]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/perf_event.c
perf: Honour event state for aux stream data
[karo-tx-linux.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31
32 #include <asm/irq_regs.h>
33
34 /*
35  * Each CPU has a list of per CPU events:
36  */
37 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
38
39 int perf_max_events __read_mostly = 1;
40 static int perf_reserved_percpu __read_mostly;
41 static int perf_overcommit __read_mostly = 1;
42
43 static atomic_t nr_events __read_mostly;
44 static atomic_t nr_mmap_events __read_mostly;
45 static atomic_t nr_comm_events __read_mostly;
46 static atomic_t nr_task_events __read_mostly;
47
48 /*
49  * perf event paranoia level:
50  *  -1 - not paranoid at all
51  *   0 - disallow raw tracepoint access for unpriv
52  *   1 - disallow cpu events for unpriv
53  *   2 - disallow kernel profiling for unpriv
54  */
55 int sysctl_perf_event_paranoid __read_mostly = 1;
56
57 static inline bool perf_paranoid_tracepoint_raw(void)
58 {
59         return sysctl_perf_event_paranoid > -1;
60 }
61
62 static inline bool perf_paranoid_cpu(void)
63 {
64         return sysctl_perf_event_paranoid > 0;
65 }
66
67 static inline bool perf_paranoid_kernel(void)
68 {
69         return sysctl_perf_event_paranoid > 1;
70 }
71
72 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
73
74 /*
75  * max perf event sample rate
76  */
77 int sysctl_perf_event_sample_rate __read_mostly = 100000;
78
79 static atomic64_t perf_event_id;
80
81 /*
82  * Lock for (sysadmin-configurable) event reservations:
83  */
84 static DEFINE_SPINLOCK(perf_resource_lock);
85
86 /*
87  * Architecture provided APIs - weak aliases:
88  */
89 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
90 {
91         return NULL;
92 }
93
94 void __weak hw_perf_disable(void)               { barrier(); }
95 void __weak hw_perf_enable(void)                { barrier(); }
96
97 void __weak hw_perf_event_setup(int cpu)        { barrier(); }
98 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
99
100 int __weak
101 hw_perf_group_sched_in(struct perf_event *group_leader,
102                struct perf_cpu_context *cpuctx,
103                struct perf_event_context *ctx, int cpu)
104 {
105         return 0;
106 }
107
108 void __weak perf_event_print_debug(void)        { }
109
110 static DEFINE_PER_CPU(int, perf_disable_count);
111
112 void __perf_disable(void)
113 {
114         __get_cpu_var(perf_disable_count)++;
115 }
116
117 bool __perf_enable(void)
118 {
119         return !--__get_cpu_var(perf_disable_count);
120 }
121
122 void perf_disable(void)
123 {
124         __perf_disable();
125         hw_perf_disable();
126 }
127
128 void perf_enable(void)
129 {
130         if (__perf_enable())
131                 hw_perf_enable();
132 }
133
134 static void get_ctx(struct perf_event_context *ctx)
135 {
136         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
137 }
138
139 static void free_ctx(struct rcu_head *head)
140 {
141         struct perf_event_context *ctx;
142
143         ctx = container_of(head, struct perf_event_context, rcu_head);
144         kfree(ctx);
145 }
146
147 static void put_ctx(struct perf_event_context *ctx)
148 {
149         if (atomic_dec_and_test(&ctx->refcount)) {
150                 if (ctx->parent_ctx)
151                         put_ctx(ctx->parent_ctx);
152                 if (ctx->task)
153                         put_task_struct(ctx->task);
154                 call_rcu(&ctx->rcu_head, free_ctx);
155         }
156 }
157
158 static void unclone_ctx(struct perf_event_context *ctx)
159 {
160         if (ctx->parent_ctx) {
161                 put_ctx(ctx->parent_ctx);
162                 ctx->parent_ctx = NULL;
163         }
164 }
165
166 /*
167  * If we inherit events we want to return the parent event id
168  * to userspace.
169  */
170 static u64 primary_event_id(struct perf_event *event)
171 {
172         u64 id = event->id;
173
174         if (event->parent)
175                 id = event->parent->id;
176
177         return id;
178 }
179
180 /*
181  * Get the perf_event_context for a task and lock it.
182  * This has to cope with with the fact that until it is locked,
183  * the context could get moved to another task.
184  */
185 static struct perf_event_context *
186 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
187 {
188         struct perf_event_context *ctx;
189
190         rcu_read_lock();
191  retry:
192         ctx = rcu_dereference(task->perf_event_ctxp);
193         if (ctx) {
194                 /*
195                  * If this context is a clone of another, it might
196                  * get swapped for another underneath us by
197                  * perf_event_task_sched_out, though the
198                  * rcu_read_lock() protects us from any context
199                  * getting freed.  Lock the context and check if it
200                  * got swapped before we could get the lock, and retry
201                  * if so.  If we locked the right context, then it
202                  * can't get swapped on us any more.
203                  */
204                 spin_lock_irqsave(&ctx->lock, *flags);
205                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
206                         spin_unlock_irqrestore(&ctx->lock, *flags);
207                         goto retry;
208                 }
209
210                 if (!atomic_inc_not_zero(&ctx->refcount)) {
211                         spin_unlock_irqrestore(&ctx->lock, *flags);
212                         ctx = NULL;
213                 }
214         }
215         rcu_read_unlock();
216         return ctx;
217 }
218
219 /*
220  * Get the context for a task and increment its pin_count so it
221  * can't get swapped to another task.  This also increments its
222  * reference count so that the context can't get freed.
223  */
224 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
225 {
226         struct perf_event_context *ctx;
227         unsigned long flags;
228
229         ctx = perf_lock_task_context(task, &flags);
230         if (ctx) {
231                 ++ctx->pin_count;
232                 spin_unlock_irqrestore(&ctx->lock, flags);
233         }
234         return ctx;
235 }
236
237 static void perf_unpin_context(struct perf_event_context *ctx)
238 {
239         unsigned long flags;
240
241         spin_lock_irqsave(&ctx->lock, flags);
242         --ctx->pin_count;
243         spin_unlock_irqrestore(&ctx->lock, flags);
244         put_ctx(ctx);
245 }
246
247 /*
248  * Add a event from the lists for its context.
249  * Must be called with ctx->mutex and ctx->lock held.
250  */
251 static void
252 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
253 {
254         struct perf_event *group_leader = event->group_leader;
255
256         /*
257          * Depending on whether it is a standalone or sibling event,
258          * add it straight to the context's event list, or to the group
259          * leader's sibling list:
260          */
261         if (group_leader == event)
262                 list_add_tail(&event->group_entry, &ctx->group_list);
263         else {
264                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
265                 group_leader->nr_siblings++;
266         }
267
268         list_add_rcu(&event->event_entry, &ctx->event_list);
269         ctx->nr_events++;
270         if (event->attr.inherit_stat)
271                 ctx->nr_stat++;
272 }
273
274 /*
275  * Remove a event from the lists for its context.
276  * Must be called with ctx->mutex and ctx->lock held.
277  */
278 static void
279 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
280 {
281         struct perf_event *sibling, *tmp;
282
283         if (list_empty(&event->group_entry))
284                 return;
285         ctx->nr_events--;
286         if (event->attr.inherit_stat)
287                 ctx->nr_stat--;
288
289         list_del_init(&event->group_entry);
290         list_del_rcu(&event->event_entry);
291
292         if (event->group_leader != event)
293                 event->group_leader->nr_siblings--;
294
295         /*
296          * If this was a group event with sibling events then
297          * upgrade the siblings to singleton events by adding them
298          * to the context list directly:
299          */
300         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
301
302                 list_move_tail(&sibling->group_entry, &ctx->group_list);
303                 sibling->group_leader = sibling;
304         }
305 }
306
307 static void
308 event_sched_out(struct perf_event *event,
309                   struct perf_cpu_context *cpuctx,
310                   struct perf_event_context *ctx)
311 {
312         if (event->state != PERF_EVENT_STATE_ACTIVE)
313                 return;
314
315         event->state = PERF_EVENT_STATE_INACTIVE;
316         if (event->pending_disable) {
317                 event->pending_disable = 0;
318                 event->state = PERF_EVENT_STATE_OFF;
319         }
320         event->tstamp_stopped = ctx->time;
321         event->pmu->disable(event);
322         event->oncpu = -1;
323
324         if (!is_software_event(event))
325                 cpuctx->active_oncpu--;
326         ctx->nr_active--;
327         if (event->attr.exclusive || !cpuctx->active_oncpu)
328                 cpuctx->exclusive = 0;
329 }
330
331 static void
332 group_sched_out(struct perf_event *group_event,
333                 struct perf_cpu_context *cpuctx,
334                 struct perf_event_context *ctx)
335 {
336         struct perf_event *event;
337
338         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
339                 return;
340
341         event_sched_out(group_event, cpuctx, ctx);
342
343         /*
344          * Schedule out siblings (if any):
345          */
346         list_for_each_entry(event, &group_event->sibling_list, group_entry)
347                 event_sched_out(event, cpuctx, ctx);
348
349         if (group_event->attr.exclusive)
350                 cpuctx->exclusive = 0;
351 }
352
353 /*
354  * Cross CPU call to remove a performance event
355  *
356  * We disable the event on the hardware level first. After that we
357  * remove it from the context list.
358  */
359 static void __perf_event_remove_from_context(void *info)
360 {
361         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
362         struct perf_event *event = info;
363         struct perf_event_context *ctx = event->ctx;
364
365         /*
366          * If this is a task context, we need to check whether it is
367          * the current task context of this cpu. If not it has been
368          * scheduled out before the smp call arrived.
369          */
370         if (ctx->task && cpuctx->task_ctx != ctx)
371                 return;
372
373         spin_lock(&ctx->lock);
374         /*
375          * Protect the list operation against NMI by disabling the
376          * events on a global level.
377          */
378         perf_disable();
379
380         event_sched_out(event, cpuctx, ctx);
381
382         list_del_event(event, ctx);
383
384         if (!ctx->task) {
385                 /*
386                  * Allow more per task events with respect to the
387                  * reservation:
388                  */
389                 cpuctx->max_pertask =
390                         min(perf_max_events - ctx->nr_events,
391                             perf_max_events - perf_reserved_percpu);
392         }
393
394         perf_enable();
395         spin_unlock(&ctx->lock);
396 }
397
398
399 /*
400  * Remove the event from a task's (or a CPU's) list of events.
401  *
402  * Must be called with ctx->mutex held.
403  *
404  * CPU events are removed with a smp call. For task events we only
405  * call when the task is on a CPU.
406  *
407  * If event->ctx is a cloned context, callers must make sure that
408  * every task struct that event->ctx->task could possibly point to
409  * remains valid.  This is OK when called from perf_release since
410  * that only calls us on the top-level context, which can't be a clone.
411  * When called from perf_event_exit_task, it's OK because the
412  * context has been detached from its task.
413  */
414 static void perf_event_remove_from_context(struct perf_event *event)
415 {
416         struct perf_event_context *ctx = event->ctx;
417         struct task_struct *task = ctx->task;
418
419         if (!task) {
420                 /*
421                  * Per cpu events are removed via an smp call and
422                  * the removal is always sucessful.
423                  */
424                 smp_call_function_single(event->cpu,
425                                          __perf_event_remove_from_context,
426                                          event, 1);
427                 return;
428         }
429
430 retry:
431         task_oncpu_function_call(task, __perf_event_remove_from_context,
432                                  event);
433
434         spin_lock_irq(&ctx->lock);
435         /*
436          * If the context is active we need to retry the smp call.
437          */
438         if (ctx->nr_active && !list_empty(&event->group_entry)) {
439                 spin_unlock_irq(&ctx->lock);
440                 goto retry;
441         }
442
443         /*
444          * The lock prevents that this context is scheduled in so we
445          * can remove the event safely, if the call above did not
446          * succeed.
447          */
448         if (!list_empty(&event->group_entry)) {
449                 list_del_event(event, ctx);
450         }
451         spin_unlock_irq(&ctx->lock);
452 }
453
454 static inline u64 perf_clock(void)
455 {
456         return cpu_clock(smp_processor_id());
457 }
458
459 /*
460  * Update the record of the current time in a context.
461  */
462 static void update_context_time(struct perf_event_context *ctx)
463 {
464         u64 now = perf_clock();
465
466         ctx->time += now - ctx->timestamp;
467         ctx->timestamp = now;
468 }
469
470 /*
471  * Update the total_time_enabled and total_time_running fields for a event.
472  */
473 static void update_event_times(struct perf_event *event)
474 {
475         struct perf_event_context *ctx = event->ctx;
476         u64 run_end;
477
478         if (event->state < PERF_EVENT_STATE_INACTIVE ||
479             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
480                 return;
481
482         event->total_time_enabled = ctx->time - event->tstamp_enabled;
483
484         if (event->state == PERF_EVENT_STATE_INACTIVE)
485                 run_end = event->tstamp_stopped;
486         else
487                 run_end = ctx->time;
488
489         event->total_time_running = run_end - event->tstamp_running;
490 }
491
492 /*
493  * Update total_time_enabled and total_time_running for all events in a group.
494  */
495 static void update_group_times(struct perf_event *leader)
496 {
497         struct perf_event *event;
498
499         update_event_times(leader);
500         list_for_each_entry(event, &leader->sibling_list, group_entry)
501                 update_event_times(event);
502 }
503
504 /*
505  * Cross CPU call to disable a performance event
506  */
507 static void __perf_event_disable(void *info)
508 {
509         struct perf_event *event = info;
510         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
511         struct perf_event_context *ctx = event->ctx;
512
513         /*
514          * If this is a per-task event, need to check whether this
515          * event's task is the current task on this cpu.
516          */
517         if (ctx->task && cpuctx->task_ctx != ctx)
518                 return;
519
520         spin_lock(&ctx->lock);
521
522         /*
523          * If the event is on, turn it off.
524          * If it is in error state, leave it in error state.
525          */
526         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
527                 update_context_time(ctx);
528                 update_group_times(event);
529                 if (event == event->group_leader)
530                         group_sched_out(event, cpuctx, ctx);
531                 else
532                         event_sched_out(event, cpuctx, ctx);
533                 event->state = PERF_EVENT_STATE_OFF;
534         }
535
536         spin_unlock(&ctx->lock);
537 }
538
539 /*
540  * Disable a event.
541  *
542  * If event->ctx is a cloned context, callers must make sure that
543  * every task struct that event->ctx->task could possibly point to
544  * remains valid.  This condition is satisifed when called through
545  * perf_event_for_each_child or perf_event_for_each because they
546  * hold the top-level event's child_mutex, so any descendant that
547  * goes to exit will block in sync_child_event.
548  * When called from perf_pending_event it's OK because event->ctx
549  * is the current context on this CPU and preemption is disabled,
550  * hence we can't get into perf_event_task_sched_out for this context.
551  */
552 static void perf_event_disable(struct perf_event *event)
553 {
554         struct perf_event_context *ctx = event->ctx;
555         struct task_struct *task = ctx->task;
556
557         if (!task) {
558                 /*
559                  * Disable the event on the cpu that it's on
560                  */
561                 smp_call_function_single(event->cpu, __perf_event_disable,
562                                          event, 1);
563                 return;
564         }
565
566  retry:
567         task_oncpu_function_call(task, __perf_event_disable, event);
568
569         spin_lock_irq(&ctx->lock);
570         /*
571          * If the event is still active, we need to retry the cross-call.
572          */
573         if (event->state == PERF_EVENT_STATE_ACTIVE) {
574                 spin_unlock_irq(&ctx->lock);
575                 goto retry;
576         }
577
578         /*
579          * Since we have the lock this context can't be scheduled
580          * in, so we can change the state safely.
581          */
582         if (event->state == PERF_EVENT_STATE_INACTIVE) {
583                 update_group_times(event);
584                 event->state = PERF_EVENT_STATE_OFF;
585         }
586
587         spin_unlock_irq(&ctx->lock);
588 }
589
590 static int
591 event_sched_in(struct perf_event *event,
592                  struct perf_cpu_context *cpuctx,
593                  struct perf_event_context *ctx,
594                  int cpu)
595 {
596         if (event->state <= PERF_EVENT_STATE_OFF)
597                 return 0;
598
599         event->state = PERF_EVENT_STATE_ACTIVE;
600         event->oncpu = cpu;     /* TODO: put 'cpu' into cpuctx->cpu */
601         /*
602          * The new state must be visible before we turn it on in the hardware:
603          */
604         smp_wmb();
605
606         if (event->pmu->enable(event)) {
607                 event->state = PERF_EVENT_STATE_INACTIVE;
608                 event->oncpu = -1;
609                 return -EAGAIN;
610         }
611
612         event->tstamp_running += ctx->time - event->tstamp_stopped;
613
614         if (!is_software_event(event))
615                 cpuctx->active_oncpu++;
616         ctx->nr_active++;
617
618         if (event->attr.exclusive)
619                 cpuctx->exclusive = 1;
620
621         return 0;
622 }
623
624 static int
625 group_sched_in(struct perf_event *group_event,
626                struct perf_cpu_context *cpuctx,
627                struct perf_event_context *ctx,
628                int cpu)
629 {
630         struct perf_event *event, *partial_group;
631         int ret;
632
633         if (group_event->state == PERF_EVENT_STATE_OFF)
634                 return 0;
635
636         ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
637         if (ret)
638                 return ret < 0 ? ret : 0;
639
640         if (event_sched_in(group_event, cpuctx, ctx, cpu))
641                 return -EAGAIN;
642
643         /*
644          * Schedule in siblings as one group (if any):
645          */
646         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
647                 if (event_sched_in(event, cpuctx, ctx, cpu)) {
648                         partial_group = event;
649                         goto group_error;
650                 }
651         }
652
653         return 0;
654
655 group_error:
656         /*
657          * Groups can be scheduled in as one unit only, so undo any
658          * partial group before returning:
659          */
660         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
661                 if (event == partial_group)
662                         break;
663                 event_sched_out(event, cpuctx, ctx);
664         }
665         event_sched_out(group_event, cpuctx, ctx);
666
667         return -EAGAIN;
668 }
669
670 /*
671  * Return 1 for a group consisting entirely of software events,
672  * 0 if the group contains any hardware events.
673  */
674 static int is_software_only_group(struct perf_event *leader)
675 {
676         struct perf_event *event;
677
678         if (!is_software_event(leader))
679                 return 0;
680
681         list_for_each_entry(event, &leader->sibling_list, group_entry)
682                 if (!is_software_event(event))
683                         return 0;
684
685         return 1;
686 }
687
688 /*
689  * Work out whether we can put this event group on the CPU now.
690  */
691 static int group_can_go_on(struct perf_event *event,
692                            struct perf_cpu_context *cpuctx,
693                            int can_add_hw)
694 {
695         /*
696          * Groups consisting entirely of software events can always go on.
