         struct page *parent = NULL;
572         int offset[4];
573         unsigned int noffset[4];
574         nid_t nids[4];
575         int level, i = 0;
576         int err = 0;
577
578         level = get_node_path(dn->inode, index, offset, noffset);
579
580         nids[0] = dn->inode->i_ino;
581         npage[0] = dn->inode_page;
582
583         if (!npage[0]) {
584                 npage[0] = get_node_page(sbi, nids[0]);
585                 if (IS_ERR(npage[0]))
586                         return PTR_ERR(npage[0]);
587         }
588
589         /* if inline_data is set, should not report any block indices */
590         if (f2fs_has_inline_data(dn->inode) && index) {
591                 err = -ENOENT;
592                 f2fs_put_page(npage[0], 1);
593                 goto release_out;
594         }
595
596         parent = npage[0];
597         if (level != 0)
598                 nids[1] = get_nid(parent, offset[0], true);
599         dn->inode_page = npage[0];
600         dn->inode_page_locked = true;
601
602         /* get indirect or direct nodes */
603         for (i = 1; i <= level; i++) {
604                 bool done = false;
605
606                 if (!nids[i] && mode == ALLOC_NODE) {
607                         /* alloc new node */
608                         if (!alloc_nid(sbi, &(nids[i]))) {
609                                 err = -ENOSPC;
610                                 goto release_pages;
611                         }
612
613                         dn->nid = nids[i];
614                         npage[i] = new_node_page(dn, noffset[i], NULL);
615                         if (IS_ERR(npage[i])) {
616                                 alloc_nid_failed(sbi, nids[i]);
617                                 err = PTR_ERR(npage[i]);
618                                 goto release_pages;
619                         }
620
621                         set_nid(parent, offset[i - 1], nids[i], i == 1);
622                         alloc_nid_done(sbi, nids[i]);
623                         done = true;
624                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
625                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
626                         if (IS_ERR(npage[i])) {
627                                 err = PTR_ERR(npage[i]);
628                                 goto release_pages;
629                         }
630                         done = true;
631                 }
632                 if (i == 1) {
633                         dn->inode_page_locked = false;
634                         unlock_page(parent);
635                 } else {
636                         f2fs_put_page(parent, 1);
637                 }
638
639                 if (!done) {
640                         npage[i] = get_node_page(sbi, nids[i]);
641                         if (IS_ERR(npage[i])) {
642                                 err = PTR_ERR(npage[i]);
643                                 f2fs_put_page(npage[0], 0);
644                                 goto release_out;
645                         }
646                 }
647                 if (i < level) {
648                         parent = npage[i];
649                         nids[i + 1] = get_nid(parent, offset[i], false);
650                 }
651         }
652         dn->nid = nids[level];
653         dn->ofs_in_node = offset[level];
654         dn->node_page = npage[level];
655         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
656         return 0;
657
658 release_pages:
659         f2fs_put_page(parent, 1);
660         if (i > 1)
661                 f2fs_put_page(npage[0], 0);
662 release_out:
663         dn->inode_page = NULL;
664         dn->node_page = NULL;
665         if (err == -ENOENT) {
666                 dn->cur_level = i;
667                 dn->max_level = level;
668                 dn->ofs_in_node = offset[level];
669         }
670         return err;
671 }
672
673 static void truncate_node(struct dnode_of_data *dn)
674 {
675         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
676         struct node_info ni;
677
678         get_node_info(sbi, dn->nid, &ni);
679         if (dn->inode->i_blocks == 0) {
680                 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
681                 goto invalidate;
682         }
683         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
684
685         /* Deallocate node address */
686         invalidate_blocks(sbi, ni.blk_addr);
687         dec_valid_node_count(sbi, dn->inode);
688         set_node_addr(sbi, &ni, NULL_ADDR, false);
689
690         if (dn->nid == dn->inode->i_ino) {
691                 remove_orphan_inode(sbi, dn->nid);
692                 dec_valid_inode_count(sbi);
693                 f2fs_inode_synced(dn->inode);
694         }
695 invalidate:
696         clear_node_page_dirty(dn->node_page);
697         set_sbi_flag(sbi, SBI_IS_DIRTY);
698
699         f2fs_put_page(dn->node_page, 1);
700
701         invalidate_mapping_pages(NODE_MAPPING(sbi),
702                         dn->node_page->index, dn->node_page->index);
703
704         dn->node_page = NULL;
705         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
706 }
707
708 static int truncate_dnode(struct dnode_of_data *dn)
709 {
710         struct page *page;
711
712         if (dn->nid == 0)
713                 return 1;
714
715         /* get direct node */
716         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
717         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
718                 return 1;
719         else if (IS_ERR(page))
720                 return PTR_ERR(page);
721
722         /* Make dnode_of_data for parameter */
723         dn->node_page = page;
724         dn->ofs_in_node = 0;
725         truncate_data_blocks(dn);
726         truncate_node(dn);
727         return 1;
728 }
729
730 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
731                                                 int ofs, int depth)
732 {
733         struct dnode_of_data rdn = *dn;
734         struct page *page;
735         struct f2fs_node *rn;
736         nid_t child_nid;
737         unsigned int child_nofs;
738         int freed = 0;
739         int i, ret;
740
741         if (dn->nid == 0)
742                 return NIDS_PER_BLOCK + 1;
743
744         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
745
746         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
747         if (IS_ERR(page)) {
748                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
749                 return PTR_ERR(page);
750         }
751
752         ra_node_pages(page, ofs, NIDS_PER_BLOCK);
753
754         rn = F2FS_NODE(page);
755         if (depth < 3) {
756                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
757                         child_nid = le32_to_cpu(rn->in.nid[i]);
758                         if (child_nid == 0)
759                                 continue;
760                         rdn.nid = child_nid;
761                         ret = truncate_dnode(&rdn);
762                         if (ret < 0)
763                                 goto out_err;
764                         if (set_nid(page, i, 0, false))
765                                 dn->node_changed = true;
766                 }
767         } else {
768                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
769                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
770                         child_nid = le32_to_cpu(rn->in.nid[i]);
771                         if (child_nid == 0) {
772                                 child_nofs += NIDS_PER_BLOCK + 1;
773                                 continue;
774                         }
775                         rdn.nid = child_nid;
776                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
777                         if (ret == (NIDS_PER_BLOCK + 1)) {
778                                 if (set_nid(page, i, 0, false))
779                                         dn->node_changed = true;
780                                 child_nofs += ret;
781                         } else if (ret < 0 && ret != -ENOENT) {
782                                 goto out_err;
783                         }
784                 }
785                 freed = child_nofs;
786         }
787
788         if (!ofs) {
789                 /* remove current indirect node */
790                 dn->node_page = page;
791                 truncate_node(dn);
792                 freed++;
793         } else {
794                 f2fs_put_page(page, 1);
795         }
796         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
797         return freed;
798
799 out_err:
800         f2fs_put_page(page, 1);
801         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
802         return ret;
803 }
804
805 static int truncate_partial_nodes(struct dnode_of_data *dn,
806                         struct f2fs_inode *ri, int *offset, int depth)
807 {
808         struct page *pages[2];
809         nid_t nid[3];
810         nid_t child_nid;
811         int err = 0;
812         int i;
813         int idx = depth - 2;
814
815         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
816         if (!nid[0])
817                 return 0;
818
819         /* get indirect nodes in the path */
820         for (i = 0; i < idx + 1; i++) {
821                 /* reference count'll be increased */
822                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
823                 if (IS_ERR(pages[i])) {
824                         err = PTR_ERR(pages[i]);
825                         idx = i - 1;
826                         goto fail;
827                 }
828                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
829         }
830
831         ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
832
833         /* free direct nodes linked to a partial indirect node */
834         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
835                 child_nid = get_nid(pages[idx], i, false);
836                 if (!child_nid)
837                         continue;
838                 dn->nid = child_nid;
839                 err = truncate_dnode(dn);
840                 if (err < 0)
841                         goto fail;
842                 if (set_nid(pages[idx], i, 0, false))
843                         dn->node_changed = true;
844         }
845
846         if (offset[idx + 1] == 0) {
847                 dn->node_page = pages[idx];
848                 dn->nid = nid[idx];
849                 truncate_node(dn);
850         } else {
851                 f2fs_put_page(pages[idx], 1);
852         }
853         offset[idx]++;
854         offset[idx + 1] = 0;
855         idx--;
856 fail:
857         for (i = idx; i >= 0; i--)
858                 f2fs_put_page(pages[i], 1);
859
860         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
861
862         return err;
863 }
864
865 /*
866  * All the block addresses of data and nodes should be nullified.
