]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/sched/cputime.c
sched/cpuacct: Add cpuacct_acount_field()
[karo-tx-linux.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8
9
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28
29 void enable_sched_clock_irqtime(void)
30 {
31         sched_clock_irqtime = 1;
32 }
33
34 void disable_sched_clock_irqtime(void)
35 {
36         sched_clock_irqtime = 0;
37 }
38
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42
43 /*
44  * Called before incrementing preempt_count on {soft,}irq_enter
45  * and before decrementing preempt_count on {soft,}irq_exit.
46  */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49         unsigned long flags;
50         s64 delta;
51         int cpu;
52
53         if (!sched_clock_irqtime)
54                 return;
55
56         local_irq_save(flags);
57
58         cpu = smp_processor_id();
59         delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60         __this_cpu_add(irq_start_time, delta);
61
62         irq_time_write_begin();
63         /*
64          * We do not account for softirq time from ksoftirqd here.
65          * We want to continue accounting softirq time to ksoftirqd thread
66          * in that case, so as not to confuse scheduler with a special task
67          * that do not consume any time, but still wants to run.
68          */
69         if (hardirq_count())
70                 __this_cpu_add(cpu_hardirq_time, delta);
71         else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72                 __this_cpu_add(cpu_softirq_time, delta);
73
74         irq_time_write_end();
75         local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79 static int irqtime_account_hi_update(void)
80 {
81         u64 *cpustat = kcpustat_this_cpu->cpustat;
82         unsigned long flags;
83         u64 latest_ns;
84         int ret = 0;
85
86         local_irq_save(flags);
87         latest_ns = this_cpu_read(cpu_hardirq_time);
88         if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89                 ret = 1;
90         local_irq_restore(flags);
91         return ret;
92 }
93
94 static int irqtime_account_si_update(void)
95 {
96         u64 *cpustat = kcpustat_this_cpu->cpustat;
97         unsigned long flags;
98         u64 latest_ns;
99         int ret = 0;
100
101         local_irq_save(flags);
102         latest_ns = this_cpu_read(cpu_softirq_time);
103         if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104                 ret = 1;
105         local_irq_restore(flags);
106         return ret;
107 }
108
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111 #define sched_clock_irqtime     (0)
112
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115 static inline void task_group_account_field(struct task_struct *p, int index,
116                                             u64 tmp)
117 {
118         /*
119          * Since all updates are sure to touch the root cgroup, we
120          * get ourselves ahead and touch it first. If the root cgroup
121          * is the only cgroup, then nothing else should be necessary.
122          *
123          */
124         __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
125
126         cpuacct_account_field(p, index, tmp);
127 }
128
129 /*
130  * Account user cpu time to a process.
131  * @p: the process that the cpu time gets accounted to
132  * @cputime: the cpu time spent in user space since the last update
133  * @cputime_scaled: cputime scaled by cpu frequency
134  */
135 void account_user_time(struct task_struct *p, cputime_t cputime,
136                        cputime_t cputime_scaled)
137 {
138         int index;
139
140         /* Add user time to process. */
141         p->utime += cputime;
142         p->utimescaled += cputime_scaled;
143         account_group_user_time(p, cputime);
144
145         index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147         /* Add user time to cpustat. */
148         task_group_account_field(p, index, (__force u64) cputime);
149
150         /* Account for user time used */
151         acct_account_cputime(p);
152 }
153
154 /*
155  * Account guest cpu time to a process.
