]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/jbd/journal.c
ARM: delete struct sys_timer
[karo-tx-linux.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/page.h>
46
47 EXPORT_SYMBOL(journal_start);
48 EXPORT_SYMBOL(journal_restart);
49 EXPORT_SYMBOL(journal_extend);
50 EXPORT_SYMBOL(journal_stop);
51 EXPORT_SYMBOL(journal_lock_updates);
52 EXPORT_SYMBOL(journal_unlock_updates);
53 EXPORT_SYMBOL(journal_get_write_access);
54 EXPORT_SYMBOL(journal_get_create_access);
55 EXPORT_SYMBOL(journal_get_undo_access);
56 EXPORT_SYMBOL(journal_dirty_data);
57 EXPORT_SYMBOL(journal_dirty_metadata);
58 EXPORT_SYMBOL(journal_release_buffer);
59 EXPORT_SYMBOL(journal_forget);
60 #if 0
61 EXPORT_SYMBOL(journal_sync_buffer);
62 #endif
63 EXPORT_SYMBOL(journal_flush);
64 EXPORT_SYMBOL(journal_revoke);
65
66 EXPORT_SYMBOL(journal_init_dev);
67 EXPORT_SYMBOL(journal_init_inode);
68 EXPORT_SYMBOL(journal_update_format);
69 EXPORT_SYMBOL(journal_check_used_features);
70 EXPORT_SYMBOL(journal_check_available_features);
71 EXPORT_SYMBOL(journal_set_features);
72 EXPORT_SYMBOL(journal_create);
73 EXPORT_SYMBOL(journal_load);
74 EXPORT_SYMBOL(journal_destroy);
75 EXPORT_SYMBOL(journal_abort);
76 EXPORT_SYMBOL(journal_errno);
77 EXPORT_SYMBOL(journal_ack_err);
78 EXPORT_SYMBOL(journal_clear_err);
79 EXPORT_SYMBOL(log_wait_commit);
80 EXPORT_SYMBOL(log_start_commit);
81 EXPORT_SYMBOL(journal_start_commit);
82 EXPORT_SYMBOL(journal_force_commit_nested);
83 EXPORT_SYMBOL(journal_wipe);
84 EXPORT_SYMBOL(journal_blocks_per_page);
85 EXPORT_SYMBOL(journal_invalidatepage);
86 EXPORT_SYMBOL(journal_try_to_free_buffers);
87 EXPORT_SYMBOL(journal_force_commit);
88
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 static const char *journal_dev_name(journal_t *journal, char *buffer);
92
93 /*
94  * Helper function used to manage commit timeouts
95  */
96
97 static void commit_timeout(unsigned long __data)
98 {
99         struct task_struct * p = (struct task_struct *) __data;
100
101         wake_up_process(p);
102 }
103
104 /*
105  * kjournald: The main thread function used to manage a logging device
106  * journal.
107  *
108  * This kernel thread is responsible for two things:
109  *
110  * 1) COMMIT:  Every so often we need to commit the current state of the
111  *    filesystem to disk.  The journal thread is responsible for writing
112  *    all of the metadata buffers to disk.
113  *
114  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115  *    of the data in that part of the log has been rewritten elsewhere on
116  *    the disk.  Flushing these old buffers to reclaim space in the log is
117  *    known as checkpointing, and this thread is responsible for that job.
118  */
119
120 static int kjournald(void *arg)
121 {
122         journal_t *journal = arg;
123         transaction_t *transaction;
124
125         /*
126          * Set up an interval timer which can be used to trigger a commit wakeup
127          * after the commit interval expires
128          */
129         setup_timer(&journal->j_commit_timer, commit_timeout,
130                         (unsigned long)current);
131
132         set_freezable();
133
134         /* Record that the journal thread is running */
135         journal->j_task = current;
136         wake_up(&journal->j_wait_done_commit);
137
138         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
139                         journal->j_commit_interval / HZ);
140
141         /*
142          * And now, wait forever for commit wakeup events.
143          */
144         spin_lock(&journal->j_state_lock);
145
146 loop:
147         if (journal->j_flags & JFS_UNMOUNT)
148                 goto end_loop;
149
150         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
151                 journal->j_commit_sequence, journal->j_commit_request);
152
153         if (journal->j_commit_sequence != journal->j_commit_request) {
154                 jbd_debug(1, "OK, requests differ\n");
155                 spin_unlock(&journal->j_state_lock);
156                 del_timer_sync(&journal->j_commit_timer);
157                 journal_commit_transaction(journal);
158                 spin_lock(&journal->j_state_lock);
159                 goto loop;
160         }
161
162         wake_up(&journal->j_wait_done_commit);
163         if (freezing(current)) {
164                 /*
165                  * The simpler the better. Flushing journal isn't a
166                  * good idea, because that depends on threads that may
167                  * be already stopped.
168                  */
169                 jbd_debug(1, "Now suspending kjournald\n");
170                 spin_unlock(&journal->j_state_lock);
171                 try_to_freeze();
172                 spin_lock(&journal->j_state_lock);
173         } else {
174                 /*
175                  * We assume on resume that commits are already there,
176                  * so we don't sleep
177                  */
178                 DEFINE_WAIT(wait);
179                 int should_sleep = 1;
180
181                 prepare_to_wait(&journal->j_wait_commit, &wait,
182                                 TASK_INTERRUPTIBLE);
183                 if (journal->j_commit_sequence != journal->j_commit_request)
184                         should_sleep = 0;
185                 transaction = journal->j_running_transaction;
186                 if (transaction && time_after_eq(jiffies,
187                                                 transaction->t_expires))
188                         should_sleep = 0;
189                 if (journal->j_flags & JFS_UNMOUNT)
190                         should_sleep = 0;
191                 if (should_sleep) {
192                         spin_unlock(&journal->j_state_lock);
193                         schedule();
194                         spin_lock(&journal->j_state_lock);
195                 }
196                 finish_wait(&journal->j_wait_commit, &wait);
197         }
198
199         jbd_debug(1, "kjournald wakes\n");
200
201         /*
202          * Were we woken up by a commit wakeup event?
203          */
204         transaction = journal->j_running_transaction;
205         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
206                 journal->j_commit_request = transaction->t_tid;
207                 jbd_debug(1, "woke because of timeout\n");
208         }
209         goto loop;
210
211 end_loop:
212         spin_unlock(&journal->j_state_lock);
213         del_timer_sync(&journal->j_commit_timer);
214         journal->j_task = NULL;
215         wake_up(&journal->j_wait_done_commit);
216         jbd_debug(1, "Journal thread exiting.\n");
217         return 0;
218 }
219
220 static int journal_start_thread(journal_t *journal)
221 {
222         struct task_struct *t;
223
224         t = kthread_run(kjournald, journal, "kjournald");
225         if (IS_ERR(t))
226                 return PTR_ERR(t);
227
228         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
229         return 0;
230 }
231
232 static void journal_kill_thread(journal_t *journal)
233 {
234         spin_lock(&journal->j_state_lock);
235         journal->j_flags |= JFS_UNMOUNT;
236
237         while (journal->j_task) {
238                 wake_up(&journal->j_wait_commit);
239                 spin_unlock(&journal->j_state_lock);
240                 wait_event(journal->j_wait_done_commit,
241                                 journal->j_task == NULL);
242                 spin_lock(&journal->j_state_lock);
243         }
244         spin_unlock(&journal->j_state_lock);
245 }
246
247 /*
248  * journal_write_metadata_buffer: write a metadata buffer to the journal.
249  *
250  * Writes a metadata buffer to a given disk block.  The actual IO is not
251  * performed but a new buffer_head is constructed which labels the data
252  * to be written with the correct destination disk block.
253  *
254  * Any magic-number escaping which needs to be done will cause a
255  * copy-out here.  If the buffer happens to start with the
256  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
257  * magic number is only written to the log for descripter blocks.  In
258  * this case, we copy the data and replace the first word with 0, and we
259  * return a result code which indicates that this buffer needs to be
260  * marked as an escaped buffer in the corresponding log descriptor
261  * block.  The missing word can then be restored when the block is read
262  * during recovery.
263  *
264  * If the source buffer has already been modified by a new transaction
265  * since we took the last commit snapshot, we use the frozen copy of
266  * that data for IO.  If we end up using the existing buffer_head's data
267  * for the write, then we *have* to lock the buffer to prevent anyone
268  * else from using and possibly modifying it while the IO is in
269  * progress.