867  */
868 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
869 {
870         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
871         int err = 0, cont = 1;
872         int level, offset[4], noffset[4];
873         unsigned int nofs = 0;
874         struct f2fs_inode *ri;
875         struct dnode_of_data dn;
876         struct page *page;
877
878         trace_f2fs_truncate_inode_blocks_enter(inode, from);
879
880         level = get_node_path(inode, from, offset, noffset);
881
882         page = get_node_page(sbi, inode->i_ino);
883         if (IS_ERR(page)) {
884                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
885                 return PTR_ERR(page);
886         }
887
888         set_new_dnode(&dn, inode, page, NULL, 0);
889         unlock_page(page);
890
891         ri = F2FS_INODE(page);
892         switch (level) {
893         case 0:
894         case 1:
895                 nofs = noffset[1];
896                 break;
897         case 2:
898                 nofs = noffset[1];
899                 if (!offset[level - 1])
900                         goto skip_partial;
901                 err = truncate_partial_nodes(&dn, ri, offset, level);
902                 if (err < 0 && err != -ENOENT)
903                         goto fail;
904                 nofs += 1 + NIDS_PER_BLOCK;
905                 break;
906         case 3:
907                 nofs = 5 + 2 * NIDS_PER_BLOCK;
908                 if (!offset[level - 1])
909                         goto skip_partial;
910                 err = truncate_partial_nodes(&dn, ri, offset, level);
911                 if (err < 0 && err != -ENOENT)
912                         goto fail;
913                 break;
914         default:
915                 BUG();
916         }
917
918 skip_partial:
919         while (cont) {
920                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
921                 switch (offset[0]) {
922                 case NODE_DIR1_BLOCK:
923                 case NODE_DIR2_BLOCK:
924                         err = truncate_dnode(&dn);
925                         break;
926
927                 case NODE_IND1_BLOCK:
928                 case NODE_IND2_BLOCK:
929                         err = truncate_nodes(&dn, nofs, offset[1], 2);
930                         break;
931
932                 case NODE_DIND_BLOCK:
933                         err = truncate_nodes(&dn, nofs, offset[1], 3);
934                         cont = 0;
935                         break;
936
937                 default:
938                         BUG();
939                 }
940                 if (err < 0 && err != -ENOENT)
941                         goto fail;
942                 if (offset[1] == 0 &&
943                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
944                         lock_page(page);
945                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
946                         f2fs_wait_on_page_writeback(page, NODE, true);
947                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
948                         set_page_dirty(page);
949                         unlock_page(page);
950                 }
951                 offset[1] = 0;
952                 offset[0]++;
953                 nofs += err;
954         }
955 fail:
956         f2fs_put_page(page, 0);
957         trace_f2fs_truncate_inode_blocks_exit(inode, err);
958         return err > 0 ? 0 : err;
959 }
960
961 int truncate_xattr_node(struct inode *inode, struct page *page)
962 {
963         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
964         nid_t nid = F2FS_I(inode)->i_xattr_nid;
965         struct dnode_of_data dn;
966         struct page *npage;
967
968         if (!nid)
969                 return 0;
970
971         npage = get_node_page(sbi, nid);
972         if (IS_ERR(npage))
973                 return PTR_ERR(npage);
974
975         f2fs_i_xnid_write(inode, 0);
976
977         set_new_dnode(&dn, inode, page, npage, nid);
978
979         if (page)
980                 dn.inode_page_locked = true;
981         truncate_node(&dn);
982         return 0;
983 }
984
985 /*
986  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
987  * f2fs_unlock_op().
988  */
989 int remove_inode_page(struct inode *inode)
990 {
991         struct dnode_of_data dn;
992         int err;
993
994         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
995         err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
996         if (err)
997                 return err;
998
999         err = truncate_xattr_node(inode, dn.inode_page);
1000         if (err) {
1001                 f2fs_put_dnode(&dn);
1002                 return err;
1003         }
1004
1005         /* remove potential inline_data blocks */
1006         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1007                                 S_ISLNK(inode->i_mode))
1008                 truncate_data_blocks_range(&dn, 1);
1009
1010         /* 0 is possible, after f2fs_new_inode() has failed */
1011         f2fs_bug_on(F2FS_I_SB(inode),
1012                         inode->i_blocks != 0 && inode->i_blocks != 1);
1013
1014         /* will put inode & node pages */
1015         truncate_node(&dn);
1016         return 0;
1017 }
1018
1019 struct page *new_inode_page(struct inode *inode)
1020 {
1021         struct dnode_of_data dn;
1022
1023         /* allocate inode page for new inode */
1024         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1025
1026         /* caller should f2fs_put_page(page, 1); */
1027         return new_node_page(&dn, 0, NULL);
1028 }
1029
1030 struct page *new_node_page(struct dnode_of_data *dn,
1031                                 unsigned int ofs, struct page *ipage)
1032 {
1033         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1034         struct node_info new_ni;
1035         struct page *page;
1036         int err;
1037
1038         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1039                 return ERR_PTR(-EPERM);
1040
1041         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1042         if (!page)
1043                 return ERR_PTR(-ENOMEM);
1044
1045         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1046                 err = -ENOSPC;
1047                 goto fail;
1048         }
1049 #ifdef CONFIG_F2FS_CHECK_FS
1050         get_node_info(sbi, dn->nid, &new_ni);
1051         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1052 #endif
1053         new_ni.nid = dn->nid;
1054         new_ni.ino = dn->inode->i_ino;
1055         new_ni.blk_addr = NULL_ADDR;
1056         new_ni.flag = 0;
1057         new_ni.version = 0;
1058         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1059
1060         f2fs_wait_on_page_writeback(page, NODE, true);
1061         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1062         set_cold_node(dn->inode, page);
1063         if (!PageUptodate(page))
1064                 SetPageUptodate(page);
1065         if (set_page_dirty(page))
1066                 dn->node_changed = true;
1067
1068         if (f2fs_has_xattr_block(ofs))
1069                 f2fs_i_xnid_write(dn->inode, dn->nid);
1070
1071         if (ofs == 0)
1072                 inc_valid_inode_count(sbi);
1073         return page;
1074
1075 fail:
1076         clear_node_page_dirty(page);
1077         f2fs_put_page(page, 1);
1078         return ERR_PTR(err);
1079 }
1080
1081 /*
1082  * Caller should do after getting the following values.
