]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/cpu.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[karo-tx-linux.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 #include <linux/percpu-rwsem.h>
31
32 #include <trace/events/power.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpuhp.h>
35
36 #include "smpboot.h"
37
38 /**
39  * cpuhp_cpu_state - Per cpu hotplug state storage
40  * @state:      The current cpu state
41  * @target:     The target state
42  * @thread:     Pointer to the hotplug thread
43  * @should_run: Thread should execute
44  * @rollback:   Perform a rollback
45  * @single:     Single callback invocation
46  * @bringup:    Single callback bringup or teardown selector
47  * @cb_state:   The state for a single callback (install/uninstall)
48  * @result:     Result of the operation
49  * @done:       Signal completion to the issuer of the task
50  */
51 struct cpuhp_cpu_state {
52         enum cpuhp_state        state;
53         enum cpuhp_state        target;
54 #ifdef CONFIG_SMP
55         struct task_struct      *thread;
56         bool                    should_run;
57         bool                    rollback;
58         bool                    single;
59         bool                    bringup;
60         struct hlist_node       *node;
61         enum cpuhp_state        cb_state;
62         int                     result;
63         struct completion       done;
64 #endif
65 };
66
67 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
68
69 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
70 static struct lock_class_key cpuhp_state_key;
71 static struct lockdep_map cpuhp_state_lock_map =
72         STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key);
73 #endif
74
75 /**
76  * cpuhp_step - Hotplug state machine step
77  * @name:       Name of the step
78  * @startup:    Startup function of the step
79  * @teardown:   Teardown function of the step
80  * @skip_onerr: Do not invoke the functions on error rollback
81  *              Will go away once the notifiers are gone
82  * @cant_stop:  Bringup/teardown can't be stopped at this step
83  */
84 struct cpuhp_step {
85         const char              *name;
86         union {
87                 int             (*single)(unsigned int cpu);
88                 int             (*multi)(unsigned int cpu,
89                                          struct hlist_node *node);
90         } startup;
91         union {
92                 int             (*single)(unsigned int cpu);
93                 int             (*multi)(unsigned int cpu,
94                                          struct hlist_node *node);
95         } teardown;
96         struct hlist_head       list;
97         bool                    skip_onerr;
98         bool                    cant_stop;
99         bool                    multi_instance;
100 };
101
102 static DEFINE_MUTEX(cpuhp_state_mutex);
103 static struct cpuhp_step cpuhp_bp_states[];
104 static struct cpuhp_step cpuhp_ap_states[];
105
106 static bool cpuhp_is_ap_state(enum cpuhp_state state)
107 {
108         /*
109          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
110          * purposes as that state is handled explicitly in cpu_down.
111          */
112         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
113 }
114
115 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
116 {
117         struct cpuhp_step *sp;
118
119         sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
120         return sp + state;
121 }
122
123 /**
124  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
125  * @cpu:        The cpu for which the callback should be invoked
126  * @step:       The step in the state machine
127  * @bringup:    True if the bringup callback should be invoked
128  *
129  * Called from cpu hotplug and from the state register machinery.
130  */
131 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
132                                  bool bringup, struct hlist_node *node)
133 {
134         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
135         struct cpuhp_step *step = cpuhp_get_step(state);
136         int (*cbm)(unsigned int cpu, struct hlist_node *node);
137         int (*cb)(unsigned int cpu);
138         int ret, cnt;
139
140         if (!step->multi_instance) {
141                 cb = bringup ? step->startup.single : step->teardown.single;
142                 if (!cb)
143                         return 0;
144                 trace_cpuhp_enter(cpu, st->target, state, cb);
145                 ret = cb(cpu);
146                 trace_cpuhp_exit(cpu, st->state, state, ret);
147                 return ret;
148         }
149         cbm = bringup ? step->startup.multi : step->teardown.multi;
150         if (!cbm)
151                 return 0;
152
153         /* Single invocation for instance add/remove */
154         if (node) {
155                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156                 ret = cbm(cpu, node);
157                 trace_cpuhp_exit(cpu, st->state, state, ret);
158                 return ret;
159         }
160
161         /* State transition. Invoke on all instances */
162         cnt = 0;
163         hlist_for_each(node, &step->list) {
164                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
165                 ret = cbm(cpu, node);
166                 trace_cpuhp_exit(cpu, st->state, state, ret);
167                 if (ret)
168                         goto err;
169                 cnt++;
170         }
171         return 0;
172 err:
173         /* Rollback the instances if one failed */
174         cbm = !bringup ? step->startup.multi : step->teardown.multi;
175         if (!cbm)
176                 return ret;
177
178         hlist_for_each(node, &step->list) {
179                 if (!cnt--)
180                         break;
181                 cbm(cpu, node);
182         }
183         return ret;
184 }
185
186 #ifdef CONFIG_SMP
187 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
188 static DEFINE_MUTEX(cpu_add_remove_lock);
189 bool cpuhp_tasks_frozen;
190 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
191
192 /*
193  * The following two APIs (cpu_maps_update_begin/done) must be used when
194  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
195  */
196 void cpu_maps_update_begin(void)
197 {
198         mutex_lock(&cpu_add_remove_lock);
199 }
200
201 void cpu_maps_update_done(void)
202 {
203         mutex_unlock(&cpu_add_remove_lock);
204 }
205
206 /*
207  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
208  * Should always be manipulated under cpu_add_remove_lock
209  */
210 static int cpu_hotplug_disabled;
211
212 #ifdef CONFIG_HOTPLUG_CPU
213
214 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
215
216 void cpus_read_lock(void)
217 {
218         percpu_down_read(&cpu_hotplug_lock);
219 }
220 EXPORT_SYMBOL_GPL(cpus_read_lock);
221
222 void cpus_read_unlock(void)
223 {
224         percpu_up_read(&cpu_hotplug_lock);
225 }
226 EXPORT_SYMBOL_GPL(cpus_read_unlock);
227
228 void cpus_write_lock(void)
229 {
230         percpu_down_write(&cpu_hotplug_lock);
231 }
232
233 void cpus_write_unlock(void)
234 {
235         percpu_up_write(&cpu_hotplug_lock);
236 }
237
238 void lockdep_assert_cpus_held(void)
239 {
240         percpu_rwsem_assert_held(&cpu_hotplug_lock);
241 }
242
243 /*
244  * Wait for currently running CPU hotplug operations to complete (if any) and
245  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
246  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
247  * hotplug path before performing hotplug operations. So acquiring that lock
248  * guarantees mutual exclusion from any currently running hotplug operations.