270  *
271  * The function returns a pointer to the buffer_heads to be used for IO.
272  *
273  * We assume that the journal has already been locked in this function.
274  *
275  * Return value:
276  *  <0: Error
277  * >=0: Finished OK
278  *
279  * On success:
280  * Bit 0 set == escape performed on the data
281  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
282  */
283
284 int journal_write_metadata_buffer(transaction_t *transaction,
285                                   struct journal_head  *jh_in,
286                                   struct journal_head **jh_out,
287                                   unsigned int blocknr)
288 {
289         int need_copy_out = 0;
290         int done_copy_out = 0;
291         int do_escape = 0;
292         char *mapped_data;
293         struct buffer_head *new_bh;
294         struct journal_head *new_jh;
295         struct page *new_page;
296         unsigned int new_offset;
297         struct buffer_head *bh_in = jh2bh(jh_in);
298         journal_t *journal = transaction->t_journal;
299
300         /*
301          * The buffer really shouldn't be locked: only the current committing
302          * transaction is allowed to write it, so nobody else is allowed
303          * to do any IO.
304          *
305          * akpm: except if we're journalling data, and write() output is
306          * also part of a shared mapping, and another thread has
307          * decided to launch a writepage() against this buffer.
308          */
309         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
310
311         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
312         /* keep subsequent assertions sane */
313         new_bh->b_state = 0;
314         init_buffer(new_bh, NULL, NULL);
315         atomic_set(&new_bh->b_count, 1);
316         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
317
318         /*
319          * If a new transaction has already done a buffer copy-out, then
320          * we use that version of the data for the commit.
321          */
322         jbd_lock_bh_state(bh_in);
323 repeat:
324         if (jh_in->b_frozen_data) {
325                 done_copy_out = 1;
326                 new_page = virt_to_page(jh_in->b_frozen_data);
327                 new_offset = offset_in_page(jh_in->b_frozen_data);
328         } else {
329                 new_page = jh2bh(jh_in)->b_page;
330                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
331         }
332
333         mapped_data = kmap_atomic(new_page);
334         /*
335          * Check for escaping
336          */
337         if (*((__be32 *)(mapped_data + new_offset)) ==
338                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
339                 need_copy_out = 1;
340                 do_escape = 1;
341         }
342         kunmap_atomic(mapped_data);
343
344         /*
345          * Do we need to do a data copy?
346          */
347         if (need_copy_out && !done_copy_out) {
348                 char *tmp;
349
350                 jbd_unlock_bh_state(bh_in);
351                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
352                 jbd_lock_bh_state(bh_in);
353                 if (jh_in->b_frozen_data) {
354                         jbd_free(tmp, bh_in->b_size);
355                         goto repeat;
356                 }
357
358                 jh_in->b_frozen_data = tmp;
359                 mapped_data = kmap_atomic(new_page);
360                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
361                 kunmap_atomic(mapped_data);
362
363                 new_page = virt_to_page(tmp);
364                 new_offset = offset_in_page(tmp);
365                 done_copy_out = 1;
366         }
367
368         /*
369          * Did we need to do an escaping?  Now we've done all the
370          * copying, we can finally do so.
371          */
372         if (do_escape) {
373                 mapped_data = kmap_atomic(new_page);
374                 *((unsigned int *)(mapped_data + new_offset)) = 0;
375                 kunmap_atomic(mapped_data);
376         }
377
378         set_bh_page(new_bh, new_page, new_offset);
379         new_jh->b_transaction = NULL;
380         new_bh->b_size = jh2bh(jh_in)->b_size;
381         new_bh->b_bdev = transaction->t_journal->j_dev;
382         new_bh->b_blocknr = blocknr;
383         set_buffer_mapped(new_bh);
384         set_buffer_dirty(new_bh);
385
386         *jh_out = new_jh;
387
388         /*
389          * The to-be-written buffer needs to get moved to the io queue,
390          * and the original buffer whose contents we are shadowing or
391          * copying is moved to the transaction's shadow queue.
392          */
393         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
394         spin_lock(&journal->j_list_lock);
395         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
396         spin_unlock(&journal->j_list_lock);
397         jbd_unlock_bh_state(bh_in);
398
399         JBUFFER_TRACE(new_jh, "file as BJ_IO");
400         journal_file_buffer(new_jh, transaction, BJ_IO);
401
402         return do_escape | (done_copy_out << 1);
403 }
404
405 /*
406  * Allocation code for the journal file.  Manage the space left in the
407  * journal, so that we can begin checkpointing when appropriate.
408  */
409
410 /*
411  * __log_space_left: Return the number of free blocks left in the journal.
412  *
413  * Called with the journal already locked.
414  *
415  * Called under j_state_lock
416  */
417
418 int __log_space_left(journal_t *journal)
419 {
420         int left = journal->j_free;
421
422         assert_spin_locked(&journal->j_state_lock);
423
424         /*
425          * Be pessimistic here about the number of those free blocks which
426          * might be required for log descriptor control blocks.
427          */
428
429 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
430
431         left -= MIN_LOG_RESERVED_BLOCKS;
432
433         if (left <= 0)
434                 return 0;
435         left -= (left >> 3);
436         return left;
437 }
438
439 /*
440  * Called under j_state_lock.  Returns true if a transaction commit was started.
441  */
442 int __log_start_commit(journal_t *journal, tid_t target)
443 {
444         /*
445          * The only transaction we can possibly wait upon is the
446          * currently running transaction (if it exists).  Otherwise,
447          * the target tid must be an old one.
448          */
449         if (journal->j_running_transaction &&
450             journal->j_running_transaction->t_tid == target) {
451                 /*
452                  * We want a new commit: OK, mark the request and wakeup the
453                  * commit thread.  We do _not_ do the commit ourselves.
454                  */
455
456                 journal->j_commit_request = target;
457                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
458                           journal->j_commit_request,
459                           journal->j_commit_sequence);
460                 wake_up(&journal->j_wait_commit);
461                 return 1;
462         } else if (!tid_geq(journal->j_commit_request, target))
463                 /* This should never happen, but if it does, preserve
464                    the evidence before kjournald goes into a loop and
465                    increments j_commit_sequence beyond all recognition. */
466                 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
467                     journal->j_commit_request, journal->j_commit_sequence,
468                     target, journal->j_running_transaction ?
469                     journal->j_running_transaction->t_tid : 0);
470         return 0;
471 }
472
473 int log_start_commit(journal_t *journal, tid_t tid)
474 {
475         int ret;
476
477         spin_lock(&journal->j_state_lock);
478         ret = __log_start_commit(journal, tid);
479         spin_unlock(&journal->j_state_lock);
480         return ret;
481 }
482
483 /*
484  * Force and wait upon a commit if the calling process is not within
485  * transaction.  This is used for forcing out undo-protected data which contains
486  * bitmaps, when the fs is running out of space.
487  *
488  * We can only force the running transaction if we don't have an active handle;
489  * otherwise, we will deadlock.
490  *
491  * Returns true if a transaction was started.
492  */
493 int journal_force_commit_nested(journal_t *journal)
494 {
495         transaction_t *transaction = NULL;
496         tid_t tid;
497
498         spin_lock(&journal->j_state_lock);
499         if (journal->j_running_transaction && !current->journal_info) {
500                 transaction = journal->j_running_transaction;
501                 __log_start_commit(journal, transaction->t_tid);
502         } else if (journal->j_committing_transaction)
503                 transaction = journal->j_committing_transaction;
504
505         if (!transaction) {
506                 spin_unlock(&journal->j_state_lock);
507                 return 0;       /* Nothing to retry */
508         }
509
510         tid = transaction->t_tid;
511         spin_unlock(&journal->j_state_lock);
512         log_wait_commit(journal, tid);
513         return 1;
514 }
515
516 /*
517  * Start a commit of the current running transaction (if any).  Returns true
518  * if a transaction is going to be committed (or is currently already
519  * committing), and fills its tid in at *ptid
520  */
521 int journal_start_commit(journal_t *journal, tid_t *ptid)
522 {
523         int ret = 0;
524
525         spin_lock(&journal->j_state_lock);
526         if (journal->j_running_transaction) {
527                 tid_t tid = journal->j_running_transaction->t_tid;
528
529                 __log_start_commit(journal, tid);
530                 /* There's a running transaction and we've just made sure
531                  * it's commit has been scheduled. */
532                 if (ptid)
533                         *ptid = tid;
534                 ret = 1;
535         } else if (journal->j_committing_transaction) {
536                 /*
537                  * If commit has been started, then we have to wait for
538                  * completion of that transaction.