697          */
698         if (is_software_only_group(event))
699                 return 1;
700         /*
701          * If an exclusive group is already on, no other hardware
702          * events can go on.
703          */
704         if (cpuctx->exclusive)
705                 return 0;
706         /*
707          * If this group is exclusive and there are already
708          * events on the CPU, it can't go on.
709          */
710         if (event->attr.exclusive && cpuctx->active_oncpu)
711                 return 0;
712         /*
713          * Otherwise, try to add it if all previous groups were able
714          * to go on.
715          */
716         return can_add_hw;
717 }
718
719 static void add_event_to_ctx(struct perf_event *event,
720                                struct perf_event_context *ctx)
721 {
722         list_add_event(event, ctx);
723         event->tstamp_enabled = ctx->time;
724         event->tstamp_running = ctx->time;
725         event->tstamp_stopped = ctx->time;
726 }
727
728 /*
729  * Cross CPU call to install and enable a performance event
730  *
731  * Must be called with ctx->mutex held
732  */
733 static void __perf_install_in_context(void *info)
734 {
735         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
736         struct perf_event *event = info;
737         struct perf_event_context *ctx = event->ctx;
738         struct perf_event *leader = event->group_leader;
739         int cpu = smp_processor_id();
740         int err;
741
742         /*
743          * If this is a task context, we need to check whether it is
744          * the current task context of this cpu. If not it has been
745          * scheduled out before the smp call arrived.
746          * Or possibly this is the right context but it isn't
747          * on this cpu because it had no events.
748          */
749         if (ctx->task && cpuctx->task_ctx != ctx) {
750                 if (cpuctx->task_ctx || ctx->task != current)
751                         return;
752                 cpuctx->task_ctx = ctx;
753         }
754
755         spin_lock(&ctx->lock);
756         ctx->is_active = 1;
757         update_context_time(ctx);
758
759         /*
760          * Protect the list operation against NMI by disabling the
761          * events on a global level. NOP for non NMI based events.
762          */
763         perf_disable();
764
765         add_event_to_ctx(event, ctx);
766
767         /*
768          * Don't put the event on if it is disabled or if
769          * it is in a group and the group isn't on.
770          */
771         if (event->state != PERF_EVENT_STATE_INACTIVE ||
772             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
773                 goto unlock;
774
775         /*
776          * An exclusive event can't go on if there are already active
777          * hardware events, and no hardware event can go on if there
778          * is already an exclusive event on.
779          */
780         if (!group_can_go_on(event, cpuctx, 1))
781                 err = -EEXIST;
782         else
783                 err = event_sched_in(event, cpuctx, ctx, cpu);
784
785         if (err) {
786                 /*
787                  * This event couldn't go on.  If it is in a group
788                  * then we have to pull the whole group off.
789                  * If the event group is pinned then put it in error state.
790                  */
791                 if (leader != event)
792                         group_sched_out(leader, cpuctx, ctx);
793                 if (leader->attr.pinned) {
794                         update_group_times(leader);
795                         leader->state = PERF_EVENT_STATE_ERROR;
796                 }
797         }
798
799         if (!err && !ctx->task && cpuctx->max_pertask)
800                 cpuctx->max_pertask--;
801
802  unlock:
803         perf_enable();
804
805         spin_unlock(&ctx->lock);
806 }
807
808 /*
809  * Attach a performance event to a context
810  *
811  * First we add the event to the list with the hardware enable bit
812  * in event->hw_config cleared.
813  *
814  * If the event is attached to a task which is on a CPU we use a smp
815  * call to enable it in the task context. The task might have been
816  * scheduled away, but we check this in the smp call again.
817  *
818  * Must be called with ctx->mutex held.
819  */
820 static void
821 perf_install_in_context(struct perf_event_context *ctx,
822                         struct perf_event *event,
823                         int cpu)
824 {
825         struct task_struct *task = ctx->task;
826
827         if (!task) {
828                 /*
829                  * Per cpu events are installed via an smp call and
830                  * the install is always sucessful.
831                  */
832                 smp_call_function_single(cpu, __perf_install_in_context,
833                                          event, 1);
834                 return;
835         }
836
837 retry:
838         task_oncpu_function_call(task, __perf_install_in_context,
839                                  event);
840
841         spin_lock_irq(&ctx->lock);
842         /*
843          * we need to retry the smp call.
844          */
845         if (ctx->is_active && list_empty(&event->group_entry)) {
846                 spin_unlock_irq(&ctx->lock);
847                 goto retry;
848         }
849
850         /*
851          * The lock prevents that this context is scheduled in so we
852          * can add the event safely, if it the call above did not
853          * succeed.
854          */
855         if (list_empty(&event->group_entry))
856                 add_event_to_ctx(event, ctx);
857         spin_unlock_irq(&ctx->lock);
858 }
859
860 /*
861  * Put a event into inactive state and update time fields.
862  * Enabling the leader of a group effectively enables all
863  * the group members that aren't explicitly disabled, so we
864  * have to update their ->tstamp_enabled also.
865  * Note: this works for group members as well as group leaders
866  * since the non-leader members' sibling_lists will be empty.
867  */
868 static void __perf_event_mark_enabled(struct perf_event *event,
869                                         struct perf_event_context *ctx)
870 {
871         struct perf_event *sub;
872
873         event->state = PERF_EVENT_STATE_INACTIVE;
874         event->tstamp_enabled = ctx->time - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry)
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
877                         sub->tstamp_enabled =
878                                 ctx->time - sub->total_time_enabled;
879 }
880
881 /*
882  * Cross CPU call to enable a performance event
883  */
884 static void __perf_event_enable(void *info)
885 {
886         struct perf_event *event = info;
887         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888         struct perf_event_context *ctx = event->ctx;
889         struct perf_event *leader = event->group_leader;
890         int err;
891
892         /*
893          * If this is a per-task event, need to check whether this
894          * event's task is the current task on this cpu.
895          */
896         if (ctx->task && cpuctx->task_ctx != ctx) {
897                 if (cpuctx->task_ctx || ctx->task != current)
898                         return;
899                 cpuctx->task_ctx = ctx;
900         }
901
902         spin_lock(&ctx->lock);
903         ctx->is_active = 1;
904         update_context_time(ctx);
905
906         if (event->state >= PERF_EVENT_STATE_INACTIVE)
907                 goto unlock;
908         __perf_event_mark_enabled(event, ctx);
909
910         /*
911          * If the event is in a group and isn't the group leader,
912          * then don't put it on unless the group is on.
913          */
914         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
915                 goto unlock;
916
917         if (!group_can_go_on(event, cpuctx, 1)) {
918                 err = -EEXIST;
919         } else {
920                 perf_disable();
921                 if (event == leader)
922                         err = group_sched_in(event, cpuctx, ctx,
923                                              smp_processor_id());
924                 else
925                         err = event_sched_in(event, cpuctx, ctx,
926                                                smp_processor_id());
927                 perf_enable();
928         }
929
930         if (err) {
931                 /*
932                  * If this event can't go on and it's part of a
933                  * group, then the whole group has to come off.
934                  */
935                 if (leader != event)
936                         group_sched_out(leader, cpuctx, ctx);
937                 if (leader->attr.pinned) {
938                         update_group_times(leader);
939                         leader->state = PERF_EVENT_STATE_ERROR;
940                 }
941         }
942
943  unlock:
944         spin_unlock(&ctx->lock);
945 }
946
947 /*
948  * Enable a event.
949  *
950  * If event->ctx is a cloned context, callers must make sure that
951  * every task struct that event->ctx->task could possibly point to
952  * remains valid.  This condition is satisfied when called through
953  * perf_event_for_each_child or perf_event_for_each as described
954  * for perf_event_disable.
955  */
956 static void perf_event_enable(struct perf_event *event)
957 {
958         struct perf_event_context *ctx = event->ctx;
959         struct task_struct *task = ctx->task;
960
961         if (!task) {
962                 /*
963                  * Enable the event on the cpu that it's on
964                  */
965                 smp_call_function_single(event->cpu, __perf_event_enable,
966                                          event, 1);
967                 return;
968         }
969
970         spin_lock_irq(&ctx->lock);
971         if (event->state >= PERF_EVENT_STATE_INACTIVE)
972                 goto out;
973
974         /*
975          * If the event is in error state, clear that first.
976          * That way, if we see the event in error state below, we
977          * know that it has gone back into error state, as distinct
978          * from the task having been scheduled away before the
979          * cross-call arrived.
980          */
981         if (event->state == PERF_EVENT_STATE_ERROR)
982                 event->state = PERF_EVENT_STATE_OFF;
983
984  retry:
985         spin_unlock_irq(&ctx->lock);
986         task_oncpu_function_call(task, __perf_event_enable, event);
987
988         spin_lock_irq(&ctx->lock);
989
990         /*
991          * If the context is active and the event is still off,
992          * we need to retry the cross-call.
993          */
994         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
995                 goto retry;
996
997         /*
998          * Since we have the lock this context can't be scheduled
999          * in, so we can change the state safely.
1000          */
1001         if (event->state == PERF_EVENT_STATE_OFF)
1002                 __perf_event_mark_enabled(event, ctx);
1003
1004  out:
1005         spin_unlock_irq(&ctx->lock);
1006 }
1007
1008 static int perf_event_refresh(struct perf_event *event, int refresh)
1009 {
1010         /*
1011          * not supported on inherited events
1012          */
1013         if (event->attr.inherit)
1014                 return -EINVAL;
1015
1016         atomic_add(refresh, &event->event_limit);
1017         perf_event_enable(event);
1018
1019         return 0;
1020 }
1021
1022 void __perf_event_sched_out(struct perf_event_context *ctx,
1023                               struct perf_cpu_context *cpuctx)
1024 {
1025         struct perf_event *event;
1026
1027         spin_lock(&ctx->lock);
1028         ctx->is_active = 0;
1029         if (likely(!ctx->nr_events))
1030                 goto out;
1031         update_context_time(ctx);
1032
1033         perf_disable();
1034         if (ctx->nr_active)
1035                 list_for_each_entry(event, &ctx->group_list, group_entry)
1036                         group_sched_out(event, cpuctx, ctx);
1037
1038         perf_enable();
1039  out:
1040         spin_unlock(&ctx->lock);
1041 }
1042
1043 /*
1044  * Test whether two contexts are equivalent, i.e. whether they
1045  * have both been cloned from the same version of the same context
1046  * and they both have the same number of enabled events.
1047  * If the number of enabled events is the same, then the set
1048  * of enabled events should be the same, because these are both
1049  * inherited contexts, therefore we can't access individual events
1050  * in them directly with an fd; we can only enable/disable all
1051  * events via prctl, or enable/disable all events in a family
1052  * via ioctl, which will have the same effect on both contexts.
1053  */
1054 static int context_equiv(struct perf_event_context *ctx1,
1055                          struct perf_event_context *ctx2)
1056 {
1057         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1058                 && ctx1->parent_gen == ctx2->parent_gen
1059                 && !ctx1->pin_count && !ctx2->pin_count;
1060 }
1061
1062 static void __perf_event_read(void *event);
1063
1064 static void __perf_event_sync_stat(struct perf_event *event,
1065                                      struct perf_event *next_event)
1066 {
1067         u64 value;
1068
1069         if (!event->attr.inherit_stat)
1070                 return;
1071
1072         /*
1073          * Update the event value, we cannot use perf_event_read()
1074          * because we're in the middle of a context switch and have IRQs
1075          * disabled, which upsets smp_call_function_single(), however
1076          * we know the event must be on the current CPU, therefore we
1077          * don't need to use it.
1078          */
1079         switch (event->state) {
1080         case PERF_EVENT_STATE_ACTIVE:
1081                 __perf_event_read(event);
1082                 break;
1083
1084         case PERF_EVENT_STATE_INACTIVE:
1085                 update_event_times(event);
1086                 break;
1087
1088         default:
1089                 break;
1090         }
1091
1092         /*
1093          * In order to keep per-task stats reliable we need to flip the event
1094          * values when we flip the contexts.
1095          */
1096         value = atomic64_read(&next_event->count);
1097         value = atomic64_xchg(&event->count, value);
1098         atomic64_set(&next_event->count, value);
1099
1100         swap(event->total_time_enabled, next_event->total_time_enabled);
1101         swap(event->total_time_running, next_event->total_time_running);
1102
1103         /*
1104          * Since we swizzled the values, update the user visible data too.
1105          */
1106         perf_event_update_userpage(event);
1107         perf_event_update_userpage(next_event);
1108 }
1109
1110 #define list_next_entry(pos, member) \
1111         list_entry(pos->member.next, typeof(*pos), member)
1112
1113 static void perf_event_sync_stat(struct perf_event_context *ctx,
1114                                    struct perf_event_context *next_ctx)
1115 {
1116         struct perf_event *event, *next_event;
1117
1118         if (!ctx->nr_stat)
1119                 return;
1120
1121         event = list_first_entry(&ctx->event_list,
1122                                    struct perf_event, event_entry);
1123
1124         next_event = list_first_entry(&next_ctx->event_list,
1125                                         struct perf_event, event_entry);
1126
1127         while (&event->event_entry != &ctx->event_list &&
1128                &next_event->event_entry != &next_ctx->event_list) {
1129
1130                 __perf_event_sync_stat(event, next_event);
1131
1132                 event = list_next_entry(event, event_entry);
1133                 next_event = list_next_entry(next_event, event_entry);
1134         }
1135 }
1136
1137 /*
1138  * Called from scheduler to remove the events of the current task,
1139  * with interrupts disabled.
1140  *
1141  * We stop each event and update the event value in event->count.
1142  *
1143  * This does not protect us against NMI, but disable()
1144  * sets the disabled bit in the control field of event _before_
1145  * accessing the event control register. If a NMI hits, then it will
1146  * not restart the event.
1147  */
1148 void perf_event_task_sched_out(struct task_struct *task,
1149                                  struct task_struct *next, int cpu)
1150 {
1151         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1152         struct perf_event_context *ctx = task->perf_event_ctxp;
1153         struct perf_event_context *next_ctx;
1154         struct perf_event_context *parent;
1155         struct pt_regs *regs;
1156         int do_switch = 1;
1157
1158         regs = task_pt_regs(task);
1159         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1160
1161         if (likely(!ctx || !cpuctx->task_ctx))
1162                 return;
1163
1164         update_context_time(ctx);
1165
1166         rcu_read_lock();
1167         parent = rcu_dereference(ctx->parent_ctx);
1168         next_ctx = next->perf_event_ctxp;
1169         if (parent && next_ctx &&
1170             rcu_dereference(next_ctx->parent_ctx) == parent) {
1171                 /*
1172                  * Looks like the two contexts are clones, so we might be
1173                  * able to optimize the context switch.  We lock both
1174                  * contexts and check that they are clones under the
1175                  * lock (including re-checking that neither has been
1176                  * uncloned in the meantime).  It doesn't matter which
1177                  * order we take the locks because no other cpu could
1178                  * be trying to lock both of these tasks.
1179                  */
1180                 spin_lock(&ctx->lock);
1181                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1182                 if (context_equiv(ctx, next_ctx)) {
1183                         /*
1184                          * XXX do we need a memory barrier of sorts
1185                          * wrt to rcu_dereference() of perf_event_ctxp
1186                          */
1187                         task->perf_event_ctxp = next_ctx;
1188                         next->perf_event_ctxp = ctx;
1189                         ctx->task = next;
1190                         next_ctx->task = task;
1191                         do_switch = 0;
1192
1193                         perf_event_sync_stat(ctx, next_ctx);
1194                 }
1195                 spin_unlock(&next_ctx->lock);
1196                 spin_unlock(&ctx->lock);
1197         }
1198         rcu_read_unlock();
1199
1200         if (do_switch) {
1201                 __perf_event_sched_out(ctx, cpuctx);
1202                 cpuctx->task_ctx = NULL;
1203         }
1204 }
1205
1206 /*
1207  * Called with IRQs disabled
1208  */
1209 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1210 {
1211         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1212
1213         if (!cpuctx->task_ctx)
1214                 return;
1215
1216         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1217                 return;
1218
1219         __perf_event_sched_out(ctx, cpuctx);
1220         cpuctx->task_ctx = NULL;
1221 }
1222
1223 /*
1224  * Called with IRQs disabled
1225  */
1226 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1227 {
1228         __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1229 }
1230
1231 static void
1232 __perf_event_sched_in(struct perf_event_context *ctx,
1233                         struct perf_cpu_context *cpuctx, int cpu)
1234 {
1235         struct perf_event *event;
1236         int can_add_hw = 1;
1237
1238         spin_lock(&ctx->lock);
1239         ctx->is_active = 1;
1240         if (likely(!ctx->nr_events))
1241                 goto out;
1242
1243         ctx->timestamp = perf_clock();
1244
1245         perf_disable();
1246
1247         /*
1248          * First go through the list and put on any pinned groups
1249          * in order to give them the best chance of going on.
1250          */
1251         list_for_each_entry(event, &ctx->group_list, group_entry) {
1252                 if (event->state <= PERF_EVENT_STATE_OFF ||
1253                     !event->attr.pinned)
1254                         continue;
1255                 if (event->cpu != -1 && event->cpu != cpu)
1256                         continue;
1257
1258                 if (group_can_go_on(event, cpuctx, 1))
1259                         group_sched_in(event, cpuctx, ctx, cpu);
1260
1261                 /*
1262                  * If this pinned group hasn't been scheduled,
1263                  * put it in error state.
1264                  */
1265                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266                         update_group_times(event);
1267                         event->state = PERF_EVENT_STATE_ERROR;
1268                 }
1269         }
1270
1271         list_for_each_entry(event, &ctx->group_list, group_entry) {
1272                 /*
1273                  * Ignore events in OFF or ERROR state, and
1274                  * ignore pinned events since we did them already.
1275                  */
1276                 if (event->state <= PERF_EVENT_STATE_OFF ||
1277                     event->attr.pinned)
1278                         continue;
1279
1280                 /*
1281                  * Listen to the 'cpu' scheduling filter constraint
1282                  * of events:
1283                  */
1284                 if (event->cpu != -1 && event->cpu != cpu)
1285                         continue;
1286
1287                 if (group_can_go_on(event, cpuctx, can_add_hw))
1288                         if (group_sched_in(event, cpuctx, ctx, cpu))
1289                                 can_add_hw = 0;
1290         }
1291         perf_enable();
1292  out:
1293         spin_unlock(&ctx->lock);
1294 }
1295
1296 /*
1297  * Called from scheduler to add the events of the current task
1298  * with interrupts disabled.
1299  *
1300  * We restore the event value and then enable it.
