]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/fork.c
can: ti_hecc: fix invalid error codes
[karo-tx-linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72
73 #include <asm/pgtable.h>
74 #include <asm/pgalloc.h>
75 #include <asm/uaccess.h>
76 #include <asm/mmu_context.h>
77 #include <asm/cacheflush.h>
78 #include <asm/tlbflush.h>
79
80 #include <trace/events/sched.h>
81
82 /*
83  * Protected counters by write_lock_irq(&tasklist_lock)
84  */
85 unsigned long total_forks;      /* Handle normal Linux uptimes. */
86 int nr_threads;                 /* The idle threads do not count.. */
87
88 int max_threads;                /* tunable limit on nr_threads */
89
90 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
91
92 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
93
94 #ifdef CONFIG_PROVE_RCU
95 int lockdep_tasklist_lock_is_held(void)
96 {
97         return lockdep_is_held(&tasklist_lock);
98 }
99 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
100 #endif /* #ifdef CONFIG_PROVE_RCU */
101
102 int nr_processes(void)
103 {
104         int cpu;
105         int total = 0;
106
107         for_each_possible_cpu(cpu)
108                 total += per_cpu(process_counts, cpu);
109
110         return total;
111 }
112
113 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
114 # define alloc_task_struct_node(node)           \
115                 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
116 # define free_task_struct(tsk)                  \
117                 kmem_cache_free(task_struct_cachep, (tsk))
118 static struct kmem_cache *task_struct_cachep;
119 #endif
120
121 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
122 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
123                                                   int node)
124 {
125 #ifdef CONFIG_DEBUG_STACK_USAGE
126         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
127 #else
128         gfp_t mask = GFP_KERNEL;
129 #endif
130         struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
131
132         return page ? page_address(page) : NULL;
133 }
134
135 static inline void free_thread_info(struct thread_info *ti)
136 {
137         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
138 }
139 #endif
140
141 /* SLAB cache for signal_struct structures (tsk->signal) */
142 static struct kmem_cache *signal_cachep;
143
144 /* SLAB cache for sighand_struct structures (tsk->sighand) */
145 struct kmem_cache *sighand_cachep;
146
147 /* SLAB cache for files_struct structures (tsk->files) */
148 struct kmem_cache *files_cachep;
149
150 /* SLAB cache for fs_struct structures (tsk->fs) */
151 struct kmem_cache *fs_cachep;
152
153 /* SLAB cache for vm_area_struct structures */
154 struct kmem_cache *vm_area_cachep;
155
156 /* SLAB cache for mm_struct structures (tsk->mm) */
157 static struct kmem_cache *mm_cachep;
158
159 static void account_kernel_stack(struct thread_info *ti, int account)
160 {
161         struct zone *zone = page_zone(virt_to_page(ti));
162
163         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
164 }
165
166 void free_task(struct task_struct *tsk)
167 {
168         prop_local_destroy_single(&tsk->dirties);
169         account_kernel_stack(tsk->stack, -1);
170         free_thread_info(tsk->stack);
171         rt_mutex_debug_task_free(tsk);
172         ftrace_graph_exit_task(tsk);
173         free_task_struct(tsk);
174 }
175 EXPORT_SYMBOL(free_task);
176
177 static inline void free_signal_struct(struct signal_struct *sig)
178 {
179         taskstats_tgid_free(sig);
180         sched_autogroup_exit(sig);
181         kmem_cache_free(signal_cachep, sig);
182 }
183
184 static inline void put_signal_struct(struct signal_struct *sig)
185 {
186         if (atomic_dec_and_test(&sig->sigcnt))
187                 free_signal_struct(sig);
188 }
189
190 void __put_task_struct(struct task_struct *tsk)
191 {
192         WARN_ON(!tsk->exit_state);
193         WARN_ON(atomic_read(&tsk->usage));
194         WARN_ON(tsk == current);
195
196         exit_creds(tsk);
197         delayacct_tsk_free(tsk);
198         put_signal_struct(tsk->signal);
199
200         if (!profile_handoff_task(tsk))
201                 free_task(tsk);
202 }
203 EXPORT_SYMBOL_GPL(__put_task_struct);
204
205 /*
206  * macro override instead of weak attribute alias, to workaround
207  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
208  */
209 #ifndef arch_task_cache_init
210 #define arch_task_cache_init()
211 #endif
212
213 void __init fork_init(unsigned long mempages)
214 {
215 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
216 #ifndef ARCH_MIN_TASKALIGN
217 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
218 #endif
219         /* create a slab on which task_structs can be allocated */
220         task_struct_cachep =
221                 kmem_cache_create("task_struct", sizeof(struct task_struct),
222                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
223 #endif
224
225         /* do the arch specific task caches init */
226         arch_task_cache_init();
227
228         /*
229          * The default maximum number of threads is set to a safe
230          * value: the thread structures can take up at most half
231          * of memory.