249  */
250 void cpu_hotplug_disable(void)
251 {
252         cpu_maps_update_begin();
253         cpu_hotplug_disabled++;
254         cpu_maps_update_done();
255 }
256 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
257
258 static void __cpu_hotplug_enable(void)
259 {
260         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
261                 return;
262         cpu_hotplug_disabled--;
263 }
264
265 void cpu_hotplug_enable(void)
266 {
267         cpu_maps_update_begin();
268         __cpu_hotplug_enable();
269         cpu_maps_update_done();
270 }
271 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
272 #endif  /* CONFIG_HOTPLUG_CPU */
273
274 static int bringup_wait_for_ap(unsigned int cpu)
275 {
276         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
277
278         wait_for_completion(&st->done);
279         return st->result;
280 }
281
282 static int bringup_cpu(unsigned int cpu)
283 {
284         struct task_struct *idle = idle_thread_get(cpu);
285         int ret;
286
287         /*
288          * Some architectures have to walk the irq descriptors to
289          * setup the vector space for the cpu which comes online.
290          * Prevent irq alloc/free across the bringup.
291          */
292         irq_lock_sparse();
293
294         /* Arch-specific enabling code. */
295         ret = __cpu_up(cpu, idle);
296         irq_unlock_sparse();
297         if (ret)
298                 return ret;
299         ret = bringup_wait_for_ap(cpu);
300         BUG_ON(!cpu_online(cpu));
301         return ret;
302 }
303
304 /*
305  * Hotplug state machine related functions
306  */
307 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
308 {
309         for (st->state++; st->state < st->target; st->state++) {
310                 struct cpuhp_step *step = cpuhp_get_step(st->state);
311
312                 if (!step->skip_onerr)
313                         cpuhp_invoke_callback(cpu, st->state, true, NULL);
314         }
315 }
316
317 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
318                                 enum cpuhp_state target)
319 {
320         enum cpuhp_state prev_state = st->state;
321         int ret = 0;
322
323         for (; st->state > target; st->state--) {
324                 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
325                 if (ret) {
326                         st->target = prev_state;
327                         undo_cpu_down(cpu, st);
328                         break;
329                 }
330         }
331         return ret;
332 }
333
334 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
335 {
336         for (st->state--; st->state > st->target; st->state--) {
337                 struct cpuhp_step *step = cpuhp_get_step(st->state);
338
339                 if (!step->skip_onerr)
340                         cpuhp_invoke_callback(cpu, st->state, false, NULL);
341         }
342 }
343
344 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
345                               enum cpuhp_state target)
346 {
347         enum cpuhp_state prev_state = st->state;
348         int ret = 0;
349
350         while (st->state < target) {
351                 st->state++;
352                 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
353                 if (ret) {
354                         st->target = prev_state;
355                         undo_cpu_up(cpu, st);
356                         break;
357                 }
358         }
359         return ret;
360 }
361
362 /*
363  * The cpu hotplug threads manage the bringup and teardown of the cpus
364  */
365 static void cpuhp_create(unsigned int cpu)
366 {
367         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
368
369         init_completion(&st->done);
370 }
371
372 static int cpuhp_should_run(unsigned int cpu)
373 {
374         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
375
376         return st->should_run;
377 }
378
379 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
380 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
381 {
382         enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
383
384         return cpuhp_down_callbacks(cpu, st, target);
385 }
386
387 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
388 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
389 {
390         return cpuhp_up_callbacks(cpu, st, st->target);
391 }
392
393 /*
394  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
395  * callbacks when a state gets [un]installed at runtime.
396  */
397 static void cpuhp_thread_fun(unsigned int cpu)
398 {
399         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
400         int ret = 0;
401
402         /*
403          * Paired with the mb() in cpuhp_kick_ap_work and
404          * cpuhp_invoke_ap_callback, so the work set is consistent visible.
405          */
406         smp_mb();
407         if (!st->should_run)
408                 return;
409
410         st->should_run = false;
411
412         lock_map_acquire(&cpuhp_state_lock_map);
413         /* Single callback invocation for [un]install ? */
414         if (st->single) {
415                 if (st->cb_state < CPUHP_AP_ONLINE) {
416                         local_irq_disable();
417                         ret = cpuhp_invoke_callback(cpu, st->cb_state,
418                                                     st->bringup, st->node);
419                         local_irq_enable();
420                 } else {
421                         ret = cpuhp_invoke_callback(cpu, st->cb_state,
422                                                     st->bringup, st->node);
423                 }
424         } else if (st->rollback) {
425                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
426
427                 undo_cpu_down(cpu, st);
428                 st->rollback = false;
429         } else {
430                 /* Cannot happen .... */
431                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
432
433                 /* Regular hotplug work */
434                 if (st->state < st->target)
435                         ret = cpuhp_ap_online(cpu, st);
436                 else if (st->state > st->target)
437                         ret = cpuhp_ap_offline(cpu, st);
438         }
439         lock_map_release(&cpuhp_state_lock_map);
440         st->result = ret;
441         complete(&st->done);
442 }
443
444 /* Invoke a single callback on a remote cpu */
445 static int
446 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
447                          struct hlist_node *node)
448 {
449         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
450
451         if (!cpu_online(cpu))
452                 return 0;
453
454         lock_map_acquire(&cpuhp_state_lock_map);
455         lock_map_release(&cpuhp_state_lock_map);
456
457         /*
458          * If we are up and running, use the hotplug thread. For early calls
459          * we invoke the thread function directly.