1301  *
1302  * This does not protect us against NMI, but enable()
1303  * sets the enabled bit in the control field of event _before_
1304  * accessing the event control register. If a NMI hits, then it will
1305  * keep the event running.
1306  */
1307 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1308 {
1309         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310         struct perf_event_context *ctx = task->perf_event_ctxp;
1311
1312         if (likely(!ctx))
1313                 return;
1314         if (cpuctx->task_ctx == ctx)
1315                 return;
1316         __perf_event_sched_in(ctx, cpuctx, cpu);
1317         cpuctx->task_ctx = ctx;
1318 }
1319
1320 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1321 {
1322         struct perf_event_context *ctx = &cpuctx->ctx;
1323
1324         __perf_event_sched_in(ctx, cpuctx, cpu);
1325 }
1326
1327 #define MAX_INTERRUPTS (~0ULL)
1328
1329 static void perf_log_throttle(struct perf_event *event, int enable);
1330
1331 static void perf_adjust_period(struct perf_event *event, u64 events)
1332 {
1333         struct hw_perf_event *hwc = &event->hw;
1334         u64 period, sample_period;
1335         s64 delta;
1336
1337         events *= hwc->sample_period;
1338         period = div64_u64(events, event->attr.sample_freq);
1339
1340         delta = (s64)(period - hwc->sample_period);
1341         delta = (delta + 7) / 8; /* low pass filter */
1342
1343         sample_period = hwc->sample_period + delta;
1344
1345         if (!sample_period)
1346                 sample_period = 1;
1347
1348         hwc->sample_period = sample_period;
1349 }
1350
1351 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1352 {
1353         struct perf_event *event;
1354         struct hw_perf_event *hwc;
1355         u64 interrupts, freq;
1356
1357         spin_lock(&ctx->lock);
1358         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1360                         continue;
1361
1362                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1363                         continue;
1364
1365                 hwc = &event->hw;
1366
1367                 interrupts = hwc->interrupts;
1368                 hwc->interrupts = 0;
1369
1370                 /*
1371                  * unthrottle events on the tick
1372                  */
1373                 if (interrupts == MAX_INTERRUPTS) {
1374                         perf_log_throttle(event, 1);
1375                         event->pmu->unthrottle(event);
1376                         interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1377                 }
1378
1379                 if (!event->attr.freq || !event->attr.sample_freq)
1380                         continue;
1381
1382                 /*
1383                  * if the specified freq < HZ then we need to skip ticks
1384                  */
1385                 if (event->attr.sample_freq < HZ) {
1386                         freq = event->attr.sample_freq;
1387
1388                         hwc->freq_count += freq;
1389                         hwc->freq_interrupts += interrupts;
1390
1391                         if (hwc->freq_count < HZ)
1392                                 continue;
1393
1394                         interrupts = hwc->freq_interrupts;
1395                         hwc->freq_interrupts = 0;
1396                         hwc->freq_count -= HZ;
1397                 } else
1398                         freq = HZ;
1399
1400                 perf_adjust_period(event, freq * interrupts);
1401
1402                 /*
1403                  * In order to avoid being stalled by an (accidental) huge
1404                  * sample period, force reset the sample period if we didn't
1405                  * get any events in this freq period.
1406                  */
1407                 if (!interrupts) {
1408                         perf_disable();
1409                         event->pmu->disable(event);
1410                         atomic64_set(&hwc->period_left, 0);
1411                         event->pmu->enable(event);
1412                         perf_enable();
1413                 }
1414         }
1415         spin_unlock(&ctx->lock);
1416 }
1417
1418 /*
1419  * Round-robin a context's events:
1420  */
1421 static void rotate_ctx(struct perf_event_context *ctx)
1422 {
1423         struct perf_event *event;
1424
1425         if (!ctx->nr_events)
1426                 return;
1427
1428         spin_lock(&ctx->lock);
1429         /*
1430          * Rotate the first entry last (works just fine for group events too):
1431          */
1432         perf_disable();
1433         list_for_each_entry(event, &ctx->group_list, group_entry) {
1434                 list_move_tail(&event->group_entry, &ctx->group_list);
1435                 break;
1436         }
1437         perf_enable();
1438
1439         spin_unlock(&ctx->lock);
1440 }
1441
1442 void perf_event_task_tick(struct task_struct *curr, int cpu)
1443 {
1444         struct perf_cpu_context *cpuctx;
1445         struct perf_event_context *ctx;
1446
1447         if (!atomic_read(&nr_events))
1448                 return;
1449
1450         cpuctx = &per_cpu(perf_cpu_context, cpu);
1451         ctx = curr->perf_event_ctxp;
1452
1453         perf_ctx_adjust_freq(&cpuctx->ctx);
1454         if (ctx)
1455                 perf_ctx_adjust_freq(ctx);
1456
1457         perf_event_cpu_sched_out(cpuctx);
1458         if (ctx)
1459                 __perf_event_task_sched_out(ctx);
1460
1461         rotate_ctx(&cpuctx->ctx);
1462         if (ctx)
1463                 rotate_ctx(ctx);
1464
1465         perf_event_cpu_sched_in(cpuctx, cpu);
1466         if (ctx)
1467                 perf_event_task_sched_in(curr, cpu);
1468 }
1469
1470 /*
1471  * Enable all of a task's events that have been marked enable-on-exec.
1472  * This expects task == current.
1473  */
1474 static void perf_event_enable_on_exec(struct task_struct *task)
1475 {
1476         struct perf_event_context *ctx;
1477         struct perf_event *event;
1478         unsigned long flags;
1479         int enabled = 0;
1480
1481         local_irq_save(flags);
1482         ctx = task->perf_event_ctxp;
1483         if (!ctx || !ctx->nr_events)
1484                 goto out;
1485
1486         __perf_event_task_sched_out(ctx);
1487
1488         spin_lock(&ctx->lock);
1489
1490         list_for_each_entry(event, &ctx->group_list, group_entry) {
1491                 if (!event->attr.enable_on_exec)
1492                         continue;
1493                 event->attr.enable_on_exec = 0;
1494                 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1495                         continue;
1496                 __perf_event_mark_enabled(event, ctx);
1497                 enabled = 1;
1498         }
1499
1500         /*
1501          * Unclone this context if we enabled any event.
1502          */
1503         if (enabled)
1504                 unclone_ctx(ctx);
1505
1506         spin_unlock(&ctx->lock);
1507
1508         perf_event_task_sched_in(task, smp_processor_id());
1509  out:
1510         local_irq_restore(flags);
1511 }
1512
1513 /*
1514  * Cross CPU call to read the hardware event
1515  */
1516 static void __perf_event_read(void *info)
1517 {
1518         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1519         struct perf_event *event = info;
1520         struct perf_event_context *ctx = event->ctx;
1521         unsigned long flags;
1522
1523         /*
1524          * If this is a task context, we need to check whether it is
1525          * the current task context of this cpu.  If not it has been
1526          * scheduled out before the smp call arrived.  In that case
1527          * event->count would have been updated to a recent sample
1528          * when the event was scheduled out.
1529          */
1530         if (ctx->task && cpuctx->task_ctx != ctx)
1531                 return;
1532
1533         local_irq_save(flags);
1534         if (ctx->is_active)
1535                 update_context_time(ctx);
1536         event->pmu->read(event);
1537         update_event_times(event);
1538         local_irq_restore(flags);
1539 }
1540
1541 static u64 perf_event_read(struct perf_event *event)
1542 {
1543         /*
1544          * If event is enabled and currently active on a CPU, update the
1545          * value in the event structure:
1546          */
1547         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1548                 smp_call_function_single(event->oncpu,
1549                                          __perf_event_read, event, 1);
1550         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1551                 update_event_times(event);
1552         }
1553
1554         return atomic64_read(&event->count);
1555 }
1556
1557 /*
1558  * Initialize the perf_event context in a task_struct:
1559  */
1560 static void
1561 __perf_event_init_context(struct perf_event_context *ctx,
1562                             struct task_struct *task)
1563 {
1564         memset(ctx, 0, sizeof(*ctx));
1565         spin_lock_init(&ctx->lock);
1566         mutex_init(&ctx->mutex);
1567         INIT_LIST_HEAD(&ctx->group_list);
1568         INIT_LIST_HEAD(&ctx->event_list);
1569         atomic_set(&ctx->refcount, 1);
1570         ctx->task = task;
1571 }
1572
1573 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1574 {
1575         struct perf_event_context *ctx;
1576         struct perf_cpu_context *cpuctx;
1577         struct task_struct *task;
1578         unsigned long flags;
1579         int err;
1580
1581         /*
1582          * If cpu is not a wildcard then this is a percpu event:
1583          */
1584         if (cpu != -1) {
1585                 /* Must be root to operate on a CPU event: */
1586                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1587                         return ERR_PTR(-EACCES);
1588
1589                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1590                         return ERR_PTR(-EINVAL);
1591
1592                 /*
1593                  * We could be clever and allow to attach a event to an
1594                  * offline CPU and activate it when the CPU comes up, but
1595                  * that's for later.
1596                  */
1597                 if (!cpu_isset(cpu, cpu_online_map))
1598                         return ERR_PTR(-ENODEV);
1599
1600                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1601                 ctx = &cpuctx->ctx;
1602                 get_ctx(ctx);
1603
1604                 return ctx;
1605         }
1606
1607         rcu_read_lock();
1608         if (!pid)
1609                 task = current;
1610         else
1611                 task = find_task_by_vpid(pid);
1612         if (task)
1613                 get_task_struct(task);
1614         rcu_read_unlock();
1615
1616         if (!task)
1617                 return ERR_PTR(-ESRCH);
1618
1619         /*
1620          * Can't attach events to a dying task.
1621          */
1622         err = -ESRCH;
1623         if (task->flags & PF_EXITING)
1624                 goto errout;
1625
1626         /* Reuse ptrace permission checks for now. */
1627         err = -EACCES;
1628         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1629                 goto errout;
1630
1631  retry:
1632         ctx = perf_lock_task_context(task, &flags);
1633         if (ctx) {
1634                 unclone_ctx(ctx);
1635                 spin_unlock_irqrestore(&ctx->lock, flags);
1636         }
1637
1638         if (!ctx) {
1639                 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1640                 err = -ENOMEM;
1641                 if (!ctx)
1642                         goto errout;
1643                 __perf_event_init_context(ctx, task);
1644                 get_ctx(ctx);
1645                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1646                         /*
1647                          * We raced with some other task; use
1648                          * the context they set.
1649                          */
1650                         kfree(ctx);
1651                         goto retry;
1652                 }
1653                 get_task_struct(task);
1654         }
1655
1656         put_task_struct(task);
1657         return ctx;
1658
1659  errout:
1660         put_task_struct(task);
1661         return ERR_PTR(err);
1662 }
1663
1664 static void free_event_rcu(struct rcu_head *head)
1665 {
1666         struct perf_event *event;
1667
1668         event = container_of(head, struct perf_event, rcu_head);
1669         if (event->ns)
1670                 put_pid_ns(event->ns);
1671         kfree(event);
1672 }
1673
1674 static void perf_pending_sync(struct perf_event *event);
1675
1676 static void free_event(struct perf_event *event)
1677 {
1678         perf_pending_sync(event);
1679
1680         if (!event->parent) {
1681                 atomic_dec(&nr_events);
1682                 if (event->attr.mmap)
1683                         atomic_dec(&nr_mmap_events);
1684                 if (event->attr.comm)
1685                         atomic_dec(&nr_comm_events);
1686                 if (event->attr.task)
1687                         atomic_dec(&nr_task_events);
1688         }
1689
1690         if (event->output) {
1691                 fput(event->output->filp);
1692                 event->output = NULL;
1693         }
1694
1695         if (event->destroy)
1696                 event->destroy(event);
1697
1698         put_ctx(event->ctx);
1699         call_rcu(&event->rcu_head, free_event_rcu);
1700 }
1701
1702 /*
1703  * Called when the last reference to the file is gone.
1704  */
1705 static int perf_release(struct inode *inode, struct file *file)
1706 {
1707         struct perf_event *event = file->private_data;
1708         struct perf_event_context *ctx = event->ctx;
1709
1710         file->private_data = NULL;
1711
1712         WARN_ON_ONCE(ctx->parent_ctx);
1713         mutex_lock(&ctx->mutex);
1714         perf_event_remove_from_context(event);
1715         mutex_unlock(&ctx->mutex);
1716
1717         mutex_lock(&event->owner->perf_event_mutex);
1718         list_del_init(&event->owner_entry);
1719         mutex_unlock(&event->owner->perf_event_mutex);
1720         put_task_struct(event->owner);
1721
1722         free_event(event);
1723
1724         return 0;
1725 }
1726
1727 static int perf_event_read_size(struct perf_event *event)
1728 {
1729         int entry = sizeof(u64); /* value */
1730         int size = 0;
1731         int nr = 1;
1732
1733         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1734                 size += sizeof(u64);
1735
1736         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1737                 size += sizeof(u64);
1738
1739         if (event->attr.read_format & PERF_FORMAT_ID)
1740                 entry += sizeof(u64);
1741
1742         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1743                 nr += event->group_leader->nr_siblings;
1744                 size += sizeof(u64);
1745         }
1746
1747         size += entry * nr;
1748
1749         return size;
1750 }
1751
1752 static u64 perf_event_read_value(struct perf_event *event)
1753 {
1754         struct perf_event *child;
1755         u64 total = 0;
1756
1757         total += perf_event_read(event);
1758         list_for_each_entry(child, &event->child_list, child_list)
1759                 total += perf_event_read(child);
1760
1761         return total;
1762 }
1763
1764 static int perf_event_read_entry(struct perf_event *event,
1765                                    u64 read_format, char __user *buf)
1766 {
1767         int n = 0, count = 0;
1768         u64 values[2];
1769
1770         values[n++] = perf_event_read_value(event);
1771         if (read_format & PERF_FORMAT_ID)
1772                 values[n++] = primary_event_id(event);
1773
1774         count = n * sizeof(u64);
1775
1776         if (copy_to_user(buf, values, count))
1777                 return -EFAULT;
1778
1779         return count;
1780 }
1781
1782 static int perf_event_read_group(struct perf_event *event,
1783                                    u64 read_format, char __user *buf)
1784 {
1785         struct perf_event *leader = event->group_leader, *sub;
1786         int n = 0, size = 0, err = -EFAULT;
1787         u64 values[3];
1788
1789         values[n++] = 1 + leader->nr_siblings;
1790         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1791                 values[n++] = leader->total_time_enabled +
1792                         atomic64_read(&leader->child_total_time_enabled);
1793         }
1794         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1795                 values[n++] = leader->total_time_running +
1796                         atomic64_read(&leader->child_total_time_running);
1797         }
1798
1799         size = n * sizeof(u64);
1800
1801         if (copy_to_user(buf, values, size))
1802                 return -EFAULT;
1803
1804         err = perf_event_read_entry(leader, read_format, buf + size);
1805         if (err < 0)
1806                 return err;
1807
1808         size += err;
1809
1810         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1811                 err = perf_event_read_entry(sub, read_format,
1812                                 buf + size);
1813                 if (err < 0)
1814                         return err;
1815
1816                 size += err;
1817         }
1818
1819         return size;
1820 }
1821
1822 static int perf_event_read_one(struct perf_event *event,
1823                                  u64 read_format, char __user *buf)
1824 {
1825         u64 values[4];
1826         int n = 0;
1827
1828         values[n++] = perf_event_read_value(event);
1829         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1830                 values[n++] = event->total_time_enabled +
1831                         atomic64_read(&event->child_total_time_enabled);
1832         }
1833         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1834                 values[n++] = event->total_time_running +
1835                         atomic64_read(&event->child_total_time_running);
1836         }
1837         if (read_format & PERF_FORMAT_ID)
1838                 values[n++] = primary_event_id(event);
1839
1840         if (copy_to_user(buf, values, n * sizeof(u64)))
1841                 return -EFAULT;
1842
1843         return n * sizeof(u64);
1844 }
1845
1846 /*
1847  * Read the performance event - simple non blocking version for now
1848  */
1849 static ssize_t
1850 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1851 {
1852         u64 read_format = event->attr.read_format;
1853         int ret;
1854
1855         /*
1856          * Return end-of-file for a read on a event that is in
1857          * error state (i.e. because it was pinned but it couldn't be
1858          * scheduled on to the CPU at some point).
1859          */
1860         if (event->state == PERF_EVENT_STATE_ERROR)
1861                 return 0;
1862
1863         if (count < perf_event_read_size(event))
1864                 return -ENOSPC;
1865
1866         WARN_ON_ONCE(event->ctx->parent_ctx);
1867         mutex_lock(&event->child_mutex);
1868         if (read_format & PERF_FORMAT_GROUP)
1869                 ret = perf_event_read_group(event, read_format, buf);
1870         else
1871                 ret = perf_event_read_one(event, read_format, buf);
1872         mutex_unlock(&event->child_mutex);
1873
1874         return ret;
1875 }
1876
1877 static ssize_t
1878 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1879 {
1880         struct perf_event *event = file->private_data;
1881
1882         return perf_read_hw(event, buf, count);
1883 }
1884
1885 static unsigned int perf_poll(struct file *file, poll_table *wait)
1886 {
1887         struct perf_event *event = file->private_data;
1888         struct perf_mmap_data *data;
1889         unsigned int events = POLL_HUP;
1890
1891         rcu_read_lock();
1892         data = rcu_dereference(event->data);
1893         if (data)
1894                 events = atomic_xchg(&data->poll, 0);
1895         rcu_read_unlock();
1896
1897         poll_wait(file, &event->waitq, wait);
1898
1899         return events;
1900 }
1901
1902 static void perf_event_reset(struct perf_event *event)
1903 {
1904         (void)perf_event_read(event);
1905         atomic64_set(&event->count, 0);
1906         perf_event_update_userpage(event);
1907 }
1908
1909 /*
1910  * Holding the top-level event's child_mutex means that any
1911  * descendant process that has inherited this event will block
1912  * in sync_child_event if it goes to exit, thus satisfying the
1913  * task existence requirements of perf_event_enable/disable.
