]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/fork.c
fs/select: Fix memory corruption in compat_get_fd_set()
[karo-tx-linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/vmacache.h>
43 #include <linux/nsproxy.h>
44 #include <linux/capability.h>
45 #include <linux/cpu.h>
46 #include <linux/cgroup.h>
47 #include <linux/security.h>
48 #include <linux/hugetlb.h>
49 #include <linux/seccomp.h>
50 #include <linux/swap.h>
51 #include <linux/syscalls.h>
52 #include <linux/jiffies.h>
53 #include <linux/futex.h>
54 #include <linux/compat.h>
55 #include <linux/kthread.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ptrace.h>
59 #include <linux/mount.h>
60 #include <linux/audit.h>
61 #include <linux/memcontrol.h>
62 #include <linux/ftrace.h>
63 #include <linux/proc_fs.h>
64 #include <linux/profile.h>
65 #include <linux/rmap.h>
66 #include <linux/ksm.h>
67 #include <linux/acct.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/cn_proc.h>
71 #include <linux/freezer.h>
72 #include <linux/delayacct.h>
73 #include <linux/taskstats_kern.h>
74 #include <linux/random.h>
75 #include <linux/tty.h>
76 #include <linux/blkdev.h>
77 #include <linux/fs_struct.h>
78 #include <linux/magic.h>
79 #include <linux/perf_event.h>
80 #include <linux/posix-timers.h>
81 #include <linux/user-return-notifier.h>
82 #include <linux/oom.h>
83 #include <linux/khugepaged.h>
84 #include <linux/signalfd.h>
85 #include <linux/uprobes.h>
86 #include <linux/aio.h>
87 #include <linux/compiler.h>
88 #include <linux/sysctl.h>
89 #include <linux/kcov.h>
90 #include <linux/livepatch.h>
91
92 #include <asm/pgtable.h>
93 #include <asm/pgalloc.h>
94 #include <linux/uaccess.h>
95 #include <asm/mmu_context.h>
96 #include <asm/cacheflush.h>
97 #include <asm/tlbflush.h>
98
99 #include <trace/events/sched.h>
100
101 #define CREATE_TRACE_POINTS
102 #include <trace/events/task.h>
103
104 /*
105  * Minimum number of threads to boot the kernel
106  */
107 #define MIN_THREADS 20
108
109 /*
110  * Maximum number of threads
111  */
112 #define MAX_THREADS FUTEX_TID_MASK
113
114 /*
115  * Protected counters by write_lock_irq(&tasklist_lock)
116  */
117 unsigned long total_forks;      /* Handle normal Linux uptimes. */
118 int nr_threads;                 /* The idle threads do not count.. */
119
120 int max_threads;                /* tunable limit on nr_threads */
121
122 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
123
124 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
125
126 #ifdef CONFIG_PROVE_RCU
127 int lockdep_tasklist_lock_is_held(void)
128 {
129         return lockdep_is_held(&tasklist_lock);
130 }
131 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
132 #endif /* #ifdef CONFIG_PROVE_RCU */
133
134 int nr_processes(void)
135 {
136         int cpu;
137         int total = 0;
138
139         for_each_possible_cpu(cpu)
140                 total += per_cpu(process_counts, cpu);
141
142         return total;
143 }
144
145 void __weak arch_release_task_struct(struct task_struct *tsk)
146 {
147 }
148
149 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
150 static struct kmem_cache *task_struct_cachep;
151
152 static inline struct task_struct *alloc_task_struct_node(int node)
153 {
154         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
155 }
156
157 static inline void free_task_struct(struct task_struct *tsk)
158 {
159         kmem_cache_free(task_struct_cachep, tsk);
160 }
161 #endif
162
163 void __weak arch_release_thread_stack(unsigned long *stack)
164 {
165 }
166
167 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
168
169 /*
170  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
171  * kmemcache based allocator.
172  */
173 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
174
175 #ifdef CONFIG_VMAP_STACK
176 /*
177  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
178  * flush.  Try to minimize the number of calls by caching stacks.
179  */
180 #define NR_CACHED_STACKS 2
181 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
182
183 static int free_vm_stack_cache(unsigned int cpu)
184 {
185         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
186         int i;
187
188         for (i = 0; i < NR_CACHED_STACKS; i++) {
189                 struct vm_struct *vm_stack = cached_vm_stacks[i];
190
191                 if (!vm_stack)
192                         continue;
193
194                 vfree(vm_stack->addr);
195                 cached_vm_stacks[i] = NULL;
196         }
197
198         return 0;
199 }
200 #endif
201
202 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
203 {
204 #ifdef CONFIG_VMAP_STACK
205         void *stack;
206         int i;
207
208         for (i = 0; i < NR_CACHED_STACKS; i++) {
209                 struct vm_struct *s;
210
211                 s = this_cpu_xchg(cached_stacks[i], NULL);
212
213                 if (!s)
214                         continue;
215
216                 tsk->stack_vm_area = s;
217                 return s->addr;
218         }
219
220         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
221                                      VMALLOC_START, VMALLOC_END,
222                                      THREADINFO_GFP,
223                                      PAGE_KERNEL,
224                                      0, node, __builtin_return_address(0));
225
226         /*
227          * We can't call find_vm_area() in interrupt context, and
228          * free_thread_stack() can be called in interrupt context,
229          * so cache the vm_struct.
230          */
231         if (stack)
232                 tsk->stack_vm_area = find_vm_area(stack);
233         return stack;
234 #else
235         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
236                                              THREAD_SIZE_ORDER);
237
238         return page ? page_address(page) : NULL;
239 #endif
240 }
241
242 static inline void free_thread_stack(struct task_struct *tsk)
243 {
244 #ifdef CONFIG_VMAP_STACK
245         if (task_stack_vm_area(tsk)) {
246                 int i;
247
248                 for (i = 0; i < NR_CACHED_STACKS; i++) {
249                         if (this_cpu_cmpxchg(cached_stacks[i],
250                                         NULL, tsk->stack_vm_area) != NULL)
251                                 continue;
252
253                         return;
254                 }
255
256                 vfree_atomic(tsk->stack);
257                 return;
258         }
259 #endif
260
261         __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
262 }
263 # else
264 static struct kmem_cache *thread_stack_cache;
265
266 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
267                                                   int node)
268 {
269         return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
270 }
271
272 static void free_thread_stack(struct task_struct *tsk)
273 {
274         kmem_cache_free(thread_stack_cache, tsk->stack);
275 }
276
277 void thread_stack_cache_init(void)
278 {
279         thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
280                                               THREAD_SIZE, 0, NULL);
281         BUG_ON(thread_stack_cache == NULL);
282 }
283 # endif
284 #endif
285
286 /* SLAB cache for signal_struct structures (tsk->signal) */
287 static struct kmem_cache *signal_cachep;
288
289 /* SLAB cache for sighand_struct structures (tsk->sighand) */
290 struct kmem_cache *sighand_cachep;
291
292 /* SLAB cache for files_struct structures (tsk->files) */
293 struct kmem_cache *files_cachep;
294
295 /* SLAB cache for fs_struct structures (tsk->fs) */
296 struct kmem_cache *fs_cachep;
297
298 /* SLAB cache for vm_area_struct structures */
299 struct kmem_cache *vm_area_cachep;
300
301 /* SLAB cache for mm_struct structures (tsk->mm) */
302 static struct kmem_cache *mm_cachep;
303
304 static void account_kernel_stack(struct task_struct *tsk, int account)
305 {
306         void *stack = task_stack_page(tsk);
307         struct vm_struct *vm = task_stack_vm_area(tsk);
308
309         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
310
311         if (vm) {
312                 int i;
313
314                 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
315
316                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
317                         mod_zone_page_state(page_zone(vm->pages[i]),
318                                             NR_KERNEL_STACK_KB,
319                                             PAGE_SIZE / 1024 * account);
320                 }
321
322                 /* All stack pages belong to the same memcg. */
323                 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
324                                      account * (THREAD_SIZE / 1024));
325         } else {
326                 /*
327                  * All stack pages are in the same zone and belong to the
328                  * same memcg.
329                  */
330                 struct page *first_page = virt_to_page(stack);
331
332                 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
333                                     THREAD_SIZE / 1024 * account);
334
335                 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
336                                      account * (THREAD_SIZE / 1024));
337         }
338 }
339
340 static void release_task_stack(struct task_struct *tsk)
341 {
342         if (WARN_ON(tsk->state != TASK_DEAD))
343                 return;  /* Better to leak the stack than to free prematurely */
344
345         account_kernel_stack(tsk, -1);
346         arch_release_thread_stack(tsk->stack);
347         free_thread_stack(tsk);
348         tsk->stack = NULL;
349 #ifdef CONFIG_VMAP_STACK
350         tsk->stack_vm_area = NULL;
351 #endif
352 }
353
354 #ifdef CONFIG_THREAD_INFO_IN_TASK
355 void put_task_stack(struct task_struct *tsk)
356 {
357         if (atomic_dec_and_test(&tsk->stack_refcount))
358                 release_task_stack(tsk);
359 }
360 #endif
361
362 void free_task(struct task_struct *tsk)
363 {
364 #ifndef CONFIG_THREAD_INFO_IN_TASK
365         /*
366          * The task is finally done with both the stack and thread_info,
367          * so free both.
368          */
369         release_task_stack(tsk);
370 #else
371         /*
372          * If the task had a separate stack allocation, it should be gone
373          * by now.