460          */
461         if (!st->thread)
462                 return cpuhp_invoke_callback(cpu, state, bringup, node);
463
464         st->cb_state = state;
465         st->single = true;
466         st->bringup = bringup;
467         st->node = node;
468
469         /*
470          * Make sure the above stores are visible before should_run becomes
471          * true. Paired with the mb() above in cpuhp_thread_fun()
472          */
473         smp_mb();
474         st->should_run = true;
475         wake_up_process(st->thread);
476         wait_for_completion(&st->done);
477         return st->result;
478 }
479
480 /* Regular hotplug invocation of the AP hotplug thread */
481 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
482 {
483         st->result = 0;
484         st->single = false;
485         /*
486          * Make sure the above stores are visible before should_run becomes
487          * true. Paired with the mb() above in cpuhp_thread_fun()
488          */
489         smp_mb();
490         st->should_run = true;
491         wake_up_process(st->thread);
492 }
493
494 static int cpuhp_kick_ap_work(unsigned int cpu)
495 {
496         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
497         enum cpuhp_state state = st->state;
498
499         trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
500         lock_map_acquire(&cpuhp_state_lock_map);
501         lock_map_release(&cpuhp_state_lock_map);
502         __cpuhp_kick_ap_work(st);
503         wait_for_completion(&st->done);
504         trace_cpuhp_exit(cpu, st->state, state, st->result);
505         return st->result;
506 }
507
508 static struct smp_hotplug_thread cpuhp_threads = {
509         .store                  = &cpuhp_state.thread,
510         .create                 = &cpuhp_create,
511         .thread_should_run      = cpuhp_should_run,
512         .thread_fn              = cpuhp_thread_fun,
513         .thread_comm            = "cpuhp/%u",
514         .selfparking            = true,
515 };
516
517 void __init cpuhp_threads_init(void)
518 {
519         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
520         kthread_unpark(this_cpu_read(cpuhp_state.thread));
521 }
522
523 #ifdef CONFIG_HOTPLUG_CPU
524 /**
525  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
526  * @cpu: a CPU id
527  *
528  * This function walks all processes, finds a valid mm struct for each one and
529  * then clears a corresponding bit in mm's cpumask.  While this all sounds
530  * trivial, there are various non-obvious corner cases, which this function
531  * tries to solve in a safe manner.
532  *
533  * Also note that the function uses a somewhat relaxed locking scheme, so it may
534  * be called only for an already offlined CPU.
535  */
536 void clear_tasks_mm_cpumask(int cpu)
537 {
538         struct task_struct *p;
539
540         /*
541          * This function is called after the cpu is taken down and marked
542          * offline, so its not like new tasks will ever get this cpu set in
543          * their mm mask. -- Peter Zijlstra
544          * Thus, we may use rcu_read_lock() here, instead of grabbing
545          * full-fledged tasklist_lock.
546          */
547         WARN_ON(cpu_online(cpu));
548         rcu_read_lock();
549         for_each_process(p) {
550                 struct task_struct *t;
551
552                 /*
553                  * Main thread might exit, but other threads may still have
554                  * a valid mm. Find one.
555                  */
556                 t = find_lock_task_mm(p);
557                 if (!t)
558                         continue;
559                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
560                 task_unlock(t);
561         }
562         rcu_read_unlock();
563 }
564
565 /* Take this CPU down. */
566 static int take_cpu_down(void *_param)
567 {
568         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
569         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
570         int err, cpu = smp_processor_id();
571
572         /* Ensure this CPU doesn't handle any more interrupts. */
573         err = __cpu_disable();
574         if (err < 0)
575                 return err;
576
577         /*
578          * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
579          * do this step again.
580          */
581         WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
582         st->state--;
583         /* Invoke the former CPU_DYING callbacks */
584         for (; st->state > target; st->state--)
585                 cpuhp_invoke_callback(cpu, st->state, false, NULL);
586
587         /* Give up timekeeping duties */
588         tick_handover_do_timer();
589         /* Park the stopper thread */
590         stop_machine_park(cpu);
591         return 0;
592 }
593
594 static int takedown_cpu(unsigned int cpu)
595 {
596         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
597         int err;
598
599         /* Park the smpboot threads */
600         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
601         smpboot_park_threads(cpu);
602
603         /*
604          * Prevent irq alloc/free while the dying cpu reorganizes the
605          * interrupt affinities.
606          */
607         irq_lock_sparse();
608
609         /*
610          * So now all preempt/rcu users must observe !cpu_active().
611          */
612         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
613         if (err) {
614                 /* CPU refused to die */
615                 irq_unlock_sparse();
616                 /* Unpark the hotplug thread so we can rollback there */
617                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
618                 return err;
619         }
620         BUG_ON(cpu_online(cpu));
621
622         /*
623          * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
624          * runnable tasks from the cpu, there's only the idle task left now
625          * that the migration thread is done doing the stop_machine thing.
626          *
627          * Wait for the stop thread to go away.
628          */
629         wait_for_completion(&st->done);
630         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
631
632         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
633         irq_unlock_sparse();
634
635         hotplug_cpu__broadcast_tick_pull(cpu);
636         /* This actually kills the CPU. */
637         __cpu_die(cpu);
638
639         tick_cleanup_dead_cpu(cpu);
640         return 0;
641 }
642
643 static void cpuhp_complete_idle_dead(void *arg)
644 {
645         struct cpuhp_cpu_state *st = arg;
646
647         complete(&st->done);
648 }
649
650 void cpuhp_report_idle_dead(void)
651 {
652         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
653
654         BUG_ON(st->state != CPUHP_AP_OFFLINE);
655         rcu_report_dead(smp_processor_id());
656         st->state = CPUHP_AP_IDLE_DEAD;
657         /*
658          * We cannot call complete after rcu_report_dead() so we delegate it
659          * to an online cpu.
660          */
661         smp_call_function_single(cpumask_first(cpu_online_mask),
662                                  cpuhp_complete_idle_dead, st, 0);
663 }
664
665 #else
666 #define takedown_cpu            NULL
667 #endif
668
669 #ifdef CONFIG_HOTPLUG_CPU
670
671 /* Requires cpu_add_remove_lock to be held */
672 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
673                            enum cpuhp_state target)
674 {
675         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
676         int prev_state, ret = 0;
677
678         if (num_online_cpus() == 1)
679                 return -EBUSY;
680
681         if (!cpu_present(cpu))
682                 return -EINVAL;
683
684         cpus_write_lock();
685
686         cpuhp_tasks_frozen = tasks_frozen;
687
688         prev_state = st->state;
689         st->target = target;
690         /*
691          * If the current CPU state is in the range of the AP hotplug thread,
692          * then we need to kick the thread.
693          */
694         if (st->state > CPUHP_TEARDOWN_CPU) {
695                 ret = cpuhp_kick_ap_work(cpu);
696                 /*
697                  * The AP side has done the error rollback already. Just
698                  * return the error code..
699                  */
700                 if (ret)
701                         goto out;
702
703                 /*
704                  * We might have stopped still in the range of the AP hotplug
705                  * thread. Nothing to do anymore.
706                  */
707                 if (st->state > CPUHP_TEARDOWN_CPU)
708                         goto out;
709         }
710         /*
711          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
712          * to do the further cleanups.
