]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/power/snapshot.c
Merge branch 'for-arm-soc/cci-pmu' into for-next/perf
[karo-tx-linux.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49
50 void __init hibernate_reserved_size_init(void)
51 {
52         reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62
63 void __init hibernate_image_size_init(void)
64 {
65         image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77
78 /**
79  *      @safe_needed - on resume, for storing the PBE list and the image,
80  *      we can only use memory pages that do not conflict with the pages
81  *      used before suspend.  The unsafe pages have PageNosaveFree set
82  *      and we count them using unsafe_pages.
83  *
84  *      Each allocated image page is marked as PageNosave and PageNosaveFree
85  *      so that swsusp_free() can release it.
86  */
87
88 #define PG_ANY          0
89 #define PG_SAFE         1
90 #define PG_UNSAFE_CLEAR 1
91 #define PG_UNSAFE_KEEP  0
92
93 static unsigned int allocated_unsafe_pages;
94
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97         void *res;
98
99         res = (void *)get_zeroed_page(gfp_mask);
100         if (safe_needed)
101                 while (res && swsusp_page_is_free(virt_to_page(res))) {
102                         /* The page is unsafe, mark it for swsusp_free() */
103                         swsusp_set_page_forbidden(virt_to_page(res));
104                         allocated_unsafe_pages++;
105                         res = (void *)get_zeroed_page(gfp_mask);
106                 }
107         if (res) {
108                 swsusp_set_page_forbidden(virt_to_page(res));
109                 swsusp_set_page_free(virt_to_page(res));
110         }
111         return res;
112 }
113
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121         struct page *page;
122
123         page = alloc_page(gfp_mask);
124         if (page) {
125                 swsusp_set_page_forbidden(page);
126                 swsusp_set_page_free(page);
127         }
128         return page;
129 }
130
131 /**
132  *      free_image_page - free page represented by @addr, allocated with
133  *      get_image_page (page flags set by it must be cleared)
134  */
135
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138         struct page *page;
139
140         BUG_ON(!virt_addr_valid(addr));
141
142         page = virt_to_page(addr);
143
144         swsusp_unset_page_forbidden(page);
145         if (clear_nosave_free)
146                 swsusp_unset_page_free(page);
147
148         __free_page(page);
149 }
150
151 /* struct linked_page is used to build chains of pages */
152
153 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
154
155 struct linked_page {
156         struct linked_page *next;
157         char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163         while (list) {
164                 struct linked_page *lp = list->next;
165
166                 free_image_page(list, clear_page_nosave);
167                 list = lp;
168         }
169 }
170
171 /**
172   *     struct chain_allocator is used for allocating small objects out of
173   *     a linked list of pages called 'the chain'.
174   *
175   *     The chain grows each time when there is no room for a new object in
176   *     the current page.  The allocated objects cannot be freed individually.
177   *     It is only possible to free them all at once, by freeing the entire
178   *     chain.
179   *
180   *     NOTE: The chain allocator may be inefficient if the allocated objects
181   *     are not much smaller than PAGE_SIZE.
182   */
183
184 struct chain_allocator {
185         struct linked_page *chain;      /* the chain */
186         unsigned int used_space;        /* total size of objects allocated out
187                                          * of the current page
188                                          */
189         gfp_t gfp_mask;         /* mask for allocating pages */
190         int safe_needed;        /* if set, only "safe" pages are allocated */
191 };
192
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196         ca->chain = NULL;
197         ca->used_space = LINKED_PAGE_DATA_SIZE;
198         ca->gfp_mask = gfp_mask;
199         ca->safe_needed = safe_needed;
200 }
201
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204         void *ret;
205
206         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207                 struct linked_page *lp;
208
209                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210                 if (!lp)
211                         return NULL;
212
213                 lp->next = ca->chain;
214                 ca->chain = lp;
215                 ca->used_space = 0;
216         }
217         ret = ca->chain->data + ca->used_space;
218         ca->used_space += size;
219         return ret;
220 }
221
222 /**
223  *      Data types related to memory bitmaps.
224  *
225  *      Memory bitmap is a structure consiting of many linked lists of
226  *      objects.  The main list's elements are of type struct zone_bitmap
227  *      and each of them corresonds to one zone.  For each zone bitmap
228  *      object there is a list of objects of type struct bm_block that
229  *      represent each blocks of bitmap in which information is stored.
230  *
231  *      struct memory_bitmap contains a pointer to the main list of zone
232  *      bitmap objects, a struct bm_position used for browsing the bitmap,
233  *      and a pointer to the list of pages used for allocating all of the
234  *      zone bitmap objects and bitmap block objects.
235  *
236  *      NOTE: It has to be possible to lay out the bitmap in memory
237  *      using only allocations of order 0.  Additionally, the bitmap is
238  *      designed to work with arbitrary number of zones (this is over the
239  *      top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *      struct zone_bitmap contains a pointer to a list of bitmap block
242  *      objects and a pointer to the bitmap block object that has been
243  *      most recently used for setting bits.  Additionally, it contains the
244  *      pfns that correspond to the start and end of the represented zone.
245  *
246  *      struct bm_block contains a pointer to the memory page in which
247  *      information is stored (in the form of a block of bitmap)
248  *      It also contains the pfns that correspond to the start and end of
249  *      the represented memory area.
250  */
251
252 #define BM_END_OF_MAP   (~0UL)
253
254 #define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
255
256 struct bm_block {
257         struct list_head hook;  /* hook into a list of bitmap blocks */
258         unsigned long start_pfn;        /* pfn represented by the first bit */
259         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
260         unsigned long *data;    /* bitmap representing pages */
261 };
262
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265         return bb->end_pfn - bb->start_pfn;
266 }
267
268 /* strcut bm_position is used for browsing memory bitmaps */
269
270 struct bm_position {
271         struct bm_block *block;
272         int bit;
273 };
274
275 struct memory_bitmap {
276         struct list_head blocks;        /* list of bitmap blocks */
277         struct linked_page *p_list;     /* list of pages used to store zone
278                                          * bitmap objects and bitmap block
279                                          * objects
280                                          */
281         struct bm_position cur; /* most recently used bit position */
282 };
283
284 /* Functions that operate on memory bitmaps */
285
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288         bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289         bm->cur.bit = 0;
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295  *      create_bm_block_list - create a list of block bitmap objects
296  *      @pages - number of pages to track
297  *      @list - list to put the allocated blocks into
298  *      @ca - chain allocator to be used for allocating memory
299  */
300 static int create_bm_block_list(unsigned long pages,
301                                 struct list_head *list,
302                                 struct chain_allocator *ca)
303 {
304         unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306         while (nr_blocks-- > 0) {
307                 struct bm_block *bb;
308
309                 bb = chain_alloc(ca, sizeof(struct bm_block));
310                 if (!bb)
311                         return -ENOMEM;
312                 list_add(&bb->hook, list);
313         }
314
315         return 0;
316 }
317
318 struct mem_extent {
319         struct list_head hook;
320         unsigned long start;
321         unsigned long end;
322 };
323
324 /**
325  *      free_mem_extents - free a list of memory extents
326  *      @list - list of extents to empty
327  */
328 static void free_mem_extents(struct list_head *list)
329 {
330         struct mem_extent *ext, *aux;
331
332         list_for_each_entry_safe(ext, aux, list, hook) {
333                 list_del(&ext->hook);
334                 kfree(ext);
335         }
336 }
337
338 /**
339  *      create_mem_extents - create a list of memory extents representing
340  *                           contiguous ranges of PFNs
341  *      @list - list to put the extents into
342  *      @gfp_mask - mask to use for memory allocations
343  */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346         struct zone *zone;
347
348         INIT_LIST_HEAD(list);
349
350         for_each_populated_zone(zone) {
351                 unsigned long zone_start, zone_end;
352                 struct mem_extent *ext, *cur, *aux;
353
354                 zone_start = zone->zone_start_pfn;
355                 zone_end = zone_end_pfn(zone);
356
357                 list_for_each_entry(ext, list, hook)
358                         if (zone_start <= ext->end)
359                                 break;
360
361                 if (&ext->hook == list || zone_end < ext->start) {
362                         /* New extent is necessary */
363                         struct mem_extent *new_ext;
364
365                         new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366                         if (!new_ext) {
367                                 free_mem_extents(list);
368                                 return -ENOMEM;
369                         }
370                         new_ext->start = zone_start;
371                         new_ext->end = zone_end;
372                         list_add_tail(&new_ext->hook, &ext->hook);
373                         continue;
374                 }
375
376                 /* Merge this zone's range of PFNs with the existing one */
377                 if (zone_start < ext->start)
378                         ext->start = zone_start;
379                 if (zone_end > ext->end)
380                         ext->end = zone_end;
381
382                 /* More merging may be possible */