156  * @p: the process that the cpu time gets accounted to
157  * @cputime: the cpu time spent in virtual machine since the last update
158  * @cputime_scaled: cputime scaled by cpu frequency
159  */
160 static void account_guest_time(struct task_struct *p, cputime_t cputime,
161                                cputime_t cputime_scaled)
162 {
163         u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165         /* Add guest time to process. */
166         p->utime += cputime;
167         p->utimescaled += cputime_scaled;
168         account_group_user_time(p, cputime);
169         p->gtime += cputime;
170
171         /* Add guest time to cpustat. */
172         if (TASK_NICE(p) > 0) {
173                 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174                 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175         } else {
176                 cpustat[CPUTIME_USER] += (__force u64) cputime;
177                 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178         }
179 }
180
181 /*
182  * Account system cpu time to a process and desired cpustat field
183  * @p: the process that the cpu time gets accounted to
184  * @cputime: the cpu time spent in kernel space since the last update
185  * @cputime_scaled: cputime scaled by cpu frequency
186  * @target_cputime64: pointer to cpustat field that has to be updated
187  */
188 static inline
189 void __account_system_time(struct task_struct *p, cputime_t cputime,
190                         cputime_t cputime_scaled, int index)
191 {
192         /* Add system time to process. */
193         p->stime += cputime;
194         p->stimescaled += cputime_scaled;
195         account_group_system_time(p, cputime);
196
197         /* Add system time to cpustat. */
198         task_group_account_field(p, index, (__force u64) cputime);
199
200         /* Account for system time used */
201         acct_account_cputime(p);
202 }
203
204 /*
205  * Account system cpu time to a process.
206  * @p: the process that the cpu time gets accounted to
207  * @hardirq_offset: the offset to subtract from hardirq_count()
208  * @cputime: the cpu time spent in kernel space since the last update
209  * @cputime_scaled: cputime scaled by cpu frequency
210  */
211 void account_system_time(struct task_struct *p, int hardirq_offset,
212                          cputime_t cputime, cputime_t cputime_scaled)
213 {
214         int index;
215
216         if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217                 account_guest_time(p, cputime, cputime_scaled);
218                 return;
219         }
220
221         if (hardirq_count() - hardirq_offset)
222                 index = CPUTIME_IRQ;
223         else if (in_serving_softirq())
224                 index = CPUTIME_SOFTIRQ;
225         else
226                 index = CPUTIME_SYSTEM;
227
228         __account_system_time(p, cputime, cputime_scaled, index);
229 }
230
231 /*
232  * Account for involuntary wait time.
233  * @cputime: the cpu time spent in involuntary wait
234  */
235 void account_steal_time(cputime_t cputime)
236 {
237         u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239         cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240 }
241
242 /*
243  * Account for idle time.
244  * @cputime: the cpu time spent in idle wait
245  */
246 void account_idle_time(cputime_t cputime)
247 {
248         u64 *cpustat = kcpustat_this_cpu->cpustat;
249         struct rq *rq = this_rq();
250
251         if (atomic_read(&rq->nr_iowait) > 0)
252                 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253         else
254                 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255 }
256
257 static __always_inline bool steal_account_process_tick(void)
258 {
259 #ifdef CONFIG_PARAVIRT
260         if (static_key_false(&paravirt_steal_enabled)) {
261                 u64 steal, st = 0;
262
263                 steal = paravirt_steal_clock(smp_processor_id());
264                 steal -= this_rq()->prev_steal_time;
265
266                 st = steal_ticks(steal);
267                 this_rq()->prev_steal_time += st * TICK_NSEC;
268
269                 account_steal_time(st);
270                 return st;
271         }
272 #endif
273         return false;
274 }
275
276 /*
277  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
278  * tasks (sum on group iteration) belonging to @tsk's group.