539                  */
540                 if (ptid)
541                         *ptid = journal->j_committing_transaction->t_tid;
542                 ret = 1;
543         }
544         spin_unlock(&journal->j_state_lock);
545         return ret;
546 }
547
548 /*
549  * Wait for a specified commit to complete.
550  * The caller may not hold the journal lock.
551  */
552 int log_wait_commit(journal_t *journal, tid_t tid)
553 {
554         int err = 0;
555
556 #ifdef CONFIG_JBD_DEBUG
557         spin_lock(&journal->j_state_lock);
558         if (!tid_geq(journal->j_commit_request, tid)) {
559                 printk(KERN_EMERG
560                        "%s: error: j_commit_request=%d, tid=%d\n",
561                        __func__, journal->j_commit_request, tid);
562         }
563         spin_unlock(&journal->j_state_lock);
564 #endif
565         spin_lock(&journal->j_state_lock);
566         if (!tid_geq(journal->j_commit_waited, tid))
567                 journal->j_commit_waited = tid;
568         while (tid_gt(tid, journal->j_commit_sequence)) {
569                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
570                                   tid, journal->j_commit_sequence);
571                 wake_up(&journal->j_wait_commit);
572                 spin_unlock(&journal->j_state_lock);
573                 wait_event(journal->j_wait_done_commit,
574                                 !tid_gt(tid, journal->j_commit_sequence));
575                 spin_lock(&journal->j_state_lock);
576         }
577         spin_unlock(&journal->j_state_lock);
578
579         if (unlikely(is_journal_aborted(journal))) {
580                 printk(KERN_EMERG "journal commit I/O error\n");
581                 err = -EIO;
582         }
583         return err;
584 }
585
586 /*
587  * Return 1 if a given transaction has not yet sent barrier request
588  * connected with a transaction commit. If 0 is returned, transaction
589  * may or may not have sent the barrier. Used to avoid sending barrier
590  * twice in common cases.
591  */
592 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
593 {
594         int ret = 0;
595         transaction_t *commit_trans;
596
597         if (!(journal->j_flags & JFS_BARRIER))
598                 return 0;
599         spin_lock(&journal->j_state_lock);
600         /* Transaction already committed? */
601         if (tid_geq(journal->j_commit_sequence, tid))
602                 goto out;
603         /*
604          * Transaction is being committed and we already proceeded to
605          * writing commit record?
606          */
607         commit_trans = journal->j_committing_transaction;
608         if (commit_trans && commit_trans->t_tid == tid &&
609             commit_trans->t_state >= T_COMMIT_RECORD)
610                 goto out;
611         ret = 1;
612 out:
613         spin_unlock(&journal->j_state_lock);
614         return ret;
615 }
616 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
617
618 /*
619  * Log buffer allocation routines:
620  */
621
622 int journal_next_log_block(journal_t *journal, unsigned int *retp)
623 {
624         unsigned int blocknr;
625
626         spin_lock(&journal->j_state_lock);
627         J_ASSERT(journal->j_free > 1);
628
629         blocknr = journal->j_head;
630         journal->j_head++;
631         journal->j_free--;
632         if (journal->j_head == journal->j_last)
633                 journal->j_head = journal->j_first;
634         spin_unlock(&journal->j_state_lock);
635         return journal_bmap(journal, blocknr, retp);
636 }
637
638 /*
639  * Conversion of logical to physical block numbers for the journal
640  *
641  * On external journals the journal blocks are identity-mapped, so
642  * this is a no-op.  If needed, we can use j_blk_offset - everything is
643  * ready.
644  */
645 int journal_bmap(journal_t *journal, unsigned int blocknr,
646                  unsigned int *retp)
647 {
648         int err = 0;
649         unsigned int ret;
650
651         if (journal->j_inode) {
652                 ret = bmap(journal->j_inode, blocknr);
653                 if (ret)
654                         *retp = ret;
655                 else {
656                         char b[BDEVNAME_SIZE];
657
658                         printk(KERN_ALERT "%s: journal block not found "
659                                         "at offset %u on %s\n",
660                                 __func__,
661                                 blocknr,
662                                 bdevname(journal->j_dev, b));
663                         err = -EIO;
664                         __journal_abort_soft(journal, err);
665                 }
666         } else {
667                 *retp = blocknr; /* +journal->j_blk_offset */
668         }
669         return err;
670 }
671
672 /*
673  * We play buffer_head aliasing tricks to write data/metadata blocks to
674  * the journal without copying their contents, but for journal
675  * descriptor blocks we do need to generate bona fide buffers.
676  *
677  * After the caller of journal_get_descriptor_buffer() has finished modifying
678  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
679  * But we don't bother doing that, so there will be coherency problems with
680  * mmaps of blockdevs which hold live JBD-controlled filesystems.
681  */
682 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
683 {
684         struct buffer_head *bh;
685         unsigned int blocknr;
686         int err;
687
688         err = journal_next_log_block(journal, &blocknr);
689
690         if (err)
691                 return NULL;
692
693         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
694         if (!bh)
695                 return NULL;
696         lock_buffer(bh);
697         memset(bh->b_data, 0, journal->j_blocksize);
698         set_buffer_uptodate(bh);
699         unlock_buffer(bh);
700         BUFFER_TRACE(bh, "return this buffer");
701         return journal_add_journal_head(bh);
702 }
703
704 /*
705  * Management for journal control blocks: functions to create and
706  * destroy journal_t structures, and to initialise and read existing
707  * journal blocks from disk.  */
708
709 /* First: create and setup a journal_t object in memory.  We initialise
710  * very few fields yet: that has to wait until we have created the
711  * journal structures from from scratch, or loaded them from disk. */
712
713 static journal_t * journal_init_common (void)
714 {
715         journal_t *journal;
716         int err;
717
718         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
719         if (!journal)
720                 goto fail;
721
722         init_waitqueue_head(&journal->j_wait_transaction_locked);
723         init_waitqueue_head(&journal->j_wait_logspace);
724         init_waitqueue_head(&journal->j_wait_done_commit);
725         init_waitqueue_head(&journal->j_wait_checkpoint);
726         init_waitqueue_head(&journal->j_wait_commit);
727         init_waitqueue_head(&journal->j_wait_updates);
728         mutex_init(&journal->j_checkpoint_mutex);
729         spin_lock_init(&journal->j_revoke_lock);
730         spin_lock_init(&journal->j_list_lock);
731         spin_lock_init(&journal->j_state_lock);
732
733         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
734
735         /* The journal is marked for error until we succeed with recovery! */
736         journal->j_flags = JFS_ABORT;
737
738         /* Set up a default-sized revoke table for the new mount. */
739         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
740         if (err) {
741                 kfree(journal);
742                 goto fail;
743         }
744         return journal;
745 fail:
746         return NULL;
747 }
748
749 /* journal_init_dev and journal_init_inode:
750  *
751  * Create a journal structure assigned some fixed set of disk blocks to
752  * the journal.  We don't actually touch those disk blocks yet, but we
753  * need to set up all of the mapping information to tell the journaling
754  * system where the journal blocks are.
755  *
756  */
757
758 /**
759  *  journal_t * journal_init_dev() - creates and initialises a journal structure
760  *  @bdev: Block device on which to create the journal
761  *  @fs_dev: Device which hold journalled filesystem for this journal.
762  *  @start: Block nr Start of journal.
763  *  @len:  Length of the journal in blocks.
764  *  @blocksize: blocksize of journalling device
765  *
766  *  Returns: a newly created journal_t *
767  *
768  *  journal_init_dev creates a journal which maps a fixed contiguous
769  *  range of blocks on an arbitrary block device.