232          */
233         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
234
235         /*
236          * we need to allow at least 20 threads to boot a system
237          */
238         if(max_threads < 20)
239                 max_threads = 20;
240
241         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
242         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
243         init_task.signal->rlim[RLIMIT_SIGPENDING] =
244                 init_task.signal->rlim[RLIMIT_NPROC];
245 }
246
247 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
248                                                struct task_struct *src)
249 {
250         *dst = *src;
251         return 0;
252 }
253
254 static struct task_struct *dup_task_struct(struct task_struct *orig)
255 {
256         struct task_struct *tsk;
257         struct thread_info *ti;
258         unsigned long *stackend;
259         int node = tsk_fork_get_node(orig);
260         int err;
261
262         prepare_to_copy(orig);
263
264         tsk = alloc_task_struct_node(node);
265         if (!tsk)
266                 return NULL;
267
268         ti = alloc_thread_info_node(tsk, node);
269         if (!ti) {
270                 free_task_struct(tsk);
271                 return NULL;
272         }
273
274         err = arch_dup_task_struct(tsk, orig);
275         if (err)
276                 goto out;
277
278         tsk->stack = ti;
279
280         err = prop_local_init_single(&tsk->dirties);
281         if (err)
282                 goto out;
283
284         setup_thread_stack(tsk, orig);
285         clear_user_return_notifier(tsk);
286         clear_tsk_need_resched(tsk);
287         stackend = end_of_stack(tsk);
288         *stackend = STACK_END_MAGIC;    /* for overflow detection */
289
290 #ifdef CONFIG_CC_STACKPROTECTOR
291         tsk->stack_canary = get_random_int();
292 #endif
293
294         /* One for us, one for whoever does the "release_task()" (usually parent) */
295         atomic_set(&tsk->usage,2);
296         atomic_set(&tsk->fs_excl, 0);
297 #ifdef CONFIG_BLK_DEV_IO_TRACE
298         tsk->btrace_seq = 0;
299 #endif
300         tsk->splice_pipe = NULL;
301
302         account_kernel_stack(ti, 1);
303
304         return tsk;
305
306 out:
307         free_thread_info(ti);
308         free_task_struct(tsk);
309         return NULL;
310 }
311
312 #ifdef CONFIG_MMU
313 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
314 {
315         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
316         struct rb_node **rb_link, *rb_parent;
317         int retval;
318         unsigned long charge;
319         struct mempolicy *pol;
320
321         down_write(&oldmm->mmap_sem);
322         flush_cache_dup_mm(oldmm);
323         /*
324          * Not linked in yet - no deadlock potential:
325          */
326         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
327
328         mm->locked_vm = 0;
329         mm->mmap = NULL;
330         mm->mmap_cache = NULL;
331         mm->free_area_cache = oldmm->mmap_base;
332         mm->cached_hole_size = ~0UL;
333         mm->map_count = 0;
334         cpumask_clear(mm_cpumask(mm));
335         mm->mm_rb = RB_ROOT;
336         rb_link = &mm->mm_rb.rb_node;
337         rb_parent = NULL;
338         pprev = &mm->mmap;
339         retval = ksm_fork(mm, oldmm);
340         if (retval)
341                 goto out;
342         retval = khugepaged_fork(mm, oldmm);
343         if (retval)
344                 goto out;
345
346         prev = NULL;
347         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
348                 struct file *file;
349
350                 if (mpnt->vm_flags & VM_DONTCOPY) {
351                         long pages = vma_pages(mpnt);
352                         mm->total_vm -= pages;
353                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
354                                                                 -pages);
355                         continue;
356                 }
357                 charge = 0;
358                 if (mpnt->vm_flags & VM_ACCOUNT) {
359                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
360                         if (security_vm_enough_memory(len))
361                                 goto fail_nomem;
362                         charge = len;
363                 }
364                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
365                 if (!tmp)
366                         goto fail_nomem;
367                 *tmp = *mpnt;
368                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
369                 pol = mpol_dup(vma_policy(mpnt));
370                 retval = PTR_ERR(pol);
371                 if (IS_ERR(pol))
372                         goto fail_nomem_policy;
373                 vma_set_policy(tmp, pol);
374                 tmp->vm_mm = mm;
375                 if (anon_vma_fork(tmp, mpnt))
376                         goto fail_nomem_anon_vma_fork;
377                 tmp->vm_flags &= ~VM_LOCKED;
378                 tmp->vm_next = tmp->vm_prev = NULL;
379                 file = tmp->vm_file;
380                 if (file) {
381                         struct inode *inode = file->f_path.dentry->d_inode;
382                         struct address_space *mapping = file->f_mapping;
383
384                         get_file(file);
385                         if (tmp->vm_flags & VM_DENYWRITE)
386                                 atomic_dec(&inode->i_writecount);
387                         mutex_lock(&mapping->i_mmap_mutex);
388                         if (tmp->vm_flags & VM_SHARED)
389                                 mapping->i_mmap_writable++;
390                         flush_dcache_mmap_lock(mapping);
391                         /* insert tmp into the share list, just after mpnt */
392                         vma_prio_tree_add(tmp, mpnt);
393                         flush_dcache_mmap_unlock(mapping);
394                         mutex_unlock(&mapping->i_mmap_mutex);
395                 }
396
397                 /*
398                  * Clear hugetlb-related page reserves for children. This only
399                  * affects MAP_PRIVATE mappings. Faults generated by the child
400                  * are not guaranteed to succeed, even if read-only
401                  */
402                 if (is_vm_hugetlb_page(tmp))
403                         reset_vma_resv_huge_pages(tmp);
404
405                 /*
406                  * Link in the new vma and copy the page table entries.
407                  */
408                 *pprev = tmp;
409                 pprev = &tmp->vm_next;
410                 tmp->vm_prev = prev;
411                 prev = tmp;
412
413                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
414                 rb_link = &tmp->vm_rb.rb_right;
415                 rb_parent = &tmp->vm_rb;
416
417                 mm->map_count++;
418                 retval = copy_page_range(mm, oldmm, mpnt);
419
420                 if (tmp->vm_ops && tmp->vm_ops->open)
421                         tmp->vm_ops->open(tmp);
422
423                 if (retval)
424                         goto out;
425         }
426         /* a new mm has just been created */
427         arch_dup_mmap(oldmm, mm);
428         retval = 0;
429 out:
430         up_write(&mm->mmap_sem);
431         flush_tlb_mm(oldmm);
432         up_write(&oldmm->mmap_sem);
433         return retval;
434 fail_nomem_anon_vma_fork:
435         mpol_put(pol);
436 fail_nomem_policy:
437         kmem_cache_free(vm_area_cachep, tmp);
438 fail_nomem:
439         retval = -ENOMEM;
440         vm_unacct_memory(charge);
441         goto out;
442 }
443
444 static inline int mm_alloc_pgd(struct mm_struct * mm)
445 {
446         mm->pgd = pgd_alloc(mm);
447         if (unlikely(!mm->pgd))
448                 return -ENOMEM;
449         return 0;
450 }
451
452 static inline void mm_free_pgd(struct mm_struct * mm)
453 {
454         pgd_free(mm, mm->pgd);
455 }
456 #else
457 #define dup_mmap(mm, oldmm)     (0)
458 #define mm_alloc_pgd(mm)        (0)
459 #define mm_free_pgd(mm)
460 #endif /* CONFIG_MMU */
461
462 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
463
464 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
465 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
466
467 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
468
469 static int __init coredump_filter_setup(char *s)
470 {
471         default_dump_filter =
472                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
473                 MMF_DUMP_FILTER_MASK;
474         return 1;
475 }
476
477 __setup("coredump_filter=", coredump_filter_setup);
478
479 #include <linux/init_task.h>
480
481 static void mm_init_aio(struct mm_struct *mm)
482 {
483 #ifdef CONFIG_AIO
484         spin_lock_init(&mm->ioctx_lock);
485         INIT_HLIST_HEAD(&mm->ioctx_list);
486 #endif
487 }
488
489 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
490 {
491         atomic_set(&mm->mm_users, 1);
492         atomic_set(&mm->mm_count, 1);
493         init_rwsem(&mm->mmap_sem);
494         INIT_LIST_HEAD(&mm->mmlist);
495         mm->flags = (current->mm) ?
