]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.h
Merge remote-tracking branch 'regulator/topic/max8997' into regulator-next
[karo-tx-linux.git] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* constant macro */
12 #define NULL_SEGNO                      ((unsigned int)(~0))
13
14 /* V: Logical segment # in volume, R: Relative segment # in main area */
15 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
16 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
17
18 #define IS_DATASEG(t)                                                   \
19         ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) ||           \
20         (t == CURSEG_WARM_DATA))
21
22 #define IS_NODESEG(t)                                                   \
23         ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) ||           \
24         (t == CURSEG_WARM_NODE))
25
26 #define IS_CURSEG(sbi, segno)                                           \
27         ((segno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||    \
28          (segno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||   \
29          (segno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||   \
30          (segno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||    \
31          (segno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||   \
32          (segno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34 #define IS_CURSEC(sbi, secno)                                           \
35         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
36           sbi->segs_per_sec) || \
37          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
38           sbi->segs_per_sec) || \
39          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
40           sbi->segs_per_sec) || \
41          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
42           sbi->segs_per_sec) || \
43          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
44           sbi->segs_per_sec) || \
45          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
46           sbi->segs_per_sec))   \
47
48 #define START_BLOCK(sbi, segno)                                         \
49         (SM_I(sbi)->seg0_blkaddr +                                      \
50          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
52         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54 #define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
55
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
57         ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
59         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_SEGNO(sbi, blk_addr)                                        \
61         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
62         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
63                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64 #define GET_SECNO(sbi, segno)                                   \
65         ((segno) / sbi->segs_per_sec)
66 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
67         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
68
69 #define GET_SUM_BLOCK(sbi, segno)                               \
70         ((sbi->sm_info->ssa_blkaddr) + segno)
71
72 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
73 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
74
75 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
76         (segno % sit_i->sents_per_block)
77 #define SIT_BLOCK_OFFSET(sit_i, segno)                                  \
78         (segno / SIT_ENTRY_PER_BLOCK)
79 #define START_SEGNO(sit_i, segno)               \
80         (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
81 #define f2fs_bitmap_size(nr)                    \
82         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
83 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
84
85 #define SECTOR_FROM_BLOCK(sbi, blk_addr)                                \
86         (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
87
88 /* during checkpoint, bio_private is used to synchronize the last bio */
89 struct bio_private {
90         struct f2fs_sb_info *sbi;
91         bool is_sync;
92         void *wait;
93 };
94
95 /*
96  * indicate a block allocation direction: RIGHT and LEFT.
97  * RIGHT means allocating new sections towards the end of volume.
98  * LEFT means the opposite direction.
99  */
100 enum {
101         ALLOC_RIGHT = 0,
102         ALLOC_LEFT
103 };
104
105 /*
106  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
107  * LFS writes data sequentially with cleaning operations.
108  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
109  */
110 enum {
111         LFS = 0,
112         SSR
113 };
114
115 /*
116  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
117  * GC_CB is based on cost-benefit algorithm.
118  * GC_GREEDY is based on greedy algorithm.
119  */
120 enum {
121         GC_CB = 0,
122         GC_GREEDY
123 };
124
125 /*
126  * BG_GC means the background cleaning job.
127  * FG_GC means the on-demand cleaning job.
128  */
129 enum {
130         BG_GC = 0,
131         FG_GC
132 };
133
134 /* for a function parameter to select a victim segment */
135 struct victim_sel_policy {
136         int alloc_mode;                 /* LFS or SSR */
137         int gc_mode;                    /* GC_CB or GC_GREEDY */
138         unsigned long *dirty_segmap;    /* dirty segment bitmap */
139         unsigned int offset;            /* last scanned bitmap offset */
140         unsigned int ofs_unit;          /* bitmap search unit */
141         unsigned int min_cost;          /* minimum cost */
142         unsigned int min_segno;         /* segment # having min. cost */
143 };
144
145 struct seg_entry {
146         unsigned short valid_blocks;    /* # of valid blocks */
147         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
148         /*
149          * # of valid blocks and the validity bitmap stored in the the last
150          * checkpoint pack. This information is used by the SSR mode.