1914  */
1915 static void perf_event_for_each_child(struct perf_event *event,
1916                                         void (*func)(struct perf_event *))
1917 {
1918         struct perf_event *child;
1919
1920         WARN_ON_ONCE(event->ctx->parent_ctx);
1921         mutex_lock(&event->child_mutex);
1922         func(event);
1923         list_for_each_entry(child, &event->child_list, child_list)
1924                 func(child);
1925         mutex_unlock(&event->child_mutex);
1926 }
1927
1928 static void perf_event_for_each(struct perf_event *event,
1929                                   void (*func)(struct perf_event *))
1930 {
1931         struct perf_event_context *ctx = event->ctx;
1932         struct perf_event *sibling;
1933
1934         WARN_ON_ONCE(ctx->parent_ctx);
1935         mutex_lock(&ctx->mutex);
1936         event = event->group_leader;
1937
1938         perf_event_for_each_child(event, func);
1939         func(event);
1940         list_for_each_entry(sibling, &event->sibling_list, group_entry)
1941                 perf_event_for_each_child(event, func);
1942         mutex_unlock(&ctx->mutex);
1943 }
1944
1945 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1946 {
1947         struct perf_event_context *ctx = event->ctx;
1948         unsigned long size;
1949         int ret = 0;
1950         u64 value;
1951
1952         if (!event->attr.sample_period)
1953                 return -EINVAL;
1954
1955         size = copy_from_user(&value, arg, sizeof(value));
1956         if (size != sizeof(value))
1957                 return -EFAULT;
1958
1959         if (!value)
1960                 return -EINVAL;
1961
1962         spin_lock_irq(&ctx->lock);
1963         if (event->attr.freq) {
1964                 if (value > sysctl_perf_event_sample_rate) {
1965                         ret = -EINVAL;
1966                         goto unlock;
1967                 }
1968
1969                 event->attr.sample_freq = value;
1970         } else {
1971                 event->attr.sample_period = value;
1972                 event->hw.sample_period = value;
1973         }
1974 unlock:
1975         spin_unlock_irq(&ctx->lock);
1976
1977         return ret;
1978 }
1979
1980 int perf_event_set_output(struct perf_event *event, int output_fd);
1981
1982 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1983 {
1984         struct perf_event *event = file->private_data;
1985         void (*func)(struct perf_event *);
1986         u32 flags = arg;
1987
1988         switch (cmd) {
1989         case PERF_EVENT_IOC_ENABLE:
1990                 func = perf_event_enable;
1991                 break;
1992         case PERF_EVENT_IOC_DISABLE:
1993                 func = perf_event_disable;
1994                 break;
1995         case PERF_EVENT_IOC_RESET:
1996                 func = perf_event_reset;
1997                 break;
1998
1999         case PERF_EVENT_IOC_REFRESH:
2000                 return perf_event_refresh(event, arg);
2001
2002         case PERF_EVENT_IOC_PERIOD:
2003                 return perf_event_period(event, (u64 __user *)arg);
2004
2005         case PERF_EVENT_IOC_SET_OUTPUT:
2006                 return perf_event_set_output(event, arg);
2007
2008         default:
2009                 return -ENOTTY;
2010         }
2011
2012         if (flags & PERF_IOC_FLAG_GROUP)
2013                 perf_event_for_each(event, func);
2014         else
2015                 perf_event_for_each_child(event, func);
2016
2017         return 0;
2018 }
2019
2020 int perf_event_task_enable(void)
2021 {
2022         struct perf_event *event;
2023
2024         mutex_lock(&current->perf_event_mutex);
2025         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2026                 perf_event_for_each_child(event, perf_event_enable);
2027         mutex_unlock(&current->perf_event_mutex);
2028
2029         return 0;
2030 }
2031
2032 int perf_event_task_disable(void)
2033 {
2034         struct perf_event *event;
2035
2036         mutex_lock(&current->perf_event_mutex);
2037         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2038                 perf_event_for_each_child(event, perf_event_disable);
2039         mutex_unlock(&current->perf_event_mutex);
2040
2041         return 0;
2042 }
2043
2044 #ifndef PERF_EVENT_INDEX_OFFSET
2045 # define PERF_EVENT_INDEX_OFFSET 0
2046 #endif
2047
2048 static int perf_event_index(struct perf_event *event)
2049 {
2050         if (event->state != PERF_EVENT_STATE_ACTIVE)
2051                 return 0;
2052
2053         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2054 }
2055
2056 /*
2057  * Callers need to ensure there can be no nesting of this function, otherwise
2058  * the seqlock logic goes bad. We can not serialize this because the arch
2059  * code calls this from NMI context.
2060  */
2061 void perf_event_update_userpage(struct perf_event *event)
2062 {
2063         struct perf_event_mmap_page *userpg;
2064         struct perf_mmap_data *data;
2065
2066         rcu_read_lock();
2067         data = rcu_dereference(event->data);
2068         if (!data)
2069                 goto unlock;
2070
2071         userpg = data->user_page;
2072
2073         /*
2074          * Disable preemption so as to not let the corresponding user-space
2075          * spin too long if we get preempted.
2076          */
2077         preempt_disable();
2078         ++userpg->lock;
2079         barrier();
2080         userpg->index = perf_event_index(event);
2081         userpg->offset = atomic64_read(&event->count);
2082         if (event->state == PERF_EVENT_STATE_ACTIVE)
2083                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2084
2085         userpg->time_enabled = event->total_time_enabled +
2086                         atomic64_read(&event->child_total_time_enabled);
2087
2088         userpg->time_running = event->total_time_running +
2089                         atomic64_read(&event->child_total_time_running);
2090
2091         barrier();
2092         ++userpg->lock;
2093         preempt_enable();
2094 unlock:
2095         rcu_read_unlock();
2096 }
2097
2098 static unsigned long perf_data_size(struct perf_mmap_data *data)
2099 {
2100         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2101 }
2102
2103 #ifndef CONFIG_PERF_USE_VMALLOC
2104
2105 /*
2106  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2107  */
2108
2109 static struct page *
2110 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2111 {
2112         if (pgoff > data->nr_pages)
2113                 return NULL;
2114
2115         if (pgoff == 0)
2116                 return virt_to_page(data->user_page);
2117
2118         return virt_to_page(data->data_pages[pgoff - 1]);
2119 }
2120
2121 static struct perf_mmap_data *
2122 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2123 {
2124         struct perf_mmap_data *data;
2125         unsigned long size;
2126         int i;
2127
2128         WARN_ON(atomic_read(&event->mmap_count));
2129
2130         size = sizeof(struct perf_mmap_data);
2131         size += nr_pages * sizeof(void *);
2132
2133         data = kzalloc(size, GFP_KERNEL);
2134         if (!data)
2135                 goto fail;
2136
2137         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2138         if (!data->user_page)
2139                 goto fail_user_page;
2140
2141         for (i = 0; i < nr_pages; i++) {
2142                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2143                 if (!data->data_pages[i])
2144                         goto fail_data_pages;
2145         }
2146
2147         data->data_order = 0;
2148         data->nr_pages = nr_pages;
2149
2150         return data;
2151
2152 fail_data_pages:
2153         for (i--; i >= 0; i--)
2154                 free_page((unsigned long)data->data_pages[i]);
2155
2156         free_page((unsigned long)data->user_page);
2157
2158 fail_user_page:
2159         kfree(data);
2160
2161 fail:
2162         return NULL;
2163 }
2164
2165 static void perf_mmap_free_page(unsigned long addr)
2166 {
2167         struct page *page = virt_to_page((void *)addr);
2168
2169         page->mapping = NULL;
2170         __free_page(page);
2171 }
2172
2173 static void perf_mmap_data_free(struct perf_mmap_data *data)
2174 {
2175         int i;
2176
2177         perf_mmap_free_page((unsigned long)data->user_page);
2178         for (i = 0; i < data->nr_pages; i++)
2179                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2180         kfree(data);
2181 }
2182
2183 #else
2184
2185 /*
2186  * Back perf_mmap() with vmalloc memory.
2187  *
2188  * Required for architectures that have d-cache aliasing issues.
2189  */
2190
2191 static struct page *
2192 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2193 {
2194         if (pgoff > (1UL << data->data_order))
2195                 return NULL;
2196
2197         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2198 }
2199
2200 static void perf_mmap_unmark_page(void *addr)
2201 {
2202         struct page *page = vmalloc_to_page(addr);
2203
2204         page->mapping = NULL;
2205 }
2206
2207 static void perf_mmap_data_free_work(struct work_struct *work)
2208 {
2209         struct perf_mmap_data *data;
2210         void *base;
2211         int i, nr;
2212
2213         data = container_of(work, struct perf_mmap_data, work);
2214         nr = 1 << data->data_order;
2215
2216         base = data->user_page;
2217         for (i = 0; i < nr + 1; i++)
2218                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2219
2220         vfree(base);
2221         kfree(data);
2222 }
2223
2224 static void perf_mmap_data_free(struct perf_mmap_data *data)
2225 {
2226         schedule_work(&data->work);
2227 }
2228
2229 static struct perf_mmap_data *
2230 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2231 {
2232         struct perf_mmap_data *data;
2233         unsigned long size;
2234         void *all_buf;
2235
2236         WARN_ON(atomic_read(&event->mmap_count));
2237
2238         size = sizeof(struct perf_mmap_data);
2239         size += sizeof(void *);
2240
2241         data = kzalloc(size, GFP_KERNEL);
2242         if (!data)
2243                 goto fail;
2244
2245         INIT_WORK(&data->work, perf_mmap_data_free_work);
2246
2247         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2248         if (!all_buf)
2249                 goto fail_all_buf;
2250
2251         data->user_page = all_buf;
2252         data->data_pages[0] = all_buf + PAGE_SIZE;
2253         data->data_order = ilog2(nr_pages);
2254         data->nr_pages = 1;
2255
2256         return data;
2257
2258 fail_all_buf:
2259         kfree(data);
2260
2261 fail:
2262         return NULL;
2263 }
2264
2265 #endif
2266
2267 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2268 {
2269         struct perf_event *event = vma->vm_file->private_data;
2270         struct perf_mmap_data *data;
2271         int ret = VM_FAULT_SIGBUS;
2272
2273         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2274                 if (vmf->pgoff == 0)
2275                         ret = 0;
2276                 return ret;
2277         }
2278
2279         rcu_read_lock();
2280         data = rcu_dereference(event->data);
2281         if (!data)
2282                 goto unlock;
2283
2284         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2285                 goto unlock;
2286
2287         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2288         if (!vmf->page)
2289                 goto unlock;
2290
2291         get_page(vmf->page);
2292         vmf->page->mapping = vma->vm_file->f_mapping;
2293         vmf->page->index   = vmf->pgoff;
2294
2295         ret = 0;
2296 unlock:
2297         rcu_read_unlock();
2298
2299         return ret;
2300 }
2301
2302 static void
2303 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2304 {
2305         long max_size = perf_data_size(data);
2306
2307         atomic_set(&data->lock, -1);
2308
2309         if (event->attr.watermark) {
2310                 data->watermark = min_t(long, max_size,
2311                                         event->attr.wakeup_watermark);
2312         }
2313
2314         if (!data->watermark)
2315                 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2316
2317
2318         rcu_assign_pointer(event->data, data);
2319 }
2320
2321 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2322 {
2323         struct perf_mmap_data *data;
2324
2325         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2326         perf_mmap_data_free(data);
2327 }
2328
2329 static void perf_mmap_data_release(struct perf_event *event)
2330 {
2331         struct perf_mmap_data *data = event->data;
2332
2333         WARN_ON(atomic_read(&event->mmap_count));
2334
2335         rcu_assign_pointer(event->data, NULL);
2336         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2337 }
2338
2339 static void perf_mmap_open(struct vm_area_struct *vma)
2340 {
2341         struct perf_event *event = vma->vm_file->private_data;
2342
2343         atomic_inc(&event->mmap_count);
2344 }
2345
2346 static void perf_mmap_close(struct vm_area_struct *vma)
2347 {
2348         struct perf_event *event = vma->vm_file->private_data;
2349
2350         WARN_ON_ONCE(event->ctx->parent_ctx);
2351         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2352                 unsigned long size = perf_data_size(event->data);
2353                 struct user_struct *user = current_user();
2354
2355                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2356                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2357                 perf_mmap_data_release(event);
2358                 mutex_unlock(&event->mmap_mutex);
2359         }
2360 }
2361
2362 static const struct vm_operations_struct perf_mmap_vmops = {
2363         .open           = perf_mmap_open,
2364         .close          = perf_mmap_close,
2365         .fault          = perf_mmap_fault,
2366         .page_mkwrite   = perf_mmap_fault,
2367 };
2368
2369 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2370 {
2371         struct perf_event *event = file->private_data;
2372         unsigned long user_locked, user_lock_limit;
2373         struct user_struct *user = current_user();
2374         unsigned long locked, lock_limit;
2375         struct perf_mmap_data *data;
2376         unsigned long vma_size;
2377         unsigned long nr_pages;
2378         long user_extra, extra;
2379         int ret = 0;
2380
2381         if (!(vma->vm_flags & VM_SHARED))
2382                 return -EINVAL;
2383
2384         vma_size = vma->vm_end - vma->vm_start;
2385         nr_pages = (vma_size / PAGE_SIZE) - 1;
2386
2387         /*
2388          * If we have data pages ensure they're a power-of-two number, so we
2389          * can do bitmasks instead of modulo.
2390          */
2391         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2392                 return -EINVAL;
2393
2394         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2395                 return -EINVAL;
2396
2397         if (vma->vm_pgoff != 0)
2398                 return -EINVAL;
2399
2400         WARN_ON_ONCE(event->ctx->parent_ctx);
2401         mutex_lock(&event->mmap_mutex);
2402         if (event->output) {
2403                 ret = -EINVAL;
2404                 goto unlock;
2405         }
2406
2407         if (atomic_inc_not_zero(&event->mmap_count)) {
2408                 if (nr_pages != event->data->nr_pages)
2409                         ret = -EINVAL;
2410                 goto unlock;
2411         }
2412
2413         user_extra = nr_pages + 1;
2414         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2415
2416         /*
2417          * Increase the limit linearly with more CPUs:
2418          */
2419         user_lock_limit *= num_online_cpus();
2420
2421         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2422
2423         extra = 0;
2424         if (user_locked > user_lock_limit)
2425                 extra = user_locked - user_lock_limit;
2426
2427         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2428         lock_limit >>= PAGE_SHIFT;
2429         locked = vma->vm_mm->locked_vm + extra;
2430
2431         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2432                 !capable(CAP_IPC_LOCK)) {
2433                 ret = -EPERM;
2434                 goto unlock;
2435         }
2436
2437         WARN_ON(event->data);
2438
2439         data = perf_mmap_data_alloc(event, nr_pages);
2440         ret = -ENOMEM;
2441         if (!data)
2442                 goto unlock;
2443
2444         ret = 0;
2445         perf_mmap_data_init(event, data);
2446
2447         atomic_set(&event->mmap_count, 1);
2448         atomic_long_add(user_extra, &user->locked_vm);
2449         vma->vm_mm->locked_vm += extra;
2450         event->data->nr_locked = extra;
2451         if (vma->vm_flags & VM_WRITE)
2452                 event->data->writable = 1;
2453
2454 unlock:
2455         mutex_unlock(&event->mmap_mutex);
2456
2457         vma->vm_flags |= VM_RESERVED;
2458         vma->vm_ops = &perf_mmap_vmops;
2459
2460         return ret;
2461 }
2462
2463 static int perf_fasync(int fd, struct file *filp, int on)
2464 {
2465         struct inode *inode = filp->f_path.dentry->d_inode;
2466         struct perf_event *event = filp->private_data;
2467         int retval;
2468
2469         mutex_lock(&inode->i_mutex);
2470         retval = fasync_helper(fd, filp, on, &event->fasync);
2471         mutex_unlock(&inode->i_mutex);
2472
2473         if (retval < 0)
2474                 return retval;
2475
2476         return 0;
2477 }
2478
2479 static const struct file_operations perf_fops = {
2480         .release                = perf_release,
2481         .read                   = perf_read,
2482         .poll                   = perf_poll,
2483         .unlocked_ioctl         = perf_ioctl,
2484         .compat_ioctl           = perf_ioctl,
2485         .mmap                   = perf_mmap,
2486         .fasync                 = perf_fasync,
2487 };
2488
2489 /*
2490  * Perf event wakeup
2491  *
2492  * If there's data, ensure we set the poll() state and publish everything
2493  * to user-space before waking everybody up.
2494  */
2495
2496 void perf_event_wakeup(struct perf_event *event)
2497 {
2498         wake_up_all(&event->waitq);
2499
2500         if (event->pending_kill) {
2501                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2502                 event->pending_kill = 0;
2503         }
2504 }
2505
2506 /*
2507  * Pending wakeups
2508  *
2509  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2510  *
2511  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2512  * single linked list and use cmpxchg() to add entries lockless.
2513  */
2514
2515 static void perf_pending_event(struct perf_pending_entry *entry)
2516 {
2517         struct perf_event *event = container_of(entry,
2518                         struct perf_event, pending);
2519
2520         if (event->pending_disable) {
2521                 event->pending_disable = 0;
2522                 __perf_event_disable(event);
2523         }
2524
2525         if (event->pending_wakeup) {
2526                 event->pending_wakeup = 0;
2527                 perf_event_wakeup(event);
2528         }
2529 }
2530
2531 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2532
2533 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2534         PENDING_TAIL,
2535 };
2536
2537 static void perf_pending_queue(struct perf_pending_entry *entry,
2538                                void (*func)(struct perf_pending_entry *))
2539 {
2540         struct perf_pending_entry **head;
2541
2542         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2543                 return;
2544
2545         entry->func = func;
2546
2547         head = &get_cpu_var(perf_pending_head);
2548
2549         do {
2550                 entry->next = *head;
2551         } while (cmpxchg(head, entry->next, entry) != entry->next);
2552
2553         set_perf_event_pending();
2554
2555         put_cpu_var(perf_pending_head);
2556 }
2557
2558 static int __perf_pending_run(void)
2559 {
2560         struct perf_pending_entry *list;
2561         int nr = 0;
2562
2563         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2564         while (list != PENDING_TAIL) {
2565                 void (*func)(struct perf_pending_entry *);
2566                 struct perf_pending_entry *entry = list;
2567
2568                 list = list->next;
2569
2570                 func = entry->func;
2571                 entry->next = NULL;
2572                 /*
2573                  * Ensure we observe the unqueue before we issue the wakeup,
2574                  * so that we won't be waiting forever.
2575                  * -- see perf_not_pending().
2576                  */
2577                 smp_wmb();
2578
2579                 func(entry);
2580                 nr++;
2581         }
2582
2583         return nr;
2584 }
2585
2586 static inline int perf_not_pending(struct perf_event *event)
2587 {
2588         /*
2589          * If we flush on whatever cpu we run, there is a chance we don't
2590          * need to wait.