374          */
375         WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
376 #endif
377         rt_mutex_debug_task_free(tsk);
378         ftrace_graph_exit_task(tsk);
379         put_seccomp_filter(tsk);
380         arch_release_task_struct(tsk);
381         if (tsk->flags & PF_KTHREAD)
382                 free_kthread_struct(tsk);
383         free_task_struct(tsk);
384 }
385 EXPORT_SYMBOL(free_task);
386
387 static inline void free_signal_struct(struct signal_struct *sig)
388 {
389         taskstats_tgid_free(sig);
390         sched_autogroup_exit(sig);
391         /*
392          * __mmdrop is not safe to call from softirq context on x86 due to
393          * pgd_dtor so postpone it to the async context
394          */
395         if (sig->oom_mm)
396                 mmdrop_async(sig->oom_mm);
397         kmem_cache_free(signal_cachep, sig);
398 }
399
400 static inline void put_signal_struct(struct signal_struct *sig)
401 {
402         if (atomic_dec_and_test(&sig->sigcnt))
403                 free_signal_struct(sig);
404 }
405
406 void __put_task_struct(struct task_struct *tsk)
407 {
408         WARN_ON(!tsk->exit_state);
409         WARN_ON(atomic_read(&tsk->usage));
410         WARN_ON(tsk == current);
411
412         cgroup_free(tsk);
413         task_numa_free(tsk);
414         security_task_free(tsk);
415         exit_creds(tsk);
416         delayacct_tsk_free(tsk);
417         put_signal_struct(tsk->signal);
418
419         if (!profile_handoff_task(tsk))
420                 free_task(tsk);
421 }
422 EXPORT_SYMBOL_GPL(__put_task_struct);
423
424 void __init __weak arch_task_cache_init(void) { }
425
426 /*
427  * set_max_threads
428  */
429 static void set_max_threads(unsigned int max_threads_suggested)
430 {
431         u64 threads;
432
433         /*
434          * The number of threads shall be limited such that the thread
435          * structures may only consume a small part of the available memory.
436          */
437         if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
438                 threads = MAX_THREADS;
439         else
440                 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
441                                     (u64) THREAD_SIZE * 8UL);
442
443         if (threads > max_threads_suggested)
444                 threads = max_threads_suggested;
445
446         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
447 }
448
449 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
450 /* Initialized by the architecture: */
451 int arch_task_struct_size __read_mostly;
452 #endif
453
454 void __init fork_init(void)
455 {
456         int i;
457 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
458 #ifndef ARCH_MIN_TASKALIGN
459 #define ARCH_MIN_TASKALIGN      0
460 #endif
461         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
462
463         /* create a slab on which task_structs can be allocated */
464         task_struct_cachep = kmem_cache_create("task_struct",
465                         arch_task_struct_size, align,
466                         SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
467 #endif
468
469         /* do the arch specific task caches init */
470         arch_task_cache_init();
471
472         set_max_threads(MAX_THREADS);
473
474         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
475         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
476         init_task.signal->rlim[RLIMIT_SIGPENDING] =
477                 init_task.signal->rlim[RLIMIT_NPROC];
478
479         for (i = 0; i < UCOUNT_COUNTS; i++) {
480                 init_user_ns.ucount_max[i] = max_threads/2;
481         }
482
483 #ifdef CONFIG_VMAP_STACK
484         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
485                           NULL, free_vm_stack_cache);
486 #endif
487 }
488
489 int __weak arch_dup_task_struct(struct task_struct *dst,
490                                                struct task_struct *src)
491 {
492         *dst = *src;
493         return 0;
494 }
495
496 void set_task_stack_end_magic(struct task_struct *tsk)
497 {
498         unsigned long *stackend;
499
500         stackend = end_of_stack(tsk);
501         *stackend = STACK_END_MAGIC;    /* for overflow detection */
502 }
503
504 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
505 {
506         struct task_struct *tsk;
507         unsigned long *stack;
508         struct vm_struct *stack_vm_area;
509         int err;
510
511         if (node == NUMA_NO_NODE)
512                 node = tsk_fork_get_node(orig);
513         tsk = alloc_task_struct_node(node);
514         if (!tsk)
515                 return NULL;
516
517         stack = alloc_thread_stack_node(tsk, node);
518         if (!stack)
519                 goto free_tsk;
520
521         stack_vm_area = task_stack_vm_area(tsk);
522
523         err = arch_dup_task_struct(tsk, orig);
524
525         /*
526          * arch_dup_task_struct() clobbers the stack-related fields.  Make
527          * sure they're properly initialized before using any stack-related
528          * functions again.
529          */
530         tsk->stack = stack;
531 #ifdef CONFIG_VMAP_STACK
532         tsk->stack_vm_area = stack_vm_area;
533 #endif
534 #ifdef CONFIG_THREAD_INFO_IN_TASK
535         atomic_set(&tsk->stack_refcount, 1);
536 #endif
537
538         if (err)
539                 goto free_stack;
540
541 #ifdef CONFIG_SECCOMP
542         /*
543          * We must handle setting up seccomp filters once we're under
544          * the sighand lock in case orig has changed between now and
545          * then. Until then, filter must be NULL to avoid messing up
546          * the usage counts on the error path calling free_task.
547          */
548         tsk->seccomp.filter = NULL;
549 #endif
550
551         setup_thread_stack(tsk, orig);
552         clear_user_return_notifier(tsk);
553         clear_tsk_need_resched(tsk);
554         set_task_stack_end_magic(tsk);
555
556 #ifdef CONFIG_CC_STACKPROTECTOR
557         tsk->stack_canary = get_random_canary();
558 #endif
559
560         /*
561          * One for us, one for whoever does the "release_task()" (usually
562          * parent)
563          */
564         atomic_set(&tsk->usage, 2);
565 #ifdef CONFIG_BLK_DEV_IO_TRACE
566         tsk->btrace_seq = 0;
567 #endif
568         tsk->splice_pipe = NULL;
569         tsk->task_frag.page = NULL;
570         tsk->wake_q.next = NULL;
571
572         account_kernel_stack(tsk, 1);
573
574         kcov_task_init(tsk);
575
576 #ifdef CONFIG_FAULT_INJECTION
577         tsk->fail_nth = 0;
578 #endif
579
580         return tsk;
581
582 free_stack:
583         free_thread_stack(tsk);
584 free_tsk:
585         free_task_struct(tsk);
586         return NULL;
587 }
588
589 #ifdef CONFIG_MMU
590 static __latent_entropy int dup_mmap(struct mm_struct *mm,
591                                         struct mm_struct *oldmm)
592 {
593         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
594         struct rb_node **rb_link, *rb_parent;
595         int retval;
596         unsigned long charge;
597         LIST_HEAD(uf);
598
599         uprobe_start_dup_mmap();
600         if (down_write_killable(&oldmm->mmap_sem)) {
601                 retval = -EINTR;
602                 goto fail_uprobe_end;
603         }
604         flush_cache_dup_mm(oldmm);
605         uprobe_dup_mmap(oldmm, mm);
606         /*
607          * Not linked in yet - no deadlock potential:
608          */
609         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
610
611         /* No ordering required: file already has been exposed. */
612         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
613
614         mm->total_vm = oldmm->total_vm;
615         mm->data_vm = oldmm->data_vm;
616         mm->exec_vm = oldmm->exec_vm;
617         mm->stack_vm = oldmm->stack_vm;
618
619         rb_link = &mm->mm_rb.rb_node;
620         rb_parent = NULL;
621         pprev = &mm->mmap;
622         retval = ksm_fork(mm, oldmm);
623         if (retval)
624                 goto out;
625         retval = khugepaged_fork(mm, oldmm);
626         if (retval)
627                 goto out;
628
629         prev = NULL;
630         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
631                 struct file *file;
632
633                 if (mpnt->vm_flags & VM_DONTCOPY) {
634                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
635                         continue;
636                 }
637                 charge = 0;
638                 if (mpnt->vm_flags & VM_ACCOUNT) {
639                         unsigned long len = vma_pages(mpnt);
640
641                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
642                                 goto fail_nomem;
643                         charge = len;
644                 }
645                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
646                 if (!tmp)
647                         goto fail_nomem;
648                 *tmp = *mpnt;
649                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
650                 retval = vma_dup_policy(mpnt, tmp);
651                 if (retval)
652                         goto fail_nomem_policy;
653                 tmp->vm_mm = mm;
654                 retval = dup_userfaultfd(tmp, &uf);
655                 if (retval)
656                         goto fail_nomem_anon_vma_fork;
657                 if (anon_vma_fork(tmp, mpnt))
658                         goto fail_nomem_anon_vma_fork;
659                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
660                 tmp->vm_next = tmp->vm_prev = NULL;
661                 file = tmp->vm_file;
662                 if (file) {
663                         struct inode *inode = file_inode(file);
664                         struct address_space *mapping = file->f_mapping;
665
666                         get_file(file);
667                         if (tmp->vm_flags & VM_DENYWRITE)
668                                 atomic_dec(&inode->i_writecount);
669                         i_mmap_lock_write(mapping);
670                         if (tmp->vm_flags & VM_SHARED)
671                                 atomic_inc(&mapping->i_mmap_writable);
672                         flush_dcache_mmap_lock(mapping);
673                         /* insert tmp into the share list, just after mpnt */
674                         vma_interval_tree_insert_after(tmp, mpnt,
675                                         &mapping->i_mmap);
676                         flush_dcache_mmap_unlock(mapping);
677                         i_mmap_unlock_write(mapping);
678                 }
679
680                 /*
681                  * Clear hugetlb-related page reserves for children. This only
682                  * affects MAP_PRIVATE mappings. Faults generated by the child
683                  * are not guaranteed to succeed, even if read-only
684                  */
685                 if (is_vm_hugetlb_page(tmp))
686                         reset_vma_resv_huge_pages(tmp);
687
688                 /*
689                  * Link in the new vma and copy the page table entries.