1083  * 0: f2fs_put_page(page, 0)
1084  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1085  */
1086 static int read_node_page(struct page *page, int op_flags)
1087 {
1088         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1089         struct node_info ni;
1090         struct f2fs_io_info fio = {
1091                 .sbi = sbi,
1092                 .type = NODE,
1093                 .op = REQ_OP_READ,
1094                 .op_flags = op_flags,
1095                 .page = page,
1096                 .encrypted_page = NULL,
1097         };
1098
1099         if (PageUptodate(page))
1100                 return LOCKED_PAGE;
1101
1102         get_node_info(sbi, page->index, &ni);
1103
1104         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1105                 ClearPageUptodate(page);
1106                 return -ENOENT;
1107         }
1108
1109         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1110         return f2fs_submit_page_bio(&fio);
1111 }
1112
1113 /*
1114  * Readahead a node page
1115  */
1116 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1117 {
1118         struct page *apage;
1119         int err;
1120
1121         if (!nid)
1122                 return;
1123         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1124
1125         rcu_read_lock();
1126         apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1127         rcu_read_unlock();
1128         if (apage)
1129                 return;
1130
1131         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1132         if (!apage)
1133                 return;
1134
1135         err = read_node_page(apage, REQ_RAHEAD);
1136         f2fs_put_page(apage, err ? 1 : 0);
1137 }
1138
1139 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1140                                         struct page *parent, int start)
1141 {
1142         struct page *page;
1143         int err;
1144
1145         if (!nid)
1146                 return ERR_PTR(-ENOENT);
1147         f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1148 repeat:
1149         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1150         if (!page)
1151                 return ERR_PTR(-ENOMEM);
1152
1153         err = read_node_page(page, 0);
1154         if (err < 0) {
1155                 f2fs_put_page(page, 1);
1156                 return ERR_PTR(err);
1157         } else if (err == LOCKED_PAGE) {
1158                 goto page_hit;
1159         }
1160
1161         if (parent)
1162                 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1163
1164         lock_page(page);
1165
1166         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1167                 f2fs_put_page(page, 1);
1168                 goto repeat;
1169         }
1170
1171         if (unlikely(!PageUptodate(page)))
1172                 goto out_err;
1173 page_hit:
1174         if(unlikely(nid != nid_of_node(page))) {
1175                 f2fs_bug_on(sbi, 1);
1176                 ClearPageUptodate(page);
1177 out_err:
1178                 f2fs_put_page(page, 1);
1179                 return ERR_PTR(-EIO);
1180         }
1181         return page;
1182 }
1183
1184 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1185 {
1186         return __get_node_page(sbi, nid, NULL, 0);
1187 }
1188
1189 struct page *get_node_page_ra(struct page *parent, int start)
1190 {
1191         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1192         nid_t nid = get_nid(parent, start, false);
1193
1194         return __get_node_page(sbi, nid, parent, start);
1195 }
1196
1197 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1198 {
1199         struct inode *inode;
1200         struct page *page;
1201         int ret;
1202
1203         /* should flush inline_data before evict_inode */
1204         inode = ilookup(sbi->sb, ino);
1205         if (!inode)
1206                 return;
1207
1208         page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1209         if (!page)
1210                 goto iput_out;
1211
1212         if (!PageUptodate(page))
1213                 goto page_out;
1214
1215         if (!PageDirty(page))
1216                 goto page_out;
1217
1218         if (!clear_page_dirty_for_io(page))
1219                 goto page_out;
1220
1221         ret = f2fs_write_inline_data(inode, page);
1222         inode_dec_dirty_pages(inode);
1223         remove_dirty_inode(inode);
1224         if (ret)
1225                 set_page_dirty(page);
1226 page_out:
1227         f2fs_put_page(page, 1);
1228 iput_out:
1229         iput(inode);
1230 }
1231
1232 void move_node_page(struct page *node_page, int gc_type)
1233 {
1234         if (gc_type == FG_GC) {
1235                 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1236                 struct writeback_control wbc = {
1237                         .sync_mode = WB_SYNC_ALL,
1238                         .nr_to_write = 1,
1239                         .for_reclaim = 0,
1240                 };
1241
1242                 set_page_dirty(node_page);
1243                 f2fs_wait_on_page_writeback(node_page, NODE, true);
1244
1245                 f2fs_bug_on(sbi, PageWriteback(node_page));
1246                 if (!clear_page_dirty_for_io(node_page))
1247                         goto out_page;
1248
1249                 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1250                         unlock_page(node_page);
1251                 goto release_page;
1252         } else {
1253                 /* set page dirty and write it */
1254                 if (!PageWriteback(node_page))
1255                         set_page_dirty(node_page);
1256         }
1257 out_page:
1258         unlock_page(node_page);
1259 release_page:
1260         f2fs_put_page(node_page, 0);
1261 }
1262
1263 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1264 {
1265         pgoff_t index, end;
1266         struct pagevec pvec;
1267         struct page *last_page = NULL;
1268
1269         pagevec_init(&pvec, 0);
1270         index = 0;
1271         end = ULONG_MAX;
1272
1273         while (index <= end) {
1274                 int i, nr_pages;
1275                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1276                                 PAGECACHE_TAG_DIRTY,
1277                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1278                 if (nr_pages == 0)
1279                         break;
1280
1281                 for (i = 0; i < nr_pages; i++) {
1282                         struct page *page = pvec.pages[i];
1283
1284                         if (unlikely(f2fs_cp_error(sbi))) {
1285                                 f2fs_put_page(last_page, 0);
1286                                 pagevec_release(&pvec);
1287                                 return ERR_PTR(-EIO);
1288                         }
1289
1290                         if (!IS_DNODE(page) || !is_cold_node(page))
1291                                 continue;
1292                         if (ino_of_node(page) != ino)
1293                                 continue;
1294
1295                         lock_page(page);
1296
1297                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1298 continue_unlock:
1299                                 unlock_page(page);
1300                                 continue;
1301                         }
1302                         if (ino_of_node(page) != ino)
1303                                 goto continue_unlock;
1304
1305                         if (!PageDirty(page)) {
1306                                 /* someone wrote it for us */
1307                                 goto continue_unlock;
1308                         }
1309
1310                         if (last_page)
1311                                 f2fs_put_page(last_page, 0);
1312
1313                         get_page(page);
1314                         last_page = page;
1315                         unlock_page(page);
1316                 }
1317                 pagevec_release(&pvec);
1318                 cond_resched();
1319         }
1320         return last_page;
1321 }
1322
1323 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1324                                 struct writeback_control *wbc)
1325 {
1326         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1327         nid_t nid;
1328         struct node_info ni;
1329         struct f2fs_io_info fio = {
1330                 .sbi = sbi,
1331                 .type = NODE,
1332                 .op = REQ_OP_WRITE,
1333                 .op_flags = wbc_to_write_flags(wbc),
1334                 .page = page,
1335                 .encrypted_page = NULL,
1336                 .submitted = false,
1337         };
1338
1339         trace_f2fs_writepage(page, NODE);
1340
1341         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1342                 goto redirty_out;
1343         if (unlikely(f2fs_cp_error(sbi)))
1344                 goto redirty_out;
1345
1346         /* get old block addr of this node page */
1347         nid = nid_of_node(page);
1348         f2fs_bug_on(sbi, page->index != nid);
1349
1350         if (wbc->for_reclaim) {
1351                 if (!down_read_trylock(&sbi->node_write))
1352                         goto redirty_out;
1353         } else {
1354                 down_read(&sbi->node_write);
1355         }
1356
1357         get_node_info(sbi, nid, &ni);
1358
1359         /* This page is already truncated */
1360         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1361                 ClearPageUptodate(page);
1362                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1363                 up_read(&sbi->node_write);
1364                 unlock_page(page);
1365                 return 0;
1366         }
1367
1368         if (atomic && !test_opt(sbi, NOBARRIER))
1369                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1370
1371         set_page_writeback(page);
1372         fio.old_blkaddr = ni.blk_addr;
1373         write_node_page(nid, &fio);
1374         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1375         dec_page_count(sbi, F2FS_DIRTY_NODES);
1376         up_read(&sbi->node_write);
1377
1378         if (wbc->for_reclaim) {
1379                 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 0,
1380                                                 page->index, NODE, WRITE);
1381                 submitted = NULL;
1382         }
1383
1384         unlock_page(page);
1385
1386         if (unlikely(f2fs_cp_error(sbi))) {
1387                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1388                 submitted = NULL;
1389         }
1390         if (submitted)
1391                 *submitted = fio.submitted;
1392
1393         return 0;
1394
1395 redirty_out:
1396         redirty_page_for_writepage(wbc, page);
1397         return AOP_WRITEPAGE_ACTIVATE;
1398 }
1399
1400 static int f2fs_write_node_page(struct page *page,
1401                                 struct writeback_control *wbc)
1402 {
1403         return __write_node_page(page, false, NULL, wbc);
1404 }
1405