2591          */
2592         get_cpu();
2593         __perf_pending_run();
2594         put_cpu();
2595
2596         /*
2597          * Ensure we see the proper queue state before going to sleep
2598          * so that we do not miss the wakeup. -- see perf_pending_handle()
2599          */
2600         smp_rmb();
2601         return event->pending.next == NULL;
2602 }
2603
2604 static void perf_pending_sync(struct perf_event *event)
2605 {
2606         wait_event(event->waitq, perf_not_pending(event));
2607 }
2608
2609 void perf_event_do_pending(void)
2610 {
2611         __perf_pending_run();
2612 }
2613
2614 /*
2615  * Callchain support -- arch specific
2616  */
2617
2618 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2619 {
2620         return NULL;
2621 }
2622
2623 /*
2624  * Output
2625  */
2626 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2627                               unsigned long offset, unsigned long head)
2628 {
2629         unsigned long mask;
2630
2631         if (!data->writable)
2632                 return true;
2633
2634         mask = perf_data_size(data) - 1;
2635
2636         offset = (offset - tail) & mask;
2637         head   = (head   - tail) & mask;
2638
2639         if ((int)(head - offset) < 0)
2640                 return false;
2641
2642         return true;
2643 }
2644
2645 static void perf_output_wakeup(struct perf_output_handle *handle)
2646 {
2647         atomic_set(&handle->data->poll, POLL_IN);
2648
2649         if (handle->nmi) {
2650                 handle->event->pending_wakeup = 1;
2651                 perf_pending_queue(&handle->event->pending,
2652                                    perf_pending_event);
2653         } else
2654                 perf_event_wakeup(handle->event);
2655 }
2656
2657 /*
2658  * Curious locking construct.
2659  *
2660  * We need to ensure a later event_id doesn't publish a head when a former
2661  * event_id isn't done writing. However since we need to deal with NMIs we
2662  * cannot fully serialize things.
2663  *
2664  * What we do is serialize between CPUs so we only have to deal with NMI
2665  * nesting on a single CPU.
2666  *
2667  * We only publish the head (and generate a wakeup) when the outer-most
2668  * event_id completes.
2669  */
2670 static void perf_output_lock(struct perf_output_handle *handle)
2671 {
2672         struct perf_mmap_data *data = handle->data;
2673         int cpu;
2674
2675         handle->locked = 0;
2676
2677         local_irq_save(handle->flags);
2678         cpu = smp_processor_id();
2679
2680         if (in_nmi() && atomic_read(&data->lock) == cpu)
2681                 return;
2682
2683         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2684                 cpu_relax();
2685
2686         handle->locked = 1;
2687 }
2688
2689 static void perf_output_unlock(struct perf_output_handle *handle)
2690 {
2691         struct perf_mmap_data *data = handle->data;
2692         unsigned long head;
2693         int cpu;
2694
2695         data->done_head = data->head;
2696
2697         if (!handle->locked)
2698                 goto out;
2699
2700 again:
2701         /*
2702          * The xchg implies a full barrier that ensures all writes are done
2703          * before we publish the new head, matched by a rmb() in userspace when
2704          * reading this position.
2705          */
2706         while ((head = atomic_long_xchg(&data->done_head, 0)))
2707                 data->user_page->data_head = head;
2708
2709         /*
2710          * NMI can happen here, which means we can miss a done_head update.
2711          */
2712
2713         cpu = atomic_xchg(&data->lock, -1);
2714         WARN_ON_ONCE(cpu != smp_processor_id());
2715
2716         /*
2717          * Therefore we have to validate we did not indeed do so.
2718          */
2719         if (unlikely(atomic_long_read(&data->done_head))) {
2720                 /*
2721                  * Since we had it locked, we can lock it again.
2722                  */
2723                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2724                         cpu_relax();
2725
2726                 goto again;
2727         }
2728
2729         if (atomic_xchg(&data->wakeup, 0))
2730                 perf_output_wakeup(handle);
2731 out:
2732         local_irq_restore(handle->flags);
2733 }
2734
2735 void perf_output_copy(struct perf_output_handle *handle,
2736                       const void *buf, unsigned int len)
2737 {
2738         unsigned int pages_mask;
2739         unsigned long offset;
2740         unsigned int size;
2741         void **pages;
2742
2743         offset          = handle->offset;
2744         pages_mask      = handle->data->nr_pages - 1;
2745         pages           = handle->data->data_pages;
2746
2747         do {
2748                 unsigned long page_offset;
2749                 unsigned long page_size;
2750                 int nr;
2751
2752                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2753                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2754                 page_offset = offset & (page_size - 1);
2755                 size        = min_t(unsigned int, page_size - page_offset, len);
2756
2757                 memcpy(pages[nr] + page_offset, buf, size);
2758
2759                 len         -= size;
2760                 buf         += size;
2761                 offset      += size;
2762         } while (len);
2763
2764         handle->offset = offset;
2765
2766         /*
2767          * Check we didn't copy past our reservation window, taking the
2768          * possible unsigned int wrap into account.
2769          */
2770         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2771 }
2772
2773 int perf_output_begin(struct perf_output_handle *handle,
2774                       struct perf_event *event, unsigned int size,
2775                       int nmi, int sample)
2776 {
2777         struct perf_event *output_event;
2778         struct perf_mmap_data *data;
2779         unsigned long tail, offset, head;
2780         int have_lost;
2781         struct {
2782                 struct perf_event_header header;
2783                 u64                      id;
2784                 u64                      lost;
2785         } lost_event;
2786
2787         rcu_read_lock();
2788         /*
2789          * For inherited events we send all the output towards the parent.
2790          */
2791         if (event->parent)
2792                 event = event->parent;
2793
2794         output_event = rcu_dereference(event->output);
2795         if (output_event)
2796                 event = output_event;
2797
2798         data = rcu_dereference(event->data);
2799         if (!data)
2800                 goto out;
2801
2802         handle->data    = data;
2803         handle->event   = event;
2804         handle->nmi     = nmi;
2805         handle->sample  = sample;
2806
2807         if (!data->nr_pages)
2808                 goto fail;
2809
2810         have_lost = atomic_read(&data->lost);
2811         if (have_lost)
2812                 size += sizeof(lost_event);
2813
2814         perf_output_lock(handle);
2815
2816         do {
2817                 /*
2818                  * Userspace could choose to issue a mb() before updating the
2819                  * tail pointer. So that all reads will be completed before the
2820                  * write is issued.
2821                  */
2822                 tail = ACCESS_ONCE(data->user_page->data_tail);
2823                 smp_rmb();
2824                 offset = head = atomic_long_read(&data->head);
2825                 head += size;
2826                 if (unlikely(!perf_output_space(data, tail, offset, head)))
2827                         goto fail;
2828         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2829
2830         handle->offset  = offset;
2831         handle->head    = head;
2832
2833         if (head - tail > data->watermark)
2834                 atomic_set(&data->wakeup, 1);
2835
2836         if (have_lost) {
2837                 lost_event.header.type = PERF_RECORD_LOST;
2838                 lost_event.header.misc = 0;
2839                 lost_event.header.size = sizeof(lost_event);
2840                 lost_event.id          = event->id;
2841                 lost_event.lost        = atomic_xchg(&data->lost, 0);
2842
2843                 perf_output_put(handle, lost_event);
2844         }
2845
2846         return 0;
2847
2848 fail:
2849         atomic_inc(&data->lost);
2850         perf_output_unlock(handle);
2851 out:
2852         rcu_read_unlock();
2853
2854         return -ENOSPC;
2855 }
2856
2857 void perf_output_end(struct perf_output_handle *handle)
2858 {
2859         struct perf_event *event = handle->event;
2860         struct perf_mmap_data *data = handle->data;
2861
2862         int wakeup_events = event->attr.wakeup_events;
2863
2864         if (handle->sample && wakeup_events) {
2865                 int events = atomic_inc_return(&data->events);
2866                 if (events >= wakeup_events) {
2867                         atomic_sub(wakeup_events, &data->events);
2868                         atomic_set(&data->wakeup, 1);
2869                 }
2870         }
2871
2872         perf_output_unlock(handle);
2873         rcu_read_unlock();
2874 }
2875
2876 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2877 {
2878         /*
2879          * only top level events have the pid namespace they were created in
2880          */
2881         if (event->parent)
2882                 event = event->parent;
2883
2884         return task_tgid_nr_ns(p, event->ns);
2885 }
2886
2887 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2888 {
2889         /*
2890          * only top level events have the pid namespace they were created in
2891          */
2892         if (event->parent)
2893                 event = event->parent;
2894
2895         return task_pid_nr_ns(p, event->ns);
2896 }
2897
2898 static void perf_output_read_one(struct perf_output_handle *handle,
2899                                  struct perf_event *event)
2900 {
2901         u64 read_format = event->attr.read_format;
2902         u64 values[4];
2903         int n = 0;
2904
2905         values[n++] = atomic64_read(&event->count);
2906         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2907                 values[n++] = event->total_time_enabled +
2908                         atomic64_read(&event->child_total_time_enabled);
2909         }
2910         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2911                 values[n++] = event->total_time_running +
2912                         atomic64_read(&event->child_total_time_running);
2913         }
2914         if (read_format & PERF_FORMAT_ID)
2915                 values[n++] = primary_event_id(event);
2916
2917         perf_output_copy(handle, values, n * sizeof(u64));
2918 }
2919
2920 /*
2921  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2922  */
2923 static void perf_output_read_group(struct perf_output_handle *handle,
2924                             struct perf_event *event)
2925 {
2926         struct perf_event *leader = event->group_leader, *sub;
2927         u64 read_format = event->attr.read_format;
2928         u64 values[5];
2929         int n = 0;
2930
2931         values[n++] = 1 + leader->nr_siblings;
2932
2933         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2934                 values[n++] = leader->total_time_enabled;
2935
2936         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2937                 values[n++] = leader->total_time_running;
2938
2939         if (leader != event)
2940                 leader->pmu->read(leader);
2941
2942         values[n++] = atomic64_read(&leader->count);
2943         if (read_format & PERF_FORMAT_ID)
2944                 values[n++] = primary_event_id(leader);
2945
2946         perf_output_copy(handle, values, n * sizeof(u64));
2947
2948         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2949                 n = 0;
2950
2951                 if (sub != event)
2952                         sub->pmu->read(sub);
2953
2954                 values[n++] = atomic64_read(&sub->count);
2955                 if (read_format & PERF_FORMAT_ID)
2956                         values[n++] = primary_event_id(sub);
2957
2958                 perf_output_copy(handle, values, n * sizeof(u64));
2959         }
2960 }
2961
2962 static void perf_output_read(struct perf_output_handle *handle,
2963                              struct perf_event *event)
2964 {
2965         if (event->attr.read_format & PERF_FORMAT_GROUP)
2966                 perf_output_read_group(handle, event);
2967         else
2968                 perf_output_read_one(handle, event);
2969 }
2970
2971 void perf_output_sample(struct perf_output_handle *handle,
2972                         struct perf_event_header *header,
2973                         struct perf_sample_data *data,
2974                         struct perf_event *event)
2975 {
2976         u64 sample_type = data->type;
2977
2978         perf_output_put(handle, *header);
2979
2980         if (sample_type & PERF_SAMPLE_IP)
2981                 perf_output_put(handle, data->ip);
2982
2983         if (sample_type & PERF_SAMPLE_TID)
2984                 perf_output_put(handle, data->tid_entry);
2985
2986         if (sample_type & PERF_SAMPLE_TIME)
2987                 perf_output_put(handle, data->time);
2988
2989         if (sample_type & PERF_SAMPLE_ADDR)
2990                 perf_output_put(handle, data->addr);
2991
2992         if (sample_type & PERF_SAMPLE_ID)
2993                 perf_output_put(handle, data->id);
2994
2995         if (sample_type & PERF_SAMPLE_STREAM_ID)
2996                 perf_output_put(handle, data->stream_id);
2997
2998         if (sample_type & PERF_SAMPLE_CPU)
2999                 perf_output_put(handle, data->cpu_entry);
3000
3001         if (sample_type & PERF_SAMPLE_PERIOD)
3002                 perf_output_put(handle, data->period);
3003
3004         if (sample_type & PERF_SAMPLE_READ)
3005                 perf_output_read(handle, event);
3006
3007         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3008                 if (data->callchain) {
3009                         int size = 1;
3010
3011                         if (data->callchain)
3012                                 size += data->callchain->nr;
3013
3014                         size *= sizeof(u64);
3015
3016                         perf_output_copy(handle, data->callchain, size);
3017                 } else {
3018                         u64 nr = 0;
3019                         perf_output_put(handle, nr);
3020                 }
3021         }
3022
3023         if (sample_type & PERF_SAMPLE_RAW) {
3024                 if (data->raw) {
3025                         perf_output_put(handle, data->raw->size);
3026                         perf_output_copy(handle, data->raw->data,
3027                                          data->raw->size);
3028                 } else {
3029                         struct {
3030                                 u32     size;
3031                                 u32     data;
3032                         } raw = {
3033                                 .size = sizeof(u32),
3034                                 .data = 0,
3035                         };
3036                         perf_output_put(handle, raw);
3037                 }
3038         }
3039 }
3040
3041 void perf_prepare_sample(struct perf_event_header *header,
3042                          struct perf_sample_data *data,
3043                          struct perf_event *event,
3044                          struct pt_regs *regs)
3045 {
3046         u64 sample_type = event->attr.sample_type;
3047
3048         data->type = sample_type;
3049
3050         header->type = PERF_RECORD_SAMPLE;
3051         header->size = sizeof(*header);
3052
3053         header->misc = 0;
3054         header->misc |= perf_misc_flags(regs);
3055
3056         if (sample_type & PERF_SAMPLE_IP) {
3057                 data->ip = perf_instruction_pointer(regs);
3058
3059                 header->size += sizeof(data->ip);
3060         }
3061
3062         if (sample_type & PERF_SAMPLE_TID) {
3063                 /* namespace issues */
3064                 data->tid_entry.pid = perf_event_pid(event, current);
3065                 data->tid_entry.tid = perf_event_tid(event, current);
3066
3067                 header->size += sizeof(data->tid_entry);
3068         }
3069
3070         if (sample_type & PERF_SAMPLE_TIME) {
3071                 data->time = perf_clock();
3072
3073                 header->size += sizeof(data->time);
3074         }
3075
3076         if (sample_type & PERF_SAMPLE_ADDR)
3077                 header->size += sizeof(data->addr);
3078
3079         if (sample_type & PERF_SAMPLE_ID) {
3080                 data->id = primary_event_id(event);
3081
3082                 header->size += sizeof(data->id);
3083         }
3084
3085         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3086                 data->stream_id = event->id;
3087
3088                 header->size += sizeof(data->stream_id);
3089         }
3090
3091         if (sample_type & PERF_SAMPLE_CPU) {
3092                 data->cpu_entry.cpu             = raw_smp_processor_id();
3093                 data->cpu_entry.reserved        = 0;
3094
3095                 header->size += sizeof(data->cpu_entry);
3096         }
3097
3098         if (sample_type & PERF_SAMPLE_PERIOD)
3099                 header->size += sizeof(data->period);
3100
3101         if (sample_type & PERF_SAMPLE_READ)
3102                 header->size += perf_event_read_size(event);
3103
3104         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3105                 int size = 1;
3106
3107                 data->callchain = perf_callchain(regs);
3108
3109                 if (data->callchain)
3110                         size += data->callchain->nr;
3111
3112                 header->size += size * sizeof(u64);
3113         }
3114
3115         if (sample_type & PERF_SAMPLE_RAW) {
3116                 int size = sizeof(u32);
3117
3118                 if (data->raw)
3119                         size += data->raw->size;
3120                 else
3121                         size += sizeof(u32);
3122
3123                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3124                 header->size += size;
3125         }
3126 }
3127
3128 static void perf_event_output(struct perf_event *event, int nmi,
3129                                 struct perf_sample_data *data,
3130                                 struct pt_regs *regs)
3131 {
3132         struct perf_output_handle handle;
3133         struct perf_event_header header;
3134
3135         perf_prepare_sample(&header, data, event, regs);
3136
3137         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3138                 return;
3139
3140         perf_output_sample(&handle, &header, data, event);
3141
3142         perf_output_end(&handle);
3143 }
3144
3145 /*
3146  * read event_id
3147  */
3148
3149 struct perf_read_event {
3150         struct perf_event_header        header;
3151
3152         u32                             pid;
3153         u32                             tid;
3154 };
3155
3156 static void
3157 perf_event_read_event(struct perf_event *event,
3158                         struct task_struct *task)
3159 {
3160         struct perf_output_handle handle;
3161         struct perf_read_event read_event = {
3162                 .header = {
3163                         .type = PERF_RECORD_READ,
3164                         .misc = 0,
3165                         .size = sizeof(read_event) + perf_event_read_size(event),
3166                 },
3167                 .pid = perf_event_pid(event, task),
3168                 .tid = perf_event_tid(event, task),
3169         };
3170         int ret;
3171
3172         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3173         if (ret)
3174                 return;
3175
3176         perf_output_put(&handle, read_event);
3177         perf_output_read(&handle, event);
3178
3179         perf_output_end(&handle);
3180 }
3181
3182 /*
3183  * task tracking -- fork/exit
3184  *
3185  * enabled by: attr.comm | attr.mmap | attr.task
3186  */
3187
3188 struct perf_task_event {
3189         struct task_struct              *task;
3190         struct perf_event_context       *task_ctx;
3191
3192         struct {
3193                 struct perf_event_header        header;
3194
3195                 u32                             pid;
3196                 u32                             ppid;
3197                 u32                             tid;
3198                 u32                             ptid;
3199                 u64                             time;
3200         } event_id;
3201 };
3202
3203 static void perf_event_task_output(struct perf_event *event,
3204                                      struct perf_task_event *task_event)
3205 {
3206         struct perf_output_handle handle;
3207         int size;
3208         struct task_struct *task = task_event->task;
3209         int ret;
3210
3211         size  = task_event->event_id.header.size;
3212         ret = perf_output_begin(&handle, event, size, 0, 0);
3213
3214         if (ret)
3215                 return;
3216
3217         task_event->event_id.pid = perf_event_pid(event, task);
3218         task_event->event_id.ppid = perf_event_pid(event, current);
3219
3220         task_event->event_id.tid = perf_event_tid(event, task);
3221         task_event->event_id.ptid = perf_event_tid(event, current);
3222
3223         task_event->event_id.time = perf_clock();
3224
3225         perf_output_put(&handle, task_event->event_id);
3226
3227         perf_output_end(&handle);
3228 }
3229
3230 static int perf_event_task_match(struct perf_event *event)
3231 {
3232         if (event->state != PERF_EVENT_STATE_ACTIVE)
3233                 return 0;
3234
3235         if (event->cpu != -1 && event->cpu != smp_processor_id())
3236                 return 0;
3237
3238         if (event->attr.comm || event->attr.mmap || event->attr.task)
3239                 return 1;
3240
3241         return 0;
3242 }
3243
3244 static void perf_event_task_ctx(struct perf_event_context *ctx,
3245                                   struct perf_task_event *task_event)
3246 {
3247         struct perf_event *event;
3248
3249         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3250                 return;
3251
3252         rcu_read_lock();
3253         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3254                 if (perf_event_task_match(event))
3255                         perf_event_task_output(event, task_event);
3256         }
3257         rcu_read_unlock();
3258 }
3259
3260 static void perf_event_task_event(struct perf_task_event *task_event)
3261 {
3262         struct perf_cpu_context *cpuctx;
3263         struct perf_event_context *ctx = task_event->task_ctx;
3264
3265         cpuctx = &get_cpu_var(perf_cpu_context);
3266         perf_event_task_ctx(&cpuctx->ctx, task_event);
3267
3268         rcu_read_lock();
3269         if (!ctx)
3270                 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3271         if (ctx)
3272                 perf_event_task_ctx(ctx, task_event);
3273         put_cpu_var(perf_cpu_context);
3274         rcu_read_unlock();
3275 }
3276
3277 static void perf_event_task(struct task_struct *task,
3278                               struct perf_event_context *task_ctx,
3279                               int new)
3280 {
3281         struct perf_task_event task_event;
3282
3283         if (!atomic_read(&nr_comm_events) &&
3284             !atomic_read(&nr_mmap_events) &&
3285             !atomic_read(&nr_task_events))
3286                 return;
3287
3288         task_event = (struct perf_task_event){
3289                 .task     = task,
3290                 .task_ctx = task_ctx,
3291                 .event_id    = {
3292                         .header = {
3293                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3294                                 .misc = 0,
3295                                 .size = sizeof(task_event.event_id),
3296                         },
3297                         /* .pid  */
3298                         /* .ppid */
3299                         /* .tid  */
3300                         /* .ptid */
3301                 },
3302         };
3303
3304         perf_event_task_event(&task_event);
3305 }
3306
3307 void perf_event_fork(struct task_struct *task)
3308 {
3309         perf_event_task(task, NULL, 1);
3310 }
3311
3312 /*
3313  * comm tracking
3314  */
3315
3316 struct perf_comm_event {
3317         struct task_struct      *task;
3318         char                    *comm;
3319         int                     comm_size;
3320
3321         struct {
3322                 struct perf_event_header        header;
3323
3324                 u32                             pid;
3325                 u32                             tid;
3326         } event_id;
3327 };
3328
3329 static void perf_event_comm_output(struct perf_event *event,
3330                                      struct perf_comm_event *comm_event)
3331 {
3332         struct perf_output_handle handle;
3333         int size = comm_event->event_id.header.size;
3334         int ret = perf_output_begin(&handle, event, size, 0, 0);
3335
3336         if (ret)
3337                 return;
3338
3339         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3340         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3341
3342         perf_output_put(&handle, comm_event->event_id);
3343         perf_output_copy(&handle, comm_event->comm,
3344                                    comm_event->comm_size);
3345         perf_output_end(&handle);
3346 }
3347
3348 static int perf_event_comm_match(struct perf_event *event)
3349 {
3350         if (event->state != PERF_EVENT_STATE_ACTIVE)
3351                 return 0;
3352
3353         if (event->cpu != -1 && event->cpu != smp_processor_id())
3354                 return 0;
3355
3356         if (event->attr.comm)
3357                 return 1;
3358
3359         return 0;
3360 }
3361
3362 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3363                                   struct perf_comm_event *comm_event)
3364 {
3365         struct perf_event *event;
3366
3367         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3368                 return;
3369
3370         rcu_read_lock();
3371         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3372                 if (perf_event_comm_match(event))
3373                         perf_event_comm_output(event, comm_event);
3374         }
3375         rcu_read_unlock();
3376 }
3377
3378 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3379 {
3380         struct perf_cpu_context *cpuctx;
3381         struct perf_event_context *ctx;
3382         unsigned int size;
3383         char comm[TASK_COMM_LEN];
3384
3385         memset(comm, 0, sizeof(comm));
3386         strncpy(comm, comm_event->task->comm, sizeof(comm));
3387         size = ALIGN(strlen(comm)+1, sizeof(u64));
3388
3389         comm_event->comm = comm;
3390         comm_event->comm_size = size;
3391
3392         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3393
3394         cpuctx = &get_cpu_var(perf_cpu_context);
3395         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3396
3397         rcu_read_lock();
3398         /*
3399          * doesn't really matter which of the child contexts the
3400          * events ends up in.