690                  */
691                 *pprev = tmp;
692                 pprev = &tmp->vm_next;
693                 tmp->vm_prev = prev;
694                 prev = tmp;
695
696                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
697                 rb_link = &tmp->vm_rb.rb_right;
698                 rb_parent = &tmp->vm_rb;
699
700                 mm->map_count++;
701                 retval = copy_page_range(mm, oldmm, mpnt);
702
703                 if (tmp->vm_ops && tmp->vm_ops->open)
704                         tmp->vm_ops->open(tmp);
705
706                 if (retval)
707                         goto out;
708         }
709         /* a new mm has just been created */
710         arch_dup_mmap(oldmm, mm);
711         retval = 0;
712 out:
713         up_write(&mm->mmap_sem);
714         flush_tlb_mm(oldmm);
715         up_write(&oldmm->mmap_sem);
716         dup_userfaultfd_complete(&uf);
717 fail_uprobe_end:
718         uprobe_end_dup_mmap();
719         return retval;
720 fail_nomem_anon_vma_fork:
721         mpol_put(vma_policy(tmp));
722 fail_nomem_policy:
723         kmem_cache_free(vm_area_cachep, tmp);
724 fail_nomem:
725         retval = -ENOMEM;
726         vm_unacct_memory(charge);
727         goto out;
728 }
729
730 static inline int mm_alloc_pgd(struct mm_struct *mm)
731 {
732         mm->pgd = pgd_alloc(mm);
733         if (unlikely(!mm->pgd))
734                 return -ENOMEM;
735         return 0;
736 }
737
738 static inline void mm_free_pgd(struct mm_struct *mm)
739 {
740         pgd_free(mm, mm->pgd);
741 }
742 #else
743 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
744 {
745         down_write(&oldmm->mmap_sem);
746         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
747         up_write(&oldmm->mmap_sem);
748         return 0;
749 }
750 #define mm_alloc_pgd(mm)        (0)
751 #define mm_free_pgd(mm)
752 #endif /* CONFIG_MMU */
753
754 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
755
756 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
757 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
758
759 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
760
761 static int __init coredump_filter_setup(char *s)
762 {
763         default_dump_filter =
764                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
765                 MMF_DUMP_FILTER_MASK;
766         return 1;
767 }
768
769 __setup("coredump_filter=", coredump_filter_setup);
770
771 #include <linux/init_task.h>
772
773 static void mm_init_aio(struct mm_struct *mm)
774 {
775 #ifdef CONFIG_AIO
776         spin_lock_init(&mm->ioctx_lock);
777         mm->ioctx_table = NULL;
778 #endif
779 }
780
781 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
782 {
783 #ifdef CONFIG_MEMCG
784         mm->owner = p;
785 #endif
786 }
787
788 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
789         struct user_namespace *user_ns)
790 {
791         mm->mmap = NULL;
792         mm->mm_rb = RB_ROOT;
793         mm->vmacache_seqnum = 0;
794         atomic_set(&mm->mm_users, 1);
795         atomic_set(&mm->mm_count, 1);
796         init_rwsem(&mm->mmap_sem);
797         INIT_LIST_HEAD(&mm->mmlist);
798         mm->core_state = NULL;
799         atomic_long_set(&mm->nr_ptes, 0);
800         mm_nr_pmds_init(mm);
801         mm->map_count = 0;
802         mm->locked_vm = 0;
803         mm->pinned_vm = 0;
804         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
805         spin_lock_init(&mm->page_table_lock);
806         mm_init_cpumask(mm);
807         mm_init_aio(mm);
808         mm_init_owner(mm, p);
809         RCU_INIT_POINTER(mm->exe_file, NULL);
810         mmu_notifier_mm_init(mm);
811         init_tlb_flush_pending(mm);
812 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
813         mm->pmd_huge_pte = NULL;
814 #endif
815
816         if (current->mm) {
817                 mm->flags = current->mm->flags & MMF_INIT_MASK;
818                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
819         } else {
820                 mm->flags = default_dump_filter;
821                 mm->def_flags = 0;
822         }
823
824         if (mm_alloc_pgd(mm))
825                 goto fail_nopgd;
826
827         if (init_new_context(p, mm))
828                 goto fail_nocontext;
829
830         mm->user_ns = get_user_ns(user_ns);
831         return mm;
832
833 fail_nocontext:
834         mm_free_pgd(mm);
835 fail_nopgd:
836         free_mm(mm);
837         return NULL;
838 }
839
840 static void check_mm(struct mm_struct *mm)
841 {
842         int i;
843
844         for (i = 0; i < NR_MM_COUNTERS; i++) {
845                 long x = atomic_long_read(&mm->rss_stat.count[i]);
846
847                 if (unlikely(x))
848                         printk(KERN_ALERT "BUG: Bad rss-counter state "
849                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
850         }
851
852         if (atomic_long_read(&mm->nr_ptes))
853                 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
854                                 atomic_long_read(&mm->nr_ptes));
855         if (mm_nr_pmds(mm))
856                 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
857                                 mm_nr_pmds(mm));
858
859 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
860         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
861 #endif
862 }
863
864 /*
865  * Allocate and initialize an mm_struct.
866  */
867 struct mm_struct *mm_alloc(void)
868 {
869         struct mm_struct *mm;
870
871         mm = allocate_mm();
872         if (!mm)
873                 return NULL;
874
875         memset(mm, 0, sizeof(*mm));
876         return mm_init(mm, current, current_user_ns());
877 }
878
879 /*
880  * Called when the last reference to the mm
881  * is dropped: either by a lazy thread or by
882  * mmput. Free the page directory and the mm.
883  */
884 void __mmdrop(struct mm_struct *mm)
885 {
886         BUG_ON(mm == &init_mm);
887         mm_free_pgd(mm);
888         destroy_context(mm);
889         mmu_notifier_mm_destroy(mm);
890         check_mm(mm);
891         put_user_ns(mm->user_ns);
892         free_mm(mm);
893 }
894 EXPORT_SYMBOL_GPL(__mmdrop);
895
896 static inline void __mmput(struct mm_struct *mm)
897 {
898         VM_BUG_ON(atomic_read(&mm->mm_users));
899
900         uprobe_clear_state(mm);
901         exit_aio(mm);
902         ksm_exit(mm);
903         khugepaged_exit(mm); /* must run before exit_mmap */
904         exit_mmap(mm);
905         mm_put_huge_zero_page(mm);
906         set_mm_exe_file(mm, NULL);
907         if (!list_empty(&mm->mmlist)) {
908                 spin_lock(&mmlist_lock);
909                 list_del(&mm->mmlist);
910                 spin_unlock(&mmlist_lock);
911         }
912         if (mm->binfmt)
913                 module_put(mm->binfmt->module);
914         set_bit(MMF_OOM_SKIP, &mm->flags);
915         mmdrop(mm);
916 }
917
918 /*
919  * Decrement the use count and release all resources for an mm.
920  */
921 void mmput(struct mm_struct *mm)
922 {
923         might_sleep();
924
925         if (atomic_dec_and_test(&mm->mm_users))
926                 __mmput(mm);
927 }
928 EXPORT_SYMBOL_GPL(mmput);
929
930 #ifdef CONFIG_MMU
931 static void mmput_async_fn(struct work_struct *work)
932 {
933         struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
934         __mmput(mm);
935 }
936
937 void mmput_async(struct mm_struct *mm)
938 {
939         if (atomic_dec_and_test(&mm->mm_users)) {
940                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
941                 schedule_work(&mm->async_put_work);
942         }
943 }
944 #endif
945
946 /**
947  * set_mm_exe_file - change a reference to the mm's executable file
948  *
949  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
950  *
951  * Main users are mmput() and sys_execve(). Callers prevent concurrent
952  * invocations: in mmput() nobody alive left, in execve task is single
953  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
954  * mm->exe_file, but does so without using set_mm_exe_file() in order
955  * to do avoid the need for any locks.
956  */
957 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
958 {
959         struct file *old_exe_file;
960
961         /*
962          * It is safe to dereference the exe_file without RCU as
963          * this function is only called if nobody else can access
964          * this mm -- see comment above for justification.
965          */
966         old_exe_file = rcu_dereference_raw(mm->exe_file);
967
968         if (new_exe_file)
969                 get_file(new_exe_file);
970         rcu_assign_pointer(mm->exe_file, new_exe_file);
971         if (old_exe_file)
972                 fput(old_exe_file);
973 }
974
975 /**
976  * get_mm_exe_file - acquire a reference to the mm's executable file
977  *
978  * Returns %NULL if mm has no associated executable file.
979  * User must release file via fput().