1406 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1407                         struct writeback_control *wbc, bool atomic)
1408 {
1409         pgoff_t index, end;
1410         pgoff_t last_idx = ULONG_MAX;
1411         struct pagevec pvec;
1412         int ret = 0;
1413         struct page *last_page = NULL;
1414         bool marked = false;
1415         nid_t ino = inode->i_ino;
1416
1417         if (atomic) {
1418                 last_page = last_fsync_dnode(sbi, ino);
1419                 if (IS_ERR_OR_NULL(last_page))
1420                         return PTR_ERR_OR_ZERO(last_page);
1421         }
1422 retry:
1423         pagevec_init(&pvec, 0);
1424         index = 0;
1425         end = ULONG_MAX;
1426
1427         while (index <= end) {
1428                 int i, nr_pages;
1429                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1430                                 PAGECACHE_TAG_DIRTY,
1431                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1432                 if (nr_pages == 0)
1433                         break;
1434
1435                 for (i = 0; i < nr_pages; i++) {
1436                         struct page *page = pvec.pages[i];
1437                         bool submitted = false;
1438
1439                         if (unlikely(f2fs_cp_error(sbi))) {
1440                                 f2fs_put_page(last_page, 0);
1441                                 pagevec_release(&pvec);
1442                                 ret = -EIO;
1443                                 goto out;
1444                         }
1445
1446                         if (!IS_DNODE(page) || !is_cold_node(page))
1447                                 continue;
1448                         if (ino_of_node(page) != ino)
1449                                 continue;
1450
1451                         lock_page(page);
1452
1453                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1454 continue_unlock:
1455                                 unlock_page(page);
1456                                 continue;
1457                         }
1458                         if (ino_of_node(page) != ino)
1459                                 goto continue_unlock;
1460
1461                         if (!PageDirty(page) && page != last_page) {
1462                                 /* someone wrote it for us */
1463                                 goto continue_unlock;
1464                         }
1465
1466                         f2fs_wait_on_page_writeback(page, NODE, true);
1467                         BUG_ON(PageWriteback(page));
1468
1469                         if (!atomic || page == last_page) {
1470                                 set_fsync_mark(page, 1);
1471                                 if (IS_INODE(page)) {
1472                                         if (is_inode_flag_set(inode,
1473                                                                 FI_DIRTY_INODE))
1474                                                 update_inode(inode, page);
1475                                         set_dentry_mark(page,
1476                                                 need_dentry_mark(sbi, ino));
1477                                 }
1478                                 /*  may be written by other thread */
1479                                 if (!PageDirty(page))
1480                                         set_page_dirty(page);
1481                         }
1482
1483                         if (!clear_page_dirty_for_io(page))
1484                                 goto continue_unlock;
1485
1486                         ret = __write_node_page(page, atomic &&
1487                                                 page == last_page,
1488                                                 &submitted, wbc);
1489                         if (ret) {
1490                                 unlock_page(page);
1491                                 f2fs_put_page(last_page, 0);
1492                                 break;
1493                         } else if (submitted) {
1494                                 last_idx = page->index;
1495                         }
1496
1497                         if (page == last_page) {
1498                                 f2fs_put_page(page, 0);
1499                                 marked = true;
1500                                 break;
1501                         }
1502                 }
1503                 pagevec_release(&pvec);
1504                 cond_resched();
1505
1506                 if (ret || marked)
1507                         break;
1508         }
1509         if (!ret && atomic && !marked) {
1510                 f2fs_msg(sbi->sb, KERN_DEBUG,
1511                         "Retry to write fsync mark: ino=%u, idx=%lx",
1512                                         ino, last_page->index);
1513                 lock_page(last_page);
1514                 f2fs_wait_on_page_writeback(last_page, NODE, true);
1515                 set_page_dirty(last_page);
1516                 unlock_page(last_page);
1517                 goto retry;
1518         }
1519 out:
1520         if (last_idx != ULONG_MAX)
1521                 f2fs_submit_merged_bio_cond(sbi, NULL, ino, last_idx,
1522                                                         NODE, WRITE);
1523         return ret ? -EIO: 0;
1524 }
1525
1526 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1527 {
1528         pgoff_t index, end;
1529         struct pagevec pvec;
1530         int step = 0;
1531         int nwritten = 0;
1532         int ret = 0;
1533
1534         pagevec_init(&pvec, 0);
1535
1536 next_step:
1537         index = 0;
1538         end = ULONG_MAX;
1539
1540         while (index <= end) {
1541                 int i, nr_pages;
1542                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1543                                 PAGECACHE_TAG_DIRTY,
1544                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1545                 if (nr_pages == 0)
1546                         break;
1547
1548                 for (i = 0; i < nr_pages; i++) {
1549                         struct page *page = pvec.pages[i];
1550                         bool submitted = false;
1551
1552                         if (unlikely(f2fs_cp_error(sbi))) {
1553                                 pagevec_release(&pvec);
1554                                 ret = -EIO;
1555                                 goto out;
1556                         }
1557
1558                         /*
1559                          * flushing sequence with step:
1560                          * 0. indirect nodes
1561                          * 1. dentry dnodes
1562                          * 2. file dnodes
1563                          */
1564                         if (step == 0 && IS_DNODE(page))
1565                                 continue;
1566                         if (step == 1 && (!IS_DNODE(page) ||
1567                                                 is_cold_node(page)))
1568                                 continue;
1569                         if (step == 2 && (!IS_DNODE(page) ||
1570                                                 !is_cold_node(page)))
1571                                 continue;
1572 lock_node:
1573                         if (!trylock_page(page))
1574                                 continue;
1575
1576                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1577 continue_unlock:
1578                                 unlock_page(page);
1579                                 continue;
1580                         }
1581
1582                         if (!PageDirty(page)) {
1583                                 /* someone wrote it for us */
1584                                 goto continue_unlock;
1585                         }
1586
1587                         /* flush inline_data */
1588                         if (is_inline_node(page)) {
1589                                 clear_inline_node(page);
1590                                 unlock_page(page);
1591                                 flush_inline_data(sbi, ino_of_node(page));
1592                                 goto lock_node;
1593                         }
1594
1595                         f2fs_wait_on_page_writeback(page, NODE, true);
1596
1597                         BUG_ON(PageWriteback(page));
1598                         if (!clear_page_dirty_for_io(page))
1599                                 goto continue_unlock;
1600
1601                         set_fsync_mark(page, 0);
1602                         set_dentry_mark(page, 0);
1603
1604                         ret = __write_node_page(page, false, &submitted, wbc);
1605                         if (ret)
1606                                 unlock_page(page);
1607                         else if (submitted)
1608                                 nwritten++;
1609
1610                         if (--wbc->nr_to_write == 0)
1611                                 break;
1612                 }
1613                 pagevec_release(&pvec);
1614                 cond_resched();
1615
1616                 if (wbc->nr_to_write == 0) {
1617                         step = 2;
1618                         break;
1619                 }
1620         }
1621
1622         if (step < 2) {
1623                 step++;
1624                 goto next_step;
1625         }
1626 out:
1627         if (nwritten)
1628                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1629         return ret;
1630 }
1631
1632 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1633 {
1634         pgoff_t index = 0, end = ULONG_MAX;
1635         struct pagevec pvec;
1636         int ret2, ret = 0;
1637
1638         pagevec_init(&pvec, 0);
1639
1640         while (index <= end) {
1641                 int i, nr_pages;
1642                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1643                                 PAGECACHE_TAG_WRITEBACK,
1644                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1645                 if (nr_pages == 0)
1646                         break;
1647
1648                 for (i = 0; i < nr_pages; i++) {
1649                         struct page *page = pvec.pages[i];
1650
1651                         /* until radix tree lookup accepts end_index */
1652                         if (unlikely(page->index > end))
1653                                 continue;
1654
1655                         if (ino && ino_of_node(page) == ino) {
1656                                 f2fs_wait_on_page_writeback(page, NODE, true);
1657                                 if (TestClearPageError(page))
1658                                         ret = -EIO;
1659                         }
1660                 }
1661                 pagevec_release(&pvec);
1662                 cond_resched();
1663         }
1664
1665         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1666         if (!ret)
1667                 ret = ret2;
1668         return ret;
1669 }
1670
1671 static int f2fs_write_node_pages(struct address_space *mapping,
1672                             struct writeback_control *wbc)
1673 {
1674         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1675         struct blk_plug plug;