279  */
280 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
281 {
282         struct signal_struct *sig = tsk->signal;
283         cputime_t utime, stime;
284         struct task_struct *t;
285
286         times->utime = sig->utime;
287         times->stime = sig->stime;
288         times->sum_exec_runtime = sig->sum_sched_runtime;
289
290         rcu_read_lock();
291         /* make sure we can trust tsk->thread_group list */
292         if (!likely(pid_alive(tsk)))
293                 goto out;
294
295         t = tsk;
296         do {
297                 task_cputime(tsk, &utime, &stime);
298                 times->utime += utime;
299                 times->stime += stime;
300                 times->sum_exec_runtime += task_sched_runtime(t);
301         } while_each_thread(tsk, t);
302 out:
303         rcu_read_unlock();
304 }
305
306 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
307 /*
308  * Account a tick to a process and cpustat
309  * @p: the process that the cpu time gets accounted to
310  * @user_tick: is the tick from userspace
311  * @rq: the pointer to rq
312  *
313  * Tick demultiplexing follows the order
314  * - pending hardirq update
315  * - pending softirq update
316  * - user_time
317  * - idle_time
318  * - system time
319  *   - check for guest_time
320  *   - else account as system_time
321  *
322  * Check for hardirq is done both for system and user time as there is
323  * no timer going off while we are on hardirq and hence we may never get an
324  * opportunity to update it solely in system time.
325  * p->stime and friends are only updated on system time and not on irq
326  * softirq as those do not count in task exec_runtime any more.
327  */
328 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
329                                                 struct rq *rq)
330 {
331         cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
332         u64 *cpustat = kcpustat_this_cpu->cpustat;
333
334         if (steal_account_process_tick())
335                 return;
336
337         if (irqtime_account_hi_update()) {
338                 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
339         } else if (irqtime_account_si_update()) {
340                 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
341         } else if (this_cpu_ksoftirqd() == p) {
342                 /*
343                  * ksoftirqd time do not get accounted in cpu_softirq_time.
344                  * So, we have to handle it separately here.
345                  * Also, p->stime needs to be updated for ksoftirqd.
346                  */
347                 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
348                                         CPUTIME_SOFTIRQ);
349         } else if (user_tick) {
350                 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
351         } else if (p == rq->idle) {
352                 account_idle_time(cputime_one_jiffy);
353         } else if (p->flags & PF_VCPU) { /* System time or guest time */
354                 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
355         } else {
356                 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
357                                         CPUTIME_SYSTEM);
358         }
359 }
360
361 static void irqtime_account_idle_ticks(int ticks)
362 {
363         int i;
364         struct rq *rq = this_rq();
365
366         for (i = 0; i < ticks; i++)
367                 irqtime_account_process_tick(current, 0, rq);
368 }
369 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
370 static inline void irqtime_account_idle_ticks(int ticks) {}
371 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
372                                                 struct rq *rq) {}
373 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
374
375 /*
376  * Use precise platform statistics if available:
377  */
378 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
379
380 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
381 void vtime_task_switch(struct task_struct *prev)
382 {
383         if (!vtime_accounting_enabled())
384                 return;
385
386         if (is_idle_task(prev))
387                 vtime_account_idle(prev);
388         else
389                 vtime_account_system(prev);
390
391 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
392         vtime_account_user(prev);
393 #endif
394         arch_vtime_task_switch(prev);
395 }
396 #endif
397
398 /*
399  * Archs that account the whole time spent in the idle task
400  * (outside irq) as idle time can rely on this and just implement
401  * vtime_account_system() and vtime_account_idle(). Archs that
402  * have other meaning of the idle time (s390 only includes the
403  * time spent by the CPU when it's in low power mode) must override
404  * vtime_account().
405  */
406 #ifndef __ARCH_HAS_VTIME_ACCOUNT
407 void vtime_account_irq_enter(struct task_struct *tsk)
408 {
409         if (!vtime_accounting_enabled())
410                 return;
411
412         if (!in_interrupt()) {
413                 /*
414                  * If we interrupted user, context_tracking_in_user()
415                  * is 1 because the context tracking don't hook
416                  * on irq entry/exit. This way we know if
417                  * we need to flush user time on kernel entry.