3401          */
3402         ctx = rcu_dereference(current->perf_event_ctxp);
3403         if (ctx)
3404                 perf_event_comm_ctx(ctx, comm_event);
3405         put_cpu_var(perf_cpu_context);
3406         rcu_read_unlock();
3407 }
3408
3409 void perf_event_comm(struct task_struct *task)
3410 {
3411         struct perf_comm_event comm_event;
3412
3413         if (task->perf_event_ctxp)
3414                 perf_event_enable_on_exec(task);
3415
3416         if (!atomic_read(&nr_comm_events))
3417                 return;
3418
3419         comm_event = (struct perf_comm_event){
3420                 .task   = task,
3421                 /* .comm      */
3422                 /* .comm_size */
3423                 .event_id  = {
3424                         .header = {
3425                                 .type = PERF_RECORD_COMM,
3426                                 .misc = 0,
3427                                 /* .size */
3428                         },
3429                         /* .pid */
3430                         /* .tid */
3431                 },
3432         };
3433
3434         perf_event_comm_event(&comm_event);
3435 }
3436
3437 /*
3438  * mmap tracking
3439  */
3440
3441 struct perf_mmap_event {
3442         struct vm_area_struct   *vma;
3443
3444         const char              *file_name;
3445         int                     file_size;
3446
3447         struct {
3448                 struct perf_event_header        header;
3449
3450                 u32                             pid;
3451                 u32                             tid;
3452                 u64                             start;
3453                 u64                             len;
3454                 u64                             pgoff;
3455         } event_id;
3456 };
3457
3458 static void perf_event_mmap_output(struct perf_event *event,
3459                                      struct perf_mmap_event *mmap_event)
3460 {
3461         struct perf_output_handle handle;
3462         int size = mmap_event->event_id.header.size;
3463         int ret = perf_output_begin(&handle, event, size, 0, 0);
3464
3465         if (ret)
3466                 return;
3467
3468         mmap_event->event_id.pid = perf_event_pid(event, current);
3469         mmap_event->event_id.tid = perf_event_tid(event, current);
3470
3471         perf_output_put(&handle, mmap_event->event_id);
3472         perf_output_copy(&handle, mmap_event->file_name,
3473                                    mmap_event->file_size);
3474         perf_output_end(&handle);
3475 }
3476
3477 static int perf_event_mmap_match(struct perf_event *event,
3478                                    struct perf_mmap_event *mmap_event)
3479 {
3480         if (event->state != PERF_EVENT_STATE_ACTIVE)
3481                 return 0;
3482
3483         if (event->cpu != -1 && event->cpu != smp_processor_id())
3484                 return 0;
3485
3486         if (event->attr.mmap)
3487                 return 1;
3488
3489         return 0;
3490 }
3491
3492 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3493                                   struct perf_mmap_event *mmap_event)
3494 {
3495         struct perf_event *event;
3496
3497         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3498                 return;
3499
3500         rcu_read_lock();
3501         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3502                 if (perf_event_mmap_match(event, mmap_event))
3503                         perf_event_mmap_output(event, mmap_event);
3504         }
3505         rcu_read_unlock();
3506 }
3507
3508 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3509 {
3510         struct perf_cpu_context *cpuctx;
3511         struct perf_event_context *ctx;
3512         struct vm_area_struct *vma = mmap_event->vma;
3513         struct file *file = vma->vm_file;
3514         unsigned int size;
3515         char tmp[16];
3516         char *buf = NULL;
3517         const char *name;
3518
3519         memset(tmp, 0, sizeof(tmp));
3520
3521         if (file) {
3522                 /*
3523                  * d_path works from the end of the buffer backwards, so we
3524                  * need to add enough zero bytes after the string to handle
3525                  * the 64bit alignment we do later.
3526                  */
3527                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3528                 if (!buf) {
3529                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3530                         goto got_name;
3531                 }
3532                 name = d_path(&file->f_path, buf, PATH_MAX);
3533                 if (IS_ERR(name)) {
3534                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3535                         goto got_name;
3536                 }
3537         } else {
3538                 if (arch_vma_name(mmap_event->vma)) {
3539                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3540                                        sizeof(tmp));
3541                         goto got_name;
3542                 }
3543
3544                 if (!vma->vm_mm) {
3545                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3546                         goto got_name;
3547                 }
3548
3549                 name = strncpy(tmp, "//anon", sizeof(tmp));
3550                 goto got_name;
3551         }
3552
3553 got_name:
3554         size = ALIGN(strlen(name)+1, sizeof(u64));
3555
3556         mmap_event->file_name = name;
3557         mmap_event->file_size = size;
3558
3559         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3560
3561         cpuctx = &get_cpu_var(perf_cpu_context);
3562         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3563
3564         rcu_read_lock();
3565         /*
3566          * doesn't really matter which of the child contexts the
3567          * events ends up in.
3568          */
3569         ctx = rcu_dereference(current->perf_event_ctxp);
3570         if (ctx)
3571                 perf_event_mmap_ctx(ctx, mmap_event);
3572         put_cpu_var(perf_cpu_context);
3573         rcu_read_unlock();
3574
3575         kfree(buf);
3576 }
3577
3578 void __perf_event_mmap(struct vm_area_struct *vma)
3579 {
3580         struct perf_mmap_event mmap_event;
3581
3582         if (!atomic_read(&nr_mmap_events))
3583                 return;
3584
3585         mmap_event = (struct perf_mmap_event){
3586                 .vma    = vma,
3587                 /* .file_name */
3588                 /* .file_size */
3589                 .event_id  = {
3590                         .header = {
3591                                 .type = PERF_RECORD_MMAP,
3592                                 .misc = 0,
3593                                 /* .size */
3594                         },
3595                         /* .pid */
3596                         /* .tid */
3597                         .start  = vma->vm_start,
3598                         .len    = vma->vm_end - vma->vm_start,
3599                         .pgoff  = vma->vm_pgoff,
3600                 },
3601         };
3602
3603         perf_event_mmap_event(&mmap_event);
3604 }
3605
3606 /*
3607  * IRQ throttle logging
3608  */
3609
3610 static void perf_log_throttle(struct perf_event *event, int enable)
3611 {
3612         struct perf_output_handle handle;
3613         int ret;
3614
3615         struct {
3616                 struct perf_event_header        header;
3617                 u64                             time;
3618                 u64                             id;
3619                 u64                             stream_id;
3620         } throttle_event = {
3621                 .header = {
3622                         .type = PERF_RECORD_THROTTLE,
3623                         .misc = 0,
3624                         .size = sizeof(throttle_event),
3625                 },
3626                 .time           = perf_clock(),
3627                 .id             = primary_event_id(event),
3628                 .stream_id      = event->id,
3629         };
3630
3631         if (enable)
3632                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3633
3634         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3635         if (ret)
3636                 return;
3637
3638         perf_output_put(&handle, throttle_event);
3639         perf_output_end(&handle);
3640 }
3641
3642 /*
3643  * Generic event overflow handling, sampling.
3644  */
3645
3646 static int __perf_event_overflow(struct perf_event *event, int nmi,
3647                                    int throttle, struct perf_sample_data *data,
3648                                    struct pt_regs *regs)
3649 {
3650         int events = atomic_read(&event->event_limit);
3651         struct hw_perf_event *hwc = &event->hw;
3652         int ret = 0;
3653
3654         throttle = (throttle && event->pmu->unthrottle != NULL);
3655
3656         if (!throttle) {
3657                 hwc->interrupts++;
3658         } else {
3659                 if (hwc->interrupts != MAX_INTERRUPTS) {
3660                         hwc->interrupts++;
3661                         if (HZ * hwc->interrupts >
3662                                         (u64)sysctl_perf_event_sample_rate) {
3663                                 hwc->interrupts = MAX_INTERRUPTS;
3664                                 perf_log_throttle(event, 0);
3665                                 ret = 1;
3666                         }
3667                 } else {
3668                         /*
3669                          * Keep re-disabling events even though on the previous
3670                          * pass we disabled it - just in case we raced with a
3671                          * sched-in and the event got enabled again:
3672                          */
3673                         ret = 1;
3674                 }
3675         }
3676
3677         if (event->attr.freq) {
3678                 u64 now = perf_clock();
3679                 s64 delta = now - hwc->freq_stamp;
3680
3681                 hwc->freq_stamp = now;
3682
3683                 if (delta > 0 && delta < TICK_NSEC)
3684                         perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3685         }
3686
3687         /*
3688          * XXX event_limit might not quite work as expected on inherited
3689          * events
3690          */
3691
3692         event->pending_kill = POLL_IN;
3693         if (events && atomic_dec_and_test(&event->event_limit)) {
3694                 ret = 1;
3695                 event->pending_kill = POLL_HUP;
3696                 if (nmi) {
3697                         event->pending_disable = 1;
3698                         perf_pending_queue(&event->pending,
3699                                            perf_pending_event);
3700                 } else
3701                         perf_event_disable(event);
3702         }
3703
3704         perf_event_output(event, nmi, data, regs);
3705         return ret;
3706 }
3707
3708 int perf_event_overflow(struct perf_event *event, int nmi,
3709                           struct perf_sample_data *data,
3710                           struct pt_regs *regs)
3711 {
3712         return __perf_event_overflow(event, nmi, 1, data, regs);
3713 }
3714
3715 /*
3716  * Generic software event infrastructure
3717  */
3718
3719 /*
3720  * We directly increment event->count and keep a second value in
3721  * event->hw.period_left to count intervals. This period event
3722  * is kept in the range [-sample_period, 0] so that we can use the
3723  * sign as trigger.
3724  */
3725
3726 static u64 perf_swevent_set_period(struct perf_event *event)
3727 {
3728         struct hw_perf_event *hwc = &event->hw;
3729         u64 period = hwc->last_period;
3730         u64 nr, offset;
3731         s64 old, val;
3732
3733         hwc->last_period = hwc->sample_period;
3734
3735 again:
3736         old = val = atomic64_read(&hwc->period_left);
3737         if (val < 0)
3738                 return 0;
3739
3740         nr = div64_u64(period + val, period);
3741         offset = nr * period;
3742         val -= offset;
3743         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3744                 goto again;
3745
3746         return nr;
3747 }
3748
3749 static void perf_swevent_overflow(struct perf_event *event,
3750                                     int nmi, struct perf_sample_data *data,
3751                                     struct pt_regs *regs)
3752 {
3753         struct hw_perf_event *hwc = &event->hw;
3754         int throttle = 0;
3755         u64 overflow;
3756
3757         data->period = event->hw.last_period;
3758         overflow = perf_swevent_set_period(event);
3759
3760         if (hwc->interrupts == MAX_INTERRUPTS)
3761                 return;
3762
3763         for (; overflow; overflow--) {
3764                 if (__perf_event_overflow(event, nmi, throttle,
3765                                             data, regs)) {
3766                         /*
3767                          * We inhibit the overflow from happening when
3768                          * hwc->interrupts == MAX_INTERRUPTS.
3769                          */
3770                         break;
3771                 }
3772                 throttle = 1;
3773         }
3774 }
3775
3776 static void perf_swevent_unthrottle(struct perf_event *event)
3777 {
3778         /*
3779          * Nothing to do, we already reset hwc->interrupts.
3780          */
3781 }
3782
3783 static void perf_swevent_add(struct perf_event *event, u64 nr,
3784                                int nmi, struct perf_sample_data *data,
3785                                struct pt_regs *regs)
3786 {
3787         struct hw_perf_event *hwc = &event->hw;
3788
3789         atomic64_add(nr, &event->count);
3790
3791         if (!hwc->sample_period)
3792                 return;
3793
3794         if (!regs)
3795                 return;
3796
3797         if (!atomic64_add_negative(nr, &hwc->period_left))
3798                 perf_swevent_overflow(event, nmi, data, regs);
3799 }
3800
3801 static int perf_swevent_is_counting(struct perf_event *event)
3802 {
3803         /*
3804          * The event is active, we're good!
3805          */
3806         if (event->state == PERF_EVENT_STATE_ACTIVE)
3807                 return 1;
3808
3809         /*
3810          * The event is off/error, not counting.
3811          */
3812         if (event->state != PERF_EVENT_STATE_INACTIVE)
3813                 return 0;
3814
3815         /*
3816          * The event is inactive, if the context is active
3817          * we're part of a group that didn't make it on the 'pmu',
3818          * not counting.
3819          */
3820         if (event->ctx->is_active)
3821                 return 0;
3822
3823         /*
3824          * We're inactive and the context is too, this means the
3825          * task is scheduled out, we're counting events that happen
3826          * to us, like migration events.
3827          */
3828         return 1;
3829 }
3830
3831 static int perf_swevent_match(struct perf_event *event,
3832                                 enum perf_type_id type,
3833                                 u32 event_id, struct pt_regs *regs)
3834 {
3835         if (event->cpu != -1 && event->cpu != smp_processor_id())
3836                 return 0;
3837
3838         if (!perf_swevent_is_counting(event))
3839                 return 0;
3840
3841         if (event->attr.type != type)
3842                 return 0;
3843         if (event->attr.config != event_id)
3844                 return 0;
3845
3846         if (regs) {
3847                 if (event->attr.exclude_user && user_mode(regs))
3848                         return 0;
3849
3850                 if (event->attr.exclude_kernel && !user_mode(regs))
3851                         return 0;
3852         }
3853
3854         return 1;
3855 }
3856
3857 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3858                                      enum perf_type_id type,
3859                                      u32 event_id, u64 nr, int nmi,
3860                                      struct perf_sample_data *data,
3861                                      struct pt_regs *regs)
3862 {
3863         struct perf_event *event;
3864
3865         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3866                 return;
3867
3868         rcu_read_lock();
3869         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3870                 if (perf_swevent_match(event, type, event_id, regs))
3871                         perf_swevent_add(event, nr, nmi, data, regs);
3872         }
3873         rcu_read_unlock();
3874 }
3875
3876 static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3877 {
3878         if (in_nmi())
3879                 return &cpuctx->recursion[3];
3880
3881         if (in_irq())
3882                 return &cpuctx->recursion[2];
3883
3884         if (in_softirq())
3885                 return &cpuctx->recursion[1];
3886
3887         return &cpuctx->recursion[0];
3888 }
3889
3890 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3891                                     u64 nr, int nmi,
3892                                     struct perf_sample_data *data,
3893                                     struct pt_regs *regs)
3894 {
3895         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3896         int *recursion = perf_swevent_recursion_context(cpuctx);
3897         struct perf_event_context *ctx;
3898
3899         if (*recursion)
3900                 goto out;
3901
3902         (*recursion)++;
3903         barrier();
3904
3905         perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3906                                  nr, nmi, data, regs);
3907         rcu_read_lock();
3908         /*
3909          * doesn't really matter which of the child contexts the
3910          * events ends up in.