383                 cur = ext;
384                 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385                         if (zone_end < cur->start)
386                                 break;
387                         if (zone_end < cur->end)
388                                 ext->end = cur->end;
389                         list_del(&cur->hook);
390                         kfree(cur);
391                 }
392         }
393
394         return 0;
395 }
396
397 /**
398   *     memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403         struct chain_allocator ca;
404         struct list_head mem_extents;
405         struct mem_extent *ext;
406         int error;
407
408         chain_init(&ca, gfp_mask, safe_needed);
409         INIT_LIST_HEAD(&bm->blocks);
410
411         error = create_mem_extents(&mem_extents, gfp_mask);
412         if (error)
413                 return error;
414
415         list_for_each_entry(ext, &mem_extents, hook) {
416                 struct bm_block *bb;
417                 unsigned long pfn = ext->start;
418                 unsigned long pages = ext->end - ext->start;
419
420                 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422                 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423                 if (error)
424                         goto Error;
425
426                 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427                         bb->data = get_image_page(gfp_mask, safe_needed);
428                         if (!bb->data) {
429                                 error = -ENOMEM;
430                                 goto Error;
431                         }
432
433                         bb->start_pfn = pfn;
434                         if (pages >= BM_BITS_PER_BLOCK) {
435                                 pfn += BM_BITS_PER_BLOCK;
436                                 pages -= BM_BITS_PER_BLOCK;
437                         } else {
438                                 /* This is executed only once in the loop */
439                                 pfn += pages;
440                         }
441                         bb->end_pfn = pfn;
442                 }
443         }
444
445         bm->p_list = ca.chain;
446         memory_bm_position_reset(bm);
447  Exit:
448         free_mem_extents(&mem_extents);
449         return error;
450
451  Error:
452         bm->p_list = ca.chain;
453         memory_bm_free(bm, PG_UNSAFE_CLEAR);
454         goto Exit;
455 }
456
457 /**
458   *     memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462         struct bm_block *bb;
463
464         list_for_each_entry(bb, &bm->blocks, hook)
465                 if (bb->data)
466                         free_image_page(bb->data, clear_nosave_free);
467
468         free_list_of_pages(bm->p_list, clear_nosave_free);
469
470         INIT_LIST_HEAD(&bm->blocks);
471 }
472
473 /**
474  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *      of @bm->cur_zone_bm are updated.
477  */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479                                 void **addr, unsigned int *bit_nr)
480 {
481         struct bm_block *bb;
482
483         /*
484          * Check if the pfn corresponds to the current bitmap block and find
485          * the block where it fits if this is not the case.
486          */
487         bb = bm->cur.block;
488         if (pfn < bb->start_pfn)
489                 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490                         if (pfn >= bb->start_pfn)
491                                 break;
492
493         if (pfn >= bb->end_pfn)
494                 list_for_each_entry_continue(bb, &bm->blocks, hook)
495                         if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496                                 break;
497
498         if (&bb->hook == &bm->blocks)
499                 return -EFAULT;
500
501         /* The block has been found */
502         bm->cur.block = bb;
503         pfn -= bb->start_pfn;
504         bm->cur.bit = pfn + 1;
505         *bit_nr = pfn;
506         *addr = bb->data;
507         return 0;
508 }
509
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512         void *addr;
513         unsigned int bit;
514         int error;
515
516         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517         BUG_ON(error);
518         set_bit(bit, addr);
519 }
520
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523         void *addr;
524         unsigned int bit;
525         int error;
526
527         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528         if (!error)
529                 set_bit(bit, addr);
530         return error;
531 }
532
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535         void *addr;
536         unsigned int bit;
537         int error;
538
539         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540         BUG_ON(error);
541         clear_bit(bit, addr);
542 }
543
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546         void *addr;
547         unsigned int bit;
548         int error;
549
550         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551         BUG_ON(error);
552         return test_bit(bit, addr);
553 }
554
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557         void *addr;
558         unsigned int bit;
559
560         return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562
563 /**
564  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *      returned.
567  *
568  *      It is required to run memory_bm_position_reset() before the first call to
569  *      this function.
570  */
571
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574         struct bm_block *bb;
575         int bit;
576
577         bb = bm->cur.block;
578         do {
579                 bit = bm->cur.bit;
580                 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581                 if (bit < bm_block_bits(bb))
582                         goto Return_pfn;
583
584                 bb = list_entry(bb->hook.next, struct bm_block, hook);
585                 bm->cur.block = bb;
586                 bm->cur.bit = 0;
587         } while (&bb->hook != &bm->blocks);
588
589         memory_bm_position_reset(bm);
590         return BM_END_OF_MAP;
591
592  Return_pfn:
593         bm->cur.bit = bit + 1;
594         return bb->start_pfn + bit;
595 }
596
597 /**
598  *      This structure represents a range of page frames the contents of which
599  *      should not be saved during the suspend.
600  */
601
602 struct nosave_region {
603         struct list_head list;
604         unsigned long start_pfn;
605         unsigned long end_pfn;
606 };
607
608 static LIST_HEAD(nosave_regions);
609
610 /**
611  *      register_nosave_region - register a range of page frames the contents
612  *      of which should not be saved during the suspend (to be used in the early
613  *      initialization code)
614  */
615
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618                          int use_kmalloc)
619 {
620         struct nosave_region *region;
621
622         if (start_pfn >= end_pfn)
623                 return;
624
625         if (!list_empty(&nosave_regions)) {
626                 /* Try to extend the previous region (they should be sorted) */
627                 region = list_entry(nosave_regions.prev,
628                                         struct nosave_region, list);
629                 if (region->end_pfn == start_pfn) {
630                         region->end_pfn = end_pfn;
631                         goto Report;
632                 }
633         }
634         if (use_kmalloc) {
635                 /* during init, this shouldn't fail */
636                 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637                 BUG_ON(!region);
638         } else
639                 /* This allocation cannot fail */
640                 region = alloc_bootmem(sizeof(struct nosave_region));
641         region->start_pfn = start_pfn;
642         region->end_pfn = end_pfn;
643         list_add_tail(&region->list, &nosave_regions);
644  Report:
645         printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
646                 (unsigned long long) start_pfn << PAGE_SHIFT,
647                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
648 }
649
650 /*
651  * Set bits in this map correspond to the page frames the contents of which
652  * should not be saved during the suspend.
653  */
654 static struct memory_bitmap *forbidden_pages_map;
655
656 /* Set bits in this map correspond to free page frames. */
657 static struct memory_bitmap *free_pages_map;
658
659 /*
660  * Each page frame allocated for creating the image is marked by setting the
661  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
662  */
663
664 void swsusp_set_page_free(struct page *page)
665 {
666         if (free_pages_map)
667                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
668 }
669
670 static int swsusp_page_is_free(struct page *page)
671 {
672         return free_pages_map ?
673                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
674 }
675
676 void swsusp_unset_page_free(struct page *page)
677 {
678         if (free_pages_map)
679                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
680 }
681
682 static void swsusp_set_page_forbidden(struct page *page)
683 {
684         if (forbidden_pages_map)
685                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
686 }
687
688 int swsusp_page_is_forbidden(struct page *page)
689 {
690         return forbidden_pages_map ?
691                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
692 }
693
694 static void swsusp_unset_page_forbidden(struct page *page)
695 {
696         if (forbidden_pages_map)
697                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
698 }
699
700 /**
701  *      mark_nosave_pages - set bits corresponding to the page frames the
702  *      contents of which should not be saved in a given bitmap.
703  */
704
705 static void mark_nosave_pages(struct memory_bitmap *bm)
706 {
707         struct nosave_region *region;
708
709         if (list_empty(&nosave_regions))
710                 return;
711
712         list_for_each_entry(region, &nosave_regions, list) {
713                 unsigned long pfn;
714
715                 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
716                          (unsigned long long) region->start_pfn << PAGE_SHIFT,
717                          ((unsigned long long) region->end_pfn << PAGE_SHIFT)
718                                 - 1);
719
720                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
721                         if (pfn_valid(pfn)) {
722                                 /*
723                                  * It is safe to ignore the result of
724                                  * mem_bm_set_bit_check() here, since we won't
725                                  * touch the PFNs for which the error is
726                                  * returned anyway.