770  *
771  */
772 journal_t * journal_init_dev(struct block_device *bdev,
773                         struct block_device *fs_dev,
774                         int start, int len, int blocksize)
775 {
776         journal_t *journal = journal_init_common();
777         struct buffer_head *bh;
778         int n;
779
780         if (!journal)
781                 return NULL;
782
783         /* journal descriptor can store up to n blocks -bzzz */
784         journal->j_blocksize = blocksize;
785         n = journal->j_blocksize / sizeof(journal_block_tag_t);
786         journal->j_wbufsize = n;
787         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
788         if (!journal->j_wbuf) {
789                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
790                         __func__);
791                 goto out_err;
792         }
793         journal->j_dev = bdev;
794         journal->j_fs_dev = fs_dev;
795         journal->j_blk_offset = start;
796         journal->j_maxlen = len;
797
798         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
799         if (!bh) {
800                 printk(KERN_ERR
801                        "%s: Cannot get buffer for journal superblock\n",
802                        __func__);
803                 goto out_err;
804         }
805         journal->j_sb_buffer = bh;
806         journal->j_superblock = (journal_superblock_t *)bh->b_data;
807
808         return journal;
809 out_err:
810         kfree(journal->j_wbuf);
811         kfree(journal);
812         return NULL;
813 }
814
815 /**
816  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
817  *  @inode: An inode to create the journal in
818  *
819  * journal_init_inode creates a journal which maps an on-disk inode as
820  * the journal.  The inode must exist already, must support bmap() and
821  * must have all data blocks preallocated.
822  */
823 journal_t * journal_init_inode (struct inode *inode)
824 {
825         struct buffer_head *bh;
826         journal_t *journal = journal_init_common();
827         int err;
828         int n;
829         unsigned int blocknr;
830
831         if (!journal)
832                 return NULL;
833
834         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
835         journal->j_inode = inode;
836         jbd_debug(1,
837                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
838                   journal, inode->i_sb->s_id, inode->i_ino,
839                   (long long) inode->i_size,
840                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
841
842         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
843         journal->j_blocksize = inode->i_sb->s_blocksize;
844
845         /* journal descriptor can store up to n blocks -bzzz */
846         n = journal->j_blocksize / sizeof(journal_block_tag_t);
847         journal->j_wbufsize = n;
848         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
849         if (!journal->j_wbuf) {
850                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
851                         __func__);
852                 goto out_err;
853         }
854
855         err = journal_bmap(journal, 0, &blocknr);
856         /* If that failed, give up */
857         if (err) {
858                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
859                        __func__);
860                 goto out_err;
861         }
862
863         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
864         if (!bh) {
865                 printk(KERN_ERR
866                        "%s: Cannot get buffer for journal superblock\n",
867                        __func__);
868                 goto out_err;
869         }
870         journal->j_sb_buffer = bh;
871         journal->j_superblock = (journal_superblock_t *)bh->b_data;
872
873         return journal;
874 out_err:
875         kfree(journal->j_wbuf);
876         kfree(journal);
877         return NULL;
878 }
879
880 /*
881  * If the journal init or create aborts, we need to mark the journal
882  * superblock as being NULL to prevent the journal destroy from writing
883  * back a bogus superblock.
884  */
885 static void journal_fail_superblock (journal_t *journal)
886 {
887         struct buffer_head *bh = journal->j_sb_buffer;
888         brelse(bh);
889         journal->j_sb_buffer = NULL;
890 }
891
892 /*
893  * Given a journal_t structure, initialise the various fields for
894  * startup of a new journaling session.  We use this both when creating
895  * a journal, and after recovering an old journal to reset it for
896  * subsequent use.
897  */
898
899 static int journal_reset(journal_t *journal)
900 {
901         journal_superblock_t *sb = journal->j_superblock;
902         unsigned int first, last;
903
904         first = be32_to_cpu(sb->s_first);
905         last = be32_to_cpu(sb->s_maxlen);
906         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
907                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
908                        first, last);
909                 journal_fail_superblock(journal);
910                 return -EINVAL;
911         }
912
913         journal->j_first = first;
914         journal->j_last = last;
915
916         journal->j_head = first;
917         journal->j_tail = first;
918         journal->j_free = last - first;
919
920         journal->j_tail_sequence = journal->j_transaction_sequence;
921         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
922         journal->j_commit_request = journal->j_commit_sequence;
923
924         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
925
926         /*
927          * As a special case, if the on-disk copy is already marked as needing
928          * no recovery (s_start == 0), then we can safely defer the superblock
929          * update until the next commit by setting JFS_FLUSHED.  This avoids
930          * attempting a write to a potential-readonly device.
931          */
932         if (sb->s_start == 0) {
933                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
934                         "(start %u, seq %d, errno %d)\n",
935                         journal->j_tail, journal->j_tail_sequence,
936                         journal->j_errno);
937                 journal->j_flags |= JFS_FLUSHED;
938         } else {
939                 /* Lock here to make assertions happy... */
940                 mutex_lock(&journal->j_checkpoint_mutex);
941                 /*
942                  * Update log tail information. We use WRITE_FUA since new
943                  * transaction will start reusing journal space and so we
944                  * must make sure information about current log tail is on
945                  * disk before that.
946                  */
947                 journal_update_sb_log_tail(journal,
948                                            journal->j_tail_sequence,
949                                            journal->j_tail,
950                                            WRITE_FUA);
951                 mutex_unlock(&journal->j_checkpoint_mutex);
952         }
953         return journal_start_thread(journal);
954 }
955
956 /**
957  * int journal_create() - Initialise the new journal file
958  * @journal: Journal to create. This structure must have been initialised
959  *
960  * Given a journal_t structure which tells us which disk blocks we can
961  * use, create a new journal superblock and initialise all of the
962  * journal fields from scratch.
963  **/
964 int journal_create(journal_t *journal)
965 {
966         unsigned int blocknr;
967         struct buffer_head *bh;
968         journal_superblock_t *sb;
969         int i, err;
970
971         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
972                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
973                         journal->j_maxlen);
974                 journal_fail_superblock(journal);
975                 return -EINVAL;
976         }
977
978         if (journal->j_inode == NULL) {
979                 /*
980                  * We don't know what block to start at!
981                  */
982                 printk(KERN_EMERG
983                        "%s: creation of journal on external device!\n",
984                        __func__);
985                 BUG();
986         }
987
988         /* Zero out the entire journal on disk.  We cannot afford to
989            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
990         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
991         for (i = 0; i < journal->j_maxlen; i++) {
992                 err = journal_bmap(journal, i, &blocknr);
993                 if (err)
994                         return err;
995                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
996                 if (unlikely(!bh))
997                         return -ENOMEM;
998                 lock_buffer(bh);
999                 memset (bh->b_data, 0, journal->j_blocksize);
1000                 BUFFER_TRACE(bh, "marking dirty");
1001                 mark_buffer_dirty(bh);
1002                 BUFFER_TRACE(bh, "marking uptodate");
1003                 set_buffer_uptodate(bh);
1004                 unlock_buffer(bh);
1005                 __brelse(bh);
1006         }
1007
1008         sync_blockdev(journal->j_dev);
1009         jbd_debug(1, "JBD: journal cleared.\n");
1010
1011         /* OK, fill in the initial static fields in the new superblock */
1012         sb = journal->j_superblock;
1013
1014         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
1015         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1016
1017         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
1018         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
1019         sb->s_first     = cpu_to_be32(1);
1020
1021         journal->j_transaction_sequence = 1;
1022
1023         journal->j_flags &= ~JFS_ABORT;
1024         journal->j_format_version = 2;
1025
1026         return journal_reset(journal);
1027 }
1028
1029 static void journal_write_superblock(journal_t *journal, int write_op)
1030 {
1031         struct buffer_head *bh = journal->j_sb_buffer;
1032         int ret;
1033
1034         trace_journal_write_superblock(journal, write_op);
1035         if (!(journal->j_flags & JFS_BARRIER))
1036                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1037         lock_buffer(bh);
1038         if (buffer_write_io_error(bh)) {
1039                 char b[BDEVNAME_SIZE];
1040                 /*
1041                  * Oh, dear.  A previous attempt to write the journal
1042                  * superblock failed.  This could happen because the
1043                  * USB device was yanked out.  Or it could happen to
1044                  * be a transient write error and maybe the block will
1045                  * be remapped.  Nothing we can do but to retry the
1046                  * write and hope for the best.
1047                  */
1048                 printk(KERN_ERR "JBD: previous I/O error detected "
1049                        "for journal superblock update for %s.\n",
1050                        journal_dev_name(journal, b));
1051                 clear_buffer_write_io_error(bh);
1052                 set_buffer_uptodate(bh);
1053         }
1054
1055         get_bh(bh);
1056         bh->b_end_io = end_buffer_write_sync;
1057         ret = submit_bh(write_op, bh);
1058         wait_on_buffer(bh);
1059         if (buffer_write_io_error(bh)) {
1060                 clear_buffer_write_io_error(bh);
1061                 set_buffer_uptodate(bh);
1062                 ret = -EIO;
1063         }
1064         if (ret) {
1065                 char b[BDEVNAME_SIZE];
1066                 printk(KERN_ERR "JBD: Error %d detected "
1067                        "when updating journal superblock for %s.\n",
1068                        ret, journal_dev_name(journal, b));
1069         }
1070 }
1071
1072 /**
1073  * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1074  * @journal: The journal to update.