151          */
152         unsigned short ckpt_valid_blocks;
153         unsigned char *ckpt_valid_map;
154         unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
155         unsigned long long mtime;       /* modification time of the segment */
156 };
157
158 struct sec_entry {
159         unsigned int valid_blocks;      /* # of valid blocks in a section */
160 };
161
162 struct segment_allocation {
163         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
164 };
165
166 struct sit_info {
167         const struct segment_allocation *s_ops;
168
169         block_t sit_base_addr;          /* start block address of SIT area */
170         block_t sit_blocks;             /* # of blocks used by SIT area */
171         block_t written_valid_blocks;   /* # of valid blocks in main area */
172         char *sit_bitmap;               /* SIT bitmap pointer */
173         unsigned int bitmap_size;       /* SIT bitmap size */
174
175         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
176         unsigned int dirty_sentries;            /* # of dirty sentries */
177         unsigned int sents_per_block;           /* # of SIT entries per block */
178         struct mutex sentry_lock;               /* to protect SIT cache */
179         struct seg_entry *sentries;             /* SIT segment-level cache */
180         struct sec_entry *sec_entries;          /* SIT section-level cache */
181
182         /* for cost-benefit algorithm in cleaning procedure */
183         unsigned long long elapsed_time;        /* elapsed time after mount */
184         unsigned long long mounted_time;        /* mount time */
185         unsigned long long min_mtime;           /* min. modification time */
186         unsigned long long max_mtime;           /* max. modification time */
187 };
188
189 struct free_segmap_info {
190         unsigned int start_segno;       /* start segment number logically */
191         unsigned int free_segments;     /* # of free segments */
192         unsigned int free_sections;     /* # of free sections */
193         rwlock_t segmap_lock;           /* free segmap lock */
194         unsigned long *free_segmap;     /* free segment bitmap */
195         unsigned long *free_secmap;     /* free section bitmap */
196 };
197
198 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
199 enum dirty_type {
200         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
201         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
202         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
203         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
204         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
205         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
206         DIRTY,                  /* to count # of dirty segments */
207         PRE,                    /* to count # of entirely obsolete segments */
208         NR_DIRTY_TYPE
209 };
210
211 struct dirty_seglist_info {
212         const struct victim_selection *v_ops;   /* victim selction operation */
213         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
214         struct mutex seglist_lock;              /* lock for segment bitmaps */
215         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
216         unsigned long *victim_segmap[2];        /* BG_GC, FG_GC */
217 };
218
219 /* victim selection function for cleaning and SSR */
220 struct victim_selection {
221         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
222                                                         int, int, char);
223 };
224
225 /* for active log information */
226 struct curseg_info {
227         struct mutex curseg_mutex;              /* lock for consistency */
228         struct f2fs_summary_block *sum_blk;     /* cached summary block */
229         unsigned char alloc_type;               /* current allocation type */
230         unsigned int segno;                     /* current segment number */
231         unsigned short next_blkoff;             /* next block offset to write */
232         unsigned int zone;                      /* current zone number */
233         unsigned int next_segno;                /* preallocated segment */
234 };
235
236 /*
237  * inline functions
238  */
239 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
240 {
241         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
242 }
243
244 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
245                                                 unsigned int segno)
246 {
247         struct sit_info *sit_i = SIT_I(sbi);
248         return &sit_i->sentries[segno];
249 }
250
251 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
252                                                 unsigned int segno)
253 {
254         struct sit_info *sit_i = SIT_I(sbi);
255         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
256 }
257
258 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
259                                 unsigned int segno, int section)
260 {
261         /*
262          * In order to get # of valid blocks in a section instantly from many
263          * segments, f2fs manages two counting structures separately.
264          */
265         if (section > 1)
266                 return get_sec_entry(sbi, segno)->valid_blocks;
267         else
268                 return get_seg_entry(sbi, segno)->valid_blocks;
269 }
270
271 static inline void seg_info_from_raw_sit(struct seg_entry *se,
272                                         struct f2fs_sit_entry *rs)
273 {
274         se->valid_blocks = GET_SIT_VBLOCKS(rs);
275         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
276         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
277         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
278         se->type = GET_SIT_TYPE(rs);
279         se->mtime = le64_to_cpu(rs->mtime);
280 }
281
282 static inline void seg_info_to_raw_sit(struct seg_entry *se,
283                                         struct f2fs_sit_entry *rs)
284 {
285         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
286                                         se->valid_blocks;
287         rs->vblocks = cpu_to_le16(raw_vblocks);
288         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
289         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
290         se->ckpt_valid_blocks = se->valid_blocks;
291         rs->mtime = cpu_to_le64(se->mtime);
292 }
293
294 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
295                 unsigned int max, unsigned int segno)
296 {
297         unsigned int ret;
298         read_lock(&free_i->segmap_lock);