980  */
981 struct file *get_mm_exe_file(struct mm_struct *mm)
982 {
983         struct file *exe_file;
984
985         rcu_read_lock();
986         exe_file = rcu_dereference(mm->exe_file);
987         if (exe_file && !get_file_rcu(exe_file))
988                 exe_file = NULL;
989         rcu_read_unlock();
990         return exe_file;
991 }
992 EXPORT_SYMBOL(get_mm_exe_file);
993
994 /**
995  * get_task_exe_file - acquire a reference to the task's executable file
996  *
997  * Returns %NULL if task's mm (if any) has no associated executable file or
998  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
999  * User must release file via fput().
1000  */
1001 struct file *get_task_exe_file(struct task_struct *task)
1002 {
1003         struct file *exe_file = NULL;
1004         struct mm_struct *mm;
1005
1006         task_lock(task);
1007         mm = task->mm;
1008         if (mm) {
1009                 if (!(task->flags & PF_KTHREAD))
1010                         exe_file = get_mm_exe_file(mm);
1011         }
1012         task_unlock(task);
1013         return exe_file;
1014 }
1015 EXPORT_SYMBOL(get_task_exe_file);
1016
1017 /**
1018  * get_task_mm - acquire a reference to the task's mm
1019  *
1020  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1021  * this kernel workthread has transiently adopted a user mm with use_mm,
1022  * to do its AIO) is not set and if so returns a reference to it, after
1023  * bumping up the use count.  User must release the mm via mmput()
1024  * after use.  Typically used by /proc and ptrace.
1025  */
1026 struct mm_struct *get_task_mm(struct task_struct *task)
1027 {
1028         struct mm_struct *mm;
1029
1030         task_lock(task);
1031         mm = task->mm;
1032         if (mm) {
1033                 if (task->flags & PF_KTHREAD)
1034                         mm = NULL;
1035                 else
1036                         mmget(mm);
1037         }
1038         task_unlock(task);
1039         return mm;
1040 }
1041 EXPORT_SYMBOL_GPL(get_task_mm);
1042
1043 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1044 {
1045         struct mm_struct *mm;
1046         int err;
1047
1048         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1049         if (err)
1050                 return ERR_PTR(err);
1051
1052         mm = get_task_mm(task);
1053         if (mm && mm != current->mm &&
1054                         !ptrace_may_access(task, mode)) {
1055                 mmput(mm);
1056                 mm = ERR_PTR(-EACCES);
1057         }
1058         mutex_unlock(&task->signal->cred_guard_mutex);
1059
1060         return mm;
1061 }
1062
1063 static void complete_vfork_done(struct task_struct *tsk)
1064 {
1065         struct completion *vfork;
1066
1067         task_lock(tsk);
1068         vfork = tsk->vfork_done;
1069         if (likely(vfork)) {
1070                 tsk->vfork_done = NULL;
1071                 complete(vfork);
1072         }
1073         task_unlock(tsk);
1074 }
1075
1076 static int wait_for_vfork_done(struct task_struct *child,
1077                                 struct completion *vfork)
1078 {
1079         int killed;
1080
1081         freezer_do_not_count();
1082         killed = wait_for_completion_killable(vfork);
1083         freezer_count();
1084
1085         if (killed) {
1086                 task_lock(child);
1087                 child->vfork_done = NULL;
1088                 task_unlock(child);
1089         }
1090
1091         put_task_struct(child);
1092         return killed;
1093 }
1094
1095 /* Please note the differences between mmput and mm_release.
1096  * mmput is called whenever we stop holding onto a mm_struct,
1097  * error success whatever.
1098  *
1099  * mm_release is called after a mm_struct has been removed
1100  * from the current process.
1101  *
1102  * This difference is important for error handling, when we
1103  * only half set up a mm_struct for a new process and need to restore
1104  * the old one.  Because we mmput the new mm_struct before
1105  * restoring the old one. . .
1106  * Eric Biederman 10 January 1998
1107  */
1108 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1109 {
1110         /* Get rid of any futexes when releasing the mm */
1111 #ifdef CONFIG_FUTEX
1112         if (unlikely(tsk->robust_list)) {
1113                 exit_robust_list(tsk);
1114                 tsk->robust_list = NULL;
1115         }
1116 #ifdef CONFIG_COMPAT
1117         if (unlikely(tsk->compat_robust_list)) {
1118                 compat_exit_robust_list(tsk);
1119                 tsk->compat_robust_list = NULL;
1120         }
1121 #endif
1122         if (unlikely(!list_empty(&tsk->pi_state_list)))
1123                 exit_pi_state_list(tsk);
1124 #endif
1125
1126         uprobe_free_utask(tsk);
1127
1128         /* Get rid of any cached register state */
1129         deactivate_mm(tsk, mm);
1130
1131         /*
1132          * Signal userspace if we're not exiting with a core dump
1133          * because we want to leave the value intact for debugging
1134          * purposes.
1135          */
1136         if (tsk->clear_child_tid) {
1137                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1138                     atomic_read(&mm->mm_users) > 1) {
1139                         /*
1140                          * We don't check the error code - if userspace has
1141                          * not set up a proper pointer then tough luck.
1142                          */
1143                         put_user(0, tsk->clear_child_tid);
1144                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1145                                         1, NULL, NULL, 0);
1146                 }
1147                 tsk->clear_child_tid = NULL;
1148         }
1149
1150         /*
1151          * All done, finally we can wake up parent and return this mm to him.
1152          * Also kthread_stop() uses this completion for synchronization.
1153          */
1154         if (tsk->vfork_done)
1155                 complete_vfork_done(tsk);
1156 }
1157
1158 /*
1159  * Allocate a new mm structure and copy contents from the
1160  * mm structure of the passed in task structure.
1161  */
1162 static struct mm_struct *dup_mm(struct task_struct *tsk)
1163 {
1164         struct mm_struct *mm, *oldmm = current->mm;
1165         int err;
1166
1167         mm = allocate_mm();
1168         if (!mm)
1169                 goto fail_nomem;
1170
1171         memcpy(mm, oldmm, sizeof(*mm));
1172
1173         if (!mm_init(mm, tsk, mm->user_ns))
1174                 goto fail_nomem;
1175
1176         err = dup_mmap(mm, oldmm);
1177         if (err)
1178                 goto free_pt;
1179
1180         mm->hiwater_rss = get_mm_rss(mm);
1181         mm->hiwater_vm = mm->total_vm;
1182
1183         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1184                 goto free_pt;
1185
1186         return mm;
1187
1188 free_pt:
1189         /* don't put binfmt in mmput, we haven't got module yet */
1190         mm->binfmt = NULL;
1191         mmput(mm);
1192
1193 fail_nomem:
1194         return NULL;
1195 }
1196
1197 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1198 {
1199         struct mm_struct *mm, *oldmm;
1200         int retval;
1201
1202         tsk->min_flt = tsk->maj_flt = 0;
1203         tsk->nvcsw = tsk->nivcsw = 0;
1204 #ifdef CONFIG_DETECT_HUNG_TASK
1205         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1206 #endif
1207
1208         tsk->mm = NULL;
1209         tsk->active_mm = NULL;
1210
1211         /*
1212          * Are we cloning a kernel thread?
1213          *
1214          * We need to steal a active VM for that..
1215          */
1216         oldmm = current->mm;
1217         if (!oldmm)
1218                 return 0;
1219
1220         /* initialize the new vmacache entries */
1221         vmacache_flush(tsk);
1222
1223         if (clone_flags & CLONE_VM) {
1224                 mmget(oldmm);
1225                 mm = oldmm;
1226                 goto good_mm;
1227         }
1228
1229         retval = -ENOMEM;
1230         mm = dup_mm(tsk);
1231         if (!mm)
1232                 goto fail_nomem;
1233
1234 good_mm:
1235         tsk->mm = mm;
1236         tsk->active_mm = mm;
1237         return 0;
1238
1239 fail_nomem:
1240         return retval;
1241 }
1242
1243 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1244 {
1245         struct fs_struct *fs = current->fs;
1246         if (clone_flags & CLONE_FS) {
1247                 /* tsk->fs is already what we want */
1248                 spin_lock(&fs->lock);
1249                 if (fs->in_exec) {
1250                         spin_unlock(&fs->lock);
1251                         return -EAGAIN;
1252                 }
1253                 fs->users++;
1254                 spin_unlock(&fs->lock);
1255                 return 0;
1256         }
1257         tsk->fs = copy_fs_struct(fs);
1258         if (!tsk->fs)
1259                 return -ENOMEM;
1260         return 0;
1261 }
1262
1263 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1264 {
1265         struct files_struct *oldf, *newf;
1266         int error = 0;
1267
1268         /*
1269          * A background process may not have any files ...