1676         long diff;
1677
1678         /* balancing f2fs's metadata in background */
1679         f2fs_balance_fs_bg(sbi);
1680
1681         /* collect a number of dirty node pages and write together */
1682         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1683                 goto skip_write;
1684
1685         trace_f2fs_writepages(mapping->host, wbc, NODE);
1686
1687         diff = nr_pages_to_write(sbi, NODE, wbc);
1688         wbc->sync_mode = WB_SYNC_NONE;
1689         blk_start_plug(&plug);
1690         sync_node_pages(sbi, wbc);
1691         blk_finish_plug(&plug);
1692         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1693         return 0;
1694
1695 skip_write:
1696         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1697         trace_f2fs_writepages(mapping->host, wbc, NODE);
1698         return 0;
1699 }
1700
1701 static int f2fs_set_node_page_dirty(struct page *page)
1702 {
1703         trace_f2fs_set_page_dirty(page, NODE);
1704
1705         if (!PageUptodate(page))
1706                 SetPageUptodate(page);
1707         if (!PageDirty(page)) {
1708                 f2fs_set_page_dirty_nobuffers(page);
1709                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1710                 SetPagePrivate(page);
1711                 f2fs_trace_pid(page);
1712                 return 1;
1713         }
1714         return 0;
1715 }
1716
1717 /*
1718  * Structure of the f2fs node operations
1719  */
1720 const struct address_space_operations f2fs_node_aops = {
1721         .writepage      = f2fs_write_node_page,
1722         .writepages     = f2fs_write_node_pages,
1723         .set_page_dirty = f2fs_set_node_page_dirty,
1724         .invalidatepage = f2fs_invalidate_page,
1725         .releasepage    = f2fs_release_page,
1726 #ifdef CONFIG_MIGRATION
1727         .migratepage    = f2fs_migrate_page,
1728 #endif
1729 };
1730
1731 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1732                                                 nid_t n)
1733 {
1734         return radix_tree_lookup(&nm_i->free_nid_root, n);
1735 }
1736
1737 static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1738                         struct free_nid *i, enum nid_list list, bool new)
1739 {
1740         struct f2fs_nm_info *nm_i = NM_I(sbi);
1741
1742         if (new) {
1743                 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1744                 if (err)
1745                         return err;
1746         }
1747
1748         f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1749                                                 i->state != NID_ALLOC);
1750         nm_i->nid_cnt[list]++;
1751         list_add_tail(&i->list, &nm_i->nid_list[list]);
1752         return 0;
1753 }
1754
1755 static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1756                         struct free_nid *i, enum nid_list list, bool reuse)
1757 {
1758         struct f2fs_nm_info *nm_i = NM_I(sbi);
1759
1760         f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1761                                                 i->state != NID_ALLOC);
1762         nm_i->nid_cnt[list]--;
1763         list_del(&i->list);
1764         if (!reuse)
1765                 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1766 }
1767
1768 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1769 {
1770         struct f2fs_nm_info *nm_i = NM_I(sbi);
1771         struct free_nid *i;
1772         struct nat_entry *ne;
1773         int err;
1774
1775         /* 0 nid should not be used */
1776         if (unlikely(nid == 0))
1777                 return 0;
1778
1779         if (build) {
1780                 /* do not add allocated nids */
1781                 ne = __lookup_nat_cache(nm_i, nid);
1782                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1783                                 nat_get_blkaddr(ne) != NULL_ADDR))
1784                         return 0;
1785         }
1786
1787         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1788         i->nid = nid;
1789         i->state = NID_NEW;
1790
1791         if (radix_tree_preload(GFP_NOFS)) {
1792                 kmem_cache_free(free_nid_slab, i);
1793                 return 0;
1794         }
1795
1796         spin_lock(&nm_i->nid_list_lock);
1797         err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1798         spin_unlock(&nm_i->nid_list_lock);
1799         radix_tree_preload_end();
1800         if (err) {
1801                 kmem_cache_free(free_nid_slab, i);
1802                 return 0;
1803         }
1804         return 1;
1805 }
1806
1807 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1808 {
1809         struct f2fs_nm_info *nm_i = NM_I(sbi);
1810         struct free_nid *i;
1811         bool need_free = false;
1812
1813         spin_lock(&nm_i->nid_list_lock);
1814         i = __lookup_free_nid_list(nm_i, nid);
1815         if (i && i->state == NID_NEW) {
1816                 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1817                 need_free = true;
1818         }
1819         spin_unlock(&nm_i->nid_list_lock);
1820
1821         if (need_free)
1822                 kmem_cache_free(free_nid_slab, i);
1823 }
1824
1825 static void scan_nat_page(struct f2fs_sb_info *sbi,
1826                         struct page *nat_page, nid_t start_nid)
1827 {
1828         struct f2fs_nm_info *nm_i = NM_I(sbi);
1829         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1830         block_t blk_addr;
1831         int i;
1832
1833         i = start_nid % NAT_ENTRY_PER_BLOCK;
1834
1835         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1836
1837                 if (unlikely(start_nid >= nm_i->max_nid))
1838                         break;
1839
1840                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1841                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1842                 if (blk_addr == NULL_ADDR)
1843                         add_free_nid(sbi, start_nid, true);
1844         }
1845 }
1846
1847 static int scan_nat_bits(struct f2fs_sb_info *sbi)
1848 {
1849         struct f2fs_nm_info *nm_i = NM_I(sbi);
1850         struct page *page;
1851         unsigned int i = 0;
1852         nid_t target = FREE_NID_PAGES * NAT_ENTRY_PER_BLOCK;
1853         nid_t nid;
1854
1855         if (!enabled_nat_bits(sbi, NULL))
1856                 return -EAGAIN;
1857
1858         down_read(&nm_i->nat_tree_lock);
1859 check_empty:
1860         i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
1861         if (i >= nm_i->nat_blocks) {
1862                 i = 0;
1863                 goto check_partial;
1864         }
1865
1866         for (nid = i * NAT_ENTRY_PER_BLOCK; nid < (i + 1) * NAT_ENTRY_PER_BLOCK;
1867                                                                         nid++) {
1868                 if (unlikely(nid >= nm_i->max_nid))
1869                         break;
1870                 add_free_nid(sbi, nid, true);
1871         }
1872
1873         if (nm_i->nid_cnt[FREE_NID_LIST] >= target)
1874                 goto out;
1875         i++;
1876         goto check_empty;
1877
1878 check_partial:
1879         i = find_next_zero_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
1880         if (i >= nm_i->nat_blocks) {
1881                 disable_nat_bits(sbi, true);
1882                 up_read(&nm_i->nat_tree_lock);
1883                 return -EINVAL;
1884         }
1885
1886         nid = i * NAT_ENTRY_PER_BLOCK;
1887         page = get_current_nat_page(sbi, nid);
1888         scan_nat_page(sbi, page, nid);
1889         f2fs_put_page(page, 1);
1890
1891         if (nm_i->nid_cnt[FREE_NID_LIST] < target) {
1892                 i++;
1893                 goto check_partial;
1894         }
1895 out:
1896         up_read(&nm_i->nat_tree_lock);
1897         return 0;
1898 }
1899
1900 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1901 {
1902         struct f2fs_nm_info *nm_i = NM_I(sbi);
1903         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1904         struct f2fs_journal *journal = curseg->journal;
1905         int i = 0;
1906         nid_t nid = nm_i->next_scan_nid;
1907
1908         /* Enough entries */
1909         if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1910                 return;
1911
1912         if (!sync && !available_free_memory(sbi, FREE_NIDS))
1913                 return;
1914
1915         /* try to find free nids with nat_bits */
1916         if (!mount && !scan_nat_bits(sbi) && nm_i->nid_cnt[FREE_NID_LIST])
1917                 return;
1918
1919         /* find next valid candidate */
1920         if (enabled_nat_bits(sbi, NULL)) {
1921                 int idx = find_next_zero_bit_le(nm_i->full_nat_bits,
1922                                         nm_i->nat_blocks, 0);
1923
1924                 if (idx >= nm_i->nat_blocks)
1925                         set_sbi_flag(sbi, SBI_NEED_FSCK);
1926                 else
1927                         nid = idx * NAT_ENTRY_PER_BLOCK;
1928         }
1929
1930         /* readahead nat pages to be scanned */
1931         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1932                                                         META_NAT, true);
1933
1934         down_read(&nm_i->nat_tree_lock);
1935
1936         while (1) {
1937                 struct page *page = get_current_nat_page(sbi, nid);
1938
1939                 scan_nat_page(sbi, page, nid);
1940                 f2fs_put_page(page, 1);
1941
1942                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1943                 if (unlikely(nid >= nm_i->max_nid))
1944                         nid = 0;
1945
1946                 if (++i >= FREE_NID_PAGES)
1947                         break;
1948         }
1949
1950         /* go to the next free nat pages to find free nids abundantly */
1951         nm_i->next_scan_nid = nid;
1952
1953         /* find free nids from current sum_pages */
1954         down_read(&curseg->journal_rwsem);
1955         for (i = 0; i < nats_in_cursum(journal); i++) {
1956                 block_t addr;
1957
1958                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1959                 nid = le32_to_cpu(nid_in_journal(journal, i));
1960                 if (addr == NULL_ADDR)
1961                         add_free_nid(sbi, nid, true);
1962                 else
1963                         remove_free_nid(sbi, nid);
1964         }
1965         up_read(&curseg->journal_rwsem);
1966         up_read(&nm_i->nat_tree_lock);
1967
1968         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1969                                         nm_i->ra_nid_pages, META_NAT, false);
1970 }
1971
1972 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1973 {
1974         mutex_lock(&NM_I(sbi)->build_lock);
1975         __build_free_nids(sbi, sync, mount);
1976         mutex_unlock(&NM_I(sbi)->build_lock);
1977 }
1978
1979 /*
1980  * If this function returns success, caller can obtain a new nid
1981  * from second parameter of this function.