299         ret = find_next_bit(free_i->free_segmap, max, segno);
300         read_unlock(&free_i->segmap_lock);
301         return ret;
302 }
303
304 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
305 {
306         struct free_segmap_info *free_i = FREE_I(sbi);
307         unsigned int secno = segno / sbi->segs_per_sec;
308         unsigned int start_segno = secno * sbi->segs_per_sec;
309         unsigned int next;
310
311         write_lock(&free_i->segmap_lock);
312         clear_bit(segno, free_i->free_segmap);
313         free_i->free_segments++;
314
315         next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
316         if (next >= start_segno + sbi->segs_per_sec) {
317                 clear_bit(secno, free_i->free_secmap);
318                 free_i->free_sections++;
319         }
320         write_unlock(&free_i->segmap_lock);
321 }
322
323 static inline void __set_inuse(struct f2fs_sb_info *sbi,
324                 unsigned int segno)
325 {
326         struct free_segmap_info *free_i = FREE_I(sbi);
327         unsigned int secno = segno / sbi->segs_per_sec;
328         set_bit(segno, free_i->free_segmap);
329         free_i->free_segments--;
330         if (!test_and_set_bit(secno, free_i->free_secmap))
331                 free_i->free_sections--;
332 }
333
334 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
335                 unsigned int segno)
336 {
337         struct free_segmap_info *free_i = FREE_I(sbi);
338         unsigned int secno = segno / sbi->segs_per_sec;
339         unsigned int start_segno = secno * sbi->segs_per_sec;
340         unsigned int next;
341
342         write_lock(&free_i->segmap_lock);
343         if (test_and_clear_bit(segno, free_i->free_segmap)) {
344                 free_i->free_segments++;
345
346                 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
347                                                                 start_segno);
348                 if (next >= start_segno + sbi->segs_per_sec) {
349                         if (test_and_clear_bit(secno, free_i->free_secmap))
350                                 free_i->free_sections++;
351                 }
352         }
353         write_unlock(&free_i->segmap_lock);
354 }
355
356 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
357                 unsigned int segno)
358 {
359         struct free_segmap_info *free_i = FREE_I(sbi);
360         unsigned int secno = segno / sbi->segs_per_sec;
361         write_lock(&free_i->segmap_lock);
362         if (!test_and_set_bit(segno, free_i->free_segmap)) {
363                 free_i->free_segments--;
364                 if (!test_and_set_bit(secno, free_i->free_secmap))
365                         free_i->free_sections--;
366         }
367         write_unlock(&free_i->segmap_lock);
368 }
369
370 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
371                 void *dst_addr)
372 {
373         struct sit_info *sit_i = SIT_I(sbi);
374         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
375 }
376
377 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
378 {
379         struct sit_info *sit_i = SIT_I(sbi);
380         block_t vblocks;
381
382         mutex_lock(&sit_i->sentry_lock);
383         vblocks = sit_i->written_valid_blocks;
384         mutex_unlock(&sit_i->sentry_lock);
385
386         return vblocks;
387 }
388
389 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
390 {
391         struct free_segmap_info *free_i = FREE_I(sbi);
392         unsigned int free_segs;
393
394         read_lock(&free_i->segmap_lock);
395         free_segs = free_i->free_segments;
396         read_unlock(&free_i->segmap_lock);
397
398         return free_segs;
399 }
400
401 static inline int reserved_segments(struct f2fs_sb_info *sbi)
402 {
403         return SM_I(sbi)->reserved_segments;
404 }
405
406 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
407 {
408         struct free_segmap_info *free_i = FREE_I(sbi);
409         unsigned int free_secs;
410
411         read_lock(&free_i->segmap_lock);
412         free_secs = free_i->free_sections;
413         read_unlock(&free_i->segmap_lock);
414
415         return free_secs;
416 }
417
418 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
419 {
420         return DIRTY_I(sbi)->nr_dirty[PRE];
421 }
422
423 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
424 {
425         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
426                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
427                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
428                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
429                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
430                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
431 }
432
433 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
434 {
435         return SM_I(sbi)->ovp_segments;
436 }
437
438 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
439 {
440         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
441 }
442
443 static inline int reserved_sections(struct f2fs_sb_info *sbi)
444 {
445         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
446 }
447
448 static inline bool need_SSR(struct f2fs_sb_info *sbi)
449 {
450         return (free_sections(sbi) < overprovision_sections(sbi));
451 }
452
453 static inline int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
454 {
455         struct curseg_info *curseg = CURSEG_I(sbi, type);
456         return DIRTY_I(sbi)->v_ops->get_victim(sbi,
457                                 &(curseg)->next_segno, BG_GC, type, SSR);
458 }
459
460 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi)
461 {
462         unsigned int pages_per_sec = (1 << sbi->log_blocks_per_seg) *
463                         sbi->segs_per_sec;
464         int node_secs = ((get_pages(sbi, F2FS_DIRTY_NODES) + pages_per_sec - 1)
465                         >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
466         int dent_secs = ((get_pages(sbi, F2FS_DIRTY_DENTS) + pages_per_sec - 1)
467                         >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
468
469         if (sbi->por_doing)
470                 return false;
471
472         if (free_sections(sbi) <= (node_secs + 2 * dent_secs +
473                                                 reserved_sections(sbi)))
474                 return true;
475         return false;
476 }
477
478 static inline int utilization(struct f2fs_sb_info *sbi)
479 {
480         return (long int)valid_user_blocks(sbi) * 100 /
481                         (long int)sbi->user_block_count;
482 }
483
484 /*
485  * Sometimes f2fs may be better to drop out-of-place update policy.
486  * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
487  * data in the original place likewise other traditional file systems.
488  * But, currently set 100 in percentage, which means it is disabled.
489  * See below need_inplace_update().
490  */
491 #define MIN_IPU_UTIL            100
492 static inline bool need_inplace_update(struct inode *inode)
493 {
494         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
495         if (S_ISDIR(inode->i_mode))
496                 return false;
497         if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
498                 return true;
499         return false;
500 }
501
502 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
503                 int type)
504 {
505         struct curseg_info *curseg = CURSEG_I(sbi, type);
506         return curseg->segno;
507 }
508
509 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
510                 int type)
511 {
512         struct curseg_info *curseg = CURSEG_I(sbi, type);
513         return curseg->alloc_type;
514 }
515
516 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
517 {
518         struct curseg_info *curseg = CURSEG_I(sbi, type);
519         return curseg->next_blkoff;
520 }
521
522 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
523 {
524         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
525         BUG_ON(segno > end_segno);
526 }
527
528 /*
529  * This function is used for only debugging.
530  * NOTE: In future, we have to remove this function.
531  */
532 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
533 {
534         struct f2fs_sm_info *sm_info = SM_I(sbi);
535         block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
536         block_t start_addr = sm_info->seg0_blkaddr;
537         block_t end_addr = start_addr + total_blks - 1;
538         BUG_ON(blk_addr < start_addr);
539         BUG_ON(blk_addr > end_addr);
540 }
541
542 /*
543  * Summary block is always treated as invalid block
544  */
545 static inline void check_block_count(struct f2fs_sb_info *sbi,
546                 int segno, struct f2fs_sit_entry *raw_sit)
547 {
548         struct f2fs_sm_info *sm_info = SM_I(sbi);
549         unsigned int end_segno = sm_info->segment_count - 1;
550         int valid_blocks = 0;
551         int i;
552
553         /* check segment usage */
554         BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
555
556         /* check boundary of a given segment number */
557         BUG_ON(segno > end_segno);
558
559         /* check bitmap with valid block count */
560         for (i = 0; i < sbi->blocks_per_seg; i++)
561                 if (f2fs_test_bit(i, raw_sit->valid_map))
562                         valid_blocks++;
563         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
564 }
565
566 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
567                                                 unsigned int start)
568 {
569         struct sit_info *sit_i = SIT_I(sbi);
570         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
571         block_t blk_addr = sit_i->sit_base_addr + offset;
572
573         check_seg_range(sbi, start);
574
575         /* calculate sit block address */
576         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
577                 blk_addr += sit_i->sit_blocks;
578
579         return blk_addr;
580 }
581
582 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
583                                                 pgoff_t block_addr)
584 {
585         struct sit_info *sit_i = SIT_I(sbi);
586         block_addr -= sit_i->sit_base_addr;
587         if (block_addr < sit_i->sit_blocks)
588                 block_addr += sit_i->sit_blocks;
589         else
590                 block_addr -= sit_i->sit_blocks;
591
592         return block_addr + sit_i->sit_base_addr;
593 }
594
595 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
596 {
597         unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
598
599         if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
600                 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
601         else
602                 f2fs_set_bit(block_off, sit_i->sit_bitmap);
603 }
604
605 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
606 {
607         struct sit_info *sit_i = SIT_I(sbi);
608         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
609                                                 sit_i->mounted_time;
610 }
611
612 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
613                         unsigned int ofs_in_node, unsigned char version)
614 {
615         sum->nid = cpu_to_le32(nid);
616         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
617         sum->version = version;
618 }
619
620 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
621 {
622         return __start_cp_addr(sbi) +
623                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
624 }
625
626 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
627 {
628         return __start_cp_addr(sbi) +
629                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
630                                 - (base + 1) + type;
631 }