1270          */
1271         oldf = current->files;
1272         if (!oldf)
1273                 goto out;
1274
1275         if (clone_flags & CLONE_FILES) {
1276                 atomic_inc(&oldf->count);
1277                 goto out;
1278         }
1279
1280         newf = dup_fd(oldf, &error);
1281         if (!newf)
1282                 goto out;
1283
1284         tsk->files = newf;
1285         error = 0;
1286 out:
1287         return error;
1288 }
1289
1290 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1291 {
1292 #ifdef CONFIG_BLOCK
1293         struct io_context *ioc = current->io_context;
1294         struct io_context *new_ioc;
1295
1296         if (!ioc)
1297                 return 0;
1298         /*
1299          * Share io context with parent, if CLONE_IO is set
1300          */
1301         if (clone_flags & CLONE_IO) {
1302                 ioc_task_link(ioc);
1303                 tsk->io_context = ioc;
1304         } else if (ioprio_valid(ioc->ioprio)) {
1305                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1306                 if (unlikely(!new_ioc))
1307                         return -ENOMEM;
1308
1309                 new_ioc->ioprio = ioc->ioprio;
1310                 put_io_context(new_ioc);
1311         }
1312 #endif
1313         return 0;
1314 }
1315
1316 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1317 {
1318         struct sighand_struct *sig;
1319
1320         if (clone_flags & CLONE_SIGHAND) {
1321                 atomic_inc(&current->sighand->count);
1322                 return 0;
1323         }
1324         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1325         rcu_assign_pointer(tsk->sighand, sig);
1326         if (!sig)
1327                 return -ENOMEM;
1328
1329         atomic_set(&sig->count, 1);
1330         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1331         return 0;
1332 }
1333
1334 void __cleanup_sighand(struct sighand_struct *sighand)
1335 {
1336         if (atomic_dec_and_test(&sighand->count)) {
1337                 signalfd_cleanup(sighand);
1338                 /*
1339                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1340                  * without an RCU grace period, see __lock_task_sighand().
1341                  */
1342                 kmem_cache_free(sighand_cachep, sighand);
1343         }
1344 }
1345
1346 #ifdef CONFIG_POSIX_TIMERS
1347 /*
1348  * Initialize POSIX timer handling for a thread group.
1349  */
1350 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1351 {
1352         unsigned long cpu_limit;
1353
1354         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1355         if (cpu_limit != RLIM_INFINITY) {
1356                 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1357                 sig->cputimer.running = true;
1358         }
1359
1360         /* The timer lists. */
1361         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1362         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1363         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1364 }
1365 #else
1366 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1367 #endif
1368
1369 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1370 {
1371         struct signal_struct *sig;
1372
1373         if (clone_flags & CLONE_THREAD)
1374                 return 0;
1375
1376         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1377         tsk->signal = sig;
1378         if (!sig)
1379                 return -ENOMEM;
1380
1381         sig->nr_threads = 1;
1382         atomic_set(&sig->live, 1);
1383         atomic_set(&sig->sigcnt, 1);
1384
1385         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1386         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1387         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1388
1389         init_waitqueue_head(&sig->wait_chldexit);
1390         sig->curr_target = tsk;
1391         init_sigpending(&sig->shared_pending);
1392         seqlock_init(&sig->stats_lock);
1393         prev_cputime_init(&sig->prev_cputime);
1394
1395 #ifdef CONFIG_POSIX_TIMERS
1396         INIT_LIST_HEAD(&sig->posix_timers);
1397         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1398         sig->real_timer.function = it_real_fn;
1399 #endif
1400
1401         task_lock(current->group_leader);
1402         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1403         task_unlock(current->group_leader);
1404
1405         posix_cpu_timers_init_group(sig);
1406
1407         tty_audit_fork(sig);
1408         sched_autogroup_fork(sig);
1409
1410         sig->oom_score_adj = current->signal->oom_score_adj;
1411         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1412
1413         mutex_init(&sig->cred_guard_mutex);
1414
1415         return 0;
1416 }
1417
1418 static void copy_seccomp(struct task_struct *p)
1419 {
1420 #ifdef CONFIG_SECCOMP
1421         /*
1422          * Must be called with sighand->lock held, which is common to
1423          * all threads in the group. Holding cred_guard_mutex is not
1424          * needed because this new task is not yet running and cannot
1425          * be racing exec.
1426          */
1427         assert_spin_locked(&current->sighand->siglock);
1428
1429         /* Ref-count the new filter user, and assign it. */
1430         get_seccomp_filter(current);
1431         p->seccomp = current->seccomp;
1432
1433         /*
1434          * Explicitly enable no_new_privs here in case it got set
1435          * between the task_struct being duplicated and holding the
1436          * sighand lock. The seccomp state and nnp must be in sync.
1437          */
1438         if (task_no_new_privs(current))
1439                 task_set_no_new_privs(p);
1440
1441         /*
1442          * If the parent gained a seccomp mode after copying thread
1443          * flags and between before we held the sighand lock, we have
1444          * to manually enable the seccomp thread flag here.
1445          */
1446         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1447                 set_tsk_thread_flag(p, TIF_SECCOMP);
1448 #endif
1449 }
1450
1451 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1452 {
1453         current->clear_child_tid = tidptr;
1454
1455         return task_pid_vnr(current);
1456 }
1457
1458 static void rt_mutex_init_task(struct task_struct *p)
1459 {
1460         raw_spin_lock_init(&p->pi_lock);
1461 #ifdef CONFIG_RT_MUTEXES
1462         p->pi_waiters = RB_ROOT;
1463         p->pi_waiters_leftmost = NULL;
1464         p->pi_top_task = NULL;
1465         p->pi_blocked_on = NULL;
1466 #endif
1467 }
1468
1469 #ifdef CONFIG_POSIX_TIMERS
1470 /*
1471  * Initialize POSIX timer handling for a single task.
1472  */
1473 static void posix_cpu_timers_init(struct task_struct *tsk)
1474 {
1475         tsk->cputime_expires.prof_exp = 0;
1476         tsk->cputime_expires.virt_exp = 0;
1477         tsk->cputime_expires.sched_exp = 0;
1478         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1479         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1480         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1481 }
1482 #else
1483 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1484 #endif
1485
1486 static inline void
1487 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1488 {
1489          task->pids[type].pid = pid;
1490 }
1491
1492 static inline void rcu_copy_process(struct task_struct *p)
1493 {
1494 #ifdef CONFIG_PREEMPT_RCU
1495         p->rcu_read_lock_nesting = 0;
1496         p->rcu_read_unlock_special.s = 0;
1497         p->rcu_blocked_node = NULL;
1498         INIT_LIST_HEAD(&p->rcu_node_entry);
1499 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1500 #ifdef CONFIG_TASKS_RCU
1501         p->rcu_tasks_holdout = false;
1502         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1503         p->rcu_tasks_idle_cpu = -1;
1504 #endif /* #ifdef CONFIG_TASKS_RCU */
1505 }
1506
1507 /*
1508  * This creates a new process as a copy of the old one,
1509  * but does not actually start it yet.
1510  *
1511  * It copies the registers, and all the appropriate
1512  * parts of the process environment (as per the clone
1513  * flags). The actual kick-off is left to the caller.
1514  */
1515 static __latent_entropy struct task_struct *copy_process(
1516                                         unsigned long clone_flags,
1517                                         unsigned long stack_start,
1518                                         unsigned long stack_size,
1519                                         int __user *child_tidptr,
1520                                         struct pid *pid,
1521                                         int trace,
1522                                         unsigned long tls,
1523                                         int node)
1524 {
1525         int retval;
1526         struct task_struct *p;
1527
1528         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1529                 return ERR_PTR(-EINVAL);
1530
1531         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1532                 return ERR_PTR(-EINVAL);
1533
1534         /*
1535          * Thread groups must share signals as well, and detached threads
1536          * can only be started up within the thread group.
1537          */
1538         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1539                 return ERR_PTR(-EINVAL);
1540
1541         /*
1542          * Shared signal handlers imply shared VM. By way of the above,
1543          * thread groups also imply shared VM. Blocking this case allows
1544          * for various simplifications in other code.
1545          */
1546         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1547                 return ERR_PTR(-EINVAL);
1548
1549         /*
1550          * Siblings of global init remain as zombies on exit since they are
1551          * not reaped by their parent (swapper). To solve this and to avoid
1552          * multi-rooted process trees, prevent global and container-inits
1553          * from creating siblings.
1554          */
1555         if ((clone_flags & CLONE_PARENT) &&
1556                                 current->signal->flags & SIGNAL_UNKILLABLE)
1557                 return ERR_PTR(-EINVAL);
1558
1559         /*
1560          * If the new process will be in a different pid or user namespace
1561          * do not allow it to share a thread group with the forking task.
1562          */
1563         if (clone_flags & CLONE_THREAD) {
1564                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1565                     (task_active_pid_ns(current) !=
1566                                 current->nsproxy->pid_ns_for_children))
1567                         return ERR_PTR(-EINVAL);
1568         }
1569
1570         retval = security_task_create(clone_flags);
1571         if (retval)
1572                 goto fork_out;
1573
1574         retval = -ENOMEM;
1575         p = dup_task_struct(current, node);
1576         if (!p)
1577                 goto fork_out;
1578
1579         /*
1580          * This _must_ happen before we call free_task(), i.e. before we jump
1581          * to any of the bad_fork_* labels. This is to avoid freeing
1582          * p->set_child_tid which is (ab)used as a kthread's data pointer for
1583          * kernel threads (PF_KTHREAD).
1584          */
1585         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1586         /*
1587          * Clear TID on mm_release()?
1588          */
1589         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1590
1591         ftrace_graph_init_task(p);
1592
1593         rt_mutex_init_task(p);
1594
1595 #ifdef CONFIG_PROVE_LOCKING
1596         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1597         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1598 #endif
1599         retval = -EAGAIN;
1600         if (atomic_read(&p->real_cred->user->processes) >=
1601                         task_rlimit(p, RLIMIT_NPROC)) {
1602                 if (p->real_cred->user != INIT_USER &&
1603                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1604                         goto bad_fork_free;
1605         }
1606         current->flags &= ~PF_NPROC_EXCEEDED;
1607
1608         retval = copy_creds(p, clone_flags);
1609         if (retval < 0)
1610                 goto bad_fork_free;
1611
1612         /*
1613          * If multiple threads are within copy_process(), then this check
1614          * triggers too late. This doesn't hurt, the check is only there
1615          * to stop root fork bombs.