496                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
497         mm->core_state = NULL;
498         mm->nr_ptes = 0;
499         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
500         spin_lock_init(&mm->page_table_lock);
501         mm->free_area_cache = TASK_UNMAPPED_BASE;
502         mm->cached_hole_size = ~0UL;
503         mm_init_aio(mm);
504         mm_init_owner(mm, p);
505         atomic_set(&mm->oom_disable_count, 0);
506
507         if (likely(!mm_alloc_pgd(mm))) {
508                 mm->def_flags = 0;
509                 mmu_notifier_mm_init(mm);
510                 return mm;
511         }
512
513         free_mm(mm);
514         return NULL;
515 }
516
517 /*
518  * Allocate and initialize an mm_struct.
519  */
520 struct mm_struct * mm_alloc(void)
521 {
522         struct mm_struct * mm;
523
524         mm = allocate_mm();
525         if (!mm)
526                 return NULL;
527
528         memset(mm, 0, sizeof(*mm));
529         mm_init_cpumask(mm);
530         return mm_init(mm, current);
531 }
532
533 /*
534  * Called when the last reference to the mm
535  * is dropped: either by a lazy thread or by
536  * mmput. Free the page directory and the mm.
537  */
538 void __mmdrop(struct mm_struct *mm)
539 {
540         BUG_ON(mm == &init_mm);
541         mm_free_pgd(mm);
542         destroy_context(mm);
543         mmu_notifier_mm_destroy(mm);
544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
545         VM_BUG_ON(mm->pmd_huge_pte);
546 #endif
547         free_mm(mm);
548 }
549 EXPORT_SYMBOL_GPL(__mmdrop);
550
551 /*
552  * Decrement the use count and release all resources for an mm.
553  */
554 void mmput(struct mm_struct *mm)
555 {
556         might_sleep();
557
558         if (atomic_dec_and_test(&mm->mm_users)) {
559                 exit_aio(mm);
560                 ksm_exit(mm);
561                 khugepaged_exit(mm); /* must run before exit_mmap */
562                 exit_mmap(mm);
563                 set_mm_exe_file(mm, NULL);
564                 if (!list_empty(&mm->mmlist)) {
565                         spin_lock(&mmlist_lock);
566                         list_del(&mm->mmlist);
567                         spin_unlock(&mmlist_lock);
568                 }
569                 put_swap_token(mm);
570                 if (mm->binfmt)
571                         module_put(mm->binfmt->module);
572                 mmdrop(mm);
573         }
574 }
575 EXPORT_SYMBOL_GPL(mmput);
576
577 /*
578  * We added or removed a vma mapping the executable. The vmas are only mapped
579  * during exec and are not mapped with the mmap system call.
580  * Callers must hold down_write() on the mm's mmap_sem for these
581  */
582 void added_exe_file_vma(struct mm_struct *mm)
583 {
584         mm->num_exe_file_vmas++;
585 }
586
587 void removed_exe_file_vma(struct mm_struct *mm)
588 {
589         mm->num_exe_file_vmas--;
590         if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
591                 fput(mm->exe_file);
592                 mm->exe_file = NULL;
593         }
594
595 }
596
597 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
598 {
599         if (new_exe_file)
600                 get_file(new_exe_file);
601         if (mm->exe_file)
602                 fput(mm->exe_file);
603         mm->exe_file = new_exe_file;
604         mm->num_exe_file_vmas = 0;
605 }
606
607 struct file *get_mm_exe_file(struct mm_struct *mm)
608 {
609         struct file *exe_file;
610
611         /* We need mmap_sem to protect against races with removal of
612          * VM_EXECUTABLE vmas */
613         down_read(&mm->mmap_sem);
614         exe_file = mm->exe_file;
615         if (exe_file)
616                 get_file(exe_file);
617         up_read(&mm->mmap_sem);
618         return exe_file;
619 }
620
621 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
622 {
623         /* It's safe to write the exe_file pointer without exe_file_lock because
624          * this is called during fork when the task is not yet in /proc */
625         newmm->exe_file = get_mm_exe_file(oldmm);
626 }
627
628 /**
629  * get_task_mm - acquire a reference to the task's mm
630  *
631  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
632  * this kernel workthread has transiently adopted a user mm with use_mm,
633  * to do its AIO) is not set and if so returns a reference to it, after
634  * bumping up the use count.  User must release the mm via mmput()
635  * after use.  Typically used by /proc and ptrace.
636  */
637 struct mm_struct *get_task_mm(struct task_struct *task)
638 {
639         struct mm_struct *mm;
640
641         task_lock(task);
642         mm = task->mm;
643         if (mm) {
644                 if (task->flags & PF_KTHREAD)
645                         mm = NULL;
646                 else
647                         atomic_inc(&mm->mm_users);
648         }
649         task_unlock(task);
650         return mm;
651 }
652 EXPORT_SYMBOL_GPL(get_task_mm);
653
654 /* Please note the differences between mmput and mm_release.
655  * mmput is called whenever we stop holding onto a mm_struct,
656  * error success whatever.
657  *
658  * mm_release is called after a mm_struct has been removed
659  * from the current process.
660  *
661  * This difference is important for error handling, when we
662  * only half set up a mm_struct for a new process and need to restore
663  * the old one.  Because we mmput the new mm_struct before
664  * restoring the old one. . .
665  * Eric Biederman 10 January 1998
666  */
667 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
668 {
669         struct completion *vfork_done = tsk->vfork_done;
670
671         /* Get rid of any futexes when releasing the mm */
672 #ifdef CONFIG_FUTEX
673         if (unlikely(tsk->robust_list)) {
674                 exit_robust_list(tsk);
675                 tsk->robust_list = NULL;
676         }
677 #ifdef CONFIG_COMPAT
678         if (unlikely(tsk->compat_robust_list)) {
679                 compat_exit_robust_list(tsk);
680                 tsk->compat_robust_list = NULL;
681         }
682 #endif
683         if (unlikely(!list_empty(&tsk->pi_state_list)))
684                 exit_pi_state_list(tsk);
685 #endif
686
687         /* Get rid of any cached register state */
688         deactivate_mm(tsk, mm);
689
690         /* notify parent sleeping on vfork() */
691         if (vfork_done) {
692                 tsk->vfork_done = NULL;
693                 complete(vfork_done);
694         }
695
696         /*
697          * If we're exiting normally, clear a user-space tid field if
698          * requested.  We leave this alone when dying by signal, to leave
699          * the value intact in a core dump, and to save the unnecessary
700          * trouble otherwise.  Userland only wants this done for a sys_exit.
701          */
702         if (tsk->clear_child_tid) {
703                 if (!(tsk->flags & PF_SIGNALED) &&
704                     atomic_read(&mm->mm_users) > 1) {
705                         /*
706                          * We don't check the error code - if userspace has
707                          * not set up a proper pointer then tough luck.