1982  * The returned nid could be used ino as well as nid when inode is created.
1983  */
1984 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1985 {
1986         struct f2fs_nm_info *nm_i = NM_I(sbi);
1987         struct free_nid *i = NULL;
1988 retry:
1989 #ifdef CONFIG_F2FS_FAULT_INJECTION
1990         if (time_to_inject(sbi, FAULT_ALLOC_NID))
1991                 return false;
1992 #endif
1993         spin_lock(&nm_i->nid_list_lock);
1994
1995         if (unlikely(nm_i->available_nids == 0)) {
1996                 spin_unlock(&nm_i->nid_list_lock);
1997                 return false;
1998         }
1999
2000         /* We should not use stale free nids created by build_free_nids */
2001         if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
2002                 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
2003                 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
2004                                         struct free_nid, list);
2005                 *nid = i->nid;
2006
2007                 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
2008                 i->state = NID_ALLOC;
2009                 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
2010                 nm_i->available_nids--;
2011                 spin_unlock(&nm_i->nid_list_lock);
2012                 return true;
2013         }
2014         spin_unlock(&nm_i->nid_list_lock);
2015
2016         /* Let's scan nat pages and its caches to get free nids */
2017         build_free_nids(sbi, true, false);
2018         goto retry;
2019 }
2020
2021 /*
2022  * alloc_nid() should be called prior to this function.
2023  */
2024 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2025 {
2026         struct f2fs_nm_info *nm_i = NM_I(sbi);
2027         struct free_nid *i;
2028
2029         spin_lock(&nm_i->nid_list_lock);
2030         i = __lookup_free_nid_list(nm_i, nid);
2031         f2fs_bug_on(sbi, !i);
2032         __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2033         spin_unlock(&nm_i->nid_list_lock);
2034
2035         kmem_cache_free(free_nid_slab, i);
2036 }
2037
2038 /*
2039  * alloc_nid() should be called prior to this function.
2040  */
2041 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2042 {
2043         struct f2fs_nm_info *nm_i = NM_I(sbi);
2044         struct free_nid *i;
2045         bool need_free = false;
2046
2047         if (!nid)
2048                 return;
2049
2050         spin_lock(&nm_i->nid_list_lock);
2051         i = __lookup_free_nid_list(nm_i, nid);
2052         f2fs_bug_on(sbi, !i);
2053
2054         if (!available_free_memory(sbi, FREE_NIDS)) {
2055                 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2056                 need_free = true;
2057         } else {
2058                 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
2059                 i->state = NID_NEW;
2060                 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
2061         }
2062
2063         nm_i->available_nids++;
2064
2065         spin_unlock(&nm_i->nid_list_lock);
2066
2067         if (need_free)
2068                 kmem_cache_free(free_nid_slab, i);
2069 }
2070
2071 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2072 {
2073         struct f2fs_nm_info *nm_i = NM_I(sbi);
2074         struct free_nid *i, *next;
2075         int nr = nr_shrink;
2076
2077         if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2078                 return 0;
2079
2080         if (!mutex_trylock(&nm_i->build_lock))
2081                 return 0;
2082
2083         spin_lock(&nm_i->nid_list_lock);
2084         list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
2085                                                                         list) {
2086                 if (nr_shrink <= 0 ||
2087                                 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2088                         break;
2089
2090                 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2091                 kmem_cache_free(free_nid_slab, i);
2092                 nr_shrink--;
2093         }
2094         spin_unlock(&nm_i->nid_list_lock);
2095         mutex_unlock(&nm_i->build_lock);
2096
2097         return nr - nr_shrink;
2098 }
2099
2100 void recover_inline_xattr(struct inode *inode, struct page *page)
2101 {
2102         void *src_addr, *dst_addr;
2103         size_t inline_size;
2104         struct page *ipage;
2105         struct f2fs_inode *ri;
2106
2107         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2108         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2109
2110         ri = F2FS_INODE(page);
2111         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2112                 clear_inode_flag(inode, FI_INLINE_XATTR);
2113                 goto update_inode;
2114         }
2115
2116         dst_addr = inline_xattr_addr(ipage);
2117         src_addr = inline_xattr_addr(page);
2118         inline_size = inline_xattr_size(inode);
2119
2120         f2fs_wait_on_page_writeback(ipage, NODE, true);
2121         memcpy(dst_addr, src_addr, inline_size);
2122 update_inode:
2123         update_inode(inode, ipage);
2124         f2fs_put_page(ipage, 1);
2125 }
2126
2127 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2128 {
2129         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2130         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2131         nid_t new_xnid = nid_of_node(page);
2132         struct node_info ni;
2133         struct page *xpage;
2134
2135         if (!prev_xnid)
2136                 goto recover_xnid;
2137
2138         /* 1: invalidate the previous xattr nid */
2139         get_node_info(sbi, prev_xnid, &ni);
2140         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2141         invalidate_blocks(sbi, ni.blk_addr);
2142         dec_valid_node_count(sbi, inode);
2143         set_node_addr(sbi, &ni, NULL_ADDR, false);
2144
2145 recover_xnid:
2146         /* 2: update xattr nid in inode */
2147         remove_free_nid(sbi, new_xnid);
2148         f2fs_i_xnid_write(inode, new_xnid);
2149         if (unlikely(!inc_valid_node_count(sbi, inode)))
2150                 f2fs_bug_on(sbi, 1);
2151         update_inode_page(inode);
2152
2153         /* 3: update and set xattr node page dirty */
2154         xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid);
2155         if (!xpage)
2156                 return -ENOMEM;
2157
2158         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE);
2159
2160         get_node_info(sbi, new_xnid, &ni);
2161         ni.ino = inode->i_ino;
2162         set_node_addr(sbi, &ni, NEW_ADDR, false);
2163         set_page_dirty(xpage);
2164         f2fs_put_page(xpage, 1);
2165
2166         return 0;
2167 }
2168
2169 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2170 {
2171         struct f2fs_inode *src, *dst;
2172         nid_t ino = ino_of_node(page);
2173         struct node_info old_ni, new_ni;
2174         struct page *ipage;
2175
2176         get_node_info(sbi, ino, &old_ni);
2177
2178         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2179                 return -EINVAL;
2180 retry:
2181         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2182         if (!ipage) {
2183                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2184                 goto retry;
2185         }
2186
2187         /* Should not use this inode from free nid list */
2188         remove_free_nid(sbi, ino);
2189
2190         if (!PageUptodate(ipage))
2191                 SetPageUptodate(ipage);
2192         fill_node_footer(ipage, ino, ino, 0, true);
2193
2194         src = F2FS_INODE(page);
2195         dst = F2FS_INODE(ipage);
2196
2197         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2198         dst->i_size = 0;
2199         dst->i_blocks = cpu_to_le64(1);
2200         dst->i_links = cpu_to_le32(1);
2201         dst->i_xattr_nid = 0;
2202         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2203
2204         new_ni = old_ni;
2205         new_ni.ino = ino;
2206
2207         if (unlikely(!inc_valid_node_count(sbi, NULL)))
2208                 WARN_ON(1);