727                                  */
728                                 mem_bm_set_bit_check(bm, pfn);
729                         }
730         }
731 }
732
733 /**
734  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
735  *      frames that should not be saved and free page frames.  The pointers
736  *      forbidden_pages_map and free_pages_map are only modified if everything
737  *      goes well, because we don't want the bits to be used before both bitmaps
738  *      are set up.
739  */
740
741 int create_basic_memory_bitmaps(void)
742 {
743         struct memory_bitmap *bm1, *bm2;
744         int error = 0;
745
746         BUG_ON(forbidden_pages_map || free_pages_map);
747
748         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
749         if (!bm1)
750                 return -ENOMEM;
751
752         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
753         if (error)
754                 goto Free_first_object;
755
756         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
757         if (!bm2)
758                 goto Free_first_bitmap;
759
760         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
761         if (error)
762                 goto Free_second_object;
763
764         forbidden_pages_map = bm1;
765         free_pages_map = bm2;
766         mark_nosave_pages(forbidden_pages_map);
767
768         pr_debug("PM: Basic memory bitmaps created\n");
769
770         return 0;
771
772  Free_second_object:
773         kfree(bm2);
774  Free_first_bitmap:
775         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
776  Free_first_object:
777         kfree(bm1);
778         return -ENOMEM;
779 }
780
781 /**
782  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
783  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
784  *      so that the bitmaps themselves are not referred to while they are being
785  *      freed.
786  */
787
788 void free_basic_memory_bitmaps(void)
789 {
790         struct memory_bitmap *bm1, *bm2;
791
792         BUG_ON(!(forbidden_pages_map && free_pages_map));
793
794         bm1 = forbidden_pages_map;
795         bm2 = free_pages_map;
796         forbidden_pages_map = NULL;
797         free_pages_map = NULL;
798         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
799         kfree(bm1);
800         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
801         kfree(bm2);
802
803         pr_debug("PM: Basic memory bitmaps freed\n");
804 }
805
806 /**
807  *      snapshot_additional_pages - estimate the number of additional pages
808  *      be needed for setting up the suspend image data structures for given
809  *      zone (usually the returned value is greater than the exact number)
810  */
811
812 unsigned int snapshot_additional_pages(struct zone *zone)
813 {
814         unsigned int res;
815
816         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
817         res += DIV_ROUND_UP(res * sizeof(struct bm_block),
818                             LINKED_PAGE_DATA_SIZE);
819         return 2 * res;
820 }
821
822 #ifdef CONFIG_HIGHMEM
823 /**
824  *      count_free_highmem_pages - compute the total number of free highmem
825  *      pages, system-wide.
826  */
827
828 static unsigned int count_free_highmem_pages(void)
829 {
830         struct zone *zone;
831         unsigned int cnt = 0;
832
833         for_each_populated_zone(zone)
834                 if (is_highmem(zone))
835                         cnt += zone_page_state(zone, NR_FREE_PAGES);
836
837         return cnt;
838 }
839
840 /**
841  *      saveable_highmem_page - Determine whether a highmem page should be
842  *      included in the suspend image.
843  *
844  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
845  *      and it isn't a part of a free chunk of pages.
846  */
847 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
848 {
849         struct page *page;
850
851         if (!pfn_valid(pfn))
852                 return NULL;
853
854         page = pfn_to_page(pfn);
855         if (page_zone(page) != zone)
856                 return NULL;
857
858         BUG_ON(!PageHighMem(page));
859
860         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
861             PageReserved(page))
862                 return NULL;
863
864         if (page_is_guard(page))
865                 return NULL;
866
867         return page;
868 }
869
870 /**
871  *      count_highmem_pages - compute the total number of saveable highmem
872  *      pages.
873  */
874
875 static unsigned int count_highmem_pages(void)
876 {
877         struct zone *zone;
878         unsigned int n = 0;
879
880         for_each_populated_zone(zone) {
881                 unsigned long pfn, max_zone_pfn;
882
883                 if (!is_highmem(zone))
884                         continue;
885
886                 mark_free_pages(zone);
887                 max_zone_pfn = zone_end_pfn(zone);
888                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
889                         if (saveable_highmem_page(zone, pfn))
890                                 n++;
891         }
892         return n;
893 }
894 #else
895 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
896 {
897         return NULL;
898 }
899 #endif /* CONFIG_HIGHMEM */
900
901 /**
902  *      saveable_page - Determine whether a non-highmem page should be included
903  *      in the suspend image.
904  *
905  *      We should save the page if it isn't Nosave, and is not in the range
906  *      of pages statically defined as 'unsaveable', and it isn't a part of
907  *      a free chunk of pages.
908  */
909 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
910 {
911         struct page *page;
912
913         if (!pfn_valid(pfn))
914                 return NULL;
915
916         page = pfn_to_page(pfn);
917         if (page_zone(page) != zone)
918                 return NULL;
919
920         BUG_ON(PageHighMem(page));
921
922         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
923                 return NULL;
924
925         if (PageReserved(page)
926             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
927                 return NULL;
928
929         if (page_is_guard(page))
930                 return NULL;
931
932         return page;
933 }
934
935 /**
936  *      count_data_pages - compute the total number of saveable non-highmem
937  *      pages.
938  */
939
940 static unsigned int count_data_pages(void)
941 {
942         struct zone *zone;
943         unsigned long pfn, max_zone_pfn;
944         unsigned int n = 0;
945
946         for_each_populated_zone(zone) {
947                 if (is_highmem(zone))
948                         continue;
949
950                 mark_free_pages(zone);
951                 max_zone_pfn = zone_end_pfn(zone);
952                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
953                         if (saveable_page(zone, pfn))
954                                 n++;
955         }
956         return n;
957 }
958
959 /* This is needed, because copy_page and memcpy are not usable for copying
960  * task structs.
961  */
962 static inline void do_copy_page(long *dst, long *src)
963 {
964         int n;
965
966         for (n = PAGE_SIZE / sizeof(long); n; n--)
967                 *dst++ = *src++;
968 }
969
970
971 /**
972  *      safe_copy_page - check if the page we are going to copy is marked as
973  *              present in the kernel page tables (this always is the case if
974  *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
975  *              kernel_page_present() always returns 'true').
976  */
977 static void safe_copy_page(void *dst, struct page *s_page)
978 {
979         if (kernel_page_present(s_page)) {
980                 do_copy_page(dst, page_address(s_page));
981         } else {
982                 kernel_map_pages(s_page, 1, 1);
983                 do_copy_page(dst, page_address(s_page));
984                 kernel_map_pages(s_page, 1, 0);
985         }
986 }
987
988
989 #ifdef CONFIG_HIGHMEM
990 static inline struct page *
991 page_is_saveable(struct zone *zone, unsigned long pfn)
992 {
993         return is_highmem(zone) ?
994                 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
995 }
996
997 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
998 {
999         struct page *s_page, *d_page;
1000         void *src, *dst;
1001
1002         s_page = pfn_to_page(src_pfn);
1003         d_page = pfn_to_page(dst_pfn);
1004         if (PageHighMem(s_page)) {
1005                 src = kmap_atomic(s_page);
1006                 dst = kmap_atomic(d_page);
1007                 do_copy_page(dst, src);
1008                 kunmap_atomic(dst);
1009                 kunmap_atomic(src);
1010         } else {
1011                 if (PageHighMem(d_page)) {
1012                         /* Page pointed to by src may contain some kernel
1013                          * data modified by kmap_atomic()
1014                          */
1015                         safe_copy_page(buffer, s_page);
1016                         dst = kmap_atomic(d_page);
1017                         copy_page(dst, buffer);
1018                         kunmap_atomic(dst);
1019                 } else {
1020                         safe_copy_page(page_address(d_page), s_page);
1021                 }
1022         }
1023 }
1024 #else
1025 #define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1026
1027 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1028 {
1029         safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1030                                 pfn_to_page(src_pfn));
1031 }
1032 #endif /* CONFIG_HIGHMEM */
1033
1034 static void
1035 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1036 {
1037         struct zone *zone;
1038         unsigned long pfn;
1039
1040         for_each_populated_zone(zone) {
1041                 unsigned long max_zone_pfn;
1042
1043                 mark_free_pages(zone);
1044                 max_zone_pfn = zone_end_pfn(zone);
1045                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1046                         if (page_is_saveable(zone, pfn))
1047                                 memory_bm_set_bit(orig_bm, pfn);
1048         }
1049         memory_bm_position_reset(orig_bm);
1050         memory_bm_position_reset(copy_bm);
1051         for(;;) {
1052                 pfn = memory_bm_next_pfn(orig_bm);
1053                 if (unlikely(pfn == BM_END_OF_MAP))
1054                         break;
1055                 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1056         }
1057 }
1058
1059 /* Total number of image pages */
1060 static unsigned int nr_copy_pages;
1061 /* Number of pages needed for saving the original pfns of the image pages */
1062 static unsigned int nr_meta_pages;
1063 /*
1064  * Numbers of normal and highmem page frames allocated for hibernation image
1065  * before suspending devices.