708                          */
709                         put_user(0, tsk->clear_child_tid);
710                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
711                                         1, NULL, NULL, 0);
712                 }
713                 tsk->clear_child_tid = NULL;
714         }
715 }
716
717 /*
718  * Allocate a new mm structure and copy contents from the
719  * mm structure of the passed in task structure.
720  */
721 struct mm_struct *dup_mm(struct task_struct *tsk)
722 {
723         struct mm_struct *mm, *oldmm = current->mm;
724         int err;
725
726         if (!oldmm)
727                 return NULL;
728
729         mm = allocate_mm();
730         if (!mm)
731                 goto fail_nomem;
732
733         memcpy(mm, oldmm, sizeof(*mm));
734         mm_init_cpumask(mm);
735
736         /* Initializing for Swap token stuff */
737         mm->token_priority = 0;
738         mm->last_interval = 0;
739
740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
741         mm->pmd_huge_pte = NULL;
742 #endif
743
744         if (!mm_init(mm, tsk))
745                 goto fail_nomem;
746
747         if (init_new_context(tsk, mm))
748                 goto fail_nocontext;
749
750         dup_mm_exe_file(oldmm, mm);
751
752         err = dup_mmap(mm, oldmm);
753         if (err)
754                 goto free_pt;
755
756         mm->hiwater_rss = get_mm_rss(mm);
757         mm->hiwater_vm = mm->total_vm;
758
759         if (mm->binfmt && !try_module_get(mm->binfmt->module))
760                 goto free_pt;
761
762         return mm;
763
764 free_pt:
765         /* don't put binfmt in mmput, we haven't got module yet */
766         mm->binfmt = NULL;
767         mmput(mm);
768
769 fail_nomem:
770         return NULL;
771
772 fail_nocontext:
773         /*
774          * If init_new_context() failed, we cannot use mmput() to free the mm
775          * because it calls destroy_context()
776          */
777         mm_free_pgd(mm);
778         free_mm(mm);
779         return NULL;
780 }
781
782 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
783 {
784         struct mm_struct * mm, *oldmm;
785         int retval;
786
787         tsk->min_flt = tsk->maj_flt = 0;
788         tsk->nvcsw = tsk->nivcsw = 0;
789 #ifdef CONFIG_DETECT_HUNG_TASK
790         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
791 #endif
792
793         tsk->mm = NULL;
794         tsk->active_mm = NULL;
795
796         /*
797          * Are we cloning a kernel thread?
798          *
799          * We need to steal a active VM for that..
800          */
801         oldmm = current->mm;
802         if (!oldmm)
803                 return 0;
804
805         if (clone_flags & CLONE_VM) {
806                 atomic_inc(&oldmm->mm_users);
807                 mm = oldmm;
808                 goto good_mm;
809         }
810
811         retval = -ENOMEM;
812         mm = dup_mm(tsk);
813         if (!mm)
814                 goto fail_nomem;
815
816 good_mm:
817         /* Initializing for Swap token stuff */
818         mm->token_priority = 0;
819         mm->last_interval = 0;
820         if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
821                 atomic_inc(&mm->oom_disable_count);
822
823         tsk->mm = mm;
824         tsk->active_mm = mm;
825         return 0;
826
827 fail_nomem:
828         return retval;
829 }
830
831 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
832 {
833         struct fs_struct *fs = current->fs;
834         if (clone_flags & CLONE_FS) {
835                 /* tsk->fs is already what we want */
836                 spin_lock(&fs->lock);
837                 if (fs->in_exec) {
838                         spin_unlock(&fs->lock);
839                         return -EAGAIN;
840                 }
841                 fs->users++;
842                 spin_unlock(&fs->lock);
843                 return 0;
844         }
845         tsk->fs = copy_fs_struct(fs);
846         if (!tsk->fs)
847                 return -ENOMEM;
848         return 0;
849 }
850
851 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
852 {
853         struct files_struct *oldf, *newf;
854         int error = 0;
855
856         /*
857          * A background process may not have any files ...
858          */
859         oldf = current->files;
860         if (!oldf)
861                 goto out;
862
863         if (clone_flags & CLONE_FILES) {
864                 atomic_inc(&oldf->count);
865                 goto out;
866         }
867
868         newf = dup_fd(oldf, &error);
869         if (!newf)
870                 goto out;
871
872         tsk->files = newf;
873         error = 0;
874 out:
875         return error;
876 }
877
878 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
879 {
880 #ifdef CONFIG_BLOCK
881         struct io_context *ioc = current->io_context;
882
883         if (!ioc)
884                 return 0;
885         /*
886          * Share io context with parent, if CLONE_IO is set
887          */
888         if (clone_flags & CLONE_IO) {
889                 tsk->io_context = ioc_task_link(ioc);
890                 if (unlikely(!tsk->io_context))
891                         return -ENOMEM;
892         } else if (ioprio_valid(ioc->ioprio)) {
893                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
894                 if (unlikely(!tsk->io_context))
895                         return -ENOMEM;
896
897                 tsk->io_context->ioprio = ioc->ioprio;
898         }
899 #endif
900         return 0;
901 }
902
903 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
904 {
905         struct sighand_struct *sig;
906
907         if (clone_flags & CLONE_SIGHAND) {
908                 atomic_inc(&current->sighand->count);
909                 return 0;
910         }
911         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
912         rcu_assign_pointer(tsk->sighand, sig);
913         if (!sig)
914                 return -ENOMEM;
915         atomic_set(&sig->count, 1);
916         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
917         return 0;
918 }
919
920 void __cleanup_sighand(struct sighand_struct *sighand)
921 {
922         if (atomic_dec_and_test(&sighand->count)) {
923                 signalfd_cleanup(sighand);
924                 kmem_cache_free(sighand_cachep, sighand);
925         }
926 }
927
928
929 /*
930  * Initialize POSIX timer handling for a thread group.