713          */
714         ret = cpuhp_down_callbacks(cpu, st, target);
715         if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
716                 st->target = prev_state;
717                 st->rollback = true;
718                 cpuhp_kick_ap_work(cpu);
719         }
720
721 out:
722         cpus_write_unlock();
723         return ret;
724 }
725
726 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
727 {
728         int err;
729
730         cpu_maps_update_begin();
731
732         if (cpu_hotplug_disabled) {
733                 err = -EBUSY;
734                 goto out;
735         }
736
737         err = _cpu_down(cpu, 0, target);
738
739 out:
740         cpu_maps_update_done();
741         return err;
742 }
743 int cpu_down(unsigned int cpu)
744 {
745         return do_cpu_down(cpu, CPUHP_OFFLINE);
746 }
747 EXPORT_SYMBOL(cpu_down);
748 #endif /*CONFIG_HOTPLUG_CPU*/
749
750 /**
751  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
752  * @cpu: cpu that just started
753  *
754  * It must be called by the arch code on the new cpu, before the new cpu
755  * enables interrupts and before the "boot" cpu returns from __cpu_up().
756  */
757 void notify_cpu_starting(unsigned int cpu)
758 {
759         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
760         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
761
762         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
763         while (st->state < target) {
764                 st->state++;
765                 cpuhp_invoke_callback(cpu, st->state, true, NULL);
766         }
767 }
768
769 /*
770  * Called from the idle task. We need to set active here, so we can kick off
771  * the stopper thread and unpark the smpboot threads. If the target state is
772  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
773  * cpu further.
774  */
775 void cpuhp_online_idle(enum cpuhp_state state)
776 {
777         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
778         unsigned int cpu = smp_processor_id();
779
780         /* Happens for the boot cpu */
781         if (state != CPUHP_AP_ONLINE_IDLE)
782                 return;
783
784         st->state = CPUHP_AP_ONLINE_IDLE;
785
786         /* Unpark the stopper thread and the hotplug thread of this cpu */
787         stop_machine_unpark(cpu);
788         kthread_unpark(st->thread);
789
790         /* Should we go further up ? */
791         if (st->target > CPUHP_AP_ONLINE_IDLE)
792                 __cpuhp_kick_ap_work(st);
793         else
794                 complete(&st->done);
795 }
796
797 /* Requires cpu_add_remove_lock to be held */
798 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
799 {
800         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
801         struct task_struct *idle;
802         int ret = 0;
803
804         cpus_write_lock();
805
806         if (!cpu_present(cpu)) {
807                 ret = -EINVAL;
808                 goto out;
809         }
810
811         /*
812          * The caller of do_cpu_up might have raced with another
813          * caller. Ignore it for now.
814          */
815         if (st->state >= target)
816                 goto out;
817
818         if (st->state == CPUHP_OFFLINE) {
819                 /* Let it fail before we try to bring the cpu up */
820                 idle = idle_thread_get(cpu);
821                 if (IS_ERR(idle)) {
822                         ret = PTR_ERR(idle);
823                         goto out;
824                 }
825         }
826
827         cpuhp_tasks_frozen = tasks_frozen;
828
829         st->target = target;
830         /*
831          * If the current CPU state is in the range of the AP hotplug thread,
832          * then we need to kick the thread once more.
833          */
834         if (st->state > CPUHP_BRINGUP_CPU) {
835                 ret = cpuhp_kick_ap_work(cpu);
836                 /*
837                  * The AP side has done the error rollback already. Just
838                  * return the error code..
839                  */
840                 if (ret)
841                         goto out;
842         }
843
844         /*
845          * Try to reach the target state. We max out on the BP at
846          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
847          * responsible for bringing it up to the target state.
848          */
849         target = min((int)target, CPUHP_BRINGUP_CPU);
850         ret = cpuhp_up_callbacks(cpu, st, target);
851 out:
852         cpus_write_unlock();
853         return ret;
854 }
855
856 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
857 {
858         int err = 0;
859
860         if (!cpu_possible(cpu)) {
861                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
862                        cpu);
863 #if defined(CONFIG_IA64)
864                 pr_err("please check additional_cpus= boot parameter\n");
865 #endif
866                 return -EINVAL;
867         }
868
869         err = try_online_node(cpu_to_node(cpu));
870         if (err)
871                 return err;
872
873         cpu_maps_update_begin();
874
875         if (cpu_hotplug_disabled) {
876                 err = -EBUSY;
877                 goto out;
878         }
879
880         err = _cpu_up(cpu, 0, target);
881 out:
882         cpu_maps_update_done();
883         return err;
884 }
885
886 int cpu_up(unsigned int cpu)
887 {
888         return do_cpu_up(cpu, CPUHP_ONLINE);
889 }
890 EXPORT_SYMBOL_GPL(cpu_up);
891
892 #ifdef CONFIG_PM_SLEEP_SMP
893 static cpumask_var_t frozen_cpus;
894
895 int freeze_secondary_cpus(int primary)
896 {
897         int cpu, error = 0;
898
899         cpu_maps_update_begin();
900         if (!cpu_online(primary))
901                 primary = cpumask_first(cpu_online_mask);
902         /*
903          * We take down all of the non-boot CPUs in one shot to avoid races
904          * with the userspace trying to use the CPU hotplug at the same time
905          */
906         cpumask_clear(frozen_cpus);
907
908         pr_info("Disabling non-boot CPUs ...\n");
909         for_each_online_cpu(cpu) {
910                 if (cpu == primary)
911                         continue;
912                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
913                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
914                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
915                 if (!error)
916                         cpumask_set_cpu(cpu, frozen_cpus);
917                 else {
918                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
919                         break;
920                 }
921         }
922
923         if (!error)
924                 BUG_ON(num_online_cpus() > 1);
925         else
926                 pr_err("Non-boot CPUs are not disabled\n");
927
928         /*
929          * Make sure the CPUs won't be enabled by someone else. We need to do
930          * this even in case of failure as all disable_nonboot_cpus() users are
931          * supposed to do enable_nonboot_cpus() on the failure path.