1616          */
1617         retval = -EAGAIN;
1618         if (nr_threads >= max_threads)
1619                 goto bad_fork_cleanup_count;
1620
1621         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1622         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1623         p->flags |= PF_FORKNOEXEC;
1624         INIT_LIST_HEAD(&p->children);
1625         INIT_LIST_HEAD(&p->sibling);
1626         rcu_copy_process(p);
1627         p->vfork_done = NULL;
1628         spin_lock_init(&p->alloc_lock);
1629
1630         init_sigpending(&p->pending);
1631
1632         p->utime = p->stime = p->gtime = 0;
1633 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1634         p->utimescaled = p->stimescaled = 0;
1635 #endif
1636         prev_cputime_init(&p->prev_cputime);
1637
1638 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1639         seqcount_init(&p->vtime.seqcount);
1640         p->vtime.starttime = 0;
1641         p->vtime.state = VTIME_INACTIVE;
1642 #endif
1643
1644 #if defined(SPLIT_RSS_COUNTING)
1645         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1646 #endif
1647
1648         p->default_timer_slack_ns = current->timer_slack_ns;
1649
1650         task_io_accounting_init(&p->ioac);
1651         acct_clear_integrals(p);
1652
1653         posix_cpu_timers_init(p);
1654
1655         p->start_time = ktime_get_ns();
1656         p->real_start_time = ktime_get_boot_ns();
1657         p->io_context = NULL;
1658         p->audit_context = NULL;
1659         cgroup_fork(p);
1660 #ifdef CONFIG_NUMA
1661         p->mempolicy = mpol_dup(p->mempolicy);
1662         if (IS_ERR(p->mempolicy)) {
1663                 retval = PTR_ERR(p->mempolicy);
1664                 p->mempolicy = NULL;
1665                 goto bad_fork_cleanup_threadgroup_lock;
1666         }
1667 #endif
1668 #ifdef CONFIG_CPUSETS
1669         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1670         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1671         seqcount_init(&p->mems_allowed_seq);
1672 #endif
1673 #ifdef CONFIG_TRACE_IRQFLAGS
1674         p->irq_events = 0;
1675         p->hardirqs_enabled = 0;
1676         p->hardirq_enable_ip = 0;
1677         p->hardirq_enable_event = 0;
1678         p->hardirq_disable_ip = _THIS_IP_;
1679         p->hardirq_disable_event = 0;
1680         p->softirqs_enabled = 1;
1681         p->softirq_enable_ip = _THIS_IP_;
1682         p->softirq_enable_event = 0;
1683         p->softirq_disable_ip = 0;
1684         p->softirq_disable_event = 0;
1685         p->hardirq_context = 0;
1686         p->softirq_context = 0;
1687 #endif
1688
1689         p->pagefault_disabled = 0;
1690
1691 #ifdef CONFIG_LOCKDEP
1692         p->lockdep_depth = 0; /* no locks held yet */
1693         p->curr_chain_key = 0;
1694         p->lockdep_recursion = 0;
1695 #endif
1696
1697 #ifdef CONFIG_DEBUG_MUTEXES
1698         p->blocked_on = NULL; /* not blocked yet */
1699 #endif
1700 #ifdef CONFIG_BCACHE
1701         p->sequential_io        = 0;
1702         p->sequential_io_avg    = 0;
1703 #endif
1704
1705         /* Perform scheduler related setup. Assign this task to a CPU. */
1706         retval = sched_fork(clone_flags, p);
1707         if (retval)
1708                 goto bad_fork_cleanup_policy;
1709
1710         retval = perf_event_init_task(p);
1711         if (retval)
1712                 goto bad_fork_cleanup_policy;
1713         retval = audit_alloc(p);
1714         if (retval)
1715                 goto bad_fork_cleanup_perf;
1716         /* copy all the process information */
1717         shm_init_task(p);
1718         retval = security_task_alloc(p, clone_flags);
1719         if (retval)
1720                 goto bad_fork_cleanup_audit;
1721         retval = copy_semundo(clone_flags, p);
1722         if (retval)
1723                 goto bad_fork_cleanup_security;
1724         retval = copy_files(clone_flags, p);
1725         if (retval)
1726                 goto bad_fork_cleanup_semundo;
1727         retval = copy_fs(clone_flags, p);
1728         if (retval)
1729                 goto bad_fork_cleanup_files;
1730         retval = copy_sighand(clone_flags, p);
1731         if (retval)
1732                 goto bad_fork_cleanup_fs;
1733         retval = copy_signal(clone_flags, p);
1734         if (retval)
1735                 goto bad_fork_cleanup_sighand;
1736         retval = copy_mm(clone_flags, p);
1737         if (retval)
1738                 goto bad_fork_cleanup_signal;
1739         retval = copy_namespaces(clone_flags, p);
1740         if (retval)
1741                 goto bad_fork_cleanup_mm;
1742         retval = copy_io(clone_flags, p);
1743         if (retval)
1744                 goto bad_fork_cleanup_namespaces;
1745         retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1746         if (retval)
1747                 goto bad_fork_cleanup_io;
1748
1749         if (pid != &init_struct_pid) {
1750                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1751                 if (IS_ERR(pid)) {
1752                         retval = PTR_ERR(pid);
1753                         goto bad_fork_cleanup_thread;
1754                 }
1755         }
1756
1757 #ifdef CONFIG_BLOCK
1758         p->plug = NULL;
1759 #endif
1760 #ifdef CONFIG_FUTEX
1761         p->robust_list = NULL;
1762 #ifdef CONFIG_COMPAT
1763         p->compat_robust_list = NULL;
1764 #endif
1765         INIT_LIST_HEAD(&p->pi_state_list);
1766         p->pi_state_cache = NULL;
1767 #endif
1768         /*
1769          * sigaltstack should be cleared when sharing the same VM
1770          */
1771         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1772                 sas_ss_reset(p);
1773
1774         /*
1775          * Syscall tracing and stepping should be turned off in the
1776          * child regardless of CLONE_PTRACE.
1777          */
1778         user_disable_single_step(p);
1779         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1780 #ifdef TIF_SYSCALL_EMU
1781         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1782 #endif
1783         clear_all_latency_tracing(p);
1784
1785         /* ok, now we should be set up.. */
1786         p->pid = pid_nr(pid);
1787         if (clone_flags & CLONE_THREAD) {
1788                 p->exit_signal = -1;
1789                 p->group_leader = current->group_leader;
1790                 p->tgid = current->tgid;
1791         } else {
1792                 if (clone_flags & CLONE_PARENT)
1793                         p->exit_signal = current->group_leader->exit_signal;
1794                 else
1795                         p->exit_signal = (clone_flags & CSIGNAL);
1796                 p->group_leader = p;
1797                 p->tgid = p->pid;
1798         }
1799
1800         p->nr_dirtied = 0;
1801         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1802         p->dirty_paused_when = 0;
1803
1804         p->pdeath_signal = 0;
1805         INIT_LIST_HEAD(&p->thread_group);
1806         p->task_works = NULL;
1807
1808         cgroup_threadgroup_change_begin(current);
1809         /*
1810          * Ensure that the cgroup subsystem policies allow the new process to be
1811          * forked. It should be noted the the new process's css_set can be changed
1812          * between here and cgroup_post_fork() if an organisation operation is in
1813          * progress.
1814          */
1815         retval = cgroup_can_fork(p);
1816         if (retval)
1817                 goto bad_fork_free_pid;
1818
1819         /*
1820          * Make it visible to the rest of the system, but dont wake it up yet.
1821          * Need tasklist lock for parent etc handling!
1822          */
1823         write_lock_irq(&tasklist_lock);
1824
1825         /* CLONE_PARENT re-uses the old parent */
1826         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1827                 p->real_parent = current->real_parent;
1828                 p->parent_exec_id = current->parent_exec_id;
1829         } else {
1830                 p->real_parent = current;
1831                 p->parent_exec_id = current->self_exec_id;
1832         }
1833
1834         klp_copy_process(p);
1835
1836         spin_lock(&current->sighand->siglock);
1837
1838         /*
1839          * Copy seccomp details explicitly here, in case they were changed
1840          * before holding sighand lock.
1841          */
1842         copy_seccomp(p);
1843
1844         /*
1845          * Process group and session signals need to be delivered to just the
1846          * parent before the fork or both the parent and the child after the
1847          * fork. Restart if a signal comes in before we add the new process to
1848          * it's process group.
1849          * A fatal signal pending means that current will exit, so the new
1850          * thread can't slip out of an OOM kill (or normal SIGKILL).
1851         */
1852         recalc_sigpending();
1853         if (signal_pending(current)) {
1854                 retval = -ERESTARTNOINTR;
1855                 goto bad_fork_cancel_cgroup;
1856         }
1857         if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1858                 retval = -ENOMEM;
1859                 goto bad_fork_cancel_cgroup;
1860         }
1861
1862         if (likely(p->pid)) {
1863                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1864
1865                 init_task_pid(p, PIDTYPE_PID, pid);
1866                 if (thread_group_leader(p)) {
1867                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1868                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1869
1870                         if (is_child_reaper(pid)) {
1871                                 ns_of_pid(pid)->child_reaper = p;
1872                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1873                         }
1874
1875                         p->signal->leader_pid = pid;
1876                         p->signal->tty = tty_kref_get(current->signal->tty);
1877                         /*
1878                          * Inherit has_child_subreaper flag under the same
1879                          * tasklist_lock with adding child to the process tree
1880                          * for propagate_has_child_subreaper optimization.