2209         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2210         inc_valid_inode_count(sbi);
2211         set_page_dirty(ipage);
2212         f2fs_put_page(ipage, 1);
2213         return 0;
2214 }
2215
2216 int restore_node_summary(struct f2fs_sb_info *sbi,
2217                         unsigned int segno, struct f2fs_summary_block *sum)
2218 {
2219         struct f2fs_node *rn;
2220         struct f2fs_summary *sum_entry;
2221         block_t addr;
2222         int i, idx, last_offset, nrpages;
2223
2224         /* scan the node segment */
2225         last_offset = sbi->blocks_per_seg;
2226         addr = START_BLOCK(sbi, segno);
2227         sum_entry = &sum->entries[0];
2228
2229         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2230                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2231
2232                 /* readahead node pages */
2233                 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2234
2235                 for (idx = addr; idx < addr + nrpages; idx++) {
2236                         struct page *page = get_tmp_page(sbi, idx);
2237
2238                         rn = F2FS_NODE(page);
2239                         sum_entry->nid = rn->footer.nid;
2240                         sum_entry->version = 0;
2241                         sum_entry->ofs_in_node = 0;
2242                         sum_entry++;
2243                         f2fs_put_page(page, 1);
2244                 }
2245
2246                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2247                                                         addr + nrpages);
2248         }
2249         return 0;
2250 }
2251
2252 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2253 {
2254         struct f2fs_nm_info *nm_i = NM_I(sbi);
2255         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2256         struct f2fs_journal *journal = curseg->journal;
2257         int i;
2258
2259         down_write(&curseg->journal_rwsem);
2260         for (i = 0; i < nats_in_cursum(journal); i++) {
2261                 struct nat_entry *ne;
2262                 struct f2fs_nat_entry raw_ne;
2263                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2264
2265                 raw_ne = nat_in_journal(journal, i);
2266
2267                 ne = __lookup_nat_cache(nm_i, nid);
2268                 if (!ne) {
2269                         ne = grab_nat_entry(nm_i, nid, true);
2270                         node_info_from_raw_nat(&ne->ni, &raw_ne);
2271                 }
2272
2273                 /*
2274                  * if a free nat in journal has not been used after last
2275                  * checkpoint, we should remove it from available nids,
2276                  * since later we will add it again.
2277                  */
2278                 if (!get_nat_flag(ne, IS_DIRTY) &&
2279                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2280                         spin_lock(&nm_i->nid_list_lock);
2281                         nm_i->available_nids--;
2282                         spin_unlock(&nm_i->nid_list_lock);
2283                 }
2284
2285                 __set_nat_cache_dirty(nm_i, ne);
2286         }
2287         update_nats_in_cursum(journal, -i);
2288         up_write(&curseg->journal_rwsem);
2289 }
2290
2291 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2292                                                 struct list_head *head, int max)
2293 {
2294         struct nat_entry_set *cur;
2295
2296         if (nes->entry_cnt >= max)
2297                 goto add_out;
2298
2299         list_for_each_entry(cur, head, set_list) {
2300                 if (cur->entry_cnt >= nes->entry_cnt) {
2301                         list_add(&nes->set_list, cur->set_list.prev);
2302                         return;
2303                 }
2304         }
2305 add_out:
2306         list_add_tail(&nes->set_list, head);
2307 }
2308
2309 void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2310                                                 struct page *page)
2311 {
2312         struct f2fs_nm_info *nm_i = NM_I(sbi);
2313         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2314         struct f2fs_nat_block *nat_blk = page_address(page);
2315         int valid = 0;
2316         int i;
2317
2318         if (!enabled_nat_bits(sbi, NULL))
2319                 return;
2320
2321         for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2322                 if (start_nid == 0 && i == 0)
2323                         valid++;
2324                 if (nat_blk->entries[i].block_addr)
2325                         valid++;
2326         }
2327         if (valid == 0) {
2328                 set_bit_le(nat_index, nm_i->empty_nat_bits);
2329                 clear_bit_le(nat_index, nm_i->full_nat_bits);
2330                 return;
2331         }
2332
2333         clear_bit_le(nat_index, nm_i->empty_nat_bits);
2334         if (valid == NAT_ENTRY_PER_BLOCK)
2335                 set_bit_le(nat_index, nm_i->full_nat_bits);
2336         else
2337                 clear_bit_le(nat_index, nm_i->full_nat_bits);
2338 }
2339
2340 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2341                 struct nat_entry_set *set, struct cp_control *cpc)
2342 {
2343         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2344         struct f2fs_journal *journal = curseg->journal;
2345         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2346         bool to_journal = true;
2347         struct f2fs_nat_block *nat_blk;
2348         struct nat_entry *ne, *cur;
2349         struct page *page = NULL;
2350
2351         /*
2352          * there are two steps to flush nat entries:
2353          * #1, flush nat entries to journal in current hot data summary block.
2354          * #2, flush nat entries to nat page.
2355          */
2356         if (enabled_nat_bits(sbi, cpc) ||
2357                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2358                 to_journal = false;
2359
2360         if (to_journal) {
2361                 down_write(&curseg->journal_rwsem);
2362         } else {
2363                 page = get_next_nat_page(sbi, start_nid);
2364                 nat_blk = page_address(page);
2365                 f2fs_bug_on(sbi, !nat_blk);
2366         }
2367
2368         /* flush dirty nats in nat entry set */
2369         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2370                 struct f2fs_nat_entry *raw_ne;
2371                 nid_t nid = nat_get_nid(ne);
2372                 int offset;
2373
2374                 if (nat_get_blkaddr(ne) == NEW_ADDR)
2375                         continue;
2376
2377                 if (to_journal) {
2378                         offset = lookup_journal_in_cursum(journal,
2379                                                         NAT_JOURNAL, nid, 1);
2380                         f2fs_bug_on(sbi, offset < 0);
2381                         raw_ne = &nat_in_journal(journal, offset);
2382                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2383                 } else {
2384                         raw_ne = &nat_blk->entries[nid - start_nid];
2385                 }
2386                 raw_nat_from_node_info(raw_ne, &ne->ni);
2387                 nat_reset_flag(ne);
2388                 __clear_nat_cache_dirty(NM_I(sbi), ne);
2389                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2390                         add_free_nid(sbi, nid, false);
2391                         spin_lock(&NM_I(sbi)->nid_list_lock);
2392                         NM_I(sbi)->available_nids++;
2393                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2394                 }
2395         }
2396
2397         if (to_journal) {
2398                 up_write(&curseg->journal_rwsem);
2399         } else {
2400                 __update_nat_bits(sbi, start_nid, page);
2401                 f2fs_put_page(page, 1);
2402         }
2403
2404         f2fs_bug_on(sbi, set->entry_cnt);
2405
2406         radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2407         kmem_cache_free(nat_entry_set_slab, set);
2408 }
2409
2410 /*
2411  * This function is called during the checkpointing process.