1075  * @tail_tid: TID of the new transaction at the tail of the log
1076  * @tail_block: The first block of the transaction at the tail of the log
1077  * @write_op: With which operation should we write the journal sb
1078  *
1079  * Update a journal's superblock information about log tail and write it to
1080  * disk, waiting for the IO to complete.
1081  */
1082 void journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1083                                 unsigned int tail_block, int write_op)
1084 {
1085         journal_superblock_t *sb = journal->j_superblock;
1086
1087         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1088         jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1089                   tail_block, tail_tid);
1090
1091         sb->s_sequence = cpu_to_be32(tail_tid);
1092         sb->s_start    = cpu_to_be32(tail_block);
1093
1094         journal_write_superblock(journal, write_op);
1095
1096         /* Log is no longer empty */
1097         spin_lock(&journal->j_state_lock);
1098         WARN_ON(!sb->s_sequence);
1099         journal->j_flags &= ~JFS_FLUSHED;
1100         spin_unlock(&journal->j_state_lock);
1101 }
1102
1103 /**
1104  * mark_journal_empty() - Mark on disk journal as empty.
1105  * @journal: The journal to update.
1106  *
1107  * Update a journal's dynamic superblock fields to show that journal is empty.
1108  * Write updated superblock to disk waiting for IO to complete.
1109  */
1110 static void mark_journal_empty(journal_t *journal)
1111 {
1112         journal_superblock_t *sb = journal->j_superblock;
1113
1114         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1115         spin_lock(&journal->j_state_lock);
1116         /* Is it already empty? */
1117         if (sb->s_start == 0) {
1118                 spin_unlock(&journal->j_state_lock);
1119                 return;
1120         }
1121         jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1122                   journal->j_tail_sequence);
1123
1124         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1125         sb->s_start    = cpu_to_be32(0);
1126         spin_unlock(&journal->j_state_lock);
1127
1128         journal_write_superblock(journal, WRITE_FUA);
1129
1130         spin_lock(&journal->j_state_lock);
1131         /* Log is empty */
1132         journal->j_flags |= JFS_FLUSHED;
1133         spin_unlock(&journal->j_state_lock);
1134 }
1135
1136 /**
1137  * journal_update_sb_errno() - Update error in the journal.
1138  * @journal: The journal to update.
1139  *
1140  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1141  * to complete.
1142  */
1143 static void journal_update_sb_errno(journal_t *journal)
1144 {
1145         journal_superblock_t *sb = journal->j_superblock;
1146
1147         spin_lock(&journal->j_state_lock);
1148         jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1149                   journal->j_errno);
1150         sb->s_errno = cpu_to_be32(journal->j_errno);
1151         spin_unlock(&journal->j_state_lock);
1152
1153         journal_write_superblock(journal, WRITE_SYNC);
1154 }
1155
1156 /*
1157  * Read the superblock for a given journal, performing initial
1158  * validation of the format.
1159  */
1160
1161 static int journal_get_superblock(journal_t *journal)
1162 {
1163         struct buffer_head *bh;
1164         journal_superblock_t *sb;
1165         int err = -EIO;
1166
1167         bh = journal->j_sb_buffer;
1168
1169         J_ASSERT(bh != NULL);
1170         if (!buffer_uptodate(bh)) {
1171                 ll_rw_block(READ, 1, &bh);
1172                 wait_on_buffer(bh);
1173                 if (!buffer_uptodate(bh)) {
1174                         printk (KERN_ERR
1175                                 "JBD: IO error reading journal superblock\n");
1176                         goto out;
1177                 }
1178         }
1179
1180         sb = journal->j_superblock;
1181
1182         err = -EINVAL;
1183
1184         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1185             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1186                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1187                 goto out;
1188         }
1189
1190         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1191         case JFS_SUPERBLOCK_V1:
1192                 journal->j_format_version = 1;
1193                 break;
1194         case JFS_SUPERBLOCK_V2:
1195                 journal->j_format_version = 2;
1196                 break;
1197         default:
1198                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1199                 goto out;
1200         }
1201
1202         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1203                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1204         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1205                 printk (KERN_WARNING "JBD: journal file too short\n");
1206                 goto out;
1207         }
1208
1209         if (be32_to_cpu(sb->s_first) == 0 ||
1210             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1211                 printk(KERN_WARNING
1212                         "JBD: Invalid start block of journal: %u\n",
1213                         be32_to_cpu(sb->s_first));
1214                 goto out;
1215         }
1216
1217         return 0;
1218
1219 out:
1220         journal_fail_superblock(journal);
1221         return err;
1222 }
1223
1224 /*
1225  * Load the on-disk journal superblock and read the key fields into the
1226  * journal_t.
1227  */
1228
1229 static int load_superblock(journal_t *journal)
1230 {
1231         int err;
1232         journal_superblock_t *sb;
1233
1234         err = journal_get_superblock(journal);
1235         if (err)
1236                 return err;
1237
1238         sb = journal->j_superblock;
1239
1240         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1241         journal->j_tail = be32_to_cpu(sb->s_start);
1242         journal->j_first = be32_to_cpu(sb->s_first);
1243         journal->j_last = be32_to_cpu(sb->s_maxlen);
1244         journal->j_errno = be32_to_cpu(sb->s_errno);
1245
1246         return 0;
1247 }
1248
1249
1250 /**
1251  * int journal_load() - Read journal from disk.
1252  * @journal: Journal to act on.
1253  *
1254  * Given a journal_t structure which tells us which disk blocks contain
1255  * a journal, read the journal from disk to initialise the in-memory
1256  * structures.
1257  */
1258 int journal_load(journal_t *journal)
1259 {
1260         int err;
1261         journal_superblock_t *sb;
1262
1263         err = load_superblock(journal);
1264         if (err)
1265                 return err;
1266
1267         sb = journal->j_superblock;
1268         /* If this is a V2 superblock, then we have to check the
1269          * features flags on it. */
1270
1271         if (journal->j_format_version >= 2) {
1272                 if ((sb->s_feature_ro_compat &
1273                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1274                     (sb->s_feature_incompat &
1275                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1276                         printk (KERN_WARNING
1277                                 "JBD: Unrecognised features on journal\n");
1278                         return -EINVAL;
1279                 }
1280         }
1281
1282         /* Let the recovery code check whether it needs to recover any
1283          * data from the journal. */
1284         if (journal_recover(journal))
1285                 goto recovery_error;
1286
1287         /* OK, we've finished with the dynamic journal bits:
1288          * reinitialise the dynamic contents of the superblock in memory
1289          * and reset them on disk. */
1290         if (journal_reset(journal))
1291                 goto recovery_error;
1292
1293         journal->j_flags &= ~JFS_ABORT;
1294         journal->j_flags |= JFS_LOADED;
1295         return 0;
1296
1297 recovery_error:
1298         printk (KERN_WARNING "JBD: recovery failed\n");
1299         return -EIO;
1300 }
1301
1302 /**
1303  * void journal_destroy() - Release a journal_t structure.
1304  * @journal: Journal to act on.
1305  *
1306  * Release a journal_t structure once it is no longer in use by the
1307  * journaled object.
1308  * Return <0 if we couldn't clean up the journal.