418                  */
419                 if (context_tracking_in_user()) {
420                         vtime_account_user(tsk);
421                         return;
422                 }
423
424                 if (is_idle_task(tsk)) {
425                         vtime_account_idle(tsk);
426                         return;
427                 }
428         }
429         vtime_account_system(tsk);
430 }
431 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
432 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
433 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
434
435
436 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
437 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438 {
439         *ut = p->utime;
440         *st = p->stime;
441 }
442
443 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
444 {
445         struct task_cputime cputime;
446
447         thread_group_cputime(p, &cputime);
448
449         *ut = cputime.utime;
450         *st = cputime.stime;
451 }
452 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
453 /*
454  * Account a single tick of cpu time.
455  * @p: the process that the cpu time gets accounted to
456  * @user_tick: indicates if the tick is a user or a system tick
457  */
458 void account_process_tick(struct task_struct *p, int user_tick)
459 {
460         cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
461         struct rq *rq = this_rq();
462
463         if (vtime_accounting_enabled())
464                 return;
465
466         if (sched_clock_irqtime) {
467                 irqtime_account_process_tick(p, user_tick, rq);
468                 return;
469         }
470
471         if (steal_account_process_tick())
472                 return;
473
474         if (user_tick)
475                 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
476         else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
477                 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
478                                     one_jiffy_scaled);
479         else
480                 account_idle_time(cputime_one_jiffy);
481 }
482
483 /*
484  * Account multiple ticks of steal time.
485  * @p: the process from which the cpu time has been stolen
486  * @ticks: number of stolen ticks
487  */
488 void account_steal_ticks(unsigned long ticks)
489 {
490         account_steal_time(jiffies_to_cputime(ticks));
491 }
492
493 /*
494  * Account multiple ticks of idle time.
495  * @ticks: number of stolen ticks
496  */
497 void account_idle_ticks(unsigned long ticks)
498 {
499
500         if (sched_clock_irqtime) {
501                 irqtime_account_idle_ticks(ticks);
502                 return;
503         }
504
505         account_idle_time(jiffies_to_cputime(ticks));
506 }
507
508 /*
509  * Perform (stime * rtime) / total with reduced chances
510  * of multiplication overflows by using smaller factors
511  * like quotient and remainders of divisions between
512  * rtime and total.
513  */
514 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
515 {
516         u64 rem, res, scaled;
517
518         if (rtime >= total) {
519                 /*
520                  * Scale up to rtime / total then add
521                  * the remainder scaled to stime / total.
522                  */
523                 res = div64_u64_rem(rtime, total, &rem);
524                 scaled = stime * res;
525                 scaled += div64_u64(stime * rem, total);
526         } else {
527                 /*
528                  * Same in reverse: scale down to total / rtime
529                  * then substract that result scaled to
530                  * to the remaining part.
531                  */
532                 res = div64_u64_rem(total, rtime, &rem);
533                 scaled = div64_u64(stime, res);
534                 scaled -= div64_u64(scaled * rem, total);
535         }
536
537         return (__force cputime_t) scaled;
538 }
539
540 /*
541  * Adjust tick based cputime random precision against scheduler
542  * runtime accounting.
543  */
544 static void cputime_adjust(struct task_cputime *curr,
545                            struct cputime *prev,
546                            cputime_t *ut, cputime_t *st)
547 {
548         cputime_t rtime, stime, total;
549
550         if (vtime_accounting_enabled()) {
551                 *ut = curr->utime;
552                 *st = curr->stime;
553                 return;
554         }
555
556         stime = curr->stime;
557         total = stime + curr->utime;
558
559         /*
560          * Tick based cputime accounting depend on random scheduling
561          * timeslices of a task to be interrupted or not by the timer.
562          * Depending on these circumstances, the number of these interrupts
563          * may be over or under-optimistic, matching the real user and system
564          * cputime with a variable precision.
565          *
566          * Fix this by scaling these tick based values against the total
567          * runtime accounted by the CFS scheduler.