1881                          */
1882                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1883                                                          p->real_parent->signal->is_child_subreaper;
1884                         list_add_tail(&p->sibling, &p->real_parent->children);
1885                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1886                         attach_pid(p, PIDTYPE_PGID);
1887                         attach_pid(p, PIDTYPE_SID);
1888                         __this_cpu_inc(process_counts);
1889                 } else {
1890                         current->signal->nr_threads++;
1891                         atomic_inc(&current->signal->live);
1892                         atomic_inc(&current->signal->sigcnt);
1893                         list_add_tail_rcu(&p->thread_group,
1894                                           &p->group_leader->thread_group);
1895                         list_add_tail_rcu(&p->thread_node,
1896                                           &p->signal->thread_head);
1897                 }
1898                 attach_pid(p, PIDTYPE_PID);
1899                 nr_threads++;
1900         }
1901
1902         total_forks++;
1903         spin_unlock(&current->sighand->siglock);
1904         syscall_tracepoint_update(p);
1905         write_unlock_irq(&tasklist_lock);
1906
1907         proc_fork_connector(p);
1908         cgroup_post_fork(p);
1909         cgroup_threadgroup_change_end(current);
1910         perf_event_fork(p);
1911
1912         trace_task_newtask(p, clone_flags);
1913         uprobe_copy_process(p, clone_flags);
1914
1915         return p;
1916
1917 bad_fork_cancel_cgroup:
1918         spin_unlock(&current->sighand->siglock);
1919         write_unlock_irq(&tasklist_lock);
1920         cgroup_cancel_fork(p);
1921 bad_fork_free_pid:
1922         cgroup_threadgroup_change_end(current);
1923         if (pid != &init_struct_pid)
1924                 free_pid(pid);
1925 bad_fork_cleanup_thread:
1926         exit_thread(p);
1927 bad_fork_cleanup_io:
1928         if (p->io_context)
1929                 exit_io_context(p);
1930 bad_fork_cleanup_namespaces:
1931         exit_task_namespaces(p);
1932 bad_fork_cleanup_mm:
1933         if (p->mm)
1934                 mmput(p->mm);
1935 bad_fork_cleanup_signal:
1936         if (!(clone_flags & CLONE_THREAD))
1937                 free_signal_struct(p->signal);
1938 bad_fork_cleanup_sighand:
1939         __cleanup_sighand(p->sighand);
1940 bad_fork_cleanup_fs:
1941         exit_fs(p); /* blocking */
1942 bad_fork_cleanup_files:
1943         exit_files(p); /* blocking */
1944 bad_fork_cleanup_semundo:
1945         exit_sem(p);
1946 bad_fork_cleanup_security:
1947         security_task_free(p);
1948 bad_fork_cleanup_audit:
1949         audit_free(p);
1950 bad_fork_cleanup_perf:
1951         perf_event_free_task(p);
1952 bad_fork_cleanup_policy:
1953 #ifdef CONFIG_NUMA
1954         mpol_put(p->mempolicy);
1955 bad_fork_cleanup_threadgroup_lock:
1956 #endif
1957         delayacct_tsk_free(p);
1958 bad_fork_cleanup_count:
1959         atomic_dec(&p->cred->user->processes);
1960         exit_creds(p);
1961 bad_fork_free:
1962         p->state = TASK_DEAD;
1963         put_task_stack(p);
1964         free_task(p);
1965 fork_out:
1966         return ERR_PTR(retval);
1967 }
1968
1969 static inline void init_idle_pids(struct pid_link *links)
1970 {
1971         enum pid_type type;
1972
1973         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1974                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1975                 links[type].pid = &init_struct_pid;
1976         }
1977 }
1978
1979 struct task_struct *fork_idle(int cpu)
1980 {
1981         struct task_struct *task;
1982         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1983                             cpu_to_node(cpu));
1984         if (!IS_ERR(task)) {
1985                 init_idle_pids(task->pids);
1986                 init_idle(task, cpu);
1987         }
1988
1989         return task;
1990 }
1991
1992 /*
1993  *  Ok, this is the main fork-routine.
1994  *
1995  * It copies the process, and if successful kick-starts
1996  * it and waits for it to finish using the VM if required.
1997  */
1998 long _do_fork(unsigned long clone_flags,
1999               unsigned long stack_start,
2000               unsigned long stack_size,
2001               int __user *parent_tidptr,
2002               int __user *child_tidptr,
2003               unsigned long tls)
2004 {
2005         struct task_struct *p;
2006         int trace = 0;
2007         long nr;
2008
2009         /*
2010          * Determine whether and which event to report to ptracer.  When
2011          * called from kernel_thread or CLONE_UNTRACED is explicitly
2012          * requested, no event is reported; otherwise, report if the event
2013          * for the type of forking is enabled.
2014          */
2015         if (!(clone_flags & CLONE_UNTRACED)) {
2016                 if (clone_flags & CLONE_VFORK)
2017                         trace = PTRACE_EVENT_VFORK;
2018                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2019                         trace = PTRACE_EVENT_CLONE;
2020                 else
2021                         trace = PTRACE_EVENT_FORK;
2022
2023                 if (likely(!ptrace_event_enabled(current, trace)))
2024                         trace = 0;
2025         }
2026
2027         p = copy_process(clone_flags, stack_start, stack_size,
2028                          child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2029         add_latent_entropy();
2030         /*
2031          * Do this prior waking up the new thread - the thread pointer
2032          * might get invalid after that point, if the thread exits quickly.
2033          */
2034         if (!IS_ERR(p)) {
2035                 struct completion vfork;
2036                 struct pid *pid;
2037
2038                 trace_sched_process_fork(current, p);
2039
2040                 pid = get_task_pid(p, PIDTYPE_PID);
2041                 nr = pid_vnr(pid);
2042
2043                 if (clone_flags & CLONE_PARENT_SETTID)
2044                         put_user(nr, parent_tidptr);
2045
2046                 if (clone_flags & CLONE_VFORK) {
2047                         p->vfork_done = &vfork;
2048                         init_completion(&vfork);
2049                         get_task_struct(p);
2050                 }
2051
2052                 wake_up_new_task(p);
2053
2054                 /* forking complete and child started to run, tell ptracer */
2055                 if (unlikely(trace))
2056                         ptrace_event_pid(trace, pid);
2057
2058                 if (clone_flags & CLONE_VFORK) {
2059                         if (!wait_for_vfork_done(p, &vfork))
2060                                 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2061                 }
2062
2063                 put_pid(pid);
2064         } else {
2065                 nr = PTR_ERR(p);
2066         }
2067         return nr;
2068 }
2069
2070 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2071 /* For compatibility with architectures that call do_fork directly rather than
2072  * using the syscall entry points below. */
2073 long do_fork(unsigned long clone_flags,
2074               unsigned long stack_start,
2075               unsigned long stack_size,
2076               int __user *parent_tidptr,
2077               int __user *child_tidptr)
2078 {
2079         return _do_fork(clone_flags, stack_start, stack_size,
2080                         parent_tidptr, child_tidptr, 0);
2081 }
2082 #endif
2083
2084 /*
2085  * Create a kernel thread.
2086  */
2087 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2088 {
2089         return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2090                 (unsigned long)arg, NULL, NULL, 0);
2091 }
2092
2093 #ifdef __ARCH_WANT_SYS_FORK
2094 SYSCALL_DEFINE0(fork)
2095 {
2096 #ifdef CONFIG_MMU
2097         return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2098 #else
2099         /* can not support in nommu mode */
2100         return -EINVAL;
2101 #endif
2102 }
2103 #endif
2104
2105 #ifdef __ARCH_WANT_SYS_VFORK
2106 SYSCALL_DEFINE0(vfork)
2107 {
2108         return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2109                         0, NULL, NULL, 0);
2110 }
2111 #endif
2112
2113 #ifdef __ARCH_WANT_SYS_CLONE
2114 #ifdef CONFIG_CLONE_BACKWARDS
2115 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2116                  int __user *, parent_tidptr,
2117                  unsigned long, tls,
2118                  int __user *, child_tidptr)
2119 #elif defined(CONFIG_CLONE_BACKWARDS2)
2120 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2121                  int __user *, parent_tidptr,
2122                  int __user *, child_tidptr,
2123                  unsigned long, tls)
2124 #elif defined(CONFIG_CLONE_BACKWARDS3)
2125 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2126                 int, stack_size,
2127                 int __user *, parent_tidptr,
2128                 int __user *, child_tidptr,
2129                 unsigned long, tls)
2130 #else
2131 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2132                  int __user *, parent_tidptr,
2133                  int __user *, child_tidptr,
2134                  unsigned long, tls)
2135 #endif
2136 {
2137         return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2138 }
2139 #endif
2140
2141 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2142 {
2143         struct task_struct *leader, *parent, *child;
2144         int res;
2145
2146         read_lock(&tasklist_lock);
2147         leader = top = top->group_leader;
2148 down:
2149         for_each_thread(leader, parent) {
2150                 list_for_each_entry(child, &parent->children, sibling) {
2151                         res = visitor(child, data);
2152                         if (res) {
2153                                 if (res < 0)
2154                                         goto out;
2155                                 leader = child;
2156                                 goto down;
2157                         }
2158 up:
2159                         ;
2160                 }
2161         }
2162
2163         if (leader != top) {
2164                 child = leader;
2165                 parent = child->real_parent;
2166                 leader = parent->group_leader;
2167                 goto up;
2168         }
2169 out:
2170         read_unlock(&tasklist_lock);
2171 }
2172
2173 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2174 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2175 #endif
2176
2177 static void sighand_ctor(void *data)
2178 {
2179         struct sighand_struct *sighand = data;
2180
2181         spin_lock_init(&sighand->siglock);
2182         init_waitqueue_head(&sighand->signalfd_wqh);
2183 }
2184
2185 void __init proc_caches_init(void)
2186 {
2187         sighand_cachep = kmem_cache_create("sighand_cache",
2188                         sizeof(struct sighand_struct), 0,
2189                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2190                         SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2191         signal_cachep = kmem_cache_create("signal_cache",
2192                         sizeof(struct signal_struct), 0,
2193                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2194                         NULL);
2195         files_cachep = kmem_cache_create("files_cache",
2196                         sizeof(struct files_struct), 0,
2197                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2198                         NULL);
2199         fs_cachep = kmem_cache_create("fs_cache",
2200                         sizeof(struct fs_struct), 0,
2201                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2202                         NULL);
2203         /*
2204          * FIXME! The "sizeof(struct mm_struct)" currently includes the
2205          * whole struct cpumask for the OFFSTACK case. We could change
2206          * this to *only* allocate as much of it as required by the
2207          * maximum number of CPU's we can ever have.  The cpumask_allocation
2208          * is at the end of the structure, exactly for that reason.