1309  */
1310 int journal_destroy(journal_t *journal)
1311 {
1312         int err = 0;
1313
1314         
1315         /* Wait for the commit thread to wake up and die. */
1316         journal_kill_thread(journal);
1317
1318         /* Force a final log commit */
1319         if (journal->j_running_transaction)
1320                 journal_commit_transaction(journal);
1321
1322         /* Force any old transactions to disk */
1323
1324         /* We cannot race with anybody but must keep assertions happy */
1325         mutex_lock(&journal->j_checkpoint_mutex);
1326         /* Totally anal locking here... */
1327         spin_lock(&journal->j_list_lock);
1328         while (journal->j_checkpoint_transactions != NULL) {
1329                 spin_unlock(&journal->j_list_lock);
1330                 log_do_checkpoint(journal);
1331                 spin_lock(&journal->j_list_lock);
1332         }
1333
1334         J_ASSERT(journal->j_running_transaction == NULL);
1335         J_ASSERT(journal->j_committing_transaction == NULL);
1336         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1337         spin_unlock(&journal->j_list_lock);
1338
1339         if (journal->j_sb_buffer) {
1340                 if (!is_journal_aborted(journal)) {
1341                         journal->j_tail_sequence =
1342                                 ++journal->j_transaction_sequence;
1343                         mark_journal_empty(journal);
1344                 } else
1345                         err = -EIO;
1346                 brelse(journal->j_sb_buffer);
1347         }
1348         mutex_unlock(&journal->j_checkpoint_mutex);
1349
1350         if (journal->j_inode)
1351                 iput(journal->j_inode);
1352         if (journal->j_revoke)
1353                 journal_destroy_revoke(journal);
1354         kfree(journal->j_wbuf);
1355         kfree(journal);
1356
1357         return err;
1358 }
1359
1360
1361 /**
1362  *int journal_check_used_features () - Check if features specified are used.
1363  * @journal: Journal to check.
1364  * @compat: bitmask of compatible features
1365  * @ro: bitmask of features that force read-only mount
1366  * @incompat: bitmask of incompatible features
1367  *
1368  * Check whether the journal uses all of a given set of
1369  * features.  Return true (non-zero) if it does.
1370  **/
1371
1372 int journal_check_used_features (journal_t *journal, unsigned long compat,
1373                                  unsigned long ro, unsigned long incompat)
1374 {
1375         journal_superblock_t *sb;
1376
1377         if (!compat && !ro && !incompat)
1378                 return 1;
1379         if (journal->j_format_version == 1)
1380                 return 0;
1381
1382         sb = journal->j_superblock;
1383
1384         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1385             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1386             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1387                 return 1;
1388
1389         return 0;
1390 }
1391
1392 /**
1393  * int journal_check_available_features() - Check feature set in journalling layer
1394  * @journal: Journal to check.
1395  * @compat: bitmask of compatible features
1396  * @ro: bitmask of features that force read-only mount
1397  * @incompat: bitmask of incompatible features
1398  *
1399  * Check whether the journaling code supports the use of
1400  * all of a given set of features on this journal.  Return true
1401  * (non-zero) if it can. */
1402
1403 int journal_check_available_features (journal_t *journal, unsigned long compat,
1404                                       unsigned long ro, unsigned long incompat)
1405 {
1406         if (!compat && !ro && !incompat)
1407                 return 1;
1408
1409         /* We can support any known requested features iff the
1410          * superblock is in version 2.  Otherwise we fail to support any
1411          * extended sb features. */
1412
1413         if (journal->j_format_version != 2)
1414                 return 0;
1415
1416         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1417             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1418             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1419                 return 1;
1420
1421         return 0;
1422 }
1423
1424 /**
1425  * int journal_set_features () - Mark a given journal feature in the superblock
1426  * @journal: Journal to act on.
1427  * @compat: bitmask of compatible features
1428  * @ro: bitmask of features that force read-only mount
1429  * @incompat: bitmask of incompatible features
1430  *
1431  * Mark a given journal feature as present on the
1432  * superblock.  Returns true if the requested features could be set.
1433  *
1434  */
1435
1436 int journal_set_features (journal_t *journal, unsigned long compat,
1437                           unsigned long ro, unsigned long incompat)
1438 {
1439         journal_superblock_t *sb;
1440
1441         if (journal_check_used_features(journal, compat, ro, incompat))
1442                 return 1;
1443
1444         if (!journal_check_available_features(journal, compat, ro, incompat))
1445                 return 0;
1446
1447         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1448                   compat, ro, incompat);
1449
1450         sb = journal->j_superblock;
1451
1452         sb->s_feature_compat    |= cpu_to_be32(compat);
1453         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1454         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1455
1456         return 1;
1457 }
1458
1459
1460 /**
1461  * int journal_update_format () - Update on-disk journal structure.
1462  * @journal: Journal to act on.
1463  *
1464  * Given an initialised but unloaded journal struct, poke about in the
1465  * on-disk structure to update it to the most recent supported version.
1466  */
1467 int journal_update_format (journal_t *journal)
1468 {
1469         journal_superblock_t *sb;
1470         int err;
1471
1472         err = journal_get_superblock(journal);
1473         if (err)
1474                 return err;
1475
1476         sb = journal->j_superblock;
1477
1478         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1479         case JFS_SUPERBLOCK_V2:
1480                 return 0;
1481         case JFS_SUPERBLOCK_V1:
1482                 return journal_convert_superblock_v1(journal, sb);
1483         default:
1484                 break;
1485         }
1486         return -EINVAL;
1487 }
1488
1489 static int journal_convert_superblock_v1(journal_t *journal,
1490                                          journal_superblock_t *sb)
1491 {
1492         int offset, blocksize;
1493         struct buffer_head *bh;
1494
1495         printk(KERN_WARNING
1496                 "JBD: Converting superblock from version 1 to 2.\n");
1497
1498         /* Pre-initialise new fields to zero */
1499         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1500         blocksize = be32_to_cpu(sb->s_blocksize);
1501         memset(&sb->s_feature_compat, 0, blocksize-offset);
1502
1503         sb->s_nr_users = cpu_to_be32(1);
1504         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1505         journal->j_format_version = 2;
1506
1507         bh = journal->j_sb_buffer;
1508         BUFFER_TRACE(bh, "marking dirty");
1509         mark_buffer_dirty(bh);
1510         sync_dirty_buffer(bh);
1511         return 0;
1512 }
1513
1514
1515 /**
1516  * int journal_flush () - Flush journal
1517  * @journal: Journal to act on.
1518  *
1519  * Flush all data for a given journal to disk and empty the journal.
1520  * Filesystems can use this when remounting readonly to ensure that
1521  * recovery does not need to happen on remount.
1522  */
1523
1524 int journal_flush(journal_t *journal)
1525 {
1526         int err = 0;
1527         transaction_t *transaction = NULL;
1528
1529         spin_lock(&journal->j_state_lock);
1530
1531         /* Force everything buffered to the log... */
1532         if (journal->j_running_transaction) {
1533                 transaction = journal->j_running_transaction;
1534                 __log_start_commit(journal, transaction->t_tid);
1535         } else if (journal->j_committing_transaction)
1536                 transaction = journal->j_committing_transaction;
1537
1538         /* Wait for the log commit to complete... */
1539         if (transaction) {
1540                 tid_t tid = transaction->t_tid;
1541
1542                 spin_unlock(&journal->j_state_lock);
1543                 log_wait_commit(journal, tid);
1544         } else {
1545                 spin_unlock(&journal->j_state_lock);
1546         }
1547
1548         /* ...and flush everything in the log out to disk. */
1549         spin_lock(&journal->j_list_lock);
1550         while (!err && journal->j_checkpoint_transactions != NULL) {
1551                 spin_unlock(&journal->j_list_lock);
1552                 mutex_lock(&journal->j_checkpoint_mutex);
1553                 err = log_do_checkpoint(journal);
1554                 mutex_unlock(&journal->j_checkpoint_mutex);
1555                 spin_lock(&journal->j_list_lock);
1556         }
1557         spin_unlock(&journal->j_list_lock);
1558
1559         if (is_journal_aborted(journal))
1560                 return -EIO;
1561
1562         mutex_lock(&journal->j_checkpoint_mutex);
1563         cleanup_journal_tail(journal);
1564
1565         /* Finally, mark the journal as really needing no recovery.
1566          * This sets s_start==0 in the underlying superblock, which is
1567          * the magic code for a fully-recovered superblock.  Any future
1568          * commits of data to the journal will restore the current
1569          * s_start value. */
1570         mark_journal_empty(journal);
1571         mutex_unlock(&journal->j_checkpoint_mutex);
1572         spin_lock(&journal->j_state_lock);
1573         J_ASSERT(!journal->j_running_transaction);
1574         J_ASSERT(!journal->j_committing_transaction);
1575         J_ASSERT(!journal->j_checkpoint_transactions);
1576         J_ASSERT(journal->j_head == journal->j_tail);
1577         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1578         spin_unlock(&journal->j_state_lock);
1579         return 0;
1580 }
1581
1582 /**
1583  * int journal_wipe() - Wipe journal contents
1584  * @journal: Journal to act on.
1585  * @write: flag (see below)
1586  *
1587  * Wipe out all of the contents of a journal, safely.  This will produce
1588  * a warning if the journal contains any valid recovery information.
1589  * Must be called between journal_init_*() and journal_load().
1590  *
1591  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1592  * we merely suppress recovery.
1593  */
1594
1595 int journal_wipe(journal_t *journal, int write)
1596 {
1597         int err = 0;
1598
1599         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1600
1601         err = load_superblock(journal);
1602         if (err)
1603                 return err;
1604
1605         if (!journal->j_tail)
1606                 goto no_recovery;
1607
1608         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1609                 write ? "Clearing" : "Ignoring");
1610
1611         err = journal_skip_recovery(journal);
1612         if (write) {
1613                 /* Lock to make assertions happy... */
1614                 mutex_lock(&journal->j_checkpoint_mutex);
1615                 mark_journal_empty(journal);
1616                 mutex_unlock(&journal->j_checkpoint_mutex);
1617         }
1618
1619  no_recovery:
1620         return err;
1621 }
1622
1623 /*
1624  * journal_dev_name: format a character string to describe on what
1625  * device this journal is present.
1626  */
1627
1628 static const char *journal_dev_name(journal_t *journal, char *buffer)
1629 {
1630         struct block_device *bdev;
1631
1632         if (journal->j_inode)
1633                 bdev = journal->j_inode->i_sb->s_bdev;
1634         else
1635                 bdev = journal->j_dev;
1636
1637         return bdevname(bdev, buffer);
1638 }
1639
1640 /*
1641  * Journal abort has very specific semantics, which we describe
1642  * for journal abort.
1643  *
1644  * Two internal function, which provide abort to te jbd layer
1645  * itself are here.
1646  */
1647
1648 /*
1649  * Quick version for internal journal use (doesn't lock the journal).
1650  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1651  * and don't attempt to make any other journal updates.
1652  */
1653 static void __journal_abort_hard(journal_t *journal)
1654 {
1655         transaction_t *transaction;
1656         char b[BDEVNAME_SIZE];
1657
1658         if (journal->j_flags & JFS_ABORT)
1659                 return;
1660
1661         printk(KERN_ERR "Aborting journal on device %s.\n",
1662                 journal_dev_name(journal, b));
1663
1664         spin_lock(&journal->j_state_lock);
1665         journal->j_flags |= JFS_ABORT;
1666         transaction = journal->j_running_transaction;
1667         if (transaction)
1668                 __log_start_commit(journal, transaction->t_tid);
1669         spin_unlock(&journal->j_state_lock);
1670 }
1671
1672 /* Soft abort: record the abort error status in the journal superblock,
1673  * but don't do any other IO. */
1674 static void __journal_abort_soft (journal_t *journal, int errno)
1675 {
1676         if (journal->j_flags & JFS_ABORT)
1677                 return;
1678
1679         if (!journal->j_errno)
1680                 journal->j_errno = errno;
1681
1682         __journal_abort_hard(journal);
1683
1684         if (errno)
1685                 journal_update_sb_errno(journal);
1686 }
1687
1688 /**
1689  * void journal_abort () - Shutdown the journal immediately.
1690  * @journal: the journal to shutdown.
1691  * @errno:   an error number to record in the journal indicating
1692  *           the reason for the shutdown.
1693  *
1694  * Perform a complete, immediate shutdown of the ENTIRE
1695  * journal (not of a single transaction).  This operation cannot be
1696  * undone without closing and reopening the journal.
1697  *
1698  * The journal_abort function is intended to support higher level error
1699  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1700  * mode.
1701  *
1702  * Journal abort has very specific semantics.  Any existing dirty,
1703  * unjournaled buffers in the main filesystem will still be written to
1704  * disk by bdflush, but the journaling mechanism will be suspended
1705  * immediately and no further transaction commits will be honoured.
1706  *
1707  * Any dirty, journaled buffers will be written back to disk without
1708  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1709  * filesystem, but we _do_ attempt to leave as much data as possible
1710  * behind for fsck to use for cleanup.
1711  *
1712  * Any attempt to get a new transaction handle on a journal which is in
1713  * ABORT state will just result in an -EROFS error return.  A
1714  * journal_stop on an existing handle will return -EIO if we have
1715  * entered abort state during the update.
1716  *
1717  * Recursive transactions are not disturbed by journal abort until the
1718  * final journal_stop, which will receive the -EIO error.
1719  *
1720  * Finally, the journal_abort call allows the caller to supply an errno
1721  * which will be recorded (if possible) in the journal superblock.  This
1722  * allows a client to record failure conditions in the middle of a
1723  * transaction without having to complete the transaction to record the
1724  * failure to disk.  ext3_error, for example, now uses this
1725  * functionality.
1726  *
1727  * Errors which originate from within the journaling layer will NOT
1728  * supply an errno; a null errno implies that absolutely no further
1729  * writes are done to the journal (unless there are any already in
1730  * progress).
1731  *
1732  */
1733
1734 void journal_abort(journal_t *journal, int errno)
1735 {
1736         __journal_abort_soft(journal, errno);
1737 }
1738
1739 /**
1740  * int journal_errno () - returns the journal's error state.
1741  * @journal: journal to examine.
1742  *
1743  * This is the errno numbet set with journal_abort(), the last
1744  * time the journal was mounted - if the journal was stopped
1745  * without calling abort this will be 0.
1746  *
1747  * If the journal has been aborted on this mount time -EROFS will
1748  * be returned.
1749  */
1750 int journal_errno(journal_t *journal)
1751 {
1752         int err;
1753
1754         spin_lock(&journal->j_state_lock);
1755         if (journal->j_flags & JFS_ABORT)
1756                 err = -EROFS;
1757         else
1758                 err = journal->j_errno;
1759         spin_unlock(&journal->j_state_lock);
1760         return err;
1761 }
1762
1763 /**
1764  * int journal_clear_err () - clears the journal's error state
1765  * @journal: journal to act on.
1766  *
1767  * An error must be cleared or Acked to take a FS out of readonly
1768  * mode.
1769  */
1770 int journal_clear_err(journal_t *journal)
1771 {
1772         int err = 0;
1773
1774         spin_lock(&journal->j_state_lock);
1775         if (journal->j_flags & JFS_ABORT)
1776                 err = -EROFS;
1777         else
1778                 journal->j_errno = 0;
1779         spin_unlock(&journal->j_state_lock);
1780         return err;
1781 }
1782
1783 /**
1784  * void journal_ack_err() - Ack journal err.
1785  * @journal: journal to act on.
1786  *
1787  * An error must be cleared or Acked to take a FS out of readonly
1788  * mode.
1789  */
1790 void journal_ack_err(journal_t *journal)
1791 {
1792         spin_lock(&journal->j_state_lock);
1793         if (journal->j_errno)
1794                 journal->j_flags |= JFS_ACK_ERR;
1795         spin_unlock(&journal->j_state_lock);
1796 }
1797
1798 int journal_blocks_per_page(struct inode *inode)
1799 {
1800         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1801 }
1802
1803 /*
1804  * Journal_head storage management
1805  */
1806 static struct kmem_cache *journal_head_cache;
1807 #ifdef CONFIG_JBD_DEBUG
1808 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1809 #endif
1810
1811 static int journal_init_journal_head_cache(void)
1812 {
1813         int retval;
1814
1815         J_ASSERT(journal_head_cache == NULL);
1816         journal_head_cache = kmem_cache_create("journal_head",
1817                                 sizeof(struct journal_head),
1818                                 0,              /* offset */
1819                                 SLAB_TEMPORARY, /* flags */
1820                                 NULL);          /* ctor */
1821         retval = 0;
1822         if (!journal_head_cache) {
1823                 retval = -ENOMEM;
1824                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1825         }
1826         return retval;
1827 }
1828
1829 static void journal_destroy_journal_head_cache(void)
1830 {
1831         if (journal_head_cache) {
1832                 kmem_cache_destroy(journal_head_cache);
1833                 journal_head_cache = NULL;
1834         }
1835 }
1836
1837 /*
1838  * journal_head splicing and dicing
1839  */
1840 static struct journal_head *journal_alloc_journal_head(void)
1841 {
1842         struct journal_head *ret;
1843
1844 #ifdef CONFIG_JBD_DEBUG
1845         atomic_inc(&nr_journal_heads);
1846 #endif
1847         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1848         if (ret == NULL) {
1849                 jbd_debug(1, "out of memory for journal_head\n");
1850                 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1851                                    __func__);
1852
1853                 while (ret == NULL) {
1854                         yield();
1855                         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1856                 }
1857         }
1858         return ret;
1859 }
1860
1861 static void journal_free_journal_head(struct journal_head *jh)
1862 {
1863 #ifdef CONFIG_JBD_DEBUG
1864         atomic_dec(&nr_journal_heads);
1865         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1866 #endif
1867         kmem_cache_free(journal_head_cache, jh);
1868 }
1869
1870 /*
1871  * A journal_head is attached to a buffer_head whenever JBD has an
1872  * interest in the buffer.
1873  *
1874  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1875  * is set.  This bit is tested in core kernel code where we need to take
1876  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1877  * there.
1878  *
1879  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1880  *
1881  * When a buffer has its BH_JBD bit set it is immune from being released by
1882  * core kernel code, mainly via ->b_count.
1883  *
1884  * A journal_head is detached from its buffer_head when the journal_head's
1885  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1886  * transaction (b_cp_transaction) hold their references to b_jcount.
1887  *
1888  * Various places in the kernel want to attach a journal_head to a buffer_head
1889  * _before_ attaching the journal_head to a transaction.  To protect the
1890  * journal_head in this situation, journal_add_journal_head elevates the
1891  * journal_head's b_jcount refcount by one.  The caller must call
1892  * journal_put_journal_head() to undo this.
1893  *
1894  * So the typical usage would be:
1895  *
1896  *      (Attach a journal_head if needed.  Increments b_jcount)
1897  *      struct journal_head *jh = journal_add_journal_head(bh);
1898  *      ...
1899  *      (Get another reference for transaction)
1900  *      journal_grab_journal_head(bh);
1901  *      jh->b_transaction = xxx;
1902  *      (Put original reference)
1903  *      journal_put_journal_head(jh);
1904  */
1905
1906 /*
1907  * Give a buffer_head a journal_head.
1908  *
1909  * May sleep.
1910  */
1911 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1912 {
1913         struct journal_head *jh;
1914         struct journal_head *new_jh = NULL;
1915
1916 repeat:
1917         if (!buffer_jbd(bh)) {
1918                 new_jh = journal_alloc_journal_head();
1919                 memset(new_jh, 0, sizeof(*new_jh));
1920         }
1921
1922         jbd_lock_bh_journal_head(bh);
1923         if (buffer_jbd(bh)) {
1924                 jh = bh2jh(bh);
1925         } else {
1926                 J_ASSERT_BH(bh,
1927                         (atomic_read(&bh->b_count) > 0) ||
1928                         (bh->b_page && bh->b_page->mapping));
1929
1930                 if (!new_jh) {
1931                         jbd_unlock_bh_journal_head(bh);
1932                         goto repeat;
1933                 }
1934
1935                 jh = new_jh;
1936                 new_jh = NULL;          /* We consumed it */
1937                 set_buffer_jbd(bh);
1938                 bh->b_private = jh;
1939                 jh->b_bh = bh;
1940                 get_bh(bh);
1941                 BUFFER_TRACE(bh, "added journal_head");
1942         }
1943         jh->b_jcount++;
1944         jbd_unlock_bh_journal_head(bh);
1945         if (new_jh)
1946                 journal_free_journal_head(new_jh);
1947         return bh->b_private;
1948 }
1949
1950 /*
1951  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1952  * having a journal_head, return NULL
1953  */
1954 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1955 {
1956         struct journal_head *jh = NULL;
1957
1958         jbd_lock_bh_journal_head(bh);
1959         if (buffer_jbd(bh)) {
1960                 jh = bh2jh(bh);
1961                 jh->b_jcount++;
1962         }
1963         jbd_unlock_bh_journal_head(bh);
1964         return jh;
1965 }
1966
1967 static void __journal_remove_journal_head(struct buffer_head *bh)
1968 {
1969         struct journal_head *jh = bh2jh(bh);
1970
1971         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1972         J_ASSERT_JH(jh, jh->b_transaction == NULL);
1973         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1974         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1975         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1976         J_ASSERT_BH(bh, buffer_jbd(bh));
1977         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1978         BUFFER_TRACE(bh, "remove journal_head");
1979         if (jh->b_frozen_data) {
1980                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
1981                 jbd_free(jh->b_frozen_data, bh->b_size);
1982         }
1983         if (jh->b_committed_data) {
1984                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
1985                 jbd_free(jh->b_committed_data, bh->b_size);
1986         }
1987         bh->b_private = NULL;
1988         jh->b_bh = NULL;        /* debug, really */
1989         clear_buffer_jbd(bh);
1990         journal_free_journal_head(jh);
1991 }
1992
1993 /*
1994  * Drop a reference on the passed journal_head.  If it fell to zero then
1995  * release the journal_head from the buffer_head.
1996  */
1997 void journal_put_journal_head(struct journal_head *jh)
1998 {
1999         struct buffer_head *bh = jh2bh(jh);
2000
2001         jbd_lock_bh_journal_head(bh);
2002         J_ASSERT_JH(jh, jh->b_jcount > 0);
2003         --jh->b_jcount;
2004         if (!jh->b_jcount) {
2005                 __journal_remove_journal_head(bh);
2006                 jbd_unlock_bh_journal_head(bh);
2007                 __brelse(bh);
2008         } else
2009                 jbd_unlock_bh_journal_head(bh);
2010 }
2011
2012 /*
2013  * debugfs tunables
2014  */
2015 #ifdef CONFIG_JBD_DEBUG
2016
2017 u8 journal_enable_debug __read_mostly;
2018 EXPORT_SYMBOL(journal_enable_debug);
2019
2020 static struct dentry *jbd_debugfs_dir;
2021 static struct dentry *jbd_debug;
2022
2023 static void __init jbd_create_debugfs_entry(void)
2024 {
2025         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
2026         if (jbd_debugfs_dir)
2027                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
2028                                                jbd_debugfs_dir,
2029                                                &journal_enable_debug);
2030 }
2031
2032 static void __exit jbd_remove_debugfs_entry(void)
2033 {
2034         debugfs_remove(jbd_debug);
2035         debugfs_remove(jbd_debugfs_dir);
2036 }
2037
2038 #else
2039
2040 static inline void jbd_create_debugfs_entry(void)
2041 {
2042 }
2043
2044 static inline void jbd_remove_debugfs_entry(void)
2045 {
2046 }
2047
2048 #endif
2049
2050 struct kmem_cache *jbd_handle_cache;
2051
2052 static int __init journal_init_handle_cache(void)
2053 {
2054         jbd_handle_cache = kmem_cache_create("journal_handle",
2055                                 sizeof(handle_t),
2056                                 0,              /* offset */
2057                                 SLAB_TEMPORARY, /* flags */
2058                                 NULL);          /* ctor */
2059         if (jbd_handle_cache == NULL) {
2060                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2061                 return -ENOMEM;
2062         }
2063         return 0;
2064 }
2065
2066 static void journal_destroy_handle_cache(void)
2067 {
2068         if (jbd_handle_cache)
2069                 kmem_cache_destroy(jbd_handle_cache);
2070 }
2071
2072 /*
2073  * Module startup and shutdown
2074  */
2075
2076 static int __init journal_init_caches(void)
2077 {
2078         int ret;
2079
2080         ret = journal_init_revoke_caches();
2081         if (ret == 0)
2082                 ret = journal_init_journal_head_cache();
2083         if (ret == 0)
2084                 ret = journal_init_handle_cache();
2085         return ret;
2086 }
2087
2088 static void journal_destroy_caches(void)
2089 {
2090         journal_destroy_revoke_caches();
2091         journal_destroy_journal_head_cache();
2092         journal_destroy_handle_cache();
2093 }
2094
2095 static int __init journal_init(void)
2096 {
2097         int ret;
2098
2099         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2100
2101         ret = journal_init_caches();
2102         if (ret != 0)
2103                 journal_destroy_caches();
2104         jbd_create_debugfs_entry();
2105         return ret;
2106 }
2107
2108 static void __exit journal_exit(void)
2109 {
2110 #ifdef CONFIG_JBD_DEBUG
2111         int n = atomic_read(&nr_journal_heads);
2112         if (n)
2113                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2114 #endif
2115         jbd_remove_debugfs_entry();
2116         journal_destroy_caches();
2117 }
2118
2119 MODULE_LICENSE("GPL");
2120 module_init(journal_init);
2121 module_exit(journal_exit);
2122