931  */
932 static void posix_cpu_timers_init_group(struct signal_struct *sig)
933 {
934         unsigned long cpu_limit;
935
936         /* Thread group counters. */
937         thread_group_cputime_init(sig);
938
939         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
940         if (cpu_limit != RLIM_INFINITY) {
941                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
942                 sig->cputimer.running = 1;
943         }
944
945         /* The timer lists. */
946         INIT_LIST_HEAD(&sig->cpu_timers[0]);
947         INIT_LIST_HEAD(&sig->cpu_timers[1]);
948         INIT_LIST_HEAD(&sig->cpu_timers[2]);
949 }
950
951 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
952 {
953         struct signal_struct *sig;
954
955         if (clone_flags & CLONE_THREAD)
956                 return 0;
957
958         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
959         tsk->signal = sig;
960         if (!sig)
961                 return -ENOMEM;
962
963         sig->nr_threads = 1;
964         atomic_set(&sig->live, 1);
965         atomic_set(&sig->sigcnt, 1);
966         init_waitqueue_head(&sig->wait_chldexit);
967         if (clone_flags & CLONE_NEWPID)
968                 sig->flags |= SIGNAL_UNKILLABLE;
969         sig->curr_target = tsk;
970         init_sigpending(&sig->shared_pending);
971         INIT_LIST_HEAD(&sig->posix_timers);
972
973         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
974         sig->real_timer.function = it_real_fn;
975
976         task_lock(current->group_leader);
977         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
978         task_unlock(current->group_leader);
979
980         posix_cpu_timers_init_group(sig);
981
982         tty_audit_fork(sig);
983         sched_autogroup_fork(sig);
984
985 #ifdef CONFIG_CGROUPS
986         init_rwsem(&sig->threadgroup_fork_lock);
987 #endif
988 #ifdef CONFIG_CPUSETS
989         seqcount_init(&tsk->mems_allowed_seq);
990 #endif
991
992         sig->oom_adj = current->signal->oom_adj;
993         sig->oom_score_adj = current->signal->oom_score_adj;
994         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
995
996         mutex_init(&sig->cred_guard_mutex);
997
998         return 0;
999 }
1000
1001 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1002 {
1003         unsigned long new_flags = p->flags;
1004
1005         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1006         new_flags |= PF_FORKNOEXEC;
1007         new_flags |= PF_STARTING;
1008         p->flags = new_flags;
1009         clear_freeze_flag(p);
1010 }
1011
1012 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1013 {
1014         current->clear_child_tid = tidptr;
1015
1016         return task_pid_vnr(current);
1017 }
1018
1019 static void rt_mutex_init_task(struct task_struct *p)
1020 {
1021         raw_spin_lock_init(&p->pi_lock);
1022 #ifdef CONFIG_RT_MUTEXES
1023         plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
1024         p->pi_blocked_on = NULL;
1025 #endif
1026 }
1027
1028 #ifdef CONFIG_MM_OWNER
1029 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1030 {
1031         mm->owner = p;
1032 }
1033 #endif /* CONFIG_MM_OWNER */
1034
1035 /*
1036  * Initialize POSIX timer handling for a single task.
1037  */
1038 static void posix_cpu_timers_init(struct task_struct *tsk)
1039 {
1040         tsk->cputime_expires.prof_exp = cputime_zero;
1041         tsk->cputime_expires.virt_exp = cputime_zero;
1042         tsk->cputime_expires.sched_exp = 0;
1043         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1044         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1045         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1046 }
1047
1048 /*
1049  * This creates a new process as a copy of the old one,
1050  * but does not actually start it yet.
1051  *
1052  * It copies the registers, and all the appropriate
1053  * parts of the process environment (as per the clone
1054  * flags). The actual kick-off is left to the caller.
1055  */
1056 static struct task_struct *copy_process(unsigned long clone_flags,
1057                                         unsigned long stack_start,
1058                                         struct pt_regs *regs,
1059                                         unsigned long stack_size,
1060                                         int __user *child_tidptr,
1061                                         struct pid *pid,
1062                                         int trace)
1063 {
1064         int retval;
1065         struct task_struct *p;
1066         int cgroup_callbacks_done = 0;
1067
1068         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1069                 return ERR_PTR(-EINVAL);
1070
1071         /*
1072          * Thread groups must share signals as well, and detached threads
1073          * can only be started up within the thread group.
1074          */
1075         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1076                 return ERR_PTR(-EINVAL);
1077
1078         /*
1079          * Shared signal handlers imply shared VM. By way of the above,
1080          * thread groups also imply shared VM. Blocking this case allows
1081          * for various simplifications in other code.
1082          */
1083         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1084                 return ERR_PTR(-EINVAL);
1085
1086         /*
1087          * Siblings of global init remain as zombies on exit since they are
1088          * not reaped by their parent (swapper). To solve this and to avoid
1089          * multi-rooted process trees, prevent global and container-inits
1090          * from creating siblings.
1091          */
1092         if ((clone_flags & CLONE_PARENT) &&
1093                                 current->signal->flags & SIGNAL_UNKILLABLE)
1094                 return ERR_PTR(-EINVAL);
1095
1096         retval = security_task_create(clone_flags);
1097         if (retval)
1098                 goto fork_out;
1099
1100         retval = -ENOMEM;
1101         p = dup_task_struct(current);
1102         if (!p)
1103                 goto fork_out;
1104
1105         ftrace_graph_init_task(p);
1106
1107         rt_mutex_init_task(p);
1108
1109 #ifdef CONFIG_PROVE_LOCKING
1110         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1111         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1112 #endif
1113         retval = -EAGAIN;
1114         if (atomic_read(&p->real_cred->user->processes) >=
1115                         task_rlimit(p, RLIMIT_NPROC)) {
1116                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1117                     p->real_cred->user != INIT_USER)
1118                         goto bad_fork_free;
1119         }
1120
1121         retval = copy_creds(p, clone_flags);
1122         if (retval < 0)
1123                 goto bad_fork_free;
1124
1125         /*
1126          * If multiple threads are within copy_process(), then this check
1127          * triggers too late. This doesn't hurt, the check is only there
1128          * to stop root fork bombs.