2209          */
2210         mm_cachep = kmem_cache_create("mm_struct",
2211                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2212                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2213                         NULL);
2214         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2215         mmap_init();
2216         nsproxy_cache_init();
2217 }
2218
2219 /*
2220  * Check constraints on flags passed to the unshare system call.
2221  */
2222 static int check_unshare_flags(unsigned long unshare_flags)
2223 {
2224         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2225                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2226                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2227                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2228                 return -EINVAL;
2229         /*
2230          * Not implemented, but pretend it works if there is nothing
2231          * to unshare.  Note that unsharing the address space or the
2232          * signal handlers also need to unshare the signal queues (aka
2233          * CLONE_THREAD).
2234          */
2235         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2236                 if (!thread_group_empty(current))
2237                         return -EINVAL;
2238         }
2239         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2240                 if (atomic_read(&current->sighand->count) > 1)
2241                         return -EINVAL;
2242         }
2243         if (unshare_flags & CLONE_VM) {
2244                 if (!current_is_single_threaded())
2245                         return -EINVAL;
2246         }
2247
2248         return 0;
2249 }
2250
2251 /*
2252  * Unshare the filesystem structure if it is being shared
2253  */
2254 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2255 {
2256         struct fs_struct *fs = current->fs;
2257
2258         if (!(unshare_flags & CLONE_FS) || !fs)
2259                 return 0;
2260
2261         /* don't need lock here; in the worst case we'll do useless copy */
2262         if (fs->users == 1)
2263                 return 0;
2264
2265         *new_fsp = copy_fs_struct(fs);
2266         if (!*new_fsp)
2267                 return -ENOMEM;
2268
2269         return 0;
2270 }
2271
2272 /*
2273  * Unshare file descriptor table if it is being shared
2274  */
2275 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2276 {
2277         struct files_struct *fd = current->files;
2278         int error = 0;
2279
2280         if ((unshare_flags & CLONE_FILES) &&
2281             (fd && atomic_read(&fd->count) > 1)) {
2282                 *new_fdp = dup_fd(fd, &error);
2283                 if (!*new_fdp)
2284                         return error;
2285         }
2286
2287         return 0;
2288 }
2289
2290 /*
2291  * unshare allows a process to 'unshare' part of the process
2292  * context which was originally shared using clone.  copy_*
2293  * functions used by do_fork() cannot be used here directly
2294  * because they modify an inactive task_struct that is being
2295  * constructed. Here we are modifying the current, active,
2296  * task_struct.
2297  */
2298 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2299 {
2300         struct fs_struct *fs, *new_fs = NULL;
2301         struct files_struct *fd, *new_fd = NULL;
2302         struct cred *new_cred = NULL;
2303         struct nsproxy *new_nsproxy = NULL;
2304         int do_sysvsem = 0;
2305         int err;
2306
2307         /*
2308          * If unsharing a user namespace must also unshare the thread group
2309          * and unshare the filesystem root and working directories.
2310          */
2311         if (unshare_flags & CLONE_NEWUSER)
2312                 unshare_flags |= CLONE_THREAD | CLONE_FS;
2313         /*
2314          * If unsharing vm, must also unshare signal handlers.
2315          */
2316         if (unshare_flags & CLONE_VM)
2317                 unshare_flags |= CLONE_SIGHAND;
2318         /*
2319          * If unsharing a signal handlers, must also unshare the signal queues.
2320          */
2321         if (unshare_flags & CLONE_SIGHAND)
2322                 unshare_flags |= CLONE_THREAD;
2323         /*
2324          * If unsharing namespace, must also unshare filesystem information.
2325          */
2326         if (unshare_flags & CLONE_NEWNS)
2327                 unshare_flags |= CLONE_FS;
2328
2329         err = check_unshare_flags(unshare_flags);
2330         if (err)
2331                 goto bad_unshare_out;
2332         /*
2333          * CLONE_NEWIPC must also detach from the undolist: after switching
2334          * to a new ipc namespace, the semaphore arrays from the old
2335          * namespace are unreachable.
2336          */
2337         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2338                 do_sysvsem = 1;
2339         err = unshare_fs(unshare_flags, &new_fs);
2340         if (err)
2341                 goto bad_unshare_out;
2342         err = unshare_fd(unshare_flags, &new_fd);
2343         if (err)
2344                 goto bad_unshare_cleanup_fs;
2345         err = unshare_userns(unshare_flags, &new_cred);
2346         if (err)
2347                 goto bad_unshare_cleanup_fd;
2348         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2349                                          new_cred, new_fs);
2350         if (err)
2351                 goto bad_unshare_cleanup_cred;
2352
2353         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2354                 if (do_sysvsem) {
2355                         /*
2356                          * CLONE_SYSVSEM is equivalent to sys_exit().
2357                          */
2358                         exit_sem(current);
2359                 }
2360                 if (unshare_flags & CLONE_NEWIPC) {
2361                         /* Orphan segments in old ns (see sem above). */
2362                         exit_shm(current);
2363                         shm_init_task(current);
2364                 }
2365
2366                 if (new_nsproxy)
2367                         switch_task_namespaces(current, new_nsproxy);
2368
2369                 task_lock(current);
2370
2371                 if (new_fs) {
2372                         fs = current->fs;
2373                         spin_lock(&fs->lock);
2374                         current->fs = new_fs;
2375                         if (--fs->users)
2376                                 new_fs = NULL;
2377                         else
2378                                 new_fs = fs;
2379                         spin_unlock(&fs->lock);
2380                 }
2381
2382                 if (new_fd) {
2383                         fd = current->files;
2384                         current->files = new_fd;
2385                         new_fd = fd;
2386                 }
2387
2388                 task_unlock(current);
2389
2390                 if (new_cred) {
2391                         /* Install the new user namespace */
2392                         commit_creds(new_cred);
2393                         new_cred = NULL;
2394                 }
2395         }
2396
2397         perf_event_namespaces(current);
2398
2399 bad_unshare_cleanup_cred:
2400         if (new_cred)
2401                 put_cred(new_cred);
2402 bad_unshare_cleanup_fd:
2403         if (new_fd)
2404                 put_files_struct(new_fd);
2405
2406 bad_unshare_cleanup_fs:
2407         if (new_fs)
2408                 free_fs_struct(new_fs);
2409
2410 bad_unshare_out:
2411         return err;
2412 }
2413
2414 /*
2415  *      Helper to unshare the files of the current task.
2416  *      We don't want to expose copy_files internals to
2417  *      the exec layer of the kernel.
2418  */
2419
2420 int unshare_files(struct files_struct **displaced)
2421 {
2422         struct task_struct *task = current;
2423         struct files_struct *copy = NULL;
2424         int error;
2425
2426         error = unshare_fd(CLONE_FILES, &copy);
2427         if (error || !copy) {
2428                 *displaced = NULL;
2429                 return error;
2430         }
2431         *displaced = task->files;
2432         task_lock(task);
2433         task->files = copy;
2434         task_unlock(task);
2435         return 0;
2436 }
2437
2438 int sysctl_max_threads(struct ctl_table *table, int write,
2439                        void __user *buffer, size_t *lenp, loff_t *ppos)
2440 {
2441         struct ctl_table t;
2442         int ret;
2443         int threads = max_threads;
2444         int min = MIN_THREADS;
2445         int max = MAX_THREADS;
2446
2447         t = *table;
2448         t.data = &threads;
2449         t.extra1 = &min;
2450         t.extra2 = &max;
2451
2452         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2453         if (ret || !write)
2454                 return ret;
2455
2456         set_max_threads(threads);
2457
2458         return 0;
2459 }