]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/posix-cpu-timers.c
Linux 2.6.16.35-rc1
[karo-tx-linux.git] / kernel / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <asm/uaccess.h>
8 #include <linux/errno.h>
9
10 static int check_clock(const clockid_t which_clock)
11 {
12         int error = 0;
13         struct task_struct *p;
14         const pid_t pid = CPUCLOCK_PID(which_clock);
15
16         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
17                 return -EINVAL;
18
19         if (pid == 0)
20                 return 0;
21
22         read_lock(&tasklist_lock);
23         p = find_task_by_pid(pid);
24         if (!p || (CPUCLOCK_PERTHREAD(which_clock) ?
25                    p->tgid != current->tgid : p->tgid != pid)) {
26                 error = -EINVAL;
27         }
28         read_unlock(&tasklist_lock);
29
30         return error;
31 }
32
33 static inline union cpu_time_count
34 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
35 {
36         union cpu_time_count ret;
37         ret.sched = 0;          /* high half always zero when .cpu used */
38         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
39                 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
40         } else {
41                 ret.cpu = timespec_to_cputime(tp);
42         }
43         return ret;
44 }
45
46 static void sample_to_timespec(const clockid_t which_clock,
47                                union cpu_time_count cpu,
48                                struct timespec *tp)
49 {
50         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
51                 tp->tv_sec = div_long_long_rem(cpu.sched,
52                                                NSEC_PER_SEC, &tp->tv_nsec);
53         } else {
54                 cputime_to_timespec(cpu.cpu, tp);
55         }
56 }
57
58 static inline int cpu_time_before(const clockid_t which_clock,
59                                   union cpu_time_count now,
60                                   union cpu_time_count then)
61 {
62         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
63                 return now.sched < then.sched;
64         }  else {
65                 return cputime_lt(now.cpu, then.cpu);
66         }
67 }
68 static inline void cpu_time_add(const clockid_t which_clock,
69                                 union cpu_time_count *acc,
70                                 union cpu_time_count val)
71 {
72         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
73                 acc->sched += val.sched;
74         }  else {
75                 acc->cpu = cputime_add(acc->cpu, val.cpu);
76         }
77 }
78 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
79                                                 union cpu_time_count a,
80                                                 union cpu_time_count b)
81 {
82         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
83                 a.sched -= b.sched;
84         }  else {
85                 a.cpu = cputime_sub(a.cpu, b.cpu);
86         }
87         return a;
88 }
89
90 /*
91  * Divide and limit the result to res >= 1
92  *
93  * This is necessary to prevent signal delivery starvation, when the result of
94  * the division would be rounded down to 0.
95  */
96 static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
97 {
98         cputime_t res = cputime_div(time, div);
99
100         return max_t(cputime_t, res, 1);
101 }
102
103 /*
104  * Update expiry time from increment, and increase overrun count,
105  * given the current clock sample.
106  */
107 static void bump_cpu_timer(struct k_itimer *timer,
108                                   union cpu_time_count now)
109 {
110         int i;
111
112         if (timer->it.cpu.incr.sched == 0)
113                 return;
114
115         if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
116                 unsigned long long delta, incr;
117
118                 if (now.sched < timer->it.cpu.expires.sched)
119                         return;
120                 incr = timer->it.cpu.incr.sched;
121                 delta = now.sched + incr - timer->it.cpu.expires.sched;
122                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
123                 for (i = 0; incr < delta - incr; i++)
124                         incr = incr << 1;
125                 for (; i >= 0; incr >>= 1, i--) {
126                         if (delta < incr)
127                                 continue;
128                         timer->it.cpu.expires.sched += incr;
129                         timer->it_overrun += 1 << i;
130                         delta -= incr;
131                 }
132         } else {
133                 cputime_t delta, incr;
134
135                 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
136                         return;
137                 incr = timer->it.cpu.incr.cpu;
138                 delta = cputime_sub(cputime_add(now.cpu, incr),
139                                     timer->it.cpu.expires.cpu);
140                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
141                 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
142                              incr = cputime_add(incr, incr);
143                 for (; i >= 0; incr = cputime_halve(incr), i--) {
144                         if (cputime_lt(delta, incr))
145                                 continue;
146                         timer->it.cpu.expires.cpu =
147                                 cputime_add(timer->it.cpu.expires.cpu, incr);
148                         timer->it_overrun += 1 << i;
149                         delta = cputime_sub(delta, incr);
150                 }
151         }
152 }
153
154 static inline cputime_t prof_ticks(struct task_struct *p)
155 {
156         return cputime_add(p->utime, p->stime);
157 }
158 static inline cputime_t virt_ticks(struct task_struct *p)
159 {
160         return p->utime;
161 }
162 static inline unsigned long long sched_ns(struct task_struct *p)
163 {
164         return (p == current) ? current_sched_time(p) : p->sched_time;
165 }
166
167 int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
168 {
169         int error = check_clock(which_clock);
170         if (!error) {
171                 tp->tv_sec = 0;
172                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
173                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
174                         /*
175                          * If sched_clock is using a cycle counter, we
176                          * don't have any idea of its true resolution
177                          * exported, but it is much more than 1s/HZ.
178                          */
179                         tp->tv_nsec = 1;
180                 }
181         }
182         return error;
183 }
184
185 int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
186 {
187         /*
188          * You can never reset a CPU clock, but we check for other errors
189          * in the call before failing with EPERM.
190          */
191         int error = check_clock(which_clock);
192         if (error == 0) {
193                 error = -EPERM;
194         }
195         return error;
196 }
197
198
199 /*
200  * Sample a per-thread clock for the given task.
201  */
202 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
203                             union cpu_time_count *cpu)
204 {
205         switch (CPUCLOCK_WHICH(which_clock)) {
206         default:
207                 return -EINVAL;
208         case CPUCLOCK_PROF:
209                 cpu->cpu = prof_ticks(p);
210                 break;
211         case CPUCLOCK_VIRT:
212                 cpu->cpu = virt_ticks(p);
213                 break;
214         case CPUCLOCK_SCHED:
215                 cpu->sched = sched_ns(p);
216                 break;
217         }
218         return 0;
219 }
220
221 /*
222  * Sample a process (thread group) clock for the given group_leader task.
223  * Must be called with tasklist_lock held for reading.
224  * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
225  */
226 static int cpu_clock_sample_group_locked(unsigned int clock_idx,
227                                          struct task_struct *p,
228                                          union cpu_time_count *cpu)
229 {
230         struct task_struct *t = p;
231         switch (clock_idx) {
232         default:
233                 return -EINVAL;
234         case CPUCLOCK_PROF:
235                 cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
236                 do {
237                         cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
238                         t = next_thread(t);
239                 } while (t != p);
240                 break;
241         case CPUCLOCK_VIRT:
242                 cpu->cpu = p->signal->utime;
243                 do {
244                         cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
245                         t = next_thread(t);
246                 } while (t != p);
247                 break;
248         case CPUCLOCK_SCHED:
249                 cpu->sched = p->signal->sched_time;
250                 /* Add in each other live thread.  */
251                 while ((t = next_thread(t)) != p) {
252                         cpu->sched += t->sched_time;
253                 }
254                 cpu->sched += sched_ns(p);
255                 break;
256         }
257         return 0;
258 }
259
260 /*
261  * Sample a process (thread group) clock for the given group_leader task.
262  * Must be called with tasklist_lock held for reading.
263  */
264 static int cpu_clock_sample_group(const clockid_t which_clock,
265                                   struct task_struct *p,
266                                   union cpu_time_count *cpu)
267 {
268         int ret;
269         unsigned long flags;
270         spin_lock_irqsave(&p->sighand->siglock, flags);
271         ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
272                                             cpu);
273         spin_unlock_irqrestore(&p->sighand->siglock, flags);
274         return ret;
275 }
276
277
278 int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
279 {
280         const pid_t pid = CPUCLOCK_PID(which_clock);
281         int error = -EINVAL;
282         union cpu_time_count rtn;
283
284         if (pid == 0) {
285                 /*
286                  * Special case constant value for our own clocks.
287                  * We don't have to do any lookup to find ourselves.
288                  */
289                 if (CPUCLOCK_PERTHREAD(which_clock)) {
290                         /*
291                          * Sampling just ourselves we can do with no locking.
292                          */
293                         error = cpu_clock_sample(which_clock,
294                                                  current, &rtn);
295                 } else {
296                         read_lock(&tasklist_lock);
297                         error = cpu_clock_sample_group(which_clock,
298                                                        current, &rtn);
299                         read_unlock(&tasklist_lock);
300                 }
301         } else {
302                 /*
303                  * Find the given PID, and validate that the caller
304                  * should be able to see it.
305                  */
306                 struct task_struct *p;
307                 read_lock(&tasklist_lock);
308                 p = find_task_by_pid(pid);
309                 if (p) {
310                         if (CPUCLOCK_PERTHREAD(which_clock)) {
311                                 if (p->tgid == current->tgid) {
312                                         error = cpu_clock_sample(which_clock,
313                                                                  p, &rtn);
314                                 }
315                         } else if (p->tgid == pid && p->signal) {
316                                 error = cpu_clock_sample_group(which_clock,
317                                                                p, &rtn);
318                         }
319                 }
320                 read_unlock(&tasklist_lock);
321         }
322
323         if (error)
324                 return error;
325         sample_to_timespec(which_clock, rtn, tp);
326         return 0;
327 }
328
329
330 /*
331  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
332  * This is called from sys_timer_create with the new timer already locked.
333  */
334 int posix_cpu_timer_create(struct k_itimer *new_timer)
335 {
336         int ret = 0;
337         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
338         struct task_struct *p;
339
340         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
341                 return -EINVAL;
342
343         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
344         new_timer->it.cpu.incr.sched = 0;
345         new_timer->it.cpu.expires.sched = 0;
346
347         read_lock(&tasklist_lock);
348         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
349                 if (pid == 0) {
350                         p = current;
351                 } else {
352                         p = find_task_by_pid(pid);
353                         if (p && p->tgid != current->tgid)
354                                 p = NULL;
355                 }
356         } else {
357                 if (pid == 0) {
358                         p = current->group_leader;
359                 } else {
360                         p = find_task_by_pid(pid);
361                         if (p && p->tgid != pid)
362                                 p = NULL;
363                 }
364         }
365         new_timer->it.cpu.task = p;
366         if (p) {
367                 get_task_struct(p);
368         } else {
369                 ret = -EINVAL;
370         }
371         read_unlock(&tasklist_lock);
372
373         return ret;
374 }
375
376 /*
377  * Clean up a CPU-clock timer that is about to be destroyed.
378  * This is called from timer deletion with the timer already locked.
379  * If we return TIMER_RETRY, it's necessary to release the timer's lock
380  * and try again.  (This happens when the timer is in the middle of firing.)
381  */
382 int posix_cpu_timer_del(struct k_itimer *timer)
383 {
384         struct task_struct *p = timer->it.cpu.task;
385         int ret = 0;
386
387         if (likely(p != NULL)) {
388                 read_lock(&tasklist_lock);
389                 if (unlikely(p->signal == NULL)) {
390                         /*
391                          * We raced with the reaping of the task.
392                          * The deletion should have cleared us off the list.
393                          */
394                         BUG_ON(!list_empty(&timer->it.cpu.entry));
395                 } else {
396                         spin_lock(&p->sighand->siglock);
397                         if (timer->it.cpu.firing)
398                                 ret = TIMER_RETRY;
399                         else
400                                 list_del(&timer->it.cpu.entry);
401                         spin_unlock(&p->sighand->siglock);
402                 }
403                 read_unlock(&tasklist_lock);
404
405                 if (!ret)
406                         put_task_struct(p);
407         }
408
409         return ret;
410 }
411
412 /*
413  * Clean out CPU timers still ticking when a thread exited.  The task
414  * pointer is cleared, and the expiry time is replaced with the residual
415  * time for later timer_gettime calls to return.
416  * This must be called with the siglock held.
417  */
418 static void cleanup_timers(struct list_head *head,
419                            cputime_t utime, cputime_t stime,
420                            unsigned long long sched_time)
421 {
422         struct cpu_timer_list *timer, *next;
423         cputime_t ptime = cputime_add(utime, stime);
424
425         list_for_each_entry_safe(timer, next, head, entry) {
426                 list_del_init(&timer->entry);
427                 if (cputime_lt(timer->expires.cpu, ptime)) {
428                         timer->expires.cpu = cputime_zero;
429                 } else {
430                         timer->expires.cpu = cputime_sub(timer->expires.cpu,
431                                                          ptime);
432                 }
433         }
434
435         ++head;
436         list_for_each_entry_safe(timer, next, head, entry) {
437                 list_del_init(&timer->entry);
438                 if (cputime_lt(timer->expires.cpu, utime)) {
439                         timer->expires.cpu = cputime_zero;
440                 } else {
441                         timer->expires.cpu = cputime_sub(timer->expires.cpu,
442                                                          utime);
443                 }
444         }
445
446         ++head;
447         list_for_each_entry_safe(timer, next, head, entry) {
448                 list_del_init(&timer->entry);
449                 if (timer->expires.sched < sched_time) {
450                         timer->expires.sched = 0;
451                 } else {
452                         timer->expires.sched -= sched_time;
453                 }
454         }
455 }
456
457 /*
458  * These are both called with the siglock held, when the current thread
459  * is being reaped.  When the final (leader) thread in the group is reaped,
460  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
461  */
462 void posix_cpu_timers_exit(struct task_struct *tsk)
463 {
464         cleanup_timers(tsk->cpu_timers,
465                        tsk->utime, tsk->stime, tsk->sched_time);
466
467 }
468 void posix_cpu_timers_exit_group(struct task_struct *tsk)
469 {
470         cleanup_timers(tsk->signal->cpu_timers,
471                        cputime_add(tsk->utime, tsk->signal->utime),
472                        cputime_add(tsk->stime, tsk->signal->stime),
473                        tsk->sched_time + tsk->signal->sched_time);
474 }
475
476
477 /*
478  * Set the expiry times of all the threads in the process so one of them
479  * will go off before the process cumulative expiry total is reached.
480  */
481 static void process_timer_rebalance(struct task_struct *p,
482                                     unsigned int clock_idx,
483                                     union cpu_time_count expires,
484                                     union cpu_time_count val)
485 {
486         cputime_t ticks, left;
487         unsigned long long ns, nsleft;
488         struct task_struct *t = p;
489         unsigned int nthreads = atomic_read(&p->signal->live);
490
491         if (!nthreads)
492                 return;
493
494         switch (clock_idx) {
495         default:
496                 BUG();
497                 break;
498         case CPUCLOCK_PROF:
499                 left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
500                                        nthreads);
501                 do {
502                         if (likely(!(t->flags & PF_EXITING))) {
503                                 ticks = cputime_add(prof_ticks(t), left);
504                                 if (cputime_eq(t->it_prof_expires,
505                                                cputime_zero) ||
506                                     cputime_gt(t->it_prof_expires, ticks)) {
507                                         t->it_prof_expires = ticks;
508                                 }
509                         }
510                         t = next_thread(t);
511                 } while (t != p);
512                 break;
513         case CPUCLOCK_VIRT:
514                 left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
515                                        nthreads);
516                 do {
517                         if (likely(!(t->flags & PF_EXITING))) {
518                                 ticks = cputime_add(virt_ticks(t), left);
519                                 if (cputime_eq(t->it_virt_expires,
520                                                cputime_zero) ||
521                                     cputime_gt(t->it_virt_expires, ticks)) {
522                                         t->it_virt_expires = ticks;
523                                 }
524                         }
525                         t = next_thread(t);
526                 } while (t != p);
527                 break;
528         case CPUCLOCK_SCHED:
529                 nsleft = expires.sched - val.sched;
530                 do_div(nsleft, nthreads);
531                 nsleft = max_t(unsigned long long, nsleft, 1);
532                 do {
533                         if (likely(!(t->flags & PF_EXITING))) {
534                                 ns = t->sched_time + nsleft;
535                                 if (t->it_sched_expires == 0 ||
536                                     t->it_sched_expires > ns) {
537                                         t->it_sched_expires = ns;
538                                 }
539                         }
540                         t = next_thread(t);
541                 } while (t != p);
542                 break;
543         }
544 }
545
546 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
547 {
548         /*
549          * That's all for this thread or process.
550          * We leave our residual in expires to be reported.
551          */
552         put_task_struct(timer->it.cpu.task);
553         timer->it.cpu.task = NULL;
554         timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
555                                              timer->it.cpu.expires,
556                                              now);
557 }
558
559 /*
560  * Insert the timer on the appropriate list before any timers that
561  * expire later.  This must be called with the tasklist_lock held
562  * for reading, and interrupts disabled.
563  */
564 static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
565 {
566         struct task_struct *p = timer->it.cpu.task;
567         struct list_head *head, *listpos;
568         struct cpu_timer_list *const nt = &timer->it.cpu;
569         struct cpu_timer_list *next;
570         unsigned long i;
571
572         if (CPUCLOCK_PERTHREAD(timer->it_clock) && (p->flags & PF_EXITING))
573                 return;
574
575         head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
576                 p->cpu_timers : p->signal->cpu_timers);
577         head += CPUCLOCK_WHICH(timer->it_clock);
578
579         BUG_ON(!irqs_disabled());
580         spin_lock(&p->sighand->siglock);
581
582         listpos = head;
583         if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
584                 list_for_each_entry(next, head, entry) {
585                         if (next->expires.sched > nt->expires.sched)
586                                 break;
587                         listpos = &next->entry;
588                 }
589         } else {
590                 list_for_each_entry(next, head, entry) {
591                         if (cputime_gt(next->expires.cpu, nt->expires.cpu))
592                                 break;
593                         listpos = &next->entry;
594                 }
595         }
596         list_add(&nt->entry, listpos);
597
598         if (listpos == head) {
599                 /*
600                  * We are the new earliest-expiring timer.
601                  * If we are a thread timer, there can always
602                  * be a process timer telling us to stop earlier.
603                  */
604
605                 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
606                         switch (CPUCLOCK_WHICH(timer->it_clock)) {
607                         default:
608                                 BUG();
609                         case CPUCLOCK_PROF:
610                                 if (cputime_eq(p->it_prof_expires,
611                                                cputime_zero) ||
612                                     cputime_gt(p->it_prof_expires,
613                                                nt->expires.cpu))
614                                         p->it_prof_expires = nt->expires.cpu;
615                                 break;
616                         case CPUCLOCK_VIRT:
617                                 if (cputime_eq(p->it_virt_expires,
618                                                cputime_zero) ||
619                                     cputime_gt(p->it_virt_expires,
620                                                nt->expires.cpu))
621                                         p->it_virt_expires = nt->expires.cpu;
622                                 break;
623                         case CPUCLOCK_SCHED:
624                                 if (p->it_sched_expires == 0 ||
625                                     p->it_sched_expires > nt->expires.sched)
626                                         p->it_sched_expires = nt->expires.sched;
627                                 break;
628                         }
629                 } else {
630                         /*
631                          * For a process timer, we must balance
632                          * all the live threads' expirations.
633                          */
634                         switch (CPUCLOCK_WHICH(timer->it_clock)) {
635                         default:
636                                 BUG();
637                         case CPUCLOCK_VIRT:
638                                 if (!cputime_eq(p->signal->it_virt_expires,
639                                                 cputime_zero) &&
640                                     cputime_lt(p->signal->it_virt_expires,
641                                                timer->it.cpu.expires.cpu))
642                                         break;
643                                 goto rebalance;
644                         case CPUCLOCK_PROF:
645                                 if (!cputime_eq(p->signal->it_prof_expires,
646                                                 cputime_zero) &&
647                                     cputime_lt(p->signal->it_prof_expires,
648                                                timer->it.cpu.expires.cpu))
649                                         break;
650                                 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
651                                 if (i != RLIM_INFINITY &&
652                                     i <= cputime_to_secs(timer->it.cpu.expires.cpu))
653                                         break;
654                                 goto rebalance;
655                         case CPUCLOCK_SCHED:
656                         rebalance:
657                                 process_timer_rebalance(
658                                         timer->it.cpu.task,
659                                         CPUCLOCK_WHICH(timer->it_clock),
660                                         timer->it.cpu.expires, now);
661                                 break;
662                         }
663                 }
664         }
665
666         spin_unlock(&p->sighand->siglock);
667 }
668
669 /*
670  * The timer is locked, fire it and arrange for its reload.
671  */
672 static void cpu_timer_fire(struct k_itimer *timer)
673 {
674         if (unlikely(timer->sigq == NULL)) {
675                 /*
676                  * This a special case for clock_nanosleep,
677                  * not a normal timer from sys_timer_create.
678                  */
679                 wake_up_process(timer->it_process);
680                 timer->it.cpu.expires.sched = 0;
681         } else if (timer->it.cpu.incr.sched == 0) {
682                 /*
683                  * One-shot timer.  Clear it as soon as it's fired.
684                  */
685                 posix_timer_event(timer, 0);
686                 timer->it.cpu.expires.sched = 0;
687         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
688                 /*
689                  * The signal did not get queued because the signal
690                  * was ignored, so we won't get any callback to
691                  * reload the timer.  But we need to keep it
692                  * ticking in case the signal is deliverable next time.
693                  */
694                 posix_cpu_timer_schedule(timer);
695         }
696 }
697
698 /*
699  * Guts of sys_timer_settime for CPU timers.
700  * This is called with the timer locked and interrupts disabled.
701  * If we return TIMER_RETRY, it's necessary to release the timer's lock
702  * and try again.  (This happens when the timer is in the middle of firing.)
703  */
704 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
705                         struct itimerspec *new, struct itimerspec *old)
706 {
707         struct task_struct *p = timer->it.cpu.task;
708         union cpu_time_count old_expires, new_expires, val;
709         int ret;
710
711         if (unlikely(p == NULL)) {
712                 /*
713                  * Timer refers to a dead task's clock.
714                  */
715                 return -ESRCH;
716         }
717
718         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
719
720         read_lock(&tasklist_lock);
721         /*
722          * We need the tasklist_lock to protect against reaping that
723          * clears p->signal.  If p has just been reaped, we can no
724          * longer get any information about it at all.
725          */
726         if (unlikely(p->signal == NULL)) {
727                 read_unlock(&tasklist_lock);
728                 put_task_struct(p);
729                 timer->it.cpu.task = NULL;
730                 return -ESRCH;
731         }
732
733         /*
734          * Disarm any old timer after extracting its expiry time.
735          */
736         BUG_ON(!irqs_disabled());
737
738         ret = 0;
739         spin_lock(&p->sighand->siglock);
740         old_expires = timer->it.cpu.expires;
741         if (unlikely(timer->it.cpu.firing)) {
742                 timer->it.cpu.firing = -1;
743                 ret = TIMER_RETRY;
744         } else
745                 list_del_init(&timer->it.cpu.entry);
746         spin_unlock(&p->sighand->siglock);
747
748         /*
749          * We need to sample the current value to convert the new
750          * value from to relative and absolute, and to convert the
751          * old value from absolute to relative.  To set a process
752          * timer, we need a sample to balance the thread expiry
753          * times (in arm_timer).  With an absolute time, we must
754          * check if it's already passed.  In short, we need a sample.
755          */
756         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
757                 cpu_clock_sample(timer->it_clock, p, &val);
758         } else {
759                 cpu_clock_sample_group(timer->it_clock, p, &val);
760         }
761
762         if (old) {
763                 if (old_expires.sched == 0) {
764                         old->it_value.tv_sec = 0;
765                         old->it_value.tv_nsec = 0;
766                 } else {
767                         /*
768                          * Update the timer in case it has
769                          * overrun already.  If it has,
770                          * we'll report it as having overrun
771                          * and with the next reloaded timer
772                          * already ticking, though we are
773                          * swallowing that pending
774                          * notification here to install the
775                          * new setting.
776                          */
777                         bump_cpu_timer(timer, val);
778                         if (cpu_time_before(timer->it_clock, val,
779                                             timer->it.cpu.expires)) {
780                                 old_expires = cpu_time_sub(
781                                         timer->it_clock,
782                                         timer->it.cpu.expires, val);
783                                 sample_to_timespec(timer->it_clock,
784                                                    old_expires,
785                                                    &old->it_value);
786                         } else {
787                                 old->it_value.tv_nsec = 1;
788                                 old->it_value.tv_sec = 0;
789                         }
790                 }
791         }
792
793         if (unlikely(ret)) {
794                 /*
795                  * We are colliding with the timer actually firing.
796                  * Punt after filling in the timer's old value, and
797                  * disable this firing since we are already reporting
798                  * it as an overrun (thanks to bump_cpu_timer above).
799                  */
800                 read_unlock(&tasklist_lock);
801                 goto out;
802         }
803
804         if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
805                 cpu_time_add(timer->it_clock, &new_expires, val);
806         }
807
808         /*
809          * Install the new expiry time (or zero).
810          * For a timer with no notification action, we don't actually
811          * arm the timer (we'll just fake it for timer_gettime).
812          */
813         timer->it.cpu.expires = new_expires;
814         if (new_expires.sched != 0 &&
815             (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
816             cpu_time_before(timer->it_clock, val, new_expires)) {
817                 arm_timer(timer, val);
818         }
819
820         read_unlock(&tasklist_lock);
821
822         /*
823          * Install the new reload setting, and
824          * set up the signal and overrun bookkeeping.
825          */
826         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
827                                                 &new->it_interval);
828
829         /*
830          * This acts as a modification timestamp for the timer,
831          * so any automatic reload attempt will punt on seeing
832          * that we have reset the timer manually.
833          */
834         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
835                 ~REQUEUE_PENDING;
836         timer->it_overrun_last = 0;
837         timer->it_overrun = -1;
838
839         if (new_expires.sched != 0 &&
840             (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
841             !cpu_time_before(timer->it_clock, val, new_expires)) {
842                 /*
843                  * The designated time already passed, so we notify
844                  * immediately, even if the thread never runs to
845                  * accumulate more time on this clock.
846                  */
847                 cpu_timer_fire(timer);
848         }
849
850         ret = 0;
851  out:
852         if (old) {
853                 sample_to_timespec(timer->it_clock,
854                                    timer->it.cpu.incr, &old->it_interval);
855         }
856         return ret;
857 }
858
859 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
860 {
861         union cpu_time_count now;
862         struct task_struct *p = timer->it.cpu.task;
863         int clear_dead;
864
865         /*
866          * Easy part: convert the reload time.
867          */
868         sample_to_timespec(timer->it_clock,
869                            timer->it.cpu.incr, &itp->it_interval);
870
871         if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all.  */
872                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
873                 return;
874         }
875
876         if (unlikely(p == NULL)) {
877                 /*
878                  * This task already died and the timer will never fire.
879                  * In this case, expires is actually the dead value.
880                  */
881         dead:
882                 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
883                                    &itp->it_value);
884                 return;
885         }
886
887         /*
888          * Sample the clock to take the difference with the expiry time.
889          */
890         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
891                 cpu_clock_sample(timer->it_clock, p, &now);
892                 clear_dead = p->exit_state;
893         } else {
894                 read_lock(&tasklist_lock);
895                 if (unlikely(p->signal == NULL)) {
896                         /*
897                          * The process has been reaped.
898                          * We can't even collect a sample any more.
899                          * Call the timer disarmed, nothing else to do.
900                          */
901                         put_task_struct(p);
902                         timer->it.cpu.task = NULL;
903                         timer->it.cpu.expires.sched = 0;
904                         read_unlock(&tasklist_lock);
905                         goto dead;
906                 } else {
907                         cpu_clock_sample_group(timer->it_clock, p, &now);
908                         clear_dead = (unlikely(p->exit_state) &&
909                                       thread_group_empty(p));
910                 }
911                 read_unlock(&tasklist_lock);
912         }
913
914         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
915                 if (timer->it.cpu.incr.sched == 0 &&
916                     cpu_time_before(timer->it_clock,
917                                     timer->it.cpu.expires, now)) {
918                         /*
919                          * Do-nothing timer expired and has no reload,
920                          * so it's as if it was never set.
921                          */
922                         timer->it.cpu.expires.sched = 0;
923                         itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
924                         return;
925                 }
926                 /*
927                  * Account for any expirations and reloads that should
928                  * have happened.
929                  */
930                 bump_cpu_timer(timer, now);
931         }
932
933         if (unlikely(clear_dead)) {
934                 /*
935                  * We've noticed that the thread is dead, but
936                  * not yet reaped.  Take this opportunity to
937                  * drop our task ref.
938                  */
939                 clear_dead_task(timer, now);
940                 goto dead;
941         }
942
943         if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
944                 sample_to_timespec(timer->it_clock,
945                                    cpu_time_sub(timer->it_clock,
946                                                 timer->it.cpu.expires, now),
947                                    &itp->it_value);
948         } else {
949                 /*
950                  * The timer should have expired already, but the firing
951                  * hasn't taken place yet.  Say it's just about to expire.
952                  */
953                 itp->it_value.tv_nsec = 1;
954                 itp->it_value.tv_sec = 0;
955         }
956 }
957
958 /*
959  * Check for any per-thread CPU timers that have fired and move them off
960  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
961  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
962  */
963 static void check_thread_timers(struct task_struct *tsk,
964                                 struct list_head *firing)
965 {
966         int maxfire;
967         struct list_head *timers = tsk->cpu_timers;
968
969         maxfire = 20;
970         tsk->it_prof_expires = cputime_zero;
971         while (!list_empty(timers)) {
972                 struct cpu_timer_list *t = list_entry(timers->next,
973                                                       struct cpu_timer_list,
974                                                       entry);
975                 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
976                         tsk->it_prof_expires = t->expires.cpu;
977                         break;
978                 }
979                 t->firing = 1;
980                 list_move_tail(&t->entry, firing);
981         }
982
983         ++timers;
984         maxfire = 20;
985         tsk->it_virt_expires = cputime_zero;
986         while (!list_empty(timers)) {
987                 struct cpu_timer_list *t = list_entry(timers->next,
988                                                       struct cpu_timer_list,
989                                                       entry);
990                 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
991                         tsk->it_virt_expires = t->expires.cpu;
992                         break;
993                 }
994                 t->firing = 1;
995                 list_move_tail(&t->entry, firing);
996         }
997
998         ++timers;
999         maxfire = 20;
1000         tsk->it_sched_expires = 0;
1001         while (!list_empty(timers)) {
1002                 struct cpu_timer_list *t = list_entry(timers->next,
1003                                                       struct cpu_timer_list,
1004                                                       entry);
1005                 if (!--maxfire || tsk->sched_time < t->expires.sched) {
1006                         tsk->it_sched_expires = t->expires.sched;
1007                         break;
1008                 }
1009                 t->firing = 1;
1010                 list_move_tail(&t->entry, firing);
1011         }
1012 }
1013
1014 /*
1015  * Check for any per-thread CPU timers that have fired and move them
1016  * off the tsk->*_timers list onto the firing list.  Per-thread timers
1017  * have already been taken off.
1018  */
1019 static void check_process_timers(struct task_struct *tsk,
1020                                  struct list_head *firing)
1021 {
1022         int maxfire;
1023         struct signal_struct *const sig = tsk->signal;
1024         cputime_t utime, stime, ptime, virt_expires, prof_expires;
1025         unsigned long long sched_time, sched_expires;
1026         struct task_struct *t;
1027         struct list_head *timers = sig->cpu_timers;
1028
1029         /*
1030          * Don't sample the current process CPU clocks if there are no timers.
1031          */
1032         if (list_empty(&timers[CPUCLOCK_PROF]) &&
1033             cputime_eq(sig->it_prof_expires, cputime_zero) &&
1034             sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1035             list_empty(&timers[CPUCLOCK_VIRT]) &&
1036             cputime_eq(sig->it_virt_expires, cputime_zero) &&
1037             list_empty(&timers[CPUCLOCK_SCHED]))
1038                 return;
1039
1040         /*
1041          * Collect the current process totals.
1042          */
1043         utime = sig->utime;
1044         stime = sig->stime;
1045         sched_time = sig->sched_time;
1046         t = tsk;
1047         do {
1048                 utime = cputime_add(utime, t->utime);
1049                 stime = cputime_add(stime, t->stime);
1050                 sched_time += t->sched_time;
1051                 t = next_thread(t);
1052         } while (t != tsk);
1053         ptime = cputime_add(utime, stime);
1054
1055         maxfire = 20;
1056         prof_expires = cputime_zero;
1057         while (!list_empty(timers)) {
1058                 struct cpu_timer_list *t = list_entry(timers->next,
1059                                                       struct cpu_timer_list,
1060                                                       entry);
1061                 if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) {
1062                         prof_expires = t->expires.cpu;
1063                         break;
1064                 }
1065                 t->firing = 1;
1066                 list_move_tail(&t->entry, firing);
1067         }
1068
1069         ++timers;
1070         maxfire = 20;
1071         virt_expires = cputime_zero;
1072         while (!list_empty(timers)) {
1073                 struct cpu_timer_list *t = list_entry(timers->next,
1074                                                       struct cpu_timer_list,
1075                                                       entry);
1076                 if (!--maxfire || cputime_lt(utime, t->expires.cpu)) {
1077                         virt_expires = t->expires.cpu;
1078                         break;
1079                 }
1080                 t->firing = 1;
1081                 list_move_tail(&t->entry, firing);
1082         }
1083
1084         ++timers;
1085         maxfire = 20;
1086         sched_expires = 0;
1087         while (!list_empty(timers)) {
1088                 struct cpu_timer_list *t = list_entry(timers->next,
1089                                                       struct cpu_timer_list,
1090                                                       entry);
1091                 if (!--maxfire || sched_time < t->expires.sched) {
1092                         sched_expires = t->expires.sched;
1093                         break;
1094                 }
1095                 t->firing = 1;
1096                 list_move_tail(&t->entry, firing);
1097         }
1098
1099         /*
1100          * Check for the special case process timers.
1101          */
1102         if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1103                 if (cputime_ge(ptime, sig->it_prof_expires)) {
1104                         /* ITIMER_PROF fires and reloads.  */
1105                         sig->it_prof_expires = sig->it_prof_incr;
1106                         if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1107                                 sig->it_prof_expires = cputime_add(
1108                                         sig->it_prof_expires, ptime);
1109                         }
1110                         __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1111                 }
1112                 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1113                     (cputime_eq(prof_expires, cputime_zero) ||
1114                      cputime_lt(sig->it_prof_expires, prof_expires))) {
1115                         prof_expires = sig->it_prof_expires;
1116                 }
1117         }
1118         if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1119                 if (cputime_ge(utime, sig->it_virt_expires)) {
1120                         /* ITIMER_VIRTUAL fires and reloads.  */
1121                         sig->it_virt_expires = sig->it_virt_incr;
1122                         if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1123                                 sig->it_virt_expires = cputime_add(
1124                                         sig->it_virt_expires, utime);
1125                         }
1126                         __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1127                 }
1128                 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1129                     (cputime_eq(virt_expires, cputime_zero) ||
1130                      cputime_lt(sig->it_virt_expires, virt_expires))) {
1131                         virt_expires = sig->it_virt_expires;
1132                 }
1133         }
1134         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1135                 unsigned long psecs = cputime_to_secs(ptime);
1136                 cputime_t x;
1137                 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1138                         /*
1139                          * At the hard limit, we just die.
1140                          * No need to calculate anything else now.
1141                          */
1142                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1143                         return;
1144                 }
1145                 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1146                         /*
1147                          * At the soft limit, send a SIGXCPU every second.
1148                          */
1149                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1150                         if (sig->rlim[RLIMIT_CPU].rlim_cur
1151                             < sig->rlim[RLIMIT_CPU].rlim_max) {
1152                                 sig->rlim[RLIMIT_CPU].rlim_cur++;
1153                         }
1154                 }
1155                 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1156                 if (cputime_eq(prof_expires, cputime_zero) ||
1157                     cputime_lt(x, prof_expires)) {
1158                         prof_expires = x;
1159                 }
1160         }
1161
1162         if (!cputime_eq(prof_expires, cputime_zero) ||
1163             !cputime_eq(virt_expires, cputime_zero) ||
1164             sched_expires != 0) {
1165                 /*
1166                  * Rebalance the threads' expiry times for the remaining
1167                  * process CPU timers.
1168                  */
1169
1170                 cputime_t prof_left, virt_left, ticks;
1171                 unsigned long long sched_left, sched;
1172                 const unsigned int nthreads = atomic_read(&sig->live);
1173
1174                 if (!nthreads)
1175                         return;
1176
1177                 prof_left = cputime_sub(prof_expires, utime);
1178                 prof_left = cputime_sub(prof_left, stime);
1179                 prof_left = cputime_div_non_zero(prof_left, nthreads);
1180                 virt_left = cputime_sub(virt_expires, utime);
1181                 virt_left = cputime_div_non_zero(virt_left, nthreads);
1182                 if (sched_expires) {
1183                         sched_left = sched_expires - sched_time;
1184                         do_div(sched_left, nthreads);
1185                         sched_left = max_t(unsigned long long, sched_left, 1);
1186                 } else {
1187                         sched_left = 0;
1188                 }
1189                 t = tsk;
1190                 do {
1191                         if (unlikely(t->flags & PF_EXITING))
1192                                 continue;
1193
1194                         ticks = cputime_add(cputime_add(t->utime, t->stime),
1195                                             prof_left);
1196                         if (!cputime_eq(prof_expires, cputime_zero) &&
1197                             (cputime_eq(t->it_prof_expires, cputime_zero) ||
1198                              cputime_gt(t->it_prof_expires, ticks))) {
1199                                 t->it_prof_expires = ticks;
1200                         }
1201
1202                         ticks = cputime_add(t->utime, virt_left);
1203                         if (!cputime_eq(virt_expires, cputime_zero) &&
1204                             (cputime_eq(t->it_virt_expires, cputime_zero) ||
1205                              cputime_gt(t->it_virt_expires, ticks))) {
1206                                 t->it_virt_expires = ticks;
1207                         }
1208
1209                         sched = t->sched_time + sched_left;
1210                         if (sched_expires && (t->it_sched_expires == 0 ||
1211                                               t->it_sched_expires > sched)) {
1212                                 t->it_sched_expires = sched;
1213                         }
1214                 } while ((t = next_thread(t)) != tsk);
1215         }
1216 }
1217
1218 /*
1219  * This is called from the signal code (via do_schedule_next_timer)
1220  * when the last timer signal was delivered and we have to reload the timer.
1221  */
1222 void posix_cpu_timer_schedule(struct k_itimer *timer)
1223 {
1224         struct task_struct *p = timer->it.cpu.task;
1225         union cpu_time_count now;
1226
1227         if (unlikely(p == NULL))
1228                 /*
1229                  * The task was cleaned up already, no future firings.
1230                  */
1231                 goto out;
1232
1233         /*
1234          * Fetch the current sample and update the timer's expiry time.
1235          */
1236         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1237                 cpu_clock_sample(timer->it_clock, p, &now);
1238                 bump_cpu_timer(timer, now);
1239                 if (unlikely(p->exit_state)) {
1240                         clear_dead_task(timer, now);
1241                         goto out;
1242                 }
1243                 read_lock(&tasklist_lock); /* arm_timer needs it.  */
1244         } else {
1245                 read_lock(&tasklist_lock);
1246                 if (unlikely(p->signal == NULL)) {
1247                         /*
1248                          * The process has been reaped.
1249                          * We can't even collect a sample any more.
1250                          */
1251                         put_task_struct(p);
1252                         timer->it.cpu.task = p = NULL;
1253                         timer->it.cpu.expires.sched = 0;
1254                         goto out_unlock;
1255                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1256                         /*
1257                          * We've noticed that the thread is dead, but
1258                          * not yet reaped.  Take this opportunity to
1259                          * drop our task ref.
1260                          */
1261                         clear_dead_task(timer, now);
1262                         goto out_unlock;
1263                 }
1264                 cpu_clock_sample_group(timer->it_clock, p, &now);
1265                 bump_cpu_timer(timer, now);
1266                 /* Leave the tasklist_lock locked for the call below.  */
1267         }
1268
1269         /*
1270          * Now re-arm for the new expiry time.
1271          */
1272         arm_timer(timer, now);
1273
1274 out_unlock:
1275         read_unlock(&tasklist_lock);
1276
1277 out:
1278         timer->it_overrun_last = timer->it_overrun;
1279         timer->it_overrun = -1;
1280         ++timer->it_requeue_pending;
1281 }
1282
1283 /*
1284  * This is called from the timer interrupt handler.  The irq handler has
1285  * already updated our counts.  We need to check if any timers fire now.
1286  * Interrupts are disabled.
1287  */
1288 void run_posix_cpu_timers(struct task_struct *tsk)
1289 {
1290         LIST_HEAD(firing);
1291         struct k_itimer *timer, *next;
1292
1293         BUG_ON(!irqs_disabled());
1294
1295 #define UNEXPIRED(clock) \
1296                 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1297                  cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1298
1299         if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
1300             (tsk->it_sched_expires == 0 ||
1301              tsk->sched_time < tsk->it_sched_expires))
1302                 return;
1303
1304 #undef  UNEXPIRED
1305
1306         /*
1307          * Double-check with locks held.
1308          */
1309         read_lock(&tasklist_lock);
1310         if (likely(tsk->signal != NULL)) {
1311                 spin_lock(&tsk->sighand->siglock);
1312
1313                 /*
1314                  * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1315                  * all the timers that are firing, and put them on the firing list.
1316                  */
1317                 check_thread_timers(tsk, &firing);
1318                 check_process_timers(tsk, &firing);
1319
1320                 /*
1321                  * We must release these locks before taking any timer's lock.
1322                  * There is a potential race with timer deletion here, as the
1323                  * siglock now protects our private firing list.  We have set
1324                  * the firing flag in each timer, so that a deletion attempt
1325                  * that gets the timer lock before we do will give it up and
1326                  * spin until we've taken care of that timer below.
1327                  */
1328                 spin_unlock(&tsk->sighand->siglock);
1329         }
1330         read_unlock(&tasklist_lock);
1331
1332         /*
1333          * Now that all the timers on our list have the firing flag,
1334          * noone will touch their list entries but us.  We'll take
1335          * each timer's lock before clearing its firing flag, so no
1336          * timer call will interfere.
1337          */
1338         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1339                 int firing;
1340                 spin_lock(&timer->it_lock);
1341                 list_del_init(&timer->it.cpu.entry);
1342                 firing = timer->it.cpu.firing;
1343                 timer->it.cpu.firing = 0;
1344                 /*
1345                  * The firing flag is -1 if we collided with a reset
1346                  * of the timer, which already reported this
1347                  * almost-firing as an overrun.  So don't generate an event.
1348                  */
1349                 if (likely(firing >= 0)) {
1350                         cpu_timer_fire(timer);
1351                 }
1352                 spin_unlock(&timer->it_lock);
1353         }
1354 }
1355
1356 /*
1357  * Set one of the process-wide special case CPU timers.
1358  * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1359  * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1360  * absolute; non-null for ITIMER_*, where *newval is relative and we update
1361  * it to be absolute, *oldval is absolute and we update it to be relative.
1362  */
1363 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1364                            cputime_t *newval, cputime_t *oldval)
1365 {
1366         union cpu_time_count now;
1367         struct list_head *head;
1368
1369         BUG_ON(clock_idx == CPUCLOCK_SCHED);
1370         cpu_clock_sample_group_locked(clock_idx, tsk, &now);
1371
1372         if (oldval) {
1373                 if (!cputime_eq(*oldval, cputime_zero)) {
1374                         if (cputime_le(*oldval, now.cpu)) {
1375                                 /* Just about to fire. */
1376                                 *oldval = jiffies_to_cputime(1);
1377                         } else {
1378                                 *oldval = cputime_sub(*oldval, now.cpu);
1379                         }
1380                 }
1381
1382                 if (cputime_eq(*newval, cputime_zero))
1383                         return;
1384                 *newval = cputime_add(*newval, now.cpu);
1385
1386                 /*
1387                  * If the RLIMIT_CPU timer will expire before the
1388                  * ITIMER_PROF timer, we have nothing else to do.
1389                  */
1390                 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1391                     < cputime_to_secs(*newval))
1392                         return;
1393         }
1394
1395         /*
1396          * Check whether there are any process timers already set to fire
1397          * before this one.  If so, we don't have anything more to do.
1398          */
1399         head = &tsk->signal->cpu_timers[clock_idx];
1400         if (list_empty(head) ||
1401             cputime_ge(list_entry(head->next,
1402                                   struct cpu_timer_list, entry)->expires.cpu,
1403                        *newval)) {
1404                 /*
1405                  * Rejigger each thread's expiry time so that one will
1406                  * notice before we hit the process-cumulative expiry time.
1407                  */
1408                 union cpu_time_count expires = { .sched = 0 };
1409                 expires.cpu = *newval;
1410                 process_timer_rebalance(tsk, clock_idx, expires, now);
1411         }
1412 }
1413
1414 static long posix_cpu_clock_nanosleep_restart(struct restart_block *);
1415
1416 int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1417                      struct timespec *rqtp, struct timespec __user *rmtp)
1418 {
1419         struct restart_block *restart_block =
1420             &current_thread_info()->restart_block;
1421         struct k_itimer timer;
1422         int error;
1423
1424         /*
1425          * Diagnose required errors first.
1426          */
1427         if (CPUCLOCK_PERTHREAD(which_clock) &&
1428             (CPUCLOCK_PID(which_clock) == 0 ||
1429              CPUCLOCK_PID(which_clock) == current->pid))
1430                 return -EINVAL;
1431
1432         /*
1433          * Set up a temporary timer and then wait for it to go off.
1434          */
1435         memset(&timer, 0, sizeof timer);
1436         spin_lock_init(&timer.it_lock);
1437         timer.it_clock = which_clock;
1438         timer.it_overrun = -1;
1439         error = posix_cpu_timer_create(&timer);
1440         timer.it_process = current;
1441         if (!error) {
1442                 static struct itimerspec zero_it;
1443                 struct itimerspec it = { .it_value = *rqtp,
1444                                          .it_interval = {} };
1445
1446                 spin_lock_irq(&timer.it_lock);
1447                 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1448                 if (error) {
1449                         spin_unlock_irq(&timer.it_lock);
1450                         return error;
1451                 }
1452
1453                 while (!signal_pending(current)) {
1454                         if (timer.it.cpu.expires.sched == 0) {
1455                                 /*
1456                                  * Our timer fired and was reset.
1457                                  */
1458                                 spin_unlock_irq(&timer.it_lock);
1459                                 return 0;
1460                         }
1461
1462                         /*
1463                          * Block until cpu_timer_fire (or a signal) wakes us.
1464                          */
1465                         __set_current_state(TASK_INTERRUPTIBLE);
1466                         spin_unlock_irq(&timer.it_lock);
1467                         schedule();
1468                         spin_lock_irq(&timer.it_lock);
1469                 }
1470
1471                 /*
1472                  * We were interrupted by a signal.
1473                  */
1474                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1475                 posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1476                 spin_unlock_irq(&timer.it_lock);
1477
1478                 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1479                         /*
1480                          * It actually did fire already.
1481                          */
1482                         return 0;
1483                 }
1484
1485                 /*
1486                  * Report back to the user the time still remaining.
1487                  */
1488                 if (rmtp != NULL && !(flags & TIMER_ABSTIME) &&
1489                     copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1490                         return -EFAULT;
1491
1492                 restart_block->fn = posix_cpu_clock_nanosleep_restart;
1493                 /* Caller already set restart_block->arg1 */
1494                 restart_block->arg0 = which_clock;
1495                 restart_block->arg1 = (unsigned long) rmtp;
1496                 restart_block->arg2 = rqtp->tv_sec;
1497                 restart_block->arg3 = rqtp->tv_nsec;
1498
1499                 error = -ERESTART_RESTARTBLOCK;
1500         }
1501
1502         return error;
1503 }
1504
1505 static long
1506 posix_cpu_clock_nanosleep_restart(struct restart_block *restart_block)
1507 {
1508         clockid_t which_clock = restart_block->arg0;
1509         struct timespec __user *rmtp;
1510         struct timespec t;
1511
1512         rmtp = (struct timespec __user *) restart_block->arg1;
1513         t.tv_sec = restart_block->arg2;
1514         t.tv_nsec = restart_block->arg3;
1515
1516         restart_block->fn = do_no_restart_syscall;
1517         return posix_cpu_nsleep(which_clock, TIMER_ABSTIME, &t, rmtp);
1518 }
1519
1520
1521 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1522 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1523
1524 static int process_cpu_clock_getres(const clockid_t which_clock,
1525                                     struct timespec *tp)
1526 {
1527         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1528 }
1529 static int process_cpu_clock_get(const clockid_t which_clock,
1530                                  struct timespec *tp)
1531 {
1532         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1533 }
1534 static int process_cpu_timer_create(struct k_itimer *timer)
1535 {
1536         timer->it_clock = PROCESS_CLOCK;
1537         return posix_cpu_timer_create(timer);
1538 }
1539 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1540                               struct timespec *rqtp,
1541                               struct timespec __user *rmtp)
1542 {
1543         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1544 }
1545 static int thread_cpu_clock_getres(const clockid_t which_clock,
1546                                    struct timespec *tp)
1547 {
1548         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1549 }
1550 static int thread_cpu_clock_get(const clockid_t which_clock,
1551                                 struct timespec *tp)
1552 {
1553         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1554 }
1555 static int thread_cpu_timer_create(struct k_itimer *timer)
1556 {
1557         timer->it_clock = THREAD_CLOCK;
1558         return posix_cpu_timer_create(timer);
1559 }
1560 static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1561                               struct timespec *rqtp, struct timespec __user *rmtp)
1562 {
1563         return -EINVAL;
1564 }
1565
1566 static __init int init_posix_cpu_timers(void)
1567 {
1568         struct k_clock process = {
1569                 .clock_getres = process_cpu_clock_getres,
1570                 .clock_get = process_cpu_clock_get,
1571                 .clock_set = do_posix_clock_nosettime,
1572                 .timer_create = process_cpu_timer_create,
1573                 .nsleep = process_cpu_nsleep,
1574         };
1575         struct k_clock thread = {
1576                 .clock_getres = thread_cpu_clock_getres,
1577                 .clock_get = thread_cpu_clock_get,
1578                 .clock_set = do_posix_clock_nosettime,
1579                 .timer_create = thread_cpu_timer_create,
1580                 .nsleep = thread_cpu_nsleep,
1581         };
1582
1583         register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1584         register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1585
1586         return 0;
1587 }
1588 __initcall(init_posix_cpu_timers);