568          */
569         rtime = nsecs_to_cputime(curr->sum_exec_runtime);
570
571         if (!rtime) {
572                 stime = 0;
573         } else if (!total) {
574                 stime = rtime;
575         } else {
576                 stime = scale_stime((__force u64)stime,
577                                     (__force u64)rtime, (__force u64)total);
578         }
579
580         /*
581          * If the tick based count grows faster than the scheduler one,
582          * the result of the scaling may go backward.
583          * Let's enforce monotonicity.
584          */
585         prev->stime = max(prev->stime, stime);
586         prev->utime = max(prev->utime, rtime - prev->stime);
587
588         *ut = prev->utime;
589         *st = prev->stime;
590 }
591
592 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
593 {
594         struct task_cputime cputime = {
595                 .sum_exec_runtime = p->se.sum_exec_runtime,
596         };
597
598         task_cputime(p, &cputime.utime, &cputime.stime);
599         cputime_adjust(&cputime, &p->prev_cputime, ut, st);
600 }
601
602 /*
603  * Must be called with siglock held.
604  */
605 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
606 {
607         struct task_cputime cputime;
608
609         thread_group_cputime(p, &cputime);
610         cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
611 }
612 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
613
614 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
615 static unsigned long long vtime_delta(struct task_struct *tsk)
616 {
617         unsigned long long clock;
618
619         clock = local_clock();
620         if (clock < tsk->vtime_snap)
621                 return 0;
622
623         return clock - tsk->vtime_snap;
624 }
625
626 static cputime_t get_vtime_delta(struct task_struct *tsk)
627 {
628         unsigned long long delta = vtime_delta(tsk);
629
630         WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
631         tsk->vtime_snap += delta;
632
633         /* CHECKME: always safe to convert nsecs to cputime? */
634         return nsecs_to_cputime(delta);
635 }
636
637 static void __vtime_account_system(struct task_struct *tsk)
638 {
639         cputime_t delta_cpu = get_vtime_delta(tsk);
640
641         account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
642 }
643
644 void vtime_account_system(struct task_struct *tsk)
645 {
646         if (!vtime_accounting_enabled())
647                 return;
648
649         write_seqlock(&tsk->vtime_seqlock);
650         __vtime_account_system(tsk);
651         write_sequnlock(&tsk->vtime_seqlock);
652 }
653
654 void vtime_account_irq_exit(struct task_struct *tsk)
655 {
656         if (!vtime_accounting_enabled())
657                 return;
658
659         write_seqlock(&tsk->vtime_seqlock);
660         if (context_tracking_in_user())
661                 tsk->vtime_snap_whence = VTIME_USER;
662         __vtime_account_system(tsk);
663         write_sequnlock(&tsk->vtime_seqlock);
664 }
665
666 void vtime_account_user(struct task_struct *tsk)
667 {
668         cputime_t delta_cpu;
669
670         if (!vtime_accounting_enabled())
671                 return;
672
673         delta_cpu = get_vtime_delta(tsk);
674
675         write_seqlock(&tsk->vtime_seqlock);
676         tsk->vtime_snap_whence = VTIME_SYS;
677         account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
678         write_sequnlock(&tsk->vtime_seqlock);
679 }
680
681 void vtime_user_enter(struct task_struct *tsk)
682 {
683         if (!vtime_accounting_enabled())
684                 return;
685
686         write_seqlock(&tsk->vtime_seqlock);
687         tsk->vtime_snap_whence = VTIME_USER;
688         __vtime_account_system(tsk);
689         write_sequnlock(&tsk->vtime_seqlock);
690 }
691
692 void vtime_guest_enter(struct task_struct *tsk)
693 {
694         write_seqlock(&tsk->vtime_seqlock);
695         __vtime_account_system(tsk);
696         current->flags |= PF_VCPU;
697         write_sequnlock(&tsk->vtime_seqlock);
698 }
699
700 void vtime_guest_exit(struct task_struct *tsk)
701 {