1066  */
1067 unsigned int alloc_normal, alloc_highmem;
1068 /*
1069  * Memory bitmap used for marking saveable pages (during hibernation) or
1070  * hibernation image pages (during restore)
1071  */
1072 static struct memory_bitmap orig_bm;
1073 /*
1074  * Memory bitmap used during hibernation for marking allocated page frames that
1075  * will contain copies of saveable pages.  During restore it is initially used
1076  * for marking hibernation image pages, but then the set bits from it are
1077  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1078  * used for marking "safe" highmem pages, but it has to be reinitialized for
1079  * this purpose.
1080  */
1081 static struct memory_bitmap copy_bm;
1082
1083 /**
1084  *      swsusp_free - free pages allocated for the suspend.
1085  *
1086  *      Suspend pages are alocated before the atomic copy is made, so we
1087  *      need to release them after the resume.
1088  */
1089
1090 void swsusp_free(void)
1091 {
1092         struct zone *zone;
1093         unsigned long pfn, max_zone_pfn;
1094
1095         for_each_populated_zone(zone) {
1096                 max_zone_pfn = zone_end_pfn(zone);
1097                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1098                         if (pfn_valid(pfn)) {
1099                                 struct page *page = pfn_to_page(pfn);
1100
1101                                 if (swsusp_page_is_forbidden(page) &&
1102                                     swsusp_page_is_free(page)) {
1103                                         swsusp_unset_page_forbidden(page);
1104                                         swsusp_unset_page_free(page);
1105                                         __free_page(page);
1106                                 }
1107                         }
1108         }
1109         nr_copy_pages = 0;
1110         nr_meta_pages = 0;
1111         restore_pblist = NULL;
1112         buffer = NULL;
1113         alloc_normal = 0;
1114         alloc_highmem = 0;
1115 }
1116
1117 /* Helper functions used for the shrinking of memory. */
1118
1119 #define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1120
1121 /**
1122  * preallocate_image_pages - Allocate a number of pages for hibernation image
1123  * @nr_pages: Number of page frames to allocate.
1124  * @mask: GFP flags to use for the allocation.
1125  *
1126  * Return value: Number of page frames actually allocated
1127  */
1128 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1129 {
1130         unsigned long nr_alloc = 0;
1131
1132         while (nr_pages > 0) {
1133                 struct page *page;
1134
1135                 page = alloc_image_page(mask);
1136                 if (!page)
1137                         break;
1138                 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1139                 if (PageHighMem(page))
1140                         alloc_highmem++;
1141                 else
1142                         alloc_normal++;
1143                 nr_pages--;
1144                 nr_alloc++;
1145         }
1146
1147         return nr_alloc;
1148 }
1149
1150 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1151                                               unsigned long avail_normal)
1152 {
1153         unsigned long alloc;
1154
1155         if (avail_normal <= alloc_normal)
1156                 return 0;
1157
1158         alloc = avail_normal - alloc_normal;
1159         if (nr_pages < alloc)
1160                 alloc = nr_pages;
1161
1162         return preallocate_image_pages(alloc, GFP_IMAGE);
1163 }
1164
1165 #ifdef CONFIG_HIGHMEM
1166 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1167 {
1168         return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1169 }
1170
1171 /**
1172  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1173  */
1174 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1175 {
1176         x *= multiplier;
1177         do_div(x, base);
1178         return (unsigned long)x;
1179 }
1180
1181 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1182                                                 unsigned long highmem,
1183                                                 unsigned long total)
1184 {
1185         unsigned long alloc = __fraction(nr_pages, highmem, total);
1186
1187         return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1188 }
1189 #else /* CONFIG_HIGHMEM */
1190 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1191 {
1192         return 0;
1193 }
1194
1195 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1196                                                 unsigned long highmem,
1197                                                 unsigned long total)
1198 {
1199         return 0;
1200 }
1201 #endif /* CONFIG_HIGHMEM */
1202
1203 /**
1204  * free_unnecessary_pages - Release preallocated pages not needed for the image
1205  */
1206 static void free_unnecessary_pages(void)
1207 {
1208         unsigned long save, to_free_normal, to_free_highmem;
1209
1210         save = count_data_pages();
1211         if (alloc_normal >= save) {
1212                 to_free_normal = alloc_normal - save;
1213                 save = 0;
1214         } else {
1215                 to_free_normal = 0;
1216                 save -= alloc_normal;
1217         }
1218         save += count_highmem_pages();
1219         if (alloc_highmem >= save) {
1220                 to_free_highmem = alloc_highmem - save;
1221         } else {
1222                 to_free_highmem = 0;
1223                 save -= alloc_highmem;
1224                 if (to_free_normal > save)
1225                         to_free_normal -= save;
1226                 else
1227                         to_free_normal = 0;
1228         }
1229
1230         memory_bm_position_reset(&copy_bm);
1231
1232         while (to_free_normal > 0 || to_free_highmem > 0) {
1233                 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1234                 struct page *page = pfn_to_page(pfn);
1235
1236                 if (PageHighMem(page)) {
1237                         if (!to_free_highmem)
1238                                 continue;
1239                         to_free_highmem--;
1240                         alloc_highmem--;
1241                 } else {
1242                         if (!to_free_normal)
1243                                 continue;
1244                         to_free_normal--;
1245                         alloc_normal--;
1246                 }
1247                 memory_bm_clear_bit(&copy_bm, pfn);
1248                 swsusp_unset_page_forbidden(page);
1249                 swsusp_unset_page_free(page);
1250                 __free_page(page);
1251         }
1252 }
1253
1254 /**
1255  * minimum_image_size - Estimate the minimum acceptable size of an image
1256  * @saveable: Number of saveable pages in the system.
1257  *
1258  * We want to avoid attempting to free too much memory too hard, so estimate the
1259  * minimum acceptable size of a hibernation image to use as the lower limit for
1260  * preallocating memory.
1261  *
1262  * We assume that the minimum image size should be proportional to
1263  *
1264  * [number of saveable pages] - [number of pages that can be freed in theory]
1265  *
1266  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1267  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1268  * minus mapped file pages.
1269  */
1270 static unsigned long minimum_image_size(unsigned long saveable)
1271 {
1272         unsigned long size;
1273
1274         size = global_page_state(NR_SLAB_RECLAIMABLE)
1275                 + global_page_state(NR_ACTIVE_ANON)
1276                 + global_page_state(NR_INACTIVE_ANON)
1277                 + global_page_state(NR_ACTIVE_FILE)
1278                 + global_page_state(NR_INACTIVE_FILE)
1279                 - global_page_state(NR_FILE_MAPPED);
1280
1281         return saveable <= size ? 0 : saveable - size;
1282 }
1283
1284 /**
1285  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1286  *
1287  * To create a hibernation image it is necessary to make a copy of every page
1288  * frame in use.  We also need a number of page frames to be free during
1289  * hibernation for allocations made while saving the image and for device
1290  * drivers, in case they need to allocate memory from their hibernation
1291  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1292  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1293  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1294  * total number of available page frames and allocate at least
1295  *
1296  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1297  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1298  *
1299  * of them, which corresponds to the maximum size of a hibernation image.
1300  *
1301  * If image_size is set below the number following from the above formula,
1302  * the preallocation of memory is continued until the total number of saveable
1303  * pages in the system is below the requested image size or the minimum
1304  * acceptable image size returned by minimum_image_size(), whichever is greater.
1305  */
1306 int hibernate_preallocate_memory(void)
1307 {
1308         struct zone *zone;
1309         unsigned long saveable, size, max_size, count, highmem, pages = 0;
1310         unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1311         struct timeval start, stop;
1312         int error;
1313
1314         printk(KERN_INFO "PM: Preallocating image memory... ");
1315         do_gettimeofday(&start);
1316
1317         error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1318         if (error)
1319                 goto err_out;
1320
1321         error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1322         if (error)
1323                 goto err_out;
1324
1325         alloc_normal = 0;
1326         alloc_highmem = 0;
1327
1328         /* Count the number of saveable data pages. */
1329         save_highmem = count_highmem_pages();
1330         saveable = count_data_pages();
1331
1332         /*
1333          * Compute the total number of page frames we can use (count) and the
1334          * number of pages needed for image metadata (size).
1335          */
1336         count = saveable;
1337         saveable += save_highmem;
1338         highmem = save_highmem;
1339         size = 0;
1340         for_each_populated_zone(zone) {
1341                 size += snapshot_additional_pages(zone);
1342                 if (is_highmem(zone))
1343                         highmem += zone_page_state(zone, NR_FREE_PAGES);
1344                 else
1345                         count += zone_page_state(zone, NR_FREE_PAGES);
1346         }
1347         avail_normal = count;
1348         count += highmem;
1349         count -= totalreserve_pages;
1350
1351         /* Add number of pages required for page keys (s390 only). */
1352         size += page_key_additional_pages(saveable);
1353
1354         /* Compute the maximum number of saveable pages to leave in memory. */
1355         max_size = (count - (size + PAGES_FOR_IO)) / 2
1356                         - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1357         /* Compute the desired number of image pages specified by image_size. */
1358         size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1359         if (size > max_size)
1360                 size = max_size;
1361         /*
1362          * If the desired number of image pages is at least as large as the
1363          * current number of saveable pages in memory, allocate page frames for
1364          * the image and we're done.
1365          */
1366         if (size >= saveable) {
1367                 pages = preallocate_image_highmem(save_highmem);
1368                 pages += preallocate_image_memory(saveable - pages, avail_normal);
1369                 goto out;
1370         }
1371
1372         /* Estimate the minimum size of the image. */
1373         pages = minimum_image_size(saveable);
1374         /*
1375          * To avoid excessive pressure on the normal zone, leave room in it to
1376          * accommodate an image of the minimum size (unless it's already too
1377          * small, in which case don't preallocate pages from it at all).
1378          */
1379         if (avail_normal > pages)
1380                 avail_normal -= pages;
1381         else
1382                 avail_normal = 0;
1383         if (size < pages)
1384                 size = min_t(unsigned long, pages, max_size);
1385
1386         /*
1387          * Let the memory management subsystem know that we're going to need a
1388          * large number of page frames to allocate and make it free some memory.
1389          * NOTE: If this is not done, performance will be hurt badly in some
1390          * test cases.
1391          */
1392         shrink_all_memory(saveable - size);
1393
1394         /*
1395          * The number of saveable pages in memory was too high, so apply some
1396          * pressure to decrease it.  First, make room for the largest possible
1397          * image and fail if that doesn't work.  Next, try to decrease the size
1398          * of the image as much as indicated by 'size' using allocations from
1399          * highmem and non-highmem zones separately.
1400          */
1401         pages_highmem = preallocate_image_highmem(highmem / 2);
1402         alloc = (count - max_size) - pages_highmem;
1403         pages = preallocate_image_memory(alloc, avail_normal);
1404         if (pages < alloc) {
1405                 /* We have exhausted non-highmem pages, try highmem. */
1406                 alloc -= pages;
1407                 pages += pages_highmem;
1408                 pages_highmem = preallocate_image_highmem(alloc);
1409                 if (pages_highmem < alloc)
1410                         goto err_out;
1411                 pages += pages_highmem;
1412                 /*
1413                  * size is the desired number of saveable pages to leave in
1414                  * memory, so try to preallocate (all memory - size) pages.
1415                  */
1416                 alloc = (count - pages) - size;
1417                 pages += preallocate_image_highmem(alloc);
1418         } else {
1419                 /*
1420                  * There are approximately max_size saveable pages at this point
1421                  * and we want to reduce this number down to size.
1422                  */
1423                 alloc = max_size - size;
1424                 size = preallocate_highmem_fraction(alloc, highmem, count);
1425                 pages_highmem += size;
1426                 alloc -= size;
1427                 size = preallocate_image_memory(alloc, avail_normal);
1428                 pages_highmem += preallocate_image_highmem(alloc - size);
1429                 pages += pages_highmem + size;
1430         }
1431
1432         /*
1433          * We only need as many page frames for the image as there are saveable
1434          * pages in memory, but we have allocated more.  Release the excessive
1435          * ones now.
1436          */
1437         free_unnecessary_pages();
1438
1439  out:
1440         do_gettimeofday(&stop);
1441         printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1442         swsusp_show_speed(&start, &stop, pages, "Allocated");
1443
1444         return 0;
1445
1446  err_out:
1447         printk(KERN_CONT "\n");
1448         swsusp_free();
1449         return -ENOMEM;
1450 }
1451
1452 #ifdef CONFIG_HIGHMEM
1453 /**
1454   *     count_pages_for_highmem - compute the number of non-highmem pages
1455   *     that will be necessary for creating copies of highmem pages.
1456   */
1457
1458 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1459 {
1460         unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1461
1462         if (free_highmem >= nr_highmem)
1463                 nr_highmem = 0;
1464         else
1465                 nr_highmem -= free_highmem;
1466
1467         return nr_highmem;
1468 }
1469 #else
1470 static unsigned int
1471 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1472 #endif /* CONFIG_HIGHMEM */
1473
1474 /**
1475  *      enough_free_mem - Make sure we have enough free memory for the
1476  *      snapshot image.
1477  */
1478
1479 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1480 {
1481         struct zone *zone;
1482         unsigned int free = alloc_normal;
1483
1484         for_each_populated_zone(zone)
1485                 if (!is_highmem(zone))
1486                         free += zone_page_state(zone, NR_FREE_PAGES);
1487
1488         nr_pages += count_pages_for_highmem(nr_highmem);
1489         pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1490                 nr_pages, PAGES_FOR_IO, free);
1491
1492         return free > nr_pages + PAGES_FOR_IO;
1493 }
1494
1495 #ifdef CONFIG_HIGHMEM
1496 /**
1497  *      get_highmem_buffer - if there are some highmem pages in the suspend
1498  *      image, we may need the buffer to copy them and/or load their data.
1499  */
1500
1501 static inline int get_highmem_buffer(int safe_needed)
1502 {
1503         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1504         return buffer ? 0 : -ENOMEM;
1505 }
1506
1507 /**
1508  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1509  *      Try to allocate as many pages as needed, but if the number of free
1510  *      highmem pages is lesser than that, allocate them all.
1511  */
1512
1513 static inline unsigned int
1514 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1515 {
1516         unsigned int to_alloc = count_free_highmem_pages();
1517
1518         if (to_alloc > nr_highmem)
1519                 to_alloc = nr_highmem;
1520
1521         nr_highmem -= to_alloc;
1522         while (to_alloc-- > 0) {
1523                 struct page *page;
1524
1525                 page = alloc_image_page(__GFP_HIGHMEM);
1526                 memory_bm_set_bit(bm, page_to_pfn(page));
1527         }
1528         return nr_highmem;
1529 }
1530 #else
1531 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1532
1533 static inline unsigned int
1534 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1535 #endif /* CONFIG_HIGHMEM */
1536
1537 /**
1538  *      swsusp_alloc - allocate memory for the suspend image
1539  *
1540  *      We first try to allocate as many highmem pages as there are
1541  *      saveable highmem pages in the system.  If that fails, we allocate
1542  *      non-highmem pages for the copies of the remaining highmem ones.
1543  *
1544  *      In this approach it is likely that the copies of highmem pages will
1545  *      also be located in the high memory, because of the way in which
1546  *      copy_data_pages() works.
1547  */
1548
1549 static int
1550 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1551                 unsigned int nr_pages, unsigned int nr_highmem)
1552 {
1553         if (nr_highmem > 0) {
1554                 if (get_highmem_buffer(PG_ANY))
1555                         goto err_out;
1556                 if (nr_highmem > alloc_highmem) {
1557                         nr_highmem -= alloc_highmem;
1558                         nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1559                 }
1560         }
1561         if (nr_pages > alloc_normal) {
1562                 nr_pages -= alloc_normal;
1563                 while (nr_pages-- > 0) {
1564                         struct page *page;
1565
1566                         page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1567                         if (!page)
1568                                 goto err_out;
1569                         memory_bm_set_bit(copy_bm, page_to_pfn(page));
1570                 }
1571         }
1572
1573         return 0;
1574
1575  err_out:
1576         swsusp_free();
1577         return -ENOMEM;
1578 }
1579
1580 asmlinkage int swsusp_save(void)
1581 {
1582         unsigned int nr_pages, nr_highmem;
1583
1584         printk(KERN_INFO "PM: Creating hibernation image:\n");
1585
1586         drain_local_pages(NULL);
1587         nr_pages = count_data_pages();
1588         nr_highmem = count_highmem_pages();
1589         printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1590
1591         if (!enough_free_mem(nr_pages, nr_highmem)) {
1592                 printk(KERN_ERR "PM: Not enough free memory\n");
1593                 return -ENOMEM;
1594         }
1595
1596         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1597                 printk(KERN_ERR "PM: Memory allocation failed\n");
1598                 return -ENOMEM;
1599         }
1600
1601         /* During allocating of suspend pagedir, new cold pages may appear.
1602          * Kill them.
1603          */
1604         drain_local_pages(NULL);
1605         copy_data_pages(&copy_bm, &orig_bm);
1606
1607         /*
1608          * End of critical section. From now on, we can write to memory,
1609          * but we should not touch disk. This specially means we must _not_
1610          * touch swap space! Except we must write out our image of course.
1611          */
1612
1613         nr_pages += nr_highmem;
1614         nr_copy_pages = nr_pages;
1615         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1616
1617         printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1618                 nr_pages);
1619
1620         return 0;
1621 }
1622
1623 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1624 static int init_header_complete(struct swsusp_info *info)
1625 {
1626         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1627         info->version_code = LINUX_VERSION_CODE;
1628         return 0;
1629 }
1630
1631 static char *check_image_kernel(struct swsusp_info *info)
1632 {
1633         if (info->version_code != LINUX_VERSION_CODE)
1634                 return "kernel version";
1635         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1636                 return "system type";
1637         if (strcmp(info->uts.release,init_utsname()->release))
1638                 return "kernel release";
1639         if (strcmp(info->uts.version,init_utsname()->version))
1640                 return "version";
1641         if (strcmp(info->uts.machine,init_utsname()->machine))
1642                 return "machine";
1643         return NULL;
1644 }
1645 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1646
1647 unsigned long snapshot_get_image_size(void)
1648 {
1649         return nr_copy_pages + nr_meta_pages + 1;
1650 }
1651
1652 static int init_header(struct swsusp_info *info)
1653 {
1654         memset(info, 0, sizeof(struct swsusp_info));
1655         info->num_physpages = get_num_physpages();
1656         info->image_pages = nr_copy_pages;
1657         info->pages = snapshot_get_image_size();
1658         info->size = info->pages;
1659         info->size <<= PAGE_SHIFT;
1660         return init_header_complete(info);
1661 }
1662
1663 /**
1664  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1665  *      are stored in the array @buf[] (1 page at a time)
1666  */
1667
1668 static inline void
1669 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1670 {
1671         int j;
1672
1673         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1674                 buf[j] = memory_bm_next_pfn(bm);
1675                 if (unlikely(buf[j] == BM_END_OF_MAP))
1676                         break;
1677                 /* Save page key for data page (s390 only). */
1678                 page_key_read(buf + j);
1679         }
1680 }
1681
1682 /**
1683  *      snapshot_read_next - used for reading the system memory snapshot.
1684  *
1685  *      On the first call to it @handle should point to a zeroed
1686  *      snapshot_handle structure.  The structure gets updated and a pointer
1687  *      to it should be passed to this function every next time.
1688  *
1689  *      On success the function returns a positive number.  Then, the caller
1690  *      is allowed to read up to the returned number of bytes from the memory
1691  *      location computed by the data_of() macro.
1692  *
1693  *      The function returns 0 to indicate the end of data stream condition,
1694  *      and a negative number is returned on error.  In such cases the
1695  *      structure pointed to by @handle is not updated and should not be used
1696  *      any more.
1697  */
1698
1699 int snapshot_read_next(struct snapshot_handle *handle)
1700 {
1701         if (handle->cur > nr_meta_pages + nr_copy_pages)
1702                 return 0;
1703
1704         if (!buffer) {
1705                 /* This makes the buffer be freed by swsusp_free() */
1706                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1707                 if (!buffer)
1708                         return -ENOMEM;
1709         }
1710         if (!handle->cur) {
1711                 int error;
1712
1713                 error = init_header((struct swsusp_info *)buffer);
1714                 if (error)
1715                         return error;
1716                 handle->buffer = buffer;
1717                 memory_bm_position_reset(&orig_bm);
1718                 memory_bm_position_reset(&copy_bm);
1719         } else if (handle->cur <= nr_meta_pages) {
1720                 clear_page(buffer);
1721                 pack_pfns(buffer, &orig_bm);
1722         } else {
1723                 struct page *page;
1724
1725                 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1726                 if (PageHighMem(page)) {
1727                         /* Highmem pages are copied to the buffer,
1728                          * because we can't return with a kmapped
1729                          * highmem page (we may not be called again).
1730                          */
1731                         void *kaddr;
1732
1733                         kaddr = kmap_atomic(page);
1734                         copy_page(buffer, kaddr);
1735                         kunmap_atomic(kaddr);
1736                         handle->buffer = buffer;
1737                 } else {
1738                         handle->buffer = page_address(page);
1739                 }
1740         }
1741         handle->cur++;
1742         return PAGE_SIZE;
1743 }
1744
1745 /**
1746  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1747  *      the image during resume, because they conflict with the pages that
1748  *      had been used before suspend
1749  */
1750
1751 static int mark_unsafe_pages(struct memory_bitmap *bm)
1752 {
1753         struct zone *zone;
1754         unsigned long pfn, max_zone_pfn;
1755
1756         /* Clear page flags */
1757         for_each_populated_zone(zone) {
1758                 max_zone_pfn = zone_end_pfn(zone);
1759                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1760                         if (pfn_valid(pfn))
1761                                 swsusp_unset_page_free(pfn_to_page(pfn));
1762         }
1763
1764         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1765         memory_bm_position_reset(bm);
1766         do {
1767                 pfn = memory_bm_next_pfn(bm);
1768                 if (likely(pfn != BM_END_OF_MAP)) {
1769                         if (likely(pfn_valid(pfn)))
1770                                 swsusp_set_page_free(pfn_to_page(pfn));
1771                         else
1772                                 return -EFAULT;
1773                 }
1774         } while (pfn != BM_END_OF_MAP);
1775
1776         allocated_unsafe_pages = 0;
1777
1778         return 0;
1779 }
1780
1781 static void
1782 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1783 {
1784         unsigned long pfn;
1785
1786         memory_bm_position_reset(src);
1787         pfn = memory_bm_next_pfn(src);
1788         while (pfn != BM_END_OF_MAP) {
1789                 memory_bm_set_bit(dst, pfn);
1790                 pfn = memory_bm_next_pfn(src);
1791         }
1792 }
1793
1794 static int check_header(struct swsusp_info *info)
1795 {
1796         char *reason;
1797
1798         reason = check_image_kernel(info);
1799         if (!reason && info->num_physpages != get_num_physpages())
1800                 reason = "memory size";
1801         if (reason) {
1802                 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1803                 return -EPERM;
1804         }
1805         return 0;
1806 }
1807
1808 /**
1809  *      load header - check the image header and copy data from it
1810  */
1811
1812 static int
1813 load_header(struct swsusp_info *info)
1814 {
1815         int error;
1816
1817         restore_pblist = NULL;
1818         error = check_header(info);
1819         if (!error) {
1820                 nr_copy_pages = info->image_pages;
1821                 nr_meta_pages = info->pages - info->image_pages - 1;
1822         }
1823         return error;
1824 }
1825
1826 /**
1827  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1828  *      the corresponding bit in the memory bitmap @bm
1829  */
1830 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1831 {
1832         int j;
1833
1834         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1835                 if (unlikely(buf[j] == BM_END_OF_MAP))
1836                         break;
1837
1838                 /* Extract and buffer page key for data page (s390 only). */
1839                 page_key_memorize(buf + j);
1840
1841                 if (memory_bm_pfn_present(bm, buf[j]))
1842                         memory_bm_set_bit(bm, buf[j]);
1843                 else
1844                         return -EFAULT;
1845         }
1846
1847         return 0;
1848 }
1849
1850 /* List of "safe" pages that may be used to store data loaded from the suspend
1851  * image
1852  */
1853 static struct linked_page *safe_pages_list;
1854
1855 #ifdef CONFIG_HIGHMEM
1856 /* struct highmem_pbe is used for creating the list of highmem pages that
1857  * should be restored atomically during the resume from disk, because the page
1858  * frames they have occupied before the suspend are in use.
1859  */
1860 struct highmem_pbe {
1861         struct page *copy_page; /* data is here now */
1862         struct page *orig_page; /* data was here before the suspend */
1863         struct highmem_pbe *next;
1864 };
1865
1866 /* List of highmem PBEs needed for restoring the highmem pages that were
1867  * allocated before the suspend and included in the suspend image, but have
1868  * also been allocated by the "resume" kernel, so their contents cannot be
1869  * written directly to their "original" page frames.
1870  */
1871 static struct highmem_pbe *highmem_pblist;
1872
1873 /**
1874  *      count_highmem_image_pages - compute the number of highmem pages in the
1875  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1876  *      image pages are assumed to be set.
1877  */
1878
1879 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1880 {
1881         unsigned long pfn;
1882         unsigned int cnt = 0;
1883
1884         memory_bm_position_reset(bm);
1885         pfn = memory_bm_next_pfn(bm);
1886         while (pfn != BM_END_OF_MAP) {
1887                 if (PageHighMem(pfn_to_page(pfn)))
1888                         cnt++;
1889
1890                 pfn = memory_bm_next_pfn(bm);
1891         }
1892         return cnt;
1893 }
1894
1895 /**
1896  *      prepare_highmem_image - try to allocate as many highmem pages as
1897  *      there are highmem image pages (@nr_highmem_p points to the variable
1898  *      containing the number of highmem image pages).  The pages that are
1899  *      "safe" (ie. will not be overwritten when the suspend image is
1900  *      restored) have the corresponding bits set in @bm (it must be
1901  *      unitialized).
1902  *
1903  *      NOTE: This function should not be called if there are no highmem
1904  *      image pages.
1905  */
1906
1907 static unsigned int safe_highmem_pages;
1908
1909 static struct memory_bitmap *safe_highmem_bm;
1910
1911 static int
1912 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1913 {
1914         unsigned int to_alloc;
1915
1916         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1917                 return -ENOMEM;
1918
1919         if (get_highmem_buffer(PG_SAFE))
1920                 return -ENOMEM;
1921
1922         to_alloc = count_free_highmem_pages();
1923         if (to_alloc > *nr_highmem_p)
1924                 to_alloc = *nr_highmem_p;
1925         else
1926                 *nr_highmem_p = to_alloc;
1927
1928         safe_highmem_pages = 0;
1929         while (to_alloc-- > 0) {
1930                 struct page *page;
1931
1932                 page = alloc_page(__GFP_HIGHMEM);
1933                 if (!swsusp_page_is_free(page)) {
1934                         /* The page is "safe", set its bit the bitmap */
1935                         memory_bm_set_bit(bm, page_to_pfn(page));
1936                         safe_highmem_pages++;
1937                 }
1938                 /* Mark the page as allocated */
1939                 swsusp_set_page_forbidden(page);
1940                 swsusp_set_page_free(page);
1941         }
1942         memory_bm_position_reset(bm);
1943         safe_highmem_bm = bm;
1944         return 0;
1945 }
1946
1947 /**
1948  *      get_highmem_page_buffer - for given highmem image page find the buffer
1949  *      that suspend_write_next() should set for its caller to write to.
1950  *
1951  *      If the page is to be saved to its "original" page frame or a copy of
1952  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1953  *      the copy of the page is to be made in normal memory, so the address of
1954  *      the copy is returned.
1955  *
1956  *      If @buffer is returned, the caller of suspend_write_next() will write
1957  *      the page's contents to @buffer, so they will have to be copied to the
1958  *      right location on the next call to suspend_write_next() and it is done
1959  *      with the help of copy_last_highmem_page().  For this purpose, if
1960  *      @buffer is returned, @last_highmem page is set to the page to which
1961  *      the data will have to be copied from @buffer.
1962  */
1963
1964 static struct page *last_highmem_page;
1965
1966 static void *
1967 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1968 {
1969         struct highmem_pbe *pbe;
1970         void *kaddr;
1971
1972         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1973                 /* We have allocated the "original" page frame and we can
1974                  * use it directly to store the loaded page.
1975                  */
1976                 last_highmem_page = page;
1977                 return buffer;
1978         }
1979         /* The "original" page frame has not been allocated and we have to
1980          * use a "safe" page frame to store the loaded page.
1981          */
1982         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1983         if (!pbe) {
1984                 swsusp_free();
1985                 return ERR_PTR(-ENOMEM);
1986         }
1987         pbe->orig_page = page;
1988         if (safe_highmem_pages > 0) {
1989                 struct page *tmp;
1990
1991                 /* Copy of the page will be stored in high memory */
1992                 kaddr = buffer;
1993                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1994                 safe_highmem_pages--;
1995                 last_highmem_page = tmp;
1996                 pbe->copy_page = tmp;
1997         } else {
1998                 /* Copy of the page will be stored in normal memory */
1999                 kaddr = safe_pages_list;
2000                 safe_pages_list = safe_pages_list->next;
2001                 pbe->copy_page = virt_to_page(kaddr);
2002         }
2003         pbe->next = highmem_pblist;
2004         highmem_pblist = pbe;
2005         return kaddr;
2006 }
2007
2008 /**
2009  *      copy_last_highmem_page - copy the contents of a highmem image from
2010  *      @buffer, where the caller of snapshot_write_next() has place them,
2011  *      to the right location represented by @last_highmem_page .
2012  */
2013
2014 static void copy_last_highmem_page(void)
2015 {
2016         if (last_highmem_page) {
2017                 void *dst;
2018
2019                 dst = kmap_atomic(last_highmem_page);
2020                 copy_page(dst, buffer);
2021                 kunmap_atomic(dst);
2022                 last_highmem_page = NULL;
2023         }
2024 }
2025
2026 static inline int last_highmem_page_copied(void)
2027 {
2028         return !last_highmem_page;
2029 }
2030
2031 static inline void free_highmem_data(void)
2032 {
2033         if (safe_highmem_bm)
2034                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2035
2036         if (buffer)
2037                 free_image_page(buffer, PG_UNSAFE_CLEAR);
2038 }
2039 #else
2040 static inline int get_safe_write_buffer(void) { return 0; }
2041
2042 static unsigned int
2043 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2044
2045 static inline int
2046 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2047 {
2048         return 0;
2049 }
2050
2051 static inline void *
2052 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2053 {
2054         return ERR_PTR(-EINVAL);
2055 }
2056
2057 static inline void copy_last_highmem_page(void) {}
2058 static inline int last_highmem_page_copied(void) { return 1; }
2059 static inline void free_highmem_data(void) {}
2060 #endif /* CONFIG_HIGHMEM */
2061
2062 /**
2063  *      prepare_image - use the memory bitmap @bm to mark the pages that will
2064  *      be overwritten in the process of restoring the system memory state
2065  *      from the suspend image ("unsafe" pages) and allocate memory for the
2066  *      image.
2067  *
2068  *      The idea is to allocate a new memory bitmap first and then allocate
2069  *      as many pages as needed for the image data, but not to assign these
2070  *      pages to specific tasks initially.  Instead, we just mark them as
2071  *      allocated and create a lists of "safe" pages that will be used
2072  *      later.  On systems with high memory a list of "safe" highmem pages is
2073  *      also created.
2074  */
2075
2076 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2077
2078 static int
2079 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2080 {
2081         unsigned int nr_pages, nr_highmem;
2082         struct linked_page *sp_list, *lp;
2083         int error;
2084
2085         /* If there is no highmem, the buffer will not be necessary */
2086         free_image_page(buffer, PG_UNSAFE_CLEAR);
2087         buffer = NULL;
2088
2089         nr_highmem = count_highmem_image_pages(bm);
2090         error = mark_unsafe_pages(bm);
2091         if (error)
2092                 goto Free;
2093
2094         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2095         if (error)
2096                 goto Free;
2097
2098         duplicate_memory_bitmap(new_bm, bm);
2099         memory_bm_free(bm, PG_UNSAFE_KEEP);
2100         if (nr_highmem > 0) {
2101                 error = prepare_highmem_image(bm, &nr_highmem);
2102                 if (error)
2103                         goto Free;
2104         }
2105         /* Reserve some safe pages for potential later use.
2106          *
2107          * NOTE: This way we make sure there will be enough safe pages for the
2108          * chain_alloc() in get_buffer().  It is a bit wasteful, but
2109          * nr_copy_pages cannot be greater than 50% of the memory anyway.
2110          */
2111         sp_list = NULL;
2112         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2113         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2114         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2115         while (nr_pages > 0) {
2116                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2117                 if (!lp) {
2118                         error = -ENOMEM;
2119                         goto Free;
2120                 }
2121                 lp->next = sp_list;
2122                 sp_list = lp;
2123                 nr_pages--;
2124         }
2125         /* Preallocate memory for the image */
2126         safe_pages_list = NULL;
2127         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2128         while (nr_pages > 0) {
2129                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2130                 if (!lp) {
2131                         error = -ENOMEM;
2132                         goto Free;
2133                 }
2134                 if (!swsusp_page_is_free(virt_to_page(lp))) {
2135                         /* The page is "safe", add it to the list */
2136                         lp->next = safe_pages_list;
2137                         safe_pages_list = lp;
2138                 }
2139                 /* Mark the page as allocated */
2140                 swsusp_set_page_forbidden(virt_to_page(lp));
2141                 swsusp_set_page_free(virt_to_page(lp));
2142                 nr_pages--;
2143         }
2144         /* Free the reserved safe pages so that chain_alloc() can use them */
2145         while (sp_list) {
2146                 lp = sp_list->next;
2147                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2148                 sp_list = lp;
2149         }
2150         return 0;
2151
2152  Free:
2153         swsusp_free();
2154         return error;
2155 }
2156
2157 /**
2158  *      get_buffer - compute the address that snapshot_write_next() should
2159  *      set for its caller to write to.
2160  */
2161
2162 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2163 {
2164         struct pbe *pbe;
2165         struct page *page;
2166         unsigned long pfn = memory_bm_next_pfn(bm);
2167
2168         if (pfn == BM_END_OF_MAP)
2169                 return ERR_PTR(-EFAULT);
2170
2171         page = pfn_to_page(pfn);
2172         if (PageHighMem(page))
2173                 return get_highmem_page_buffer(page, ca);
2174
2175         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2176                 /* We have allocated the "original" page frame and we can
2177                  * use it directly to store the loaded page.
2178                  */
2179                 return page_address(page);
2180
2181         /* The "original" page frame has not been allocated and we have to
2182          * use a "safe" page frame to store the loaded page.
2183          */
2184         pbe = chain_alloc(ca, sizeof(struct pbe));
2185         if (!pbe) {
2186                 swsusp_free();
2187                 return ERR_PTR(-ENOMEM);
2188         }
2189         pbe->orig_address = page_address(page);
2190         pbe->address = safe_pages_list;
2191         safe_pages_list = safe_pages_list->next;
2192         pbe->next = restore_pblist;
2193         restore_pblist = pbe;
2194         return pbe->address;
2195 }
2196
2197 /**
2198  *      snapshot_write_next - used for writing the system memory snapshot.
2199  *
2200  *      On the first call to it @handle should point to a zeroed
2201  *      snapshot_handle structure.  The structure gets updated and a pointer
2202  *      to it should be passed to this function every next time.
2203  *
2204  *      On success the function returns a positive number.  Then, the caller
2205  *      is allowed to write up to the returned number of bytes to the memory
2206  *      location computed by the data_of() macro.
2207  *
2208  *      The function returns 0 to indicate the "end of file" condition,
2209  *      and a negative number is returned on error.  In such cases the
2210  *      structure pointed to by @handle is not updated and should not be used
2211  *      any more.
2212  */
2213
2214 int snapshot_write_next(struct snapshot_handle *handle)
2215 {
2216         static struct chain_allocator ca;
2217         int error = 0;
2218
2219         /* Check if we have already loaded the entire image */
2220         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2221                 return 0;
2222
2223         handle->sync_read = 1;
2224
2225         if (!handle->cur) {
2226                 if (!buffer)
2227                         /* This makes the buffer be freed by swsusp_free() */
2228                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2229
2230                 if (!buffer)
2231                         return -ENOMEM;
2232
2233                 handle->buffer = buffer;
2234         } else if (handle->cur == 1) {
2235                 error = load_header(buffer);
2236                 if (error)
2237                         return error;
2238
2239                 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2240                 if (error)
2241                         return error;
2242
2243                 /* Allocate buffer for page keys. */
2244                 error = page_key_alloc(nr_copy_pages);
2245                 if (error)
2246                         return error;
2247
2248         } else if (handle->cur <= nr_meta_pages + 1) {
2249                 error = unpack_orig_pfns(buffer, &copy_bm);
2250                 if (error)
2251                         return error;
2252
2253                 if (handle->cur == nr_meta_pages + 1) {
2254                         error = prepare_image(&orig_bm, &copy_bm);
2255                         if (error)
2256                                 return error;
2257
2258                         chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2259                         memory_bm_position_reset(&orig_bm);
2260                         restore_pblist = NULL;
2261                         handle->buffer = get_buffer(&orig_bm, &ca);
2262                         handle->sync_read = 0;
2263                         if (IS_ERR(handle->buffer))
2264                                 return PTR_ERR(handle->buffer);
2265                 }
2266         } else {
2267                 copy_last_highmem_page();
2268                 /* Restore page key for data page (s390 only). */
2269                 page_key_write(handle->buffer);
2270                 handle->buffer = get_buffer(&orig_bm, &ca);
2271                 if (IS_ERR(handle->buffer))
2272                         return PTR_ERR(handle->buffer);
2273                 if (handle->buffer != buffer)
2274                         handle->sync_read = 0;
2275         }
2276         handle->cur++;
2277         return PAGE_SIZE;
2278 }
2279
2280 /**
2281  *      snapshot_write_finalize - must be called after the last call to
2282  *      snapshot_write_next() in case the last page in the image happens
2283  *      to be a highmem page and its contents should be stored in the
2284  *      highmem.  Additionally, it releases the memory that will not be
2285  *      used any more.
2286  */
2287
2288 void snapshot_write_finalize(struct snapshot_handle *handle)
2289 {
2290         copy_last_highmem_page();
2291         /* Restore page key for data page (s390 only). */
2292         page_key_write(handle->buffer);
2293         page_key_free();
2294         /* Free only if we have loaded the image entirely */
2295         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2296                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2297                 free_highmem_data();
2298         }
2299 }
2300
2301 int snapshot_image_loaded(struct snapshot_handle *handle)
2302 {
2303         return !(!nr_copy_pages || !last_highmem_page_copied() ||
2304                         handle->cur <= nr_meta_pages + nr_copy_pages);
2305 }
2306
2307 #ifdef CONFIG_HIGHMEM
2308 /* Assumes that @buf is ready and points to a "safe" page */
2309 static inline void
2310 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2311 {
2312         void *kaddr1, *kaddr2;
2313
2314         kaddr1 = kmap_atomic(p1);
2315         kaddr2 = kmap_atomic(p2);
2316         copy_page(buf, kaddr1);
2317         copy_page(kaddr1, kaddr2);
2318         copy_page(kaddr2, buf);
2319         kunmap_atomic(kaddr2);
2320         kunmap_atomic(kaddr1);
2321 }
2322
2323 /**
2324  *      restore_highmem - for each highmem page that was allocated before
2325  *      the suspend and included in the suspend image, and also has been
2326  *      allocated by the "resume" kernel swap its current (ie. "before
2327  *      resume") contents with the previous (ie. "before suspend") one.
2328  *
2329  *      If the resume eventually fails, we can call this function once
2330  *      again and restore the "before resume" highmem state.
2331  */
2332
2333 int restore_highmem(void)
2334 {
2335         struct highmem_pbe *pbe = highmem_pblist;
2336         void *buf;
2337
2338         if (!pbe)
2339                 return 0;
2340
2341         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2342         if (!buf)
2343                 return -ENOMEM;
2344
2345         while (pbe) {
2346                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2347                 pbe = pbe->next;
2348         }
2349         free_image_page(buf, PG_UNSAFE_CLEAR);
2350         return 0;
2351 }
2352 #endif /* CONFIG_HIGHMEM */