1129          */
1130         retval = -EAGAIN;
1131         if (nr_threads >= max_threads)
1132                 goto bad_fork_cleanup_count;
1133
1134         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1135                 goto bad_fork_cleanup_count;
1136
1137         p->did_exec = 0;
1138         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1139         copy_flags(clone_flags, p);
1140         INIT_LIST_HEAD(&p->children);
1141         INIT_LIST_HEAD(&p->sibling);
1142         rcu_copy_process(p);
1143         p->vfork_done = NULL;
1144         spin_lock_init(&p->alloc_lock);
1145
1146         init_sigpending(&p->pending);
1147
1148         p->utime = cputime_zero;
1149         p->stime = cputime_zero;
1150         p->gtime = cputime_zero;
1151         p->utimescaled = cputime_zero;
1152         p->stimescaled = cputime_zero;
1153 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1154         p->prev_utime = cputime_zero;
1155         p->prev_stime = cputime_zero;
1156 #endif
1157 #if defined(SPLIT_RSS_COUNTING)
1158         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1159 #endif
1160
1161         p->default_timer_slack_ns = current->timer_slack_ns;
1162
1163         task_io_accounting_init(&p->ioac);
1164         acct_clear_integrals(p);
1165
1166         posix_cpu_timers_init(p);
1167
1168         do_posix_clock_monotonic_gettime(&p->start_time);
1169         p->real_start_time = p->start_time;
1170         monotonic_to_bootbased(&p->real_start_time);
1171         p->io_context = NULL;
1172         p->audit_context = NULL;
1173         if (clone_flags & CLONE_THREAD)
1174                 threadgroup_fork_read_lock(current);
1175         cgroup_fork(p);
1176 #ifdef CONFIG_NUMA
1177         p->mempolicy = mpol_dup(p->mempolicy);
1178         if (IS_ERR(p->mempolicy)) {
1179                 retval = PTR_ERR(p->mempolicy);
1180                 p->mempolicy = NULL;
1181                 goto bad_fork_cleanup_cgroup;
1182         }
1183         mpol_fix_fork_child_flag(p);
1184 #endif
1185 #ifdef CONFIG_TRACE_IRQFLAGS
1186         p->irq_events = 0;
1187 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1188         p->hardirqs_enabled = 1;
1189 #else
1190         p->hardirqs_enabled = 0;
1191 #endif
1192         p->hardirq_enable_ip = 0;
1193         p->hardirq_enable_event = 0;
1194         p->hardirq_disable_ip = _THIS_IP_;
1195         p->hardirq_disable_event = 0;
1196         p->softirqs_enabled = 1;
1197         p->softirq_enable_ip = _THIS_IP_;
1198         p->softirq_enable_event = 0;
1199         p->softirq_disable_ip = 0;
1200         p->softirq_disable_event = 0;
1201         p->hardirq_context = 0;
1202         p->softirq_context = 0;
1203 #endif
1204 #ifdef CONFIG_LOCKDEP
1205         p->lockdep_depth = 0; /* no locks held yet */
1206         p->curr_chain_key = 0;
1207         p->lockdep_recursion = 0;
1208 #endif
1209
1210 #ifdef CONFIG_DEBUG_MUTEXES
1211         p->blocked_on = NULL; /* not blocked yet */
1212 #endif
1213 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1214         p->memcg_batch.do_batch = 0;
1215         p->memcg_batch.memcg = NULL;
1216 #endif
1217
1218         /* Perform scheduler related setup. Assign this task to a CPU. */
1219         sched_fork(p);
1220
1221         retval = perf_event_init_task(p);
1222         if (retval)
1223                 goto bad_fork_cleanup_policy;
1224
1225         if ((retval = audit_alloc(p)))
1226                 goto bad_fork_cleanup_policy;
1227         /* copy all the process information */
1228         if ((retval = copy_semundo(clone_flags, p)))
1229                 goto bad_fork_cleanup_audit;
1230         if ((retval = copy_files(clone_flags, p)))
1231                 goto bad_fork_cleanup_semundo;
1232         if ((retval = copy_fs(clone_flags, p)))
1233                 goto bad_fork_cleanup_files;
1234         if ((retval = copy_sighand(clone_flags, p)))
1235                 goto bad_fork_cleanup_fs;
1236         if ((retval = copy_signal(clone_flags, p)))
1237                 goto bad_fork_cleanup_sighand;
1238         if ((retval = copy_mm(clone_flags, p)))
1239                 goto bad_fork_cleanup_signal;
1240         if ((retval = copy_namespaces(clone_flags, p)))
1241                 goto bad_fork_cleanup_mm;
1242         if ((retval = copy_io(clone_flags, p)))
1243                 goto bad_fork_cleanup_namespaces;
1244         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1245         if (retval)
1246                 goto bad_fork_cleanup_io;
1247
1248         if (pid != &init_struct_pid) {
1249                 retval = -ENOMEM;
1250                 pid = alloc_pid(p->nsproxy->pid_ns);
1251                 if (!pid)
1252                         goto bad_fork_cleanup_io;
1253         }
1254
1255         p->pid = pid_nr(pid);
1256         p->tgid = p->pid;
1257         if (clone_flags & CLONE_THREAD)
1258                 p->tgid = current->tgid;
1259
1260         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1261         /*
1262          * Clear TID on mm_release()?
1263          */
1264         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1265 #ifdef CONFIG_BLOCK
1266         p->plug = NULL;
1267 #endif
1268 #ifdef CONFIG_FUTEX
1269         p->robust_list = NULL;
1270 #ifdef CONFIG_COMPAT
1271         p->compat_robust_list = NULL;
1272 #endif
1273         INIT_LIST_HEAD(&p->pi_state_list);
1274         p->pi_state_cache = NULL;
1275 #endif
1276         /*
1277          * sigaltstack should be cleared when sharing the same VM
1278          */
1279         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1280                 p->sas_ss_sp = p->sas_ss_size = 0;
1281
1282         /*
1283          * Syscall tracing and stepping should be turned off in the
1284          * child regardless of CLONE_PTRACE.
1285          */
1286         user_disable_single_step(p);
1287         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1288 #ifdef TIF_SYSCALL_EMU
1289         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1290 #endif
1291         clear_all_latency_tracing(p);
1292
1293         /* ok, now we should be set up.. */
1294         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1295         p->pdeath_signal = 0;
1296         p->exit_state = 0;
1297
1298         /*
1299          * Ok, make it visible to the rest of the system.
1300          * We dont wake it up yet.
1301          */
1302         p->group_leader = p;
1303         INIT_LIST_HEAD(&p->thread_group);
1304
1305         /* Now that the task is set up, run cgroup callbacks if
1306          * necessary. We need to run them before the task is visible
1307          * on the tasklist. */
1308         cgroup_fork_callbacks(p);
1309         cgroup_callbacks_done = 1;
1310
1311         /* Need tasklist lock for parent etc handling! */
1312         write_lock_irq(&tasklist_lock);
1313
1314         /* CLONE_PARENT re-uses the old parent */
1315         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1316                 p->real_parent = current->real_parent;
1317                 p->parent_exec_id = current->parent_exec_id;
1318         } else {
1319                 p->real_parent = current;
1320                 p->parent_exec_id = current->self_exec_id;
1321         }
1322
1323         spin_lock(&current->sighand->siglock);
1324
1325         /*
1326          * Process group and session signals need to be delivered to just the
1327          * parent before the fork or both the parent and the child after the
1328          * fork. Restart if a signal comes in before we add the new process to
1329          * it's process group.
1330          * A fatal signal pending means that current will exit, so the new
1331          * thread can't slip out of an OOM kill (or normal SIGKILL).
1332          */
1333         recalc_sigpending();
1334         if (signal_pending(current)) {
1335                 spin_unlock(&current->sighand->siglock);
1336                 write_unlock_irq(&tasklist_lock);
1337                 retval = -ERESTARTNOINTR;
1338                 goto bad_fork_free_pid;
1339         }
1340
1341         if (clone_flags & CLONE_THREAD) {
1342                 current->signal->nr_threads++;
1343                 atomic_inc(&current->signal->live);
1344                 atomic_inc(&current->signal->sigcnt);
1345                 p->group_leader = current->group_leader;
1346                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1347         }
1348
1349         if (likely(p->pid)) {
1350                 tracehook_finish_clone(p, clone_flags, trace);
1351
1352                 if (thread_group_leader(p)) {
1353                         if (is_child_reaper(pid))
1354                                 p->nsproxy->pid_ns->child_reaper = p;
1355
1356                         p->signal->leader_pid = pid;
1357                         p->signal->tty = tty_kref_get(current->signal->tty);
1358                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1359                         attach_pid(p, PIDTYPE_SID, task_session(current));
1360                         list_add_tail(&p->sibling, &p->real_parent->children);
1361                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1362                         __this_cpu_inc(process_counts);
1363                 }
1364                 attach_pid(p, PIDTYPE_PID, pid);
1365                 nr_threads++;
1366         }
1367
1368         total_forks++;
1369         spin_unlock(&current->sighand->siglock);
1370         write_unlock_irq(&tasklist_lock);
1371         proc_fork_connector(p);
1372         cgroup_post_fork(p);
1373         if (clone_flags & CLONE_THREAD)
1374                 threadgroup_fork_read_unlock(current);
1375         perf_event_fork(p);
1376         return p;
1377
1378 bad_fork_free_pid:
1379         if (pid != &init_struct_pid)
1380                 free_pid(pid);
1381 bad_fork_cleanup_io:
1382         if (p->io_context)
1383                 exit_io_context(p);
1384 bad_fork_cleanup_namespaces:
1385         if (unlikely(clone_flags & CLONE_NEWPID))
1386                 pid_ns_release_proc(p->nsproxy->pid_ns);
1387         exit_task_namespaces(p);
1388 bad_fork_cleanup_mm:
1389         if (p->mm) {
1390                 task_lock(p);
1391                 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1392                         atomic_dec(&p->mm->oom_disable_count);
1393                 task_unlock(p);
1394                 mmput(p->mm);
1395         }
1396 bad_fork_cleanup_signal:
1397         if (!(clone_flags & CLONE_THREAD))
1398                 free_signal_struct(p->signal);
1399 bad_fork_cleanup_sighand:
1400         __cleanup_sighand(p->sighand);
1401 bad_fork_cleanup_fs:
1402         exit_fs(p); /* blocking */
1403 bad_fork_cleanup_files:
1404         exit_files(p); /* blocking */
1405 bad_fork_cleanup_semundo:
1406         exit_sem(p);
1407 bad_fork_cleanup_audit:
1408         audit_free(p);
1409 bad_fork_cleanup_policy:
1410         perf_event_free_task(p);
1411 #ifdef CONFIG_NUMA
1412         mpol_put(p->mempolicy);
1413 bad_fork_cleanup_cgroup:
1414 #endif
1415         if (clone_flags & CLONE_THREAD)
1416                 threadgroup_fork_read_unlock(current);
1417         cgroup_exit(p, cgroup_callbacks_done);
1418         delayacct_tsk_free(p);
1419         module_put(task_thread_info(p)->exec_domain->module);
1420 bad_fork_cleanup_count:
1421         atomic_dec(&p->cred->user->processes);
1422         exit_creds(p);
1423 bad_fork_free:
1424         free_task(p);
1425 fork_out:
1426         return ERR_PTR(retval);
1427 }
1428
1429 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1430 {
1431         memset(regs, 0, sizeof(struct pt_regs));
1432         return regs;
1433 }
1434
1435 static inline void init_idle_pids(struct pid_link *links)
1436 {
1437         enum pid_type type;
1438
1439         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1440                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1441                 links[type].pid = &init_struct_pid;
1442         }
1443 }
1444
1445 struct task_struct * __cpuinit fork_idle(int cpu)
1446 {
1447         struct task_struct *task;
1448         struct pt_regs regs;
1449
1450         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1451                             &init_struct_pid, 0);
1452         if (!IS_ERR(task)) {
1453                 init_idle_pids(task->pids);
1454                 init_idle(task, cpu);
1455         }
1456
1457         return task;
1458 }
1459
1460 /*
1461  *  Ok, this is the main fork-routine.
1462  *
1463  * It copies the process, and if successful kick-starts
1464  * it and waits for it to finish using the VM if required.
1465  */
1466 long do_fork(unsigned long clone_flags,
1467               unsigned long stack_start,
1468               struct pt_regs *regs,
1469               unsigned long stack_size,
1470               int __user *parent_tidptr,
1471               int __user *child_tidptr)
1472 {
1473         struct task_struct *p;
1474         int trace = 0;
1475         long nr;
1476
1477         /*
1478          * Do some preliminary argument and permissions checking before we
1479          * actually start allocating stuff
1480          */
1481         if (clone_flags & CLONE_NEWUSER) {
1482                 if (clone_flags & CLONE_THREAD)
1483                         return -EINVAL;
1484                 /* hopefully this check will go away when userns support is
1485                  * complete
1486                  */
1487                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1488                                 !capable(CAP_SETGID))
1489                         return -EPERM;
1490         }
1491
1492         /*
1493          * When called from kernel_thread, don't do user tracing stuff.
1494          */
1495         if (likely(user_mode(regs)))
1496                 trace = tracehook_prepare_clone(clone_flags);
1497
1498         p = copy_process(clone_flags, stack_start, regs, stack_size,
1499                          child_tidptr, NULL, trace);
1500         /*
1501          * Do this prior waking up the new thread - the thread pointer
1502          * might get invalid after that point, if the thread exits quickly.
1503          */
1504         if (!IS_ERR(p)) {
1505                 struct completion vfork;
1506
1507                 trace_sched_process_fork(current, p);
1508
1509                 nr = task_pid_vnr(p);
1510
1511                 if (clone_flags & CLONE_PARENT_SETTID)
1512                         put_user(nr, parent_tidptr);
1513
1514                 if (clone_flags & CLONE_VFORK) {
1515                         p->vfork_done = &vfork;
1516                         init_completion(&vfork);
1517                 }
1518
1519                 audit_finish_fork(p);
1520                 tracehook_report_clone(regs, clone_flags, nr, p);
1521
1522                 /*
1523                  * We set PF_STARTING at creation in case tracing wants to
1524                  * use this to distinguish a fully live task from one that
1525                  * hasn't gotten to tracehook_report_clone() yet.  Now we
1526                  * clear it and set the child going.
1527                  */
1528                 p->flags &= ~PF_STARTING;
1529
1530                 wake_up_new_task(p);
1531
1532                 tracehook_report_clone_complete(trace, regs,
1533                                                 clone_flags, nr, p);
1534
1535                 if (clone_flags & CLONE_VFORK) {
1536                         freezer_do_not_count();
1537                         wait_for_completion(&vfork);
1538                         freezer_count();
1539                         tracehook_report_vfork_done(p, nr);
1540                 }
1541         } else {
1542                 nr = PTR_ERR(p);
1543         }
1544         return nr;
1545 }
1546
1547 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1548 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1549 #endif
1550
1551 static void sighand_ctor(void *data)
1552 {
1553         struct sighand_struct *sighand = data;
1554
1555         spin_lock_init(&sighand->siglock);
1556         init_waitqueue_head(&sighand->signalfd_wqh);
1557 }
1558
1559 void __init proc_caches_init(void)
1560 {
1561         sighand_cachep = kmem_cache_create("sighand_cache",
1562                         sizeof(struct sighand_struct), 0,
1563                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1564                         SLAB_NOTRACK, sighand_ctor);
1565         signal_cachep = kmem_cache_create("signal_cache",
1566                         sizeof(struct signal_struct), 0,
1567                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1568         files_cachep = kmem_cache_create("files_cache",
1569                         sizeof(struct files_struct), 0,
1570                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1571         fs_cachep = kmem_cache_create("fs_cache",
1572                         sizeof(struct fs_struct), 0,
1573                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1574         /*
1575          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1576          * whole struct cpumask for the OFFSTACK case. We could change
1577          * this to *only* allocate as much of it as required by the
1578          * maximum number of CPU's we can ever have.  The cpumask_allocation
1579          * is at the end of the structure, exactly for that reason.
1580          */
1581         mm_cachep = kmem_cache_create("mm_struct",
1582                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1583                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1584         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1585         mmap_init();
1586 }
1587
1588 /*
1589  * Check constraints on flags passed to the unshare system call.
1590  */
1591 static int check_unshare_flags(unsigned long unshare_flags)
1592 {
1593         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1594                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1595                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1596                 return -EINVAL;
1597         /*
1598          * Not implemented, but pretend it works if there is nothing to
1599          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1600          * needs to unshare vm.
1601          */
1602         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1603                 /* FIXME: get_task_mm() increments ->mm_users */
1604                 if (atomic_read(&current->mm->mm_users) > 1)
1605                         return -EINVAL;
1606         }
1607
1608         return 0;
1609 }
1610
1611 /*
1612  * Unshare the filesystem structure if it is being shared
1613  */
1614 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1615 {
1616         struct fs_struct *fs = current->fs;
1617
1618         if (!(unshare_flags & CLONE_FS) || !fs)
1619                 return 0;
1620
1621         /* don't need lock here; in the worst case we'll do useless copy */
1622         if (fs->users == 1)
1623                 return 0;
1624
1625         *new_fsp = copy_fs_struct(fs);
1626         if (!*new_fsp)
1627                 return -ENOMEM;
1628
1629         return 0;
1630 }
1631
1632 /*
1633  * Unshare file descriptor table if it is being shared
1634  */
1635 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1636 {
1637         struct files_struct *fd = current->files;
1638         int error = 0;
1639
1640         if ((unshare_flags & CLONE_FILES) &&
1641             (fd && atomic_read(&fd->count) > 1)) {
1642                 *new_fdp = dup_fd(fd, &error);
1643                 if (!*new_fdp)
1644                         return error;
1645         }
1646
1647         return 0;
1648 }
1649
1650 /*
1651  * unshare allows a process to 'unshare' part of the process
1652  * context which was originally shared using clone.  copy_*
1653  * functions used by do_fork() cannot be used here directly
1654  * because they modify an inactive task_struct that is being
1655  * constructed. Here we are modifying the current, active,
1656  * task_struct.
1657  */
1658 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1659 {
1660         struct fs_struct *fs, *new_fs = NULL;
1661         struct files_struct *fd, *new_fd = NULL;
1662         struct nsproxy *new_nsproxy = NULL;
1663         int do_sysvsem = 0;
1664         int err;
1665
1666         err = check_unshare_flags(unshare_flags);
1667         if (err)
1668                 goto bad_unshare_out;
1669
1670         /*
1671          * If unsharing namespace, must also unshare filesystem information.
1672          */
1673         if (unshare_flags & CLONE_NEWNS)
1674                 unshare_flags |= CLONE_FS;
1675         /*
1676          * CLONE_NEWIPC must also detach from the undolist: after switching
1677          * to a new ipc namespace, the semaphore arrays from the old
1678          * namespace are unreachable.
1679          */
1680         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1681                 do_sysvsem = 1;
1682         if ((err = unshare_fs(unshare_flags, &new_fs)))
1683                 goto bad_unshare_out;
1684         if ((err = unshare_fd(unshare_flags, &new_fd)))
1685                 goto bad_unshare_cleanup_fs;
1686         if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1687                         new_fs)))
1688                 goto bad_unshare_cleanup_fd;
1689
1690         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1691                 if (do_sysvsem) {
1692                         /*
1693                          * CLONE_SYSVSEM is equivalent to sys_exit().
1694                          */
1695                         exit_sem(current);
1696                 }
1697
1698                 if (new_nsproxy) {
1699                         switch_task_namespaces(current, new_nsproxy);
1700                         new_nsproxy = NULL;
1701                 }
1702
1703                 task_lock(current);
1704
1705                 if (new_fs) {
1706                         fs = current->fs;
1707                         spin_lock(&fs->lock);
1708                         current->fs = new_fs;
1709                         if (--fs->users)
1710                                 new_fs = NULL;
1711                         else
1712                                 new_fs = fs;
1713                         spin_unlock(&fs->lock);
1714                 }
1715
1716                 if (new_fd) {
1717                         fd = current->files;
1718                         current->files = new_fd;
1719                         new_fd = fd;
1720                 }
1721
1722                 task_unlock(current);
1723         }
1724
1725         if (new_nsproxy)
1726                 put_nsproxy(new_nsproxy);
1727
1728 bad_unshare_cleanup_fd:
1729         if (new_fd)
1730                 put_files_struct(new_fd);
1731
1732 bad_unshare_cleanup_fs:
1733         if (new_fs)
1734                 free_fs_struct(new_fs);
1735
1736 bad_unshare_out:
1737         return err;
1738 }
1739
1740 /*
1741  *      Helper to unshare the files of the current task.
1742  *      We don't want to expose copy_files internals to
1743  *      the exec layer of the kernel.
1744  */
1745
1746 int unshare_files(struct files_struct **displaced)
1747 {
1748         struct task_struct *task = current;
1749         struct files_struct *copy = NULL;
1750         int error;
1751
1752         error = unshare_fd(CLONE_FILES, &copy);
1753         if (error || !copy) {
1754                 *displaced = NULL;
1755                 return error;
1756         }
1757         *displaced = task->files;
1758         task_lock(task);
1759         task->files = copy;
1760         task_unlock(task);
1761         return 0;
1762 }