702         write_seqlock(&tsk->vtime_seqlock);
703         __vtime_account_system(tsk);
704         current->flags &= ~PF_VCPU;
705         write_sequnlock(&tsk->vtime_seqlock);
706 }
707
708 void vtime_account_idle(struct task_struct *tsk)
709 {
710         cputime_t delta_cpu = get_vtime_delta(tsk);
711
712         account_idle_time(delta_cpu);
713 }
714
715 bool vtime_accounting_enabled(void)
716 {
717         return context_tracking_active();
718 }
719
720 void arch_vtime_task_switch(struct task_struct *prev)
721 {
722         write_seqlock(&prev->vtime_seqlock);
723         prev->vtime_snap_whence = VTIME_SLEEPING;
724         write_sequnlock(&prev->vtime_seqlock);
725
726         write_seqlock(&current->vtime_seqlock);
727         current->vtime_snap_whence = VTIME_SYS;
728         current->vtime_snap = sched_clock();
729         write_sequnlock(&current->vtime_seqlock);
730 }
731
732 void vtime_init_idle(struct task_struct *t)
733 {
734         unsigned long flags;
735
736         write_seqlock_irqsave(&t->vtime_seqlock, flags);
737         t->vtime_snap_whence = VTIME_SYS;
738         t->vtime_snap = sched_clock();
739         write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
740 }
741
742 cputime_t task_gtime(struct task_struct *t)
743 {
744         unsigned int seq;
745         cputime_t gtime;
746
747         do {
748                 seq = read_seqbegin(&t->vtime_seqlock);
749
750                 gtime = t->gtime;
751                 if (t->flags & PF_VCPU)
752                         gtime += vtime_delta(t);
753
754         } while (read_seqretry(&t->vtime_seqlock, seq));
755
756         return gtime;
757 }
758
759 /*
760  * Fetch cputime raw values from fields of task_struct and
761  * add up the pending nohz execution time since the last
762  * cputime snapshot.
763  */
764 static void
765 fetch_task_cputime(struct task_struct *t,
766                    cputime_t *u_dst, cputime_t *s_dst,
767                    cputime_t *u_src, cputime_t *s_src,
768                    cputime_t *udelta, cputime_t *sdelta)
769 {
770         unsigned int seq;
771         unsigned long long delta;
772
773         do {
774                 *udelta = 0;
775                 *sdelta = 0;
776
777                 seq = read_seqbegin(&t->vtime_seqlock);
778
779                 if (u_dst)
780                         *u_dst = *u_src;
781                 if (s_dst)
782                         *s_dst = *s_src;
783
784                 /* Task is sleeping, nothing to add */
785                 if (t->vtime_snap_whence == VTIME_SLEEPING ||
786                     is_idle_task(t))
787                         continue;
788
789                 delta = vtime_delta(t);
790
791                 /*
792                  * Task runs either in user or kernel space, add pending nohz time to
793                  * the right place.
794                  */
795                 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
796                         *udelta = delta;
797                 } else {
798                         if (t->vtime_snap_whence == VTIME_SYS)
799                                 *sdelta = delta;
800                 }
801         } while (read_seqretry(&t->vtime_seqlock, seq));
802 }
803
804
805 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
806 {
807         cputime_t udelta, sdelta;
808
809         fetch_task_cputime(t, utime, stime, &t->utime,
810                            &t->stime, &udelta, &sdelta);
811         if (utime)
812                 *utime += udelta;
813         if (stime)
814                 *stime += sdelta;
815 }
816
817 void task_cputime_scaled(struct task_struct *t,
818                          cputime_t *utimescaled, cputime_t *stimescaled)
819 {
820         cputime_t udelta, sdelta;
821
822         fetch_task_cputime(t, utimescaled, stimescaled,
823                            &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
824         if (utimescaled)
825                 *utimescaled += cputime_to_scaled(udelta);
826         if (stimescaled)
827                 *stimescaled += cputime_to_scaled(sdelta);
828 }
829 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */