]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/fs-writeback.c
rpc client can not deal with ENOSOCK, so translate it into ENOCONN
[karo-tx-linux.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/buffer_head.h>
28 #include "internal.h"
29
30 #define inode_to_bdi(inode)     ((inode)->i_mapping->backing_dev_info)
31
32 /*
33  * We don't actually have pdflush, but this one is exported though /proc...
34  */
35 int nr_pdflush_threads;
36
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_args {
41         long nr_pages;
42         struct super_block *sb;
43         enum writeback_sync_modes sync_mode;
44         int for_kupdate:1;
45         int range_cyclic:1;
46         int for_background:1;
47 };
48
49 /*
50  * Work items for the bdi_writeback threads
51  */
52 struct bdi_work {
53         struct list_head list;          /* pending work list */
54         struct rcu_head rcu_head;       /* for RCU free/clear of work */
55
56         unsigned long seen;             /* threads that have seen this work */
57         atomic_t pending;               /* number of threads still to do work */
58
59         struct wb_writeback_args args;  /* writeback arguments */
60
61         unsigned long state;            /* flag bits, see WS_* */
62 };
63
64 enum {
65         WS_USED_B = 0,
66         WS_ONSTACK_B,
67 };
68
69 #define WS_USED (1 << WS_USED_B)
70 #define WS_ONSTACK (1 << WS_ONSTACK_B)
71
72 static inline bool bdi_work_on_stack(struct bdi_work *work)
73 {
74         return test_bit(WS_ONSTACK_B, &work->state);
75 }
76
77 static inline void bdi_work_init(struct bdi_work *work,
78                                  struct wb_writeback_args *args)
79 {
80         INIT_RCU_HEAD(&work->rcu_head);
81         work->args = *args;
82         work->state = WS_USED;
83 }
84
85 /**
86  * writeback_in_progress - determine whether there is writeback in progress
87  * @bdi: the device's backing_dev_info structure.
88  *
89  * Determine whether there is writeback waiting to be handled against a
90  * backing device.
91  */
92 int writeback_in_progress(struct backing_dev_info *bdi)
93 {
94         return !list_empty(&bdi->work_list);
95 }
96
97 static void bdi_work_clear(struct bdi_work *work)
98 {
99         clear_bit(WS_USED_B, &work->state);
100         smp_mb__after_clear_bit();
101         /*
102          * work can have disappeared at this point. bit waitq functions
103          * should be able to tolerate this, provided bdi_sched_wait does
104          * not dereference it's pointer argument.
105         */
106         wake_up_bit(&work->state, WS_USED_B);
107 }
108
109 static void bdi_work_free(struct rcu_head *head)
110 {
111         struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
112
113         if (!bdi_work_on_stack(work))
114                 kfree(work);
115         else
116                 bdi_work_clear(work);
117 }
118
119 static void wb_work_complete(struct bdi_work *work)
120 {
121         const enum writeback_sync_modes sync_mode = work->args.sync_mode;
122         int onstack = bdi_work_on_stack(work);
123
124         /*
125          * For allocated work, we can clear the done/seen bit right here.
126          * For on-stack work, we need to postpone both the clear and free
127          * to after the RCU grace period, since the stack could be invalidated
128          * as soon as bdi_work_clear() has done the wakeup.
129          */
130         if (!onstack)
131                 bdi_work_clear(work);
132         if (sync_mode == WB_SYNC_NONE || onstack)
133                 call_rcu(&work->rcu_head, bdi_work_free);
134 }
135
136 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
137 {
138         /*
139          * The caller has retrieved the work arguments from this work,
140          * drop our reference. If this is the last ref, delete and free it
141          */
142         if (atomic_dec_and_test(&work->pending)) {
143                 struct backing_dev_info *bdi = wb->bdi;
144
145                 spin_lock(&bdi->wb_lock);
146                 list_del_rcu(&work->list);
147                 spin_unlock(&bdi->wb_lock);
148
149                 wb_work_complete(work);
150         }
151 }
152
153 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
154 {
155         work->seen = bdi->wb_mask;
156         BUG_ON(!work->seen);
157         atomic_set(&work->pending, bdi->wb_cnt);
158         BUG_ON(!bdi->wb_cnt);
159
160         /*
161          * list_add_tail_rcu() contains the necessary barriers to
162          * make sure the above stores are seen before the item is
163          * noticed on the list
164          */
165         spin_lock(&bdi->wb_lock);
166         list_add_tail_rcu(&work->list, &bdi->work_list);
167         spin_unlock(&bdi->wb_lock);
168
169         /*
170          * If the default thread isn't there, make sure we add it. When
171          * it gets created and wakes up, we'll run this work.
172          */
173         if (unlikely(list_empty_careful(&bdi->wb_list)))
174                 wake_up_process(default_backing_dev_info.wb.task);
175         else {
176                 struct bdi_writeback *wb = &bdi->wb;
177
178                 if (wb->task)
179                         wake_up_process(wb->task);
180         }
181 }
182
183 /*
184  * Used for on-stack allocated work items. The caller needs to wait until
185  * the wb threads have acked the work before it's safe to continue.
186  */
187 static void bdi_wait_on_work_clear(struct bdi_work *work)
188 {
189         wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
190                     TASK_UNINTERRUPTIBLE);
191 }
192
193 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
194                                  struct wb_writeback_args *args)
195 {
196         struct bdi_work *work;
197
198         /*
199          * This is WB_SYNC_NONE writeback, so if allocation fails just
200          * wakeup the thread for old dirty data writeback
201          */
202         work = kmalloc(sizeof(*work), GFP_ATOMIC);
203         if (work) {
204                 bdi_work_init(work, args);
205                 bdi_queue_work(bdi, work);
206         } else {
207                 struct bdi_writeback *wb = &bdi->wb;
208
209                 if (wb->task)
210                         wake_up_process(wb->task);
211         }
212 }
213
214 /**
215  * bdi_sync_writeback - start and wait for writeback
216  * @bdi: the backing device to write from
217  * @sb: write inodes from this super_block
218  *
219  * Description:
220  *   This does WB_SYNC_ALL data integrity writeback and waits for the
221  *   IO to complete. Callers must hold the sb s_umount semaphore for
222  *   reading, to avoid having the super disappear before we are done.
223  */
224 static void bdi_sync_writeback(struct backing_dev_info *bdi,
225                                struct super_block *sb)
226 {
227         struct wb_writeback_args args = {
228                 .sb             = sb,
229                 .sync_mode      = WB_SYNC_ALL,
230                 .nr_pages       = LONG_MAX,
231                 .range_cyclic   = 0,
232         };
233         struct bdi_work work;
234
235         bdi_work_init(&work, &args);
236         work.state |= WS_ONSTACK;
237
238         bdi_queue_work(bdi, &work);
239         bdi_wait_on_work_clear(&work);
240 }
241
242 /**
243  * bdi_start_writeback - start writeback
244  * @bdi: the backing device to write from
245  * @nr_pages: the number of pages to write
246  *
247  * Description:
248  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
249  *   started when this function returns, we make no guarentees on
250  *   completion. Caller need not hold sb s_umount semaphore.
251  *
252  */
253 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
254                          long nr_pages)
255 {
256         struct wb_writeback_args args = {
257                 .sb             = sb,
258                 .sync_mode      = WB_SYNC_NONE,
259                 .nr_pages       = nr_pages,
260                 .range_cyclic   = 1,
261         };
262
263         /*
264          * We treat @nr_pages=0 as the special case to do background writeback,
265          * ie. to sync pages until the background dirty threshold is reached.
266          */
267         if (!nr_pages) {
268                 args.nr_pages = LONG_MAX;
269                 args.for_background = 1;
270         }
271
272         bdi_alloc_queue_work(bdi, &args);
273 }
274
275 /*
276  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
277  * furthest end of its superblock's dirty-inode list.
278  *
279  * Before stamping the inode's ->dirtied_when, we check to see whether it is
280  * already the most-recently-dirtied inode on the b_dirty list.  If that is
281  * the case then the inode must have been redirtied while it was being written
282  * out and we don't reset its dirtied_when.
283  */
284 static void redirty_tail(struct inode *inode)
285 {
286         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
287
288         if (!list_empty(&wb->b_dirty)) {
289                 struct inode *tail;
290
291                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
292                 if (time_before(inode->dirtied_when, tail->dirtied_when))
293                         inode->dirtied_when = jiffies;
294         }
295         list_move(&inode->i_list, &wb->b_dirty);
296 }
297
298 /*
299  * requeue inode for re-scanning after bdi->b_io list is exhausted.
300  */
301 static void requeue_io(struct inode *inode)
302 {
303         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
304
305         list_move(&inode->i_list, &wb->b_more_io);
306 }
307
308 static void inode_sync_complete(struct inode *inode)
309 {
310         /*
311          * Prevent speculative execution through spin_unlock(&inode_lock);
312          */
313         smp_mb();
314         wake_up_bit(&inode->i_state, __I_SYNC);
315 }
316
317 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
318 {
319         bool ret = time_after(inode->dirtied_when, t);
320 #ifndef CONFIG_64BIT
321         /*
322          * For inodes being constantly redirtied, dirtied_when can get stuck.
323          * It _appears_ to be in the future, but is actually in distant past.
324          * This test is necessary to prevent such wrapped-around relative times
325          * from permanently stopping the whole bdi writeback.
326          */
327         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
328 #endif
329         return ret;
330 }
331
332 /*
333  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
334  */
335 static void move_expired_inodes(struct list_head *delaying_queue,
336                                struct list_head *dispatch_queue,
337                                 unsigned long *older_than_this)
338 {
339         LIST_HEAD(tmp);
340         struct list_head *pos, *node;
341         struct super_block *sb = NULL;
342         struct inode *inode;
343         int do_sb_sort = 0;
344
345         while (!list_empty(delaying_queue)) {
346                 inode = list_entry(delaying_queue->prev, struct inode, i_list);
347                 if (older_than_this &&
348                     inode_dirtied_after(inode, *older_than_this))
349                         break;
350                 if (sb && sb != inode->i_sb)
351                         do_sb_sort = 1;
352                 sb = inode->i_sb;
353                 list_move(&inode->i_list, &tmp);
354         }
355
356         /* just one sb in list, splice to dispatch_queue and we're done */
357         if (!do_sb_sort) {
358                 list_splice(&tmp, dispatch_queue);
359                 return;
360         }
361
362         /* Move inodes from one superblock together */
363         while (!list_empty(&tmp)) {
364                 inode = list_entry(tmp.prev, struct inode, i_list);
365                 sb = inode->i_sb;
366                 list_for_each_prev_safe(pos, node, &tmp) {
367                         inode = list_entry(pos, struct inode, i_list);
368                         if (inode->i_sb == sb)
369                                 list_move(&inode->i_list, dispatch_queue);
370                 }
371         }
372 }
373
374 /*
375  * Queue all expired dirty inodes for io, eldest first.
376  */
377 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
378 {
379         list_splice_init(&wb->b_more_io, wb->b_io.prev);
380         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
381 }
382
383 static int write_inode(struct inode *inode, int sync)
384 {
385         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
386                 return inode->i_sb->s_op->write_inode(inode, sync);
387         return 0;
388 }
389
390 /*
391  * Wait for writeback on an inode to complete.
392  */
393 static void inode_wait_for_writeback(struct inode *inode)
394 {
395         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
396         wait_queue_head_t *wqh;
397
398         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
399         do {
400                 spin_unlock(&inode_lock);
401                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
402                 spin_lock(&inode_lock);
403         } while (inode->i_state & I_SYNC);
404 }
405
406 /*
407  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
408  * caller has ref on the inode (either via __iget or via syscall against an fd)
409  * or the inode has I_WILL_FREE set (via generic_forget_inode)
410  *
411  * If `wait' is set, wait on the writeout.
412  *
413  * The whole writeout design is quite complex and fragile.  We want to avoid
414  * starvation of particular inodes when others are being redirtied, prevent
415  * livelocks, etc.
416  *
417  * Called under inode_lock.
418  */
419 static int
420 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
421 {
422         struct address_space *mapping = inode->i_mapping;
423         int wait = wbc->sync_mode == WB_SYNC_ALL;
424         unsigned dirty;
425         int ret;
426
427         if (!atomic_read(&inode->i_count))
428                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
429         else
430                 WARN_ON(inode->i_state & I_WILL_FREE);
431
432         if (inode->i_state & I_SYNC) {
433                 /*
434                  * If this inode is locked for writeback and we are not doing
435                  * writeback-for-data-integrity, move it to b_more_io so that
436                  * writeback can proceed with the other inodes on s_io.
437                  *
438                  * We'll have another go at writing back this inode when we
439                  * completed a full scan of b_io.
440                  */
441                 if (!wait) {
442                         requeue_io(inode);
443                         return 0;
444                 }
445
446                 /*
447                  * It's a data-integrity sync.  We must wait.
448                  */
449                 inode_wait_for_writeback(inode);
450         }
451
452         BUG_ON(inode->i_state & I_SYNC);
453
454         /* Set I_SYNC, reset I_DIRTY */
455         dirty = inode->i_state & I_DIRTY;
456         inode->i_state |= I_SYNC;
457         inode->i_state &= ~I_DIRTY;
458
459         spin_unlock(&inode_lock);
460
461         ret = do_writepages(mapping, wbc);
462
463         /* Don't write the inode if only I_DIRTY_PAGES was set */
464         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
465                 int err = write_inode(inode, wait);
466                 if (ret == 0)
467                         ret = err;
468         }
469
470         if (wait) {
471                 int err = filemap_fdatawait(mapping);
472                 if (ret == 0)
473                         ret = err;
474         }
475
476         spin_lock(&inode_lock);
477         inode->i_state &= ~I_SYNC;
478         if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
479                 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
480                         /*
481                          * More pages get dirtied by a fast dirtier.
482                          */
483                         goto select_queue;
484                 } else if (inode->i_state & I_DIRTY) {
485                         /*
486                          * At least XFS will redirty the inode during the
487                          * writeback (delalloc) and on io completion (isize).
488                          */
489                         redirty_tail(inode);
490                 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
491                         /*
492                          * We didn't write back all the pages.  nfs_writepages()
493                          * sometimes bales out without doing anything. Redirty
494                          * the inode; Move it from b_io onto b_more_io/b_dirty.
495                          */
496                         /*
497                          * akpm: if the caller was the kupdate function we put
498                          * this inode at the head of b_dirty so it gets first
499                          * consideration.  Otherwise, move it to the tail, for
500                          * the reasons described there.  I'm not really sure
501                          * how much sense this makes.  Presumably I had a good
502                          * reasons for doing it this way, and I'd rather not
503                          * muck with it at present.
504                          */
505                         if (wbc->for_kupdate) {
506                                 /*
507                                  * For the kupdate function we move the inode
508                                  * to b_more_io so it will get more writeout as
509                                  * soon as the queue becomes uncongested.
510                                  */
511                                 inode->i_state |= I_DIRTY_PAGES;
512 select_queue:
513                                 if (wbc->nr_to_write <= 0) {
514                                         /*
515                                          * slice used up: queue for next turn
516                                          */
517                                         requeue_io(inode);
518                                 } else {
519                                         /*
520                                          * somehow blocked: retry later
521                                          */
522                                         redirty_tail(inode);
523                                 }
524                         } else {
525                                 /*
526                                  * Otherwise fully redirty the inode so that
527                                  * other inodes on this superblock will get some
528                                  * writeout.  Otherwise heavy writing to one
529                                  * file would indefinitely suspend writeout of
530                                  * all the other files.
531                                  */
532                                 inode->i_state |= I_DIRTY_PAGES;
533                                 redirty_tail(inode);
534                         }
535                 } else if (atomic_read(&inode->i_count)) {
536                         /*
537                          * The inode is clean, inuse
538                          */
539                         list_move(&inode->i_list, &inode_in_use);
540                 } else {
541                         /*
542                          * The inode is clean, unused
543                          */
544                         list_move(&inode->i_list, &inode_unused);
545                 }
546         }
547         inode_sync_complete(inode);
548         return ret;
549 }
550
551 static void unpin_sb_for_writeback(struct super_block **psb)
552 {
553         struct super_block *sb = *psb;
554
555         if (sb) {
556                 up_read(&sb->s_umount);
557                 put_super(sb);
558                 *psb = NULL;
559         }
560 }
561
562 /*
563  * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
564  * before calling writeback. So make sure that we do pin it, so it doesn't
565  * go away while we are writing inodes from it.
566  *
567  * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
568  * 1 if we failed.
569  */
570 static int pin_sb_for_writeback(struct writeback_control *wbc,
571                                 struct inode *inode, struct super_block **psb)
572 {
573         struct super_block *sb = inode->i_sb;
574
575         /*
576          * If this sb is already pinned, nothing more to do. If not and
577          * *psb is non-NULL, unpin the old one first
578          */
579         if (sb == *psb)
580                 return 0;
581         else if (*psb)
582                 unpin_sb_for_writeback(psb);
583
584         /*
585          * Caller must already hold the ref for this
586          */
587         if (wbc->sync_mode == WB_SYNC_ALL) {
588                 WARN_ON(!rwsem_is_locked(&sb->s_umount));
589                 return 0;
590         }
591
592         spin_lock(&sb_lock);
593         sb->s_count++;
594         if (down_read_trylock(&sb->s_umount)) {
595                 if (sb->s_root) {
596                         spin_unlock(&sb_lock);
597                         goto pinned;
598                 }
599                 /*
600                  * umounted, drop rwsem again and fall through to failure
601                  */
602                 up_read(&sb->s_umount);
603         }
604
605         sb->s_count--;
606         spin_unlock(&sb_lock);
607         return 1;
608 pinned:
609         *psb = sb;
610         return 0;
611 }
612
613 static void writeback_inodes_wb(struct bdi_writeback *wb,
614                                 struct writeback_control *wbc)
615 {
616         struct super_block *sb = wbc->sb, *pin_sb = NULL;
617         const int is_blkdev_sb = sb_is_blkdev_sb(sb);
618         const unsigned long start = jiffies;    /* livelock avoidance */
619
620         spin_lock(&inode_lock);
621
622         if (!wbc->for_kupdate || list_empty(&wb->b_io))
623                 queue_io(wb, wbc->older_than_this);
624
625         while (!list_empty(&wb->b_io)) {
626                 struct inode *inode = list_entry(wb->b_io.prev,
627                                                 struct inode, i_list);
628                 long pages_skipped;
629
630                 /*
631                  * super block given and doesn't match, skip this inode
632                  */
633                 if (sb && sb != inode->i_sb) {
634                         redirty_tail(inode);
635                         continue;
636                 }
637
638                 if (!bdi_cap_writeback_dirty(wb->bdi)) {
639                         redirty_tail(inode);
640                         if (is_blkdev_sb) {
641                                 /*
642                                  * Dirty memory-backed blockdev: the ramdisk
643                                  * driver does this.  Skip just this inode
644                                  */
645                                 continue;
646                         }
647                         /*
648                          * Dirty memory-backed inode against a filesystem other
649                          * than the kernel-internal bdev filesystem.  Skip the
650                          * entire superblock.
651                          */
652                         break;
653                 }
654
655                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
656                         requeue_io(inode);
657                         continue;
658                 }
659
660                 if (wbc->nonblocking && bdi_write_congested(wb->bdi)) {
661                         wbc->encountered_congestion = 1;
662                         if (!is_blkdev_sb)
663                                 break;          /* Skip a congested fs */
664                         requeue_io(inode);
665                         continue;               /* Skip a congested blockdev */
666                 }
667
668                 /*
669                  * Was this inode dirtied after sync_sb_inodes was called?
670                  * This keeps sync from extra jobs and livelock.
671                  */
672                 if (inode_dirtied_after(inode, start))
673                         break;
674
675                 if (pin_sb_for_writeback(wbc, inode, &pin_sb)) {
676                         requeue_io(inode);
677                         continue;
678                 }
679
680                 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
681                 __iget(inode);
682                 pages_skipped = wbc->pages_skipped;
683                 writeback_single_inode(inode, wbc);
684                 if (wbc->pages_skipped != pages_skipped) {
685                         /*
686                          * writeback is not making progress due to locked
687                          * buffers.  Skip this inode for now.
688                          */
689                         redirty_tail(inode);
690                 }
691                 spin_unlock(&inode_lock);
692                 iput(inode);
693                 cond_resched();
694                 spin_lock(&inode_lock);
695                 if (wbc->nr_to_write <= 0) {
696                         wbc->more_io = 1;
697                         break;
698                 }
699                 if (!list_empty(&wb->b_more_io))
700                         wbc->more_io = 1;
701         }
702
703         unpin_sb_for_writeback(&pin_sb);
704
705         spin_unlock(&inode_lock);
706         /* Leave any unwritten inodes on b_io */
707 }
708
709 void writeback_inodes_wbc(struct writeback_control *wbc)
710 {
711         struct backing_dev_info *bdi = wbc->bdi;
712
713         writeback_inodes_wb(&bdi->wb, wbc);
714 }
715
716 /*
717  * The maximum number of pages to writeout in a single bdi flush/kupdate
718  * operation.  We do this so we don't hold I_SYNC against an inode for
719  * enormous amounts of time, which would block a userspace task which has
720  * been forced to throttle against that inode.  Also, the code reevaluates
721  * the dirty each time it has written this many pages.
722  */
723 #define MAX_WRITEBACK_PAGES     1024
724
725 static inline bool over_bground_thresh(void)
726 {
727         unsigned long background_thresh, dirty_thresh;
728
729         get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
730
731         return (global_page_state(NR_FILE_DIRTY) +
732                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
733 }
734
735 /*
736  * Explicit flushing or periodic writeback of "old" data.
737  *
738  * Define "old": the first time one of an inode's pages is dirtied, we mark the
739  * dirtying-time in the inode's address_space.  So this periodic writeback code
740  * just walks the superblock inode list, writing back any inodes which are
741  * older than a specific point in time.
742  *
743  * Try to run once per dirty_writeback_interval.  But if a writeback event
744  * takes longer than a dirty_writeback_interval interval, then leave a
745  * one-second gap.
746  *
747  * older_than_this takes precedence over nr_to_write.  So we'll only write back
748  * all dirty pages if they are all attached to "old" mappings.
749  */
750 static long wb_writeback(struct bdi_writeback *wb,
751                          struct wb_writeback_args *args)
752 {
753         struct writeback_control wbc = {
754                 .bdi                    = wb->bdi,
755                 .sb                     = args->sb,
756                 .sync_mode              = args->sync_mode,
757                 .older_than_this        = NULL,
758                 .for_kupdate            = args->for_kupdate,
759                 .range_cyclic           = args->range_cyclic,
760         };
761         unsigned long oldest_jif;
762         long wrote = 0;
763         struct inode *inode;
764
765         if (wbc.for_kupdate) {
766                 wbc.older_than_this = &oldest_jif;
767                 oldest_jif = jiffies -
768                                 msecs_to_jiffies(dirty_expire_interval * 10);
769         }
770         if (!wbc.range_cyclic) {
771                 wbc.range_start = 0;
772                 wbc.range_end = LLONG_MAX;
773         }
774
775         for (;;) {
776                 /*
777                  * Stop writeback when nr_pages has been consumed
778                  */
779                 if (args->nr_pages <= 0)
780                         break;
781
782                 /*
783                  * For background writeout, stop when we are below the
784                  * background dirty threshold
785                  */
786                 if (args->for_background && !over_bground_thresh())
787                         break;
788
789                 wbc.more_io = 0;
790                 wbc.encountered_congestion = 0;
791                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
792                 wbc.pages_skipped = 0;
793                 writeback_inodes_wb(wb, &wbc);
794                 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
795                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
796
797                 /*
798                  * If we consumed everything, see if we have more
799                  */
800                 if (wbc.nr_to_write <= 0)
801                         continue;
802                 /*
803                  * Didn't write everything and we don't have more IO, bail
804                  */
805                 if (!wbc.more_io)
806                         break;
807                 /*
808                  * Did we write something? Try for more
809                  */
810                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
811                         continue;
812                 /*
813                  * Nothing written. Wait for some inode to
814                  * become available for writeback. Otherwise
815                  * we'll just busyloop.
816                  */
817                 spin_lock(&inode_lock);
818                 if (!list_empty(&wb->b_more_io))  {
819                         inode = list_entry(wb->b_more_io.prev,
820                                                 struct inode, i_list);
821                         inode_wait_for_writeback(inode);
822                 }
823                 spin_unlock(&inode_lock);
824         }
825
826         return wrote;
827 }
828
829 /*
830  * Return the next bdi_work struct that hasn't been processed by this
831  * wb thread yet. ->seen is initially set for each thread that exists
832  * for this device, when a thread first notices a piece of work it
833  * clears its bit. Depending on writeback type, the thread will notify
834  * completion on either receiving the work (WB_SYNC_NONE) or after
835  * it is done (WB_SYNC_ALL).
836  */
837 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
838                                            struct bdi_writeback *wb)
839 {
840         struct bdi_work *work, *ret = NULL;
841
842         rcu_read_lock();
843
844         list_for_each_entry_rcu(work, &bdi->work_list, list) {
845                 if (!test_bit(wb->nr, &work->seen))
846                         continue;
847                 clear_bit(wb->nr, &work->seen);
848
849                 ret = work;
850                 break;
851         }
852
853         rcu_read_unlock();
854         return ret;
855 }
856
857 static long wb_check_old_data_flush(struct bdi_writeback *wb)
858 {
859         unsigned long expired;
860         long nr_pages;
861
862         /*
863          * When set to zero, disable periodic writeback
864          */
865         if (!dirty_writeback_interval)
866                 return 0;
867
868         expired = wb->last_old_flush +
869                         msecs_to_jiffies(dirty_writeback_interval * 10);
870         if (time_before(jiffies, expired))
871                 return 0;
872
873         wb->last_old_flush = jiffies;
874         nr_pages = global_page_state(NR_FILE_DIRTY) +
875                         global_page_state(NR_UNSTABLE_NFS) +
876                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
877
878         if (nr_pages) {
879                 struct wb_writeback_args args = {
880                         .nr_pages       = nr_pages,
881                         .sync_mode      = WB_SYNC_NONE,
882                         .for_kupdate    = 1,
883                         .range_cyclic   = 1,
884                 };
885
886                 return wb_writeback(wb, &args);
887         }
888
889         return 0;
890 }
891
892 /*
893  * Retrieve work items and do the writeback they describe
894  */
895 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
896 {
897         struct backing_dev_info *bdi = wb->bdi;
898         struct bdi_work *work;
899         long wrote = 0;
900
901         while ((work = get_next_work_item(bdi, wb)) != NULL) {
902                 struct wb_writeback_args args = work->args;
903
904                 /*
905                  * Override sync mode, in case we must wait for completion
906                  */
907                 if (force_wait)
908                         work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
909
910                 /*
911                  * If this isn't a data integrity operation, just notify
912                  * that we have seen this work and we are now starting it.
913                  */
914                 if (args.sync_mode == WB_SYNC_NONE)
915                         wb_clear_pending(wb, work);
916
917                 wrote += wb_writeback(wb, &args);
918
919                 /*
920                  * This is a data integrity writeback, so only do the
921                  * notification when we have completed the work.
922                  */
923                 if (args.sync_mode == WB_SYNC_ALL)
924                         wb_clear_pending(wb, work);
925         }
926
927         /*
928          * Check for periodic writeback, kupdated() style
929          */
930         wrote += wb_check_old_data_flush(wb);
931
932         return wrote;
933 }
934
935 /*
936  * Handle writeback of dirty data for the device backed by this bdi. Also
937  * wakes up periodically and does kupdated style flushing.
938  */
939 int bdi_writeback_task(struct bdi_writeback *wb)
940 {
941         unsigned long last_active = jiffies;
942         unsigned long wait_jiffies = -1UL;
943         long pages_written;
944
945         while (!kthread_should_stop()) {
946                 pages_written = wb_do_writeback(wb, 0);
947
948                 if (pages_written)
949                         last_active = jiffies;
950                 else if (wait_jiffies != -1UL) {
951                         unsigned long max_idle;
952
953                         /*
954                          * Longest period of inactivity that we tolerate. If we
955                          * see dirty data again later, the task will get
956                          * recreated automatically.
957                          */
958                         max_idle = max(5UL * 60 * HZ, wait_jiffies);
959                         if (time_after(jiffies, max_idle + last_active))
960                                 break;
961                 }
962
963                 if (dirty_writeback_interval) {
964                         wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
965                         schedule_timeout_interruptible(wait_jiffies);
966                 } else
967                         schedule();
968
969                 try_to_freeze();
970         }
971
972         return 0;
973 }
974
975 /*
976  * Schedule writeback for all backing devices. This does WB_SYNC_NONE
977  * writeback, for integrity writeback see bdi_sync_writeback().
978  */
979 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
980 {
981         struct wb_writeback_args args = {
982                 .sb             = sb,
983                 .nr_pages       = nr_pages,
984                 .sync_mode      = WB_SYNC_NONE,
985         };
986         struct backing_dev_info *bdi;
987
988         rcu_read_lock();
989
990         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
991                 if (!bdi_has_dirty_io(bdi))
992                         continue;
993
994                 bdi_alloc_queue_work(bdi, &args);
995         }
996
997         rcu_read_unlock();
998 }
999
1000 /*
1001  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1002  * the whole world.
1003  */
1004 void wakeup_flusher_threads(long nr_pages)
1005 {
1006         if (nr_pages == 0)
1007                 nr_pages = global_page_state(NR_FILE_DIRTY) +
1008                                 global_page_state(NR_UNSTABLE_NFS);
1009         bdi_writeback_all(NULL, nr_pages);
1010 }
1011
1012 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1013 {
1014         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1015                 struct dentry *dentry;
1016                 const char *name = "?";
1017
1018                 dentry = d_find_alias(inode);
1019                 if (dentry) {
1020                         spin_lock(&dentry->d_lock);
1021                         name = (const char *) dentry->d_name.name;
1022                 }
1023                 printk(KERN_DEBUG
1024                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1025                        current->comm, task_pid_nr(current), inode->i_ino,
1026                        name, inode->i_sb->s_id);
1027                 if (dentry) {
1028                         spin_unlock(&dentry->d_lock);
1029                         dput(dentry);
1030                 }
1031         }
1032 }
1033
1034 /**
1035  *      __mark_inode_dirty -    internal function
1036  *      @inode: inode to mark
1037  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1038  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1039  *      mark_inode_dirty_sync.
1040  *
1041  * Put the inode on the super block's dirty list.
1042  *
1043  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1044  * dirty list only if it is hashed or if it refers to a blockdev.
1045  * If it was not hashed, it will never be added to the dirty list
1046  * even if it is later hashed, as it will have been marked dirty already.
1047  *
1048  * In short, make sure you hash any inodes _before_ you start marking
1049  * them dirty.
1050  *
1051  * This function *must* be atomic for the I_DIRTY_PAGES case -
1052  * set_page_dirty() is called under spinlock in several places.
1053  *
1054  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1055  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1056  * the kernel-internal blockdev inode represents the dirtying time of the
1057  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1058  * page->mapping->host, so the page-dirtying time is recorded in the internal
1059  * blockdev inode.
1060  */
1061 void __mark_inode_dirty(struct inode *inode, int flags)
1062 {
1063         struct super_block *sb = inode->i_sb;
1064
1065         /*
1066          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1067          * dirty the inode itself
1068          */
1069         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1070                 if (sb->s_op->dirty_inode)
1071                         sb->s_op->dirty_inode(inode);
1072         }
1073
1074         /*
1075          * make sure that changes are seen by all cpus before we test i_state
1076          * -- mikulas
1077          */
1078         smp_mb();
1079
1080         /* avoid the locking if we can */
1081         if ((inode->i_state & flags) == flags)
1082                 return;
1083
1084         if (unlikely(block_dump))
1085                 block_dump___mark_inode_dirty(inode);
1086
1087         spin_lock(&inode_lock);
1088         if ((inode->i_state & flags) != flags) {
1089                 const int was_dirty = inode->i_state & I_DIRTY;
1090
1091                 inode->i_state |= flags;
1092
1093                 /*
1094                  * If the inode is being synced, just update its dirty state.
1095                  * The unlocker will place the inode on the appropriate
1096                  * superblock list, based upon its state.
1097                  */
1098                 if (inode->i_state & I_SYNC)
1099                         goto out;
1100
1101                 /*
1102                  * Only add valid (hashed) inodes to the superblock's
1103                  * dirty list.  Add blockdev inodes as well.
1104                  */
1105                 if (!S_ISBLK(inode->i_mode)) {
1106                         if (hlist_unhashed(&inode->i_hash))
1107                                 goto out;
1108                 }
1109                 if (inode->i_state & (I_FREEING|I_CLEAR))
1110                         goto out;
1111
1112                 /*
1113                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1114                  * reposition it (that would break b_dirty time-ordering).
1115                  */
1116                 if (!was_dirty) {
1117                         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1118                         struct backing_dev_info *bdi = wb->bdi;
1119
1120                         if (bdi_cap_writeback_dirty(bdi) &&
1121                             !test_bit(BDI_registered, &bdi->state)) {
1122                                 WARN_ON(1);
1123                                 printk(KERN_ERR "bdi-%s not registered\n",
1124                                                                 bdi->name);
1125                         }
1126
1127                         inode->dirtied_when = jiffies;
1128                         list_move(&inode->i_list, &wb->b_dirty);
1129                 }
1130         }
1131 out:
1132         spin_unlock(&inode_lock);
1133 }
1134 EXPORT_SYMBOL(__mark_inode_dirty);
1135
1136 /*
1137  * Write out a superblock's list of dirty inodes.  A wait will be performed
1138  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1139  *
1140  * If older_than_this is non-NULL, then only write out inodes which
1141  * had their first dirtying at a time earlier than *older_than_this.
1142  *
1143  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1144  * This function assumes that the blockdev superblock's inodes are backed by
1145  * a variety of queues, so all inodes are searched.  For other superblocks,
1146  * assume that all inodes are backed by the same queue.
1147  *
1148  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1149  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1150  * on the writer throttling path, and we get decent balancing between many
1151  * throttled threads: we don't want them all piling up on inode_sync_wait.
1152  */
1153 static void wait_sb_inodes(struct super_block *sb)
1154 {
1155         struct inode *inode, *old_inode = NULL;
1156
1157         /*
1158          * We need to be protected against the filesystem going from
1159          * r/o to r/w or vice versa.
1160          */
1161         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1162
1163         spin_lock(&inode_lock);
1164
1165         /*
1166          * Data integrity sync. Must wait for all pages under writeback,
1167          * because there may have been pages dirtied before our sync
1168          * call, but which had writeout started before we write it out.
1169          * In which case, the inode may not be on the dirty list, but
1170          * we still have to wait for that writeout.
1171          */
1172         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1173                 struct address_space *mapping;
1174
1175                 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1176                         continue;
1177                 mapping = inode->i_mapping;
1178                 if (mapping->nrpages == 0)
1179                         continue;
1180                 __iget(inode);
1181                 spin_unlock(&inode_lock);
1182                 /*
1183                  * We hold a reference to 'inode' so it couldn't have
1184                  * been removed from s_inodes list while we dropped the
1185                  * inode_lock.  We cannot iput the inode now as we can
1186                  * be holding the last reference and we cannot iput it
1187                  * under inode_lock. So we keep the reference and iput
1188                  * it later.
1189                  */
1190                 iput(old_inode);
1191                 old_inode = inode;
1192
1193                 filemap_fdatawait(mapping);
1194
1195                 cond_resched();
1196
1197                 spin_lock(&inode_lock);
1198         }
1199         spin_unlock(&inode_lock);
1200         iput(old_inode);
1201 }
1202
1203 /**
1204  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1205  * @sb: the superblock
1206  *
1207  * Start writeback on some inodes on this super_block. No guarantees are made
1208  * on how many (if any) will be written, and this function does not wait
1209  * for IO completion of submitted IO. The number of pages submitted is
1210  * returned.
1211  */
1212 void writeback_inodes_sb(struct super_block *sb)
1213 {
1214         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1215         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1216         long nr_to_write;
1217
1218         nr_to_write = nr_dirty + nr_unstable +
1219                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1220
1221         bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
1222 }
1223 EXPORT_SYMBOL(writeback_inodes_sb);
1224
1225 /**
1226  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1227  * @sb: the superblock
1228  *
1229  * Invoke writeback_inodes_sb if no writeback is currently underway.
1230  * Returns 1 if writeback was started, 0 if not.
1231  */
1232 int writeback_inodes_sb_if_idle(struct super_block *sb)
1233 {
1234         if (!writeback_in_progress(sb->s_bdi)) {
1235                 writeback_inodes_sb(sb);
1236                 return 1;
1237         } else
1238                 return 0;
1239 }
1240 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1241
1242 /**
1243  * sync_inodes_sb       -       sync sb inode pages
1244  * @sb: the superblock
1245  *
1246  * This function writes and waits on any dirty inode belonging to this
1247  * super_block. The number of pages synced is returned.
1248  */
1249 void sync_inodes_sb(struct super_block *sb)
1250 {
1251         bdi_sync_writeback(sb->s_bdi, sb);
1252         wait_sb_inodes(sb);
1253 }
1254 EXPORT_SYMBOL(sync_inodes_sb);
1255
1256 /**
1257  * write_inode_now      -       write an inode to disk
1258  * @inode: inode to write to disk
1259  * @sync: whether the write should be synchronous or not
1260  *
1261  * This function commits an inode to disk immediately if it is dirty. This is
1262  * primarily needed by knfsd.
1263  *
1264  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1265  */
1266 int write_inode_now(struct inode *inode, int sync)
1267 {
1268         int ret;
1269         struct writeback_control wbc = {
1270                 .nr_to_write = LONG_MAX,
1271                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1272                 .range_start = 0,
1273                 .range_end = LLONG_MAX,
1274         };
1275
1276         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1277                 wbc.nr_to_write = 0;
1278
1279         might_sleep();
1280         spin_lock(&inode_lock);
1281         ret = writeback_single_inode(inode, &wbc);
1282         spin_unlock(&inode_lock);
1283         if (sync)
1284                 inode_sync_wait(inode);
1285         return ret;
1286 }
1287 EXPORT_SYMBOL(write_inode_now);
1288
1289 /**
1290  * sync_inode - write an inode and its pages to disk.
1291  * @inode: the inode to sync
1292  * @wbc: controls the writeback mode
1293  *
1294  * sync_inode() will write an inode and its pages to disk.  It will also
1295  * correctly update the inode on its superblock's dirty inode lists and will
1296  * update inode->i_state.
1297  *
1298  * The caller must have a ref on the inode.
1299  */
1300 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1301 {
1302         int ret;
1303
1304         spin_lock(&inode_lock);
1305         ret = writeback_single_inode(inode, wbc);
1306         spin_unlock(&inode_lock);
1307         return ret;
1308 }
1309 EXPORT_SYMBOL(sync_inode);