2412  */
2413 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2414 {
2415         struct f2fs_nm_info *nm_i = NM_I(sbi);
2416         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2417         struct f2fs_journal *journal = curseg->journal;
2418         struct nat_entry_set *setvec[SETVEC_SIZE];
2419         struct nat_entry_set *set, *tmp;
2420         unsigned int found;
2421         nid_t set_idx = 0;
2422         LIST_HEAD(sets);
2423
2424         if (!nm_i->dirty_nat_cnt)
2425                 return;
2426
2427         down_write(&nm_i->nat_tree_lock);
2428
2429         /*
2430          * if there are no enough space in journal to store dirty nat
2431          * entries, remove all entries from journal and merge them
2432          * into nat entry set.
2433          */
2434         if (cpc->reason == CP_UMOUNT ||
2435                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2436                 remove_nats_in_journal(sbi);
2437
2438         while ((found = __gang_lookup_nat_set(nm_i,
2439                                         set_idx, SETVEC_SIZE, setvec))) {
2440                 unsigned idx;
2441                 set_idx = setvec[found - 1]->set + 1;
2442                 for (idx = 0; idx < found; idx++)
2443                         __adjust_nat_entry_set(setvec[idx], &sets,
2444                                                 MAX_NAT_JENTRIES(journal));
2445         }
2446
2447         /* flush dirty nats in nat entry set */
2448         list_for_each_entry_safe(set, tmp, &sets, set_list)
2449                 __flush_nat_entry_set(sbi, set, cpc);
2450
2451         up_write(&nm_i->nat_tree_lock);
2452
2453         f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2454 }
2455
2456 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2457 {
2458         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2459         struct f2fs_nm_info *nm_i = NM_I(sbi);
2460         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2461         unsigned int i;
2462         __u64 cp_ver = cur_cp_version(ckpt);
2463         size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
2464         __u64 crc = le32_to_cpu(*((__le32 *)
2465                                 ((unsigned char *)ckpt + crc_offset)));
2466         block_t nat_bits_addr;
2467
2468         if (!enabled_nat_bits(sbi, NULL))
2469                 return 0;
2470
2471         nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2472                                                 F2FS_BLKSIZE - 1);
2473         nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2474                                                 GFP_KERNEL);
2475         if (!nm_i->nat_bits)
2476                 return -ENOMEM;
2477
2478         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2479                                                 nm_i->nat_bits_blocks;
2480         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2481                 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2482
2483                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2484                                         page_address(page), F2FS_BLKSIZE);
2485                 f2fs_put_page(page, 1);
2486         }
2487
2488         cp_ver |= (crc << 32);
2489         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2490                 disable_nat_bits(sbi, true);
2491                 return 0;
2492         }
2493
2494         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2495         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2496
2497         f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2498         return 0;
2499 }
2500
2501 static int init_node_manager(struct f2fs_sb_info *sbi)
2502 {
2503         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2504         struct f2fs_nm_info *nm_i = NM_I(sbi);
2505         unsigned char *version_bitmap;
2506         unsigned int nat_segs;
2507         int err;
2508
2509         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2510
2511         /* segment_count_nat includes pair segment so divide to 2. */
2512         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2513         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2514         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2515
2516         /* not used nids: 0, node, meta, (and root counted as valid node) */
2517         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2518                                                         F2FS_RESERVED_NODE_NUM;
2519         nm_i->nid_cnt[FREE_NID_LIST] = 0;
2520         nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2521         nm_i->nat_cnt = 0;
2522         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2523         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2524         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2525
2526         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2527         INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2528         INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2529         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2530         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2531         INIT_LIST_HEAD(&nm_i->nat_entries);
2532
2533         mutex_init(&nm_i->build_lock);
2534         spin_lock_init(&nm_i->nid_list_lock);
2535         init_rwsem(&nm_i->nat_tree_lock);
2536
2537         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2538         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2539         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2540         if (!version_bitmap)
2541                 return -EFAULT;
2542
2543         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2544                                         GFP_KERNEL);
2545         if (!nm_i->nat_bitmap)
2546                 return -ENOMEM;
2547
2548         err = __get_nat_bitmaps(sbi);
2549         if (err)
2550                 return err;
2551
2552 #ifdef CONFIG_F2FS_CHECK_FS
2553         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2554                                         GFP_KERNEL);
2555         if (!nm_i->nat_bitmap_mir)
2556                 return -ENOMEM;
2557 #endif
2558
2559         return 0;
2560 }
2561
2562 int build_node_manager(struct f2fs_sb_info *sbi)
2563 {
2564         int err;
2565
2566         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2567         if (!sbi->nm_info)
2568                 return -ENOMEM;
2569
2570         err = init_node_manager(sbi);
2571         if (err)
2572                 return err;
2573
2574         build_free_nids(sbi, true, true);
2575         return 0;
2576 }
2577
2578 void destroy_node_manager(struct f2fs_sb_info *sbi)
2579 {
2580         struct f2fs_nm_info *nm_i = NM_I(sbi);
2581         struct free_nid *i, *next_i;
2582         struct nat_entry *natvec[NATVEC_SIZE];
2583         struct nat_entry_set *setvec[SETVEC_SIZE];
2584         nid_t nid = 0;
2585         unsigned int found;
2586
2587         if (!nm_i)
2588                 return;
2589
2590         /* destroy free nid list */
2591         spin_lock(&nm_i->nid_list_lock);
2592         list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2593                                                                         list) {
2594                 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2595                 spin_unlock(&nm_i->nid_list_lock);
2596                 kmem_cache_free(free_nid_slab, i);
2597                 spin_lock(&nm_i->nid_list_lock);
2598         }
2599         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2600         f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2601         f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2602         spin_unlock(&nm_i->nid_list_lock);
2603
2604         /* destroy nat cache */
2605         down_write(&nm_i->nat_tree_lock);
2606         while ((found = __gang_lookup_nat_cache(nm_i,
2607                                         nid, NATVEC_SIZE, natvec))) {
2608                 unsigned idx;
2609
2610                 nid = nat_get_nid(natvec[found - 1]) + 1;
2611                 for (idx = 0; idx < found; idx++)
2612                         __del_from_nat_cache(nm_i, natvec[idx]);
2613         }
2614         f2fs_bug_on(sbi, nm_i->nat_cnt);
2615
2616         /* destroy nat set cache */
2617         nid = 0;
2618         while ((found = __gang_lookup_nat_set(nm_i,
2619                                         nid, SETVEC_SIZE, setvec))) {
2620                 unsigned idx;
2621
2622                 nid = setvec[found - 1]->set + 1;
2623                 for (idx = 0; idx < found; idx++) {
2624                         /* entry_cnt is not zero, when cp_error was occurred */
2625                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2626                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2627                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2628                 }
2629         }
2630         up_write(&nm_i->nat_tree_lock);
2631
2632         kfree(nm_i->nat_bitmap);
2633         kfree(nm_i->nat_bits);
2634 #ifdef CONFIG_F2FS_CHECK_FS
2635         kfree(nm_i->nat_bitmap_mir);
2636 #endif
2637         sbi->nm_info = NULL;
2638         kfree(nm_i);
2639 }
2640
2641 int __init create_node_manager_caches(void)
2642 {
2643         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2644                         sizeof(struct nat_entry));
2645         if (!nat_entry_slab)
2646                 goto fail;
2647
2648         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2649                         sizeof(struct free_nid));
2650         if (!free_nid_slab)
2651                 goto destroy_nat_entry;
2652
2653         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2654                         sizeof(struct nat_entry_set));
2655         if (!nat_entry_set_slab)
2656                 goto destroy_free_nid;
2657         return 0;
2658
2659 destroy_free_nid:
2660         kmem_cache_destroy(free_nid_slab);
2661 destroy_nat_entry:
2662         kmem_cache_destroy(nat_entry_slab);
2663 fail:
2664         return -ENOMEM;
2665 }
2666
2667 void destroy_node_manager_caches(void)
2668 {
2669         kmem_cache_destroy(nat_entry_set_slab);
2670         kmem_cache_destroy(free_nid_slab);
2671         kmem_cache_destroy(nat_entry_slab);
2672 }