3911          */
3912         ctx = rcu_dereference(current->perf_event_ctxp);
3913         if (ctx)
3914                 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3915         rcu_read_unlock();
3916
3917         barrier();
3918         (*recursion)--;
3919
3920 out:
3921         put_cpu_var(perf_cpu_context);
3922 }
3923
3924 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3925                             struct pt_regs *regs, u64 addr)
3926 {
3927         struct perf_sample_data data = {
3928                 .addr = addr,
3929         };
3930
3931         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3932                                 &data, regs);
3933 }
3934
3935 static void perf_swevent_read(struct perf_event *event)
3936 {
3937 }
3938
3939 static int perf_swevent_enable(struct perf_event *event)
3940 {
3941         struct hw_perf_event *hwc = &event->hw;
3942
3943         if (hwc->sample_period) {
3944                 hwc->last_period = hwc->sample_period;
3945                 perf_swevent_set_period(event);
3946         }
3947         return 0;
3948 }
3949
3950 static void perf_swevent_disable(struct perf_event *event)
3951 {
3952 }
3953
3954 static const struct pmu perf_ops_generic = {
3955         .enable         = perf_swevent_enable,
3956         .disable        = perf_swevent_disable,
3957         .read           = perf_swevent_read,
3958         .unthrottle     = perf_swevent_unthrottle,
3959 };
3960
3961 /*
3962  * hrtimer based swevent callback
3963  */
3964
3965 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3966 {
3967         enum hrtimer_restart ret = HRTIMER_RESTART;
3968         struct perf_sample_data data;
3969         struct pt_regs *regs;
3970         struct perf_event *event;
3971         u64 period;
3972
3973         event   = container_of(hrtimer, struct perf_event, hw.hrtimer);
3974         event->pmu->read(event);
3975
3976         data.addr = 0;
3977         data.period = event->hw.last_period;
3978         regs = get_irq_regs();
3979         /*
3980          * In case we exclude kernel IPs or are somehow not in interrupt
3981          * context, provide the next best thing, the user IP.
3982          */
3983         if ((event->attr.exclude_kernel || !regs) &&
3984                         !event->attr.exclude_user)
3985                 regs = task_pt_regs(current);
3986
3987         if (regs) {
3988                 if (!(event->attr.exclude_idle && current->pid == 0))
3989                         if (perf_event_overflow(event, 0, &data, regs))
3990                                 ret = HRTIMER_NORESTART;
3991         }
3992
3993         period = max_t(u64, 10000, event->hw.sample_period);
3994         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3995
3996         return ret;
3997 }
3998
3999 static void perf_swevent_start_hrtimer(struct perf_event *event)
4000 {
4001         struct hw_perf_event *hwc = &event->hw;
4002
4003         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4004         hwc->hrtimer.function = perf_swevent_hrtimer;
4005         if (hwc->sample_period) {
4006                 u64 period;
4007
4008                 if (hwc->remaining) {
4009                         if (hwc->remaining < 0)
4010                                 period = 10000;
4011                         else
4012                                 period = hwc->remaining;
4013                         hwc->remaining = 0;
4014                 } else {
4015                         period = max_t(u64, 10000, hwc->sample_period);
4016                 }
4017                 __hrtimer_start_range_ns(&hwc->hrtimer,
4018                                 ns_to_ktime(period), 0,
4019                                 HRTIMER_MODE_REL, 0);
4020         }
4021 }
4022
4023 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4024 {
4025         struct hw_perf_event *hwc = &event->hw;
4026
4027         if (hwc->sample_period) {
4028                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4029                 hwc->remaining = ktime_to_ns(remaining);
4030
4031                 hrtimer_cancel(&hwc->hrtimer);
4032         }
4033 }
4034
4035 /*
4036  * Software event: cpu wall time clock
4037  */
4038
4039 static void cpu_clock_perf_event_update(struct perf_event *event)
4040 {
4041         int cpu = raw_smp_processor_id();
4042         s64 prev;
4043         u64 now;
4044
4045         now = cpu_clock(cpu);
4046         prev = atomic64_read(&event->hw.prev_count);
4047         atomic64_set(&event->hw.prev_count, now);
4048         atomic64_add(now - prev, &event->count);
4049 }
4050
4051 static int cpu_clock_perf_event_enable(struct perf_event *event)
4052 {
4053         struct hw_perf_event *hwc = &event->hw;
4054         int cpu = raw_smp_processor_id();
4055
4056         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4057         perf_swevent_start_hrtimer(event);
4058
4059         return 0;
4060 }
4061
4062 static void cpu_clock_perf_event_disable(struct perf_event *event)
4063 {
4064         perf_swevent_cancel_hrtimer(event);
4065         cpu_clock_perf_event_update(event);
4066 }
4067
4068 static void cpu_clock_perf_event_read(struct perf_event *event)
4069 {
4070         cpu_clock_perf_event_update(event);
4071 }
4072
4073 static const struct pmu perf_ops_cpu_clock = {
4074         .enable         = cpu_clock_perf_event_enable,
4075         .disable        = cpu_clock_perf_event_disable,
4076         .read           = cpu_clock_perf_event_read,
4077 };
4078
4079 /*
4080  * Software event: task time clock
4081  */
4082
4083 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4084 {
4085         u64 prev;
4086         s64 delta;
4087
4088         prev = atomic64_xchg(&event->hw.prev_count, now);
4089         delta = now - prev;
4090         atomic64_add(delta, &event->count);
4091 }
4092
4093 static int task_clock_perf_event_enable(struct perf_event *event)
4094 {
4095         struct hw_perf_event *hwc = &event->hw;
4096         u64 now;
4097
4098         now = event->ctx->time;
4099
4100         atomic64_set(&hwc->prev_count, now);
4101
4102         perf_swevent_start_hrtimer(event);
4103
4104         return 0;
4105 }
4106
4107 static void task_clock_perf_event_disable(struct perf_event *event)
4108 {
4109         perf_swevent_cancel_hrtimer(event);
4110         task_clock_perf_event_update(event, event->ctx->time);
4111
4112 }
4113
4114 static void task_clock_perf_event_read(struct perf_event *event)
4115 {
4116         u64 time;
4117
4118         if (!in_nmi()) {
4119                 update_context_time(event->ctx);
4120                 time = event->ctx->time;
4121         } else {
4122                 u64 now = perf_clock();
4123                 u64 delta = now - event->ctx->timestamp;
4124                 time = event->ctx->time + delta;
4125         }
4126
4127         task_clock_perf_event_update(event, time);
4128 }
4129
4130 static const struct pmu perf_ops_task_clock = {
4131         .enable         = task_clock_perf_event_enable,
4132         .disable        = task_clock_perf_event_disable,
4133         .read           = task_clock_perf_event_read,
4134 };
4135
4136 #ifdef CONFIG_EVENT_PROFILE
4137 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4138                           int entry_size)
4139 {
4140         struct perf_raw_record raw = {
4141                 .size = entry_size,
4142                 .data = record,
4143         };
4144
4145         struct perf_sample_data data = {
4146                 .addr = addr,
4147                 .raw = &raw,
4148         };
4149
4150         struct pt_regs *regs = get_irq_regs();
4151
4152         if (!regs)
4153                 regs = task_pt_regs(current);
4154
4155         do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4156                                 &data, regs);
4157 }
4158 EXPORT_SYMBOL_GPL(perf_tp_event);
4159
4160 extern int ftrace_profile_enable(int);
4161 extern void ftrace_profile_disable(int);
4162
4163 static void tp_perf_event_destroy(struct perf_event *event)
4164 {
4165         ftrace_profile_disable(event->attr.config);
4166 }
4167
4168 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4169 {
4170         /*
4171          * Raw tracepoint data is a severe data leak, only allow root to
4172          * have these.
4173          */
4174         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4175                         perf_paranoid_tracepoint_raw() &&
4176                         !capable(CAP_SYS_ADMIN))
4177                 return ERR_PTR(-EPERM);
4178
4179         if (ftrace_profile_enable(event->attr.config))
4180                 return NULL;
4181
4182         event->destroy = tp_perf_event_destroy;
4183
4184         return &perf_ops_generic;
4185 }
4186 #else
4187 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4188 {
4189         return NULL;
4190 }
4191 #endif
4192
4193 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4194
4195 static void sw_perf_event_destroy(struct perf_event *event)
4196 {
4197         u64 event_id = event->attr.config;
4198
4199         WARN_ON(event->parent);
4200
4201         atomic_dec(&perf_swevent_enabled[event_id]);
4202 }
4203
4204 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4205 {
4206         const struct pmu *pmu = NULL;
4207         u64 event_id = event->attr.config;
4208
4209         /*
4210          * Software events (currently) can't in general distinguish
4211          * between user, kernel and hypervisor events.
4212          * However, context switches and cpu migrations are considered
4213          * to be kernel events, and page faults are never hypervisor
4214          * events.
4215          */
4216         switch (event_id) {
4217         case PERF_COUNT_SW_CPU_CLOCK:
4218                 pmu = &perf_ops_cpu_clock;
4219
4220                 break;
4221         case PERF_COUNT_SW_TASK_CLOCK:
4222                 /*
4223                  * If the user instantiates this as a per-cpu event,
4224                  * use the cpu_clock event instead.
4225                  */
4226                 if (event->ctx->task)
4227                         pmu = &perf_ops_task_clock;
4228                 else
4229                         pmu = &perf_ops_cpu_clock;
4230
4231                 break;
4232         case PERF_COUNT_SW_PAGE_FAULTS:
4233         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4234         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4235         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4236         case PERF_COUNT_SW_CPU_MIGRATIONS:
4237                 if (!event->parent) {
4238                         atomic_inc(&perf_swevent_enabled[event_id]);
4239                         event->destroy = sw_perf_event_destroy;
4240                 }
4241                 pmu = &perf_ops_generic;
4242                 break;
4243         }
4244
4245         return pmu;
4246 }
4247
4248 /*
4249  * Allocate and initialize a event structure
4250  */
4251 static struct perf_event *
4252 perf_event_alloc(struct perf_event_attr *attr,
4253                    int cpu,
4254                    struct perf_event_context *ctx,
4255                    struct perf_event *group_leader,
4256                    struct perf_event *parent_event,
4257                    gfp_t gfpflags)
4258 {
4259         const struct pmu *pmu;
4260         struct perf_event *event;
4261         struct hw_perf_event *hwc;
4262         long err;
4263
4264         event = kzalloc(sizeof(*event), gfpflags);
4265         if (!event)
4266                 return ERR_PTR(-ENOMEM);
4267
4268         /*
4269          * Single events are their own group leaders, with an
4270          * empty sibling list:
4271          */
4272         if (!group_leader)
4273                 group_leader = event;
4274
4275         mutex_init(&event->child_mutex);
4276         INIT_LIST_HEAD(&event->child_list);
4277
4278         INIT_LIST_HEAD(&event->group_entry);
4279         INIT_LIST_HEAD(&event->event_entry);
4280         INIT_LIST_HEAD(&event->sibling_list);
4281         init_waitqueue_head(&event->waitq);
4282
4283         mutex_init(&event->mmap_mutex);
4284
4285         event->cpu              = cpu;
4286         event->attr             = *attr;
4287         event->group_leader     = group_leader;
4288         event->pmu              = NULL;
4289         event->ctx              = ctx;
4290         event->oncpu            = -1;
4291
4292         event->parent           = parent_event;
4293
4294         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4295         event->id               = atomic64_inc_return(&perf_event_id);
4296
4297         event->state            = PERF_EVENT_STATE_INACTIVE;
4298
4299         if (attr->disabled)
4300                 event->state = PERF_EVENT_STATE_OFF;
4301
4302         pmu = NULL;
4303
4304         hwc = &event->hw;
4305         hwc->sample_period = attr->sample_period;
4306         if (attr->freq && attr->sample_freq)
4307                 hwc->sample_period = 1;
4308         hwc->last_period = hwc->sample_period;
4309
4310         atomic64_set(&hwc->period_left, hwc->sample_period);
4311
4312         /*
4313          * we currently do not support PERF_FORMAT_GROUP on inherited events
4314          */
4315         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4316                 goto done;
4317
4318         switch (attr->type) {
4319         case PERF_TYPE_RAW:
4320         case PERF_TYPE_HARDWARE:
4321         case PERF_TYPE_HW_CACHE:
4322                 pmu = hw_perf_event_init(event);
4323                 break;
4324
4325         case PERF_TYPE_SOFTWARE:
4326                 pmu = sw_perf_event_init(event);
4327                 break;
4328
4329         case PERF_TYPE_TRACEPOINT:
4330                 pmu = tp_perf_event_init(event);
4331                 break;
4332
4333         default:
4334                 break;
4335         }
4336 done:
4337         err = 0;
4338         if (!pmu)
4339                 err = -EINVAL;
4340         else if (IS_ERR(pmu))
4341                 err = PTR_ERR(pmu);
4342
4343         if (err) {
4344                 if (event->ns)
4345                         put_pid_ns(event->ns);
4346                 kfree(event);
4347                 return ERR_PTR(err);
4348         }
4349
4350         event->pmu = pmu;
4351
4352         if (!event->parent) {
4353                 atomic_inc(&nr_events);
4354                 if (event->attr.mmap)
4355                         atomic_inc(&nr_mmap_events);
4356                 if (event->attr.comm)
4357                         atomic_inc(&nr_comm_events);
4358                 if (event->attr.task)
4359                         atomic_inc(&nr_task_events);
4360         }
4361
4362         return event;
4363 }
4364
4365 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4366                           struct perf_event_attr *attr)
4367 {
4368         u32 size;
4369         int ret;
4370
4371         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4372                 return -EFAULT;
4373
4374         /*
4375          * zero the full structure, so that a short copy will be nice.
4376          */
4377         memset(attr, 0, sizeof(*attr));
4378
4379         ret = get_user(size, &uattr->size);
4380         if (ret)
4381                 return ret;
4382
4383         if (size > PAGE_SIZE)   /* silly large */
4384                 goto err_size;
4385
4386         if (!size)              /* abi compat */
4387                 size = PERF_ATTR_SIZE_VER0;
4388
4389         if (size < PERF_ATTR_SIZE_VER0)
4390                 goto err_size;
4391
4392         /*
4393          * If we're handed a bigger struct than we know of,
4394          * ensure all the unknown bits are 0 - i.e. new
4395          * user-space does not rely on any kernel feature
4396          * extensions we dont know about yet.
4397          */
4398         if (size > sizeof(*attr)) {
4399                 unsigned char __user *addr;
4400                 unsigned char __user *end;
4401                 unsigned char val;
4402
4403                 addr = (void __user *)uattr + sizeof(*attr);
4404                 end  = (void __user *)uattr + size;
4405
4406                 for (; addr < end; addr++) {
4407                         ret = get_user(val, addr);
4408                         if (ret)
4409                                 return ret;
4410                         if (val)
4411                                 goto err_size;
4412                 }
4413                 size = sizeof(*attr);
4414         }
4415
4416         ret = copy_from_user(attr, uattr, size);
4417         if (ret)
4418                 return -EFAULT;
4419
4420         /*
4421          * If the type exists, the corresponding creation will verify
4422          * the attr->config.
4423          */
4424         if (attr->type >= PERF_TYPE_MAX)
4425                 return -EINVAL;
4426
4427         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4428                 return -EINVAL;
4429
4430         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4431                 return -EINVAL;
4432
4433         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4434                 return -EINVAL;
4435
4436 out:
4437         return ret;
4438
4439 err_size:
4440         put_user(sizeof(*attr), &uattr->size);
4441         ret = -E2BIG;
4442         goto out;
4443 }
4444
4445 int perf_event_set_output(struct perf_event *event, int output_fd)
4446 {
4447         struct perf_event *output_event = NULL;
4448         struct file *output_file = NULL;
4449         struct perf_event *old_output;
4450         int fput_needed = 0;
4451         int ret = -EINVAL;
4452
4453         if (!output_fd)
4454                 goto set;
4455
4456         output_file = fget_light(output_fd, &fput_needed);
4457         if (!output_file)
4458                 return -EBADF;
4459
4460         if (output_file->f_op != &perf_fops)
4461                 goto out;
4462
4463         output_event = output_file->private_data;
4464
4465         /* Don't chain output fds */
4466         if (output_event->output)
4467                 goto out;
4468
4469         /* Don't set an output fd when we already have an output channel */
4470         if (event->data)
4471                 goto out;
4472
4473         atomic_long_inc(&output_file->f_count);
4474
4475 set:
4476         mutex_lock(&event->mmap_mutex);
4477         old_output = event->output;
4478         rcu_assign_pointer(event->output, output_event);
4479         mutex_unlock(&event->mmap_mutex);
4480
4481         if (old_output) {
4482                 /*
4483                  * we need to make sure no existing perf_output_*()
4484                  * is still referencing this event.
4485                  */
4486                 synchronize_rcu();
4487                 fput(old_output->filp);
4488         }
4489
4490         ret = 0;
4491 out:
4492         fput_light(output_file, fput_needed);
4493         return ret;
4494 }
4495
4496 /**
4497  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4498  *
4499  * @attr_uptr:  event_id type attributes for monitoring/sampling
4500  * @pid:                target pid
4501  * @cpu:                target cpu
4502  * @group_fd:           group leader event fd
4503  */
4504 SYSCALL_DEFINE5(perf_event_open,
4505                 struct perf_event_attr __user *, attr_uptr,
4506                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4507 {
4508         struct perf_event *event, *group_leader;
4509         struct perf_event_attr attr;
4510         struct perf_event_context *ctx;
4511         struct file *event_file = NULL;
4512         struct file *group_file = NULL;
4513         int fput_needed = 0;
4514         int fput_needed2 = 0;
4515         int err;
4516
4517         /* for future expandability... */
4518         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4519                 return -EINVAL;
4520
4521         err = perf_copy_attr(attr_uptr, &attr);
4522         if (err)
4523                 return err;
4524
4525         if (!attr.exclude_kernel) {
4526                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4527                         return -EACCES;
4528         }
4529
4530         if (attr.freq) {
4531                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4532                         return -EINVAL;
4533         }
4534
4535         /*
4536          * Get the target context (task or percpu):
4537          */
4538         ctx = find_get_context(pid, cpu);
4539         if (IS_ERR(ctx))
4540                 return PTR_ERR(ctx);
4541
4542         /*
4543          * Look up the group leader (we will attach this event to it):
4544          */
4545         group_leader = NULL;
4546         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4547                 err = -EINVAL;
4548                 group_file = fget_light(group_fd, &fput_needed);
4549                 if (!group_file)
4550                         goto err_put_context;
4551                 if (group_file->f_op != &perf_fops)
4552                         goto err_put_context;
4553
4554                 group_leader = group_file->private_data;
4555                 /*
4556                  * Do not allow a recursive hierarchy (this new sibling
4557                  * becoming part of another group-sibling):
4558                  */
4559                 if (group_leader->group_leader != group_leader)
4560                         goto err_put_context;
4561                 /*
4562                  * Do not allow to attach to a group in a different
4563                  * task or CPU context:
4564                  */
4565                 if (group_leader->ctx != ctx)
4566                         goto err_put_context;
4567                 /*
4568                  * Only a group leader can be exclusive or pinned
4569                  */
4570                 if (attr.exclusive || attr.pinned)
4571                         goto err_put_context;
4572         }
4573
4574         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4575                                      NULL, GFP_KERNEL);
4576         err = PTR_ERR(event);
4577         if (IS_ERR(event))
4578                 goto err_put_context;
4579
4580         err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4581         if (err < 0)
4582                 goto err_free_put_context;
4583
4584         event_file = fget_light(err, &fput_needed2);
4585         if (!event_file)
4586                 goto err_free_put_context;
4587
4588         if (flags & PERF_FLAG_FD_OUTPUT) {
4589                 err = perf_event_set_output(event, group_fd);
4590                 if (err)
4591                         goto err_fput_free_put_context;
4592         }
4593
4594         event->filp = event_file;
4595         WARN_ON_ONCE(ctx->parent_ctx);
4596         mutex_lock(&ctx->mutex);
4597         perf_install_in_context(ctx, event, cpu);
4598         ++ctx->generation;
4599         mutex_unlock(&ctx->mutex);
4600
4601         event->owner = current;
4602         get_task_struct(current);
4603         mutex_lock(&current->perf_event_mutex);
4604         list_add_tail(&event->owner_entry, &current->perf_event_list);
4605         mutex_unlock(&current->perf_event_mutex);
4606
4607 err_fput_free_put_context:
4608         fput_light(event_file, fput_needed2);
4609
4610 err_free_put_context:
4611         if (err < 0)
4612                 kfree(event);
4613
4614 err_put_context:
4615         if (err < 0)
4616                 put_ctx(ctx);
4617
4618         fput_light(group_file, fput_needed);
4619
4620         return err;
4621 }
4622
4623 /*
4624  * inherit a event from parent task to child task:
4625  */
4626 static struct perf_event *
4627 inherit_event(struct perf_event *parent_event,
4628               struct task_struct *parent,
4629               struct perf_event_context *parent_ctx,
4630               struct task_struct *child,
4631               struct perf_event *group_leader,
4632               struct perf_event_context *child_ctx)
4633 {
4634         struct perf_event *child_event;
4635
4636         /*
4637          * Instead of creating recursive hierarchies of events,
4638          * we link inherited events back to the original parent,
4639          * which has a filp for sure, which we use as the reference
4640          * count:
4641          */
4642         if (parent_event->parent)
4643                 parent_event = parent_event->parent;
4644
4645         child_event = perf_event_alloc(&parent_event->attr,
4646                                            parent_event->cpu, child_ctx,
4647                                            group_leader, parent_event,
4648                                            GFP_KERNEL);
4649         if (IS_ERR(child_event))
4650                 return child_event;
4651         get_ctx(child_ctx);
4652
4653         /*
4654          * Make the child state follow the state of the parent event,
4655          * not its attr.disabled bit.  We hold the parent's mutex,
4656          * so we won't race with perf_event_{en, dis}able_family.
4657          */
4658         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4659                 child_event->state = PERF_EVENT_STATE_INACTIVE;
4660         else
4661                 child_event->state = PERF_EVENT_STATE_OFF;
4662
4663         if (parent_event->attr.freq)
4664                 child_event->hw.sample_period = parent_event->hw.sample_period;
4665
4666         /*
4667          * Link it up in the child's context:
4668          */
4669         add_event_to_ctx(child_event, child_ctx);
4670
4671         /*
4672          * Get a reference to the parent filp - we will fput it
4673          * when the child event exits. This is safe to do because
4674          * we are in the parent and we know that the filp still
4675          * exists and has a nonzero count:
4676          */
4677         atomic_long_inc(&parent_event->filp->f_count);
4678
4679         /*
4680          * Link this into the parent event's child list
4681          */
4682         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4683         mutex_lock(&parent_event->child_mutex);
4684         list_add_tail(&child_event->child_list, &parent_event->child_list);
4685         mutex_unlock(&parent_event->child_mutex);
4686
4687         return child_event;
4688 }
4689
4690 static int inherit_group(struct perf_event *parent_event,
4691               struct task_struct *parent,
4692               struct perf_event_context *parent_ctx,
4693               struct task_struct *child,
4694               struct perf_event_context *child_ctx)
4695 {
4696         struct perf_event *leader;
4697         struct perf_event *sub;
4698         struct perf_event *child_ctr;
4699
4700         leader = inherit_event(parent_event, parent, parent_ctx,
4701                                  child, NULL, child_ctx);
4702         if (IS_ERR(leader))
4703                 return PTR_ERR(leader);
4704         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4705                 child_ctr = inherit_event(sub, parent, parent_ctx,
4706                                             child, leader, child_ctx);
4707                 if (IS_ERR(child_ctr))
4708                         return PTR_ERR(child_ctr);
4709         }
4710         return 0;
4711 }
4712
4713 static void sync_child_event(struct perf_event *child_event,
4714                                struct task_struct *child)
4715 {
4716         struct perf_event *parent_event = child_event->parent;
4717         u64 child_val;
4718
4719         if (child_event->attr.inherit_stat)
4720                 perf_event_read_event(child_event, child);
4721
4722         child_val = atomic64_read(&child_event->count);
4723
4724         /*
4725          * Add back the child's count to the parent's count:
4726          */
4727         atomic64_add(child_val, &parent_event->count);
4728         atomic64_add(child_event->total_time_enabled,
4729                      &parent_event->child_total_time_enabled);
4730         atomic64_add(child_event->total_time_running,
4731                      &parent_event->child_total_time_running);
4732
4733         /*
4734          * Remove this event from the parent's list
4735          */
4736         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4737         mutex_lock(&parent_event->child_mutex);
4738         list_del_init(&child_event->child_list);
4739         mutex_unlock(&parent_event->child_mutex);
4740
4741         /*
4742          * Release the parent event, if this was the last
4743          * reference to it.
4744          */
4745         fput(parent_event->filp);
4746 }
4747
4748 static void
4749 __perf_event_exit_task(struct perf_event *child_event,
4750                          struct perf_event_context *child_ctx,
4751                          struct task_struct *child)
4752 {
4753         struct perf_event *parent_event;
4754
4755         update_event_times(child_event);
4756         perf_event_remove_from_context(child_event);
4757
4758         parent_event = child_event->parent;
4759         /*
4760          * It can happen that parent exits first, and has events
4761          * that are still around due to the child reference. These
4762          * events need to be zapped - but otherwise linger.
4763          */
4764         if (parent_event) {
4765                 sync_child_event(child_event, child);
4766                 free_event(child_event);
4767         }
4768 }
4769
4770 /*
4771  * When a child task exits, feed back event values to parent events.
4772  */
4773 void perf_event_exit_task(struct task_struct *child)
4774 {
4775         struct perf_event *child_event, *tmp;
4776         struct perf_event_context *child_ctx;
4777         unsigned long flags;
4778
4779         if (likely(!child->perf_event_ctxp)) {
4780                 perf_event_task(child, NULL, 0);
4781                 return;
4782         }
4783
4784         local_irq_save(flags);
4785         /*
4786          * We can't reschedule here because interrupts are disabled,
4787          * and either child is current or it is a task that can't be
4788          * scheduled, so we are now safe from rescheduling changing
4789          * our context.
4790          */
4791         child_ctx = child->perf_event_ctxp;
4792         __perf_event_task_sched_out(child_ctx);
4793
4794         /*
4795          * Take the context lock here so that if find_get_context is
4796          * reading child->perf_event_ctxp, we wait until it has
4797          * incremented the context's refcount before we do put_ctx below.
4798          */
4799         spin_lock(&child_ctx->lock);
4800         child->perf_event_ctxp = NULL;
4801         /*
4802          * If this context is a clone; unclone it so it can't get
4803          * swapped to another process while we're removing all
4804          * the events from it.
4805          */
4806         unclone_ctx(child_ctx);
4807         spin_unlock_irqrestore(&child_ctx->lock, flags);
4808
4809         /*
4810          * Report the task dead after unscheduling the events so that we
4811          * won't get any samples after PERF_RECORD_EXIT. We can however still
4812          * get a few PERF_RECORD_READ events.
4813          */
4814         perf_event_task(child, child_ctx, 0);
4815
4816         /*
4817          * We can recurse on the same lock type through:
4818          *
4819          *   __perf_event_exit_task()
4820          *     sync_child_event()
4821          *       fput(parent_event->filp)
4822          *         perf_release()
4823          *           mutex_lock(&ctx->mutex)
4824          *
4825          * But since its the parent context it won't be the same instance.
4826          */
4827         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4828
4829 again:
4830         list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4831                                  group_entry)
4832                 __perf_event_exit_task(child_event, child_ctx, child);
4833
4834         /*
4835          * If the last event was a group event, it will have appended all
4836          * its siblings to the list, but we obtained 'tmp' before that which
4837          * will still point to the list head terminating the iteration.
4838          */
4839         if (!list_empty(&child_ctx->group_list))
4840                 goto again;
4841
4842         mutex_unlock(&child_ctx->mutex);
4843
4844         put_ctx(child_ctx);
4845 }
4846
4847 /*
4848  * free an unexposed, unused context as created by inheritance by
4849  * init_task below, used by fork() in case of fail.
4850  */
4851 void perf_event_free_task(struct task_struct *task)
4852 {
4853         struct perf_event_context *ctx = task->perf_event_ctxp;
4854         struct perf_event *event, *tmp;
4855
4856         if (!ctx)
4857                 return;
4858
4859         mutex_lock(&ctx->mutex);
4860 again:
4861         list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
4862                 struct perf_event *parent = event->parent;
4863
4864                 if (WARN_ON_ONCE(!parent))
4865                         continue;
4866
4867                 mutex_lock(&parent->child_mutex);
4868                 list_del_init(&event->child_list);
4869                 mutex_unlock(&parent->child_mutex);
4870
4871                 fput(parent->filp);
4872
4873                 list_del_event(event, ctx);
4874                 free_event(event);
4875         }
4876
4877         if (!list_empty(&ctx->group_list))
4878                 goto again;
4879
4880         mutex_unlock(&ctx->mutex);
4881
4882         put_ctx(ctx);
4883 }
4884
4885 /*
4886  * Initialize the perf_event context in task_struct
4887  */
4888 int perf_event_init_task(struct task_struct *child)
4889 {
4890         struct perf_event_context *child_ctx, *parent_ctx;
4891         struct perf_event_context *cloned_ctx;
4892         struct perf_event *event;
4893         struct task_struct *parent = current;
4894         int inherited_all = 1;
4895         int ret = 0;
4896
4897         child->perf_event_ctxp = NULL;
4898
4899         mutex_init(&child->perf_event_mutex);
4900         INIT_LIST_HEAD(&child->perf_event_list);
4901
4902         if (likely(!parent->perf_event_ctxp))
4903                 return 0;
4904
4905         /*
4906          * This is executed from the parent task context, so inherit
4907          * events that have been marked for cloning.
4908          * First allocate and initialize a context for the child.
4909          */
4910
4911         child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4912         if (!child_ctx)
4913                 return -ENOMEM;
4914
4915         __perf_event_init_context(child_ctx, child);
4916         child->perf_event_ctxp = child_ctx;
4917         get_task_struct(child);
4918
4919         /*
4920          * If the parent's context is a clone, pin it so it won't get
4921          * swapped under us.
4922          */
4923         parent_ctx = perf_pin_task_context(parent);
4924
4925         /*
4926          * No need to check if parent_ctx != NULL here; since we saw
4927          * it non-NULL earlier, the only reason for it to become NULL
4928          * is if we exit, and since we're currently in the middle of
4929          * a fork we can't be exiting at the same time.
4930          */
4931
4932         /*
4933          * Lock the parent list. No need to lock the child - not PID
4934          * hashed yet and not running, so nobody can access it.
4935          */
4936         mutex_lock(&parent_ctx->mutex);
4937
4938         /*
4939          * We dont have to disable NMIs - we are only looking at
4940          * the list, not manipulating it:
4941          */
4942         list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
4943
4944                 if (!event->attr.inherit) {
4945                         inherited_all = 0;
4946                         continue;
4947                 }
4948
4949                 ret = inherit_group(event, parent, parent_ctx,
4950                                              child, child_ctx);
4951                 if (ret) {
4952                         inherited_all = 0;
4953                         break;
4954                 }
4955         }
4956
4957         if (inherited_all) {
4958                 /*
4959                  * Mark the child context as a clone of the parent
4960                  * context, or of whatever the parent is a clone of.
4961                  * Note that if the parent is a clone, it could get
4962                  * uncloned at any point, but that doesn't matter
4963                  * because the list of events and the generation
4964                  * count can't have changed since we took the mutex.
4965                  */
4966                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4967                 if (cloned_ctx) {
4968                         child_ctx->parent_ctx = cloned_ctx;
4969                         child_ctx->parent_gen = parent_ctx->parent_gen;
4970                 } else {
4971                         child_ctx->parent_ctx = parent_ctx;
4972                         child_ctx->parent_gen = parent_ctx->generation;
4973                 }
4974                 get_ctx(child_ctx->parent_ctx);
4975         }
4976
4977         mutex_unlock(&parent_ctx->mutex);
4978
4979         perf_unpin_context(parent_ctx);
4980
4981         return ret;
4982 }
4983
4984 static void __cpuinit perf_event_init_cpu(int cpu)
4985 {
4986         struct perf_cpu_context *cpuctx;
4987
4988         cpuctx = &per_cpu(perf_cpu_context, cpu);
4989         __perf_event_init_context(&cpuctx->ctx, NULL);
4990
4991         spin_lock(&perf_resource_lock);
4992         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
4993         spin_unlock(&perf_resource_lock);
4994
4995         hw_perf_event_setup(cpu);
4996 }
4997
4998 #ifdef CONFIG_HOTPLUG_CPU
4999 static void __perf_event_exit_cpu(void *info)
5000 {
5001         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5002         struct perf_event_context *ctx = &cpuctx->ctx;
5003         struct perf_event *event, *tmp;
5004
5005         list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5006                 __perf_event_remove_from_context(event);
5007 }
5008 static void perf_event_exit_cpu(int cpu)
5009 {
5010         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5011         struct perf_event_context *ctx = &cpuctx->ctx;
5012
5013         mutex_lock(&ctx->mutex);
5014         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5015         mutex_unlock(&ctx->mutex);
5016 }
5017 #else
5018 static inline void perf_event_exit_cpu(int cpu) { }
5019 #endif
5020
5021 static int __cpuinit
5022 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5023 {
5024         unsigned int cpu = (long)hcpu;
5025
5026         switch (action) {
5027
5028         case CPU_UP_PREPARE:
5029         case CPU_UP_PREPARE_FROZEN:
5030                 perf_event_init_cpu(cpu);
5031                 break;
5032
5033         case CPU_ONLINE:
5034         case CPU_ONLINE_FROZEN:
5035                 hw_perf_event_setup_online(cpu);
5036                 break;
5037
5038         case CPU_DOWN_PREPARE:
5039         case CPU_DOWN_PREPARE_FROZEN:
5040                 perf_event_exit_cpu(cpu);
5041                 break;
5042
5043         default:
5044                 break;
5045         }
5046
5047         return NOTIFY_OK;
5048 }
5049
5050 /*
5051  * This has to have a higher priority than migration_notifier in sched.c.
5052  */
5053 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5054         .notifier_call          = perf_cpu_notify,
5055         .priority               = 20,
5056 };
5057
5058 void __init perf_event_init(void)
5059 {
5060         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5061                         (void *)(long)smp_processor_id());
5062         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5063                         (void *)(long)smp_processor_id());
5064         register_cpu_notifier(&perf_cpu_nb);
5065 }
5066
5067 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5068 {
5069         return sprintf(buf, "%d\n", perf_reserved_percpu);
5070 }
5071
5072 static ssize_t
5073 perf_set_reserve_percpu(struct sysdev_class *class,
5074                         const char *buf,
5075                         size_t count)
5076 {
5077         struct perf_cpu_context *cpuctx;
5078         unsigned long val;
5079         int err, cpu, mpt;
5080
5081         err = strict_strtoul(buf, 10, &val);
5082         if (err)
5083                 return err;
5084         if (val > perf_max_events)
5085                 return -EINVAL;
5086
5087         spin_lock(&perf_resource_lock);
5088         perf_reserved_percpu = val;
5089         for_each_online_cpu(cpu) {
5090                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5091                 spin_lock_irq(&cpuctx->ctx.lock);
5092                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5093                           perf_max_events - perf_reserved_percpu);
5094                 cpuctx->max_pertask = mpt;
5095                 spin_unlock_irq(&cpuctx->ctx.lock);
5096         }
5097         spin_unlock(&perf_resource_lock);
5098
5099         return count;
5100 }
5101
5102 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5103 {
5104         return sprintf(buf, "%d\n", perf_overcommit);
5105 }
5106
5107 static ssize_t
5108 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5109 {
5110         unsigned long val;
5111         int err;
5112
5113         err = strict_strtoul(buf, 10, &val);
5114         if (err)
5115                 return err;
5116         if (val > 1)
5117                 return -EINVAL;
5118
5119         spin_lock(&perf_resource_lock);
5120         perf_overcommit = val;
5121         spin_unlock(&perf_resource_lock);
5122
5123         return count;
5124 }
5125
5126 static SYSDEV_CLASS_ATTR(
5127                                 reserve_percpu,
5128                                 0644,
5129                                 perf_show_reserve_percpu,
5130                                 perf_set_reserve_percpu
5131                         );
5132
5133 static SYSDEV_CLASS_ATTR(
5134                                 overcommit,
5135                                 0644,
5136                                 perf_show_overcommit,
5137                                 perf_set_overcommit
5138                         );
5139
5140 static struct attribute *perfclass_attrs[] = {
5141         &attr_reserve_percpu.attr,
5142         &attr_overcommit.attr,
5143         NULL
5144 };
5145
5146 static struct attribute_group perfclass_attr_group = {
5147         .attrs                  = perfclass_attrs,
5148         .name                   = "perf_events",
5149 };
5150
5151 static int __init perf_event_sysfs_init(void)
5152 {
5153         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5154                                   &perfclass_attr_group);
5155 }
5156 device_initcall(perf_event_sysfs_init);