932          */
933         cpu_hotplug_disabled++;
934
935         cpu_maps_update_done();
936         return error;
937 }
938
939 void __weak arch_enable_nonboot_cpus_begin(void)
940 {
941 }
942
943 void __weak arch_enable_nonboot_cpus_end(void)
944 {
945 }
946
947 void enable_nonboot_cpus(void)
948 {
949         int cpu, error;
950
951         /* Allow everyone to use the CPU hotplug again */
952         cpu_maps_update_begin();
953         __cpu_hotplug_enable();
954         if (cpumask_empty(frozen_cpus))
955                 goto out;
956
957         pr_info("Enabling non-boot CPUs ...\n");
958
959         arch_enable_nonboot_cpus_begin();
960
961         for_each_cpu(cpu, frozen_cpus) {
962                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
963                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
964                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
965                 if (!error) {
966                         pr_info("CPU%d is up\n", cpu);
967                         continue;
968                 }
969                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
970         }
971
972         arch_enable_nonboot_cpus_end();
973
974         cpumask_clear(frozen_cpus);
975 out:
976         cpu_maps_update_done();
977 }
978
979 static int __init alloc_frozen_cpus(void)
980 {
981         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
982                 return -ENOMEM;
983         return 0;
984 }
985 core_initcall(alloc_frozen_cpus);
986
987 /*
988  * When callbacks for CPU hotplug notifications are being executed, we must
989  * ensure that the state of the system with respect to the tasks being frozen
990  * or not, as reported by the notification, remains unchanged *throughout the
991  * duration* of the execution of the callbacks.
992  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
993  *
994  * This synchronization is implemented by mutually excluding regular CPU
995  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
996  * Hibernate notifications.
997  */
998 static int
999 cpu_hotplug_pm_callback(struct notifier_block *nb,
1000                         unsigned long action, void *ptr)
1001 {
1002         switch (action) {
1003
1004         case PM_SUSPEND_PREPARE:
1005         case PM_HIBERNATION_PREPARE:
1006                 cpu_hotplug_disable();
1007                 break;
1008
1009         case PM_POST_SUSPEND:
1010         case PM_POST_HIBERNATION:
1011                 cpu_hotplug_enable();
1012                 break;
1013
1014         default:
1015                 return NOTIFY_DONE;
1016         }
1017
1018         return NOTIFY_OK;
1019 }
1020
1021
1022 static int __init cpu_hotplug_pm_sync_init(void)
1023 {
1024         /*
1025          * cpu_hotplug_pm_callback has higher priority than x86
1026          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1027          * to disable cpu hotplug to avoid cpu hotplug race.
1028          */
1029         pm_notifier(cpu_hotplug_pm_callback, 0);
1030         return 0;
1031 }
1032 core_initcall(cpu_hotplug_pm_sync_init);
1033
1034 #endif /* CONFIG_PM_SLEEP_SMP */
1035
1036 int __boot_cpu_id;
1037
1038 #endif /* CONFIG_SMP */
1039
1040 /* Boot processor state steps */
1041 static struct cpuhp_step cpuhp_bp_states[] = {
1042         [CPUHP_OFFLINE] = {
1043                 .name                   = "offline",
1044                 .startup.single         = NULL,
1045                 .teardown.single        = NULL,
1046         },
1047 #ifdef CONFIG_SMP
1048         [CPUHP_CREATE_THREADS]= {
1049                 .name                   = "threads:prepare",
1050                 .startup.single         = smpboot_create_threads,
1051                 .teardown.single        = NULL,
1052                 .cant_stop              = true,
1053         },
1054         [CPUHP_PERF_PREPARE] = {
1055                 .name                   = "perf:prepare",
1056                 .startup.single         = perf_event_init_cpu,
1057                 .teardown.single        = perf_event_exit_cpu,
1058         },
1059         [CPUHP_WORKQUEUE_PREP] = {
1060                 .name                   = "workqueue:prepare",
1061                 .startup.single         = workqueue_prepare_cpu,
1062                 .teardown.single        = NULL,
1063         },
1064         [CPUHP_HRTIMERS_PREPARE] = {
1065                 .name                   = "hrtimers:prepare",
1066                 .startup.single         = hrtimers_prepare_cpu,
1067                 .teardown.single        = hrtimers_dead_cpu,
1068         },
1069         [CPUHP_SMPCFD_PREPARE] = {
1070                 .name                   = "smpcfd:prepare",
1071                 .startup.single         = smpcfd_prepare_cpu,
1072                 .teardown.single        = smpcfd_dead_cpu,
1073         },
1074         [CPUHP_RELAY_PREPARE] = {
1075                 .name                   = "relay:prepare",
1076                 .startup.single         = relay_prepare_cpu,
1077                 .teardown.single        = NULL,
1078         },
1079         [CPUHP_SLAB_PREPARE] = {
1080                 .name                   = "slab:prepare",
1081                 .startup.single         = slab_prepare_cpu,
1082                 .teardown.single        = slab_dead_cpu,
1083         },
1084         [CPUHP_RCUTREE_PREP] = {
1085                 .name                   = "RCU/tree:prepare",
1086                 .startup.single         = rcutree_prepare_cpu,
1087                 .teardown.single        = rcutree_dead_cpu,
1088         },
1089         /*
1090          * On the tear-down path, timers_dead_cpu() must be invoked
1091          * before blk_mq_queue_reinit_notify() from notify_dead(),
1092          * otherwise a RCU stall occurs.
1093          */
1094         [CPUHP_TIMERS_DEAD] = {
1095                 .name                   = "timers:dead",
1096                 .startup.single         = NULL,
1097                 .teardown.single        = timers_dead_cpu,
1098         },
1099         /* Kicks the plugged cpu into life */
1100         [CPUHP_BRINGUP_CPU] = {
1101                 .name                   = "cpu:bringup",
1102                 .startup.single         = bringup_cpu,
1103                 .teardown.single        = NULL,
1104                 .cant_stop              = true,
1105         },
1106         [CPUHP_AP_SMPCFD_DYING] = {
1107                 .name                   = "smpcfd:dying",
1108                 .startup.single         = NULL,
1109                 .teardown.single        = smpcfd_dying_cpu,
1110         },
1111         /*
1112          * Handled on controll processor until the plugged processor manages
1113          * this itself.
1114          */
1115         [CPUHP_TEARDOWN_CPU] = {
1116                 .name                   = "cpu:teardown",
1117                 .startup.single         = NULL,
1118                 .teardown.single        = takedown_cpu,
1119                 .cant_stop              = true,
1120         },
1121 #else
1122         [CPUHP_BRINGUP_CPU] = { },
1123 #endif
1124 };
1125
1126 /* Application processor state steps */
1127 static struct cpuhp_step cpuhp_ap_states[] = {
1128 #ifdef CONFIG_SMP
1129         /* Final state before CPU kills itself */
1130         [CPUHP_AP_IDLE_DEAD] = {
1131                 .name                   = "idle:dead",
1132         },
1133         /*
1134          * Last state before CPU enters the idle loop to die. Transient state
1135          * for synchronization.
1136          */
1137         [CPUHP_AP_OFFLINE] = {
1138                 .name                   = "ap:offline",
1139                 .cant_stop              = true,
1140         },
1141         /* First state is scheduler control. Interrupts are disabled */
1142         [CPUHP_AP_SCHED_STARTING] = {
1143                 .name                   = "sched:starting",
1144                 .startup.single         = sched_cpu_starting,
1145                 .teardown.single        = sched_cpu_dying,
1146         },
1147         [CPUHP_AP_RCUTREE_DYING] = {
1148                 .name                   = "RCU/tree:dying",
1149                 .startup.single         = NULL,
1150                 .teardown.single        = rcutree_dying_cpu,
1151         },
1152         /* Entry state on starting. Interrupts enabled from here on. Transient
1153          * state for synchronsization */
1154         [CPUHP_AP_ONLINE] = {
1155                 .name                   = "ap:online",
1156         },
1157         /* Handle smpboot threads park/unpark */
1158         [CPUHP_AP_SMPBOOT_THREADS] = {
1159                 .name                   = "smpboot/threads:online",
1160                 .startup.single         = smpboot_unpark_threads,
1161                 .teardown.single        = NULL,
1162         },
1163         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1164                 .name                   = "irq/affinity:online",
1165                 .startup.single         = irq_affinity_online_cpu,
1166                 .teardown.single        = NULL,
1167         },
1168         [CPUHP_AP_PERF_ONLINE] = {
1169                 .name                   = "perf:online",
1170                 .startup.single         = perf_event_init_cpu,
1171                 .teardown.single        = perf_event_exit_cpu,
1172         },
1173         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1174                 .name                   = "workqueue:online",
1175                 .startup.single         = workqueue_online_cpu,
1176                 .teardown.single        = workqueue_offline_cpu,
1177         },
1178         [CPUHP_AP_RCUTREE_ONLINE] = {
1179                 .name                   = "RCU/tree:online",
1180                 .startup.single         = rcutree_online_cpu,
1181                 .teardown.single        = rcutree_offline_cpu,
1182         },
1183 #endif
1184         /*
1185          * The dynamically registered state space is here
1186          */
1187
1188 #ifdef CONFIG_SMP
1189         /* Last state is scheduler control setting the cpu active */
1190         [CPUHP_AP_ACTIVE] = {
1191                 .name                   = "sched:active",
1192                 .startup.single         = sched_cpu_activate,
1193                 .teardown.single        = sched_cpu_deactivate,
1194         },
1195 #endif
1196
1197         /* CPU is fully up and running. */
1198         [CPUHP_ONLINE] = {
1199                 .name                   = "online",
1200                 .startup.single         = NULL,
1201                 .teardown.single        = NULL,
1202         },
1203 };
1204
1205 /* Sanity check for callbacks */
1206 static int cpuhp_cb_check(enum cpuhp_state state)
1207 {
1208         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1209                 return -EINVAL;
1210         return 0;
1211 }
1212
1213 /*
1214  * Returns a free for dynamic slot assignment of the Online state. The states
1215  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1216  * by having no name assigned.
1217  */
1218 static int cpuhp_reserve_state(enum cpuhp_state state)
1219 {
1220         enum cpuhp_state i, end;
1221         struct cpuhp_step *step;
1222
1223         switch (state) {
1224         case CPUHP_AP_ONLINE_DYN:
1225                 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1226                 end = CPUHP_AP_ONLINE_DYN_END;
1227                 break;
1228         case CPUHP_BP_PREPARE_DYN:
1229                 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1230                 end = CPUHP_BP_PREPARE_DYN_END;
1231                 break;
1232         default:
1233                 return -EINVAL;
1234         }
1235
1236         for (i = state; i <= end; i++, step++) {
1237                 if (!step->name)
1238                         return i;
1239         }
1240         WARN(1, "No more dynamic states available for CPU hotplug\n");
1241         return -ENOSPC;
1242 }
1243
1244 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1245                                  int (*startup)(unsigned int cpu),
1246                                  int (*teardown)(unsigned int cpu),
1247                                  bool multi_instance)
1248 {
1249         /* (Un)Install the callbacks for further cpu hotplug operations */
1250         struct cpuhp_step *sp;
1251         int ret = 0;
1252
1253         if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1254                 ret = cpuhp_reserve_state(state);
1255                 if (ret < 0)
1256                         return ret;
1257                 state = ret;
1258         }
1259         sp = cpuhp_get_step(state);
1260         if (name && sp->name)
1261                 return -EBUSY;
1262
1263         sp->startup.single = startup;
1264         sp->teardown.single = teardown;
1265         sp->name = name;
1266         sp->multi_instance = multi_instance;
1267         INIT_HLIST_HEAD(&sp->list);
1268         return ret;
1269 }
1270
1271 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1272 {
1273         return cpuhp_get_step(state)->teardown.single;
1274 }
1275
1276 /*
1277  * Call the startup/teardown function for a step either on the AP or
1278  * on the current CPU.
1279  */
1280 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1281                             struct hlist_node *node)
1282 {
1283         struct cpuhp_step *sp = cpuhp_get_step(state);
1284         int ret;
1285
1286         if ((bringup && !sp->startup.single) ||
1287             (!bringup && !sp->teardown.single))
1288                 return 0;
1289         /*
1290          * The non AP bound callbacks can fail on bringup. On teardown
1291          * e.g. module removal we crash for now.
1292          */
1293 #ifdef CONFIG_SMP
1294         if (cpuhp_is_ap_state(state))
1295                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1296         else
1297                 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1298 #else
1299         ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1300 #endif
1301         BUG_ON(ret && !bringup);
1302         return ret;
1303 }
1304
1305 /*
1306  * Called from __cpuhp_setup_state on a recoverable failure.
1307  *
1308  * Note: The teardown callbacks for rollback are not allowed to fail!
1309  */
1310 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1311                                    struct hlist_node *node)
1312 {
1313         int cpu;
1314
1315         /* Roll back the already executed steps on the other cpus */
1316         for_each_present_cpu(cpu) {
1317                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1318                 int cpustate = st->state;
1319
1320                 if (cpu >= failedcpu)
1321                         break;
1322
1323                 /* Did we invoke the startup call on that cpu ? */
1324                 if (cpustate >= state)
1325                         cpuhp_issue_call(cpu, state, false, node);
1326         }
1327 }
1328
1329 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1330                                           struct hlist_node *node,
1331                                           bool invoke)
1332 {
1333         struct cpuhp_step *sp;
1334         int cpu;
1335         int ret;
1336
1337         lockdep_assert_cpus_held();
1338
1339         sp = cpuhp_get_step(state);
1340         if (sp->multi_instance == false)
1341                 return -EINVAL;
1342
1343         mutex_lock(&cpuhp_state_mutex);
1344
1345         if (!invoke || !sp->startup.multi)
1346                 goto add_node;
1347
1348         /*
1349          * Try to call the startup callback for each present cpu
1350          * depending on the hotplug state of the cpu.
1351          */
1352         for_each_present_cpu(cpu) {
1353                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1354                 int cpustate = st->state;
1355
1356                 if (cpustate < state)
1357                         continue;
1358
1359                 ret = cpuhp_issue_call(cpu, state, true, node);
1360                 if (ret) {
1361                         if (sp->teardown.multi)
1362                                 cpuhp_rollback_install(cpu, state, node);
1363                         goto unlock;
1364                 }
1365         }
1366 add_node:
1367         ret = 0;
1368         hlist_add_head(node, &sp->list);
1369 unlock:
1370         mutex_unlock(&cpuhp_state_mutex);
1371         return ret;
1372 }
1373
1374 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1375                                bool invoke)
1376 {
1377         int ret;
1378
1379         cpus_read_lock();
1380         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1381         cpus_read_unlock();
1382         return ret;
1383 }
1384 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1385
1386 /**
1387  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1388  * @state:              The state to setup
1389  * @invoke:             If true, the startup function is invoked for cpus where
1390  *                      cpu state >= @state
1391  * @startup:            startup callback function
1392  * @teardown:           teardown callback function
1393  * @multi_instance:     State is set up for multiple instances which get
1394  *                      added afterwards.
1395  *
1396  * The caller needs to hold cpus read locked while calling this function.
1397  * Returns:
1398  *   On success:
1399  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1400  *      0 for all other states
1401  *   On failure: proper (negative) error code
1402  */
1403 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1404                                    const char *name, bool invoke,
1405                                    int (*startup)(unsigned int cpu),
1406                                    int (*teardown)(unsigned int cpu),
1407                                    bool multi_instance)
1408 {
1409         int cpu, ret = 0;
1410         bool dynstate;
1411
1412         lockdep_assert_cpus_held();
1413
1414         if (cpuhp_cb_check(state) || !name)
1415                 return -EINVAL;
1416
1417         mutex_lock(&cpuhp_state_mutex);
1418
1419         ret = cpuhp_store_callbacks(state, name, startup, teardown,
1420                                     multi_instance);
1421
1422         dynstate = state == CPUHP_AP_ONLINE_DYN;
1423         if (ret > 0 && dynstate) {
1424                 state = ret;
1425                 ret = 0;
1426         }
1427
1428         if (ret || !invoke || !startup)
1429                 goto out;
1430
1431         /*
1432          * Try to call the startup callback for each present cpu
1433          * depending on the hotplug state of the cpu.
1434          */
1435         for_each_present_cpu(cpu) {
1436                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1437                 int cpustate = st->state;
1438
1439                 if (cpustate < state)
1440                         continue;
1441
1442                 ret = cpuhp_issue_call(cpu, state, true, NULL);
1443                 if (ret) {
1444                         if (teardown)
1445                                 cpuhp_rollback_install(cpu, state, NULL);
1446                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1447                         goto out;
1448                 }
1449         }
1450 out:
1451         mutex_unlock(&cpuhp_state_mutex);
1452         /*
1453          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1454          * dynamically allocated state in case of success.
1455          */
1456         if (!ret && dynstate)
1457                 return state;
1458         return ret;
1459 }
1460 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1461
1462 int __cpuhp_setup_state(enum cpuhp_state state,
1463                         const char *name, bool invoke,
1464                         int (*startup)(unsigned int cpu),
1465                         int (*teardown)(unsigned int cpu),
1466                         bool multi_instance)
1467 {
1468         int ret;
1469
1470         cpus_read_lock();
1471         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1472                                              teardown, multi_instance);
1473         cpus_read_unlock();
1474         return ret;
1475 }
1476 EXPORT_SYMBOL(__cpuhp_setup_state);
1477
1478 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1479                                   struct hlist_node *node, bool invoke)
1480 {
1481         struct cpuhp_step *sp = cpuhp_get_step(state);
1482         int cpu;
1483
1484         BUG_ON(cpuhp_cb_check(state));
1485
1486         if (!sp->multi_instance)
1487                 return -EINVAL;
1488
1489         cpus_read_lock();
1490         mutex_lock(&cpuhp_state_mutex);
1491
1492         if (!invoke || !cpuhp_get_teardown_cb(state))
1493                 goto remove;
1494         /*
1495          * Call the teardown callback for each present cpu depending
1496          * on the hotplug state of the cpu. This function is not
1497          * allowed to fail currently!
1498          */
1499         for_each_present_cpu(cpu) {
1500                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1501                 int cpustate = st->state;
1502
1503                 if (cpustate >= state)
1504                         cpuhp_issue_call(cpu, state, false, node);
1505         }
1506
1507 remove:
1508         hlist_del(node);
1509         mutex_unlock(&cpuhp_state_mutex);
1510         cpus_read_unlock();
1511
1512         return 0;
1513 }
1514 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1515
1516 /**
1517  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1518  * @state:      The state to remove
1519  * @invoke:     If true, the teardown function is invoked for cpus where
1520  *              cpu state >= @state
1521  *
1522  * The caller needs to hold cpus read locked while calling this function.
1523  * The teardown callback is currently not allowed to fail. Think
1524  * about module removal!
1525  */
1526 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1527 {
1528         struct cpuhp_step *sp = cpuhp_get_step(state);
1529         int cpu;
1530
1531         BUG_ON(cpuhp_cb_check(state));
1532
1533         lockdep_assert_cpus_held();
1534
1535         mutex_lock(&cpuhp_state_mutex);
1536         if (sp->multi_instance) {
1537                 WARN(!hlist_empty(&sp->list),
1538                      "Error: Removing state %d which has instances left.\n",
1539                      state);
1540                 goto remove;
1541         }
1542
1543         if (!invoke || !cpuhp_get_teardown_cb(state))
1544                 goto remove;
1545
1546         /*
1547          * Call the teardown callback for each present cpu depending
1548          * on the hotplug state of the cpu. This function is not
1549          * allowed to fail currently!
1550          */
1551         for_each_present_cpu(cpu) {
1552                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1553                 int cpustate = st->state;
1554
1555                 if (cpustate >= state)
1556                         cpuhp_issue_call(cpu, state, false, NULL);
1557         }
1558 remove:
1559         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1560         mutex_unlock(&cpuhp_state_mutex);
1561 }
1562 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1563
1564 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1565 {
1566         cpus_read_lock();
1567         __cpuhp_remove_state_cpuslocked(state, invoke);
1568         cpus_read_unlock();
1569 }
1570 EXPORT_SYMBOL(__cpuhp_remove_state);
1571
1572 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1573 static ssize_t show_cpuhp_state(struct device *dev,
1574                                 struct device_attribute *attr, char *buf)
1575 {
1576         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1577
1578         return sprintf(buf, "%d\n", st->state);
1579 }
1580 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1581
1582 static ssize_t write_cpuhp_target(struct device *dev,
1583                                   struct device_attribute *attr,
1584                                   const char *buf, size_t count)
1585 {
1586         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1587         struct cpuhp_step *sp;
1588         int target, ret;
1589
1590         ret = kstrtoint(buf, 10, &target);
1591         if (ret)
1592                 return ret;
1593
1594 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1595         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1596                 return -EINVAL;
1597 #else
1598         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1599                 return -EINVAL;
1600 #endif
1601
1602         ret = lock_device_hotplug_sysfs();
1603         if (ret)
1604                 return ret;
1605
1606         mutex_lock(&cpuhp_state_mutex);
1607         sp = cpuhp_get_step(target);
1608         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1609         mutex_unlock(&cpuhp_state_mutex);
1610         if (ret)
1611                 goto out;
1612
1613         if (st->state < target)
1614                 ret = do_cpu_up(dev->id, target);
1615         else
1616                 ret = do_cpu_down(dev->id, target);
1617 out:
1618         unlock_device_hotplug();
1619         return ret ? ret : count;
1620 }
1621
1622 static ssize_t show_cpuhp_target(struct device *dev,
1623                                  struct device_attribute *attr, char *buf)
1624 {
1625         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1626
1627         return sprintf(buf, "%d\n", st->target);
1628 }
1629 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1630
1631 static struct attribute *cpuhp_cpu_attrs[] = {
1632         &dev_attr_state.attr,
1633         &dev_attr_target.attr,
1634         NULL
1635 };
1636
1637 static const struct attribute_group cpuhp_cpu_attr_group = {
1638         .attrs = cpuhp_cpu_attrs,
1639         .name = "hotplug",
1640         NULL
1641 };
1642
1643 static ssize_t show_cpuhp_states(struct device *dev,
1644                                  struct device_attribute *attr, char *buf)
1645 {
1646         ssize_t cur, res = 0;
1647         int i;
1648
1649         mutex_lock(&cpuhp_state_mutex);
1650         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1651                 struct cpuhp_step *sp = cpuhp_get_step(i);
1652
1653                 if (sp->name) {
1654                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1655                         buf += cur;
1656                         res += cur;
1657                 }
1658         }
1659         mutex_unlock(&cpuhp_state_mutex);
1660         return res;
1661 }
1662 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1663
1664 static struct attribute *cpuhp_cpu_root_attrs[] = {
1665         &dev_attr_states.attr,
1666         NULL
1667 };
1668
1669 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1670         .attrs = cpuhp_cpu_root_attrs,
1671         .name = "hotplug",
1672         NULL
1673 };
1674
1675 static int __init cpuhp_sysfs_init(void)
1676 {
1677         int cpu, ret;
1678
1679         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1680                                  &cpuhp_cpu_root_attr_group);
1681         if (ret)
1682                 return ret;
1683
1684         for_each_possible_cpu(cpu) {
1685                 struct device *dev = get_cpu_device(cpu);
1686
1687                 if (!dev)
1688                         continue;
1689                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1690                 if (ret)
1691                         return ret;
1692         }
1693         return 0;
1694 }
1695 device_initcall(cpuhp_sysfs_init);
1696 #endif
1697
1698 /*
1699  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1700  * represents all NR_CPUS bits binary values of 1<<nr.
1701  *
1702  * It is used by cpumask_of() to get a constant address to a CPU
1703  * mask value that has a single bit set only.
1704  */
1705
1706 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1707 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1708 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1709 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1710 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1711
1712 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1713
1714         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1715         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1716 #if BITS_PER_LONG > 32
1717         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1718         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1719 #endif
1720 };
1721 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1722
1723 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1724 EXPORT_SYMBOL(cpu_all_bits);
1725
1726 #ifdef CONFIG_INIT_ALL_POSSIBLE
1727 struct cpumask __cpu_possible_mask __read_mostly
1728         = {CPU_BITS_ALL};
1729 #else
1730 struct cpumask __cpu_possible_mask __read_mostly;
1731 #endif
1732 EXPORT_SYMBOL(__cpu_possible_mask);
1733
1734 struct cpumask __cpu_online_mask __read_mostly;
1735 EXPORT_SYMBOL(__cpu_online_mask);
1736
1737 struct cpumask __cpu_present_mask __read_mostly;
1738 EXPORT_SYMBOL(__cpu_present_mask);
1739
1740 struct cpumask __cpu_active_mask __read_mostly;
1741 EXPORT_SYMBOL(__cpu_active_mask);
1742
1743 void init_cpu_present(const struct cpumask *src)
1744 {
1745         cpumask_copy(&__cpu_present_mask, src);
1746 }
1747
1748 void init_cpu_possible(const struct cpumask *src)
1749 {
1750         cpumask_copy(&__cpu_possible_mask, src);
1751 }
1752
1753 void init_cpu_online(const struct cpumask *src)
1754 {
1755         cpumask_copy(&__cpu_online_mask, src);
1756 }
1757
1758 /*
1759  * Activate the first processor.
1760  */
1761 void __init boot_cpu_init(void)
1762 {
1763         int cpu = smp_processor_id();
1764
1765         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1766         set_cpu_online(cpu, true);
1767         set_cpu_active(cpu, true);
1768         set_cpu_present(cpu, true);
1769         set_cpu_possible(cpu, true);
1770
1771 #ifdef CONFIG_SMP
1772         __boot_cpu_id = cpu;
1773 #endif
1774 }
1775
1776 /*
1777  * Must be called _AFTER_ setting up the per_cpu areas
1778  */
1779 void __init boot_cpu_state_init(void)
1780 {
1781         per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1782 }